
Design/CPN
Overview of CPN ML Syntax

Version 3.0

 University o f Aarhus
Computer Science Department

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88
Fax: +45 89 42 32 55 © 1996 University of Aarhus

© 1996 University of Aarhus

Computer Science Department

Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Søren Christensen and Torben Bisgaard Haagh.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

ML-2 Design/CPN – Overview of CPN ML Syntax

Design/CPN
Overview of CPN ML Syntax

Version 3.0

Table of Contents

Chapter 1
Colour Sets

Relational Operations..5
Simple Colour Sets..5
Compound Colour Sets...7
Declare Clause...9

Chapter 2
Multi-sets

Operations on Multi-Sets...11
Timed Simulations..12

Chapter 3
Miscellaneous

Identifiers..13
Values...13
Variables..13
Reference Variables...14
Functions..14

Design/CPN – Overview of CPN ML Syntax ML-3

Chapter 1

Colour Sets

Colour sets can be declared in many different ways, but they are all in
some way constructed from basic SML-types. This means that the
colour sets automatically inherit a number standard functions and
operations.

Relational Operations

The equality operators = and <> are defined for all colour sets, while <,
>, <= and >= only are defined for integers, reals and strings. To test the
order of the elements in other colour sets, use the lt function (see section
on declare clause).

Simple Colour Sets

Unit colour sets

color name = unit [with new_unit];

Order: trivial

Boolean colour sets

color name = bool [with (new_false, new_true)];

Order: false before true

Operations:

not b negation of the boolean value b
b1 andalso b2 boolean conjunction, and
b1 orelse b2 boolean disjunction, inclusive or

Design/CPN – Overview of CPN ML Syntax ML-5

Overview of CPN ML Syntax

Integer colour sets

color name = int [with int-expi . . int-expj];

Order: usual ordering of numbers

Operations:

~i negation of the intger value i
i1 + i2 addition
i1 - i2 subtraction
i1 * i2 multiplication
i1 div i2 division, quotient
i1 mod i2 modulus, remainder
abs i absolute value of i
min (i1, i2) minimum of i1 and i2
max (i1, i2) maximum of i1 and i2

Real colour sets

color name = real [with real-expi ..real-expj];

Order: usual ordering of numbers

Operations:

~r negation of the real value r
r1 + r2 addition
r1 - r2 subtraction
r1 * r2 multiplication
r1 / r2 division
sqrt r square root
abs r absolute value
min (r1, r2) minimum of r1 and r2
max (r1, r2) maximum of r1 and r2
floor r convert real to integer
ln r natural logarithm
exp r exponential
sin r sine
cos r cosine
tan r tangent
arctan r arc tangent
real i convert integer i to real value

ML-6 Design/CPN – Overview of CPN ML Syntax

Colour Sets

String colour sets

color name = string [with string-expi . .string-expj
[and int-expmin. . int-expmax]];

Order: lexicographic (with the ascii ordering)

Operations:

s1 ^ s2 concatenate the strings s1 and s2
size s number of characters in s
substring (s,i,l) extract a substring of length l starting at

position i in s, first position is 0
explode s convert string s to list of one character strings
implode l convert list l of strings to a string
ord s ordinal value of first character of s
ordof (s,i) ordinal value of the i'th character first position

is 0
chr i single-character string from ordinal value i

Enumerated colour sets

color name = with id1 | id2 | . . . | idn;

Order: as in the declaration

Index colour sets

color name = index id with int-expi . . int-expj;

Order: usual ordering on the indexes

Compound Colour Sets

Product colour sets

color name = product name1 * name2 *…* namen;

Order: lexicographic (with respect to ordering of base
colour sets)

Values: (v1, v2,…, vn)

Operations:

#i extract the ith element of tuple (does not work
for the Edinburgh ML compiler)

_ omit component in tuple (not allowed in CPN
inscriptions)

Design/CPN – Overview of CPN ML Syntax ML-7

Overview of CPN ML Syntax

Record colour sets

color name = record id1 : name1 * id2 : name2 * …
* idn: namen;

Order: lexicographic (with respect to ordering of base
colour sets)

Values: {id1 = v1, id2 = v2,…, idn = vn}

Operations:

#idi extract the idi-element from the record
… omit field in record (not allowed in CPN

inscriptions)

List colour sets

color name = list name0 [with int-expmin. . int-expmax];

Order: lexicographic (with respect to ordering of base
colour set)

Values: [v1, v2,…, vn]

Operations:

nil empty list (same as [])
e::l prepend element e in head of list l
l1 ^^ l2 concatenate the two lists l1 and l2
hd l head, the first element of the list
tl l tail, list with exception of first element
length l length of list
nth (l, n) nth element in list
nthtail (l, n) remove first n elements of list
rev l reverse list
exists p l true if p is true for some element in list
null l true if list is empty
map f l use function f on each value of list and returns

a list with all the results
app f l use function f on each value of list and returns

()
fold f l z returns f(l1, f(l2,…f(ln, z) …))

where l = [l1, l2,…, ln]

Union colour sets

color name = union id1 [: name1] + id2[: name2] + . . .
+ idn[: namen];

Order: first after selectors, then after ordering of each
base colour set

Values: idi(v)

ML-8 Design/CPN – Overview of CPN ML Syntax

Colour Sets

Subset colour sets

color name = subset name0 by subset-function;

Order: ordering of base colour set

color name = subset name0 with subset-list;

Order: ordering of base colour set

Alias colour sets

color name = name0

Order: ordering of the base colour set

Declare Clause

The declare clause is appended to the end of the colour set declaration. It
makes predefined system constants, operations and functions available.

