Design/CPN
OE/OS Graph Manual

Version 1.1

University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark
Tel: +45 89 42 31 88

Fax: +45 89 42 32 55 © 1998 University of Aarhus

© 1998 University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark
Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Jens Baek Jgrgensen and Lars M. Kristensen.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

OE/OS-2 Design/CPN OE/OS Graph Manual

Design/CPN
OE/OS Graph Manual

Version 1.1

Table of Contents

INDEX

CHAPTER 1

Introduction to OE/OS Graphs

The History of the Design/CPN OE/OS Graph Tool

Example:Dining Philosophers

CHAPTER 2

How to Calculate an OE/OS Graph
Generation of OE/OS Graph Code
Generation of the OE/OS Graph
OEOS Menu

CHAPTER 3

How to Write OE/OS-Specifications
Example: Resource Allocation
Installing the OE/OS Specification
Generation of the OE/OS Graph
Key Functions

CHAPTER 4

How to Write OSP-Specifications
Example:Dining Philosophers
Example:Distributed Data Base

CHAPTER 5

How to Make Standard Queries
Reachability Properties
Boundedness Properties
Home Properties
Liveness Properties

Design/CPN OE/OS Graph Manual

12

12
12

13
13

19

19
19
22

22

22

24
24

24
27

33

33
36

38
41

OG-3

OE/OS Graph Manual

Fairness Properties
How to Make Your Own Queries

ReferencelList

0G-4 Design/CPN OE/OS Graph Manual

44
45

47

Index

—A—

AllReachable, 34
ApplyPermutation, 32
ApplyPermutationPair, 32
ApplyRotation, 26
atomic, 24

atomic colour sets 24
Attributes/Options 16

—B—

base colour sets 24
BEsLiveSccg 43
BEsLiveSym, 43
BestLowerMultiSet, 37
BestUpperMultiSet, 37
Boundednes®roperties 36

—C—

CalculateOccGraph 14

CalculateSuccessorsl5s

CalculateOEGraph, 22
CalculateSccGraph 22

ChangeMarking, 12

Compatible equivalence specifications8
component sets 40

consistency 8

CreateCompSet 41

CreateResSet 30

—D—

DeadMarking, 42
Dining Philosophers8, 24
DisplayArc, 17
DisplayNode 16
DisplayPredecessord?7
Display SccGraph 17
Display Successorsl?
Distributed Data Bas&7

—E—

Enter Occ Graph, 12

Enter Simulator, 12
equivalence specification 8
EquivBE, 19

EquivMark , 19

—F—

FairnessProperties 44
FairnessProperty, 45
FilterPermutations, 31
FilterPermutationsPair, 32

—G—

General Simulation Options, 12

— H—

HomeProperties 38
HomeMarking, 38
HomeMarkingExists, 39
HomeMarkingSym, 39
HomeSpace 38
HomeSpaceSym 39

InitialHomeMarking , 39
Installing, 22
IntersectCompSets 41
IntersectResSets 30

— K—

Key Functions, 22

.

ListDeadMarkings, 42
ListFairTls , 45
ListHomeMarkings, 39
ListHomeScc, 39
ListimpartialTls , 45
ListJustTls, 45
ListPermutations, 30
LivenessProperties 41
Lowerlnteger, 37
LowerMultiSet, 37

— M—

MarkingToKey, 22
MinimalHomeSpace, 38
ML Evaluate, 33

—0O—

Occ meny 12, 13
Occ Stateto Sim, 16
OE/OS graph code 12
OE-graphs, 7
OS-graphs, 7
OSPSpeg 22
OSSpeg 22

PermExists, 30
permutation, 27
proj_msl, 21
proj_ms2, 21

— R—

ReachabilityProperties 33
ReachableSym 35
Resource Allocation, 19
restriction sets, 30
Reswitch, 18

rotation, 24

Design/CPN Occurrence Graph Manual 0G-5

OE/OS Graph Manual

—S—

SaveReport 15
ScclListDeadMarkings, 42
SccReachable 34
ShowStatistics 15

Sim Stateto Occ, 16
Simulation Code Options, 12
Speg 22

structured colour sets 24
Sym, 35

SymPredicate 35

Syntax Options, 12

—T—

TestPermutations, 31

0G-6 Design/CPN OE/OS Graph Manual

TestPermutationsPair, 31
TestRotation, 26
TlIsFairness, 45

TlsLive, 42, 43
TIsStrictlyLive , 44
TlsStrictlyLiveScc, 44
TIsStrictlyLiveSym, 43
ToggleDescriptor 17

—U—

UpdateNode 18
Upperinteger, 36

Chapter 1
Introduction to OE/OS Graphs

The History of the Design/CPN OE/OS Graph Tool

This manual describes a tool to calculate, analyse and draw
occurrence graphs with equivalence classes and symmetries.
Occurrence graphs with equivalence classes and symmetries (OE-
and OS-graphs) is a compact class of occurrence graphs in which
each node represents an equivalence class of markings and an arc
represents an equivalence class of binding elements. OE/OS-graphs
are often much smaller than ordinary occurrence graphs and can still
be used to verify many dynamic properties of CP-nets.

The first version of the Design/CPN OE/OS Graph Tool (OE/OS

tool) was developed at the University of Aarhus in 1995-1996. The
present version 1.1 was developed in 1997-1998 and improves
version 1.0. The calculation of OE/OS-graphs has been made more
time efficient and the integration of the OE/OS tool in Design/CPN
has been enhanced. The OE/OS tool resembles the Design/CPN
Occurrence Graph Tool (OG tool) [OG] and this manual assumes
that the reader is familier with the OG tool. The reader is also
assumed to be familiar with the theoretical background of OE/OS
graphs presented in [CPN 2] on which the OE/OS tool and the
terminology and notation used in this manual are based. In the
following OE-graph abbreviateotcurrence graphs with
equivalence classés OS-graph abbreviatesotcurrence

graphs with symmetries and OSP-graph abbreviates

occurrence graphs with permutation symmetries.OSP-

graphs is an important subclass of OS-graphs which again is a
subclass of OE-graphs. A difference between the three classes is the
dynamic properties which can be verified on the corresponding
graph. In this sense OSP-graphs are stronger than OS-graphs which
again is stronger than OE-graphs.

The OE/OS tool is fully integrated with Design/CPN 3.1. This

means that you can switch between the editor/simulator and the
OE/OS tool. When an OE/OS-graph node has been found, a
representative for the equivalence class can be inspected in the
simulator. This means that you can see the marking directly on the
graphical representation of the CPN model. You can see the enabled
transition instances, investigate their bindings, and make
simulations. Analogously, when a marking has been found in the
simulator, it can be added to the OE/OS-graph or used as the initial
marking for a new OE/OS-graph.

Design/CPN OE/OS Graph Manual OE/OS-7

OE/OS Graph Manual

The user of the OE/OS tool is required to define the equivalence on
markings and binding elements before an OE/OS-graph can be
calculated by the tool. The user does this by implementing an
equivalence specificationwhich consists of two CPN ML
functions. One which defines when two markings are equivalent and
one which defines when two binding elements are equivalent. A
large number of efficient built-in functions are provided which
support the implementation of these predicates. It is the
responsibility of the user to ensure tmnsistencyof the provided
equivalence specificatioiCompatible equivalence
specificationsare not supported by the tool.

Like the OG tool, the OE/OS tool has a large number of built-in
standard queries. They can be used to investigate the standard
properties of a CP-net, such as reachability, boundedness, home
properties, liveness, and fairness. In addition to the standard queries
there are a number of powerful search facilities allowing the user to
formulate his own, non-standard queries.

