Design/CPN Tutorial
for X-Windows

Version 2.0

O

Meta Software Corporation

125 CambridgePark Drive
‘m Cambridge, MA 02140 U.S.A.
Tel: (617) 576-6920

Fax: (617) 661-2008 © 1993 Meta Software

© 1993 Meta Software Corporation
125 CambridgePark Drive
Cambridge, MA 02140

(617) 576-6920

FAX: (617) 661-2008

email: cpn-tech-support@metasoft.com

Design/CPN isatrademark of Meta Software Corporation.

X-Windowsis atrademark of the Massachusetts | nstitute of
Technology.

Design/CPN Tutorial
for X-Windows

Version 2.0

Table of Contents

Part 1: CP Net Fundamentals

Chapter 1
The Design/CPN Tutorial
What IS @ Petri NEL?.....o e 1-1
Overview of the Design/CPN TULONAl...........ooveiiiiiiieeiiiieee e 1-2
Part 1: CP Net Fundamentals.............cccoooeeiiiiie e 1-2
Part 2: Design/CPN TeChNIQUES..........c.cooviiiiiiiieiee e 1-2
Appendix A: CPN Hierarchy Techniques..........ccccccceeeeeeiiciiiiienenenn. 1-2
Appendix B: The Sales Order Model..........ccccceveeeeiiiiiieieee e, 1-3
Appendix C: Troubleshooting..........cccvveereeiiiiiiiiiiee e 1-3
Strategy Of the TULOTIAL.........cooeiie e 1-3
HOW t0 USe the TULOKIAL.........eve i 1-4
Proceed SystematiCally...........cccooieiiiiiiiiieiieesee e 1-4
Ignore the Unexplained............ccooviieeiiiie e 1-4
Review Frequently............ooee i 1-5
Build the MOdEIS!.........oooiiee e 1-5
Beyond the TULONAL...........cooiiii e 1-5
Request For Feedback............oouiiiiiiiii e 1-6
Chapter 2
Getting Started With Design/CPN
What IS DESIGN/CPN......c.eieiie et nne e e e e e ne e 2-1
Prerequisites for This TULONIAL...........cceeiiiieiiiee e 2-2
Using This Tutorial With X-WINAOWS...........cccouiiiiiiiiiiiieieeee i 2-2

Design/CPN Tutorial for X-Windows TOC-1

Design/CPN Tutorial

Chapter 2
Getting Started With Design/CPN (cont'd)
Design/CPN and X-WINQOWS.........cuuueiiiiireeiieieesieeeessieeessieeeessnneeessnseee e e 2-3
Design/CPN MUIIPrOCESSING.....cccciivrieeeeiiieie e e erieee e e eeeeea e 2-3
Design/CPN and the File System.........cccccceveeeiiiiiiiiiiiieecee e, 2-3
Design/CPN Use Of the MOUSE........ccooiuiiieiiiiiiee e 2-4
Design/CPN Use of the Keyboard............ccooceeeiiiiiniiienec e 2-4
Establishing a Tutorial DIr€CIOIY.........ccoiuiiiiieiiiie e 2-4
Starting DESIGN/CPIN.......cooie et e s eeaee e 2-5
OpPeNING @ DIAGIAM.........eiiiiie ittt e et e st e e e st e e eneeeenneas 2-5
The Design/CPN User INterface...........cocvviiiiiiiiiiee e 2-5
THE MENU BAT......cooiiiiiee e 2-6
THE StAtUS Bar.......ccceeiiiee e 2-6
THE PAGE..... oo s 2-6
Navigating @ DIagram...........cccveiiiee e eiieeesiee e see s e see e see e saeeesnaeeens 2-7
PriNtiNg @ DIAQIaAIM.........coiieeiiieciee ettt e s e e saeesnbe e e nreeennneens 2-9
(@10 1] [g o Jr= W B =T | = 1 o SRR 2-9
QUILEING DESIGNICP Nttt 2-10
Starting and Stopping the TUtoral............cocveiiiiiiiiiiee e 2-10
Chapter 3
Modeling Paradigms
Static Modeling Paradigms............ooiiuieeiiiie e eee e e see e 3-1
IDEFO MOEING.......ceiiuieeiiee ettt 3-2
Dynamic Modeling Paradigms...........cooiiiiiiiiii i 3-3
CP Net MOUEIING....c..eiiiieiieee e 3-3
IDEFO Modeling and CP Net Modeling.........cccoveiiiiiiiiiiieiee e 3-4
Chapter 4
Using the Design/CPN Editor
The Design/CPN GraphiCs EQitOr...........cccouveeiiiieeeiiiieeeecieee e 4-1
Design/CPN Graphical ODJECES..........ccoveiiiiii e 4-2
Graphics Editor MOGES...........ooiiiiiiiiee ettt 4-3
Editing Graphical ODJECES.........coiiiiiiieecee e 4-3
GraphiCS MOOE..........ooiiiiiieiieec e 4-3
TEXEMOGE. ...ttt et e et e s e snneereens 4-4
Creating Graphical ODJECES.........cieiiiieiiie e 4-4
F T (0 1STox 10 | 1T S SURSR 4-5
KeysStroke ShOMCULS........cccuviiiiiiiie e 4-5
Creating a NeW DIagram.........ccoiueiiiiieeiiee ettt e s saeeesneeeans 4-6
Resetting the Drawing ENVIFONMENT...........cooviiiiiiiiieeee e 4-6
Caps Lock Under X-WINAOWS...........cooiuiriiieiiiiieeniee e 4-7

TOC-2

Design/CPN Tutorial for X-Windows

Table of Contents

Chapter 4
Using the Design/CPN Editor (cont'd)

Working With ReCtangIes.........cc.ove e 4-7

Creating @ ReCtangle..........ccoveiiieee e 4-7

Enter Rectangle Creation Mode............cccccveeeeeeeiiiiiciiiieeeen. 4-7

Specify the First COMMer.........oocvviiiiiiiiiiee e 4-8

Specify the Diagonal COrer...........cccovieeiiiiieeiniiee e 4-8

Finish the Rectangle..........ccocooiiiiiiienece e 4-8

Leave Rectangle Creation Mode............cccccvvveveeeiiiiiiiineneennnns 4-9

Reshaping a Rectangle..........cooooieriiiiie e 4-9

Moving @ ReCtangle...........ooooiiiie i 4-9
Deleting a Rectangle............cccooiiiiiiiiie e 4-10
Moving a Rectangle While Creating It............cccocveeiiiiee i 4-10
Adding Text to a Rectangle..........cocveieiiiieiiiiee e 4-11
Creating a Series of Rectangles.........cccccveeviiiiee v 4-11
Adding Text to a Rectangle While Creating It..........cccccceeeeeiiiiinnnee. 4-12
Preserving a Rectangle's Aspect Ratio.............cccccvvvieieiiieeeeeeeeeiiins 4-12
Working With More Than One Object on a Page...........ccooccuvveeeeeeeiiiiinineen. 4-13
Selecting an ODBJECT..........ooiiiiii e 4-14
Selection After DeletioN.............ccueeieeee i 4-14
WOrking With EIPSES.....ccveieiiee ettt 4-15
Creating an ElliPSE.........cociiiie ittt 4-15
Enter Ellipse Creation Mode...........cccccveeiiiiiiiiiiiiiiieee e, 4-15
Specify the FirSt COMMEer ... 4-16
Specify the Diagonal COMMer..........cccoeiviiieeiiieieiiee e 4-16
Finish the EIlPSe........ooiiiiiecee e 4-16
Leave Ellipse Creation Mode...........c.cccvieveeeeiiciiieeee e 4-16
Other Operations With EIlPSES.........cccvvieeiiiiiee e 4-16
Working With More Than One ODbject TYPe.......ccccevvvviiiiiiiieiee e, 4-17
Creating Objects From TexXt MOUE...........cooiiiiiiiiiiie e 4-17
Working With CONNECLOTS.........cocviiiieiiiiie et 4-18
Creating @ CONNECTONoouiiiiiiiee et 4-18
ROULING @ CONNECTON.......cvveeeciie et e e 4-19
Editing @ CONNECLON........cccuvieeieee e e 4-20
Automatic Rerouting of CONNECLOrS..........cccvviiiieiee e 4-20
Deletion of Dangling CONNECIOIS..........ccuviiiiieeeiiiiiiieee e 4-20
Working With LADEIS........cc.eiiie e 4-21
Creating @ Label..........ooiiii e 4-21
Enter Label Creation MOdEe..........ccooveeiiiieiiiie e 4-21
Create the Label..........oooeiiiiiiee e 4-21
Enter and Edit TeXt.......oovieiiiiieeieeeee e 4-21
Create Additional Labels...........coocuiiiiiiiiiiiiieee e 4-22
Other Operations With Labels...........c.ccooiiiiii e, 4-22
NOAES ANA REGIONS.......coiiiiiieiieitie ettt 4-22
Designating @ REQION.........ccociiieiiiiee e e e e e e 4-23
Restoring the Independence of a Region............ccccovvvveeeeiiiiiieennnn. 4-24

Design/CPN Tutorial for X-Windows TOC-3

Design/CPN Tutorial

Chapter 4
Using the Design/CPN Editor (cont'd)
Nodes and Regions (cont’d)

Editing Parents and RegIiONS............ccccvvveiviiiee e
Moving a Region's Parent.........ccccccoeecviiiiieeeeciiiciiiieeeee e

Deleting a Region's Parent..........ccccovcuveeeeiiiieee e

GroupPs Of ODJECTES.....c..eiiiieie e
IMIXEA GIOUPS. ...ttt sttt sttt ettt nbe et sne e e nnne s

=] (=Tt 1] o = T] (01U o RS SRR
DeseleCting @ GrOUP........cccocuuieiiieeeeiiee e ciee e e s e e saae e e e e e s
ReCONSIIUCHNG @ GrOUP.......cuvviieeiiiiiie et
Operating ON GrOUPS.uueeeueeeaieeerieeeerieeesnreeesseeessseesseeessesssseessnseeans
12T 0 0157 () o ST

Chapter 5
CP Net Components

The CPN ML LANQUAGJE.ueeiiieeeiieeeieeecieeesieeessieeesisesasneeesseeesnneesnneeesnneeennes
A CP NEet EXAMPIE......ccoieeiiie ettt
Nets and MOEIS..........oooiiii s

CP NEEDALAL.....ceeeeieeiee ettt b e e e e e e saneeeenes
(©70] (0] 1517 £ SR
Enumerated Colorsets.........coovieeeeiieeeciiie e

String and Integer COIOrSetS.........uvveviiieeee e cceee e

Duplicate ColOrSetS........uiviiiieeiiiee e

TOKEINS.....ee ettt st et n e ae e e b naee s
MUItISELS Of TOKENS.......ciiiiieiiiieree s

Specifying MURISELS.........ccooiiiiiee e

MUIISEL AATITION.ceieeeiie e

Multiset SUBDLraCtION..........cceeviieiiiere e

MUIISEt SUDSELS......coiiieiieiiicceee e

CPN VariabIES......ccouei e
PLACES......eeeee e
Place Markings........c.oooeeieieie e

States and Markings..........cccevueeieeereeeniee e

Initial Marking REQIONS..........cccvveieiiiieee e

Appearance of Markings.........cccoccveveeviiieee e

THANSIIONS. ...ttt sttt ettt ae e s b sae e et e e st e e beeenbeesaeas
1 TP UPPPTRPPRP
ATC INSCHIPLIONS. ...ttt
0T (0 SR
CP NEt EXECULION......c.eiiiiiieiiie ettt

TOC-4 Design/CPN Tutorial for X-Windows

Table of Contents

Chapter 6
Creating a Net With Design/CPN
Auxiliary Graphics and CPN GraphiCs.........cccccuireiiiieiee e ccieee e sienee e 6-1
Setting the Graphical ENVIFONMENL..............coooiiiiiie e 6-2
ODbJeCt AUNHDULES.......coeiiiiee et 6-2
Diagram Default Attributes...........coocceeeiiiiee e, 6-3
System Default AttriDULES..........cceeiiiii e 6-3
Changing the Display AtribUtesS.ccocveriiieieiieee e, 6-3
Establishing an ENVIFONMENL.............cccoveeiiiie e 6-3
Creating the NEt...........ooo e e saee e 6-5
Creating the TranSItioN...........coiiiiieee e 6-5
Naming the TransitioN...........ccccoveeriinire e 6-7
Creating the Transition's Guard............cccocceveirieeeeiiieee e 6-8
Creating the INPUL PIaCe..........cooiiiiiie e 6-9
Naming the Place.........ccocvve i 6-10
Specifying the Place's Colorset and Initial Marking........... 6-11
Creating the OULPUL Place............ccociiiiie i 6-13
Creating the Arcs and Arc INSCriptioNS.........cccooviiieeeeiiiiieeee e 6-13
Creating the Global Declaration Node..........cccccccoeeeiiiiiiiiiiiiiieeennnn. 6-15
SaVING the DIAGIAM......ceiiiiiiiie ittt re e 6-17
More Efficient Editing TEChNIQUES..........cccveeeiiiiiie e 6-17
Chapter 7
CP Net Dynamics
EXECULING CP NELS....cc ittt 7-1
The Design/CPN SIMUIALOTcviiiiieie e 7-1
Understanding CP Net EXECULION..........cccceveiiiieiiieiiiiee e 7-2
When Can a TranSition OCCUI?........coucuureeieeeerieeeesiee e sieeessreeeeenneeeesnnneeeennes 7-2
INPUL ArC INSCHPLONS.vvie e e nnee e 7-2
GUAITS....coeeee ettt sttt et b et et sneenneas 7-3
Criteria for Enablement.............cooiiiiiiii e, 7-3
Examples in ThiS Chapter..........ooiiiiiiieeee e 7-3
Specifying Exact TOKen ValUues............coooiiiiiiiiiiiiiicee e 7-4
Specifying @ SiNgle TOKEN.......ceei i 7-4
The Simulator's Algorithm...........cccvee e, 7-4
Omitting a Count of ONE.........ccoocvveeiiiie e 7-5
Specifying More Than One Token Instance..........ccccceevvveiiieeeeeeeenn. 7-5
Specifying More Than One Token Value............cccoooiiiiiiieeneenninnnns 7-5
The General RUIE............oooiiie e 7-6
Specifying Variable TOKeN ValUES...........cooiiiiiiiiii e 7-7
Binding an Arc Inscription Variable............ccccccoociiieee e 7-7
Constraining TOKEN VAlUES..........ccooiiireiiiie e esee e a e 7-8
(TN L= IS}V] = ¥ SRR RP 7-8
Use Of Parentheses...... ..o 7-8
Shortcut for andalSo...........coeviieiiiiiee e 7-9
Constraining a Single TOKEN..........ccvoiiiiiiiee e 7-9

Design/CPN Tutorial for X-Windows TOC-5

Design/CPN Tutorial

Chapter 7
CP Net Dynamics (cont’d)
Constraining Token Values (cont’d)

More Complex CONSLIAINES.cueeeiieieee e 7-10
Constraining More Than One TOKeN.........cccveeeveeeeeeeiecciciiiiieeeee e 7-11
What Happens When a Transition OCCUIS..........oooiuiiiieeiiiiiieee e 7-11
A SImple EXaMPIE.......ooie e 7-12
Rebind any CPN Variables Per the Enabling Binding....... 7-12
Evaluate Each Input Arc INSCription.........cccceeeecvieeeee e e, 7-13
Remove the Enabling Multiset from Each Input Place....... 7-13
Evaluate Each Output Arc Inscription............cccccccevvivvnieennnen. 7-13
Put the Output Multiset into the Output Place...................... 7-14
Chapter 8
Executing a Net With Design/CPN
Loading ML Configuration INfOrmation..............cceeeirieeeeiiieee e 8-2
Performing a SyntaxX ChECK...........cccvveiiiiiicie e 8-2
Designating a Prime Page.........c..ceoiuieeiiiie et 8-4
Entering the SIMUIALOL............ccviii e 8-7
SIMUIALION REGIONS. ...ttt e e 8-8
Simulation Regions Indicating Place Markings.................coeeenes 8-9
Simulation Region Indicating Enablement and Firing................... 8-9
THE SIM MEBNU. ...ttt sae e 8-10
EXECULING the NEL........ooieeee e 8-10
Observing Net EXECULION..........coiiiiiee et 8-12
Re-Executing the Net.........ooi e 8-13
Order of Net Execution EVENtS..........ccccceeeiiiiiiiiiieiee e 8-16
Canceling Net EXECULION........c.uiiiiiiiieiiie et 8-18
Leaving the SIMUIALON.............cueriiie e 8-19
Leaving DUring EXECULION...........ceviiiiiee e 8-19
Removing Simulation REJIONS..........coociiiiieiiiiiiee e 8-20
Chapter 9
Handling CP Net Syntax Errors
OPENING T8 NEL.....coeii e 9-1
Missing Colorset SPECIfICALION..........cccuevirieeeiiee e 9-2
LoCating the EITON........cocieecee et 9-3
TEXE POINTEIS....ccuviiieeii ettt 9-4
FIXING the EITON ..ot 9-5
Undeclared Variables. ... 9-6
LOCALING the EITON........ooiiiiieeei e 9-7
FIXING thE EITON ... 9-8
lllegal CPN ML CONSIIUCKES........ccoiuieeiiireciieeesieeesiee e eee et e e e e neeeenneee e 9-9
(@0 T (111 0] o USRS 9-10

TOC-6 Design/CPN Tutorial for X-Windows

Table of Contents

Part 2. Design/CPN Techniques

Chapter 10
Extending a CP Net
BUIAING SAIESNEL.......ceeiiiieii e 10-2
Modifying the Global Declaration Node..............ccccooviiiieeiiiiniinnnnn. 10-2
Modifying the GUANT...........cecieeeiiie e 10-2
Extending the GraphiCs..........cccceevciieiiiiie e 10-3
Performing a Syntax ChecCK...........ccccuiviiieiiiiiiiie e 10-3
Discussion Of the MOEL............coo i 10-3
Description Of the SYSIEM........coiiiiiiiie e 10-3
How SalesNet Represents the System..........cccccceviiieeiiiiiiiee e 10-4
Entities and ColOrSets.coovviiieiiiienie e 10-4
Locations for Storing Data..........cccccccveeeeeeiciiiee e, 10-5
Activities for Transforming Data...........ccccccceeeeeeiiiiiiiicciiiiinne, 10-6
Data and Conditions Needed for Activities to Occur.......... 10-6
Data That Will Be Produced if an Activity Occurs................ 10-8
What Happens When SalesNet EXeCULES...........ccccevvvevieeeeeiiiinnnnn. 10-9
Rebind Any CPN Variables Per the Enabling Binding......10-9
Evaluate Each Input Arc INSCription.........ccccceevecvveeeeeecciieeen. 10-9
Evaluate Each Output Arc INScription..............ccoeeeeeeiiiinnnnns 10-10
Remove the Enabling Multiset from Each Input Place....... 10-10
Put the Output Multiset into Each Output Place................... 10-11
CoNtiNUE EXECULION........ccicuiieeciiieeeiee e eee e e e 10-12
EXECULING SAIESNEL......c.eii et e et e e e e e nneeeens 10-12
Setting SUbStEP OPLIONS......ccccviieeiiiiee e 10-13
Adjusting Simulation Regions.............cooccviiiiiiiiiiiieee e 10-13
Key and Popup REQIONS.........ccoiiiiiiiiiiie e 10-15
Repositioning Simulation Regions............cccccceeviiiiiieieieninee 10-16
CoNtiNUING EXECULION......ccuviiiiiiiiie et 10-17
Creating a Page for Global Declarations............cccccceeeiviciviiieeeee e 10-17
Creating @ NEW Page.........ccciiiieiiiie ettt 10-18
NamMING the Page.........oooiiiiie e 10-18
Improving the Hierarchy Page.........cccooueiiiiiiiiii e 10-19
Renaming a Page From the Hierarchy Page..........c.cccceeeiniineeeenns 10-20
Moving the Global Declaration Node.............cccccviiiiiiiiiiiieeiniieees 10-20
SAVING T NEL....ce e s e et e e e neas 10-21
Chapter 11
Concurrency and Choice
COoNCUITENCY PrODIEMS... ..o 11-1
Representing CONCUIMTENCYc.uuieiiiireiiiieesieeeesiieeeeieeeeseeee s sreeessnneeesnnneeeas 11-2
Multiple Enabling Bindings............ccoooiiiiiiiieceeee e 11-2
Concurrent TranSition FiriNg.........ccveiiienieeeriie e 11-3
Identical Enabling BiNAINGS........cvvvviiiiiiiiee e 11-3

