
Design/CPN
OE/OS Graph Manual

Version 1.1

 University o f Aarhus
Computer Science Department

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88
Fax: +45 89 42 32 55 © 1998 University of Aarhus

OE/OS-2 Design/CPN OE/OS Graph Manual

© 1998 University of Aarhus

Computer Science Department

Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Jens Bæk Jørgensen and Lars M. Kristensen.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

 Design/CPN OE/OS Graph Manual OG-3

Design/CPN
OE/OS Graph Manual

Version 1.1

Table of Contents

INDEX 5

CHAPTER 1 7

Introduction to OE/OS Graphs 7
The History of the Design/CPN OE/OS Graph Tool 7
Example: Dining Philosophers 8

CHAPTER 2 1 2

How to Calculate an OE/OS Graph 1 2
Generation of OE/OS Graph Code 12
Generation of the OE/OS Graph 13
OEOS Menu 13

CHAPTER 3 1 9

How to Write OE/OS-Specifications 1 9
Example: Resource Allocation 19
Installing the OE/OS Specification 22
Generation of the OE/OS Graph 22
Key Functions 22

CHAPTER 4 2 4

How to Write OSP-Specifications 2 4
Example: Dining Philosophers 24
Example: Distributed Data Base 27

CHAPTER 5 3 3

How to Make Standard Queries 3 3
Reachability Properties 33
Boundedness Properties 36
Home Properties 38
Liveness Properties 41

OE/OS Graph Manual

OG-4 Design/CPN OE/OS Graph Manual

Fairness Properties 44
How to Make Your Own Queries 45

Reference List 4 7

Index

Design/CPN Occurrence Graph Manual OG-5

Index

—A—
AllReachable, 34
ApplyPermutation , 32
ApplyPermutationPair , 32
ApplyRotat ion , 26
atomic, 24
atomic colour sets, 24
Attributes/Options, 16

—B—
base colour sets, 24
BEsLiveScc, 43
BEsLiveSym, 43
BestLowerMult iSet, 37
BestUpperMult iSet, 37
Boundedness Properties, 36

—C—
Calculate Occ Graph, 14
Calculate Successors, 15
CalculateOEGraph, 22
CalculateSccGraph, 22
Change Marking , 12
Compatible equivalence specifications, 8
component sets, 40
cons is tency, 8
CreateCompSet, 41
CreateResSet, 30

—D—
DeadMarking , 42
Dining Philosophers, 8, 24
Display Arc, 17
Display Node, 16
Display Predecessors, 17
Display Scc Graph, 17
Display Successors, 17
Distributed Data Base, 27

—E—
Enter Occ Graph , 12
Enter Simulator , 12
equivalence specification, 8
EquivBE , 19
EquivMark , 19

—F—
Fairness Properties, 44
FairnessProperty, 45
FilterPermutations , 31
FilterPermutationsPair , 32

—G—
General Simulation Options, 12

—H—
Home Properties, 38
HomeMarking , 38
HomeMarkingExists , 39
HomeMarkingSym , 39
HomeSpace, 38
HomeSpaceSym, 39

—I—
Init ialHomeMarking , 39
Installing, 22
IntersectCompSets, 41
IntersectResSets, 30

—K—
Key Functions, 22

—L—
ListDeadMarkings , 42
ListFairTIs , 45
ListHomeMarkings , 39
ListHomeScc, 39
ListImpartialTIs , 45
ListJustTIs , 45
ListPermutations, 30
Liveness Properties, 41
LowerInteger , 37
LowerMultiSet , 37

—M—
MarkingToKey , 22
MinimalHomeSpace, 38
ML Evaluate , 33

—O—
Occ menu, 12, 13
Occ State to Sim, 16
OE/OS graph code, 12
OE-graphs, 7
OS-graphs, 7
OSPSpec, 22
OSSpec, 22

—P—
PermExists, 30
permutation , 27
proj_ms1, 21
proj_ms2, 21

—R—
Reachability Properties, 33
ReachableSym, 35
Resource Allocation, 19
restriction sets, 30
Reswitch, 18
rotat ion , 24

OE/OS Graph Manual

OG-6 Design/CPN OE/OS Graph Manual

—S—
Save Report, 15
SccListDeadMarkings, 42
SccReachable, 34
Show Statistics, 15
Sim State to Occ, 16
Simulat ion Code Options, 12
Spec, 22
structured colour sets, 24
Sym, 35
SymPredicate, 35
Syntax Options, 12

—T—
TestPermutations, 31

TestPermutationsPair, 31
TestRotat ion, 26
TIsFairness, 45
TIsLive , 42, 43
TIsStr ict lyLive , 44
TIsStr ict lyLiveScc , 44
TIsStr ict lyLiveSym , 43
Toggle Descriptor, 17

—U—
Update Node, 18
UpperInteger, 36

 Design/CPN OE/OS Graph Manual OE/OS-7

Chapter 1

Introduction to OE/OS Graphs

The History of the Design/CPN OE/OS Graph Tool

This manual describes a tool to calculate, analyse and draw
occurrence graphs with equivalence classes and symmetries.
Occurrence graphs with equivalence classes and symmetries (OE-
and OS-graphs) is a compact class of occurrence graphs in which
each node represents an equivalence class of markings and an arc
represents an equivalence class of binding elements. OE/OS-graphs
are often much smaller than ordinary occurrence graphs and can still
be used to verify many dynamic properties of CP-nets.

The first version of the Design/CPN OE/OS Graph Tool (OE/OS
tool) was developed at the University of Aarhus in 1995-1996. The
present version 1.1 was developed in 1997-1998 and improves
version 1.0. The calculation of OE/OS-graphs has been made more
time efficient and the integration of the OE/OS tool in Design/CPN
has been enhanced. The OE/OS tool resembles the Design/CPN
Occurrence Graph Tool (OG tool) [OG] and this manual assumes
that the reader is familier with the OG tool. The reader is also
assumed to be familiar with the theoretical background of OE/OS
graphs presented in [CPN 2] on which the OE/OS tool and the
terminology and notation used in this manual are based. In the
following OE-graph abbreviates “occurrence graphs with
equivalence classes”, OS-graph abbreviates “occurrence
graphs with symmetries” and OSP-graph abbreviates
occurrence graphs with permutation symmetries. OSP-
graphs is an important subclass of OS-graphs which again is a
subclass of OE-graphs. A difference between the three classes is the
dynamic properties which can be verified on the corresponding
graph. In this sense OSP-graphs are stronger than OS-graphs which
again is stronger than OE-graphs.

The OE/OS tool is fully integrated with Design/CPN 3.1. This
means that you can switch between the editor/simulator and the
OE/OS tool. When an OE/OS-graph node has been found, a
representative for the equivalence class can be inspected in the
simulator. This means that you can see the marking directly on the
graphical representation of the CPN model. You can see the enabled
transition instances, investigate their bindings, and make
simulations. Analogously, when a marking has been found in the
simulator, it can be added to the OE/OS-graph or used as the initial
marking for a new OE/OS-graph.

OE/OS Graph Manual

OG-8 Design/CPN OE/OS Graph Manual

The user of the OE/OS tool is required to define the equivalence on
markings and binding elements before an OE/OS-graph can be
calculated by the tool. The user does this by implementing an
equivalence specification which consists of two CPN ML
functions. One which defines when two markings are equivalent and
one which defines when two binding elements are equivalent. A
large number of efficient built-in functions are provided which
support the implementation of these predicates. It is the
responsibility of the user to ensure the consistency of the provided
equivalence specification. Compatible equivalence
specifications are not supported by the tool.