Example: Dining Philosophers

OG-8

In this section we will briefly recall the concept of OE/OS-graphs.
This will be done with off-set in ordinary occurrence graphs. The
basic idea behind occurrence graphs is to make a directed graph with
a node for each reachable marking and an arc for each occurring
binding element. An introduction to occurrence graphs can be found
in Sect. 5.1 of [CPN 1] and in Sect. 1.1 in [CPN 2]. An

introduction to OE/OS-graphs can be found in Sect. 2 and Sect. 3 in
[CPN 2].

In this manual we use the dining philosophers system as one of the
main examples. Five Chinese philosophers are sitting around a
circular table. In the middle of the table there is a delicious dish of
rice, and between each pair of philosophers there is a single
chopstick. Each philosopher alternates between thinking and eating.
To eat, the philosopher needs two chopsticks, and he is only
allowed to use the two which are situated next to him (on his left and
right side). The sharing of chopsticks prevents two neighbours from
eating at the same time.

Design/CPN OE/OS Graph Manual

Introduction to OE/OS Graphs

cs2

/
055/ ~
!

cs3

The dining philosopher system is modelled by the CP-net shown
below. The PH colour set represents the philosophers, while the CS
colour set represents the chopsticks. The fun@ioopsticksnaps

each philosopher into the two chopsticks next to him.

valn=5;
color INDEX = int with 1..n;
color PH = union ph:INDEX declare ms;
color CS = union cs:INDEX declare ms;
var p : PH;
fun Chopsticks(ph(i))

= 1'cs(i)+1 cs(if i=n then 1 else i+1);

N

Take Chopsticks(p)

Chapsticks
Unused CsS
Chopstick

> CS

Put Down
Chapsticks

N J

Chopsticks(p)

Design/CPN OE/OS Graph Manual

OE/OS-9

OE/OS Graph Manual

An occurrence graph for the dining philosophers is shown below.
Each node represents a reachable marking, while each arc represents
the occurrence of a single binding element — leading from the

marking of the source node to the marking of the destination node.

To improve readability, we have only shown the detailed contents of
some of the markings and some of the binding elements. It should

be noted that all arcs are double arcs (i.e., represents two individual
arcs).

Unused: 1°cs(3)
Think: 1'ph(2)+ 1 ph(3)+ 1 ph(5)
Eat: 1'ph(1)+ 1 ph(4)

10
2:2

| Take: {p=ph(1)}

| Take: {p=ph(4)} |

|Put: {p=ph(2)}

Unused: 1°cs(1)

Think: 1'ph(1)+ 1 ph(3)+ 1'ph(5) Think: 1'ph(2)+ 1 'ph(4)+ 1 ph(5)
Eat: 1'ph(2)+ 1°ph(4) Eat: 1'ph(1)+ 1°ph(3)

Unused: 1°cs(5)

0G-10

If we consider the philosopher system then all philosophers behaves
in the same. Each of the philosophers has a special relationship with
his two neighbours in the sense that he shares a chopstick with each
of them. This is also reflected in the occurrence graph above. If we
consider the markings corresponding to the nodes 9,10 and 11 in
which two philosophers are eating it can be observed that they are

Design/CPN OE/OS Graph Manual

Introduction to OE/OS Graphs

very alike. For instance, the marking of node 11 can be mapped to
the marking of node 9 by mapping each philosopher into its
neighbour and similarly for the chopsticks. By extending this idea

we consider two markings to be equivalent if one can be obtained
from the other by a rotation of the indices. Similarly for binding
elements . The basic idea in OE/OS graphs is to lump together such
equivalent markings and equivalent binding elements. If this is done
for the philospher system we obtain the following graph. Now each
node represent s an equivalence class of markings. For instance
node 2 represent s the nodes 2,3,4,5, and 6 in the occurrence graph.
Similary the arcs represents equivalence classes of binding elements.

Unused: 1°cs(1) + 1°cs(2) + 1°cs(3) +

11 1'cs(4) + 1°cs(5)

Think: 1°ph(1) + 1'ph(2) + 1'ph(3) +
1 ph(4)+ 1" ph(5)

Take: {p=ph(5)}

Unused: 1°cs(2) + 1°cs(3) + 1°cs(4)
Think: 1'ph(1) + 1'ph(2) + 1'ph(3)+ 1 ph(4)
Eat: 1° ph(5)

Put: {p=ph(5)}

3 Unused: 1'cs(2)
11 Think: 1'ph(1) + 1’ph(2) + 1'ph(4)
Eat: 1'ph(3) + 1'ph(5)

As it can be observed the OE/OS-graphs has only 3 nodes and 4 arcs
in contrast to the occurrence graph which had 11 nodes and 30 arcs.
For each node and arc in the above graph we have shown a
representative for the equivalence class which the node/arc
represents.

Design/CPN OE/OS Graph Manual OE/OS-11

Chapter 2

How to Calculate an
OE/OS Graph

Before an occurrence graph can be calculated, it is necessary to
generate th©E/OS graph code i.e., the ML code which is used
to calculate, analyse and draw OE/OS-graphs. The OE/OS-graph
code is generated in a way which is similar to the switch from the
editor to the simulator.

Generation of OE/OS Graph Code

To generate the OE/OS-graph code the following steps must be per-
formed (in the specified order):

a) Make sure that you are using Design/CPN version 3.1 (or
later) and the CPN ML image provided together with it.

b) UseSyntaxOptions to selectOG Tool ViolationsYou may
also want to select the five check boxes for missing and
duplicate place, transition and page names.

c) UseGeneral Simulation Options to unselecTime To
choose the setting it may first be necessary t&usealation
CodeOptions.

d) UseEnter Simulator to make a syntax check and to enter the
simulator.

e) UseChangeMarking (or a simulation) to obtain the marking
which you want to use as the initial marking of your OE/OS-
graph. — If you want to use the initial marking of the CPN
model as the initial marking of your OE/OS-graph, nothing
needs to be done.

f) Invoke Enter OE/OS Graph (in the File menu). This will
create the OE/OS-graph code. For large nets it takes a while —
comparable to the time for a full simulator switch. — If you do
not need to customize the initial marking of the CPN model
Enter OE/OS Graph can be invoked directly in the editor.

WhenEnter OE/OS Graph terminates, a ne®@EOS menuis

added to the menu bar (at the rightmost end). This menu contains all
the commands which are used to perform the calculation and

Design/CPN OE/OS Graph Manual OE/OS-12

How to Calculate an OE/OS Graph

drawing of OE/OS-graphs. The menu works very similar to the Occ
menu in the OG tool. The functionality of the individual items in the
menu will be explained below.

We propose that you now try to generate the OE/OS-graph code for
the dining philosopher system. To do this use the CPN model called
“DiningPhilosophersOS”. It can be downloaded from the
Design/CPN WWW pages.

Generation of the OE/OS Graph

Before an OE/OS-graph can be calculated the user are required to
implement the equivalence specification, in the following referred to
as anOE/OS/OSP-specificationdepending on the class of

graphs we have in mind. How this is done is the subject of Chap. 3
and Chap 4.

Once this implementation is complete, the OE/OS-graph can be
calculated in exactly the same way as an occurrence graph is

calculated in the OG tool. In particular the branching and stop
options are respected.

OEOS Menu

In this section we will breifly review the individual item in the OEOS
menu:

Design/CPN OE/OS Graph Manual OE/OS-13

OE/OS Graph Manual

* OECS |
°Cal cul ate OE/ OS Graph®

°Cal cul ate Successors
°Cal culate Scc Graph

*Show Statistics
°Save Report

"OE/OS State to Sim
°Sim State to OE/ OS

“Attributes/Options

°Di spl ay Node
°Display Arc

°Di spl ay Successors
°Di splay Predecessors
°Di splay Scc Gaph

*Toggl e Descri ptor
°Updat e Nodes

Most of the commands are quite similar to the corresponding
command in the OG tool. However, there are differences which we
will make explicit below.