Design/CPN Tutorial for X-Windows TOC-7

Design/CPN Tutorial

Chapter 11
Concurrency and Choice (cont'd)

Concurrent CP Net EXECULION.........coiiiieiiii it 11-4
Initial State of the Net.........ooii e 11-4
Breakpoint 1: Beginning of Substep..........ccccvvviiiiiiiiiiiiiiiiiiiiiiiiinnn, 11-4
Breakpoint 2: End of SUDSEEP........cceeviiiiiiie e, 11-4
Execution IS COMPIELE........cccuiiiiiiiieiee e 11-5
Analysis of the EXECULION..........cocviiiiiiiiieie e 11-5

Representing CoNnfliCh.........c.veiii i 11-5
Conflicts and BiNAINGS.........c..oeeiiuiieiiiie e 11-6

Concurrent Execution of SaleSNet............coooiiiiiiiii e 11-7
Loading ML Configuration Information.............cccccceeeviniiiiiiieeeneneenn. 11-8
Adding More EQUIPMENT.......c.uoiiiiiiiieiee e 11-8
EXecuting SalESNEL.........c.ooiiiiii e 11-9

Breakpoint 1: Beginning of SUDStEP.........ccccvvvvieeiviieereeeeennn. 11-10
Breakpoint 2: End of SUbStep........ccccvveiiiiiie e 11-11
Execution Is Complete..........cccceoeiiiieiiiiiiiee e 11-11
Analysis of the EXECULION..........ccceeiiiiiiii e 11-12

Changing a Net in the SIMulator..............cooiiii e, 11-12

The Simulator's Execution AlgOrithm...........ccccooiiiiiiii e 11-14

Executing SalesNet With Conflict...........ccccccvver i 11-15

Executing SalesNet With Conflict.............ccccoveiiiiiie e 11-15
1: Establish Initial Markings...........ccccoviiiiiiiiiii e 11-15
2: Put All Enabled Transitions on the Enabled List........................ 11-15

3A: Construct an OCCUITENCE SEel........ccccovvvimrrrrieeiiiiiireeeenn 11-15

3B: Execute the Elements in the Occurrence Set............... 11-16

Executing an OCCUIMENCE SEL........cccccuieeiiiiiieeeiieeeeesieeeessneeesnnaea e 11-16

SalesNet's Appearance at Breakpoint 1.............................. 11-17

SalesNet's Appearance at Breakpoint 2...........ccccceeeveiiiennns 11-18

3c: Update the Enabled LiSt...........oooiieiiiiiiiieeeee e 11-20

4: COoNtINUE EXECULION.ccuiieiiiieeetiee et 11-20

5: Complete EXECULION........cocuiiiiieii e 11-20

Experimenting With Concurrency and ConfliCt............ccccvvvviiiiieeinis 11-21

Chapter 12

CPN Hierarchical Decomposition

Definition of Hierarchical DecompoOSItioN.............cevvveviiiiiiiiiiiiiiiciceeeeeeeeeee, 12-1

Top-Down and Bottom-Up Development.............eeeeeiiiiiieieeeennciiieeee e 12-2

Creating a Hierarchical DeCOmMPOSItION...........ccooiiiiiieiiiiiiieeiiiiee e 12-2
Designating the Transition to0 DECOMPOSE........ccceevvvvcvvririiireeeeeenenns 12-3
Initiating Subpage Creation............ccvveevcieee e 12-3
Specifying the Substitution Transition's Location.......................... 12-3
Naming the Substitution TranSitioN..............eeveviiiiiiieiee s 12-5
Improving the Substitution Transition's Appearance..................... 12-6

Connecting Superpages to SUDPAJES..........coooiiiiiiiiiiiieiiiee e 12-8

TOC-8 Design/CPN Tutorial for X-Windows

Table of Contents

Chapter 12
CPN Hierarchical Decomposition (cont'd)
Structure of the SUDPAGE.........cvvi i 12-8
How Design/CPN Creates a DecomposSition..........ccccceeeeeeeieeiiiennnns 12-9
Simplifying the Decomposition Page.........ccccceeeeeiiiiiiiiiiiiiiieieeeeee e 12-10
Substitution and the Hierarchy Page...........ccccoviiiiiiiiiiniiii e 12-11
Improving the Hierarchy Page's Appearance.............cccccuvveeeeeeennn. 12-12
ReNaMING the PAgE........cuoiiieieie e 12-13
SAVING T NEL....ce et e st e e re e neas 12-14
Chapter 13
Understanding a Simple Model
Overview Of FIrStMOEL...........oo i 13-1
FirstModel and SalesNet Compared...........ccccuveeeeieeriniiiciiiiieeeeeeennn 13-2
Structure of FIrStMOdEL.........c.ooi i 13-3
Data Declarations in FIrStMOdEl............cccoveeiiiiiieeiiiiee e 13-3
TUPIE COIOISELS......evv e e 13-4
Tuples in FIrStModel...........cocoveeiciie e 13-4
The Superpage in FirstModel...........ccovveeiieeiiiii e 13-5
SAIESNEL. ... s 13-5
FirstModel SUPEIPAGE.cocueiiieieiiee et 13-6
The Subpage in FIrstModel...........ccooiiiiiiii e 13-6
Function of FIrStMOGEL...........coiiiiiiiie s 13-7
1= @ 0 [PP 13-8
TUPIE CONSIIUCTONS.......uviiee ittt e e 13-8
Example of Tuple Construction.........ccccoocvveveeiiiiieeee e, 13-9
PrOCESS OFU Noi ettt 13-10
BidireCtional ArCS........ociiieeeiiie et ee e 13-11
TUPIE PAEINS.ccciie et ee et ee e et e e e e nte e e saeennneeens 13-12
Enablement of Process Order.........cccccveiiiieeiiiiieeniiiee s 13-13
Firing of Process Order...........cccooviiieeeeiicciiee et 13-14
SHIP PrOGUCT.......coiiiieie e 13-15
Summary of FIrStMOEL..........oooiiiieiee s 13-16
ENtering an Order.........oo i 13-17
Processing an OFder...........uoiiiiireiiiie e e s ree e 13-17
Sy gl o] o1 T = Ta O (o [T RS 13-17
Concurrency in FIrstMOdel. ... 13-18
LOCAIILY IN CP NELS....cc i rbe e s be e s nee e 13-19
Locality and Arc Inscription Variables.............cccccoiiiiiiiniieees 13-19
Locality and OVEIVIEW............oouiiiieiiiie ittt 13-19
Emergent Behavior in CP NEetS........cccieiiiiee e 13-20

Design/CPN Tutorial for X-Windows TOC-9

Design/CPN Tutorial

Chapter 14
Building a Simple Model
Adding Global DecClarations.............ccceeeiiieee e 14-1
Modifying the SUPEIPAgE.........cceiiieeeiee et 14-2
Building FirstModel on the Subpage............cccooiiiiiiiiiiiiii e, 14-4
The Current SUDPAGE.evi it 14-4
The FUture SUDPAJE.oouiiiiieieieee e 14-5
Editing the Subpage.........ooovieiii i 14-6
The Starting POINt..........cociieiie e e s 14-7
Rearranging the POITS...........ccuie e 14-7
Creating the TranSItioNS..........coiciiiiiiiee e 14-8
Matching the Transition SIZES..........c.ueeviiiiiiiie e 14-10
Naming the TranSItiONS...........ooii e 14-10
Creating and Naming the PIaces...........ccccoviiiiiiiiiiic e 14-12
Give the New Places Their CoIOrSets.........ccoouvviiiiieiiiie e 14-14
Aligning Net COMPONENES.......ccuveiiiiiiee e e e e ereee s 14-16
Diagonally Aligning the New NOdEes...........ccccceviiiiiiiiiiiiiiiiiiieeee e, 14-16
Horizontal Spread..........ocvevi e 14-16
VertiCal SPread........coovveiiieiiieiiieiee e 14-17
Aligning NOdeS INt0 @ ROW........ccueiiiiiiiiieiiie e 14-17
Aligning Nodes Into a Column...........ccooviiiee e 14-18
Other AJUSIMENES.........oi e 14-18
Connect the Net Components With ArCS........ccccvuiiieiiiiee et 14-18
Drawing a Bidirectional ArC..........cccuveiiiiiiieie e 14-19
AdJuStING AIC APPEATIANCE........eiiiurieeieieeieee et et et aeee e 14-22
Creating the Arc INSCPLONS..........oiiiiiiiee e 14-24
Copying and Pasting Text Regions.........cccccceeevvvcivviieeeeeeeannns 14-26
Creating the Transition GUAIS...........ccceeiiiiiieeiiiiie e 14-29
Final Adjustments 10 the NEt..........coociiiii e 14-31
Performing a Syntax ChecK.............ooiiiiiii e 14-32
Chapter 15
Executing a Simple Model
EXECULING the NET.....c.eiiiiiieee e 15-1
ANAlYSIS Of EXECULION........veveiiiie e 15-3
Subpages and Initial Markings...........cccueveiiiiieee e 15-4
Experimenting With FirstModel.............ccoooooiiiiiii e 15-6
HOW t0 DO EXPEIIMENTS......ccoiiiiiiiiie et 15-6
ANAIYSIS Of EXECULION.c.uviiiieiiiesiie et 15-7
Complicating FirStMOAEL..........coceoiiiiiieie e 15-7
Using a Guard to Create a Partial Constraint...........cccccceeeeeeeeeiinnnnes 15-8
EXECUtING the NEL........eeee e 15-8
ANAlYSIS Of EXECULION.ciiiiiiiiie et 15-9

TOC-10 Design/CPN Tutorial for X-Windows

Table of Contents

Chapter 15
Executing a Simple Model (cont'd)

Controlling the Appearance of CONCUITENCY.........uuvveeeeeeeeiiiiiiiiiiieeeeaaeeeaens 15-9
Review Of OCCUITENCE SEIS......cccviiiiiiiieiie e 15-10
Constructing an OCCUITENCE SEel.......ccceeiiiiiiiiiiiiiee e 15-10
What IS CONCUITENCY?....cciiieiiiieeeiee ettt 15-11
Occurrence Set Parameters...... ..o iiiiieeeeeeciiieee e ee e 15-11
Scope of Occurrence Set Parameters........coovvccvveeeeeeeeiecvineneeeesnnns 15-14
Setting Occurrence Set Parameters.........ccccovecvvvveeeeeeeeeiciiieeeeeeeeenns 15-14

Experimenting With Net EXECULION...........c.cccccuvieeiiiiiie e 15-14

Faster Model EXECULION..........cooviiiiiiieeiecieee e 15-15
INEractive MOooiiiiiiie e 15-16
AULOMALIC MOAE.......cooeiieeieees e 15-16
Fair and Fast EXECULION.........ccccuiieiiieeiiiee e e esiee e see e ssiee e s 15-16

Selecting the EXeCUtiON MOUE...........ccuiiieiiiiiie e 15-17
Specifying Possible Execution MOdES...........ccevvvveeeeeeieiiiiiiiiienee, 15-17
Specifying the Actual Execution Mode................cccceeii. 15-18

SPECITYING STOP CHEEIIA. ..ceiiieieee it 15-19

AUtOMALIC NEt EXECULION........eeiiiiie e eiiee et e e e 15-20
Alternating EXecution MOdES............c.coiieiiiieiiiiie e 15-21

Saving and Loading Execution States........c.cccceecvviiiieee e 15-22

Chapter 16
Simulated Time

The Nature of Simulated TIMEe.........cooiiiiiii e 16-2

Non-Representation of Time in FirstModel.............ccooooiieiiiiiniiies 16-3
Duration and CauSality...........coceeeriieiiieiiie e 16-4

Representing TIMe iN @ CP Net........ccciiiiiiiiieee e 16-4

How Simulated Time WOTKS.........oouiiiiiiiiie et 16-5
Simulated Time and Transition Enablement.............ccccccceeeviiiinnee. 16-5
The Simulated ClOCK............ooiiiii e 16-6
Other Uses for Simulated TIMe.........ccooiiiieiiiiiiieerieee e 16-6

Specifying Timed SIMUIAtIoN...........ccooiiiiii e 16-7

Declaring a Timed COIOrSEt..........cocviiiiieiiiiiie e 16-7

Giving a Token a TiMe STaMP.......ccoiiuieeiiiee e e e e 16-7
Delay Expressions in Time RegIONS.........cccuveeeeeiiiiiiiieeeeeeeeiieeeeenn 16-8
Delay Expressions on Output Arc INSCriptions............cccceeeviiieeeeeenn. 16-8
Omitting @ TIME StAMP......veieiiiie i 16-9
Time Stamps and Initial Markings...........cccccovieiiiiei e 16-10
Time Stamps and MUHISELS.occviiiieiiie e 16-11
Changing FirstModel to Assign Time StampsS.........cccccccvvvvveeeeeeeeenn.. 16-11

Compiling @ TIMEA NEL.........ooiiieee e 16-14

Executing @ TIMEA NEet.........ooiiiiiii e 16-16

Simulation With and Without TIMe.........cceeeie i 16-18

More Realistic Timed BehaVvior.............cooieiiiiie e 16-19

Observing Simulation RESUIS............oooiiiiiiii e 16-21

Design/CPN Tutorial for X-Windows TOC-11

Design/CPN Tutorial

Appendix A: CPN Hierarchy Techniques

Chapter Al
Introduction to Hierarchy
Files for Use With ThiS APPENAIX........coiuieiiiiiiiieiieriee e Al-1
CPN HIBIAICNY ...ttt e s Al-1
FUSION PIACES......cotiiiiiiieie et sttt enne s Al-2
SUDSHULION TrANSIIONS.eeiiiieiieeiee et sree s Al-2
Chapter A2
Fusion Places
The Resource Use MOUEL...........oooiiiiiiiieeee e A2-1
Description of the MOdel............cooiiiiiiiii e A2-3
Executing the MOEL...........cooiiiiiii e A2-4
FUSION 0N @ SINGIE PAJE......ccc i ciie ettt e A2-4
Results of Executing the Diagram...........cccceveeviieeeeiiiiee e A2-5
Combining the Resource POOIS...........ccvviiiiiiie i A2-6
Creating @ FUSION Set........coociiiiiieiiie e A2-6
Physical Appearance of a Global Fusion Place.................. A2-8
Adding Places to @ FUSION Set.........ccocvveiiiiiiiiiie e A2-9
Initial Markings and FUSION SetS.........ccccceeviiiiiee e A2-10
Removing Places From a Fusion Set..........cccccceevviiieeeeccciieee e, A2-10
Deleting @ FUSION SEt........ccoiiiiiiiiiiiee e A2-11
Fusion Across More Than ONe Page.........cc.coeeieeiiiiiieee e A2-11
Saving and Loading a Subdiagram..............ccccoviiiiiiiiiiiiiniieees A2-12
Make the New Page Prime..........cccoevviiieiiiie e A2-13
Working With Fusion Sets That Span Pages..............cccccceevveiiinnns A2-13
Working With More Than One FuSion Set...........ccccoviiieee e A2-14
Page FUSION SELS......ccoiiiiie ettt et snaae e A2-17
Creating a Page FUSION Set........ccoocuiiiiiiiiiie e A2-18
Watching FUSION IN ACHON.c.eiiiieiiieiie e A2-19
INStANCE FUSION SEIS.....ccuiieiiie et A2-20
Creating Multiple Page INStancCes..........ccccceevcvvieee e i A2-21
Multiplicity @and FUSION.........ccuuieiiiie e A2-23
Working With Instance FUSION SetsS............ccccvvvieiie i A2-23
Observing Fusion Across Multiple INStances...........ccceeevveiiiiiiiieeee e, A2-25
Chapter A3
Substitution Transitions
Structure of a Diagram With SUDSTItULION...........coooiiiiiiiieeieee e A3-2
The HierarChy Page.......c..ccouuieiiiie et neee e A3-2
The Superpage ReSMOUHL.........cccuvvveiiiiiee e A3-3
The Subpage NEWH2.........coooiiiiee e A3-4

TOC-12 Design/CPN Tutorial for X-Windows

Table of Contents

Chapter A3
Substitution Transitions (cont'd)
Structure of a Diagram With Substitution (cont’d)

POItS @and SOCKELS.......ccueiiiiiieie e A3-6
Jumping Directly to @ SUperpage.......ccccccveeeeeeeeeiciiccciiireeeee e A3-6
Overall Structure of the Diagram..........ccccoccueeeeeiiiiieeee e A3-6
Creating a Substitution TranSItiON.cceeiiiiieriiee e A3-7
Designate the Net Components to Move to the Subpage............ A3-9
Initiate Subpage Creation...........cccccveeeeeciee e A3-9
Specify the Substitution Transition's Location..............cccccevvvveeeeee. A3-9
Name the Substitution Transition (If Desired).........cccccccveiiiieeeeeenn. A3-10
Status Of the Diagram..........ooceeeeiiir e A3-11
Improving the Net's APPEAIaNCE..........ccovuiieiiiieeiiee e A3-11
Improving the Superpage’s APPearance..........ccccovvvveeeeeeessiuvveennns A3-11
Rerouting the ArC........c.ove e A3-12
Moving the REQIONS.........cceeiiiiee e A3-13
Improving the Subpage's Appearance.............cccccceviiiiiiiiiiiiiiinenen, A3-14
Improving the Hierarchy Page's Appearance...........cccccccvvveeveennnnne. A3-16
Status of the DIagram.........coceeiiiiiie e A3-18
Reversing Substitution Transition Creation.............cccccceeeeeeeecciiiieeereee e e A3-18
Status of the Diagram..........cccveeeiiiie e A3-20
Developing 0N a SUBPAJE.cocviiieiiiie e A3-21
Create the Substitution Transition and Subpage............cccccceenn... A3-21
The Modified Hierarchy Page.........coocoeeiiiiiiieiiiiee e A3-23
The NeW SUDPAJE.c.eiiieieiii e A3-23
Relationship of Pages in a Hierarchy............cccccceiieiiiinenieeee, A3-24
Deleting @ SUDPAQJE.ccvuie et A3-25
Using a Subpage More Than ONCE...........ceeeiiiiiiieeeiciiiiee e e sseea e A3-26
Structure of the Diagram...........occiiiiee i A3-31
Substitution Transitions and MUltiPlCItY...........ccueeveiiiiiiii e A3-33
Subpages, Subroutines, and MaCIOS............occiiiieeeiiiieee e A3-34
Simulating With HIErarchy...........cooceiiiiiiiiiee e A3-34
Deleting a Reference to a Subpage.........ccccoccveeeeeiiiiie e A3-35
Manually Assigning Ports t0 SOCKELS...........cccvvveeiiiiiie e A3-37