Like the OG tool, the OE/OS tool has a large number of built-in
standard queries. They can be used to investigate the standard
properties of a CP-net, such as reachability, boundedness, home
properties, liveness, and fairness. In addition to the standard queries
there are a number of powerful search facilities allowing the user to
formulate his own, non-standard queries.

Example: Dining Philosophers

In this section we will briefly recall the concept of OE/OS-graphs.
This will be done with off-set in ordinary occurrence graphs. The
basic idea behind occurrence graphs is to make a directed graph with
a node for each reachable marking and an arc for each occurring
binding element. An introduction to occurrence graphs can be found
in Sect. 5.1 of [CPN 1] and in Sect. 1.1 in [CPN 2]. An
introduction to OE/OS-graphs can be found in Sect. 2 and Sect. 3 in
[CPN 2].

In this manual we use the dining philosophers system as one of the
main examples. Five Chinese philosophers are sitting around a
circular table. In the middle of the table there is a delicious dish of
rice, and between each pair of philosophers there is a single
chopstick. Each philosopher alternates between thinking and eating.
To eat, the philosopher needs two chopsticks, and he is only
allowed to use the two which are situated next to him (on his left and
right side). The sharing of chopsticks prevents two neighbours from
eating at the same time.

Introduction to OE/OS Graphs

Design/CPN OE/OS Graph Manual OE/OS-9

Rice
Dish

ph1

ph5

ph4 ph3

ph2

cs1 cs2

cs4

cs3cs5

The dining philosopher system is modelled by the CP-net shown
below. The PH colour set represents the philosophers, while the CS
colour set represents the chopsticks. The function Chopsticks maps
each philosopher into the two chopsticks next to him.

Think
PH

PH

Eat
PH

Take
Chopsticks

Put Down
Chopsticks

Unused
Chopsticks

CS

CS

val n = 5;
color INDEX = int with 1..n;
color PH = union ph:INDEX declare ms;
color CS = union cs:INDEX declare ms;
var p : PH;
fun Chopsticks(ph(i))
 = 1`cs(i)+1`cs(if i=n then 1 else i+1);

p

p

p

p

Chopsticks(p)

Chopsticks(p)

OE/OS Graph Manual

OG-10 Design/CPN OE/OS Graph Manual

An occurrence graph for the dining philosophers is shown below.
Each node represents a reachable marking, while each arc represents
the occurrence of a single binding element – leading from the
marking of the source node to the marking of the destination node.
To improve readability, we have only shown the detailed contents of
some of the markings and some of the binding elements. It should
be noted that all arcs are double arcs (i.e., represents two individual
arcs).

1
5:5

2
3:3

3
3:3

4
3:3

5
3:3

6
3:3

7
2:2

8
2:2

9
2:2

Unused: 1`cs(1)
Think: 1`ph(1)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(2)+ 1`ph(4)

10
2:2

Unused: 1`cs(3)
Think: 1`ph(2)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(4)

11
2:2

Unused: 1`cs(5)
Think: 1`ph(2)+ 1`ph(4)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(3)

Put: {p=ph(2)}

Take: {p=ph(4)}Take: {p=ph(1)}

Put: {p=ph(3)}

If we consider the philosopher system then all philosophers behaves
in the same. Each of the philosophers has a special relationship with
his two neighbours in the sense that he shares a chopstick with each
of them. This is also reflected in the occurrence graph above. If we
consider the markings corresponding to the nodes 9,10 and 11 in
which two philosophers are eating it can be observed that they are

Introduction to OE/OS Graphs

Design/CPN OE/OS Graph Manual OE/OS-11

very alike. For instance, the marking of node 11 can be mapped to
the marking of node 9 by mapping each philosopher into its
neighbour and similarly for the chopsticks. By extending this idea
we consider two markings to be equivalent if one can be obtained
from the other by a rotation of the indices. Similarly for binding
elements . The basic idea in OE/OS graphs is to lump together such
equivalent markings and equivalent binding elements. If this is done
for the philospher system we obtain the following graph. Now each
node represent s an equivalence class of markings. For instance
node 2 represent s the nodes 2,3,4,5, and 6 in the occurrence graph.
Similary the arcs represents equivalence classes of binding elements.

1
1:1

Unused: 1`cs(1) + 1`cs(2) + 1`cs(3) +
 1`cs(4) + 1`cs(5)
Think: 1`ph(1) + 1`ph(2) + 1`ph(3) +
 1` ph(4)+ 1` ph(5)

2
2:2

Unused: 1`cs(2) + 1`cs(3) + 1`cs(4)
Think: 1`ph(1) + 1`ph(2) + 1`ph(3)+ 1`ph(4)
Eat: 1` ph(5)

3
1:1

Unused: 1`cs(2)
Think: 1`ph(1) + 1`ph(2) + 1`ph(4)
Eat: 1`ph(3) + 1`ph(5)

Take: {p=ph(5)}

Put: {p=ph(5)}

As it can be observed the OE/OS-graphs has only 3 nodes and 4 arcs
in contrast to the occurrence graph which had 11 nodes and 30 arcs.
For each node and arc in the above graph we have shown a
representative for the equivalence class which the node/arc
represents.

 Design/CPN OE/OS Graph Manual OE/OS-12

Chapter 2

How to Calculate an
OE/OS Graph

Before an occurrence graph can be calculated, it is necessary to
generate the OE/OS graph code, i.e., the ML code which is used
to calculate, analyse and draw OE/OS-graphs. The OE/OS-graph
code is generated in a way which is similar to the switch from the
editor to the simulator.

Generation of OE/OS Graph Code

To generate the OE/OS-graph code the following steps must be per-
formed (in the specified order):

a) Make sure that you are using Design/CPN version 3.1 (or
later) and the CPN ML image provided together with it.

b) Use Syntax Options to select OG Tool Violations. You may
also want to select the five check boxes for missing and
duplicate place, transition and page names.

c) Use General Simulation Options to unselect Time. To
choose the setting it may first be necessary to use Simulation
Code Options.

d) Use Enter Simulator to make a syntax check and to enter the
simulator.

e) Use Change Marking (or a simulation) to obtain the marking
which you want to use as the initial marking of your OE/OS-
graph. – If you want to use the initial marking of the CPN
model as the initial marking of your OE/OS-graph, nothing
needs to be done.

f) Invoke Enter OE/OS Graph (in the File menu). This will
create the OE/OS-graph code. For large nets it takes a while –
comparable to the time for a full simulator switch. – If you do
not need to customize the initial marking of the CPN model
Enter OE/OS Graph can be invoked directly in the editor.

When Enter OE/OS Graph terminates, a new OEOS menu is
added to the menu bar (at the rightmost end). This menu contains all
the commands which are used to perform the calculation and

How to Calculate an OE/OS Graph

Design/CPN OE/OS Graph Manual OE/OS-13

drawing of OE/OS-graphs. The menu works very similar to the Occ
menu in the OG tool. The functionality of the individual items in the
menu will be explained below.

We propose that you now try to generate the OE/OS-graph code for
the dining philosopher system. To do this use the CPN model called
“DiningPhilosophersOS”. It can be downloaded from the
Design/CPN WWW pages.

Generation of the OE/OS Graph

Before an OE/OS-graph can be calculated the user are required to
implement the equivalence specification, in the following referred to
as an OE/OS/OSP-specification depending on the class of
graphs we have in mind. How this is done is the subject of Chap. 3
and Chap 4.

Once this implementation is complete, the OE/OS-graph can be
calculated in exactly the same way as an occurrence graph is
calculated in the OG tool. In particular the branching and stop
options are respected.

