Design/CPN
ASK-CTL Manual

Version 0.9

University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88
Fax: +4589 42 32 55 © 1996 University of Aarhus

ASK-CTL Manual

© 1996University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark
Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Sgren Christensen and Kjeld H. Mortensen.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

ASK-CTL-2 Design/CPN ASK-CTL Manual

ASK-CTL Manual

Design/CPN
ASK-CTL Manual

Version 0.9

Introduction

Thislibrary implements a CTL-like temporal logic called ASK-
CTL. Thelogicisan extension of CTL [3] whichisabranching
timelogic. ASK-CTL isinterpreted over the state spaces (also
called the occurrence graph or reachability graph/tree) of Coloured
Petri Netsin the tool Design/CPN. We have extended CTL in order
to take into account, both state information and transition
information. Additionally the library aso contains a model
checker. It takes an ASK-CTL formula as argument, checks the
formula against the current state space, and returns the truth value
of the given formula. For efficiency reasons, the algorithm takes
into account the Strongly Connected Component graph (SCC-

graph).

The ASK-CTL logic and model checker isimplemented in SML,
and queries are formulated directly in SML syntax.

For more information about ASK-CTL, we refer to the paper
presented at WoDES 96 [1] and the online technical report [2].

In the rest of this manual we assume that you know Design/CPN

and the Occurrence Graph Tool, and have general knowledge about
the temporal logic CTL and model checking.

How to Install the ASK-CTL Library

Assuming that you have downloaded the library archive, do the
following:

UNIX

1) Uncompress the archive:

Design/CPN ASK-CTL Manual ASK-CTL-3

ASK-CTL Manual

unconpress ASKCTLO_9.UNI X. tar. Z

2) Extract files from the archive:

tar xvf ASKCTLO 9. UNI X. tar

Thiswill create the file called ASKCTLIoader.sml and the
directory called ASKCTL.

3) Copy the extracted files to the Design/CPN installation
directory:

cp ASKCTLI oader.sm <CPN_HOVE>/ OGWLfi |l es
cp -r ASKCTL <CPN_HOVE>/ OGWLfil es

If you do not have permissions to compl ete the commands above,
then you need to modify the contents of ASKCTLIoader.sml. You
need to change the two lines:

use (ogpat h""ASKCTL/BitArray.sm");
use (ogpat hA" ASKCTL/ ASKCTL. sm ") ;

such that you provide the alternative absolute path to the files:

use ("<abs. path>/ ASKCTL/BitArray.sm");
use ("<abs. path>/ ASKCTL/ ASKCTL. sm ");

Macintosh

If you have afile called

ASKCTLO_9. Mac. sea. hgx

then you need to decode the file using an application that can
handle Binhex files. Stufflt and other archive applications are able
to handle Binhex files. When you have decoded the Binhex file
then you have an application called:

ASKCTLO_9. Mac. sea

ASK-CTL-4 Design/CPN ASK-CTL Manual

ASK-CTL Manual

Thisis an application which is a self extracting archive. Just
double click on theicon to get the contents of the archive. The
archive contains the following file and folder which need to be
moved into the OGMLfiles folder of the Design/CPN installation
folder:

ASKCTLI oader . sni
ASKCTL

The installation is now completed.

How to Use the ASK-CTL Logic with Design/CPN

We assume that you have entered the ssmulator in Design/CPN,
and the OG Tool, have generated the full state space, and the SCC-
graph. First you need to load the library:

1) Create an auxiliary box (invoke Box from the Aux menu).
2) In the box type:
use (ogpat h"" ASKCTLI oader.sm ");

If you have modified the path in ASKCTLIoader.sml, then you
need to give the absolute path to the file ASKCTLloader.sml
instead:

use ("<abs. pat h>/ ASKCTLI oader.sm ");

3) Invoke ML Evauate from the Aux menu. The status bar will
indicate when the library has been loaded successfully with the
message "ASK-CTL library v0.9 loaded successfully".

If you re-enter the Occurrence Graph Tool, then you need to redo
the steps above. Now you are ready to write ASK-CTL formulas
and do model checking.

Design/CPN ASK-CTL Manual ASK-CTL-5

ASK-CTL Manual

Basic Concepts

The ASK-CTL library has two parts: one which implements the
language of the logic, and one which implements the model
checker. In the sections following the contents of the two parts are
explained. But first some notation and explanation of basic
concepts.

Some of the ASK-CTL formulas are used to express properties

about paths. A path isasequence of states and transition

occurrences— a walk-through of the state space constrained by the
direction of arcs. A path may be infinite. From a state space it is
possible to enumerate all paths.

An ASK-CTL formula is either interpreted either over the domain
of states or transition occurrences in a path. One operator, the
domain switch operator, MODAL, allows one to jump from one
domain to the other. See the examples for more details of the
semantics of this operator.