Design/CPN Tutorial for X-Windows TOC-13

Design/CPN Tutorial

Appendix B: The Sales Order Model

Chapter B1
Introduction to the Sales Order Model
Files for Use With ThiS APPENAIX........coiuieiiiiiiiieiieriee e B1l-1
Overview of the Sales Order MOdel............cccuvvreiiiiiiee e B1l-1
Entities Represented in the Model.............ccooiieeiiiee e B1-2
Action Cycle for Processing Orders..........coocueeeiiiieeeicieee e B1-2
Inefficiency in the Sales Order SYSteM............cocciiiiiiiiiee e B1-3
Using the Model to Reduce Inefficiency ... B1-3
SIMUIAtioN Parameters..........c.oooiiiei e B1-4
JOb Stream Parameters.........cccvever e e iiee e see e e sneee s B1-4
JOb Value Parameters..........ccooiie et B1-4
Staff PAramMeters.......cccviiiiiieie e B1-4
Equipment Parameters....... .ot B1-5
Gathering and Displaying StatiStCS...........uuviiiiiiiiiee e B1-5
REVENUE STALISHICS.ccuveeeeiee e B1-5
EffICIENCY SEALISHCS.ee e B1-6
Using the Sales Order MOEL..........cc.uvveiiiie i B1-6
Chapter B2
Running the Sales Order Model
The Simulation Parameter File...........occviiiiiiii e B2-1
Restoring the Simulation Parameter File.............cccccceeiiiiiiiiiiinnnen. B2-2
System Properties Specified by These Parameters...................... B2-2
Analysis of the Initial Parameters..........ccccoooveiiiieiiiienee e B2-3
RUNNING the MOAEL........cceeieiie et B2-4
Analyzing and Using Simulation ReSUILS.............cccccoiiiiiiiiee e B2-5
Chapter B3
Using the Sales Order Model
Interpreting the Results of a Simulation RuN...........cccccooiiiiiiiini e, B3-1
Examining the Revenue Charts...........cccoveiiiiiiie e, B3-1
Examining the Efficiency Charts.........cccccviiiiniiiciiice e, B3-3
Experimenting With Possible Improvements............cccccccveeeeeecciieeeeeeeeeee, B3-6
Changing the Simulation Parameters............ccocvvvieeiiiiiiieeee e B3-6
Performing the EXPeriment...........coo it B3-8
Interpreting the New RESUILS.........oceiiiie e B3-9
AdditioNal EXPEITMENTS.oiiiiiiieiii ettt B3-12
More General Use of the Sales Order Model...........ccocvveiiiiiiiiiciniieee e B3-13
Improving the Sales Order Model............coocieeiiiiie e B3-13
Analyzing the Problem...........cccooiiiiiiiie e B3-14
Changing the MOdEL............coeiiiiiiii e B3-14

TOC-14 Design/CPN Tutorial for X-Windows

Table of Contents

Appendix C: Troubleshooting

Chapter C1
Troubleshooting
CPN Settings File Missing or Obsolete...........ccooviiiiiiieiiiiiieee e C1l-1
Problem DeSCrPtON.coiuiiie e Cl-1
Problem SOIULION.........coii e C1-2
ML Configuration Unspecified or INCOMecCt..........cccouvvvveeeeeiiiiiiiiiiieeee e, C1-2
Identifying the Problem...........cceeiie e C1-2
Copying Diagram Default ML Configuration Options.................... C1-3
Setting ML Configuration OpLioNS............cceeeviiiiiiieieeeeiiiieeee e Cl4
ML Interpreter Cannot Be Started............cccoveeeiieiiiiiiniie e C1-5

Design/CPN Tutorial for X-Windows TOC-15

Design/CPN Reference Manual for X-Windows TOC-1

INDEX

Index

Special Characters

() (parentheses),
guards use of; 7-8
, (comma),
guards use as shorthand for boolean andal so operator;
7-9
< (lessthan),
boolean operator used in guards; 7-8
< >(not equal),
boolean operator used in guards; 7-8
<=(lessthan or equal),
boolean operator used in guards; 7-8
= (equal),
boolean operator used in guards; 7-8
> (greater than),
boolean operator used in guards; 7-8
>=(greater than or equal),
boolean operator used in guards; 7-8
@+ (delay expression),
characteristics and use with time stamps; 16-7
[](brackets),
guards use as distinguishing characters; 7-8
" (multiset creation operator),
creating multisets with; 5-8

A

activationrules,
as dynamic modeling paradigm component; 3-3
activities,
See Also transitions;
as dynamic modeling paradigm component; 3-3
as static modeling paradigm component; 3-1
CP net transitions as representations for; 3-3
representing with transitions; 10-6
adding,
See Also creating;
declarations to the global declaration nodes,
to extend FirstNet into SalesNet; 10-2
multisets; 5-8
places to fusion sets; A2-9
text,
to arectangle; 4-11
to arectangle, while creating it; 4-12
addr ess,
Meta Software; 1-7

adjusting,
See Also aligning;
simulation regions,
for SalesNet execution; 10-13
adjustment tool,
characteristics and illustration; 4-8
algorithms,
See Also bindings;
constructing occurrence sets,
issues involved; 15-10
occurrence set execution; 11-16
simulator; 11-14
illustrating with SalesNet model execution with
conflict; 11-15
Align menu,
Horizontal command,
aligning nodes in arow with; 14-17
Horizontal Spread command,
aligning nodes with; 14-16
Vertical command,
aligning nodes in a column with; 14-18
Vertical Spread command,
aligning nodes with; 14-17
aligning,
nodes,
along a diagonal, with Align menu commands;
14-16
in a column, with Vertical command (Align menu);
14-18
in arow, with Horizontal command (Align menu);
14-17
with Align menu commands; 14-16
Alt-DownArrow keys,
navigating to an error with; 9-5
andalso (boolean AND),
boolean operator used in guards; 7-8
appearance,
aligning net components with Align menu
commands; 14-16
arcs,
adjusting; 14-22
concurrency,
controlling; 15-9
effective space use,
creating a separate page for global declarations;
10-17
global fusion place; A2-8
hierarchical CP nets,
improving; A3-11
hierarchy page,
improving; 12-12, A3-16
matching transition sizes; 14-10

Design/CPN Tutorial for X-Windows IDX-1

Design/CPN Tutorial

appearance (cont’d),
subpage,
improving; A3-14
substitution transition,

improving with Child Object command (Makeup

menu); 12-6
superpage,
improving; A3-11
Arc (CPN menu),
connecting FirstModel nodes with; 14-18
creating arcs with; 6-13
arcs,
See Also connectors;
adjusting the appearance of; 14-22
arc creation mode,
term definition; 6-13
arc creation tool,
term definition and illustration; 6-13
arc inscription creation mode,
term definition; 6-14
arc inscription region,
term definition; 5-15
as CP net connections; 3-3
bidirectional,
characteristics and use; 13-11
drawing, for FirstModel; 14-19
characteristics as CP net component; 5-1
connecting FirstModel nodes with; 14-18
creating; 6-13
input arc inscriptions,
binding variablesin; 7-7
evaluating during SalesNet execution; 10-9
evaluating during transition firing; 7-13
role in enabling transitions; 7-2
term definition; 3-4
inscriptions,
characteristics and term definition; 5-15
CPN variables, locality and; 13-19
creating; 6-13
creating, for FirstModel; 14-24
output arc inscriptions,
delay expressions on; 16-8

evaluating during SalesNet execution; 10-10

evaluating during transition firing; 7-13
term definition; 3-4
rerouting; A3-12
term definition,
and characteristics; 5-14
aspectratio,
rectangle,
preserving; 4-12

IDX-2 Design/CPN Tutorial for X-Windows

assigning,
colorsets to FirstModel places; 14-14
ports to sockets,
manually; A3-37
time stamps,
FirstModel; 16-11
attributes,
diagram default,
term definition and characteristics; 6-3
display,
changing; 6-3
term definition; 6-2
object,
term definition and characteristics; 6-2
system default,
term definition and characteristics; 6-3
automatic mode,
term definition and characteristics; 15-16
Automatic Run (Sim menu),
executing a model with; 15-21
running the Sales Order Model with; B2-4
autoscrolling,
characteristics; 4-5
Aux menu,
Box command,
creating rectangles with; 4-7
Connector command,
creating connectors with; 4-18
creating auxiliary graphical objects with; 4-4
Ellipse command,
creating ellipses with; 4-15
Label command,
creating rectangles with; 4-21
Make Region command,
creating regions with; 4-23
auxiliary objects,
See Also graphical objects;
term definition; 4-1

B

backquote ("),
as multiset creation operator; 5-8
bar charts,
examining the Sales Order Model,
efficiency charts; B3-3
revenue charts; B3-1
behavior,
See Also modeling;
CP net execution,
relation to real-world systems; 13-20

Index

behavior (cont’d),
CP nets,
(chapter); 7-1
modeling; 3-1
timed,
increasing the realism of; 16-19
bidirectional arcs,
characteristics and use; 13-11
drawing,
for FirstModel; 14-19
bindings,
See Also algorithms; occurrence sets; tuples,
constructors; tuples, patterns;
binding elements,
executing; 11-16
term definition; 11-14, 15-10
conflict and; 11-6
different,
setting their representation in an occurrence set;
15-13
enabling,
identical; 11-3
multiple; 11-2
identical,
setting their representation in an occurrence set;
15-13
of CPN variables,
ininput arc inscriptions; 7-7
boolean,
See Also expressions; guards;
AND (andalso),
boolean operator used in guards; 7-8
NOT (not),
boolean operator used in guards; 7-8
operators,
used in guards; 7-8
OR (orelse),
boolean operator used in guards; 7-8
tests,
constraining token values with; 7-8
border,
page,
term definition and characteristics; 2-6
bottom-up development,
term definition; 12-2
bound,
term definition; 7-7
Box (Aux menu),
creating rectangles with; 4-7
boxes,
See rectangles;

brackets([]),
guards use as distinguishing characters; 7-8
breakpoints,

See Also simulation;

beginning of substep,
characteristics; 8-12
concurrent execution of SalesNet model; 11-10
FirstNet model, concurrent execution; 11-4
FirstNetDemo model; 8-15
SalesNet’ s appearance; 11-17

continuing execution after,
with Continue command (Sim menu); 8-16

end of substep,
characteristics; 8-13
concurrent execution of SalesNet model; 11-11
FirstNet model, concurrent execution; 11-4
FirstNetDemo model; 8-16
SalesNet’ s appearance; 11-18

setting,
for FirstModel; 15-3
for SalesNet execution; 10-13
with Interactive Simulation Options command (Set

menu); 8-12

C

canceling,
CP net execution,
with Stop command (Sim menu); 8-18
CapsLock key behavior,
preserving rectangle aspect ratio during size change;
4-12
X-Windows; 4-7
causality,
See Also modeling; representation;
representation in FirstModel; 16-4
Change Shape (Makeup menu),
changing transition shape with; A3-28
matching transition sizes with; 14-10
changing,
CP nets,
in the simulator; 11-12
display attributes; 6-3
guards,
to extend FirstNet into SalesNet; 10-2
initial markings,
to add more equipment to the SalesNet model; 11-8
rules with guards,
FirstModel; 15-8

Design/CPN Tutorial for X-Windows IDX-3

Design/CPN Tutorial

changing (cont’d),
transition shape,
with Change Shape command (Makeup menu);
A3-28
charts,
bar,
examining the Sales Order Model efficiency
charts; B3-3
examining the Sales Order Model revenue charts;
B3-1
Child Object (Makeup menu),
improving the appearance of a substitution transition
with; 12-6
selecting aregion with; A3-13
choice,
See Also modeling;
concurrency and,
(chapter); 11-1
term definition; 11-1
clock,
simulated,
mechanism characteristics; 16-6
term definition; 16-5
Close (Filemenu),
closing diagrams with; 2-9
closed,
page,
term definition; 2-7
closing,
diagrams; 2-9
colored Petri nets,
See CP nets; Design/CPN;
colorsets,
See Also places;
assigning to FirstModel places; 14-14
characteristics; 5-4
composite,
term definition; 13-4
duplicate,
characteristics and term definition; 5-6
enumerated,
characteristics and term definition; 5-4
integer,
characteristics and term definition; 5-6
missing,
detecting and handling; 9-2
representing entities with; 10-4
specifying; 6-11
string,
characteristics and term definition; 5-6
term definition; 5-3

IDX-4 Design/CPN Tutorial for X-Windows

colorsets(cont’d),
timed,
declaring; 16-7
tuple,
characteristics and term definition; 13-4
column,
aligning nodes in,
with Vertical command (Align menu); 14-18
commad(,),
guards use as shorthand for boolean andal so operator;
7-9
comments,
importance of in documenting a model; 14-2
in models,
auxiliary objects use for; 4-2
committed,
term definition; 8-15
comparison,
operators,
used in guards; 7-8
compiling,
timed CP nets; 16-14
components,
CP net,
(chapter); 5-1
compositecolorset,
term definition; 13-4
concurrency,
See Also time;
choice and,
(chapter); 11-1
concurrent,
activities, term definition; 11-1
execution, SalesNet model; 11-7
system, term definition; 11-1
conflict,
as limiting factor in; 11-6
issues; 15-11
controlling the appearance of; 15-9
CP net execution,
FirstNet model; 11-4
experimenting with; 11-21
firing multiple concurrent transitions; 11-3
FirstModel; 13-18
occurrence set construction in relation to; 15-11
problems with; 11-1
representing; 11-2
term definition; 11-1
and modeling characteristics; 15-11
very small occurrence sets and; 15-14
conditions,
representing with guards; 10-6

Index

conflict,
avoidance by occurrence set elements; 15-10
bindings and; 11-6
competition for resources,
as concurrency problem; 11-1
concurrency in relation to; 15-11
executing SalesNet model with; 11-15
experimenting with; 11-21
representing; 11-5
resource,
modeling with FirstModel; 15-7
term definition; 11-1
connecting,
superpages to subpages; 12-8
connections,
as dynamic modeling paradigm component; 3-3
as static modeling paradigm component; 3-1
CP net arcs as representations for; 3-3
Connector (Aux menu),
creating connectors with; 4-18
connectors,
See Also arcs;
creating; 4-18
deleting,
dangling; 4-20
editing; 4-20
routing,
automatic; 4-20
routing; 4-19
term definition; 4-2, 18
constants,
See Also CPN variables;
as exact token values; 7-4
constraining,
See Also guards;
token values; 7-8
with more complex guards; 7-10
with simple guards; 7-9
constraints,
partial,
adding with guardsin FirstModel; 15-8
representing with guards; 10-6
term definition; 7-8
constructing,
See Also creating;
occurrence sets,

for SalesNet model execution with conflict; 11-15

occurrence sets; 15-10
constructors,
tuple,
characteristics; 13-8
example of usein First Model; 13-9

constructors (cont’d),
tuple (cont’d),
term definition; 13-9
Continue (Sim menu),
continuing execution after a breakpoint with; 11-18
continuing execution after a breakpoint with; 8-16
continuing,
CP net execution,
with Continue command (Sim menu); 8-16
Copy Defaults (Set menu),
copying diagram defaults with; 6-4
copying,
text regions; 14-26
costs,
Sales Order Model chart depicting elapsed,
examining; B3-5
Sales Order Model chart depicting incurred; B3-3
CPnets,
canceling execution,
with Stop command (Sim menu); 8-18
changing,
in the simulator; 11-12
compared with IDEFO modeling; 3-4
components,
(chapter); 5-1
creating; 6-5
(chapter); 6-1
distributing,
across multiple pages; 12-1
dynamic modeling paradigm characteristics; 3-3
dynamics,
(chapter); 7-1
exampl e description; 5-2
executing; 7-1, 7-14, 8-10
(chapter); 8-1
FirstNet model, concurrent execution; 11-4
order of execution events; 8-16
overview; 5-16
SalesNet, interactive execution; 10-12
SalesNet, simulator actions; 10-9
starting execution, with Interactive Run command
(Sim menu); 8-14
with fusion sets; A2-19
with instance fusion sets; A2-25
extending,
FirstNet into SalesNet (chapter); 10-1
hierarchical,
developing on a subpage; A3-21
diagram structure; A3-2
improving appearance of; A3-11
introduction (chapter); 12-1
relationship among pages in; A3-24

Design/CPN Tutorial for X-Windows IDX-5

Design/CPN Tutorial

CPnets(cont’d),

incremental development,

prime page role; 8-4
locality,

term definition; 13-19
models compared with; 5-3
modularity,

prime page role; 8-4
moving components between pages; 10-20
multi-page,

interconnecting; 12-1
observing execution; 8-12
opening,

with Open (File menu); 8-1
saving; 6-17
structure,

hierarchical, adding; 12-2
syntax errors,

handling, (chapter); 9-1
term definition; 1-2
timed,

compiling; 16-14

executing; 16-16

CPN (colored Petri net),

hierarchy,

term definition; 12-1
ML language,

rolein CP nets; 5-1
model,

term definition; 1-2
objects,

term definition; 4-1, 6-2

CPN menu,

Arc command,
connecting FirstModel nodes with; 14-18
creating arcs with; 6-13
CPN Region command,
assigning colorsets to FirstModel places with;
14-14
assigning time stamps with; 16-12
creating arc inscriptions for FirstModel with;
14-24
creating arc inscriptions with; 6-14
creating guards for FirstModel with; 14-29
creating guards with; 6-8
fixing a syntax error with; 9-6
naming FirstModel places with; 14-12
naming FirstModel transitions with; 14-10
naming places with; 6-10
naming substitution transitions with; 12-6, A3-10
naming transitions with; 6-7
specifying, colorsets with; 6-11

IDX-6 Design/CPN Tutorial for X-Windows

CPN menu (cont’d),

CPN Region command (cont’d),
specifying, initial markings with; 6-12
Declaration Node command,
creating a global declaration node with; 6-15
Fusion Place command,
adding places to afusion set with; A2-9
creating a fusion set with; A2-6
creating instance fusion sets with; A2-24
creating multi-page fusion sets with; A2-14
creating multiple fusion sets with; A2-15
creating page fusion sets with; A2-18
deleting fusion sets with; A2-11
removing places from afusion set with; A2-10
Move to Subpage command,
creating subpages with; 12-3, A3-9
top-down hierarchical CP net development with;
A3-22
Place command,
creating places with; 6-9
Port Assignment command,
manually assigning ports to sockets with; A3-39
Remove Sim Regions command,
cleaning up diagrams during hierarchy simulation;
A3-35
removing simulation regions with; 8-20
Replace by Subpage command,
reversing substitution transition creation with;
A3-19
Substitution Transition command,
converting a transition to a substitution transition
with; A3-28
creating substitution transitions with manual port
assignments; A3-38
Syntax Check command,
performing a syntax check with; 8-2
Transition command,
creating transitions with; 6-5

