
Resource Allocation

Abstract
This is a small toy example which is well-suited as a first introduction to CP-nets.
The CPN model is described in great detail, explaining the basic concepts of
CP-nets. Hence, it can be read by people with no/little Petri net background.

The CPN model describes how two different kinds of processes are sharing three
different kinds of resources. It is simple to understand and easy to simulate/modify.

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.aau.dk).

Graphical Quality
The figures in this document are inserted via PICT format. This is why some of the
arcs and place borders look a bit ragged. A postscript printout from Design/CPN
(and the screen image in Design/CPN) has much higher graphical quality.

2

CPN Model

Assume that we have a set of processes, which share a common pool of resources.
There are two different kinds of processes (called p-processes and q-processes) and
three different kinds of resources (called r-resources, s-resources, and t-resources).
The processes could be different computer programs (e.g., text editors and drawing
programs) while the resources could be different facilities shared by the programs
(e.g., tape drives, laser printers and plotters). Each process is cyclic and during the
individual parts of its cycle, the process needs to have exclusive access to a varying
amount of the resources. The resource allocation system is modelled by the CP-net
shown below.

Initial Marking M0

AP

3`(q,0)

3 3`(q,0)

BP

2`(p,0) 2 2`(p,0)

CP

DP

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

1 1`e

S

E

3`e

3 3`e

T

E

2`e

2 2`e

color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1`(q,i+1)
else empty

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty

3

The processes can be in five different states, represented by the places A–E.
Each place may contain one or more markers, called tokens. Each token carries a
data value – called the token colour. The data value may be of arbitrarily complex
type (e.g., a record where the first field is a real, the second a text string, while the
third is a list of integer pairs). For a given place all tokens must have token colours
that belong to a specified type. This type is called the colour set of the place.

The use of colour sets in CP-nets is totally analogous to the use of types in pro-
gramming languages. Colour sets determine the possible values of tokens
(analogously to the way in which types determine the possible values of variables
and expressions). For historical reasons we talk about “coloured tokens” which can
be distinguished from each other – in contrast to the “plain tokens” of an ordinary
Petri net.

By convention we write colour sets in italics. From the above figure, it can be
seen that the places A–E have the type P as colour set, while the places R–T have the
type E as colour set. The declarations of the colour sets (in the upper left corner
of the figure) tell us that each token on A–E has a token colour which is a pair
(because the colour set P is declared to be the cartesian product of two other colour
sets U and I). The first element of the pair is an element of U and thus it is either p
or q (because the colour set U is declared to be an enumeration type with these two
elements). The second element is an integer (because the colour set I is declared by
means of the CPN ML standard type int, which contains all integers in an implemen-
tation-dependent interval). Intuitively, the first element of a token tells whether the
token represents a p-process or a q-process, while the second element tells how
many full cycles the process has completed. It can also be seen that all the tokens on
R–T have the same token colour (e is the only element of E). Intuitively, this means
that these tokens carry no information – apart from their presence/absence at a
place.

The initial marking is determined by evaluating the initialization expres-
sions, i.e., the underlined expressions next to the places. In the initial marking there
are three (q,0)-tokens on A and two (p,0)-tokens on B, while C, D and E have no
tokens (by convention we omit initialization expressions which evaluate to the empty
multi-set). Moreover, R has one e-token, S has three e-tokens and T has two
e-tokens. The marking of each place is a multi-set over the colour set attached to
the place. We need multi-sets to allow two or more tokens to have identical token
colours. If we only worked with sets it would be impossible, for example, to have
three (q,0)-tokens in the initial marking of A.

The current marking of a given place is represented by means of a small circle
(with an integer saying how many tokens there are) and a text string next to the
circle (with a multi-set saying what the individual token colours are, and which co-
efficients they have). By convention we omit the circle and the text string for places
which have no tokens. In the Design/CPN tool it is possible to make the individual
text strings (which may be very large) visible/invisible by double-clicking on the
corresponding circle. In this way it is possible to display complex markings without
overloading the diagram with too many large text strings. In the figure above, the
current marking is identical to the initial marking, and this means that the small

4

circles and their text strings contain the same information as the initialization ex-
pressions.

Each of the five transitions T1–T5 represents a shift from one state to the next.
The surrounding arc inscriptions tell us how resources are reserved and released.
To see how this works, let us consider transition T2 which has three surrounding
arcs. The arc expression “(x,i)” appears twice (on the input arc from B and on the
output arc to C) while “case x of p=>2`e | q=>1`e” appears once (on the input arc
from S). Together these three arc expressions have two variables, x and i, and from
the declarations it can be seen that x has type U while i has type I. At a first glance
one might also think that e, p and q are variables, but from the declarations it can be
seen that this is not the case: e is an element of the colour set E, while p and q are
elements of U. This means that they are constants. Intuitively, the three arc expres-
sions tell us that an occurrence of T2 moves a token from B to C – without changing
the colour (because the two arc expressions are identical). Moreover, the occurrence
removes a multi-set of tokens from S. This multi-set is determined by evaluating the
corresponding arc expression. As it can be seen, the multi-set depends upon the kind
of process involved. A p-process needs two s-resources to go from B to C (and thus
it removes two e-tokens from S), while a q-process only needs one s-resource to go
from B to C (and thus it removes only one e-token from S).