Calculate OE/OS Graph

0G-14

This command calculates the OE/OS-graph. It implements the
algorithm of Prop. 2.5 in [CPN 2]. The OE/OS tool stores
equivalence classes usirgpresentatives Therefore each node in
the OE/OS-graph (a@E/OS nodg is represented by a marking, a
representative for the equivalence class of markings. Similarly the
arcs in the OE/OS-graph (&E/OS arc) are represented by a
binding elemtent, a representative for the equivalence class of
binding elements. Besides from this, the command works in exactly
the same way as in the OG tool.

Design/CPN OE/OS Graph Manual

How to Calculate an OE/OS Graph

Calculate Successors

This command calculates the immediate successors of the selected
OE /OS node(s).

Calculate Scc Graph

Show Statistics

Save Report

This command calculates the Scc-graph of the OE/OS-graph. The
Scc-graph is used by many of the query functions in Chap.5.

This command gives information about the size of the OE/OS-graph
and the size of the Scc-graph.

The OE/OS-graph will always have at least one node (even if
Calculate Occ Graph andCalculate Successordhave not been
used). By convention node number 1 is the equivalence class
containing the initial marking. If the Scc-graph has not been
calculated, the second part of the statistics is missing.

The information fronShow Statistics can also be accessed via the
following set of ML functions:

fun NoOfNodes unit ->
int
fun NoOfArcs unit ->
int
fun NoOfSecs unit ->
int
fun EntireGraphCalculated unit ->
bool
fun SccNoOfNodes unit ->
int
fun SccNoOfArcs unit ->
int
fun SccNoOfSecs unit ->
int
fun SccGraphCalculated unit ->
bool

This command is not supported in this version of the OE/OS tool.
Selecting the corresponding menu item will not have any effect.

Design/CPN OE/OS Graph Manual OE/OS-15

OE/OS Graph Manual

OE/OS State to Sim

This command “moves" the representative of an equivalence class in
the OE/OS-graph to the simulator. The representative to be moved is
specified by either selecting the equivalence class (the OE/OS node)
prior to the invocation of the command or by specifying the
equivalence class in in a dialogue box.

Sim State to OE/OS

This command allows you to “move” a simulator state to the OE/OS-
graph. If its equivalence class is already in the OE/OS-graph, the
current simulator state itself will not be explicitly represented. I.e.,
the commandim State to OE/OSfollowed by the command
OE/OS State to Simmay change the state of the simulator.

Attributes/Options

This command allows you to change the diagram defaults for OE
/OS attributes and the values of OE/OS options. This is done exactly
in the same way as in the OG tool. For more information see

Chap. 7 in [OG].

Display Node

This command draws a new OE/OS node — providing a graphical
representation of the specified node. The node is drawn at the centre
of the current page

If the node already exists on the current page, the corresponding OE
/OS node becomes selected and nothing further happens. Hence, it is
impossible to draw the same OE/OS node more than once on a page
(but it can be drawn on different pages).

OE/OS nodes can also be drawn by means of the following ML

functions:
fun DisplayNodes Node list ->
unit
fun DisplayNodePath Node list ->
unit

The first function draws the nodes in the list (on the current page,
reusing existing nodes). The second function checks whether the
nodes form a path (i.e., whether there is an arc between each node
and its immediate successor). If this is the case, the nodes and arcs
are drawn (on the current page, reusing existing nodes and arcs). If
there are multiple arcs between two neighbouring nodes, they are all

0G-16 Design/CPN OE/OS Graph Manual

How to Calculate an OE/OS Graph

drawn. If the nodes do not form a path, the exceioti\Path is
raised

Display Arc

This command draws an OE/OS arc — providing a graphical
representation of the specified arc. If necessary the command also
draws the source and destination node of the arc. Otherwise the
command works in a way which is analogou®tsplay Node

OE/OS arcs can also be drawn by means of the following ML
functions, which work in a way which is totally analogous to
DisplayNodes andDisplayNodePath

fun DisplayArcs Arc list -> unit
fun DisplayArcPath Arc list -> unit

Display Successors

This command draws the immediate successor nodes and the
immediate successor arcs of the selected node(s).

Display Predecessors

This command draws the predecessor nodes and predecessor arcs of
the selected node(s). It works in a way which is totally analogous to
Display Successors

Display Scc Graph

This command draws the Scc-graph using a standard layout.

Toggle Descriptor

This command toggles the existence of the OE/OS node/arc
descriptor of the selected OE/OS node/arc(s). If the descriptor does
not exist, it is created. If it exists, it is deleted. The descriptor will
typically describe the representative of the OE/OS node/arc. Since
the OE/OS tool stores equivalence classes using representatives the
Mark -structure and\rcToBE/ArcToTl functions can be used to
obtain information about the representative.

Design/CPN OE/OS Graph Manual OE/OS-17

OE/OS Graph Manual

Update Node

This command updates the information in the text string of the
selected OE/OS node(s). It only has an effect if the occurrence graph
has been extended since the OE node was drawn.

Details and Limitations (can be skipped in a first reading)

When you make a modification of the CPN diagram, it is necessary
to regenerate all the OE/OS-graph code from scratch. This also
means that the OE/OS-graph (if any) is lost. When the modification
is made in the simulator it is sufficient to invoReswitchand

Enter Occ Graph.

The OE/OS tool respects the relevant mode attributes. The OE/OS-
graph is calculated for those parts of the net which would participate
in a simulation. Please note that withOE/OS-graphs, it only makes
sense to use code segments in a very limited fashion, e.g., to
initialise a CPN model.

Currently OE/OS-graphs with time has not been theoretically
developed and hence it does not make sense to construct timed
OE/OS-graphs. It is therefore recommended to unselect time in
General Simulation Options.

Free variables on output arcs are not allowed — unless they are
variables of a small color set.

0G-18 Design/CPN OE/OS Graph Manual

Chapter 3

How to Write OE/OS-
Specifications

This chapter describes how to write OE- and OS-specifications.
Before an OE/OS-graph can be calculated two functions must be
implemented which defines the equivalence on markings and binding
elements. Throughout this chapter we will use the resource
allocation system from occurrence 1.2 in [CPN 1] as an example.

An OE/OS-specification consist s of two functidruivMark and
EquivBE with the following functionality.

fun EquivMark NodeRec * NodeRec -> bool

fun EquivBE Bind.Elem * Bind.Elem ->
bool

It should be noted, that the two functions are not required to be
namedequivMark andEquivBE - any legal ML identifier will
work.

The fact thaEquivMark takes two node records as argument
enables us to use tEMark-structure to refer to markings when
writing the function. Th®EMark-structure can be used to refer to
marking in the same way as tiark -structure. Similarly the
functionality ofEquivBE enables us to use tBénd -structure to
refer to the binding elements (see Chap. 3 in [OG]).

Example: Resource Allocation

The resource allocation system is modelled by the CP-net shown
below.

