Timed Protocol

Abstract

This example shows how the CP-net from “Simple Protocol” can be turned into
a timed CP-net. The timed CP-net specifies how long time the individual
operations take and how long time the sender should wait before it makes a
retransmission. The timed CP-net can be used to experiment with different
waiting times to determine which one is the best — in the sense that it transmits
the message fast without using the network too much (i.e. without making too
many retransmissions).

The example is taken from Sect. 5.5 of Vol. 2 of the CPN book.
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CPN Model

This example explains how the CP-net from “Simple Protocol” can be turned
into the timed CP-net shown below. The timed net has the same net structure as
the untimed net — except that a new place Wait has been added (in the left-hand
side). This place is used to specify how long time the transition Send Packet

should wait before retransmitting a packet..

From the declarations it can be seen that the colour set INT is timed while
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color INT = int timed;

color DATA = string;

color INTXDATA= product INT*DATA;
var n,k, wait: INT;

var p, str: DATA;

val stop = "#######H;

color Ten0 = int with 0..10;
color Ten1 = int with 1..10;

var s: TenO; varr: Tent;

fun Ok(s:Ten0, r:Ten1) = (r<=s);

color NetDelay = int with 25..27;
fun DEL() = NetDelay.ran();




DATA, TenO and Tenl are not. By the convention, the structured colour set
INTxDATA is timed — because it contains the timed component INT.

We have added a time region (starting with @+) to each of the five
transitions. Intuitively, the time region describes how long time the
corresponding operation takes. Now let us take a closer look at the five
different transitions in the protocol system.

Send Packet has a time region: @+9. This implies that a common delay of 9
time units is added to the time stamps of all output tokens. The tokens created
at A and Next Send get a time stamp that is the current time r* (at which the
transition occurs) plus 9. The output arc to place Send specifies an additional
time delay to be used for the tokens added to Send. This token will get a time
stamp which is r*+9+ 100 (since the variable wait is bound to 100). Intuitively,
the delay 9 represents the time used to send a packet, while the delay 100
represents the time that has to elapse before a retransmission, i.e., before Send
Packet occurs once more for the same packet. A retransmission will only
happen if the number in Next Send remains unaltered for 9 + 100 time units, i.e.,
if no acknowledgement for the packet is received inside this time period.

Transmit Packet has a time region: @+ DEL(), where DEL is declared to be
an ML function returning a random element from the colour set NetDelay (i.e.,
a random integer in the interval between 25 and 75). This implies that the
duration of a transmit operation may vary inside this interval.

Receive Packet and Receive Acknowledgement have time regions specifying
a fixed duration (17 and 7, respectively), while Transmit Acknowledgement has
a variable duration time, between 25 and 75. All time delays are specified by
means of an ML expression. Hence, it is easy to use statistical functions
specifying more complex types of delays (e.g., exponential distributions).

Note that the token in Next Send has a time stamp. Intuitively, this means
that the sender can not start a new Send Packet or a new Receive
Acknowledgement as long as one of these operations is already ongoing. If the
Sender has multiple processes (threads), allowing an unlimited number of
Sender operations to be performed at the same time, we simply make the colour
set of Next Send untimed. A similar remark applies for the operations of the
Receiver and the colour set of Next Rec.

After a number of simulation steps the timed CP-net may reach a dead final
marking with the contents shown below. From the time stamp of NextRec it can
be seen that the last packet was received at time 1194. Analogously, the time
stamp at NextSend tells us that the last acknowledgment was received at time
1269. The time stamps at place Send tell us the times at which the individual
packets would have been retransmitted (had this become necessary). As an
example, we can see that the first packet would have been retransmitted at time
218, the second at time 234, the third at 324, and so on.



By means of our timed CPN model we can investigate the performance of
the protocol, e.g., experiment with different values for the retransmission delay
specified by Wait. A short delay increases the chance of making unnecessary
retransmissions. It also increases the chance that a Receive Acknowledgement
operation is postponed, because the Sender process is engaged in a
retransmission. A long delay means it may take too long before the Sender
recognises that a packet or an acknowledgement has been lost. By making a
number of simulations, with different values at Wait, we can determine the
optimal value for the retransmission delay.
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