color name = …… declare id1, id2, ... , idn

All colour sets:

all declare all functions available for colour set
ran'cs() returns a random value
lt'cs(v1, v2) less than in the colour set ordering
mkst_col'cs(v) make string representation of a colour
mkst_ms'cs(ms) make string representation of a multi-set

Small colour sets

ms multi-set with one of each element
size'cs number of elements in the colour set
first'cs first element in the colour set
last'cs last element in the colour-set

Enumerated and indexed colour sets

ord'cs(i) convert value to number representing its
position

col'cs(v) convert from number representing its position
dist'cs(v1, v2) distance between two values
rot'cs(i, v) value obtained by rotating i indexes from v

Design/CPN – Overview of CPN ML Syntax ML-9

Overview of CPN ML Syntax

Indexed colour sets

index'cs(v(i)) convert identifier-value to index number
clr'cs(i) convert index number to identifier-value

Product and record colour sets

mult'cs(ms1,..,msn) product of multi-sets

Subset colour sets

This includes int, real and string using the with clause.

in'cs(v) test whether value is member of colour set

Alias colour sets

same declare same functions as for base colour set

Union colour sets

of_idi'cs(cs) test whether value belongs to the component idi

ML-10 Design/CPN – Overview of CPN ML Syntax

Chapter 2

Multi-sets

Multi-sets are declared over colour sets. The back-quote (`) operator is
the multi-set constructor (as an example 3`7 is the multi-set with three
appearances of the colour 7).

Operations on Multi-Sets

ms1 == ms2 multi-set equality.
ms1 <><> ms2 multi-sets inequality.
ms1 >> ms2 multi-set greater than.
ms1 >>= ms2 multi-set greater than or equal to.
ms1 << ms2 multi-set less than.
ms1 <<= ms2 multi-set less than or equal to.
ms1 + ms2 multi-set addition.
ms1 - ms2 multi-set subtraction (ms2 must be less than or

equal to ms1).
c * ms scalar multiplication.
size ms size of Multi-set.
random ms returns a pseudo random colour from ms.
cf (c, ms) returns the number of appearances of colour c in

ms.
filter p ms takes a predicate p and a multi-set ms and

produces the multi-set of all the appearances in
ms satisfying the predicate.

ext_col f ms takes a function f and a multi-set
c1`s1 + c2`s2+ … + cn`sn and produces the multi-set
c1`f(s1) + c2`f(s2) + … + cn`f(sn).

ext_ms f ms takes a function f and a multi-set
c1`s1+c2`s2+ … + cn`sn and produces the multi-
set c1 * f(s1) + c2 * f(s2) + … + cn * f(sn).

Design/CPN – Overview of CPN ML Syntax ML-11

Overview of CPN ML Syntax

Timed Simulations

To simulate with time choose With Time in Simulation Code
Options and specify whether time should be measured in integer or
reals.

A colour set is timed by appending the keyword timed to the end of its
declaration:

color name = ……… timed;

All simple colour sets are by default untimed while compound colour
sets are timed if and only if at least one of the base colour sets are timed.
To make a timed colour set untimed, append the keyword untimed to the
end of its declaration.

The time stamp is added to the multi-set value by adding the at-sign (@)
and an integer list specifying the time stamps, e.g., 3`e@[2,4,6]. In the
output arc inscriptions the time delay expression consists of the
keyword @+ followed by an integer or real expression, e.g. 1`e@+5.
Input arc inscriptions are not allowed to specify time delays. The
keyword @ignore in an input arc inscription causes the simulator to
ignore that the colour set is timed, e.g. 1`e@ignore.

The current model-time and step number can be inspected by means of
the function time() and step() respectively. The function with_time()
tests whether or not the simulation is with time.

ML-12 Design/CPN – Overview of CPN ML Syntax

Chapter 3

Miscellaneous

Identifiers
An identifiers is a sequence of letters, digits, primes, and underscores
– starting with a letter.

Values
A value declaration binds a value to an identifier (which then works as a
constant)

val id = exp;

Variables
A variable is bound to a value, the scope of a variable is local to the
transition. If the variable is from a colour set with less than 100
elements, the simulator is always able to bind a value to it.

var id1, id2, ... , idn: cs_name;

Design/CPN – Overview of CPN ML Syntax ML-13

Overview of CPN ML Syntax

Reference Variables
A reference variable is similar to a pointer in C. The references may only
be used in code segments. Do not use references in a way that effects
transition enabling.

globref id = exp; a global reference variable can be declared in
global and temporary declaration nodes, the
scope is the entire CP-net.

pageref id = exp; a page reference variable can be declared in a
local declaration nodes, the scope is all
instances of the page.

instref id = exp; an instance reference variable can be declared in
a local declaration nodes, the scope is a single
instance of the page.

Operations:

!r contents of the reference r
r := v assignment of the value v to the reference r
ref v reference constructor
inc r increment contents of integer reference r
dec r decrement contents of integer reference r

Functions
fun id pat1 = exp1

| id pat2 = exp2
| ………
| id patn = expn;

The _(underscore) can be used to omit fields in the pattern. As an
example look at the following function. It is a function with two
parameters a constant and a list, and it multiplies each entry in the list
with the constant, returning the result.

fun list_mult (c, x::xs) = (c * x)::lmult(c, xs)
 | list_mult (_, nil) = nil

To turn a function f (with two parameters) into an infixed operator write:

infix f;

ML-14 Design/CPN – Overview of CPN ML Syntax

Miscellaneous

Local Declarations

let
val pat1 = exp1;
val pat2 = exp2;
………
val patn = expn

in
exp

end;

Control Structures

if bool-exp then exp1 else exp2;

case exp of
 pa t1 => exp1
| pat2 => exp2
| ……
| atn => expn;

Design/CPN – Overview of CPN ML Syntax ML-15