Design/CPN OE/OS Graph Manual OE/OS-19

OE/OS Graph Manual

colorU=withp|q;
color | =int; oy
color P = product U * I; 3'(a.0)
color E = with e;
var x : U; .
vari:|; (x if x=q
[x=q] then 1°(q,i+1)
.0 else empty
) if x=p o |
then 1°(p,i+1)
1 case x of else empty
— p=>2e .
(%)
if x=q then 1'e .
else empty D
S N
o€
(D)
(%))
(%))
(x,)
v

We will consider the OE-specification stating that two markings are
equivalent iff they are identical when ignoring the cycle counters.
Similarly for binding elements. THequivMark function for the
resource allocation system is shown below.

fun EquivMark (n1,n2) =

(proj_ms1 (OEMark.Res’A 1 n1) ==
proj_msl (OEMark.Res’A 1 n2)) andalso

(proj_ms1 (OEMark.Res'B 1 n1) ==
proj_msl (OEMark.Res'B 1 n2)) andalso

(proj_ms1 (OEMark.Res'C 1 nl) ==
proj_msl (OEMark.Res’C 1 n2)) andalso

(proj_ms1 (OEMark.Res'D 1 nl) ==
proj_msl (OEMark.Res'D 1 n2)) andalso

(proj_ms1 (OEMark.Res'E 1 n1) ==
proj_msl (OEMark.Res’E 1 n2)) andalso

(OEMark.Res'R 1 nl) == (OEMark.Res'R 1
n2)

andalso

(OEMark.Res’S 1 nl1) == (OEMark.Res’S 1
n2)

0G-20 Design/CPN OE/OS Graph Manual

How to Write OSP-Specifications

andalso

(OEMark.Res'T 1 nl1) == (OEMark.Res'T 1
n2)

On the placeg\, B, C, DandE the cycle counters are removed and
the resulting multi-sets are compared. This is done using the
functionproj_ms1l which takes a multi-sets of pairs and returns
the corresponding multi-set of the first components. Two projection
functions working on multi-set are available

fun proj_msl ("a*‘b)ms->"ams
fun proj_ms2 (‘a*“b)ms->"bms

proj_ms2 is similar toproj_msl except that the corresponding
multi-set of the second components is returned.

The function simply compares the marking on each of the pgRyces
SandT.

The functionEquivBE for the resource allocation system is written
as a pattern match over all binding elements and can be seen below.

fun EquivBE (
Bind.Res'T1 (1,{x=x1,i=_}),
Bind.Res'T1 (1{x=x2,i=_})) = (x1 =
X2)
| EQuivBE (
Bind.Res'T2 (1,{x=x1,i=_}),
Bind.Res' T2 (1{x=x2,i=_})) = (x1 =
X2)
| EQuivBE (
Bind.Res'T3 (1,{x=x1,i=_}),
Bind.Res T3 (1{x=x2,i=_})) = (x1 =
X2)
| EQuivBE (
Bind.Res'T4 (1,{x=x1,i=_}),
Bind.Res' T4 (1{x=x2,i=_})) = (x1 =
X2)
| EQuivBE (
Bind.Res'T5 (1,{x=x1,i=_}),
Bind.Res T5 (1{x=x2,i=_})) = (x1 =
X2)
| _=>false;

As it can be seen two binding elements are equivalent iff they have
the same transition and if the variaklis bound to the same value.

Design/CPN OE/OS Graph Manual OE/OS-21

OE/OS Graph Manual

Installing the OE/OS Specification

Once the implementation of the equivalence specification is done, the
equivalence specification have to be installed. This is done by
evaluating the following ML code.

OESet.Equivalence {
Mark = EquivMark,
Bind = EquivBE,
Spec = OESpec}

TheSpec member is used to specify the class of the equivalence
specification OESpec indicates that the equivalence specificaion is
an OE-specification. Other possibilities &8Spec andOSPSpec
which is used to denote symmetry specification and permutation
symmetry specification respectively. This information is used by the
tool when the user applies the standard query functions. We will
return to this in Chap. 5.

Generation of the OE/OS Graph

Once the installation of the equivalence specification is done, the OE-
graph can be calculated usi@glculate OE/OS Graphin the Occ
menu. Many of the query functions in Chap. 5 uses the Scc-graph.
The Scc-graph can be calculated by invokiaculate Scc

Graph in the Occ menu. Calculating the OE-graph for the resource
allocation system yields an OE-graph with 13 nodes and 20 arcs.

The OE-graph and the Scc-graph can also be calculated by means of
the following two ML functions.
fun CalculateOEGraph unit -> unit

fun CalculateSccGraph unit -> unit

Key Functions

0G-22

In order to make the search for the markings more efficient, a search
tree is used as explained in occurrence. 1.7 in [CPN 2]. In order for
this search-technique to work it is required that equivalent markings
are mapped to identical keys. The user specifies a mapping from
markings to keys by writing a functidviarkingToKey with the
following functionality.

fun MarkingToKey NodeRec -> string

Design/CPN OE/OS Graph Manual

How to Write OSP-Specifications

The function which the user must provide takes an argument of type
NodeRec which makes it easy to use tB&Mark-structure when
defining the mapping. The function is installed by evaluating the
following piece of ML code.

OESet.EncodeMarking (MarkingToKey)

In the current version of the tool it is only possible to change the
encoding of markings when the OE/OS-graph consist of a single
node. This is the case right after thaeter OE/OS Graph
command has been completed.

As long as the equivalence specification preserves the number of
tokens on the places, i.e, if for all places in the CP-net equivalent
markings will have the same number of tokens on each place it is not
neccesary to change the default encoding. This is for instance the
case with the equivalence specification for the resource allocation
system above as well as a permutation symmetry specification (an
OSP-specification).

Design/CPN OE/OS Graph Manual OE/OS-23

Chapter 4

How to Write OSP-
Specifications

In this chapter we consider permutation symmetries and show how
to implement an OSP-specification.

A permutation symmetry specification assigns an algebraic group to
each of the atomic colour sets in the considered CP-net. In the
present version of the tool this is done in an indirect fashion. Like
for the OE/OS-specifications the user still has to supply the functions
EquivMark andEquivBE . The functions must be written in such

a way that the assignment of the algebraic groups tatdimeic

colour setsand the inheritance of the symmetry groups of
structured colour setsfrom theirbase colour setsare

emulated. In the next version of the tool this will no longer be
neccesary - the user will only have to assign the algebraic groups to
the atomic colour sets. The rest will be handled automatically.

In this chapter we will consider two examples. The Dining
Philosophers from Chap.1 and the Distributed Data Base from Sect.
1.3 in [CPN 1]. We will show how to write the OSP-specification

for these two examples and introduce the utility functions provided
by the tool to do so. In the implementation of the OSP-specification
below, it should be noted that for introductory reasons the primary
concern has been to keep things simple. More efficient
implementations of the OSP-specifcation can be written to obtain a
faster calculation of the OSP-graph.

Example: Dining Philosophers

First we will consider the dining philosphers system. The CP-net for
the dining philosophers can be seen in Chap. 1. The CP-net uses
two indexed colour set®Hfor the philosophers ar@Hfor the
chopsticks. It uses the auxiliary colour BéDEX which isatomic.

It is assigned the symmetry grorgiation. The colour setPHand
CHare made structured by means of a union construction. In this
way they inherit their symmetry groups from the base colour set
INDEX and thereby the rotations of the philosophers and the
chopsticks are synchronized.

Design/CPN OE/OS Graph Manual OE/OS-24

How to Write OSP-Specifications

The functionEquivMark performs a naive testing of all possible
rotations. For n philosophers there are n possible rotations. The
basic idea irequivMark is to represent rotations as functions . The
functionEquivMark for the dining philosopher system is as
follows and will be commented below.

