
Protocol with Timer

Abstract
This example shows how the CP-net from “Simple Protocol” can be modified so that
the retransmission of messages is controlled by a simple timer – modelled by means
of two places and two transitions. The CP-net is not using time stamps and hence it
should not be confused with the “Timed Protocol”.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.aau.dk).

Graphical Quality
The figures in this document are inserted via PICT format. This is why some of the
arcs and place borders look a bit ragged. A postscript printout from Design/CPN
(and the screen image in Design/CPN) has much higher graphical quality.

2

CPN Model

The protocol part of the CP-net is shown below. It is very similar to the CP-net for
the “Simple Protocol”. However, there are two differences. The protocol is opti-
mistic, in the sense that it assumes that each packet will be successfully received and
hence immediately continues to send the succeeding packet. This can be seen from
the arc expression at the arc from Send Packet to Next Send. Moreover, the receiver
now only sends an acknowledgment when it receives a packet containing
"########" (and already has received all the preceding packets). This can be seen
from the arc expression at the arc from Receive Packet to C. By convention the ac-
knowledgment contains the value 0. When the acknowledgment reaches the sender,
the token at Next Send is removed and hence the transmission stops.

It is obvious that this simple scheme does not work alone. We also need to in-
clude a mechanism to start a retransmission – in the case where one or more packets
get lost (or overtake each other). We achieve this by means of the simple timer
shown on the next page. When transition Send Packet sends the last packet (the one
with "########") it adds a token with value 0 to place Count (in the timer). This

Protocol Part

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA 1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis b")+
1`(4,"y Means ")+
1`(5,"of Colou")+
1`(6,"red Petr")+
1`(7,"i Nets##")+
1`(8,"########")

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

Sender Network Receiver

SP
8

Ten0 1 1`8

S A
1 1`8

Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if p=stop
 andalso n<=k
then 1`0
else empty

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k

n n+1

str

s

s

3

enables transition Clock Tick. Each occurrence of this transition increases the count
(i.e., the value of the token at Count). When the count reaches a pre-set limit
(determined by the token at Limit) transition Clock Tick ceases to be enabled.
Instead transition Alarm becomes enabled. When it occurs it stops the timer and re-
sets the value of the token at Next Send to 1, i.e., starts a retransmission of the en-
tire set of packets. The two transitions in the timer may occur concurrently to the
transitions in the protocol part (i.e., the other five transitions). A retransmission
will occur if and only if Alarm occurs before Receive Acknowledgment. This will
happen if the protocol part is “too slow” or if one or more packets get lost or over-
take each other. By adjusting the timer limit it can be made more or less likely that
the timer raises an alarm before the protocol part has finished.

Simple Timer

Timer

Clock
Tick

[n<k]

Count
INT

AlarmLimit
INT

8

Receive
Acknow.

NextSend
INT

1

Send
Packet

Send

INTxDATA

(n,p)

k

n n+1k

n

n+1

n

n

if p=stop
then 1`0
else empty

1

k