CPN Region (CPN menu),

assigning,
colorsets to FirstModel places; 14-14
time stamps; 16-12

creating,
arc inscriptions; 6-14
arc inscriptions for FirstModel; 14-24
guards for FirstModel; 14-29
guards; 6-8

fixing a syntax error with; 9-6

naming,
FirstModel places; 14-12
FirstModel transitions; 14-10
places; 6-10

Index

CPN Region (CPN menu) (cont’d),
naming (cont’ d),
substitution transitions; 12-6
substitution transitions; A3-10
transitions; 6-7
specifying,
colorsets with; 6-11
initial markings with; 6-12
CPN variables,
arc inscriptions,
locality and; 13-19
binding in input arc inscriptions; 7-7
characteristics and term definition; 5-10
multiple bindings resulting from locality; 13-19
rebinding,
during SalesNet execution; 10-9
during transition firing; 7-12
specifying token values with; 7-7
undeclared,
detecting and handling; 9-6
creating,
See Also constructing; drawing; editing;
arc inscriptions; 6-13
for FirstModel; 14-24
arcs; 6-13
connectors; 4-18
CP nets; 6-5
(chapter); 6-1
decomposition page,
Design/CPN actions; 12-9
diagrams; 4-6
ellipses; 4-15
fusion sets,
global; A2-6
instance; A2-20
page; A2-17
graphical objects; 4-4
graphical objects,
from text mode; 4-17
guards; 6-8
for FirstModel; 14-29
hierarchical CP nets,
by developing on a subpage; A3-21
labels; 4-21
models,
simple (chapter); 14-1
multisets; 5-8
nodes,
global declaration; 6-15
page instances; A2-21
pages,
for global declarations; 10-17

creating (cont’d),
places,
for FirstModel subpage; 14-12
input; 6-9
output; 6-13
rectangles; 4-7
aseries of; 4-11
adding text while creating; 4-12
regions; 4-23
subpages; 12-3, A3-9
substitution transitions; A3-7
with Substitution Transition (CPN menu); A3-38
transitions; 6-5
current,
marking key region,
term definition; 8-9
marking region,
term definition; 8-9
markings,
simulation regions describing; 8-9
term definition; 5-12
object,
term definition; 4-13
state,
term definition; 5-12
cursor keys,
navigating to an error with; 9-4
customer requests (Sales Order Model),
characteristics; B1-2

D

data,
as dynamic modeling paradigm component; 3-3
characteristics as CP net component; 5-1
CP net characteristics; 3-3
declarations,
in FirstModel; 13-3
objects,
output,
specifying with output arc inscriptions; 10-8
datatype,
See colorsets;
DBfile,
term definition; 2-3
debugging,
controlling the appearance of concurrency; 15-9
Declaration Node (CPN menu),
creating a global declaration node with; 6-15

Design/CPN Tutorial for X-Windows IDX-7

Design/CPN Tutorial

declar ations,
See Also colorsets; global, declaration node;
data,
in FirstModel; 13-3
declaration node tool,
term definition and illustration; 6-15
global declaration nodes,
adding declarations to extend FirstNet into
SalesNet; 10-2
creating; 6-15
declaring atimed colorset in; 16-7
declaring,
timed colorsets; 16-7
decomposition,
See Also substitution transitions;
page,
creating, Design/CPN actions; 12-9
simplifying; 12-10
term definition; 12-2
transitions,
methods for specifying; 12-2
deciphering,
ambiguous syntax error messages; 9-7
delay expressions,
See Also time;
term definition and syntax; 16-7
deleting,
See Also creating;
connectors,
dangling; 4-20
fusion sets,
with Fusion Place (CPN menu); A2-11
graphical objects; 4-14
pages, A3-25
parents; 4-25
rectangles; 4-10
subpages,

references to, from a hierarchical substitution

transition; A3-35
subpages; A3-25
descriptions,
as static modeling paradigm component; 3-2
deselecting,
See Also selecting;
groups; 4-27
Design/CPN,
See Also CP nets;
characteristics and components; 2-1
data,
characteristics; 5-3
editor,
Design/CPN; 4-1

IDX-8 Design/CPN Tutorial for X-Windows

Design/CPN (cont’d),
getting started with (chapter); 2-1
hierarchical decomposition,

substitution transitions, introduction (chapter);

12-1
hierarchy,
characteristics; A1-1
quitting; 2-10
settings file missing or obsolete,
problem symptoms and solutions; C1-1
simulator,
starting; 2-5
tutorial,
design strategy; 1-3
document components overview; 1-2
how to use; 1-4
introduction (chapter); 1-1
prerequisites; 2-2
user interface; 2-5
designating,
See Also specifying;
prime pages; 8-4
with Mode Attributes (Set menu); 8-5
transition decomposition; 12-3
detecting,
See Also troubleshooting;
errors,
ML; 9-9
diagonal,
aligning nodes along,
with Align menu commands; 14-16
diagrams,
closing; 2-9
creating; 4-6
default attributes,
term definition and characteristics; 6-3
file,
term definition; 2-3
navigating; 2-7
opening; 2-5
printing; 2-9
saving; 6-17
term definition; 2-3
directory,
establishing a tutorial; 2-4
display attributes,
See Also attributes;
changing; 6-3
graphical objects,
term definition; 4-3
term definition; 6-2

Index

distributing,
CP net,
across multiple pages; 12-1
documenting,
models,
with auxiliary objects; 4-2

with comments in the global declaration node;

14-1
Drag (Makeup menu),
moving aregion with; A3-13
moving hierarchy key region with; 12-6
drag mode,
term definition; 12-7
dragtool,
term definition; 12-7
drawing,
See Also creating;
graphics tool used for; 4-3
rectangles; 4-7
tool,
term definition; 4-3
duplicatecolor sets,
term definition and characteristics; 5-6
dynamics,
CP nets,
(chapter); 7-1

e-mail address,
Meta Software; 1-7
editing,
See Also creating;
connectors; 4-20
graphical objects; 4-3
more efficient techniques; 6-17
regions; 4-24
text; 4-21
editor,
Design/CPN,
(chapter); 4-1
efficiency,
in a Sales Order system,
examining with simulation charts; B3-3
Ellipse (Aux menu),
creating ellipses with; 4-15
ellipses,
See Also graphical objects; places;
creating; 4-15
creation mode,
characteristics; 4-15

ellipses(cont’d),

tool,

characteristics and illustration; 4-15

empty multiset,

See Also multisets;

term definition; 5-7
enabled,

list,

putting all enabled transitions on, for SalesNet

model execution with conflict; 11-15

scanning, for SalesNet model execution with

conflict; 11-15
term definition; 7-4, 11-14

updating, for SalesNet model execution with

conflict; 11-20
term definition; 7-2
with a binding,
term definition; 7-7
enablement,

See Also algorithms; bindings; occurrence sets;

criteriafor; 7-3
factors determining; 7-2
identical enabling bindings; 11-3
multiple enabling bindings; 11-2
simulated time impact on; 16-5
simulation region identifying; 8-9
term definition; 7-2
enabling,

bindings,

conflict issues; 11-7

term definition; 7-7
multiset,

term definition; 7-3
transitions,

by binding input arc inscription variables; 7-7

Enter Editor (Filemenu),
leaving the simulator with; 8-19
Enter Order transition (FirstModel),
operations performed by; 13-8
Enter Simulator (Filemenu),
entering the simulator with; 8-7
entering,
See Also leaving;
simulator,
with Enter Simulator (File menu); 8-7
text; 4-21
entities,
See Also modeling; representation;
represented in the Sales Order Model; B1-2
representing with colorsets; 10-4
enumer ated color sets,
term definition and characteristics; 5-4

Design/CPN Tutorial for X-Windows

IDX-9

Design/CPN Tutorial

environment,
graphical,
setting; 6-2
term definition; 6-2
tutorial,
establishing; 6-3
equal (=),
boolean operator used in guards; 7-8
equipment,
FirstModel,
characteristics; 13-2
Saes Order Model,
characteristics; B1-2
simulation parameters; B1-5
errors,
error box,
interpreting; 9-4
term definition; 9-3
locating,
with text pointers; 9-4
missing colorset,
fixing; 9-5
ML,
detecting; 9-9
syntax,
detecting, with the Syntax Check command (CPN
menu); 8-2
handling, (chapter); 9-1
missing colorset; 9-2
undeclared CPN variables; 9-6
undeclared CPN variables,
fixing; 9-6
establishing,
See Also creating; specifying;
initial markings,

for SalesNet model execution with conflict; 11-15

tutorial environment; 6-3
evaluating,
input arc inscriptions,
during SalesNet execution; 10-9
during transition firing; 7-13
output arc inscriptions,
during SalesNet execution; 10-10
during transition firing; 7-13
executing,
binding elements; 11-16
CPnets; 7-1, 7-14, 8-10
(chapter); 8-1
FirstNet model, concurrent execution; 11-4
order of execution events; 8-16
overview; 5-16
SalesNet, interactive execution; 10-12

IDX-10 Design/CPN Tutorial for X-Windows

executing (cont’d),
CP nets (cont’d),
SalesNet, simulator actions; 10-9
starting execution, with Interactive Run command
(Sim menu); 8-14
with fusion sets; A2-19
with instance fusion sets; A2-25
models,
automatic mode; 15-20
FirstModel (chapter); 15-1
interactive vs. fast mode; 15-15
occurrence sets,
algorithm for; 11-16
elements; 11-16
Resource Use Model; A2-4
SalesNet model with conflict; 11-15
timed CP nets; 16-16
execution,
concurrent,
SalesNet model; 11-7
modes,
alternating between automatic and interactive;
15-21
automatic, executing a model with; 15-21
fair automatic compared with fast automatic mode;
15-16
specifying, actual; 15-18
specifying, possible; 15-17
specifying stop criteria for; 15-19
states,
loading; 15-23
saving; 15-22
starting with a saved; 15-24
experimenting,
See Also modeling;
with Sales Order Model improvements; B3-6
expressions,
boolean,
used in guards; 7-8
delay,
syntax and characteristics; 16-7
extending,
CP nets,
FirstNet into SalesNet (chapter); 10-1

Index

F

fair automatic mode,
term definition and comparison with fast automatic
mode; 15-16
fast automatic mode,
term definition and comparison with fair automatic
mode; 15-16
fax number,
Meta Software; 1-7
feedback region,
term definition; 8-9
Filemenu,
Close command,
closing diagrams with; 2-9
Enter Editor command,
leaving the simulator with; 8-19
Enter Simulator command,
entering the simulator with; 8-7
Load State command,
saving an execution state with; 15-23
Load Subdiagram command,
loading a subdiagram with; A2-12
New command,
creating a CP net with; 6-5
creating new diagrams with; 4-6
Open command,
opening a diagram with; 2-5
opening CP nets with; 8-1
starting the Sales Order Model with; B2-3
Quit command,
exiting Design/CPN Sales Order Model
experiments with; B3-14
quitting Design/CPN with; 2-10
Save As command,
saving CP nets with; 6-17
Save State command,
saving an execution state with; 15-22
Save Subdiagram command,
saving a subdiagram with; A2-12
files,
Design/CPN files,
characteristics, contents, and use; 2-3
Sales Order Model; B1-1
simulation parameters,
Sales Order Model, contents and use; B2-1
fire,
term definition; 7-12
firing,
concurrent transitions; 11-3

firing (cont’d),

simulation region identifying; 8-9

FirstModel model,

characteristics and components; 13-1
concurrency; 13-18
entering an order; 13-17
operations; 13-7
processing an order; 13-17
SalesNet compared with; 13-2
shipping an order; 13-17
structure of; 13-3
summary of operations; 13-16
superpage,

compared with SalesNet; 13-5

FirstNet model,

concurrent execution of; 11-4
extending,
into SalesNet (chapter); 10-1

FirstNetDemo model,

breakpoints,
beginning of substep; 8-15
end of substep; 8-16

Fusion Place (CPN menu),

adding places to afusion set with; A2-9
creating,
afusion set with; A2-6
instance fusion sets with; A2-24
multi-page fusion sets with; A2-14
multiple fusion sets with; A2-15
page fusion sets with; A2-18
deleting,
fusion sets with; A2-11
places from a fusion set with; A2-10

fusion,

key region,
term definition and illustration; A2-8
places,
(chapter); A2-1
characteristics; A1-2
global, physical appearance; A2-8
global, term definition; A2-8
instance, term definition; A2-24
multiple pages; A2-11
page, term definition; A2-17
ports as a type of; 12-8
single page; A2-4
sockets as a type of; 12-8
term definition; 12-1, A1-2, A2-1
region,
term definition; A2-8
sets,
adding places to; A2-9

Design/CPN Tutorial for X-Windows IDX-11

Design/CPN Tutorial

fusion (cont’d),
sets (cont’d),

deleting with Fusion Place (CPN menu); A2-11
executing CP nets with; A2-19
global, creating; A2-6
global, term definition; A2-7
initial markings and; A2-10
instance, creating; A2-20
instance, executing CP nets with; A2-25
multiple, working with; A2-14
multiplicity and; A2-23
page, creating; A2-17
page, term definition; A2-17
page-spanning, working with; A2-13
removing places from; A2-10
term definition; A1-2, A2-1

subsets,

instance, term definition; A2-24
page, term definition; A2-17

G

General Simulation Options (Set menu),
simulating with and without; 16-18
specifying actual executions modes with; 15-18
generating,
See Also creating;
output multisets,
during SalesNet execution; 10-11

global,

declaration node,
adding declarations to extend FirstNet into

SalesNet; 10-2

creating; 6-15
creation mode, term definition; 6-15
declaring atimed colorset in; 16-7
FirstModel; 13-3
moving to a new page; 10-20
term definition; 5-3
declarations,
converting SalesNet into FirstModel; 14-1
fusion place,
physical appearance; A2-8
term definition; A2-8

fusion set,

term definition; A2-7
graphical objects,
See Also ellipses;
characteristics; 4-2
creating; 4-4
from text mode; 4-17

IDX-12

Design/CPN Tutorial for X-Windows

graphical objects(cont’d),
deleting; 4-14
editing; 4-3
multiple,
working with different types; 4-17
working with; 4-13
selecting; 4-14
term definition; 4-1
graphics,
auxiliary compared with CPN; 6-1
Design/CPN editor,
(chapter); 4-1
graphical environment,
term definition; 6-2
graphics mode,
characteristics; 4-3
term definition; 4-3
graphics tool,
term definition; 4-3
greater than (>),
boolean operator used in guards; 7-8
greater than or equal (>=),
boolean operator used in guards; 7-8
Group menu,
Regroup command,
reconstructing groups with; 4-27
selecting groups with; 4-26
Ungroup command,
deselecting groups with; 4-27
groups,
deselecting; 4-27
group mode,
term definition; 4-25
group tool,
characteristics and illustration; 4-25
mixed,
restrictions; 4-26
operations on; 4-26
reconstructing; 4-27
selecting; 4-26
term definition; 4-25
guards,
See Also input arc inscriptions;
changing rules with,
FirstModel; 15-8
characteristics,
and term definition; 5-16
as CP net component; 5-1
creating; 6-8
for FirstModel; 14-29
guard region creation mode,
term definition; 6-8

Index

guards(cont’d),
modifying to extend FirstNet into SalesNet; 10-2
representing constraints and conditions with; 10-6
role in enabling transitions; 7-3
syntax; 7-8
term definition; 3-4, 7-3

H

handles,
See Also arcs; connectors;
term definition; 4-9
handling,
syntax errors,
(chapter); 9-1
hierarchy,
See Also fusion; substitution transitions;
hierarchical CP nets,
developing on a subpage; A3-21
relationship among pages in; A3-24
term definition; 1-2
hierarchical decomposition,
substitution transitions, introduction (chapter);
12-1
term definition; 12-2
introduction,
(chapter); Al1-1
key region,
moving with Drag command (M akeup menu); 12-6
term definition; 12-5, A3-10
page,
changes when a substitution transition is created;
12-11
deleting a page from; A3-25
error box location on; 9-3
for ahierarchical CP net diagram; A3-2
hierarchical CP net for top-down net development;
A3-23
improving appearance; 12-12
improving appearance; A3-16
improving the appearance of; 10-19
term definition and characteristics; 2-7
region,
term definition; 12-5, A3-10
term definition; Al1-1
Horizontal (Align menu),
aligning nodes in arow with; 14-17
horizontal spread,
aligning nodes along,
with Horizontal Spread command (Align menu);
14-16

Horizontal Spread (Align menu),
aligning nodes with; 14-16

IDEFO modeling paradigm,
characteristics; 3-2
compared with CP net modeling; 3-4
incremental net development,
prime page role; 8-4
initial markings,
See Also places;
changing,
to add more equipment to the SalesNet model; 11-8
establishing,
for SalesNet model execution with conflict; 11-15
fusion sets and; A2-10
location of in a hierarchical net,
modeling considerations; 15-4
region,
characteristics and term definition; 5-12
initializing with Initial State command (Sim
menu); 11-13
specifying; 6-11
term definition; 5-12
time stamps and; 16-10
initial state,
term definition; 5-12
Initial State (Sim menu),
experimenting with changed simulation parameters
for the Sales Order Model; B3-8
initializing SalesNet after changing in the simulator;
11-13
initializing state after changing initial markingsin
FirstModel; 15-5
initializing the CP net state with; 8-13
initializing,
CP net state with Initial State (Sim menu); 8-13
initial marking region,
with Initial State command (Sim menu); 11-13
Sales Order Model; B3-8
SalesNet after changing in the simulator; 11-13
state after changing initial markingsin FirstModel;
15-5
input,
arcs,
term definition; 5-14
places,
creating; 6-9

Design/CPN Tutorial for X-Windows IDX-13

Design/CPN Tutorial

input (cont’d),
places (cont’d),
removing enabling multisets from, during
transition firing; 7-13
term definition; 5-14
token key region,
term definition; 8-15
token region,
term definition; 8-15
tokens,
term definition; 8-15
inputarcinscriptions,
See Also arcs; guards; inscriptions;
binding variablesin; 7-7
characteristics as CP net component; 5-1
constants used as; 7-4
evaluating,
during SalesNet execution; 10-9
during transition firing; 7-13
role in enabling transitions; 7-2
term definition; 3-4, 5-15
inscriptions,
arc,
characteristics and term definition; 5-15
creating; 6-13
creating, for FirstModel; 14-24
detecting errorsin; 9-9
input arc,
binding variablesin; 7-7
constants used as; 7-4
evaluating during SalesNet execution; 10-9
evaluating during transition firing; 7-13
role in enabling transitions; 7-2
term definition; 3-4
output arc,
delay expressions on; 16-8
evaluating during SalesNet execution; 10-10
evaluating during transition firing; 7-13
term definition; 3-4
Instance Switch dialog,
switching among page instances with; A3-35
instance,
fusion place,
term definition; A2-24
fusion sets,
creating; A2-20
fusion subsets,
term definition; A2-24
page,
creating; A2-21
switching among, with the Instance Switch
dialog; A3-35

IDX-14 Design/CPN Tutorial for X-Windows

instance (cont’d),
page (cont’d),
term definition; A2-20
integer colorsets,
characteristics and term definition; 5-6
interactivemode,
term definition and characteristics; 15-16
Interactive Run (Sim menu),
constructing an occurrence set with; 11-15
executing,
CP nets with; 8-10
FirstModel with; 15-3
SalesNet with; 10-13
starting execution with; 8-14
Interactive Simulation Options(Set menu),
setting breakpoints; 8-12
for FirstModel; 15-3
for SalesNet; 10-13
interpreting,
Sales Order Model run results; B3-1

J

Jensen, Kurt,
bibliographic reference; 1-1
job,
stream (Sales Order Model),
simulation parameters; B1-4
value (Sales Order Model),
simulation parameters; B1-4

K

keyregion,

term definition and characteristics; 10-15
keyboard,

Design/CPN use of; 2-4
keystroke,

shortcuts; 4-5

L

Label (Aux menu),
creating rectangles with; 4-21
labels,
creating; 4-21
differences between graphical objects and; 4-22