OEOS Menu

In this section we will breifly review the individual item in the OEOS
menu:

OE/OS Graph Manual

OG-14 Design/CPN OE/OS Graph Manual

˚OEOS

˚Calculate OE/OS Graph˚

˚Calculate Successors

˚Calculate Scc Graph

 --

˚Show Statistics

˚Save Report

 --

˚OE/OS State to Sim

˚Sim State to OE/OS

 --

˚Attributes/Options

 --

˚Display Node

˚Display Arc

˚Display Successors

˚Display Predecessors

˚Display Scc Graph

 --

˚Toggle Descriptor

˚Update Node˚

Most of the commands are quite similar to the corresponding
command in the OG tool. However, there are differences which we
will make explicit below.

Calculate OE/OS Graph

This command calculates the OE/OS-graph. It implements the
algorithm of Prop. 2.5 in [CPN 2]. The OE/OS tool stores
equivalence classes using representatives. Therefore each node in
the OE/OS-graph (an OE/OS node) is represented by a marking, a
representative for the equivalence class of markings. Similarly the
arcs in the OE/OS-graph (an OE/OS arc) are represented by a
binding elemtent, a representative for the equivalence class of
binding elements. Besides from this, the command works in exactly
the same way as in the OG tool.

How to Calculate an OE/OS Graph

Design/CPN OE/OS Graph Manual OE/OS-15

Calculate Successors

This command calculates the immediate successors of the selected
OE /OS node(s).

Calculate Scc Graph

This command calculates the Scc-graph of the OE/OS-graph. The
Scc-graph is used by many of the query functions in Chap.5.

Show Statistics

This command gives information about the size of the OE/OS-graph
and the size of the Scc-graph.

The OE/OS-graph will always have at least one node (even if
Calculate Occ Graph and Calculate Successors have not been
used). By convention node number 1 is the equivalence class
containing the initial marking. If the Scc-graph has not been
calculated, the second part of the statistics is missing.

The information from Show Statistics can also be accessed via the
following set of ML functions:

fun NoOfNodes unit ->
int

fun NoOfArcs unit ->
int

fun NoOfSecs unit ->
int

fun EntireGraphCalculated unit ->
bool

fun SccNoOfNodes unit ->
int

fun SccNoOfArcs unit ->
int

fun SccNoOfSecs unit ->
int

fun SccGraphCalculated unit ->
bool

Save Report

This command is not supported in this version of the OE/OS tool.
Selecting the corresponding menu item will not have any effect.

OE/OS Graph Manual

OG-16 Design/CPN OE/OS Graph Manual

OE/OS State to Sim

This command “moves“ the representative of an equivalence class in
the OE/OS-graph to the simulator. The representative to be moved is
specified by either selecting the equivalence class (the OE/OS node)
prior to the invocation of the command or by specifying the
equivalence class in in a dialogue box.

Sim State to OE/OS

This command allows you to “move” a simulator state to the OE/OS-
graph. If its equivalence class is already in the OE/OS-graph, the
current simulator state itself will not be explicitly represented. I.e.,
the command Sim State to OE/OS followed by the command
OE/OS State to Sim may change the state of the simulator.

Attributes/Options

This command allows you to change the diagram defaults for OE
/OS attributes and the values of OE/OS options. This is done exactly
in the same way as in the OG tool. For more information see
Chap. 7 in [OG].

Display Node

This command draws a new OE/OS node – providing a graphical
representation of the specified node. The node is drawn at the centre
of the current page

If the node already exists on the current page, the corresponding OE
/OS node becomes selected and nothing further happens. Hence, it is
impossible to draw the same OE/OS node more than once on a page
(but it can be drawn on different pages).

OE/OS nodes can also be drawn by means of the following ML
functions:

fun DisplayNodes Node list ->
unit

fun DisplayNodePath Node list ->
unit

The first function draws the nodes in the list (on the current page,
reusing existing nodes). The second function checks whether the
nodes form a path (i.e., whether there is an arc between each node
and its immediate successor). If this is the case, the nodes and arcs
are drawn (on the current page, reusing existing nodes and arcs). If
there are multiple arcs between two neighbouring nodes, they are all

How to Calculate an OE/OS Graph

Design/CPN OE/OS Graph Manual OE/OS-17

drawn. If the nodes do not form a path, the exception NotAPath is
raised

Display Arc

This command draws an OE/OS arc – providing a graphical
representation of the specified arc. If necessary the command also
draws the source and destination node of the arc. Otherwise the
command works in a way which is analogous to Display Node.

OE/OS arcs can also be drawn by means of the following ML
functions, which work in a way which is totally analogous to
DisplayNodes and DisplayNodePath :

fun DisplayArcs Arc list -> unit

fun DisplayArcPath Arc list -> unit

Display Successors

This command draws the immediate successor nodes and the
immediate successor arcs of the selected node(s).

Display Predecessors

This command draws the predecessor nodes and predecessor arcs of
the selected node(s). It works in a way which is totally analogous to
Display Successors.

Display Scc Graph

This command draws the Scc-graph using a standard layout.

Toggle Descriptor

This command toggles the existence of the OE/OS node/arc
descriptor of the selected OE/OS node/arc(s). If the descriptor does
not exist, it is created. If it exists, it is deleted. The descriptor will
typically describe the representative of the OE/OS node/arc. Since
the OE/OS tool stores equivalence classes using representatives the
Mark -structure and ArcToBE/ArcToTI functions can be used to
obtain information about the representative.

OE/OS Graph Manual

OG-18 Design/CPN OE/OS Graph Manual

Update Node

This command updates the information in the text string of the
selected OE/OS node(s). It only has an effect if the occurrence graph
has been extended since the OE node was drawn.

Details and Limitations (can be skipped in a first reading)

When you make a modification of the CPN diagram, it is necessary
to regenerate all the OE/OS-graph code from scratch. This also
means that the OE/OS-graph (if any) is lost. When the modification
is made in the simulator it is sufficient to invoke Reswitch and
Enter Occ Graph.

The OE/OS tool respects the relevant mode attributes. The OE/OS-
graph is calculated for those parts of the net which would participate
in a simulation. Please note that withOE/OS-graphs, it only makes
sense to use code segments in a very limited fashion, e.g., to
initialise a CPN model.

Currently OE/OS-graphs with time has not been theoretically
developed and hence it does not make sense to construct timed
OE/OS-graphs. It is therefore recommended to unselect time in
General Simulation Options.

Free variables on output arcs are not allowed – unless they are
variables of a small color set.

 Design/CPN OE/OS Graph Manual OE/OS-19

Chapter 3

How to Write OE/OS-
Specifications

This chapter describes how to write OE- and OS-specifications.
Before an OE/OS-graph can be calculated two functions must be
implemented which defines the equivalence on markings and binding
elements. Throughout this chapter we will use the resource
allocation system from occurrence 1.2 in [CPN 1] as an example.

An OE/OS-specification consist s of two functions EquivMark and
EquivBE with the following functionality.

fun EquivMark NodeRec * NodeRec -> bool

fun EquivBE Bind.Elem * Bind.Elem ->
bool

It should be noted, that the two functions are not required to be
named EquivMark and EquivBE - any legal ML identifier will
work.

The fact that EquivMark takes two node records as argument
enables us to use the OEMark-structure to refer to markings when
writing the function. The OEMark-structure can be used to refer to
marking in the same way as the Mark -structure. Similarly the
functionality of EquivBE enables us to use the Bind -structure to
refer to the binding elements (see Chap. 3 in [OG]).

Example: Resource Allocation

The resource allocation system is modelled by the CP-net shown
below.

