
Design/CPN
ASK-CTL Manual

Version 0.9

 University of Aarhus
Computer Science Department

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88
Fax: +45 89 42 32 55 © 1996 University of Aarhus

ASK-CTL Manual

ASK-CTL-2 Design/CPN ASK-CTL Manual

© 1996 University of Aarhus

Computer Science Department

Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Søren Christensen and Kjeld H. Mortensen.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-3

Design/CPN
ASK-CTL Manual

Version 0.9

Introduction

This library implements a CTL-like temporal logic called ASK-
CTL. The logic is an extension of CTL [3] which is a branching
time logic. ASK-CTL is interpreted over the state spaces (also
called the occurrence graph or reachability graph/tree) of Coloured
Petri Nets in the tool Design/CPN. We have extended CTL in order
to take into account, both state information and transition
information. Additionally the library also contains a model
checker. It takes an ASK-CTL formula as argument, checks the
formula against the current state space, and returns the truth value
of the given formula. For efficiency reasons, the algorithm takes
into account the Strongly Connected Component graph (SCC-
graph).

The ASK-CTL logic and model checker is implemented in SML,
and queries are formulated directly in SML syntax.

For more information about ASK-CTL, we refer to the paper
presented at WoDES’96 [1] and the online technical report [2].

In the rest of this manual we assume that you know Design/CPN
and the Occurrence Graph Tool, and have general knowledge about
the temporal logic CTL and model checking.

How to Install the ASK-CTL Library

Assuming that you have downloaded the library archive, do the
following:

UNIX

1) Uncompress the archive:

ASK-CTL Manual

ASK-CTL-4 Design/CPN ASK-CTL Manual

 uncompress ASKCTL0_9.UNIX.tar.Z

2) Extract files from the archive:

 tar xvf ASKCTL0_9.UNIX.tar

This will create the file called ASKCTLloader.sml and the
directory called ASKCTL.

3) Copy the extracted files to the Design/CPN installation
directory:

 cp ASKCTLloader.sml <CPN_HOME>/OGMLfiles
 cp -r ASKCTL <CPN_HOME>/OGMLfiles

If you do not have permissions to complete the commands above,
then you need to modify the contents of ASKCTLloader.sml. You
need to change the two lines:

 use (ogpath^"ASKCTL/BitArray.sml");
 use (ogpath^"ASKCTL/ASKCTL.sml");

such that you provide the alternative absolute path to the files:

 use ("<abs. path>/ASKCTL/BitArray.sml");
 use ("<abs. path>/ASKCTL/ASKCTL.sml");

Macintosh

If you have a file called

ASKCTL0_9.Mac.sea.hqx

then you need to decode the file using an application that can
handle Binhex files. StuffIt and other archive applications are able
to handle Binhex files. When you have decoded the Binhex file
then you have an application called:

ASKCTL0_9.Mac.sea

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-5

This is an application which is a self extracting archive. Just
double click on the icon to get the contents of the archive. The
archive contains the following file and folder which need to be
moved into the OGMLfiles folder of the Design/CPN installation
folder:

ASKCTLloader.sml
ASKCTL

The installation is now completed.

How to Use the ASK-CTL Logic with Design/CPN

We assume that you have entered the simulator in Design/CPN,
and the OG Tool, have generated the full state space, and the SCC-
graph. First you need to load the library:

1) Create an auxiliary box (invoke Box from the Aux menu).

2) In the box type:

 use (ogpath^"ASKCTLloader.sml");

If you have modified the path in ASKCTLloader.sml, then you
need to give the absolute path to the file ASKCTLloader.sml
instead:

 use ("<abs. path>/ASKCTLloader.sml");

3) Invoke ML Evaluate from the Aux menu. The status bar will
indicate when the library has been loaded successfully with the
message "ASK-CTL library v0.9 loaded successfully".

If you re-enter the Occurrence Graph Tool, then you need to redo
the steps above. Now you are ready to write ASK-CTL formulas
and do model checking.

ASK-CTL Manual

ASK-CTL-6 Design/CPN ASK-CTL Manual

Basic Concepts

The ASK-CTL library has two parts: one which implements the
language of the logic, and one which implements the model
checker. In the sections following the contents of the two parts are
explained. But first some notation and explanation of basic
concepts.

Some of the ASK-CTL formulas are used to express properties
about paths. A path is a sequence of states and transition
occurrences – a walk-through of the state space constrained by the
direction of arcs. A path may be infinite. From a state space it is
possible to enumerate all paths.

An ASK-CTL formula is either interpreted either over the domain
of states or transition occurrences in a path. One operator, the
domain switch operator, MODAL, allows one to jump from one
domain to the other. See the examples for more details of the
semantics of this operator.