(* list of indices *)
fun listindex 0 = [0]
| listindex i =
i::(listindex (i-1))

(* Rotation of lenght | of PH *)
val PHRot | =

(fn (ph(®)) = ph((i+l) mod n));

(* Generate all rotations on PH *)
val PHRotations =

n));

(* Rotations of lenght | of CS *)
val CHRot | =
fn (cs(i)) = cs((i+l) mod n));

(map PHRot (listindex

(* Generate all rotations on CS *)
val CHRotations =

n));

(* Synchronize rotations *)
funmerge[][1=1]
| merge x::xsy:ys =
(x,y)::(merge xs ys)

(map CHRot (listindex

val rotations =
(merge PHRotations
CHRotations)

fun EquivMark (n1,n2) =
predlist
(fn (x1,x2) =>
(TestRotation x1
[(OEMark.System'Think 1 n1,
OEMark.System'Think 1 n2),
(OEMark.System’Eat 1 n1,
OEMark.System’Eat 1 n2)])
andalso
(TestRotation x2
[(OEMark.System’Unused 1 n1,
OEMark.System’Unused 1
n2))))
rotations
end;

Design/CPN OE/OS Graph Manual OE/OS-25

OE/OS Graph Manual

In the first part all rotations dAHandCSare generated and
represented as a list of functions respectively. Usiagge the
rotations of philosophers and chopsticks are synchronized. In
EquivMark the rotations are simply tested in turn to see if one of
the rotations maps the marking of nl into the marking of n2.
EquivMark uses the utility functiopredlist ~ which given a
predicate and a list determines whether some member in the list
satisfies the predicate. The function terminates as soon as such a
member is foundequivMark also uses the function

TestRotation

fun TestRotation (‘a->‘a)*
(‘ams*‘ams) list ->
bool

TestRotation takes a function representing a rotations and a
list of pairs of multi-sets. It returns true if the rotation maps the first
component into the second component of each of the multi-set pairs.
Otherwise false is returned.

An additional utility functions related to rotations is also supported:

fun ApplyRotation (‘a->‘a)*
‘ams ->‘ams

ApplyRotation takes a rotation and a multi-set as argument
and applies the provided rotation to the multi-set.

We will now consider how to writBquivBE . It must capture that a
neccesary condition for two binding elements to be equivalent is that
the involved transitions are equal. Because both of the transitions in
the CP-net have only one variable of coloudN&EX this is also a
sufficient condition. Th&quivBE function is shown below.

fun EquivBE (
Bind.System'Take (1,),
Bind.System'Take (1,)) = true
| EquivBE (
Bind.System'Put = (1,),
Bind.System’Put = (1,)) = true
| EquivBE (_,) =false

Once the implementation of the two functions is complete the
equivalence specification have to be installed. This is done by
evaluating the following ML code.

OESet.Equivalence {

Mark = EquivMark,
Bind = EquivBE,

0G-26 Design/CPN OE/OS Graph Manual

How to Write OSP-Specifications

Spec = OSPSpec}

Note thatOSPSpecis used since we have an OSP-specification.
Now the OSP-graph can be calculated. Since permutation symmetry
specifications preserve the number of tokens on all places, i.e, a
necessary condition for two markings to be equivalent is that they
have the same number of tokens on each of the places there is no
need to change the default encoding of markings when dealing with
OSP-specifications.

Example: Distributed Data Base

We will now consider the distributed database system from Sect. 1.3
in [CPN 1]. The CP-net for the database system is shown below.

valn=4;

color DBM = index d with 1..n declare ms;
color PR = product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);

color MES = subset PR by diff declare ms;
color E = with e;

fun Mes(s) = mult'PR(1’s,DBM-1°s);

vars, r: DBM;

Receive
a
| Message

Update
and
Send Messages

(s

Mes(s)
MES |

Unused @ei‘\@
%‘f)

MES
Mes(s) S

Receive all | Send an
Acknowledg- Acknowledg-

ments ment

v

Acknowledged

MES

The database system uses the indexed colour set DBM for the
database managers and the product colour set MES for the
messages. We will show how to implement the permutation
symmetry specification given on page 52 in [CPN 2]. In short, this
specification can be described in the following way. The colour set
DBM is atomic. It is assigned the symmetry gr@gpmutation.

Design/CPN OE/OS Graph Manual OE/OS-27

OE/OS Graph Manual

The colour set MES is a structured colour set and therefore inherits
its symmetry group from its base colour set which is DBM. The
colour sek is also atomic and assigned the symmetry group
consisting of the identity element only.

The function EquivMark expressing the equivalence on markings are
as follows and will explained below.

fun EquivMark (n1,n2) =
let

val msl_inac = OEMark.DataBase’lnactive 1

ni;

val msl_inac = OEMark.DataBase’lnactive 1

n2;

val ms1l_wait = OEMark.DataBase'Waiting 1

ni;

val ms1l_wait = OEMark.DataBase'Waiting 1

n2;

val msl_perf =
OEMark.DataBase’Performing 1

ni;

val msl_perf =
OEMark.DataBase’Performing 1

n2;

val ms1 _unus = OEMark.DataBase’Unused 1

ni;

val ms1 _unus = OEMark.DataBase’Unused 1

n2;

val msl_sent = OEMark.DataBase’Sent 1 n1;
val msl_sent = OEMark.DataBase’Sent 1 n2;

val msl_rec = OEMark.DataBase’Received 1

ni;

val msl_rec = OEMark.DataBase’Received 1

n2;

val msl _ack =
OEMark.DataBase’Acknowledged 1

ni;

val msl _ack =
OEMark.DataBase’Acknowledged 1

n2;

val msl_act = OEMark.DataBase’Active 1

ni;

val ms2_act = OEMark.DataBase’Active 1

n2;

val ms1l_pas = OEMark.DataBase’Passive 1
ni;

0G-28 Design/CPN OE/OS Graph Manual

How to Write OSP-Specifications

val ms2_pas = OEMark.DataBase’Passive 1

n2;
val cands =
(if (PermExists ms1_inac ms2_inac)
andalso

(PermExists ms1_wait ms2_wait)
andalso

(PermExists ms1_perf ms2_perf)
andalso

(PermExists ms1_unus ms2_unus)
andalso

(PermExists ms1l_sent ms2_sent)
andalso

(PermExists ms1_rec ms2_rec) andalso
(PermExists ms1_ack ms2_ack) andalso
(msl_act == ms2_act) andalso
(msl_pas ==msl _pas)
then
ListPermutations (
IntersectResSets
[CreateResSet msl_inac
ms2_inac,
CreateResSet ms1_wait
ms2_wait,
CreateResSet msl1_perf
ms2_pref],
DBM)

else

1)
in
TestPermutationsPair (cands,
[(ms1_unus,ms2_unus),
(msl_sent,ms2_sent),
(ms1_rec,ms2_rec),

(ms1_ack,ms2_ack)])
end;

The first part of the body defines a number of values because of two
objectives. We do not want to access the internal representation of
markings more than once (for efficiency reasons) and we want
shorter names for the markings of the places in the rest of the code.

Given two nodes nl and n2, it is first tested whether there might
exist a permutation symmetry which maps the marking of nl into the
marking of n2. This is done using the functi®femExists . The
functionality ofPermExists is as follows.

fun PermExists ‘ams -> ‘b ms -> bool

Design/CPN OE/OS Graph Manual OE/OS-29

OE/OS Graph Manual

0G-30

PermExists takes two multi-set m1 and m2 and determines
whether there exists a permutation which maps m1l into m2.
PermExists uses the coeffient multi-set to determine whether this
is the case or not. For atomic colour sets assigned the symmetry
group consisting of all permutatiorf®ermExists expresses a
neccesary and sufficient condition for a permutation symmetry to
exists. For structured colour s€tsrmExists only expresses a
neccesary condition. For the places with colouEsets simply

tested whether they contain the same multi-set.

If the check above is successful (i.e, a permutation symmetry might
exist) restriction setsas outlined on pages 95-96 in [CPN 2] are
exploited. For each place with colour set DBM, a restriction set is
created. This is done using the functitreateResSet

fun CreateResSet ‘ams->‘ams->
‘a ResSet

CreateResSet takes two multi-set s as argument and if the two
multi-sets can be mapped into each other, the corresponing
restriction set is returned. The intersection of all the restriction set
obtained is then calculated using the function

IntersectResSets
fun IntersectResSets ‘a ResSet list ->
‘a ResSet
IntersectResSets takes a list of restriction sets and

calculates the intersection.