OE/OS Graph Manual

OG-20 Design/CPN OE/OS Graph Manual

AP

3`(q,0)

BP

2`(p,0)

CP

D P

EP

T1 [x=q]

T2

T3

T4

T5

R

E

1`e

color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;

S

E

3`e

T

E

2`e

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

(x,i)

if x=q
then 1`(q,i+1)
else empty

e

if x=q then 1`e
else empty

case x of
 p => 2`e
| q => 1`e

2`e

e

if x=p then 1`e
else empty

e

case x of
 p => 2`e
| q => 1`e

if x=p
then 1`(p,i+1)
else empty

We will consider the OE-specification stating that two markings are
equivalent iff they are identical when ignoring the cycle counters.
Similarly for binding elements. The EquivMark function for the
resource allocation system is shown below.

fun EquivMark (n1,n2) =

(proj_ms1 (OEMark.Res’A 1 n1) ==
 proj_ms1 (OEMark.Res’A 1 n2)) andalso

(proj_ms1 (OEMark.Res’B 1 n1) ==
 proj_ms1 (OEMark.Res’B 1 n2)) andalso

(proj_ms1 (OEMark.Res’C 1 n1) ==
 proj_ms1 (OEMark.Res’C 1 n2)) andalso

(proj_ms1 (OEMark.Res’D 1 n1) ==
 proj_ms1 (OEMark.Res’D 1 n2)) andalso

(proj_ms1 (OEMark.Res’E 1 n1) ==
 proj_ms1 (OEMark.Res’E 1 n2)) andalso

(OEMark.Res’R 1 n1) == (OEMark.Res’R 1
n2)

 andalso

(OEMark.Res’S 1 n1) == (OEMark.Res’S 1
n2)

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-21

 andalso

(OEMark.Res’T 1 n1) == (OEMark.Res’T 1
n2)

On the places A, B, C, D and E the cycle counters are removed and
the resulting multi-sets are compared. This is done using the
function proj_ms1 which takes a multi-sets of pairs and returns
the corresponding multi-set of the first components. Two projection
functions working on multi-set are available.

fun proj_ms1 (‘’a * ‘b) ms -> ‘’a ms

fun proj_ms2 (‘a * ‘’b) ms -> ‘’b ms

proj_ms2 is similar to proj_ms1 except that the corresponding
multi-set of the second components is returned.

The function simply compares the marking on each of the places R,
S and T.

The function EquivBE for the resource allocation system is written
as a pattern match over all binding elements and can be seen below.

fun EquivBE (
 Bind.Res’T1 (1,{x=x1,i=_}),
 Bind.Res´T1 (1,{x=x2,i=_})) = (x1 =
x2)
 | EquivBE (
 Bind.Res’T2 (1,{x=x1,i=_}),
 Bind.Res´T2 (1,{x=x2,i=_})) = (x1 =
x2)
 | EquivBE (
 Bind.Res’T3 (1,{x=x1,i=_}),
 Bind.Res´T3 (1,{x=x2,i=_})) = (x1 =
x2)
 | EquivBE (
 Bind.Res’T4 (1,{x=x1,i=_}),
 Bind.Res´T4 (1,{x=x2,i=_})) = (x1 =
x2)
 | EquivBE (
 Bind.Res’T5 (1,{x=x1,i=_}),
 Bind.Res´T5 (1,{x=x2,i=_})) = (x1 =
x2)
 | _ => false;

As it can be seen two binding elements are equivalent iff they have
the same transition and if the variable x is bound to the same value.

OE/OS Graph Manual

OG-22 Design/CPN OE/OS Graph Manual

Installing the OE/OS Specification
Once the implementation of the equivalence specification is done, the
equivalence specification have to be installed. This is done by
evaluating the following ML code.

OESet.Equivalence {
 Mark = EquivMark,
 Bind = EquivBE,
 Spec = OESpec}

The Spec member is used to specify the class of the equivalence
specification. OESpec indicates that the equivalence specificaion is
an OE-specification. Other possibilities are OSSpec and OSPSpec
which is used to denote symmetry specification and permutation
symmetry specification respectively. This information is used by the
tool when the user applies the standard query functions. We will
return to this in Chap. 5.

Generation of the OE/OS Graph

Once the installation of the equivalence specification is done, the OE-
graph can be calculated using Calculate OE/OS Graph in the Occ
menu. Many of the query functions in Chap. 5 uses the Scc-graph.
The Scc-graph can be calculated by invoking Calculate Scc
Graph in the Occ menu. Calculating the OE-graph for the resource
allocation system yields an OE-graph with 13 nodes and 20 arcs.

The OE-graph and the Scc-graph can also be calculated by means of
the following two ML functions.

fun CalculateOEGraph unit -> unit

fun CalculateSccGraph unit -> unit

Key Functions

In order to make the search for the markings more efficient, a search
tree is used as explained in occurrence. 1.7 in [CPN 2]. In order for
this search-technique to work it is required that equivalent markings
are mapped to identical keys. The user specifies a mapping from
markings to keys by writing a function MarkingToKey with the
following functionality.

fun MarkingToKey NodeRec -> string

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-23

The function which the user must provide takes an argument of type
NodeRec which makes it easy to use the OEMark-structure when
defining the mapping. The function is installed by evaluating the
following piece of ML code.

OESet.EncodeMarking (MarkingToKey)

In the current version of the tool it is only possible to change the
encoding of markings when the OE/OS-graph consist of a single
node. This is the case right after the Enter OE/OS Graph
command has been completed.

As long as the equivalence specification preserves the number of
tokens on the places , i.e, if for all places in the CP-net equivalent
markings will have the same number of tokens on each place it is not
neccesary to change the default encoding. This is for instance the
case with the equivalence specification for the resource allocation
system above as well as a permutation symmetry specification (an
OSP-specification).

 Design/CPN OE/OS Graph Manual OE/OS-24

Chapter 4

How to Write OSP-
Specifications

In this chapter we consider permutation symmetries and show how
to implement an OSP-specification.

A permutation symmetry specification assigns an algebraic group to
each of the atomic colour sets in the considered CP-net. In the
present version of the tool this is done in an indirect fashion. Like
for the OE/OS-specifications the user still has to supply the functions
EquivMark and EquivBE . The functions must be written in such
a way that the assignment of the algebraic groups to the atomic
colour sets and the inheritance of the symmetry groups of
structured colour sets from their base colour sets are
emulated. In the next version of the tool this will no longer be
neccesary - the user will only have to assign the algebraic groups to
the atomic colour sets. The rest will be handled automatically.

In this chapter we will consider two examples. The Dining
Philosophers from Chap.1 and the Distributed Data Base from Sect.
1.3 in [CPN 1]. We will show how to write the OSP-specification
for these two examples and introduce the utility functions provided
by the tool to do so. In the implementation of the OSP-specification
below, it should be noted that for introductory reasons the primary
concern has been to keep things simple. More efficient
implementations of the OSP-specifcation can be written to obtain a
faster calculation of the OSP-graph.

Example: Dining Philosophers

First we will consider the dining philosphers system. The CP-net for
the dining philosophers can be seen in Chap. 1. The CP-net uses
two indexed colour sets, PH for the philosophers and CH for the
chopsticks. It uses the auxiliary colour set INDEX which is atomic.
It is assigned the symmetry group rotation . The colour sets PH and
CH are made structured by means of a union construction. In this
way they inherit their symmetry groups from the base colour set
INDEX and thereby the rotations of the philosophers and the
chopsticks are synchronized.

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-25

The function EquivMark performs a naive testing of all possible
rotations. For n philosophers there are n possible rotations. The
basic idea in EquivMark is to represent rotations as functions . The
function EquivMark for the dining philosopher system is as
follows and will be commented below.