One of the more important operators in ASK-CTL is the until-
operator, UNTIL. Assume we are currently in the domain of states,
given a path, UNTIL(AA,) is true iff there exists a prefix of the

path on which Ais true in every state and & true in the state
immediately after. By quantifying universally and existentially

over paths one gets the two ASK-CTL formulas FORALL_UNTIL
and EXIST_UNTIL respectively.

Syntax and Semantics

Below find the syntax of ASK-CTL. As formulas are expressed
over domains of either states or transition occurrences, the syntax
actually has two categories called state and transition formulas
respectively.

ASK-CTL formula syntax:

State formulas
A::.=TT

| FF

| NOT(A)

| AND(A, A)

| OR(A,A) _

| NF(<node expression>)

| EXIST_UNTIL(A,A)

| FORALL_UNTIL(A, A)

ASK-CTL-6 Design/CPN ASK-CTL Manual

ASK-CTL Manual

POS(A)

| NV(A)

EV(A)

ALONG(A)

MODAL(B)

EXI ST_MODAL(A,, B)
FORALL_MODAL(A,, B))
EXI ST_NEXT(A)
FORALL_NEXT(A)

Transition formulas

B :

=TT

FF

NOT(B)

AND(B, B,)

OR(B,, B) |
AF(<arc expression>)
EXI ST_UNTI L(B,, B)
FORALL_UNTI L(B, B)
PCOS(B)

I NV(B)

EV(B)

ALONG B)

MODAL (A)

EXI ST_MODAL(B,, A)
FORALL_MODAL(B,, A)
EXI ST_NEXT(B)
FORALL_NEXT(B)

It isthe operator MODAL which changes domain. If MODAL (B)
isin the state domain (a state formula), then B isin the transition
domain (atransition formul@). Likewise if MODAL(A) isa
transition formula.

Asaformulacan be either a state or atransition formula, the
semantics of aformula depends on which domain we currently are
in. Below we give the semantics of the ASK-CTL operators for
each domain. The operators are annotated with SML types, and A
isthe abstract ASK-CTL formulatype (an SML constructor type).

Boolean constants:

val TT : A
val FF : A

The two constant values true and fal se respectively.

Standard boolean operators.

Design/CPN ASK-CTL Manual ASK-CTL-7

ASK-CTL Manual

val NOT : A -> A
val AND: A * A-> A
val OR : A* A-> A

The three operators have the standard interpretation of the boolean
functions—, [J, and [

Atomic predicates:

val NF : string * (Node -> bool) -> A
val AF : string * (Arc -> bool) -> A

NF is the node function and makes only sense to use as a state sub-
formula. Its arguments are a string and a function which takes a
state space node and returns a boolean. The string us used when an
ASK-CTL formula evaluates to false in the model checker. Inthis
case the model checker will print a diagnostic message explaining
why the formulais false, using the string in the message’. Thus the
string istypically ashort statement saying what the node function
calculates. The function (Node -> bool) takes a state space node as
argument and returns a boolean. It istypically used for identifying
single states or a subset of the state space.

AF isthe arc function and is analogous to NF, only that it isa
transition formula and thus only makes sense to use as atransition
sub-formula.

Path quantification operators:

val EXIST UNTIL : A* A-> A
val FORALL_UNTIL : A* A-> A

EXIST_UNTIL used as a state formula takes two arguments, A,
and A, say. The operator istrueif there exists a path, starting from
where we are now such that A, istrue for each state along the path
until the last state on the path where A, must hold. Analogous as a
transition formula, but now we consider the transitions on the paths
instead.

' This feature is not implemented in v0.9 of the library.

ASK-CTL-8

Design/CPN ASK-CTL Manual

ASK-CTL Manual

FORALL_UNTIL islike EXIST_UNTIL, but now instead of
looking for one path only, we require that al paths, starting from
where we are now, fulfilsthe A, until A, property.

Derived path quantification operators:

val POCS A->A
val | NV A-> A
val EV A -> A
val ALONG : A -> A

By setting the first argument, A,, to true in the operators
EXIST_UNTIL and FORALL_UNTIL we get a number of useful
derived operators, POS, INV, EV, and ALONG. They are the most
frequently used special case formulas.

POS, as a state formula, istrueif it is possible, from the state we
are now, to reach a state where the argument, A, is true. Analogous
when POS is atransition formula, just for transitions instead.
POS(A) = EXIST_UNTIL(TT,A)

INV, as astate formula, istrueif the argument, A, istrue for al
reachable state, from the state we are at now. Thus the argument,
A, isaninvariant. Analogous when INV is atransition formula.