Now let us be a little more precise, and explain in detail how the enabling and
occurrence of CP-net transitions are determined. The transition T2 has two vari-
ables (x and i), and before we can consider an occurrence of the transition these
variables have to be bound to colours of the corresponding types (i.e., elements of
the colour sets U and I). This can be done in many different ways. One possibility is
to bind x to p and i to zero: then we get the binding b1 = <x=p,i=0>. Another
possibility is to bind x to q and i to 37: then we get the binding b2 = <x=q,i=37>.

For each binding we can check whether the transition, with that binding, is en-
abled (in the current marking). For the binding b1 the two input arc expressions
evaluate to (p,0) and 2`e, respectively. Thus we conclude that b1 is enabled in the
initial marking – because each of the input places contains at least the tokens to
which the corresponding arc expression evaluates (one (p,0)-token on B and two
e-tokens on S). For the binding b2 the two arc expressions evaluate to (q,37) and e.
Thus we conclude that b2 is not enabled (there is no (q,37)-token on B). A transition
can occur in as many ways as we can bind the variables that appear in the surround-
ing arc expressions (and in the guard – introduced below). However, for a given
marking, it is usually only a few of these bindings that are enabled.

When a transition is enabled (for a certain binding) it may occur, and it then
removes tokens from its input places and adds tokens to its output places. The num-
ber of removed/added tokens and the colours of these tokens are determined by the
value of the corresponding arc expressions (evaluated with respect to the binding in
question). A pair (t,b) where t is a transition and b a binding for t is called a bind-
ing element. The binding element (T2,b1) is enabled in the initial marking M0 and
it transforms M0 into the marking M1 (shown below). Analogously, we conclude
that the binding element (T1,<x=q,i=0>) is enabled in M0 and that it transforms M0

into the marking M2 (shown below). We say that each of the markings M1 and M2 is

5

directly reachable from M0 . The binding element (T2,b2) is not enabled in M0

and thus it cannot occur.
Next, let us take a closer look at transition T5. This transition moves a token

from place E to either A or B (p-processes go to B, while q-processes go to A).
Simultaneously the transition updates the cycle counter i. Notice that different
bindings for a transition may not only result in different token colours but also in
different numbers of tokens. In particular this may mean that the multi-set of tokens
which are added/removed, for a given binding, may be empty, as illustrated by the
two thick output arcs of T5. We have positioned the first segments of the two arcs
on top of each other to illustrate the close relationship between them. However, it
should be stressed that this has no formal meaning. The only purpose is to make the
drawing more readable for human beings.

Marking M1

AP

3`(q,0)

3 3`(q,0)

BP

2`(p,0) 1 1`(p,0)

CP 1 1`(p,0)

DP

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

1 1`e

S

E

3`e

1 1`e

T

E

2`e

2 2`e

color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1`(q,i+1)
else empty

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty

6

Next let us look at transition T1, which in addition to the arc expressions has a
guard: “[x=q]”. A guard is a boolean expression (i.e., an expression that evaluates
to either true or false). It may have variables in exactly the same way that the arc
expressions have. The purpose of a guard is to define an additional constraint which
must be fulfilled for a transition to be enabled. In this case the guard tells us that it
is only tokens representing q-processes which can move from A to B (because the
guard for all bindings <x=p, …> evaluates to false and thus prevents enabling). It is
easy to see that we in this case could have omitted the guard, because we never will
have p-tokens on place A. However, adding the guard makes our description more
robust towards errors.

When the same variable name appears more than once, in the guard/arc expres-
sions of a single transition, we only have one variable (with multiple appearances).

Marking M2

AP

3`(q,0)

2 2`(q,0)

BP

2`(p,0) 3 2`(p,0)+1`(q,0)

CP

DP

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

S

E

3`e

2 2`e

T

E

2`e

2 2`e

color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1`(q,i+1)
else empty

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty

7

Each binding of the transition specifies a colour for the variable – and this colour is
used for all the appearances. However, it should be noted that the appearances of x
around T1 are totally independent of the appearances of x around T2 – in the sense
that the two sets of appearances in the same step can be bound to different colour
values.

It can be shown that the resource allocation system presented above has no dead-
lock (i.e., no reachable marking in which no binding element is enabled). However
what happens if we change the number of processes or the number of resources? As
an example, let us assume that the initial marking has an extra s-resource (i.e., an
extra e-token on S). One should expect that this small modification cannot lead to a
deadlock – because deadlocks appear when we have too few resource tokens, and
thus an extra resource token cannot cause a deadlock.

Is the argument above convincing? At a first glance: yes! However, this argu-
ment is wrong. Adding the extra s-resource actually means that we can reach a
deadlock. This can be seen by letting the two p-processes advance from state B to
state D, while the q-processes remain in state A.

Hopefully, this small example demonstrates that informal arguments about be-
havioural properties are dangerous – and this is one of our motivations for the de-
velopment of the more formal analysis methods, such as occurrence graphs and
place invariants.