(* list of indices *)
fun listindex 0 = [0]
 | listindex i =

i::(listindex (i-1))

 (* Rotation of lenght l of PH *)
val PHRot l =
 (fn (ph(i)) = ph((i+l) mod n));

(* Generate all rotations on PH *)
val PHRotations =

(map PHRot (listindex
n));

(* Rotations of lenght l of CS *)
val CHRot l =
 fn (cs(i)) = cs((i+l) mod n));

(* Generate all rotations on CS *)
val CHRotations =

(map CHRot (listindex
n));

(* Synchronize rotations *)
 fun merge [] [] = []
 | merge x::xs y::ys =
 (x,y)::(merge xs ys)

val rotations =
 (merge PHRotations
CHRotations)

fun EquivMark (n1,n2) =
 predlist
 (fn (x1,x2) =>
 (TestRotation x1
 [(OEMark.System’Think 1 n1,
 OEMark.System’Think 1 n2),
 (OEMark.System’Eat 1 n1,
 OEMark.System’Eat 1 n2)])
 andalso
 (TestRotation x2
 [(OEMark.System’Unused 1 n1,
 OEMark.System’Unused 1
n2)]))
 rotations
end;

OE/OS Graph Manual

OG-26 Design/CPN OE/OS Graph Manual

In the first part all rotations on PH and CS are generated and
represented as a list of functions respectively. Using merge the
rotations of philosophers and chopsticks are synchronized. In
EquivMark the rotations are simply tested in turn to see if one of
the rotations maps the marking of n1 into the marking of n2.
EquivMark uses the utility function predlist which given a
predicate and a list determines whether some member in the list
satisfies the predicate. The function terminates as soon as such a
member is found. EquivMark also uses the function
TestRotation :

fun TestRotation (‘a -> ‘a) *
(‘a ms * ‘a ms) list ->

bool

TestRotation takes a function representing a rotations and a
list of pairs of multi-sets. It returns true if the rotation maps the first
component into the second component of each of the multi-set pairs.
Otherwise false is returned.

An additional utility functions related to rotations is also supported:

fun ApplyRotation (‘a -> ‘a) *
‘a ms -> ‘a ms

ApplyRotation takes a rotation and a multi-set as argument
and applies the provided rotation to the multi-set.

We will now consider how to write EquivBE . It must capture that a
neccesary condition for two binding elements to be equivalent is that
the involved transitions are equal. Because both of the transitions in
the CP-net have only one variable of colour set INDEX this is also a
sufficient condition. The EquivBE function is shown below.

fun EquivBE (
 Bind.System’Take (1,_),
 Bind.System’Take (1,_)) = true
 | EquivBE (
 Bind.System’Put = (1,_),
 Bind.System’Put = (1,_)) = true
 | EquivBE (_,_) = false

Once the implementation of the two functions is complete the
equivalence specification have to be installed. This is done by
evaluating the following ML code.

OESet.Equivalence {
 Mark = EquivMark,
 Bind = EquivBE,

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-27

 Spec = OSPSpec}

Note that OSPSpec is used since we have an OSP-specification.
Now the OSP-graph can be calculated. Since permutation symmetry
specifications preserve the number of tokens on all places, i.e, a
necessary condition for two markings to be equivalent is that they
have the same number of tokens on each of the places there is no
need to change the default encoding of markings when dealing with
OSP-specifications.

 Example: Distributed Data Base

We will now consider the distributed database system from Sect. 1.3
in [CPN 1]. The CP-net for the database system is shown below.

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive
DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive
E

e

val n = 4;
color DBM = index d with 1..n declare ms;
color PR = product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff declare ms;
color E = with e;
fun Mes(s) = mult'PR(1`s,DBM-1`s);
var s, r : DBM;

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

The database system uses the indexed colour set DBM for the
database managers and the product colour set MES for the
messages. We will show how to implement the permutation
symmetry specification given on page 52 in [CPN 2]. In short, this
specification can be described in the following way. The colour set
DBM is atomic. It is assigned the symmetry group permutation.

OE/OS Graph Manual

OG-28 Design/CPN OE/OS Graph Manual

The colour set MES is a structured colour set and therefore inherits
its symmetry group from its base colour set which is DBM. The
colour set E is also atomic and assigned the symmetry group
consisting of the identity element only.

The function EquivMark expressing the equivalence on markings are
as follows and will explained below.

fun EquivMark (n1,n2) =
let

val ms1_inac = OEMark.DataBase’Inactive 1
n1;
val ms1_inac = OEMark.DataBase’Inactive 1
n2;

val ms1_wait = OEMark.DataBase’Waiting 1
n1;
val ms1_wait = OEMark.DataBase’Waiting 1
n2;

val ms1_perf =
 OEMark.DataBase’Performing 1
n1;
val ms1_perf =
 OEMark.DataBase’Performing 1
n2;

val ms1_unus = OEMark.DataBase’Unused 1
n1;
val ms1_unus = OEMark.DataBase’Unused 1
n2;

val ms1_sent = OEMark.DataBase’Sent 1 n1;
val ms1_sent = OEMark.DataBase’Sent 1 n2;

val ms1_rec = OEMark.DataBase’Received 1
n1;
val ms1_rec = OEMark.DataBase’Received 1
n2;

val ms1_ack =
 OEMark.DataBase’Acknowledged 1
n1;
val ms1_ack =
 OEMark.DataBase’Acknowledged 1
n2;

val ms1_act = OEMark.DataBase’Active 1
n1;
val ms2_act = OEMark.DataBase’Active 1
n2;

val ms1_pas = OEMark.DataBase’Passive 1
n1;

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-29

val ms2_pas = OEMark.DataBase’Passive 1
n2;

val cands =
 (if (PermExists ms1_inac ms2_inac)
andalso
 (PermExists ms1_wait ms2_wait)
andalso
 (PermExists ms1_perf ms2_perf)
andalso
 (PermExists ms1_unus ms2_unus)
andalso
 (PermExists ms1_sent ms2_sent)
andalso
 (PermExists ms1_rec ms2_rec) andalso
 (PermExists ms1_ack ms2_ack) andalso
 (ms1_act == ms2_act) andalso
 (ms1_pas == ms1_pas)
 then
 ListPermutations (
 IntersectResSets
 [CreateResSet ms1_inac
ms2_inac,
 CreateResSet ms1_wait
ms2_wait,
 CreateResSet ms1_perf
ms2_pref],
 DBM)

 else
 [])

in
 TestPermutationsPair (cands,
 [(ms1_unus,ms2_unus),
 (ms1_sent,ms2_sent),
 (ms1_rec,ms2_rec),
 (ms1_ack,ms2_ack)])
end;

The first part of the body defines a number of values because of two
objectives. We do not want to access the internal representation of
markings more than once (for efficiency reasons) and we want
shorter names for the markings of the places in the rest of the code.

Given two nodes n1 and n2, it is first tested whether there might
exist a permutation symmetry which maps the marking of n1 into the
marking of n2. This is done using the functions PermExists . The
functionality of PermExists is as follows.

fun PermExists ‘a ms -> ‘b ms -> bool

OE/OS Graph Manual

OG-30 Design/CPN OE/OS Graph Manual

PermExists takes two multi-set m1 and m2 and determines
whether there exists a permutation which maps m1 into m2.
PermExists uses the coeffient multi-set to determine whether this
is the case or not. For atomic colour sets assigned the symmetry
group consisting of all permutations, PermExists expresses a
neccesary and sufficient condition for a permutation symmetry to
exists. For structured colour sets PermExists only expresses a
neccesary condition. For the places with colour set E it is simply
tested whether they contain the same multi-set.

