Hierarchical Protocol

Abstract

This example shows how the CP-net from “Simple Protocol” can be turned into a
hierarchical CP-net — with separate pages (subnets) for the Sender, the Network and
the Receiver part. The protocol is modified to accommodate multiple Receivers.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.aau.dk).

Graphical Quality

The figures in this document are inserted via PICT format. This is why some of the
arcs and place borders look a bit ragged. A postscript printout from Design/CPN
(and the screen image in Design/CPN) has much higher graphical quality.

CPN Mod€

The most abstract page looks as shown below. It tells us that we have a Sender, a
Network and two Receivers. The basic idea is that the Sender sends messages which
the Network broadcasts to the two Receivers. Analogously, the Receivers send ac-
knowledgments which the Networ k transmits to the Sender.

Sender

INTXDATA

()

4

INTXINT

Overview

INTXDATA

INTXDATA

Network

/,
\Z}
INT

RecNol

color INT = int;

color DATA = string;

color INTXDATA = product INT * DATA,;
color INTXINT = product INT * INT;

var n, k, n1, n2 : INT;

var p,str : DATA,;

val stop = "#####ARH",

color TenO = int with 0..10;
color Tenl = int with 1..10;
vars: TenO; varr, rl, r2 : Tenl;
fun Ok(s:TenO,r:Tenl) = (r<=s);

DATA

> Received)

DATA

The Sender part is similar to the sender part of the “Simple Protocol”. The only
difference is that Receive Acknowledgment now needs an acknowledgment from
each of the two Receivers in order to become enabled. Each acknowledgment is a
pair where the first element is the contents, while the second element indicates
whether it came from Recelver one or two. Since packets are sent by means of
broadcasts, the Sender needs to wait for the slowest of the two Receivers (or the
most unlucky one). Hence Next Send is updated to be the minimum of the two ac-
knowledgment values.

Sender

1°(1,"Modellin")+
1°(2,"g and An")+

INTXDATA

1°(3,"alysis b")+
1°(4,"y Means ")+

1°(5,"of Colou™)+

1°(6,"red Petr")+

(n,p) 1°(7,"i Nets##")+

1°(8,"#Ht#HHHE")

INTXDATA
(n,p)

=

INT

k min(nl1,n2)

Eln

Receive ()
Acknow. 1'(n1,1)+

1(n2,2) INTXINT

The Network part is similar to the network part of the “Simple Protocol”.
However, again there are a few differences. Transmit Packet produces packets at
two different output places B1 and B2. The packets at B1 are for the first Receiver,
while the packets at B2 are for the second. It should be noted that we use two differ-
ent variablesrl and r2 to determine whether the packets for B1 and B2 are lost or
not. This means that we model a broadcast in which one of the Receivers may get a
packet while the other does not. If we replacerl1 and r2 with a single common vari-
abler, we get a broadcast where the two Receivers get exactly the same packets.
Transmit Acknowledgment is split in two. The upper one handles acknowledgments
from the first Receiver, while the lower one handles those from the second. Both of
them modify the acknowledgment, by adding information telling the Sender where
the acknowledgment came from.

Network

INTXDATA
@ Transmit
(n,p) Packet
1 S

if Ok(s,r1) INTXDATA

then 1°(n,p)
else empty

EI Out

INTXDATA
if Ok(s,r2) > @
then 1°(n,p)

else empt
Pty E Out

Eln

¢S

[p] in
if Ok(sir) - it
then 1°(n,1) ransmi < n @

B O:teIS)mptv/ Acknow.
INTxINT\
if Ok(s,r)

Transmit n
then1(n2) | Acknow < @
else empty . INT

The Receiver part is totally identical to the receiver part of the simple protocol.
However, it should be noted that the Receiver page is used by two substitution
transitions, RecNol and RecNo2. This means that we will have two instances of the
subnet — during a simulation. The two instances may have different markings and
different enabling, otherwise they will be identical. Design/CPN displays one in-
stance at atime. To see another instance, the user applies the Switch Instance
command in the Sim menu.

Receiver

“(Received) [P] 1o
DATA A

if n=k
andalso

9 (n,p) then str*p
else str
Fln

k
1 \ 4
Receive
¥—— Packet
INT if n=k
then k+1
else k)
if n=k

|E| out then k+1

@ { elsek

