Distributed Data Base

Abstract
This is a small toy example which is well-suited as an introduction to occurrence
graphs. The analysis of the occurrence graph is described in great detail.

The CPN model describes the communication between a set of data base managers in
a distributed system. The model is identical to the “Distributed Data Base” presented
in “Introductory Examples”(which we recommend to study before this example).

The example is taken from Sect. 1.5 of Vol. 2 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.au.dk).

CPN Model

In this example we study the O-graph for the data base system, i.e., the O-graph for
the following CP-net:

(s.

(wg)_,@

Update MES Receive
and Send a
Messages Message r
(s.1)
DBM.all()
Received
MES DBM
(s.n)
A 4
Receive all Send an
Acknowledg- Acknowledg-
ments ment
Mes(s Acknowledged S.I
MES
valn = 3;

color DBM = index d with 1..n;
volor PR = product DBM * DBM,;
fun diff(x,y) = (x<>y);

color MES = subset PR by diff ;

color E = with e;

fun Mes(s) = PR.mult(1's, DBM.all()--1's);

var s,r: DBM:;

For three data base managers the O-graph looks as shown below. The current version
of CPN Tools does not include facilities for drawing O-graphs. Node number one is
the initial marking. To save space the transition names are abbreviated to SM, RM,
SA, and RA. Moreover, we write SMiand RM i,k instead of (SM,<s=dj>) and
(RM,<s=dj, r=dk>), and analogously for SA and RA.

[y
\e)

[y
ul

X X
< <
N N
w [
w (%]
> >
» N
[w
(%]
>
N
=

‘

= =
w IS

6 g

9

)
<
w
[
"
>
w
N

Jun
N

By
<
w
N
[
>
w
[
)
>
w
N

a

wn
>
w
i

=
=

Y

The standard report looks as shown below.

From the statistics we see that there only is one strongly connected component. This
means that all reachable states are reachable from each other.

Statistics

Occurrence Graph
Nodes: 28
Arcs: 42
Secs: 0
Status: Full

Scc Graph
Nodes: 1
Arcs: 0
Secs: 0

All the integer bounds are as expected (see below). In particular, we see that at most
one process can be Waiting. This tells us that a new update cannot start until all data
base managers have finished the processing of the previous one. Also the multi-set
bounds are as expected. To improve the readability, we have substituted DBM for the
multi-set 1'd(1)+1'd(2)+1d(3) and MES for 1°(d(1),d(2))+ 1(d(1),d(3))+
1°(d(2),d(1)) + 1°(d(2),d(3)) + 17 (d(3),d(1)) +1°(d(3),d(2)).

Boundedness Properties

Best Integers Bounds

Upper Lower

Acknowledged 2 0
Active
Inactive
Passive
Performing
Received
Sent
Unused
Waiting

FoaMNDNMNMRE WR
O b OO OO oo

Best Upper Multi-set Bounds
Acknowledged MES

Active 1°e
Inactive DBM
Passive 1°e
Performing DBM
Received MES
Sent MES
Unused MES
Waiting DBM

Best Lower Multi-set Bounds
Acknowledged empty

Active empty
Inactive empty
Passive empty
Performing empty
Received empty
Sent empty
Unused empty

Waiting empty

The home properties tell us that all reachable markings are home markings. From the
drawing of the occurrence graph, we can actually deduce that the system has a much
stronger property. It is not only possible to return to the initial marking. This will
always happen — whenever 2 =n transitions have occurred.

Home Properties

Home Markings: All

Also the liveness properties are as expected. There are no dead markings and all
transitions are live.

Liveness Properties

Dead Markings: None
Dead Transitions Instances: None

Live Transitions Instances: All

Finally, the fairness properties tells us that all transitions are impartial. This is also
easy to see from the drawing of the occurrence graph. Whenever 2 =n transitions have
occurred SendMes and RecAck have occurred exactly one time each, while RecMes
and SendAck have occurred exactly n—1 times each.

Fairness Properties

SendMes Impartial
RecMes Impartial
SendAck Impartial
RecAck Impartial

Now let us look at some model dependent properties. First we investigate whether the
transitions are strictly live. For SendMes and RecMes the queries look as shown
below. They show us that SendMes is strictly live, while RecAck is not — because
binding elements such as (RecAck,<s=d(2),r=d(2)>) are dead. If we add a guard,
[s<>r], to RecAck, the transition becomes strictly live.

