Ring Protocol

Abstract

This is a small toy example which is well-suited as a first introduction to
hierarchical CP-nets. The use of substitution transitions and fusion sets are
described in great detail.

The CPN model describes how a number of different sites communicate via a
ring network.

The example is taken from Sect. 3.1 of Vol. 1 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.au.dk).

CPN Model

The basic idea behind hierarchical CP-nets is to allow the modeller to construct
a large model by combining a number of small CP-nets into a larger net. This is
similar to the situation in which a programmer constructs a large program from
a set of modules and subroutines.

Substitution of transitions

The intuitive idea behind substitution transitions is to allow the user to relate a
transition (and its surrounding arcs) to a more complex CP-net — which usually
gives a more precise and detailed description of the activity represented by the
substitution transition. The idea is analogous to the hierarchy constructs found
in many graphical description languages (e.g., data flow diagrams) and it is also,
in some respects, analogous to the module concepts found in many modern
programming languages. At one level, we want to give a simple description of
the modelled activity without having to consider internal details about how it is
carried out. At another level, we want to specify the more detailed behaviour.
Moreover, we want to be able to integrate the detailed specification with the
more crude description — and this integration must be done in such a way that it
becomes meaningful to speak about the behaviour of the combined system. Now
let us consider a small example, consisting of a simple ring network with four
different sites. The main purpose of the example is to explain the semantics of
substitution transitions, and thus the described network is far too simple to be
realistic.

As mentioned above, we want to relate individual CP-nets to nodes, which
are members of other CP-nets, and this means that our description will contain a
set of non-hierarchical CP-nets — which we shall call pages. Below you see a
page from the network system. The page has a page name Network (which is a
text string).

The page Network contains ring consisting of four places and four transi-
tions. The four transitions are substitution transitions. This can be seen
because each of them has a small tag adjacent which contains the identity of the
subpage. The subpage is the page which contains the detailed description of the
activity modelled by the corresponding substitution transition. Each substitution
transition is said to be a supernode (of the corresponding subpage) while the
page of a substitution transition is a superpage (of the corresponding subpage).
In our example, we can see that all four substitution transitions of Network share
the same subpage Site which is shown below. This means that the hierarchical
net will have four instances of Site. Each of these page instances will have its
own private marking, which is independent of the markings of the other
instances (in a similar way that each procedure call has its own private copies of
the local variables in the procedure).

When a CP-net is simulated by means of the CPN simulator within CPN
Tools, we have a sheet for each page. The sheet shows the marking of one page
instance at a time, and it is possible for the user to switch from one instance to
another. We will return to the remaining lines of the hierarchy inscriptions in a
moment, but let us first take a look at Site which describes an individual site in
the ring network.

The declarations (at the bottom of the page) declares a constant
NoOfSites = 4, which tells us how many sites the ring network has. Moreover,
three colour sets are declared: INT contains all integers. SITES contains the
elements {S(1),S(2), ...,S(NoOfSites)}, which are used to identify the
individual sites of the network. Finally, PACK describes the individual
packages which are sent in the network. The format is a record, containing an
se-field for the identity of the sender, an re-field for the identity of the receiver
and a no-field for a package number. The actual data content of the packages is
ignored, but if desired it could of course easily be added as an additional field of
the record.

Site has three different transitions. Each occurrence of NewPack creates a
new package. The no-field of the new package is determined by the token on the
place PackNo (and the colour of this token is increased by one so that the next
package will get a package number which is one higher). The se-field of the
new package is determined by the tokens at place SiteNo. Finally, the re-field is
determined by the variable r — which does not appear in the guard and input arc
expressions. This means that the binding of r does not influence the enabling,
and thus r can take an arbitrary value (from SITES). This means that a site can
send a package to itself, but if desired this could of course easily be prevented
by adding a guard specifying that r #s.

Network

PACK

s@) s

The created packages are handled by the transition Send, which inspects the
re-field of the package. This is done by means of the expression #re p which
denotes the re-field of the record p. When the re-field indicates that the receiver
is different from the present site, the package is transferred to the place
Outgoing (which is the “output gate” to the rest of the network) and a copy of
the package is put on the place SentExt (indicating that the package is sent to an
external receiver). Otherwise the package is sent directly to the place Reclnt
(indicating that the package is received from an internal sender).

Finally, the transition Receive inspects all the packages which arrive at the
place Incoming (which is the “input gate” from the rest of the network). Again
the re-field is inspected, and based on this inspection the package is routed,
either to Outgoing or to RecExt (indicating that the package is received from an
external sender).

Site
{se=s, re=r, no=n}
(
PACK
if #re p<>s
then 1'p
else empty
PACK
if#rep=s Send
then 1p if #re p <> s
PACK else empty then 1p
else empty
NewPack |«
s
A
nf /n+1 if#rep <>s
1 then 1'p
: _ Ise empty
if#rep=s - €
PackNo en 1P Receive
INT paCK Clseempy

[InlPACK

val NoOfSites = 4;

color INT = int;

color SITES = index S with 1..NoOfSites;

color PACK = record se: SITES * re:SITES * no:INT,;
var s,r: SITES;

var p: PACK;

var n: INT;

The basic idea behind substitution transitions is that it should be possible to
translate a hierarchical CP-net into a behaviourally equivalent non-hierarchical
net by replacing each substitution node (and its surrounding arcs) with a copy of
its subpage. However, to do this we need to know how the subpage should be
“glued together” with the surroundings of the supernode (i.e., the rest of the
superpage). This information is provided by the port assignment, which
describes the interface between the superpage (Network) and the subpage (Site).
A port assignment relates a socket node on the superpage (i.e., one of the places
that surrounds the substitution transition) with a port node on the subpage (i.c.,
one of the places which have an In-tag, Out-tag or I/O-tag next to it). An In-tag
indicates that the port node must be related to a socket node which is an input
node of the substitution transition (and it is not allowed also to be an output
node). Analogously, an Out-tag indicates that the port must be related to a
socket which is an output node (and not an input node), while an I/O-tag
indicates that the socket must be both an input and output node.

In our example, let us consider substitution transition N0l (which represents
site number one). The socket node P1to2 is assigned to (i.e., “glued” together
with) the port node Outgoing. Intuitively, this means that the two places
represent a single conceptual place — and thus they will always have identical
markings. If the occurrence of a step adds or removes one or more tokens at one
of the two places, an identical set of tokens will be added/removed at the other.
Analogously, the socket nodes S1 and P1tol are assigned to the port nodes
SiteNo and Incoming, respectively..

Fusion of places

The intuitive idea behind fusion of places is to allow the user to specify that a
set of places are considered to be identical, i.e., they all represent a single
conceptual place even though they are drawn as individual places. This means
that when a token is added/removed at one of the places, an identical token will
be added/removed at all the others. The relationship between the members of a
fusion set is, in many respects, similar to the relationship between two places
which are assigned to each other by a port assignment.

The places that participate in such a fusion set may belong to a single page
or to several different pages. When all members of a fusion set belong to a
single page and that page only has one page instance, place fusion is nothing
other than a drawing convenience that allows the user to avoid too many
crossing arcs. However, things become much more interesting when the
members of a fusion set belong to several different pages or to a page that has
several page instances. In that case fusion sets allow the user to specify a
behaviour which it may be cumbersome to describe without fusion. To allow
modular analysis of hierarchical CP-nets, fusion sets should be used with care.

To investigate fusion sets you may use CPN Tools to modify the “Ring
Network” by defining a fusion set on Site. The fusion set combines SentExt with
itself — there is only one “resulting place” shared by all four page instances.

	Ring Protocol
	Substitution of transitions
	Fusion of places