We are now done with the places with colour set DBM . To check
the remaining places with colour set MES we do a naive testing of all
permutations that are candidates to map nl into n2. First we supply
the restriction set obtained from the places with colour set DBM to

the functionListPermutations:

fun ListPermutations "a ResSet * "a ms
->"a Perm list

ListPermutations takes a restriction set over some set A

and the set A itself (represented as a multi-set) and creates the list of
permutations determined by the restriction set. The list of
permutation obtained in this way is how used as argument to the

function TestPermutationsPair together with the marking of
the places with colour set MES in n1 and n2. The functionality of
TestPermutationsPair is as follows:

fun TestPermutationsPair ‘a Perm list

((fa'a) ms* (‘a*‘a) ms) list ->

bool

Design/CPN OE/OS Graph Manual

How to Write OSP-Specifications

TestPermutationsPair takes a list of permutations and a
list of pairs of multi-sets over a product colour set . It returns true if
one of the permutations maps the first component to the second
component of each of the multi-set pairs. It returns false otherwise.
The first time it finds a permutation that works for all pairs in the
list, it stops.

We will now show how to writ€quivBE . It must capture that a
neccesary condition for two binding elements to be equivalent is that
the transitions of the two binding elements are identical. So assume
that the two transitions in the binding elements are equal. If we
inspect the CP-net we can split the transitions into two groups
depending on the number of variables. If the transition has one
variable which will be of colour set DBM then the binding elements
can be mapped into the other. If the transition has two variables
which both will be of colour set DBM we require that if they are
bound to identical values in one of the bindings then the same must
hold for the second. The EquivBE functions is shown below.

fun EqQuivBE (
Bind.DataBase’'Update (1,),
Bind.DataBase’'Update (1,)) = true
| EquivBE (
Bind.DataBase’AReceive (1,),
Bind.DataBase’AReceive (1,)) =true
| EquivBE (
Bind.DataBase’MReceive
(1,{s=s1,r=r1}),
Bind.DataBase’MReceive
(1,{s=s2,r=21}))
= (s1=rl1) = (s2=r2)
| EquivBE (
Bind.DataBase'Send (1,{s=s1,r=r1}),
Bind.DataBase'Send (1,{s=s2,r=21}))
= (s1=rl) = (s2=r2)
| EquivBE (_,) = false;

Above we have introduced a number of utility functions which
support restriction sets and permutations . To make the description
of the utility functions related to restriction sets complete we will list
the remaining ones.

fun TestPermutations ‘a Perm list *
(‘fams *‘ams) list ->
bool

TestPermutations takes a list of permutations and two
multi-sets m1 and m2 and determines whether the exists a
permutation in the supplied list which maps m1 into m2.

fun FilterPermutations ‘a Perm list *

Design/CPN OE/OS Graph Manual OE/OS-31

OE/OS Graph Manual

0G-32

(‘ams * ‘ams) list -> ‘a Perm list

This function works likel estPermutations above but instead
the list of permutations that work is returned.

fun FilterPermutationsPair ‘a Perm
list* ((fa*‘a) ms* (‘a*‘ams) list

‘a Perm list

FilterPermutationsPair works like

FilterPermutations above except that it is a multi-set of of a
product colour.

fun ApplyPermutation ‘a Perm -> ‘a ms
->‘ams

fun ApplyPermutationPair ‘a Perm *
(‘a*'a)yms->(‘a*‘a)ms

These two functions both takes a permutation and a multi-set and
applies the permutation on to the supplied multi-set.
ApplyPermutaionsPair works on multi-sets over some
product colour wherea&pplyPermutations works directly

on }he multi-set, i.e, it does not go into the structure elements in the
multi-set.

Design/CPN OE/OS Graph Manual

Chapter 5

How to Make Standard Queries

This chapter explains how to perform standard queries to investigate
the properties of a CPN model. It is, e.g., possible to investigate the
reachability, boundedness, home, liveness and fairness properties
using the OE/OS-graph.

The standard query functions available depends upon the class of the
specification, i.e, whether it is an equivalence specification (OE-
specification), a symmetry specification (OS-specification), or a
permutation symmetry specification (OSP-specification). This is
because OSP-specification have stronger proof rules than OS-
specifications which again has stronger proof rules than OE-
specification. This relationsship is also reflected in the following
sections. For each of the properties (reachability, boundedness,
home, liveness and fairness) we first consider the standard query
functions available for OE-specifications, then the additional
standard queries for OS-specifications and finally the additional
standard query functions available for OSP-specifications. If a
standard query functions which is not supported for the given class
of equivalence specification is invoked, the exception
std_query_not_avall will be raised.

It is also important to notice, that all proof rules depend on the
consistency of the supplied equivalence specification.

The query functions are typically used in auxiliary boxes — alone or
as part of a larger ML expression. The box is evaluated by means of

theML Evaluate command. If you select a non-empty part of the
text, ML Evaluate only deals with that part.

Reachability Properties
OE-specifications

The query functions for reachability properties are based on Prop
2.6 in [CPN 2].

Design/CPN OE/OS Graph Manual OE/OS-33

OE/OS Graph Manual

0G-34

fun Reachable Node * Node -> bool

fun SccReachable | Node * Node -> bool

fun AllReachable unit -> bool

Reachable determines whether there exists occurrence
sequences from all markings of the first node leading to some
marking in the second node. For the resource allocation system:

Reachable(5,10)

returns true. This tells us that there exist occurrence sequences from
any marking equivalent with the representative of node 5 to some
marking equivalent with the representative of node 10.

SccReachable return the same result Reachable , but it
uses the Scc-graph.

AllReachable implements Prop 2.6 (iv) in [CPN 2]. The
function returns true if for all pairs of markings equivalent with a
reachable marking there exist an occurrence sequence from the first
marking to a marking equivalent with the second marking. For the
resource allocation system:

AllReachable ()

return true. It should be noted that Prop 2.6 (iv) only expresses a
sufficient condition. Hence if the function return false the negation
of the above assertion cannot be concluded.

OS-specifications

The query functions for reachability properties are based on Prop
3.7 in [CPN 2].

fun ReachableSym Node * Node *
(Node -> bool) -> bool

fun SccReachableSym | Node * Node *
(Node -> bool) -> bool

Reachable andSccReachable now also determines
whether there exists occurrence sequences to all marking in the

Design/CPN OE/OS Graph Manual

How to Make Standard Queries

second node starting in some marking of the first node. For dining
philospher system:

Reachable (3,2)

return true. This tells us that there exist occurrence sequence from all
markings of node 3 leading to some marking in node 2.1t also tells

us that all markings equivalent with the representative of node 1 can
be reached from some marking equivalent with the representative of
node 2.

ReachableSymimplements Prop 3.7 (vi) in [CPN 2]. The

function returns true if there exists occurrence sequence between all
markings of the first node to all marking of the second node. The
function uses a predicate which must be provided by the user. The
predicate the user must provide is the prediSgta from page 75

in [CPN 2]. In this manual we will refer to this predicate as a
SymPredicate.This predicate is true on a node if the size of the
equivalence class which the node represent is 1 and false otherwise.
An example of this will be given below. ReachableSym return

false it cannot be concluded that no occurrence sequence between
any two markings in the nodes, since Prop 3.7 (iv) is only a
succicient condition .

SccReachableSym is similar toReachableSym except hat it
uses the Scc-graph.

AllReachable now determines whether there exist an
occurrences sequence between all pairs of reachable markings.