One of the more important operators in ASK-CTL is the until-
operator, UNTIL. Assume we are currently in the domain of states,
given a path, UNTIL(A1,A2) is true iff there exists a prefix of the
path on which A1 is true in every state and A2 is true in the state
immediately after. By quantifying universally and existentially
over paths one gets the two ASK-CTL formulas FORALL_UNTIL
and EXIST_UNTIL respectively.

Syntax and Semantics

Below find the syntax of ASK-CTL. As formulas are expressed
over domains of either states or transition occurrences, the syntax
actually has two categories called state and transition formulas
respectively.

ASK-CTL formula syntax:

State formulas

A ::= TT
 | FF
 | NOT(A)
 | AND(A1,A2)
 | OR(A1,A2)
 | NF(<node expression>)
 | EXIST_UNTIL(A1,A2)
 | FORALL_UNTIL(A1,A2)

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-7

 | POS(A)
 | INV(A)
 | EV(A)
 | ALONG(A)
 | MODAL(B)
 | EXIST_MODAL(A1,B2)
 | FORALL_MODAL(A1,B2)
 | EXIST_NEXT(A)
 | FORALL_NEXT(A)

Transition formulas

B ::= TT
 | FF
 | NOT(B)
 | AND(B1,B2)
 | OR(B1,B2)
 | AF(<arc expression>)
 | EXIST_UNTIL(B1,B2)
 | FORALL_UNTIL(B1,B2)
 | POS(B)
 | INV(B)
 | EV(B)
 | ALONG(B)
 | MODAL(A)
 | EXIST_MODAL(B1,A2)
 | FORALL_MODAL(B1,A2)
 | EXIST_NEXT(B)
 | FORALL_NEXT(B)

It is the operator MODAL which changes domain. If MODAL(B)
is in the state domain (a state formula), then B is in the transition
domain (a transition formula). Likewise if MODAL(A) is a
transition formula.

As a formula can be either a state or a transition formula, the
semantics of a formula depends on which domain we currently are
in. Below we give the semantics of the ASK-CTL operators for
each domain. The operators are annotated with SML types, and A
is the abstract ASK-CTL formula type (an SML constructor type).

Boolean constants:

 val TT : A
 val FF : A

The two constant values true and false respectively.

Standard boolean operators:

ASK-CTL Manual

ASK-CTL-8 Design/CPN ASK-CTL Manual

 val NOT : A -> A
 val AND : A * A -> A
 val OR : A * A -> A

The three operators have the standard interpretation of the boolean
functions ¬, ∧, and ∨.

Atomic predicates:

 val NF : string * (Node -> bool) -> A
 val AF : string * (Arc -> bool) -> A

NF is the node function and makes only sense to use as a state sub-
formula. Its arguments are a string and a function which takes a
state space node and returns a boolean. The string us used when an
ASK-CTL formula evaluates to false in the model checker. In this
case the model checker will print a diagnostic message explaining
why the formula is false, using the string in the message1. Thus the
string is typically a short statement saying what the node function
calculates. The function (Node -> bool) takes a state space node as
argument and returns a boolean. It is typically used for identifying
single states or a subset of the state space.

AF is the arc function and is analogous to NF, only that it is a
transition formula and thus only makes sense to use as a transition
sub-formula.

Path quantification operators:

 val EXIST_UNTIL : A * A -> A
 val FORALL_UNTIL : A * A -> A

EXIST_UNTIL used as a state formula takes two arguments, A1

and A2, say. The operator is true if there exists a path, starting from
where we are now such that A1 is true for each state along the path
until the last state on the path where A2 must hold. Analogous as a
transition formula, but now we consider the transitions on the paths
instead.

1 This feature is not implemented in v0.9 of the library.

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-9

FORALL_UNTIL is like EXIST_UNTIL, but now instead of
looking for one path only, we require that all paths, starting from
where we are now, fulfils the A1 until A2 property.

Derived path quantification operators:

 val POS : A -> A
 val INV : A -> A
 val EV : A -> A
 val ALONG : A -> A

By setting the first argument, A1, to true in the operators
EXIST_UNTIL and FORALL_UNTIL we get a number of useful
derived operators, POS, INV, EV, and ALONG. They are the most
frequently used special case formulas.

