
Timed Resource Allocation

Abstract
This is a small toy example which is well-suited as a first introduction to timed
CP-nets. It shows how the CP-net from “Resource Allocation” can be turned into a
timed CP-net. The time constructs are described in great detail, explaining the basic
concepts of timed CP-nets.

The example is taken from Sect. 5.1 of Vol. 2 of the CPN book and Sect. 6.2 of
Vol. 1 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.aau.dk).

Graphical Quality
The figures in this document are inserted via PICT format. This is why some of the
arcs and place borders look a bit ragged. A postscript printout from Design/CPN
(and the screen image in Design/CPN) has much higher graphical quality.

2

CPN Model

To investigate the performance of systems, i.e., the speed at which they operate, it is
convenient to extend CP-nets with a time concept. To do this, we introduce a global
clock. The clock values represent the model time, and they may either be discrete
(e.g., integers) or continuous (e.g., reals). In addition to the token colour, we allow
each token to carry a time value, also called a time stamp. Intuitively, the time
stamp describes the earliest model time at which the token can be used, i.e., re-
moved by a binding element.

In a timed CP-net a binding element is said to be colour enabled when it satis-
fies the requirements of the usual enabling rule (for untimed CP-nets). However, to
be enabled, the binding element must also be ready. This means all the time
stamps of the removed tokens must be less than or equal to the current model time.

To model that an activity/operation takes ∆r time units, we let the corresponding
transition t create time stamps for its output tokens that are ∆r time units larger than
the clock value at which t occurs. This implies that the tokens produced by t are un-
available for ∆r time units. It can be argued that it would be more natural to delay
the creation of the output tokens, so that they did not come into existence until ∆r
time units after the occurrence of t had begun. However, such an approach would
mean that a timed CP-net would get “intermediate” markings which do not corre-
spond to markings in the corresponding untimed CP-net, because there would be
markings in which input tokens have been removed but output tokens not yet gen-
erated. Hence we would get a more complex relationship between the behaviour of
timed and untimed nets.

The execution of a timed CP-net is time driven, and it works in a similar way to
that of the event queues found in many programming languages for discrete event
simulation. The system remains at a given model time as long as there are colour
enabled binding elements that are ready for execution. When no more binding ele-
ments can be executed, at the current model time, the system advances the clock to
the next model time at which binding elements can be executed. Each marking exists
in a closed interval of model time (which may be a point, i.e., a single moment).
The occurrence of a binding element is instantaneous.

Now let us consider the timed CP-net for the resource allocation system (shown
below). For this system, we use a discrete clock, starting at 0. From the third and
fourth lines of the declarations, we see that P-tokens are timed (i.e., carry time
stamps), while the E-tokens are not. This means E-tokens are always ready to be
used. The small rectangle below the declarations indicates that the current model
time is 641 (in the CPN simulator this information is displayed in the status bar).

The @ signs in the current markings should be read “at”. Each @ sign is fol-
lowed by a list of time stamps. The marking of place A contains two tokens, one
with colour (q,4) and time stamp 627, and one with colour (q,5) and time stamp
598. Analogously, place B has two tokens, one with colour (p,6) and time stamp
567, and one with colour (q,1) and time stamp 602. Place D has a single token with
colour (p,4) and time stamp 641. Finally, place T has one token with colour e and
no time stamp. In the shown marking all lists of time stamps have length 1,

3

because all the tokens have different colours. However, the initial marking of place
A is displayed as 3`(q,0)@[0,0,0], while the initial marking of B is 2`(p,0)@[0,0].