INV(A) = NOT(POS(NOT(A)))

EV, asastate formula, istrueif the argument, A, becomes true
eventually, starting from the state we are now. The argument A
must become true within afinite number of steps. Analogous when
EV isatransition formula

EV(A) = FORALL_UNTIL(TT,A)

ALONG, asastate formula, istrueif there exists a path for which
the argument, A, holds for every state. The path is either infinite or
ends in adead state. Analogous when ALONG isatransition
formula.

ALONG(A) = NOT(EV(NOT(A)))

Domain change oper ators:

Design/CPN ASK-CTL Manual ASK-CTL-9

ASK-CTL Manual

ASK-CTL-10

val MODAL A
val EXIST_MODAL : A * A -
val FORALL_MODAL : A * A -

V VV
> > >

This class of operatorsis our extension of CTL. They make it
possible to express properties about transition given that we start
from a state with a state formula, or vice versaif we start from a
transition with atransition formula.

MODAL, as astate formula, istrueif there exists an immediate
transition, from where we are now, and if the argument of
MODAL, A, istrue starting from this transition. The argument, A,
must be atransition formula. MODAL, as atransition formulaisa
bit smpler because a transition always has an immediate
destination state. In this case MODAL istrueif itsargument, A, is
true in the destination state. The argument, A, isnow a state
formula.

EXIST_MODAL isrelated with MODAL, but takes two
arguments, A, and A,. EXIST_MODAL, as a state formula, is true
if there exists an immediate successor state, M’, in which A, holds
and A, holds on the transition between the current state and M*. A
isatransition formulaand A, is a state formula. Analogous when
EXIST_MODAL isatransition formula.

EXIST_MODAL(A,,A,)) = MODAL(AND(A,,MODAL(A))))

FORALL_MODAL, as astate formula, also looks at immediate
successors, but now the argument, A,, must hold for al immediate
successor states and considering each successor state, M’, A must
hold for the transition from the current state to M’. Analogous
when FORALL_MODAL isatransition formula.

Immediate successor operators:

val EXIST_NEXT : A-> A
val FORALL_NEXT : A -> A

These two operators are derived from the MODAL operator and
are included as a convenient mnemonic notation.

EXIST_NEXT used as a state formulais true iff there exists an
immediate successor state, from where we are now, in which the
argument, A, istrue. Analogous as a transition formula, just for

Design/CPN ASK-CTL Manual

ASK-CTL Manual

transitions instead.
EXIST_NEXT(A) = MODAL(MODAL(A))

FORALL_NEXT also looks at immediate successors, but now the
argument, A, must hold for all immediate successors.
FORALL_NEXT(A) = NOT(EXIST_NEXT(NOT(A)))

Model Checking

val eval _node : A -> Node -> bool
val eval _arc : A-> Arc -> bool

Given an ASK-CTL formulawe can check the formula given the
semantics above. Thisis caled model checking and for this
purpose the two functions above are given.

eva _nodeisused for state formulas. It takes two arguments, the
ASK-CTL formula and a state from where the model checking
should start. This state istypically the initial marking. The function
returns true or false, and in the case of false it also prints out a
diagnostic message which shows a counter exampl €.

eva_arcisused for transition formulas, and is otherwise similar to
the function eval_node.

Examples

Consider avariation of the Dining Philosophers example. A
number of philosophers are initially outside a dining room. Each of
them decides at some point to enter the room bringing along one
chopstick (for the left hand) to be shared with the neighbor
philosopher. Once in the room the philosopher sits down and starts
thinking. If both left and right chopsticks are unused the
philosopher can decide to start eating, thus occupying the two
chopsticks. When finished eating the philosopher can decide to
think again making available again the left and right chopsticks. As
life is unpredictable, a philosopher can get poisoned and die while
eating. In this case the chopsticks are forever lost. Obvioudly this
model can end in adead marking.

? This feature is not implemented in v0.9 of the library.

Design/CPN ASK-CTL Manual ASK-CTL-11

ASK-CTL Manual

ASK-CTL-12

PH
pr Qutside)
p
Enter
Room
f p LeftChopstick(p)
P CThink
p
Take
Chopstick
p
Unused
PH Eat CS { Chopsticks
p p
Poisoned Put Down

Chopstick | Chopsticks(p)

- P

valn=2;

color PH = index ph with 1..n declare ms ;
color CS =index cs with 1..n declare ms ;

varp:PH;

fun Chopsticks(ph(i)) = 1‘cs(i)+1‘cs(imod n + 1) ;
fun LeftChopstick(ph(i)) = 1'cs(i) ;

We assume that you have completed the sections "How to Install
the ASK-CTL Library" and "How to Use the ASK-CTL Logic
with Design/CPN". In the following we provide a couple of typical
illustrating examples of the use of ASK-CTL.