Index

labels(cont’d),
|abel creation mode,
characteristics; 4-21
|abel tool,
characteristics and illustration; 4-21
term definition; 4-2
leaving,
See Also entering;
simulator,
with Enter Editor command (File menu); 8-19
lessthan (<),
boolean operator used in guards; 7-8
lessthan or equal (<=),
boolean operator used in guards; 7-8
literals,
as exact token values; 7-4
Load State (Filemenu),
saving an execution state with; 15-23
Load Subdiagram (Filemenu),
loading a subdiagram with; A2-12
loading,
See Also saving;
execution states; 15-23
subdiagrams; A2-12
locality,
See Also concurrency; modeling;
CP net,
term definition; 13-19
locating,
errors,
with text pointers; 9-4
errors; 9-3
locations,
as dynamic modeling paradigm component; 3-3
CP net places as representations for; 3-3
representing with places; 10-5

M

macr os,
subpages compared to; A3-24, A3-34
MakeRegion (Aux menu),
creating regions with; 4-23
Makeup menu,
Change Shape command,
changing transition shape with; A3-28
matching transition sizes with; 14-10
Child Object command,
improving the appearance of a substitution
transition with; 12-6
selecting aregion with; A3-13

Makeup menu (cont’d),
Drag command,
moving a region with; A3-13
moving hierarchy key region with; 12-6
mapping,
inputs to output,
role of the simulator in; 11-3
markings,
appearance of; 5-13
characteristics and term definition; 5-12
current marking key region,
term definition; 8-9
current marking region,
term definition; 8-9
current simulation regions,
describing; 8-9
initial marking region,
characteristics and term definition; 5-12
initial,
fusion sets and; A2-10
specifying; 6-11
term definition; 5-12
mathematical introduction,
Petri nets,
bibliographic reference; 1-1
menu bar,
characteristics; 2-6
M eta Softwar e,
addresses and telephone numbers; 1-7
ML Configuration Options(Set menu),
loading ML configuration information with; 8-2
loading SalesNet configuration information with;
11-8
preserving ML configuration options with; 6-4
setting options for the Resource Use Model; A2-4
ML language,
configuration information,
loading; 8-2
loading for SalesNet model; 11-8
configuration options,
preserving; 6-4

errors,
detecting; 9-9
file,
term definition; 2-3
process,

term definition; 2-3
rolein CP nets; 5-1
window,
term definition and illustration; 8-3
Mode Attributes (Set menu),
creating multiple page instances with; A2-21

Design/CPN Tutorial for X-Windows IDX-15

Design/CPN Tutorial

Mode Attributes (Set menu) (cont’d),
designating prime pages with; 8-5
specifying prime pages with; A2-13
model time,
term definition; 16-5
modeling,
See Also behavior; choice; representation;
activities,
with transitions; 10-6
analyzing FirstModel execution; 15-3
under heavy load; 15-7
with different occurrence set parameter settings;
15-14
with partial constraints; 15-9
behavior resulting from net execution; 13-20
concurrency issues; 15-11
conditions,
with guards; 10-6
documenting the model through comments; 14-2
effective space use,
creating a separate page for global declarations;
10-17
improving the appearance of the hierarchy page;
10-19
entities,
with colorsets; 10-4
experimenting with a model,
guidelines for; 15-6
experimenting with Sales Order Model
improvements; B3-6
extending a small net into a high-level model,
(chapter); 10-1
initial marking location considerations; 15-4
interpreting the results of Sales Order Model run;
B3-1
locality in CP nets; 13-19
locations,
with places; 10-5

mutual independence of transitions in CP nets; 13-19

occurrence set construction issues; 15-10
paradigms,
(chapter); 3-1
dynamic, term definition and characteristics; 3-3
static, term definition and characteristics; 3-1
term definition; 3-1

power of locality for real-world representation; 13-19

representation,
SalesNet model relationship to the system it
represents; 10-4
requirements for skill in; 1-6
rules,
with guards; 10-6

IDX-16 Design/CPN Tutorial for X-Windows

modeling (cont’d),
specifying how and when to stop; 15-19
submodels; 15-4
understanding a simple model (chapter); 13-1
models,
See Also FirstModel model; FirstNet model;
FirstNetDemo model; Resource Use model;
Sales Order model; SalesNet model;
building a simple (chapter); 14-1
CP nets compared with; 5-3
executing,
automatic mode; 15-20
FirstModel (chapter); 15-1
interactive vs. fast mode; 15-15
modes,
execution,
alternating between automatic and interactive;
15-21
specifying, actual; 15-18
specifying, possible; 15-17
graphics,
term definition; 4-3
graphics editor,
term definition; 4-3
text,
term definition; 4-3
modularity,
See Also hierarchy;
CP nets,
prime page role; 8-4
mouse,
Design/CPN use of; 2-4
MovetoSubpage (CPN menu),
creating subpages with; 12-3, A3-9
top-down hierarchical CP net development with;
A3-22
moving,
See Also navigating;
CP net components between pages; 10-20
hierarchy key region,
with Drag command (Makeup menu); 12-6
parents; 4-24
rectangles; 4-9
during creation; 4-10
regions; A3-13
multiplicity,
fusion and; A2-23
substitution transitions and; A3-33
term definition; A2-20
multiprocessing,
Design/CPN use of; 2-3

Index

multisets,
adding; 5-8
designator,
term definition and characteristics; 5-8
empty,
term definition; 5-7
enabling,
removing during SalesNet execution; 10-10
multiset creation operator (),
creating multisets with; 5-8
output,
generating during SalesNet execution; 10-11
putting into output place during transition firing;
7-14
term definition; 7-13
regions,
term definition; 8-15
removing enabling from each input place,
during transition firing; 7-13
specifying; 5-8
subsetting; 5-9
subtracting; 5-9
term definition and characteristics; 5-7
time stamps and; 16-11

N

naming,
name region creation mode,
term definition; 6-7
pages,
with Page Attributes command (Set menu); 10-18
places; 6-10
for FirstModel subpage; 14-12
substitution transitions; 12-5, A3-10
transitions; 6-7
navigating,
See Also moving;
diagrams; 2-7
from subpage to superpage,
by double-clicking on a port; A3-6
to an error with cursor keys; 9-4
New (Filemenu),
creating a CP net with; 6-5
creating new diagrams with; 4-6
New Page (Page menu),
creating a page for global declarations with; 10-18
nodes,
See Also regions;

nodes(cont’d),
aligning,
along a diagonal, with Align menu commands;
14-16
with Align menu commands; 14-16
CPN,
term definition; 6-2
global declaration,
adding declarations to extend FirstNet into
SalesNet; 10-2
creating; 6-15
declaring atimed colorset in; 16-7
page,
term definition and characteristics; 2-8
reference,
term definition; 14-16
regions and; 4-22
term definition; 4-2, 4-18
not (boolean NOT),
boolean operator used in guards; 7-8
not equal (<>)),
boolean operator used in guards; 7-8

O

object attributes,
term definition and characteristics; 6-2
objects,
CPN compared with auxiliary; 4-2
data,
occlusion order,
term definition; 4-14
occur,
term definition; 7-2
occurrence,
what happens when atransition occurs; 7-11
occurrencesets,
See Also algorithms; bindings;
characteristics; 15-10
concurrency in relation to; 15-11
constructing; 15-10
for SalesNet model execution with conflict; 11-15
controlling the appearance of concurrency with;
15-10
executing,
algorithm for; 11-16
the elementsin; 11-16
parameters controlling their construction,
scope of; 15-14
setting; 15-14
term definition; 15-11

Design/CPN Tutorial for X-Windows IDX-17

Design/CPN Tutorial

occurrencesets(cont’'d),
setting parameters,
with Occurrence Set Options (Set menu); 15-12
term definition; 11-14, 15-10
Occurrence Set Options(Set menu),
setting occurrence set parameters with; 15-12
omitting,
See Also deleting;
time stamp; 16-9
Open (Filemenu),
opening a diagram with; 2-5
opening CP nets with; 8-1
starting the Sales Order Model with; B2-3
openpage,
term definition; 2-7
Open Page (Pagemenu),
accessing hierarchy page with; 10-19
examining bar chart page with; B3-3
opening pages with; 2-7
selecting a page with; 8-5
opening,
CP nets,
with Open (File menu); 8-1
diagram; 2-5
pages,
with Open Page (Page menu); 2-7, 8-5
operators,
See Also expressions,
backquote (°); 5-8
boolean,
used in guards; 7-8
comparison,
used in guards; 7-8
order processing,
FirstModel,
characteristics; 13-2
orders,
FirstModel,
characteristics; 13-1
orelse(boolean OR),
boolean operator used in guards; 7-8
output,
arcs,
term definition; 5-14
multisets,
generating during SalesNet execution; 10-11

putting into output place during transition firing;

7-14
term definition; 7-13
places,
creating; 6-13

IDX-18 Design/CPN Tutorial for X-Windows

output (cont’d),
places (cont’d),

putting the output multiset into during transition

firing; 7-14
term definition; 5-14
representing with output arcs and output arc
inscriptions; 10-8
token key region,
term definition; 8-15
token region,
term definition; 8-15
tokens,
term definition; 8-15
output arcinscriptions,
characteristics as CP net component; 5-1
delay expressions on; 16-8
evaluating,
during SalesNet execution; 10-10
during transition firing; 7-13
specifying output with; 10-8
term definition; 3-4, 5-15

P

page,
mode key region,
term definition; 8-6
mode region,
term definition; 8-6
node,
term definition and characteristics; 2-8
numbers,
printing use of; 2-9
Page Attributes (Set menu),
Page Height component,
page border specified by; 2-6
Page Width component,
page border specified by; 2-6
renaming pages with; 10-20
renaming pages with; 12-13
pageborder,
term definition and characteristics; 2-6
Page Height component - Page Attributes
(Set menu),
page border specified by; 2-6
pageinstances,
multiple,

setting their representation in an occurrence set;

15-12

Index

Page menu,
New Page command,
creating a page for global declarations with; 10-18
Open Page command,
accessing hierarchy page with; 10-19
examining bar chart page with; B3-3
opening pages with; 2-7
selecting a page; 8-5
Redraw Hierarchy command,
redrawing the hierarchy page with; 12-12, A3-17
PageWidth component - Page Attributes (Set
menu),
page border specified by; 2-6
pages,
closed,
term definition; 2-7
creating,
for global declarations; 10-17
decomposition,
creating, Design/CPN actions; 12-9
simplifying; 12-10
deleting; A3-25
fusion place,
term definition; A2-17
fusion sets,
creating; A2-17
term definition; A2-17
fusion subsets,
term definition; A2-17
hierarchy,
for ahierarchical CP net diagram; A3-2
hierarchical CP net for top-down net development;
A3-23
improving the appearance of; 10-19, 12-12,
A3-16
term definition and characteristics; 2-7
instances,
creating; A2-21
term definition; A2-20
moving CP net components between; 10-20
multiple,
distributing a CP net across; 12-1
setting their representation in an occurrence set;
15-12
naming,
with Page Attributes command (Set menu); 10-18
open,
term definition; 2-7
opening,
with Open Page (Page menu); 2-7, 8-5
prime,
designating; 8-4

pages(cont’d),
prime (cont’ d),
designating with Mode Attributes (Set menu); 8-5
specifying; A2-13
term definition; 8-4
relationship among in a hierarchical CP net; A3-24
renaming; 12-13
from the hierarchy page; 10-20
term definition and characteristics; 2-6
parameters,
occurrence set,
setting with Occurrence Set Options (Set menu);
15-12
simulation,
changing, for Sales Order Model; B3-6
Sales Order Model; B1-4
Sales Order Model, contents and use of the file
containing; B2-1
parentheses (()),
guards use of; 7-8
parents,
See Also regions;
deleting; 4-25
moving; 4-24
pasting,
text regions; 14-26
patterns,
tuple,
characteristics; 13-12
term definition; 13-12
performance,
fast model execution vs. interactive model execution;
15-15
performing,
See Also executing;
syntax check; 8-2
Petri nets,
See Also CP nets; Design/CPN;
characteristics and use; 1-1
hierarchical colored,
term definition; 1-2
history; 1-1
mathematical introduction,
bibliographic reference; 1-1
term definition; 1-1
Place (CPN menu),
creating places with; 6-9
placecreation mode,
term definition; 6-9
placetool,
term definition and illustration; 6-9

Design/CPN Tutorial for X-Windows IDX-19

Design/CPN Tutorial

places,
See Also colorsets; ellipses; initial markings;
adding to fusion sets; A2-9
as CP net locations; 3-3
characteristics and term definition; 5-11
characteristics as CP net component; 5-1
creating,
for FirstModel subpage; 14-12
current marking simulation regions,
characteristics; 8-9
fusion,
multiple pages; A2-11
page, term definition; A2-17
ports as a type of; 12-8
sockets as a type of; 12-8
global fusion,
physical appearance; A2-8
term definition; A2-8
input,
creating; 6-9
removing enabling multisets from, during
transition firing; 7-13
markings,
characteristics and term definition; 5-12
naming; 6-10
for FirstModel subpage; 14-12
output,
creating; 6-13
putting the output multiset into, during transition
firing; 7-14
removing from fusion sets; A2-10
representing locations with; 10-5
pointer tool,
characteristics and illustration; 4-23
popup regions,
term definition and characteristics; 10-15
Port Assignment (CPN menu),
manually assigning ports to sockets with; A3-39
ports,
as atype of fusion place; 12-8
key region,
term definition; 12-9
manually assigning to sockets; A3-37
navigating from a subpage to a superpage by double-
clicking on; A3-6
port key region,
term definition; A3-5
port region,
term definition; A3-5
rearranging,
for FirstModel; 14-7

IDX-20 Design/CPN Tutorial for X-Windows

ports(cont’d),
region,
term definition; 12-9
relationship to sockets; 14-5
socket relationship to; A3-6
subpage,

FirstModel appearance before modification; 14-4

term definition; 12-8, A3-1
preserving,

See Also aligning;

aspect ratio; 4-12
primepages,

See Also occurrence sets; simulation;

designating; 8-4

with Mode Attributes (Set menu); 8-5

specifying; A2-13

term definition; 8-4
printing,

diagrams; 2-9

Process Order transition (FirstModel),

enablement of; 13-13

firing; 13-14

operations performed by; 13-10
process,

modeling; 3-1
products,

FirstModel,

characteristics; 13-2

Q

Quit (Filemenu),

exiting Design/CPN Sales Order Model experiments

with; B3-14
quitting Design/CPN with; 2-10
quitting,
See Also entering;
Design/CPN; 2-10

R

rebinding,

See Also bindings; CPN variables;

CPN variables,

during transition firing; 7-12

reconstructing,

groups; 4-27
rectangles,

See Also transitions;

Index

rectangles(cont’d),
adding text to; 4-11
creating; 4-7
aseries of; 4-11
adding text while; 4-12
deleting; 4-10
moving,
during creation; 4-10
moving; 4-9
preserving the aspect ratio during size change; 4-12
rectangle creation mode,
characteristics; 4-7
rectangle tool,
characteristics and illustration; 4-7
reshaping; 4-9
Redraw Hierarchy (Page menu),
redrawing the hierarchy page with; 12-12, A3-17
referencenodes,
term definition; 14-16
region,
key,
term definition and characteristics; 10-15
regions,
See Also nodes;
CPN,
term definition; 6-2
creating; 4-23
current marking key,
term definition; 8-9
current marking,
term definition; 8-9
editing; 4-24
feedback,
term definition; 8-9
fusion key,
term definition and illustration; A2-8
hierarchy key,
moving with Drag command (M akeup menu); 12-6
term definition; A3-10
hierarchy,
term definition; A3-10
initial marking,
characteristics and term definition; 5-12
initializing with Initial State command (Sim
menu); 11-13
moving; A3-13
the parent of; 4-24
popup,
term definition and characteristics; 10-15
port,
term definition; 12-9, A3-5

regions(cont’'d),
port key,
term definition; 12-9, A3-5
region tool,
term definition and illustration; 6-7
restoring the independence of a; 4-24
selecting; A3-13
simulation,
characteristics and purpose; 8-8
current marking; 8-9
feedback; 8-9
removing with Remove Sim Regions command
(CPN menu); 8-20
term definition; 8-9
transition feedback; 8-9
substitution tag,
term definition; 12-12
term definition and characteristics; 4-22
text,
copying; 14-26
pasting; 14-26
time,
term definition; 16-8
Regroup (Group menu),
reconstructing groups with; 4-27
Remove Sim Regions(CPN menu),
cleaning up diagrams during hierarchy simulation;
A3-35
removing simulation regions with; 8-20
removing,
See Also creating;
enabling multisets from each input place,
during SalesNet execution; 10-10
during transition firing; 7-13
places from fusion sets; A2-10
simulation regions,
with Remove Sim Regions command (CPN menu);
8-20
renaming,
pages; 12-13
from the hierarchy page; 10-20
Replaceby Subpage (CPN menu),
reversing substitution transition creation with;
A3-19
representation,
activities,
modeling with transitions; 10-6
causality,
in FirstModel; 16-4
concurrency; 11-2
conditions,
modeling with guards; 10-6

Design/CPN Tutorial for X-Windows IDX-21

Design/CPN Tutorial

representation (cont’d),
conflict; 11-5
entities,
modeling with colorsets; 10-4
locations,
modeling with places; 10-5
modeling,
SalesNet model relationship to the system it
represents; 10-4
modeling paradigms,
dynamic, term definition and characteristics; 3-3
static, term definition and characteristics; 3-1
rules,
modeling with guards; 10-6
Sales Order Model entities; B1-2
state,
transition use as; 11-3
time,
simulated (chapter); 16-1
representing,
data output with output arcs and output arc
inscriptions; 10-8
rerouting,
See Also aligning;
arcs; A3-12
resetting,
drawing environment; 4-6
reshaping,
See Also aligning; creating;
rectangles; 4-9
Resource Use M odel,
characteristics and files; A2-1
description; A2-3
executing; A2-4
hierarchy page; A3-2
overall structure; A3-6
subpage; A3-4
superpage; A3-3
resour ces,
allocation of; 11-1
competition for,
as concurrency problem; 11-1
modeling with FirstModel; 15-7
restoring,
drawing environment; 4-6
Reswitch (Sim menu),
reswitching after changing initial markingsin
FirstModel; 15-5
reswitching SalesNet after changing in the simulator;
11-13
reswitching,
after changing a CP net in the simulator; 11-13

IDX-22 Design/CPN Tutorial for X-Windows

reversing,
substitution transition creation; A3-18
routing,
See Also aligning;
connectors; 4-19
automatic; 4-20
row,
aligning nodes in,
with Horizontal command (Align menu); 14-17
rules,
as source of system inefficiency,
detecting through simulation; B3-14
representing with guards; 10-6
running,
See Also executing;
Sales Order Model; B2-4

S

SalesOrder Model,
detecting inefficiency in the system described by;
B1-3
efficiency charts,
examining; B3-3
experimenting with changed simulation parameters;
B3-8
inefficiency in the system described by; B1-3
interpreting and using (chapter); B3-1
introduction to (chapter); B1-1
overview; B1-1
revenue charts,
examining; B3-1
running; B2-4
(chapter); B2-1
starting,
with Open (File menu); B2-3
SalesNet model,
changing in the simulator; 11-12
concurrent execution of; 11-7
executing with conflict; 11-15
extending,
with substitution transitions; 12-1
FirstModel compared with; 13-2
Order Processing System modeled by; 10-3
superpage,
compared with FirstModel; 13-5
satisfy,
term definition; 7-10
SaveAs(Filemenu),
saving CP nets with; 6-17