Marking at time 641

(x,i)

(x,i) @+3

(x,i)

(x,i) @+8

(x,i)

(x,i)

(x,i) @+12

(x,i)

if x=q
then 1`(q,i+1)
else empty @+7

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty @+5

(x,i) @+ if x=p then 13 else 9

AP

3`(q,0)
2 1`(q,4)@[627] + 1`(q,5)@[598]

BP

2`(p,0)
2 1`(p,6)@[567] + 1`(q,1)@[602]

CP

DP 1 1`(p,4)@[641]

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

color U = with p | q;
color I = int;
color P = product U * I timed;
color E = with e;
var x : U;
var i : I;

S

E

3`e

T

E

2`e

1 1`e

Time: 641

Now let us consider the steps which may occur in the shown marking. The bind-
ing element b1 = (T4,<x=p, i=4>) is colour enabled, because the two input places
have the necessary tokens. The binding element is also ready, because all the time
stamps of the removed tokens are smaller than or equal to the current model time
(in this case there is only one such time stamp and it is equal to the current model
time). Hence b1 is enabled and it may occur. The occurrence of b1 removes the to-
ken from D and the token from T. The occurrence of b1 will also add a token to E.
The colour of the new token is calculated in the usual way, i.e., as specified by the
occurrence rule for untimed CP-nets. The time stamp of the new token is calculated
as the current model time plus a time delay, which is specified in the corresponding
output arc expression – after the @+ operator. In this case the delay is 12 time
units, and hence we get 653 as the new time stamp. Intuitively, this means the
p-token must stay at least 12 time units at place E. We can interpret this to mean that

4

the state E has a minimal duration of 12 time units. We can also interpret it to mean
that the activity T4 takes 12 time units.

Marking at time 653

(x,i)

(x,i) @+3

(x,i)

(x,i) @+8

(x,i)

(x,i)

(x,i) @+12

(x,i)

if x=q
then 1`(q,i+1)
else empty @+7

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty @+5

(x,i) @+ if x=p then 13 else 9

color U = with p | q;
color I = int;
color P = product U * I timed;
color E = with e;
var x : U;
var i : I;

AP

3`(q,0)
2 1`(q,4)@[627] + 1`(q,5)@[598]

BP

2`(p,0)
3

1`(p,5)@[658] + 1`(p,6)@[567] +
1`(q,1)@[602]

CP

DP

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

S

E

3`e

2 2`e

T

E

2`e

2 2`e

Time: 653

When b1 has occurred, we reach a marking in which b2 = (T5,<x=p, i=4>) is the
only colour enabled binding element. However, b2 is not ready at model time 641
because it involves a token with a too-high time stamp. Hence we increase the model
time until b2 becomes ready, i.e., to 653. If there had been several colour enabled
binding elements we would have increased the model time until one of them became
ready. When b2 has occurred, at model time 653, we get the marking shown below.
Now we have three colour enabled binding elements b3 = (T2,<x=p, i=5>),
b4 = (T2,<x=p, i=6>), and b5 = (T2,<x=q, i=1>). The binding elements b4 and b5

are ready at 653, while b3 uses a token with time stamp 658. Hence either b4 or b5

will occur. They are in conflict with each other, because they both need e-tokens
from S. This means only one of them will be executed. However, had there been an
additional e-token on S, b4 and b5 would have been concurrently enabled and both of
them would have occurred at time 653 (either in the same step, or in two subsequent
steps).

5

The time delays may depend upon the binding, i.e., upon the colours of the input
and output tokens. This is illustrated by the output arc of T3, where the delay de-
pends upon the value of the variable x. For p-processes the delay is 13, while for
q-processes it is 9. The delays are specified by means of expressions, and this means,
for example, they can use functions which implement complex statistical distribu-
tions.

For a timed CP-net we require that each step consists of binding elements which
are both colour enabled and ready. Hence the possible occurrence sequences of a
timed CP-net always form a subset of the possible occurrence sequences of the cor-
responding untimed CP-net. This means we have a well defined and easy-to-under-
stand relationship between the behaviour of a timed CP-net and the behaviour of the
corresponding untimed CP-net.

In the resource allocation system, we have only illustrated one of the simplest
ways in which time stamps can be used. All removed tokens for a binding element
(t,b) were required either to be without time stamps or to have time stamps which
were less than or equal to the time value r* at which (t,b) occurs. At a given place
p, all added tokens for (t,b) either got no time stamps or got identical time stamps
which were equal to r* plus a delay ∆r. In general, the situation can be considerably
more complex.