OSP-specifications

There are no additional standard queries functions since the proof
rules are identical to the ones for OS-graphs. Instead we will show
how to write theéSymPredicate used byReachableSym for the
dining philosopher system. This function is a simple modification of
theEquivMark function and is shown below.

fun SymPhilnl =
let
fun alltrue [] = true
| alltrue (x::xs) =
(x andalso (alltrue xs))

in
(alltrue (map
(fn (x1,x2) =>
(TestRotation (fst x)

[(OEMark.System'Think 1 n1,
OEMark.System'Think 1 nl),
(OEMark.System’Eat 1 n1,
OEMark.Systenm’Eat 1 n1)])

Design/CPN OE/OS Graph Manual OE/OS-35

OE/OS Graph Manual

andalso
(TestRotation (snd x)
[(OEMark.System’Unused 1 n1,
OEMark.System’Unused 1
n1))
rotations
end;

The difference compared EquivMark is that we now find all the
rotations which map the representative of the given node to itself. If
this is all the rotations then this representative can only be equivalent
to itself and hence the equivalence class to which the representative
belongs will only consist a single marking . The auxiliary function
alltrue tests whether all elements in a boolean list is true. For the
dining philospoher system:

ReachableSym(3,5,SymPhil)
returns true. This tells us that for all pairs of markings where the
first marking belongs to the equivalens class of node 3 and the
second marking belongs to the equivalence class of node 5 there

exist an occurrence equence from the first marking to the second
marking.

Boundedness Properties
OE-specifications

The query functions for boundedness properties are based on Prop

2.7 in [CPN 2].
fun Upperinteger (Node ->'ams) ->int
fun Lowerlnteger (Node ->'ams) ->int

fun UpperMultiSet (Node ->'ams) ->'ams

fun LowerMultiSet (Node ->'ams) ->'ams

Upperinteger uses a specified function F of type:

Node ->'ams

to calculate an integéi=(n)Cl. This is done for each node n in the
OE/OS-graph, and the maximum of the calculated integers is
returned. Since only the representatives for the equivalence classes is
traversed th&pperinteger will be less than or equal to the best
upper integer bound.

0G-36 Design/CPN OE/OS Graph Manual

How to Make Standard Queries

Lowerinteger is analogous ttJpperinteger , but returns
the minimal value of the integelrd(n)C.

UpperMultiSet is analogous ttJpperinteger , but it

calculates F(n) instead oF(n)C. The result is the smallest multi-set
which is larger than or equal to all the calculated multi-sets. Similar
to Upperinteger the returned multi-set will be less than or equal
to then best upper multi-set bound.

LowerMultiSet is analogous ttJpperinteger , but returns
the largest multi-set which is smaller than or equal to all the
calculated multi-sets.

OS-specifications

There are no additional standard query functions

OSP-specifications

fun BestUpperMultiSet (Node ->'ams) ‘ams

list ->'ams
fun BestLowerMultiSet (Node ->'ams) ‘ams

list ->'ams
BestUpperMultiSet determines the best upper multi-set

bound for a given place. It implements Prop. 3.18 (ii). The function
takes the equivalence classes for the colour set associated with the
place as argument. For the dining philosophers system and the place
Think:

mkst_ms’PH (BestUpperMultiSet (
OEMark.System'Think
1,[PHD);

returns the multi-set:
ph(1)+ph(2)+ph(3)+ph(4)+ph(5)
Since the colour set PH consists of only a single equivalence class

(ph(i) can always be mapped to ph(j) by a rotation) the list
specifying the equivalence classes consist only of a single element.

BestLowerMultiSet is analogous to
BestUpperMultiSet except that the best lower multi-set bound
is returned.

Design/CPN OE/OS Graph Manual OE/OS-37

OE/OS Graph Manual

For OSP-graphs, the query functiddpperinteger and
Lowerinteger return the best upper and best lower integer
bound respectively. This is because permutation symmetry
specifications preserve the number of tokens on places.

Home Properties

0G-38

OE-specifications

The query functions for home properties are based on Prop 2.8 in
[CPN 2]. It should be noted that most items in Prop 2.8 only
express neccesary conditions. Hence if a functions return true this
should be interpreted g®ssible False is interpreted in the usual
way.

fun HomeSpace Node list -> bool
fun MinimalHomeSpace unit -> int

fun HomeMarking Node -> bool
fun ListHomeMarkings unit -> Node list
fun ListHomeScc unit -> Scc

fun HomeMarkingExists unit -> bool

fun InitialHomeMarking unit -> bool

HomeSpace determines whether the markings of the specified list
of nodes is a home space. For the resource allocation system:

HomeSpace [1,2]

returns true. This tells us that the union of the set of markings of the
two equivalence classes of node 1 and node 2 constitutes a home
space.

MinimalHomeSpace returns the minimal number of
equivalence classes which is needed to form a home space. This is
identical to the number of terminal strongly connected components.

HomeMarking determines whether it is possible for each
markings in the node to be a home marking. For the resource
allocation system:

HomeMarking 1

Design/CPN OE/OS Graph Manual

How to Make Standard Queries

returns true. This tells us that each marking in the equivalence class
of node 1 is a potential home markings

ListHomeMarkings returns a list with all those nodes whose
markings are potential home markings. For the resource allocation
system:

ListHomeMarking ()

returns the list [1,2,3,4,5,6,7,8,9,10,11,12,13]. This tells us that
all markings equivalent with a reachable marking are candidates for
being home markings.

ListHomeScc is similar toListHomeMarkings , but the

result is given in a more compact way. The result is either a single
Scc (and then the possible home markings are exactly those
markings that belong to the Scc) or the result is zero (and then there
are no home markings).

HomeMarkingExists determines whether the CP-net
possibly has any home markings. This is the case if there is exactly
one terminal strongly connected component.

InitialHomeMarking determines whether the initial
marking of the CP-net is a possible home marking. This is the case
if there is exactly one strongly connected component.

OS-specifications

The query functions for home properties are based on Prop. 3.9 in
[CPN 2]

fun HomeSpaceSym | Node list * (Node -> bool)
-> bool

fun HomeMarkingSym | Node -> (Node -> bool) ->
bool

HomeSpaceSymreturns true if any set of markings in which a
marking from each of the nodes in the list constitutes a home space.
The functions corresponds to Prop. 3.9 (v). The functions uses a
SymPredicate which must be provided by the user.

HomeMarkingSym returns true if all markings specified by the
node are home markings. Like the functidmmeSpaceSym the
user must provide 8ymPredicate

Design/CPN OE/OS Graph Manual OE/OS-39

OE/OS Graph Manual

InitialHomeMarking now determines whether the initial
marking is a home marking or not.