If the check above is successful (i.e, a permutation symmetry might
exist) restriction sets as outlined on pages 95-96 in [CPN 2] are
exploited. For each place with colour set DBM, a restriction set is
created. This is done using the function CreateResSet :

fun CreateResSet ‘a ms -> ‘a ms ->
‘a ResSet

CreateResSet takes two multi-set s as argument and if the two
multi-sets can be mapped into each other, the corresponing
restriction set is returned. The intersection of all the restriction set
obtained is then calculated using the function
IntersectResSets :

fun IntersectResSets ‘a ResSet list ->
‘a ResSet

IntersectResSets takes a list of restriction sets and
calculates the intersection.

We are now done with the places with colour set DBM . To check
the remaining places with colour set MES we do a naive testing of all
permutations that are candidates to map n1 into n2. First we supply
the restriction set obtained from the places with colour set DBM to
the function ListPermutations:

fun ListPermutations `a ResSet * `a ms
-> `a Perm list

ListPermutations takes a restriction set over some set A
and the set A itself (represented as a multi-set) and creates the list of
permutations determined by the restriction set. The list of
permutation obtained in this way is now used as argument to the
function TestPermutationsPair together with the marking of
the places with colour set MES in n1 and n2. The functionality of
TestPermutationsPair is as follows:

fun TestPermutationsPair ‘a Perm list
* ((‘a * ‘a) ms * (‘a * ‘a) ms) list ->
bool

How to Write OSP-Specifications

Design/CPN OE/OS Graph Manual OE/OS-31

TestPermutationsPair takes a list of permutations and a
list of pairs of multi-sets over a product colour set . It returns true if
one of the permutations maps the first component to the second
component of each of the multi-set pairs. It returns false otherwise.
The first time it finds a permutation that works for all pairs in the
list, it stops.

We will now show how to write EquivBE . It must capture that a
neccesary condition for two binding elements to be equivalent is that
the transitions of the two binding elements are identical. So assume
that the two transitions in the binding elements are equal. If we
inspect the CP-net we can split the transitions into two groups
depending on the number of variables. If the transition has one
variable which will be of colour set DBM then the binding elements
can be mapped into the other. If the transition has two variables
which both will be of colour set DBM we require that if they are
bound to identical values in one of the bindings then the same must
hold for the second. The EquivBE functions is shown below.

fun EquivBE (
 Bind.DataBase’Update (1,_),
 Bind.DataBase’Update (1,_)) = true
 | EquivBE (
 Bind.DataBase’AReceive (1,_),
 Bind.DataBase’AReceive (1,_)) = true
 | EquivBE (
 Bind.DataBase’MReceive
(1,{s=s1,r=r1}),
 Bind.DataBase’MReceive
(1,{s=s2,r=21}))
 = (s1=r1) = (s2=r2)
 | EquivBE (
 Bind.DataBase’Send (1,{s=s1,r=r1}),
 Bind.DataBase’Send (1,{s=s2,r=21}))
 = (s1=r1) = (s2=r2)
 | EquivBE (_,_) = false;

Above we have introduced a number of utility functions which
support restriction sets and permutations . To make the description
of the utility functions related to restriction sets complete we will list
the remaining ones.

fun TestPermutations ‘a Perm list *
(‘a ms * ‘a ms) list ->

bool

TestPermutations takes a list of permutations and two
multi-sets m1 and m2 and determines whether the exists a
permutation in the supplied list which maps m1 into m2.

fun FilterPermutations ‘a Perm list *

OE/OS Graph Manual

OG-32 Design/CPN OE/OS Graph Manual

(‘a ms * ‘a ms) list -> ‘a Perm list

This function works like TestPermutations above but instead
the list of permutations that work is returned.

fun FilterPermutationsPair ‘a Perm
list * ((‘a * ‘a) ms * (‘a * ‘a ms) list
->

‘a Perm list

FilterPermutationsPair works like
FilterPermutations above except that it is a multi-set of of a
product colour.

fun ApplyPermutation ‘a Perm -> ‘a ms
-> ‘a ms

fun ApplyPermutationPair ‘a Perm *
 (‘a * ‘a) ms -> (‘a * ‘a) ms

These two functions both takes a permutation and a multi-set and
applies the permutation on to the supplied multi-set.
ApplyPermutaionsPair works on multi-sets over some
product colour whereas ApplyPermutations works directly
on the multi-set, i.e, it does not go into the structure elements in the
multi-set.

 Design/CPN OE/OS Graph Manual OE/OS-33

Chapter 5

How to Make Standard Queries

This chapter explains how to perform standard queries to investigate
the properties of a CPN model. It is, e.g., possible to investigate the
reachability, boundedness, home, liveness and fairness properties
using the OE/OS-graph.

The standard query functions available depends upon the class of the
specification, i.e, whether it is an equivalence specification (OE-
specification), a symmetry specification (OS-specification), or a
permutation symmetry specification (OSP-specification). This is
because OSP-specification have stronger proof rules than OS-
specifications which again has stronger proof rules than OE-
specification. This relationsship is also reflected in the following
sections. For each of the properties (reachability, boundedness,
home, liveness and fairness) we first consider the standard query
functions available for OE-specifications, then the additional
standard queries for OS-specifications and finally the additional
standard query functions available for OSP-specifications. If a
standard query functions which is not supported for the given class
of equivalence specification is invoked, the exception
std_query_not_avail will be raised.

It is also important to notice, that all proof rules depend on the
consistency of the supplied equivalence specification.

The query functions are typically used in auxiliary boxes – alone or
as part of a larger ML expression. The box is evaluated by means of
the ML Evaluate command. If you select a non-empty part of the
text, ML Evaluate only deals with that part.

Reachability Properties
OE-specifications

The query functions for reachability properties are based on Prop
2.6 in [CPN 2].

OE/OS Graph Manual

OG-34 Design/CPN OE/OS Graph Manual

fun Reachable Node * Node -> bool

fun SccReachable Node * Node -> bool

fun AllReachable unit -> bool

Reachable determines whether there exists occurrence
sequences from all markings of the first node leading to some
marking in the second node. For the resource allocation system:

Reachable(5,10)

returns true. This tells us that there exist occurrence sequences from
any marking equivalent with the representative of node 5 to some
marking equivalent with the representative of node 10.

SccReachable return the same result as Reachable , but it
uses the Scc-graph.

AllReachable implements Prop 2.6 (iv) in [CPN 2]. The
function returns true if for all pairs of markings equivalent with a
reachable marking there exist an occurrence sequence from the first
marking to a marking equivalent with the second marking. For the
resource allocation system:

AllReachable ()

return true. It should be noted that Prop 2.6 (iv) only expresses a
sufficient condition. Hence if the function return false the negation
of the above assertion cannot be concluded.

OS-specifications

The query functions for reachability properties are based on Prop
3.7 in [CPN 2].

fun ReachableSym Node * Node *
(Node -> bool) -> bool

fun SccReachableSym Node * Node *
(Node -> bool) -> bool

Reachable and SccReachable now also determines
whether there exists occurrence sequences to all marking in the

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-35

second node starting in some marking of the first node. For dining
philospher system:

Reachable (3,2)

return true. This tells us that there exist occurrence sequence from all
markings of node 3 leading to some marking in node 2.It also tells
us that all markings equivalent with the representative of node 1 can
be reached from some marking equivalent with the representative of
node 2.

ReachableSym implements Prop 3.7 (vi) in [CPN 2]. The
function returns true if there exists occurrence sequence between all
markings of the first node to all marking of the second node. The
function uses a predicate which must be provided by the user. The
predicate the user must provide is the predicate Sym from page 75
in [CPN 2]. In this manual we will refer to this predicate as a
SymPredicate. This predicate is true on a node if the size of the
equivalence class which the node represent is 1 and false otherwise.
An example of this will be given below. If ReachableSym return
false it cannot be concluded that no occurrence sequence between
any two markings in the nodes, since Prop 3.7 (iv) is only a
succicient condition .