Below we list some useful example formulas. To make the
examples more illustrative we apply formulas to the model above.
Y ou can take each of these examples and type them into an
auxiliary box (Box from the Aux menu) and invoke ML Evauate
from the Aux menu.

Istheinitial marking a home marking?

The following SML source code can be used to check whether the
initial marking is a home marking:

Design/CPN ASK-CTL Manual

ASK-CTL Manual

fun Islnitial Marking n = (n=IlnitNode) ;
val nmyASKCTLfornula =
I NV(POS(NF("initial marking",
Isinitial Marking))) ;
eval _node nmyASKCTLf ormul a I ni t Node;

Isagiven marking dead?

The following SML source code can be used to check whether a
given marking is dead. We assume here that the marking in
guestion has the number 8.

val myASKCTLforrmul a = NOT(MODAL(TT)) ;

eval _node nmyASKCTLforrmula 8 ;
Isagiven transition live?

Let us consider the take transition from the dining philosophers
example. We would like to ask whether the binding element
(take,<p=ph(2)>) islive.

fun I sConsideredBE a =
(Bi nd. System Take (1, {p=ph(2)})
= ArcToBE a) ;

val nmyASKCTLfornmul a =
| NV(POS(MODAL (AF(" (t ake, <p=ph(2)>)",
| sConsi der edBE)))):

eval _node nmyASKCTLfornul a I nit Node ;

Can philosopher 2 become poisoned?

fun | sPoisoned n a =
(Bi nd. Syst emi Poi soned (1, {p=ph(n)})
= ArcToBE a) ;

val nmyASKCTLfornula =
MODAL(POS(AF("1's ph(2) poi soned",
| sPoi soned 2))) ;

eval _node nmyASKCTLfornul a I nit Node ;

Design/CPN ASK-CTL Manual ~ ASK-CTL-13

ASK-CTL Manual

In general, you will find the manual for the Occurrence Graph
Tools useful when writing ASK-CTL formulas [4].

Trouble Shooting

If you have problems with the installation or the use of the library,
please contact the maintainer of the library or aternatively:

desi gnCPN- support @ai m . aau. dk

Note that this library is a prototype for experimental studies of
logics for Coloured Petri Nets. We are not aware of any bugsin the
library, so if you discover misbehaviours, you are welcome to
contact us.

For genera information about Design/CPN, please consult the
following page on the World Wide Web:

http://ww. dai m . aau. dk/ desi gnCPN

ASK-CTL-14 Design/CPN ASK-CTL Manual

ASK-CTL Manual

Bibliography

[1]

[2]

[3]

[4]

Allan Cheng, Sgren Christensen, and Kjeld H. Mortensévpdel
Checking Coloured Petri Nets Exploiting Strongly Connected
Components”,in Proc. of the International Workshop on Discrete
Event Systems, Institution of Electrical Engineers, University of
Edinburgh, UK, August 1996, pp. 169-177.

Allan Cheng, Sgren Christensen, and Kjeld H. Mortensévipdel
Checking Coloured Petri Nets Exploiting Strongly Connected
Components”, technical report, University of Aarhus, Denmark,
1996. htt p: / / www. dai mi . aau. dk/ desi gnCPN/

Edmund M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite State Concurrent System Using Temporal
Logic”, ACM Transactions on Programming Languages and Systems,

vol. 8(2), 1986, pp. 244-263.

Kurt Jensen, Sgren Christensen, and Lars M. Kristensen
“Design/CPN Occurrence Graph ManualUniversity of Aarhus,
Denmark, 1996. htt p://wwv. dai mi . aau. dk/ desi gnCPN/

Design/CPN ASK-CTL Manual ASK-CTL-15

ASK-CTL Manual

Appendix A: The Signature of the ASK-CTL Structure

The following is the signature of the ASK-CTL SML structure.
Upon installation of the library the structure is opened, such that
the names are available directly on the top-level, i.e., you do not
need to write ASKCTL.eval_node but only eval_node.

structure ASKCTL :
sig
type A

val TT
val FF

val NOT :
val AND :
val OR

x> >

*A:
* A

V V Vv
> > >

val NF : string * (Node -> bool) -> A
val AF : string * (Arc -> bool) -> A

val EXIST UNTIL : A* A-> A
val FORALL_UNTIL : A* A-> A
val POS A->A

val | NV A->A

val EV A-> A

val ALONG A -> A

val MODAL A -> A

val EXIST MODAL : A* A-> A
val FORALL_ MODAL : A* A-> A
val EXI ST_NEXT A -> A

val FORALL_NEXT A -> A

val eval _node : A -> Node -> bool
val eval _arc : A-> Arc -> bool

end

ASK-CTL-16 Design/CPN ASK-CTL Manual