Index

Save State (Filemenu),
saving an execution state with; 15-22
Save Subdiagram (Filemenu),
saving a subdiagram with; A2-12
saving,
See Also loading;
CP nets; 6-17
diagram changes,
with Save Changes dialog (Close command); 2-9
diagrams; 6-17
execution states; 15-22
subdiagrams; A2-12
scrolling,
autoscrolling characteristics; 4-5
segments,
term definition; 4-19
selecting,
graphical objects; 4-14
groups; 4-26
pages,
with Open Page (Page menu); 8-5
regions; A3-13
Set menu,
Copy Defaults command,
copying diagram defaults with; 6-4
General Simulation Options command,
simulating with and without; 16-18
specifying actual executions modes with; 15-18
Interactive Simulation Options command,
setting breakpoints with; 8-12
setting FirstModel breakpoints with; 15-3
setting SalesNet breakpoints with; 10-13
ML Configuration Options command,
loading ML configuration information with; 8-2
loading SalesNet configuration information with;
11-8
preserving ML configuration options with; 6-4
setting options for the Resource Use Model; A2-4
Mode Attributes command,
creating multiple page instances with; A2-21
designating prime pages with; 8-5
specifying prime pages with; A2-13
Occurrence Set Options command,
setting occurrence set parameters with; 15-12
Page Attributes command,
Page Height component, page border specified by;
2-6
Page Width component, page border specified by;
2-6
renaming pages with; 10-20, 12-13
Page Height component - Page Attributes command,
page border specified by; 2-6

Set menu (cont’d),
Page Width component - Page Attributes command,
page border specified by; 2-6
Shape Attributes command,
specifying bidirectional arcs with; 14-20
Simulation Code Options command,
compiling timed CP nets with; 16-14
specifying possible execution modes with; 15-17
sets,
See multisets;
setting,
breakpoints,
for FirstModel; 15-3
for SalesNet execution; 10-13
with Interactive Simulation Options command (Set
menu); 8-12
graphical environment; 6-2
occurrence set parameters,
with Occurrence Set Options (Set menu); 15-12
shape,
transition,
changing with Change Shape command (Makeup
menu); A3-28
Shape Attributes (Set menu),
specifying bidirectional arcs with; 14-20
Ship Product transition (FirstM odel),
operations performed by; 13-15
shortcuts,
keystroke; 4-5
Sim menu,
Automatic Run command,
executing a model with; 15-21
running the Sales Order Model with; B2-4
characteristics and purpose; 8-10
Continue command,
continuing execution after a breakpoint with;
8-16, 11-18
Initial State command,
experimenting with changed simulation
parameters for the Sales Order Model; B3-8
initializing SalesNet after changing in the
simulator; 11-13
initializing state after changing initial markings
in FirstModel; 15-5
initializing the CP net state with; 8-13
Interactive Run command,
constructing an occurrence set with; 11-15
executing CP nets with; 8-10
executing FirstModel with; 15-3
executing SalesNet with; 10-13
starting execution with; 8-14

Design/CPN Tutorial for X-Windows IDX-23

Design/CPN Tutorial

Sim menu (cont’d),
Reswitch command,
reswitching FirstModel after changing initial
markings; 15-5
reswitching SalesNet after changing in the
simulator; 11-13
Stop command,
canceling CP net execution with; 8-18
simplifying,
See Also aligning;
decomposition page; 12-10
Simulation Code Options (Set menu),
compiling timed CP nets with; 16-14
specifying possible execution modes with; 15-17
simulation,
See Also breakpoints;
interpreting the results of Sales Order Model run;
B3-1
parameters,
changing, for Sales Order Model; B3-6
Sales Order Model; B1-4
regions,
adjusting for SalesNet execution; 10-13
characteristics and purpose; 8-8
current marking; 8-9
feedback; 8-9
removing with Remove Sim Regions command
(CPN menu); 8-20
term definition; 8-9
transition feedback; 8-9
simulated time,
mechanism; 16-5
specifying time for; 16-7
with and without time; 16-18
with fusion sets; A2-19
with hierarchy; A3-34
with instance fusion sets; A2-25
simulator,
actions,
at the beginning of substep breakpoint; 8-15
when executing SalesNet; 10-9
algorithm,
determining enablement; 7-4
changing anet in; 11-12
characteristics; 7-1
entering,
with Enter Simulator (File menu); 8-7
executing CP nets with; 7-14
(chapter); 8-1
execution algorithm; 11-14
illustrating with SalesNet model execution with
conflict; 11-15

IDX-24 Design/CPN Tutorial for X-Windows

simulator (cont’d),
leaving,
with Enter Editor command (File menu); 8-19
role in mapping inputs to outputs; 11-3
term definition; 7-1
size,
rectangle,
preserving the aspect ratio while changing; 4-12
sizes,
matching,
for transitions; 14-10
sockets,
as atype of fusion place; 12-8
manually assigning ports to; A3-37
port relationship to; A3-6
relationship to ports; 14-5
term definition; 12-8, A3-1
spacebar,
adjusting arc appearance with; 14-22
specifying,
colorsets; 6-11
exact values for tokens; 7-4
execution modes,
actual; 15-18
possible; 15-17
initial marking; 6-11
multisets; 5-8
prime pages;, 8-4, A2-13
stop criteria; 15-19
substitution transition location; A3-9
time for a simulation; 16-7
token values with CPN variables; 7-7
transition decomposition,
methods for; 12-2
spread,
See Also aligning;
horizontal,
aligning nodes along with Horizontal Spread
command (Align menu); 14-16
vertical,
aligning nodes along with Vertical Spread
command (Align menu); 14-17
staff members,
FirstModel,
characteristics; 13-2
Sales Order Model,
characteristics; B1-2
simulation parameters; B1-4
starting,
See Also entering; quitting; stopping;
Design/CPN; 2-5

Index

starting (cont’d),
Saes Order Model,
with Open (File menu); B2-3
tutorial; 2-10
states,
characteristics and term definition; 5-12
CP net,
initializing with Initial State command (Sim
menu); 8-13
execution,
loading; 15-23
saving; 15-22
starting with a saved; 15-24
initial,
FirstNet model, concurrent execution; 11-4
term definition; 5-12
timein relation to; 16-3
transitions as representation of; 11-3
static modeling paradigm,
IDEFO,
characteristics; 3-2
term definition and characteristics; 3-1
statistics,
efficiency,
in Sales Order Model; B1-5
gathering and displaying,
in Sales Order Model; B1-5
revenue,
in Sales Order Model; B1-5
statusbar,
characteristics; 2-6
information displayed during syntax checking; 8-3
messages generating during switching; 8-8
steps,
setting a limit,
as a stop criteria; 15-20
term definition; 11-14
Stop (Sim menu),
canceling CP net execution with; 8-18
stop criteria,
specifying; 15-19
stopping,
tutorial; 2-10
string color sets,
characteristics and term definition; 5-6
structure,
hierarchical CP nets; A3-2
modeling; 3-1
subdiagrams,
loading; A2-12
saving; A2-12

submodels,
subpages use as; 15-4
term definition; 12-1, A1-2, A3-1
subnet,
term definition; A1-2
subpages,
breaking the connection between the substitution
transition and its; A3-35
building FirstModel on; 14-4
connecting superpages to; 12-8
creating; 12-3, A3-9
deleting; A3-25
FirstModel; 13-6
editing; 14-6
final appearance; 14-5
improving the appearance; A3-14
navigating to superpage from a,
by double-clicking on a port; A3-6
similarity to subroutines and macros; A3-34
structure of; 12-8
term definition; 12-2, A3-1
use as submodels; 15-4
using more than once; A3-26
subroutines,
subpages compared to; A3-24, A3-34
subsetting,
multisets; 5-9
substep,
term definition; 11-14
Substitution Transition (CPN menu),
converting a transition to a substitution transition
with; A3-28
creating substitution transitions with manual port
assignments; A3-38
substitution transitions,
(chapter); A3-1
breaking the connection to its subpage; A3-35
characteristics; A1-2
creating; A3-7
with Substitution Transition (CPN menu); A3-38
hierarchical decomposition with,
introduction (chapter); 12-1
hierarchy page changes; 12-11
improving the appearance of; 12-6
multiplicity and; A3-33
naming; 12-5, A3-10
reversing the creation of; A3-18
simulating with; A3-34
specifying the location of; 12-3, A3-9
substitution tag region,
term definition; 12-12

Design/CPN Tutorial for X-Windows IDX-25

Design/CPN Tutorial

substitution transitions(cont’d),
substitution transition creation mode,
term definition; 12-3
term definition; 12-1, A1-2, A3-1
subtracting,
multisets; 5-9
superpages,
connecting subpages to; 12-8
converting SalesNet into FirstModel; 14-2
FirstModel compared with SalesNet; 13-5
improving the appearance; A3-11
navigating to from a subpage,
by double-clicking on a port; A3-6
Resource User Model; A3-3
term definition; 12-2, A3-1
switching,
among instances,
with the Instance Switch dialog; A3-35
status bar messages generated during; 8-8
term definition; 8-8
syntax,
check,
performing; 8-2
errors,
deciphering ambiguous messages; 9-7
handling (chapter); 9-1
locating; 9-3
missing colorset; 9-2
undeclared CPN variables; 9-6
guards; 7-8
Syntax Check (CPN menu),
performing a syntax check with; 8-2
system default attributes,
term definition and characteristics; 6-3

T

telephonenumber,
Meta Software; 1-7
text,
adding to,
arectangle; 4-11
arectangle, while creating it; 4-12
editing; 4-21
entering; 4-21
into a global declaration node; 6-16
mode,
characteristics; 4-4
creating objects from; 4-17
term definition; 4-3

IDX-26 Design/CPN Tutorial for X-Windows

text (cont’d),
pointers,
locating an error with; 9-4
term definition; 9-4
regions,
copying; 14-26
pasting; 14-26
text tool,
term definition; 4-4
Text menu,
Turn Off Text command,
adding text to rectangles with; 4-11
Turn On Text command,
adding text to rectangles with; 4-11
time,
See Also concurrency;
increasing the realism of simulation with; 16-19
modeling; 3-1
non-representation in FirstModel; 16-3
output arc inscriptions; 16-8
real,
term definition; 16-2
regions,
term definition; 16-8
representation methods in CP nets; 16-4
Sales Order Model chart depicting elapsed,
examining; B3-3
Sales Order Model chart depicting elapsed; B3-3
simulated,
(chapter); 16-1
characteristics; 16-2
term definition; 16-2
uses for; 16-6
specifying for a simulation; 16-7
stamps,
assigning, FirstModel; 16-11
giving to atoken; 16-7
initial markings and; 16-10
omitting; 16-9
term definition; 16-4
state in relation to; 16-3
timed,
colorsets, declaring; 16-7
colorsets, term definition; 16-4
CP nets, compiling; 16-14
CP nets, executing; 16-16
token, term definition; 16-4
tokens,
See Also multisets;
characteristics and term definition; 5-7
constraining,
with more complex guards; 7-10

Index

tokens(cont’d),
constraining (cont’d),

transitions(cont’'d),
substitution,

with simple guards; 7-9
term definition; 5-3
timed,
delay expression syntax; 16-7
values,
constraining; 7-8
specifying exact; 7-4
specifying multiple constant; 7-5
specifying multiple instances of the same
constant; 7-5
specifying one constant value; 7-4
specifying variable; 7-7
top-down development,
hierarchical CP nets; A3-21
term definition; 12-2
transformation rules,
as dynamic modeling paradigm component; 3-3
transformations,
representing with transitions; 10-6
Transition (CPN menu),
creating transitions with; 6-5
transitions,
See Also rectangles;

breaking the connection to its subpage; A3-35

creating with Substitution Transition (CPN menu);
A3-7,A3-38

hierarchy page changes; 12-11

improving the appearance of; 12-6

naming; 12-5, A3-10

reversing the creation of; A3-18

simulating with; A3-34

specifying the location of; A3-9

term definition; 12-1

time regions,

characteristics and syntax; 16-8

transition feedback region,

term definition; 8-9

troubleshooting,

common problem symptoms and solutions,
(chapter); C1-1
memory problems,
problem symptoms and solutions; C1-5
ML,
configuration not specified, problem symptoms
and solutions; C1-2
interpreter cannot be started, problem symptoms

as CP net activities; 3-3
as state representation; 11-3
characteristics and term definition; 5-13
characteristics as CP net component; 5-1
concurrent,
firing; 11-3
creating; 6-5
for FirstModel subpage; 14-8
decomposition of,
designating; 12-3
methods for specifying; 12-2
enabled,
putting on enabled list, for SalesNet model
execution with conflict; 11-15
setting their representation in an occurrence set;
15-13
factors controlling,
enablement; 7-2
occurrence; 7-2
naming,
for FirstModel; 14-10
naming; 6-7
occurrence of; 7-11
representing activities with; 10-6
shape-changing,
with Change Shape command (Makeup menu);
A3-28

and solutions; C1-5
resetting the tutorial environment; 6-5
settings file missing or obsolete,
problem symptoms and solutions; C1-1
tuples,
colorsets,
characteristics and term definition; 13-4
constructors,
characteristics; 13-8
example of usein FirstModel execution; 13-9
term definition; 13-9
patterns,
characteristics; 13-12
term definition; 13-12
term definition; 13-4
value,
term definition; 13-4
Turn Off Text (T ext menu),
adding text to rectangles with; 4-11
Turn On Text (Text menu),
adding text to rectangles with; 4-11
tutorial,
environment,
establishing; 6-3
starting; 2-10
stopping; 2-10

Design/CPN Tutorial for X-Windows IDX-27

Design/CPN Tutorial

U X, Y, Z

unbound, X-Windows,
term definition; 5-10 Caps Lock key behavior; 4-7
term definition; 7-7 Design/CPN use of; 2-3
Ungroup (Group menu), tutorial use with; 2-2
deselecting groups with; 4-27
updating,
enabled list,

for SalesNet model execution with conflict; 11-20
user interface,
design,
See appearance;
Design/CPN; 2-5

vV, W

values,
exact,
specifying for tokens; 7-4
tokens,
constraining; 7-8
tuple,
term definition; 13-4
variable,
specifying for tokens; 7-7
variables (CPN),
characteristics and term definition; 5-10
rebinding,
during SalesNet execution; 10-9
during transition firing; 7-12
specifying token values with; 7-7
vertexes,
term definition; 4-19
Vertical (Align menu),
aligning nodes in a column with; 14-18
vertical spread,
aligning nodes along,
with Vertical Spread command (Align menu);
14-17
Vertical Spread (Align menu),
aligning nodes with; 14-17

IDX-28 Design/CPN Tutorial for X-Windows

X-Windows Version

@-1

PART 1

CP Net
Fundamentals

Chapter 1
The Design/CPN Tutorial

Thisisthe Design/CPN Tutorial. Itsgoal isto teach you how to use
Design/CPN to do modeling and simulation with Petri nets.

Thistutorial assumes that you are familiar with computers and com-
puter programming, and know how to use the particular computer
on which you will be working with Design/CPN. It requires no
prior familiarity with Petri nets, system design and analysis, model-
ing, Smulation, or any particular computer language.

Thistutorial does not attempt to teach the genera theory of system
design and analysis, or the mathematical formalism that underlies
Petri nets. Its emphasisis on the practical, hands-on use of
Design/CPN to build and execute Petri net models. For an accessi-
ble but mathematically rigorous introduction to Petri nets, see
Colored Petri Nets, by Kurt Jensen (Springer-Verlag, 1992).

What Is a Petri Net?

A Petri net isanetwork of interconnected locations and activities,
with rules that determine when an activity can occur, and specify
how its occurrence changes the states of the locations associated
with it. Petri nets originated in the work of C. A. Petri in 1962, and
have since been developed by many researchersin many countries.

Petri nets can be used to model and simulate systems of any type.
They are particularly useful in facilitating the design and analysis of
complex distributed systems that handle discrete flows of objects
and/or information.

There is an extensive mathematical formalism associated with Petri
nets. Thisformalism completely defines what a Petri net is and how
it behaves. Although Petri nets are typically represented as graphs
drawn on paper or on acomputer screen, a Petri net is actually a
mathematical object that exists independently of any physical repre-
sentation.

There is no need to understand the mathematics of Petri netsin order

to use them. Just as an engineer can use scientific theories to build
useful devices without having to become a scientist, so a system

Design/CPN Tutorial for X-Windows 1-1

Design/CPN Tutorial

designer can use Petri nets to build useful models without having to
become amathematician.

Petri nets have been developed over the years from a simple yet uni-
versally applicable paradigm to a more complex but far more con-
venient methodology, the hierarchical colored Petri net. Such nets
are hierarchical in that they contain facilities for representing amodel
asahierarchica structure, and are “colored” in that they allow data
to have different types and values (“colors’); earlier varieties of Petri
nets alowed only boolean (“black and white") data.

For brevity, hierarchical colored Petri nets are usually called CP
nets. A CP net that models asystem iscalled a CPN model. This
tutoria is concerned only with CP nets and CPN modeling. For in-

formation on other types of Petri nets, see Jensen’s Colored Petri
Nets, referenced above..

Overview of the Design/CPN Tutorial
Thistutoria isdivided into five parts:
Part 1: CP Net Fundamentals
Part 2: Design/CPN Techniques
Appendix A: CPN Hierarchy Techniques
Appendix B: The Sales Order Model
Appendix C. Troubleshooting

Part 1: CP Net Fundamentals
Part 1 introduces and defines CP nets, and shows how such nets
can be used for modeling and ssmulation. The general concepts are
presented in the context of asmall net that you build and execute
using Design/CPN.

Part 2: Design/CPN Techniques

This part provides the essential information you need in order to use
Design/CPN to do realistic modeling and simulation with CP nets.

Appendix A: CPN Hierarchy Techniques

CP net modeling is similar in many ways to ordinary programming.
Many of the same techniques are useful in both enterprises, such as

1-2 Design/CPN Tutorial for X-Windows

Design/CPN Tutorial

the capabilities provided by global data and by reusable subroutines.
Hierarchical nets provide these capabilities. Appendix A showsyou
how to use them.

Appendix B: The Sales Order Model

The Sales Order Moddl illustrates a variety of advanced CPN tech-
niques. Appendix B shows you how to run it and experiment with
it.

Appendix C: Troubleshooting

Design/CPN requires a particular computer environment in order to
run, as described in the installation notes that accompany the prod-
uct. If the computer environment isincorrect, problems may occur.
Appendix C describes these problems and gives their solutions.

Strategy of the Tutorial

Y ou don't need to know everything, or even most things, about CP
nets or Design/CPN in order to use them. All you need is a core of
essentia information, techniques, and intuitions that together are
sufficient to get you going. Therefore this tutorial does not try to
teach everything about any of the topicsthat it covers. Itsgoal isto
teach the essentials of all of them, and the relationships among them,
with particular attention given to matters that tend to be difficult
when first encountered.

The information you need in order to use CP nets and Design/CPN
isnot particularly complex or difficult, but it is highly intercon-
nected. There are many cases where you must have al of a set of
concepts in order to fully understand any of them. Itisdifficult to
present such material sequentially, and still define every concept be-
foreit is used.

Thistutoria copes with the problem by taking an iterative path.
Most topics are covered severa times, with each treatment taking
advantage of intervening materia to achieve a greater depth. Details
about mutually dependent topics are often postponed until they can
all be presented together, so they can provide for each other the
context needed to make them all meaningful.

Once you have mastered the concepts and skillsthat are covered in
thistutorial, you should have little trouble acquiring additional in-
formation as needed from appropriate reference manuals and text-
books, and from your experiences with Design/CPN itself.

Design/CPN Tutorial for X-Windows 1-3

Design/CPN Tutorial

How to Use the Tutorial

Four principles, if rigoroudly followed, will greatly facilitate your
use of thistutorial:

Proceed Systematically

CP nets are based on ardlatively small number of fundamental prin-
ciples. Ontheseisbuilt amethodology of very great generality and
power. Don't let the smplicity of the fundamentals deceive you into
rushing through them. Every detail deserves careful examination
and complete understanding before you proceed to the next.