SccReachableSym is similar to ReachableSym except hat it
uses the Scc-graph.

AllReachable now determines whether there exist an
occurrences sequence between all pairs of reachable markings.

OSP-specifications

There are no additional standard queries functions since the proof
rules are identical to the ones for OS-graphs. Instead we will show
how to write the SymPredicate used by ReachableSym for the
dining philosopher system. This function is a simple modification of
the EquivMark function and is shown below.

fun SymPhil n1 =
let
 fun alltrue [] = true
 | alltrue (x::xs) =

(x andalso (alltrue xs))

in
 (alltrue (map
 (fn (x1,x2) =>
 (TestRotation (fst x)
 [(OEMark.System’Think 1 n1,
 OEMark.System’Think 1 n1),
 (OEMark.System’Eat 1 n1,
 OEMark.System’Eat 1 n1)])

OE/OS Graph Manual

OG-36 Design/CPN OE/OS Graph Manual

 andalso
 (TestRotation (snd x)
 [(OEMark.System’Unused 1 n1,
 OEMark.System’Unused 1
n1)]))
 rotations
end;

The difference compared to EquivMark is that we now find all the
rotations which map the representative of the given node to itself. If
this is all the rotations then this representative can only be equivalent
to itself and hence the equivalence class to which the representative
belongs will only consist a single marking . The auxiliary function
alltrue tests whether all elements in a boolean list is true. For the
dining philospoher system:

ReachableSym(3,5,SymPhil)

returns true. This tells us that for all pairs of markings where the
first marking belongs to the equivalens class of node 3 and the
second marking belongs to the equivalence class of node 5 there
exist an occurrence equence from the first marking to the second
marking.

Boundedness Properties
OE-specifications

The query functions for boundedness properties are based on Prop
2.7 in [CPN 2].

fun UpperInteger (Node -> 'a ms) -> int

fun LowerInteger (Node -> 'a ms) -> int

fun UpperMultiSet (Node -> 'a ms) -> 'a ms

fun LowerMultiSet (Node -> 'a ms) -> 'a ms

UpperInteger uses a specified function F of type:

Node -> 'a ms

to calculate an integer  F(n) . This is done for each node n in the
OE/OS-graph, and the maximum of the calculated integers is
returned. Since only the representatives for the equivalence classes is
traversed the UpperInteger will be less than or equal to the best
upper integer bound.

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-37

LowerInteger is analogous to UpperInteger , but returns
the minimal value of the integers  F(n) .

UpperMultiSet is analogous to UpperInteger , but it
calculates F(n) instead of  F(n) . The result is the smallest multi-set
which is larger than or equal to all the calculated multi-sets. Similar
to UpperInteger the returned multi-set will be less than or equal
to then best upper multi-set bound.

LowerMultiSet is analogous to UpperInteger , but returns
the largest multi-set which is smaller than or equal to all the
calculated multi-sets.

OS-specifications

There are no additional standard query functions

OSP-specifications

fun BestUpperMultiSet (Node -> 'a ms) ‘a ms
list -> 'a ms

fun BestLowerMultiSet (Node -> 'a ms) ‘a ms
list -> 'a ms

BestUpperMultiSet determines the best upper multi-set
bound for a given place. It implements Prop. 3.18 (ii). The function
takes the equivalence classes for the colour set associated with the
place as argument. For the dining philosophers system and the place
Think:

mkst_ms’PH (BestUpperMultiSet (
OEMark.System’Think

1,[PH]));

returns the multi-set:

ph(1)+ph(2)+ph(3)+ph(4)+ph(5)

Since the colour set PH consists of only a single equivalence class
(ph(i) can always be mapped to ph(j) by a rotation) the list
specifying the equivalence classes consist only of a single element.

BestLowerMultiSet is analogous to
BestUpperMultiSet except that the best lower multi-set bound
is returned.

OE/OS Graph Manual

OG-38 Design/CPN OE/OS Graph Manual

For OSP-graphs, the query functions UpperInteger and
LowerInteger return the best upper and best lower integer
bound respectively. This is because permutation symmetry
specifications preserve the number of tokens on places.

Home Properties
OE-specifications

The query functions for home properties are based on Prop 2.8 in
[CPN 2]. It should be noted that most items in Prop 2.8 only
express neccesary conditions. Hence if a functions return true this
should be interpreted as possible. False is interpreted in the usual
way.

fun HomeSpace Node list -> bool

fun MinimalHomeSpace unit -> int

fun HomeMarking Node -> bool

fun ListHomeMarkings unit -> Node list

fun ListHomeScc unit -> Scc

fun HomeMarkingExists unit -> bool

fun InitialHomeMarking unit -> bool

HomeSpace determines whether the markings of the specified list
of nodes is a home space. For the resource allocation system:

HomeSpace [1,2]

returns true. This tells us that the union of the set of markings of the
two equivalence classes of node 1 and node 2 constitutes a home
space.

MinimalHomeSpace returns the minimal number of
equivalence classes which is needed to form a home space. This is
identical to the number of terminal strongly connected components.

HomeMarking determines whether it is possible for each
markings in the node to be a home marking. For the resource
allocation system:

HomeMarking 1

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-39

returns true. This tells us that each marking in the equivalence class
of node 1 is a potential home markings

ListHomeMarkings returns a list with all those nodes whose
markings are potential home markings. For the resource allocation
system:

ListHomeMarking ()

returns the list [1,2,3,4,5,6,7,8,9,10,11,12,13]. This tells us that
all markings equivalent with a reachable marking are candidates for
being home markings.

ListHomeScc is similar to ListHomeMarkings , but the
result is given in a more compact way. The result is either a single
Scc (and then the possible home markings are exactly those
markings that belong to the Scc) or the result is zero (and then there
are no home markings).

HomeMarkingExists determines whether the CP-net
possibly has any home markings. This is the case if there is exactly
one terminal strongly connected component.

InitialHomeMarking determines whether the initial
marking of the CP-net is a possible home marking. This is the case
if there is exactly one strongly connected component.

OS-specifications

The query functions for home properties are based on Prop. 3.9 in
[CPN 2]

fun HomeSpaceSym Node list * (Node -> bool)
-> bool

fun HomeMarkingSym Node -> (Node -> bool) ->
bool

HomeSpaceSym returns true if any set of markings in which a
marking from each of the nodes in the list constitutes a home space.
The functions corresponds to Prop. 3.9 (v). The functions uses a
SymPredicate which must be provided by the user.

HomeMarkingSym returns true if all markings specified by the
node are home markings. Like the function HomeSpaceSym the
user must provide a SymPredicate .

OE/OS Graph Manual

OG-40 Design/CPN OE/OS Graph Manual

InitialHomeMarking now determines whether the initial
marking is a home marking or not.