POS, as a state formula, is true if it is possible, from the state we
are now, to reach a state where the argument, A, is true. Analogous
when POS is a transition formula, just for transitions instead.
POS(A) ≡ EXIST_UNTIL(TT,A)

INV, as a state formula, is true if the argument, A, is true for all
reachable state, from the state we are at now. Thus the argument,
A, is an invariant. Analogous when INV is a transition formula.
INV(A) ≡ NOT(POS(NOT(A)))

EV, as a state formula, is true if the argument, A, becomes true
eventually, starting from the state we are now. The argument A
must become true within a finite number of steps. Analogous when
EV is a transition formula.
EV(A) ≡ FORALL_UNTIL(TT,A)

ALONG, as a state formula, is true if there exists a path for which
the argument, A, holds for every state. The path is either infinite or
ends in a dead state. Analogous when ALONG is a transition
formula.
ALONG(A) ≡ NOT(EV(NOT(A)))

Domain change operators:

ASK-CTL Manual

ASK-CTL-10 Design/CPN ASK-CTL Manual

 val MODAL : A -> A
 val EXIST_MODAL : A * A -> A
 val FORALL_MODAL : A * A -> A

This class of operators is our extension of CTL. They make it
possible to express properties about transition given that we start
from a state with a state formula, or vice versa if we start from a
transition with a transition formula.

MODAL, as a state formula, is true if there exists an immediate
transition, from where we are now, and if the argument of
MODAL, A, is true starting from this transition. The argument, A,
must be a transition formula. MODAL, as a transition formula is a
bit simpler because a transition always has an immediate
destination state. In this case MODAL is true if its argument, A, is
true in the destination state. The argument, A, is now a state
formula.

EXIST_MODAL is related with MODAL, but takes two
arguments, A1, and A2. EXIST_MODAL, as a state formula, is true
if there exists an immediate successor state, M’, in which A2 holds
and A1 holds on the transition between the current state and M’. A1

is a transition formula and A2 is a state formula. Analogous when
EXIST_MODAL is a transition formula.
EXIST_MODAL(A1,A2) ≡ MODAL(AND(A1,MODAL(A2)))

FORALL_MODAL, as a state formula, also looks at immediate
successors, but now the argument, A2, must hold for all immediate
successor states and considering each successor state, M’, A1 must
hold for the transition from the current state to M’. Analogous
when FORALL_MODAL is a transition formula.

Immediate successor operators:

 val EXIST_NEXT : A -> A
 val FORALL_NEXT : A -> A

These two operators are derived from the MODAL operator and
are included as a convenient mnemonic notation.

EXIST_NEXT used as a state formula is true iff there exists an
immediate successor state, from where we are now, in which the
argument, A, is true. Analogous as a transition formula, just for

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-11

transitions instead.
EXIST_NEXT(A) ≡ MODAL(MODAL(A))

FORALL_NEXT also looks at immediate successors, but now the
argument, A, must hold for all immediate successors.
FORALL_NEXT(A) ≡ NOT(EXIST_NEXT(NOT(A)))

Model Checking

 val eval_node : A -> Node -> bool
 val eval_arc : A -> Arc -> bool

Given an ASK-CTL formula we can check the formula given the
semantics above. This is called model checking and for this
purpose the two functions above are given.

eval_node is used for state formulas. It takes two arguments, the
ASK-CTL formula and a state from where the model checking
should start. This state is typically the initial marking. The function
returns true or false, and in the case of false it also prints out a
diagnostic message which shows a counter example2.

eval_arc is used for transition formulas, and is otherwise similar to
the function eval_node.

Examples

Consider a variation of the Dining Philosophers example. A
number of philosophers are initially outside a dining room. Each of
them decides at some point to enter the room bringing along one
chopstick (for the left hand) to be shared with the neighbor
philosopher. Once in the room the philosopher sits down and starts
thinking. If both left and right chopsticks are unused the
philosopher can decide to start eating, thus occupying the two
chopsticks. When finished eating the philosopher can decide to
think again making available again the left and right chopsticks. As
life is unpredictable, a philosopher can get poisoned and die while
eating. In this case the chopsticks are forever lost. Obviously this
model can end in a dead marking.

2 This feature is not implemented in v0.9 of the library.

ASK-CTL Manual

ASK-CTL-12 Design/CPN ASK-CTL Manual

ThinkPH

EatPH

Take
Chopstick

Put Down
Chopstick

Unused
ChopsticksCS

val n = 2 ;

color PH = index ph with 1..n declare ms ;
color CS = index cs with 1..n declare ms ;

var p : PH ;

fun Chopsticks(ph(i)) = 1‘cs(i)+1‘cs(i mod n + 1) ;
fun LeftChopstick(ph(i)) = 1‘cs(i) ;

OutsidePH

PH

Enter
Room

Poisoned

p

p

p

p

Chopsticks(p)

Chopsticks(p)

p

p

p

LeftChopstick(p)

We assume that you have completed the sections "How to Install
the ASK-CTL Library" and "How to Use the ASK-CTL Logic
with Design/CPN". In the following we provide a couple of typical
illustrating examples of the use of ASK-CTL.