Asyou go through the tutorid, it is essential that you take the time to
master each exercise before you go on, even if the ultimate purpose
of the exerciseis not entirely obvious. All of the information that
the tutorial presentsistherefor areason, and al of it will eventually
be used.

If you proceed systematically through the tutorial you will aways be
on solid ground. If you do not, you will soon find yourself lost in a
jungle of undefined terms, meaningless concepts, and unusable
techniques. Even if you believe you already know about some topic
being covered, you should read each chapter completely to verify
that your understanding corresponds to the material being presented.

Ignore the Unexplained

1-4

Thistutoria isorganized so that at each point you have the informa-
tion you need to understand the material currently being presented.
But providing the necessary prerequisite information at each point is
not the same as answering every question that might be asked at that
point. When mutually dependent topics are studied sequentialy, as
in thistutorial, questions frequently arise that cannot be answered
immediately. They cannot be answered until additional information
has been presented that is necessary in order for the answer to make
sense.

Asyou proceed through this tutorial, you will probably have ques-
tions that are not answered at the point where it becomes possible to
ask them, and you will often see features of Design/CPN that have
not yet been explained. Please be patient: the answersto the ques-
tions should become clear as you proceed, and the Design/CPN
features will be covered once you have the information you need in
order to use them.

Design/CPN Tutorial for X-Windows

Design/CPN Tutorial

Review Frequently

Build the Models!

There is not much repetition in thistutorid: it assumes at every point
that you are familiar with al terms, methods, and concepts presented
up to that point. In iterating through topics to gain greater depth, it
does not recapitulate what was covered on the previous round, but
continues from where it left off.

The reason this tutorial does not repeat material isthat doing so
would make the tutorial enormous, yet most of the repetition would
be wasted on any particular reader, serving only to dilute new mate-
rial in aflood of redundant explanation. But no-one can learn al of
abody of information in asingle pass: thereis aways aneed to re-
peat some points.

If at any time you are unclear on what was said about atopic that the
tutorial previoudly discussed, or on how to perform some operation
that the tutoria previously described, you should immediately re-
view the relevant sections of the tutorial. If you do thisyou will
maintain the firmness of the foundation on which you are building.
If you do not, you will leave it full of holes, and it will eventually
collapse.

Modeling and ssimulation are not primarily something to think about;
they are something to do. Itisall too easy to understand them in
principle without being able to apply the understanding to real situa-
tions.

Thistutoria includes avariety of modelsthat are to be built using
Design/CPN on the computer. Y ou should take the time to actualy
build these models, and to thoroughly understand each one before
proceeding to the next. Inlearning to model and simulate with CP
nets, there is no substitute for hands-on experience.

Beyond the Tutorial

When you have completed this tutorial, you will know many things
about modeling and ssmulation generally, and about CP nets and
Design/CPN specificaly. But you will not be at the end of the pro-
cess of learning about these things—you will be at the beginning.
There are four reasons for this:

Thefirstisthat thistutorial deals almost exclusively with modeling
and ssimulation. But these activities do not exist inisolation. They
are embedded in the much larger realm of system design and analy-
sis, about which the tutorial sayslittle. Numerous books that deal
with system design and analysis are currently in print.

Design/CPN Tutorial for X-Windows 1-5

Design/CPN Tutorial

The second isthat thistutorial covers only a portion of the informa-
tion that is available about any topic that it dealswith. Thereis
more, often much more, to every subject that the tutorial mentions:
the tutorial's goal isonly to get you started. For more information
about CP nets, see Jensen. For more about Design/CPN, see The
Design/CPN Reference Manual.

Thethird reason is that becoming a skilled modeler isnot just a
matter of acquiring knowledge, skills, and techniques. These are
necessary but not sufficient. 'Y ou would not expect to become an
expert programmer, engineer, scientist, or artist on the basis of
knowledge alone. It isthe same with modeling, which overlaps al
four of these areas. Real proficiency in modeling comes only with
time and experience, which no document can provide.

Fourth, useful modeling is not only a matter of becoming skilled at
modeling per se. Thereisaso the matter of learning to model sys-
tems of the particular type that is of interest to you. No one way of
thinking applies to the modeling of every type of system, and the
ways of thinking that are customary for envisioning systems of
various types do not necessarily lead to effective modeling.

For these reasons, completing thistutorial is only the first phase of
the task of learning to use Design/CPN effectively. If you use the
tutorial correctly, it will provide you with a solid foundation for us-
ing Design/CPN to model and simulate with CP nets. On that foun-
dation you will be able to build whatever structure of expertise you
need in order to solve particular problems using Design/CPN. But
keep in mind that thistutorial can provide afoundation only: the rest
isup to you.

Request For Feedback

1-6

The Design/CPN Tutoria cannot succeed without detailed commen-
tary and criticism from itsusers. Meta Softwareisinterested in
feedback at al levels, from the most general to the most detailed.
Some genera questions:

» What do you think of the overall approach and organization of
the tutorial?

* Isthetutoria too elementary? Too advanced? Isit consistent
initslevel?

* Where would more information be useful? Where has too
much been provided?

* How would you have done things differently in order to bet-
ter meet the needs of areader such as yourself?

Design/CPN Tutorial for X-Windows

Design/CPN Tutorial

» What other questions should we be asking in order to get
better feedback from users of the tutorial.

Please mail your comments to Meta Software, CPN Tutorial, 125
Cambridge Park Drive, Cambridge, MA, 02140; fax them to the
attention of CPN Tutoria at 617-661-2008; or email them to
tutorial @metasoft.com. Every comment will be carefully consid-
ered, and the next version of the tutorial will reflect all commentsto
the greatest achievable extent.

Design/CPN Tutorial for X-Windows 1-7

Chapter 2

Getting Started With
Design/CPN

CP nets allow system designers and analysts to move the often diffi-
cult and sometimes impossible task of working directly with real
systems into the more tractable and inexpensive realm of computer-
ized modeling, simulation, and analysis. Such a move solves many
problems, but it does not solve them all.

A model of acomplex system may itself be complex. Methods for
dealing with this complexity are required in order for the model to be
created and used effectively. Furthermore, a computer model isa
form of computer program, and as such can encounter the same
types of problems that more conventional computer programs face.
Syntactic errors, semantic errors, and design errors all can occur.

These must be detected and corrected if the model isto successfully
perform its function.

What Is Design/CPN

Design/CPN is an interactive computer tool for performing modeling
and ssimulation with CP nets. Design/CPN provides:

» An editor for creating and manipulating CP nets.

» Syntax checkersfor validating CP nets.

* A simulator for executing CP nets.

* |nteractive monitoring and debugging capabilities.

» Facilitiesfor organizing a net into a hierarchy of modules.

» Animation and charting facilities for displaying smulation re-
sults.

These capabilities dlow CP net models to be conveniently created,
modified, organized, executed, debugged, examined, and validated.

Design/CPN Tutorial for X-Windows 2-1

Design/CPN Tutorial

Design/CPN thereby makes the theoretical power of CP nets avail-
ablein practice for modeling arbitrarily large and complex systems.

Thistutorial shows you how to use Design/CPN to build and exe-
cute CP nets. Once you have mastered the material in thistutorial,
you will be able to use CP nets and Design/CPN to do useful model-
ing. You should then have little difficulty picking up additional
techniques as needed to perform any modeling task for which CP
nets are appropriate.

Prerequisites for This Tutorial

Thistutorial assumes that you:

1. Know how to start X-Windows programs.

2. Arefamiliar with the X-Windows user interface generaly.
If you are unfamiliar with any of these matters, you should be sure
to acquire the necessary information before you continue with this
tutorial.
Before you proceed, be sure that Design/CPN has been correctly
installed on your machine. The Design/CPN Installation Procedure
isincluded in the documentation shipped with the product.

In order to use thistutoria you will need to know where on the
computer to find:

1. The Design/CPN program.

2. Thedirectory named Tutorial Diagrams that isincluded with
each release of Design/CPN.

3. Thedirectory named examples that isincluded with each re-
lease.

Be sure that you know where these are before you go on.

Using This Tutorial With X-Windows

2-2

Thisversion of the Design/CPN Tutorial shows Macintosh-style
dialog boxes rather than X-Windows-style boxes. In aimost every
case, the Macintosh and X-Windows boxes are functionally identi-
cal, differing only in the details of their appearance. Wherethereis
afunctional difference that bears on atopic under discussioninthe
tutorial, the differenceis explicitly described.

Design/CPN Tutorial for X-Windows

Getting Started

Other than dialog box appearance, there should be no differences
between what this tutorial describes and what happens under X-
Windows.

Design/CPN and X-Windows

Design/CPN is a standard X-Windows program. All standard X-
Windows user interface techniques are available, and work as they
do in X-Windows programs generally.

Design/CPN Multiprocessing

When Design/CPN is active, it sometimes accesses a second pro-
cess, called the ML process, that interprets and compiles computer
code. Thetwo processes communicate and cooperate with each
other to execute CP nets.

In order to be executed, a net must contain some information that
Design/CPN uses to accessthe ML process. Thisinformationis
automatically included in anew net when it is created. When apre-
existing net isimported from another system, as with the example
nets supplied with this tutorial, the necessary information must be
explicitly loaded into the net before it can be executed. Instructions
for loading it appear where needed in thistutorial.

Design/CPN and the File System

A diagramis a CP net and optional additiona graphics created using
Design/CPN. Design/CPN stores a diagram as a group of three
files. Multiple files are used rather than one because asinglefile
would often be inconveniently large. Thefilesare:

1. Thediagramfile. Thiscontainsdatathat representsthe dia-
gram in aform suitable for displaying and editing.

2. TheDBfile. Thiscontainsadatabase describing the dia-
gram. It has the same name as the diagram file, with the
addition of the suffix “.DB”.

3. TheML file. Thiscontains code that represents the diagram
in executable form. It has the same name as the diagram file,
with the addition of the suffix “.ML".

Thusthe diagram AirlineModd would be stored in the files:

AirlineMode

AirlineMode .DB
AirlineModa .ML

Design/CPN Tutorial for X-Windows 2-3

Design/CPN Tutorial

The diagram and DB files contain a complete description of the dia-
gram. The ML fileisnot generated until it is needed, and can be re-
generated if necessary using the information in the diagram and DB
files. Therefore a diagram may not have an ML file, either because
the file was never created by Design/CPN, or because it was subse-
guently deleted. ML filesare quite large, and are often deleted to
save disk space.

DB and ML filesare for internal use only by Design/CPN. When
you want to open aparticular diagram, open the diagram file; DB
and ML files cannot be opened directly.

The only time you need to think about DB and ML filesiswhen you
copy, move, or rename a diagram viafile system commands. Be
sureto treat al of thefilesthat constitute the diagram in the same
way.

- Navigate to the directory examples.
- Listitscontents.

Y ou can now see the multi-part form in which diagrams are kept.
(There may not be any ML files)

Design/CPN Use of the Mouse

When you manipulate windows and scroll bars while using
Design/CPN, the three mouse buttons have their standard functions
in the X-Windows user interface. When you perform a mouse op-
eration that is specific to Design/CPN rather than to X-Windowsin
genera, use the left button. Design/CPN uses only one mouse but-
ton (to allow for porting to one-button mouse systems such asthe
Macintosh), so it ignores the middle and right buttons.

Design/CPN Use of the Keyboard

Design/CPN documentation specifies the use of the ALT key in vari-
ous keystroke shortcuts. Some keyboards use a DIAMOND (&) key
instead; occasionally other keysare used. If ALT does not produce
the described results, check your terminal configuration.

Establishing a Tutorial Directory

Asyou go through thistutorial, you will create several diagrams.
Some will be based on existing diagrams that are supplied with the
tutorial, in the Tutoria Diagrams directory, and others will be en-
tirely new.

2-4 Design/CPN Tutorial for X-Windows

Getting Started

It is best not to save diagrams you create into the Tutoria Diagrams
directory: the directory should be kept in exactly its original condi-
tion, so that it will aways match the assumptions made about it in
thetutorial. Therefore:

- Create adirectory somewhere to hold diagrams you create
while working with thistutorial. Call the directory
NewTTDiagrams.

Starting Design/CPN
- Start Design/CPN as you would any X-Windows program.

If you see adialog that mentions a problem of any kind, see
Appendix C before you proceed.

Y ou are now in Design/CPN, and the editor is active.

Opening a Diagram
To open adiagram:
- Choose Open from theFile menu.

TheOpen Filediaog appears. We will need a particular diagram
to be open during the next few sections. To open it:

- Navigate to the directory TutorialDiagrams.

- Open the diagram SalesNetDemo.

The SalesNetDemo diagram opens, and awindow named Sales#1
appears.

The Design/CPN User Interface
Y ou should now be looking at a screen that contains three things:
1. A menubar at thetop of asmall window.

2. A datusbar, immediately below the menu bar in the same
window.

3. A pagein asecond window.

Design/CPN Tutorial for X-Windows 2-5

Design/CPN Tutorial

The Menu Bar

The Status Bar

The Page

Thisisan ordinary pulldown menu bar. Take a moment to pull
down each of the menus and briefly examineit.

New users of Design/CPN are sometimes daunted by the number of
commands in the Design/CPN menu, and the unfamiliarity of the
operations described in their somewhat cryptic names. But don't
worry. By the time you have completed this tutorial, you will know
what most of these commands are for, why they exist, and how to
use them effectively to assist you in working with CP nets. Com-
plete information on all Design/CPN commandsis contained in The
Design/CPN Reference Manual.

The status bar is used by Design/CPN to post brief messages that
describe diagram components, editor and simulator states and ac-
tions, and various other things that you may want to know about as
you work with Design/CPN. The messages currently posted are
Type: Place on the left, Text: Off in the center, and Page Scale:
100% on the right. The meanings of these and many other status
bar messages will be explained as we proceed.

If you are ever in doubt about where you are in Design/CPN, or
want to seeif anything is going on that you should know about but
do not, check the status bar. It can be extremely informative.

A pageisa“blank date” on which you can create CP net structure,
as described in the following chapters. A diagram may contain any
number of pages.

Every page is displayed in a separate window. A newly created
page is centered under its window, rather than extending down and
to theright asafilein atext editor would. It is centered because CP
nets, being graphical rather than textual, tend to grow radialy rather
than linearly, so that empty drawing spaceis aslikely to be needed
in one direction as in another.

The center of apageis marked by arectangle, called the page bor-
der. Thedimensions of this rectangle are the Page Width and
Page Height specified in the Page Attributesdialog (Set
menu). If you print a page and do not specify any other behavior
(viaPage Setup from theFile menu), the areainside the page
border will be printed.

The page currently on display is named Sales#1. This name appears
in the title bar of the window that holds the page. The page contains

2-6 Design/CPN Tutorial for X-Windows

Getting Started

asmall net that represents a high-level view of asimple Sales Order
Processing system. Thisnet iscalled SalesNet:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <

@ 1 ordent > 1 ordent

1'Big +

2'Small

1~ equipment

1" staff
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1'Fast

2 Novice
Y ou don't need to worry about the details of this net now. Y ou will

soon understand everything that isin it, and know how to build and
execute it.

Navigating a Diagram
A Design/CPN diagram typically consists of several pages. A given
page may be open, in which caseit isvisiblein awindow (as
Sales#l now is), or closed, in which caseit is not visible.
When a diagram contains more than one page, a method is necessary
for keeping track of the pages and their relationship to each other.
To provide this capability, every diagram contains a specia page
caled ahierarchy page. Let'slook at SalesNet's hierarchy page.

- Choose Open Page from thePage menu.

The hierarchy page opens:

Design/CPN Tutorial for X-Windows 2-7

Design/CPN Tutorial

2-8

[

Hierarchy#10010 &==—--N

Cuierarchy#10010) ((sales#r) [m][Prime

Declare#2

i
=
(The window will be larger on your screen, but will contain thein-

formation shown here.)

A diagram's hierarchy page contains asmall oval, called a page
node, for every page in the diagram, including itself. Each page
node contains the name of the corresponding page. This hierarchy
page includes three page nodes:

» Hierarchy#10010, representing the hierarchy pageitself.

» Salestl, representing the page you were looking at before
opening the hierarchy page.

» Declaret#2, a page containing data declarations. We'll look at
it in amoment.

A page node may be accompanied by additiona information about
the page. The designations“M” and “Prime’, in two boxes next to
the Sales#1 page node, are examples of such information. Their
meaning will be explained later in thistutorial.

This hierarchy page is not particularly interesting, since there are so
few pagesto keep track of. When there are many pages linked into
ahierarchical net, the hierarchy page becomes arich source of in-
formation about the composition and structure of the net.

Y ou can use the hierarchy page to navigate to any other pagein adi-
agram. Toillustrate the technique, let's ook at the page Declare#2:

- Select the page node for Declare#2 by clicking the mouse on
it.

- Choose Open Page from the Page menu.

Declaret#2 opens. It contains asmall box of computer code:

Design/CPN Tutorial for X-Windows

Getting Started

color Order = with Big | Small;

col or Product Shi pped = O der;

color Staff = with Expert | Novice;
col or Equipnent = with Fast | Slow,

var ordent : Order;
var staff : Staff;
var equi pnent : Equi pnent;

This computer codeisin alanguage called CPN ML. The code de-
fines the datatypes and variables that are used in the net on page
Sales#l. Asbefore, don't worry about the details now.

Let's go back to Sales#1, using adlightly different method.
- Choose Open Page from the Page menu.

The hierarchy page reappears.
- Double-click the page node for Sales#1.

Sales#1 is again the current page.

Printing a Diagram

Printing adiagram issimilar to printing any other file. The details of
the printer dialog depend on the particular printer you are using, so
they cannot be covered here.

Every Design/CPN page name includes a page number, e.g.
Sales#l and Dedlare#2. Page numbers can be used to tell the
printer to print a particular page or range of pages. Diagram pages
have no intrinsic order, so Design/CPN numbers them by assigning
each new page the lowest number not currently in usein the dia-
gram.

Closing a Diagram
To close adiagram:
- Choose Closefrom theFile menu.

The Save Changesdialog appears.

Design/CPN Tutorial for X-Windows 2-9

Design/CPN Tutorial

Do you want to save the changes
to your current diagram?

[Eancel] [No]

Design/CPN displays this dialog whenever you have made changes
to adiagram’ s contents, or have opened, closed, or changed any
windows that hold diagram pages. Thereis no need to save changes
now, So:

- ClickNo.

The dialog disappears, and the diagram closes.

Quitting Design/CPN

To quit Design/CPN:
- Choose Quit from theFile menu.

Design/CPN quits. You are back at Operating System level.

Starting and Stopping the Tutorial

2-10

Different users work through atutorial like this on very different
schedules. One person might work through small pieces of chapters
at irregular intervals, while another might work through several
chaptersin asingle session.

Thereisno way for thistutorial to anticipate how you will useit.
Therefore, from this point onwards, the tutorial generally does not
mention starting or quitting Design/CPN. It assumes that you will
perform these actions as needed, using the techniques given in this
chapter, before you begin working with Design/CPN and after you
are done.

Design/CPN Tutorial for X-Windows

Chapter 3
Modeling Paradigms

In order to make amodel of a system, we need some way to repre-
sent the components that a system consists of. These representa-
tions do not have to be similar in detail to the components of real
systems. What we need is a set of abstractionsthat will allow usto
capture the essence of any system that we wish to model. Such a set
of abstractionsis often called a modeling paradigm.