OSP-specifications

There are no additional standard queries. Instead we will show how
to write the predicate used by the functions HomeSpaceSym and
HomeMarkingSym for the database example. To ease the
implementation of the predicate some useful functions working on
component sets are provided by the tool (see [CPN 2] page 96).
The function SymDataBase implementing the predicate are as
follows and will be explained below.

fun SymDataBase n1 =
let

val ms_inac = OEMark.DataBase’Inactive 1
n1;
val ms_wait = OEMark.DataBase’Waiting 1
n1;
val ms_perf =
 OEMark.DataBase’Performing 1
n1;
val ms_unus = OEMark.DataBase’Unused 1
n1;
val ms_sent = OEMark.DataBase’Sent 1 n1;
val ms_rec = OEMark.DataBase’Received 1
n1;
val ms_ack =
 OEMark.DataBase’Acknowledged 1
n1;

val cands =
 ListPermutations (CompSetToResSet
 IntersectCompSets
 [CreateResSet ms_inac,
 CreateResSet ms_wait,
 CreateResSet ms_perf,
 DBM)

in
 ((length (FilterPermutationsPair
 (cands,
 [(ms_unus,ms_unus),
 (ms_sent,ms_sent),
 (ms_rec,ms_rec),
 (ms_ack,ms_ack)]))) = (fac
n))
end;

The function is a modification of the EquivMark function for the
database system. The first part of the body defines a number of
values for easy reference. For each place with colour set DBM a

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-41

component set is created. This is done using the function
CreateCompSet :

fun CreateCompSet ‘a ms -> `a CompSet

CreateCompSet takes a multi-set and creates the
corresponding component set. The intersection of the component set
obtained is then calculated using the function
IntersectCompSets :

fun IntersectCompSets ‘a CompSet list
-> ‘a CompSet

IntersectCompSets takes a list of component sets and
calculates the intersection. To check the remaining places with colour
set MES, the component set obtained is turned into a restriction set
using the function CompSetToResSet :

fun CompSetToResSet ‘a CompSet -> ‘a
ResSet

The set of permutations determined by the restriction set is then
obtained using ListPermutations .

Finally it is tested whether the set of permutations thus obtaind
consists of all colour symmetries for the colour set DBM (the
function fac implements the factorial function). If this is the case,
then the equivalence class determined by the node is of size one.

For the database system:

HomeSpace(1,2,3,PhilSym)

returns true. This tells us that if we pick a marking from each of the
nodes 1,2, and 3, then this set of markings will constitute a home
space.

HomeMarkingSym(3,SymDataBase)

returns true. This tells us that any marking in node 3 is a home
marking.

Liveness Properties
OE-specifications

OE/OS Graph Manual

OG-42 Design/CPN OE/OS Graph Manual

The query functions for liveness properties are based on Prop 2.9 in
[CPN 2].

fun DeadMarking Node -> bool

fun ListDeadMarkings unit -> Node list

fun SccListDeadMarkings unit -> Node list

fun TIsLive TI.TransInst list ->
bool

DeadMarking determines whether all markings in the specified
node are dead. For the resource allocation system:

DeadMarking 1

returns false. This tells us that none of the markings in the
equivalence class of node 1 are dead. Either all markings in an
equivalence class are dead or none of them are.

ListDeadMarkings returns a list with all those nodes whose
markings are dead. For the resource allocation system;

ListDeadMarking ()

return the empty list. This tells us that no marking equivalent with a
reachable marking is dead.

SccListDeadMarkings returns the same result as
ListDeadMarkings , but it uses the Scc-graph.

TIsLive determines whether a transition instance is live. The
function implements Prop. 2.9 (v) in [CPN 2] and can therefore
only be used for with equivalence specifications in which equivalent
binding elements are guaranteed to belong to the same transition
instance. This is the case with for instance the resource allocation
system for which:

TIsLive(TI.System’Take 1)

returns true.

OS-specifications

The query functions for liveness properties are based on Prop 3.10
in [CPN 2].

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-43

fun BEsLiveSym Bind.Elem list *
(Node -> bool) -> bool

fun BEsLiveScc Bind.Elem list -> bool

BEsLiveSym returns true if the set of binding elements provided
list is live. Similar to HomeSpaceSym the user must provide a
SymPredicate . For the dining philosopher system:

BEsLiveSym([Bind.System’Take
{1,{p=ph(1)}], SymPhil)

returns true. This tells us that this binding element is live.

BEsLiveScc returns true if the list of binding elements is live.
The query function can only be used in the special case in which the
Scc-graph consist of only a single node. If the query function is
used when the Scc-graph for the OE/OS-graph has more than one
node the exception more_than_one_scc will be raised.

OSP-specifications

The query functions for liveness properties are based on Prop 3.19
in [CPN 2].

fun TIsStrictlyLiveSym TI.TransInst *
Bind.Elem list *
(Node -> bool) -> bool

fun TIsStrictlyLive TI.TransInst *
(Node -> bool) -> bool

fun TIsStrictlyLiveScc TI.TransInst *
(Node -> bool) -> bool

TIsLive determines whether the transition instance is live. The
requirement stated above for TIsLive when used for OE-
specifications is automaticelly fulfilled for OSP-specifications.

TIsStrictlyLiveSym returns true if the transition instance
is strictly live. The set of binding elements for the transition must be
provided. For the dining philosopher system:

TIsStrictlyLiveSym (TI.System’Take,
 [Bind.System’Take (1,{p=ph(0)}),
 Bind.System’Take (1,{p=ph(1)}),
 Bind.System’Take (1,{p=ph(2)}),

OE/OS Graph Manual

OG-44 Design/CPN OE/OS Graph Manual

 Bind.System’Take (1,{p=ph(3)}),
 Bind.System’Take (1,{p=ph(4)})],
 PhilSym)

returns false. However since Prop 3.19 only is a sufficient condition
we cannot conclude that the transition instance is not strictly live.

TIsStrictlyLive determines whether the transition instance
is strictly live. The function can only be used in situations in which
all binding elements for the transition are equivalent. This is for
instance the case with all transitions in the dining philosophers
system. The functions requires a SymPredicate . For the dining
philosophers system:

TIsStrictlyLiveBE ((TI.System’Take,
 [Bind.System’Take (1,{p=ph(0)}),
 Bind.System’Take (1,{p=ph(1)}),
 Bind.System’Take (1,{p=ph(2)}),
 Bind.System’Take (1,{p=ph(3)}),
 Bind.System’Take (1,{p=ph(4)})],
 PhilSym)

returns true. This tells us that instance one of the transition Take is
strictly live.

TIsStrictlyLiveScc determines whether the transition
instance is strictly live in the case in which all binding elements for
the transition are equivalent and the Scc-graph for the OSP-graph
consist of only a single node. If the query function is used in a
situation in which the Scc-graph has more than one node the
exception more_than_one_scc will be raised.

Fairness Properties
OE-specifications

No standard query functions are available.

OS-specifications

No standard query functions are available.

OSP-specifications

The query functions for fairness properties are based on Prop 3.20
in [CPN 2].

fun TIsFairness TI.TransInst ->
 FairnessProperty

How to Make Standard Queries

Design/CPN OE/OS Graph Manual OE/OS-45

fun ListImpartialTIs unit -> FairnessProperty

fun ListFairTIs unit -> FairnessProperty

fun ListJustTIs unit -> FairnessProperty

The type FairnessProperty has the following four elements:

{Impartial, Fair, Just, No_Fairness}.

TIsFairness determines whether the transitions instance is
impartial, fair or just.

ListImpartialTIs returns a list with those transition
instances that are impartial.

ListFairTIs and ListJustTIs are analogous to
ListImpartialTIs except that they list those transition
instances that are fair and just, respectively.

How to Make Your Own Queries

Like in the OG tool it is possible for the user to implement his own
queries. For this purpose the same functions are available as for the
OG tool. The reader is encouraged to consult Chap. 5 in [OG] for
more information and examples of how to write such queries.

 Design/CPN OE/OS Graph Manual OE/OS-47

Reference List

[CPN 1] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science, Springer-Verlag, 1992. ISBN: 3-540-60943-1.

[CPN 2] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methods. Monographs in Theoretical
Computer Science, Springer-Verlag, 1994. ISBN: 3-540-58276-2

[OG] K. Jensen, S. Christensen and L.M. Kristensen: Design/CPN Occurrence
Graph Manual. Computer Science Department, University of Aarhus,
Denmark. On-line version:
http://www.daimi.aau.dk/designCPN /