OSP-specifications

There are no additional standard queries. Instead we will show how
to write the predicate used by the functiblsneSpaceSymand
HomeMarkingSym for the database example. To ease the
implementation of the predicate some useful functions working on
component setsare provided by the tool (see [CPN 2] page 96).
The functionSymDataBase implementing the predicate are as
follows and will be explained below.

fun SymDataBase nl =

let

val ms_inac = OEMark.DataBase’lnactive 1

\r/];i ms_wait = OEMark.DataBase’'Waiting 1

\rlgl; ms_perf =
OEMark.DataBase’Performing 1

\r)%l’ ms_unus = OEMark.DataBase’Unused 1

ni;

val ms_sent = OEMark.DataBase’Sent 1 n1;
val ms_rec = OEMark.DataBase’Received 1

ni,
val ms_ack =
OEMark.DataBase’Acknowledged 1
ni,
val cands =
ListPermutations (CompSetToResSet
IntersectCompSets
[CreateResSet ms_inac,
CreateResSet ms_wait,
CreateResSet ms_perf,
DBM)
in
((length (FilterPermutationsPair
(cands,
[(ms_unus,ms_unus),
(ms_sent,ms_sent),
(ms_rec,ms_rec),
(ms_ack,ms_ack)]))) = (fac
n))
end;

The function is a modification of tHequivMark function for the
database system. The first part of the body defines a number of
values for easy reference. For each place with colour set DBM a

0G-40 Design/CPN OE/OS Graph Manual

How to Make Standard Queries

component set is created. This is done using the function
CreateCompSet :

fun CreateCompSet ‘ams->'a CompSet

CreateCompSet takes a multi-set and creates the

corresponding component set. The intersection of the component set
obtained is then calculated using the function

IntersectCompSets

fun IntersectCompSets ‘a CompSet list
-> ‘a CompSet

IntersectCompSets takes a list of component sets and
calculates the intersection. To check the remaining places with colour
set MES, the component set obtained is turned into a restriction set
using the functiolCompSetToResSet :

fun CompSetToResSet ‘a CompSet -> ‘a
ResSet

The set of permutations determined by the restriction set is then
obtained usindiistPermutations

Finally it is tested whether the set of permutations thus obtaind
consists of all colour symmetries for the colour set DBM (the
functionfac implements the factorial function). If this is the case,
then the equivalence class determined by the node is of size one.

For the database system:

HomeSpace(1,2,3,PhilSym)
returns true. This tells us that if we pick a marking from each of the
nodes 1,2, and 3, then this set of markings will constitute a home
space.

HomeMarkingSym(3,SymDataBase)

returns true. This tells us that any marking in node 3 is a home
marking.

Liveness Properties

OE-specifications

Design/CPN OE/OS Graph Manual OE/O0S-41

OE/OS Graph Manual

The query functions for liveness properties are based on Prop 2.9 in

[CPN 2].

fun DeadMarking Node -> bool

fun ListDeadMarkings unit -> Node list

fun SccListDeadMarkings unit -> Node list

fun TIsLive Tl.TranslInst list ->
bool

DeadMarking determines whether all markings in the specified
node are dead. For the resource allocation system:

DeadMarking 1

returns false. This tells us that none of the markings in the
equivalence class of node 1 are dead. Either all markings in an
equivalence class are dead or none of them are.

ListDeadMarkings returns a list with all those nodes whose
markings are dead. For the resource allocation system;

ListDeadMarking ()

return the empty list. This tells us that no marking equivalent with a
reachable marking is dead.

SccListDeadMarkings returns the same result as
ListDeadMarkings , but it uses the Scc-graph.

TIsLive determines whether a transition instance is live. The
function implements Prop. 2.9 (v) in [CPN 2] and can therefore
only be used for with equivalence specifications in which equivalent
binding elements are guaranteed to belong to the same transition
instance. This is the case with for instance the resource allocation
system for which:

TIsLive(Tl.System'Take 1)
returns true.
OS-specifications

The query functions for liveness properties are based on Prop 3.10
in [CPN 2].

0G-42 Design/CPN OE/OS Graph Manual

How to Make Standard Queries

fun BEsLiveSym Bind.Elem list *
(Node -> bool) -> bool

fun BEsLiveScc Bind.Elem list -> bool

BEsLiveSym returns true if the set of binding elements provided
list is live. Similar toHomeSpaceSymthe user must provide a
SymPredicate . For the dining philosopher system:

BEsLiveSym([Bind.System'Take
{1.{p=ph(1)}], SymPhil)

returns true. This tells us that this binding element is live.

BEsLiveScc returns true if the list of binding elements is live.
The query function can only be used in the special case in which the
Scc-graph consist of only a single node. If the query function is
used when the Scc-graph for the OE/OS-graph has more than one
node the exceptiomore_than_one_scc will be raised.

OSP-specifications

The query functions for liveness properties are based on Prop 3.19

in [CPN 2].
fun TIsStrictlyLiveSym TI.TransInst *
Bind.Elem list *
(Node -> bool) -> bool
fun TIsStrictlyLive TI.TransInst *
(Node -> bool) -> bool
fun TIsStrictlyLiveScc Tl.TransInst *
(Node -> bool) -> bool

TIsLive determines whether the transition instance is live. The
requirement stated above foisLive when used for OE-
specifications is automaticelly fulfilled for OSP-specifications.

TIsStrictlyLiveSym returns true if the transition instance
is strictly live. The set of binding elements for the transition must be
provided. For the dining philosopher system:

TIsStrictlyLiveSym (TI.System'Take,
[Bind.System'Take (1,{p=ph(0)}),
Bind.System'Take (1,{p=ph(1)}),
Bind.System'Take (1,{p=ph(2)}),

Design/CPN OE/OS Graph Manual OE/OS-43

OE/OS Graph Manual

Bind.System'Take (1,{p=ph(3)}),
Bind.System'Take (1,{p=ph(4)})],
PhilSym)

returns false. However since Prop 3.19 only is a sufficient condition
we cannot conclude that the transition instance is not strictly live.

TIsStrictlyLive determines whether the transition instance
is strictly live. The function can only be used in situations in which
all binding elements for the transition are equivalent. This is for
instance the case with all transitions in the dining philosophers
system. The functions requireSgmPredicate . For the dining
philosophers system:

TIsStrictlyLiveBE ((TI.System'Take,
[Bind.System'Take (1,{p=ph(0)}),
Bind.System'Take (1,{p=ph(2)}),
Bind.System'Take (1,{p=ph(2)}),
Bind.System'Take (1,{p=ph(3)}),
Bind.System'Take (1,{p=ph(4)})],

PhilSym)
returns true. This tells us that instance one of the tran3itike is
strictly live.
TIsStrictlyLiveScc determines whether the transition

instance is strictly live in the case in which all binding elements for
the transition are equivalent and the Scc-graph for the OSP-graph
consist of only a single node. If the query function is used in a
situation in which the Scc-graph has more than one node the
exceptiormore_than_one_scc will be raised.

Fairness Properties
OE-specifications

No standard query functions are available.

OS-specifications
No standard query functions are available.
OSP-specifications

The query functions for fairness properties are based on Prop 3.20
in [CPN 2].

fun TIsFairness Tl.TransInst ->
FairnessProperty

0G-44 Design/CPN OE/OS Graph Manual

How to Make Standard Queries

fun ListimpartialTls unit -> FairnessProperty
fun ListFairTlIs unit -> FairnessProperty
fun ListJustTIs unit -> FairnessProperty

The typeFairnessProperty has the following four elements:
{Impartial, Fair, Just, No_Fairness}.
TIsFairness determines whether the transitions instance is

impartial, fair or just.

ListimpartialTls returns a list with those transition
instances that are impartial.

ListFairTIs andListJustTIs are analogous to
ListimpartialTIs except that they list those transition
instances that are fair and just, respectively.

How to Make Your Own Queries

Like in the OG tool it is possible for the user to implement his own
gueries. For this purpose the same functions are available as for the
OG tool. The reader is encouraged to consult Chap. 5 in [OG] for
more information and examples of how to write such queries.

Design/CPN OE/OS Graph Manual OE/OS-45

Reference List

[CPN 1] K. JensenColoured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1,Basic Concepts.Monographs inTheoretical
Computer Science, Springer-Verlag, 1992. ISBN: 3-540-60943-1.

[CPN 2] K. JensenColoured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methoddonographs inTheoretical
Computer Science, Springer-Verlag, 1994. ISBN: 3-540-58276-2

[OG] K. Jensen, S. Christensand L.M. Kristensen:Design/CPNOccurrence
Graph Manual. Computer Science Departmertlniversity of Aarhus,
Denmark. On-line version:

http://www.daimi.aau.dk/designCPN /

Design/CPN OE/OS Graph Manual OE/OS-47