Below we list some useful example formulas. To make the
examples more illustrative we apply formulas to the model above.
You can take each of these examples and type them into an
auxiliary box (Box from the Aux menu) and invoke ML Evaluate
from the Aux menu.

Is the initial marking a home marking?

The following SML source code can be used to check whether the
initial marking is a home marking:

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-13

 fun IsInitialMarking n = (n=InitNode) ;

 val myASKCTLformula =
 INV(POS(NF("initial marking",
 IsInitialMarking))) ;

 eval_node myASKCTLformula InitNode;

Is a given marking dead?

The following SML source code can be used to check whether a
given marking is dead. We assume here that the marking in
question has the number 8.

 val myASKCTLformula = NOT(MODAL(TT)) ;

 eval_node myASKCTLformula 8 ;

Is a given transition live?

Let us consider the take transition from the dining philosophers
example. We would like to ask whether the binding element
(take,<p=ph(2)>) is live.

 fun IsConsideredBE a =
 (Bind.System’Take (1,{p=ph(2)})
 = ArcToBE a) ;

 val myASKCTLformula =
 INV(POS(MODAL(AF("(take,<p=ph(2)>)",
 IsConsideredBE))));

 eval_node myASKCTLformula InitNode ;

Can philosopher 2 become poisoned?

 fun IsPoisoned n a =
 (Bind.System’Poisoned (1,{p=ph(n)})
 = ArcToBE a) ;

 val myASKCTLformula =
 MODAL(POS(AF("Is ph(2) poisoned",
 IsPoisoned 2))) ;

 eval_node myASKCTLformula InitNode ;

ASK-CTL Manual

ASK-CTL-14 Design/CPN ASK-CTL Manual

In general, you will find the manual for the Occurrence Graph
Tools useful when writing ASK-CTL formulas [4].

Trouble Shooting

If you have problems with the installation or the use of the library,
please contact the maintainer of the library or alternatively:

 designCPN-support@daimi.aau.dk

Note that this library is a prototype for experimental studies of
logics for Coloured Petri Nets. We are not aware of any bugs in the
library, so if you discover misbehaviours, you are welcome to
contact us.

For general information about Design/CPN, please consult the
following page on the World Wide Web:

http://www.daimi.aau.dk/designCPN/

ASK-CTL Manual

Design/CPN ASK-CTL Manual ASK-CTL-15

Bibliography

[1] Allan Cheng, Søren Christensen, and Kjeld H. Mortensen, “Model
Checking Coloured Petri Nets Exploiting Strongly Connected
Components”, in Proc. of the International Workshop on Discrete
Event Systems, Institution of Electrical Engineers, University of
Edinburgh, UK, August 1996, pp. 169-177.

[2] Allan Cheng, Søren Christensen, and Kjeld H. Mortensen, “Model
Checking Coloured Petri Nets Exploiting Strongly Connected
Components”, technical report, University of Aarhus, Denmark,
1996. http://www.daimi.aau.dk/designCPN/

[3] Edmund M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite State Concurrent System Using Temporal
Logic”, ACM Transactions on Programming Languages and Systems,
vol. 8(2), 1986, pp. 244-263.

[4] Kurt Jensen, Søren Christensen, and Lars M. Kristensen,
“Design/CPN Occurrence Graph Manual”, University of Aarhus,
Denmark, 1996. http://www.daimi.aau.dk/designCPN/

ASK-CTL Manual

ASK-CTL-16 Design/CPN ASK-CTL Manual

Appendix A: The Signature of the ASK-CTL Structure

The following is the signature of the ASK-CTL SML structure.
Upon installation of the library the structure is opened, such that
the names are available directly on the top-level, i.e., you do not
need to write ASKCTL.eval_node but only eval_node.

 structure ASKCTL :
 sig

 type A

 val TT : A
 val FF : A

 val NOT : A -> A
 val AND : A * A -> A
 val OR : A * A -> A

 val NF : string * (Node -> bool) -> A
 val AF : string * (Arc -> bool) -> A

 val EXIST_UNTIL : A * A -> A
 val FORALL_UNTIL : A * A -> A

 val POS : A -> A
 val INV : A -> A
 val EV : A -> A
 val ALONG : A -> A

 val MODAL : A -> A
 val EXIST_MODAL : A * A -> A
 val FORALL_MODAL : A * A -> A

 val EXIST_NEXT : A -> A
 val FORALL_NEXT : A -> A

 val eval_node : A -> Node -> bool
 val eval_arc : A -> Arc -> bool

 end