Strictliveness wal it=true ; hool

BE=sStrictiyLive val it=false : bool
[Bind. Top'Sendides (1, {s=di1i},
Bind. Top'SendMes (1, {s=diZ},
Bind Top'SendMes (1, {s=d{3N];

BEsStrictlyLive

[Bind. Top'RechMes {1, {s=di1), =dili},
Bind. Top'RecMes {1, {s=d{1), I=d{23h,
Bind. Top'RecMes {1, {s=d{1), I=d{3)1,
Bind. Top'RecMes {1, {s=d{2), =d{1)1,
Bind. Top'RecMes {1, {s=d{2), I=d{23h,
Bind. Top'RecMes {1, {s=d{2), I=d{3 D,
Bind. Top'RecMes {1, {s=d{3), =d{1)},
Bind. Top'RecMes {1, {s=d{3), I=d{2D,
Bind. Top'RecMes {1, {s=d (3}, =d{230];

Next we investigate the fairness properties of some typical binding elements. We see
that the binding element of SendMes is just, while those of the other three transitions
are fair.

Fairness of Binding Elements

BEsFairmmess val it=Just: FairnessFroperty
[Bind Top'Sendhbles (1, {s=d{1)0]; val it= Fair: FairnessProperty
BEsFairmness val it= Fair: FairnessProperty
[Bind Top'RecMes {1, {s=a1), 1=d{230] | val it= Fair: FaimessProperty
BEsFairness

[Bind Top'SendAck (1, f5=d {13, r=d{3)7];

BEsFairness

[Bind Top'RecAck {1, {s=d(13}];

Finally, let us demonstrate that occurrence graphs also can be used to check whether
place invariants are fulfilled. It should, however, be stressed that the best way to
check place invariants (for complex systems) is by checking the place flow property,
which is a static and local property that can be checked without generating all pos-
sible system states. We want to check the following two place invariants:

M(Performing) = Rec(M(Received))
Mes(Waiting) = M(Sent) + M(Received) + M(Acknowledged).

We first define a function Rec that maps a message into its receiver.

A Projection Function val Rec=1fn: MES -= DBEM
fun Rec{(s :MES)=r;

Then we extend Rec and Mes to two new functions Rec' and Mes' which can be ap-
plied to multi-sets of data base managers. This is done by means of two predeclared

functions ext_col and ext_ms. The first of these extends a function [AZB] to a
function [Ams@Bwms], while the second extends a function [A@Bys] to a function

[Ams D Bus].

Extensions to Multi-zets val Rec'=fn: MES ms -= DBM ms
val Bec'= ext ool Bee: | val Mes'=fn DBM.cs ms-= PR ms

val Mes'=ext_ms Mesg,

By definition the result of using an extended function to a multi-set is obtained by
using the original function to each element in the multi-set — adding the results. This
is illustrated by the following examples. The two mkstr_ms functions map the ML
representation of a DBM/MES multi-set into a much more readable string represen-
tation.

Examples

DBEM.mkstr_ms (Rec'{1 (d (1), di3n++
17T, i,
MES.mkstr_ms (Mes'{1 di1++17diz2n;

wal it="1"di2y++1"d{3" : string
wal it="1 ({1, d2p++17(d 0, A3+ + 1702y, di y++1 7 (2, 30" sting

Finally, we use a predeclared search function called PredAlINodes to list all nodes
violating the two invariants. There are no such nodes, and hence we have proved that
the invariants are fulfilled in all reachable markings. Please note that the <><>
operator checks whether two multi-sets differ from each other (if you replace <><>
by <> you only check whether the representations of the two multi-sets differ from
each other).

Check of Two Place Invariants wal it= [: Mode list

PredallNadestn n == valit=[: Mode fist
(Mark Top'Peifarming 1 n) <===
Fec' (Mark Top'Received 1 n;

FredAllMaodes (fnn==

Mes' (Mark Topivaiting 1 n) ==<=
(Mark Top'Sent 1 n ++

tMark. Top'Received 1 nj++
(Mark Top'Acknowledged 1)

For the data base system it is rather easy to calculate how fast the O-graph grows —
when we increase the number of data base managers. The results are as shown
below. They illustrate the space complexity of the O-graph algorithm:

&DBM Nodes Arcs

&
O(n) O(n*3N) O(n2*3M)

2 7 8
3 28 42
4 109 224
5 406 1,090
6 1,459 4,872
7 5,104 20,426
8 17,497 81,664
9 59,050 314,946
10 196,831 1,181,000
15 71,744,536 669,615,690
20 23,245,229,341 294,439,571,680

As illustrated above, it is often the case that the O-graph of a CP-net grows very fast
when the sizes of the involved colour sets increase. However, in practice, it is fortu-
nately often sufficient to consider rather small colour sets in order to verify the
logical correctness of a given CP-net. Having convinced ourselves that the data base
system has the correct behaviour for 4 or 5 managers, we can feel pretty sure that the
design also works correctly for any larger number of managers. Sadly, a similar
statement is not true when we try to evaluate the performance of a given system.

	Distributed Data Base