There is no one modeling paradigm that isbest in all cases. The
choice of paradigm depends on the nature of the system being mod-
eled, and on the purpose of the model. For systems such asthe
weather, where there is no flow of information but only a succes-
sion of states, systems of partial differential equations are used. For
modeling physical objects, such as the components of a machine,
CAD/CAM methods are best.

Humans frequently design systems to perform complex tasks that
are distributed over space and time, and that involve discrete flows
of objects and/or information. The socia systemsin which people
live are also of this nature. Such systems can often be improved by
modeling them.

Where only the structure of such a system isto be modeled, static
modeling paradigms are useful. Where structure and behavior must
both be modeled, dynamic modeling paradigms are needed. Lets
take abrief look at each of these types of modeling.

Static Modeling Paradigms

A static modeling paradigm is one that can represent the structure of
asystem, but not its behavior over time. When structural represen-
tationis all that is needed, a static modeling paradigm is sufficient.
At the minimum, a static modeling paradigm must represent:

» Activities: These represent the constituent actions of the
modeled system.

» Connections: These show the relationships between activi-
ties.

Design/CPN Tutorial for X-Windows 3-1

Design/CPN Tutorial

IDEFO Modeling

» Descriptions: These describe the activities and their rela
tionships
The components of a static modeling paradigm do not necessarily
have a one-to-one relationship with these capabilities, but the

paradigm must provide at least this much in order to be useful.
Frequently these are al that is needed for static modeling.

One of the most widely used static modeling paradigmsis called
IDEFO. AnIDEFO modd isagraphica structure consisting primar-
ily of:

» Activity Boxesto represent activities.

* Arrowsto represent connections between activities.

» L abelsto describe the activities and their relationships.

For example:

Process

CustomerOrder —————— P Orders P ShippedProduct

T

Staff Equipment

Y ou may notice aresemblance between this model and the CPN
model you saw briefly in the diagram SalesNetDemo in Chapter 2.
That model isin fact a CPN version of the IDEFO model shown
here.

Thistutorial does not cover IDEFO modeling, but it mentionsit oc-
casionally, because there is a close relationship between IDEFO
models and CPN models. Meta Software provides an interactive
tool, Design/IDEF, for performing |DEFO modeling.

3-2 Design/CPN Tutorial for X-Windows

Modeling Paradigms

Dynamic Modeling Paradigms

CP Net Modeling

Static modeling paradigms are insufficient for representing system
behavior over time. The reason isthat they provide no way to rep-
resent a particular state of a system, or for specifying how the sys-
tem's state will change astime passes. Lacking such provisions,
static models cannot execute.

A dynamic modeling paradigm is one that can represent both the
structure and the behavior of asystem. At the minimum, adynamic
modeling paradigm must provide:
» Data: Data of appropriate types and values must be available
to represent the objects and information that the system ma-
nipul ates.

* Locations; The data must be stored somewhere, so we
know where to find it when we need it.

» Activities: Thesetransform data, and thereby move the
model from one state to the next.

+ Connections: Locations and activities must be linked so as
to represent the flow of data through the model.

» Activation Rules: These determine when an activity can
take place.

* Transformation Rules: These determine the effect of an
activity taking place.

The components of a dynamic modeling paradigm do not necessarily

have a one-to-one rel ationship with these capabilities, but one way
or another the paradigm must provide them all.

CP nets provide an extremely effective dynamic modeling paradigm.
A CPnet isagraphical structure with associated computer language
statements. The primary components of a CP net are:

» Data: CP nets define datatypes, data objects, and variables
that hold data values.

» Places: Locationsfor holding data objects.
» Transitions: Activities that transform data.

» Arcs: Connect placesto transitions.

Design/CPN Tutorial for X-Windows 3-3

Design/CPN Tutorial

* Input Arc Inscriptions: Specify datathat must exist in or-
der for an activity to occur.

» Guards: Boolean expressions that further define conditions
that must be true for an activity to occur.

e Output Arc Inscriptions. Specify datathat will be pro-
duced if an activity occurs.

For example:
[ordent = Big]
Order ProductShipped
- Process Orders -
Order In 1" ordent 1" ordent Product Out
P
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

This example probably looks somewhat cryptic now, but don't
worry: you will soon understand it completely, and be able to create
and executeit. Small though thisnet is, it demonstrates most of the
techniques needed to create even the most complex CP net.

IDEFO Modeling and CP Net Modeling

For brevity, the CP net modeling paradigm is generally referred to
as CPN.

IDEFO and CPN are closely related. They are based on similar
ideas, and use similar components and graphical conventions.
IDEFO activities correspond to CPN transitions, IDEFO arrows cor-
respond to CPN arcs, and IDEFO labels correspond to CPN
datatypes.

These correspondences are not perfect, but they are close enough to
make CPN effectively a superset of IDEFO. Everything contained in
an IDEFO model of a system is needed in a CPN model of that sys-
tem, plus additional information to add the details necessary to pro-
vide executability.

3-4 Design/CPN Tutorial for X-Windows

Modeling Paradigms

It is therefore a common practice to use IDEFO and CPN together to
do system modeling. The general method isto use IDEFO to ex-
plore the general structure of a system without taking the timeto
specify every detail. Such exploration can often identify with rela-
tively little effort the parts of a system in which problems are likely
to arise. Then those parts of the model that relate to potential prob-
lem areas are converted to CPN and executed.

This method provides the best of both worlds. IDEFO is used to lo-
cate possible problems without putting alot of effort into detailed
representation, and CPN is used to fill in details only where thereis
reason to believe that the additional effort of doing so will be worth-
while. Executing the CPN model can then provide awealth of in-
formation that could never have been derived using IDEFO aone.

Design/CPN Tutorial for X-Windows 3-5

Chapter 4
Using the Design/CPN Editor

If you are an experienced user of Meta Software's Design/IDEF or
MetaDesign, you aready know amost al of the material in this
chapter. Y ou should nevertheless skim the chapter and note any
details that differ from your understanding.

If you are familiar with any object-oriented graphics application (one
that stores graphics as drawing instructions rather than as bitmaps),
you aready know some of what isin this chapter. Neverthelessyou
should read the chapter and do all exercises that do not seem com-
pletely obvious

If you are not experienced with object-oriented graphics editing, you
should work through this chapter very carefully, and do every exer-
cise completely.

Whatever your current level of expertise, be sure you have mastered
the techniques described in this chapter before you proceed through
the tutoria. If you do, you will find that before long you can create
and modify CP net structure amost as easily as you can enter and
edit text using an ordinary text editor.

Most modeling tasks do not require the full power of the editor.
This chapter presents a subset of the editor that provides the mini-
mum capabilities that are required for working effectively with CP
nets. For information about the many additional capabilities of the
Design/CPN editor, see The Design/CPN Reference Manual.

The Design/CPN Graphics Editor

The Design/CPN editor providesfacilities for dealing with both ge-
ometric forms and textual information. It represents such informa-
tion asgraphical objects. Each graphical object represents one
graphical entity: arectangle, ellipse, text string, etc. A graphical
object is stored as a set of instructions for drawing the particular
object on the screen. Graphical objects can be modified after they
are created by changing the instructions that constitute them.

Design/CPN graphical objects are of two kinds: auxiliary objects
and CPN objects. Anauxiliary object isjust an ordinary graphical

Design/CPN Tutorial for X-Windows 4-1

Design/CPN Tutorial

object, such as any graphics editor can produce. A CPN objectisa
graphical object that is part of a CP net.

The difference is not one of appearance, but one of function. An
auxiliary object isjust itself; there is nothing to it but its physical
form. A CPN object ismore than its physical form: it also hasa
meaning as a CP net component.

Auxiliary objects are used primarily to add commentary to nets.
Objects can be converted between auxiliary and CPN status as
needed. This permits objects to be deactivated as net components
without having to be deleted, just as otherwise executable lines are
often “ commented out” for various reasons during development of
an ordinary program.

Y ou could start learning about the editor by immediately creating
CPN objects, but this approach is not the best. The overhead of
dealing with the specific details of CP net syntax would interfere
with the task of learning general editor techniques.

Our approach will beto first study methods for creating graphical
and textual objects without trying to use them for anything.
Therefore all the objects you work with in this chapter will be auxil-
iary objects. In later chapters you will use exactly the same tech-
niques to work with CP net components.

Design/CPN Graphical Objects

4-2

The Design/CPN editor provides many types of graphical objects,
including rectangles, elipses, connectors, labels, and many more.
All of these are created and edited in essentialy the same way; the
details differ dightly from type to type, to suit the individual charac-
teristics of each.

Every Design/CPN graphical object is either a node or a connector.
A nodeis any object that can exist inits own right, such as arect-
angleor an dlipse. A connector isan arrow that runs between one
node and another. A connector cannot exist independently: it can
exist only when there are two nodes for it to connect.

Every Design/CPN graphical object consists of one or both of:
1. A geometric form.
2. Atextfield.
One object type, the labd, has no geometric form and a required text

field. Every other object type has a geometric form and an optional
text field.

Design/CPN Tutorial for X-Windows

Using the Editor

A graphical object's geometric form and/or text field define its fun-
damental properties, but do not specify the details of its physical ap-
pearance: its line thickness, fill pattern, color, font, etc. All aspects
of an object's appearance can be controlled by setting various
graphic and textual attributes of the object. Such attributes are called
display attributes.

Graphics Editor Modes

It is often useful to perform the same operation repeatedly while us-
ing the editor: to create a series of rectangles, for example, or to edit
text in aseries of locations. To facilitate such repeated operations,
the editor offersavariety of editor modes. When the editor isin a
particular mode, you can perform the mode's characteristic action
repeatedly using only the mouse and keyboard, without the need to
respecify each time what you want to do.

In each editor mode, Design/CPN displays a distinctive mouse
pointer that indicates the mode. Such a pointer is known asa
drawing tool. Specific drawing tools are described later in this
chapter.

Editing Graphical Objects

Graphics Mode

Y ou can use the editor to modify an existing graphical object at any
time. The modification may involve moving, reshaping, and delet-
ing geometric forms, such as rectangles or ellipses, or entering,
moving, and deleting text.

The capabilities needed for editing geometric forms differ from those
needed for editing text. The editor therefore has two editing modes
graphics mode and text mode. In graphics mode, you can move and
reshape an object's geometric form using the mouse. In text mode,
you can use both the mouse and the keyboard to edit an object’s text
field.

When the editor isin graphics mode, the status bar displays Text:
Off. If you are not performing any particular activity, the mouse
pointer isthe graphicstool:

Design/CPN Tutorial for X-Windows 4-3

Design/CPN Tutorial

Text Mode

(Thetool is shown larger than actual size.)

The graphicstool smply indicates alocation: the location it indicates
isthe pixel under the dot at the center of thetool. All drawing tools
that indicate a specific pixe location include such a dot.

Asyou perform particular activities in graphics mode, the mouse
pointer changes to various other toolsto indicate the activity cur-
rently underway, then revertsto the graphics tool when the activity
is complete.

When the editor isin text mode, the status bar displays Text: On. If
you are not performing any particular activity, the mouse pointer is
thetext tool:

T
Thistool indicates alocation, as the graphics tool does, and contains
a“T” toindicate text mode. Asyou perform particular activitiesin
text mode, the mouse pointer changes to various other tools to indi-

cate the activity currently underway, then reverts to the text tool
when the activity is complete.

Creating Graphical Objects

When you are in the editor, you can create new graphical objects at
any time. The general sequence for creating anew object is:

1. Usethe Aux menu to choose the type of object you want to
draw.

2. Usethe mouse to specify the location and shape of the ob-
ject.

3. Create more objects of the specified typeif desired.
When you choose an object type from the A ux menu, the editor
switches from whichever editing mode it isin (graphics or text) to a
creation mode. Mouse movement then creates objects of the chosen
type. When you are done creating objects of that type, you exit the
creation mode. There are two ways to exit a creation mode:

1. PressEsC.

2. Click the mouse anywhere in the menu bar.

4-4 Design/CPN Tutorial for X-Windows

Using the Editor

Autoscrolling

When you do one of these, the editor leaves the creation mode, and
returns to whichever editing mode it was in before you began creat-
ing. For brevity, the rest of thistutoria specifies using ESC to exit a
creation mode. If you prefer, you can click in the menu bar instead.

When the editor isin acreation mode, and you are not performing
any particular activity, the mouse pointer isatool that indicates the
mode. Asyou go through the various steps that create an object, the
mouse pointer changes to various other tools to indicate the current
step, then reverts to the relevant creation tool when the step is com-
plete. Specific drawing tools used during object creation are de-
scribed in the following sections.

Usually you can use the mouse and the scroll bars to move to any
part of apage. During some operations for creating and editing
graphical objects, the mouse becomes dedicated to a particular pur-
pose, and could not be used for scrolling without disrupting the op-
eration's progress.

If you begin creating or editing agraphical object, then discover that
you want to extend the operation to alocation not currently visiblein
the window, move the mouse pointer off the edge of the window in
the direction of the location, and the window will scroll automati-
caly. When the desired location is in view, move the mouse pointer
back onto the window, and scrolling will stop.

If you move the mouse pointer off the window without intending to
autoscroll, but the window begins autoscrolling, the reason is that
you have inadvertently begun some editor operation but have not
completed it. Complete or cancel the operation, and the auto-
scrolling will cease to occur.

Keystroke Shortcuts

Many of the menu options described in the following sections have
associated keystrokes that can be used to execute the command
without pulling down a menu and making a selection. When a
command has an associated keystroke, the keystroke appears next to
the menu entry for the command.

Keystroke shortcuts are often very convenient, but due to their
brevity they do little to describe the commands they represent, and
not all commands have one. Inthe interest of clarity and consis-
tency, thistutorial aways describes explicitly the menu command
that performs a particular action, even when akeystroke shortcut is
available. Once you have become familiar with the keystroke for a

Design/CPN Tutorial for X-Windows 4-5

Design/CPN Tutorial

particular command, feel freeto use it rather than pulling down a
menu whenever thistutorial asks you to execute that command.

Creating a New Diagram

So much for theory. Let's start putting some of these ideas into
practice.

- Start Design/CPN.
- Choose N ew from theFile menu.

A new diagram appears, and displays ablank page called New#1.
Take alook at the left side of the status bar: it displays None, be-
cause there are currently no graphical objects on the page.

In the rest of this chapter you will create avariety of graphical ob-
jectson this page. Asyou create and manipulate them, the status bar
will change in various ways. Some of the objects you will create
need to be linked to previoudly created objects. Therefore, if you
have to break off during this chapter, save the diagram, then reopen
and continue using it when you return to the tutorial.

Resetting the Drawing Environment

4-6

If at any time you find yourself in a state that does not match the tu-
torial's instructions and that you don't know how to get out of, reset
the drawing environment by doing the following:

1. PressEsc. Thiscancelsany object creation sequence that is
in progress.

2. Pull down theText menu. If itsfirstitemis Turn Off
Text, choosethat item. Repeat until the first item in the
menu isTurn On Text, then leave the menu without
choosing anything. This cancels any text-editing operation
that may bein progress.

3. Pressthe DELETE key until awarning appearsthat “This
command cannot be applied when the active pageis empty.”
This deletes any leftover objects.

These steps |eave the editor in graphics mode with no operationsin
progress and an empty page on display. You can now givethein-
structions that failed another try. Once you understand the informa-
tion in this chapter, you won't need to clear everything if something
goes off course: it will be obvious what went wrong and how to
correct it.

Design/CPN Tutorial for X-Windows

Using the Editor

- Reset the drawing environment now, to be surethat it isin
the state that the following sections assume.

CAPs Lock Under X-Windows
Under X-Windows, setting CAPS LOCK changes the behavior of the
editing environment in various ways, as described later in this
chapter. Except where noted, the instructions in this chapter assume
that CAPs Lock isoff. If you suddenly find that the results of fol-

lowing the instructions differ from those that are described, check
that CAPS Lock istill off: afinger dlip may have st it.

- Check to be sure that CAPS LOCK is off.

Working With Rectangles

This section shows you how to create, reshape, move, add text to,
and delete rectangles.

Creating a Rectangle

To create asingle rectangle, execute the following steps:

Enter Rectangle Creation Mode
- Choose B ox from the Aux menu

- Move the mouse pointer over the page on which you will
draw the rectangle.

The editor enters rectangle creation mode; the mouse pointer changes
to therectangletool:

]

The dot in the tool indicates the specific pixel that the tool pointsto.

Specify the First Corner

- Podition the rectangle tool anywhere over the page, then de-
press and hold the mouse button.

Design/CPN Tutorial for X-Windows 4-7

Design/CPN Tutorial

4-8

(Generic references to “the mouse button” in thistutorial refer to the
left button.)

When you depress the mouse button, the editor does three things:

1. Drawsasmall sguare whose upper right corner is at the lo-
cation of the rectangle tool.

2. Changesthe rectangle tool to the adjustment tool:

=

3. Poditions the adjustment tool to point at the lower left corner
of the square.

The purpose of the adjustment tool isto set or change the shape of a
graphical object.

Specify the Diagonal Corner

- Holding the mouse button depressed, move the adjustment
tool around on the page.

Asthetool moves, the corner at which it points moveswith it. This
allowsyou to give the rectangle whatever dimensionsyou like. You
can position the corner in alocation that is not currently visiblein the
window by moving the tool off the window in the direction of the
location. The window will autoscroll until you move the tool back
onto the window.

- Using the adjustment tool, move the rectangl€'s corner

around the page, then position the rectangl€'s corner so that
the rectangle is afew inches high and wide.

Finish the Rectangle
To finish therectangle:

- Release the mouse button.
A small editing box appearsthat just coversthe rectangle. The box
has scroll bars and atext insertion cursor. Y ou can use this box to
write text inside the rectangle. Ignoreit for now; such editing boxes
will be discussed later in this section.

Leave Rectangle Creation Mode

To leave rectangle creation mode:

Design/CPN Tutorial for X-Windows

Using the Editor

- PressEsc.

Therectangle tool is replaced by the graphics tool, and eight small

black squares appear on the rectangle, one at each corner and one at
the center of each side.

Look at the left side of the status bar. It now displays Auxiliary

Node, indicating that the rectangle you just created is not a CPN
object, and is anode.

Reshaping a Rectangle

The black squares on the rectangle you just created can be used to
modify the rectangle's shape. They are called handles.

- Position the graphics tool over one of the rectangle's han-
dles.

- Depress and hold the mouse button.
The adjustment tool gppears next to the handle.
- Movethe adjustment tool around on the page.

The handle tracks the tool, and the rectangle changes shape appro-
priately.

- Release the mouse button.

The graphicstool reappears.

Moving a Rectangle

A rectangle once created may be moved anywhere on the page:
- Movethe graphicstool to theinterior of the rectangle.
- Depress and hold the mouse button.
- Move the mouse pointer around on the page.

The rectangle tracks the mouse pointer, keeping the same position
relativeto it that it had when you depressed the mouse button.

- Reease the mouse button.

The rectangle remainsin the position to which you have moved it.

Design/CPN Tutorial for X-Windows 4-9

Design/CPN Tutorial

Deleting a Rectangle
To delete the rectangle, just:
- Pressthe DELETE key.

The rectangle disappears.

Moving a Rectangle While Creating It
It might be that the point a which you place theinitial corner of a
rectangle turns out not to be the correct location. Y ou could finish
drawing the rectangle, and then move it; or you can move it while
you are still drawing it, by using the SHIFT key.
If you press and hold SHIFT while you are using the adjustment tool
to define the shape of arectangle, the rectangle will stop changing
shape as you move thetool. Instead it will track the tool by moving
asawhole, asif it were tracking the drag tool. When you release
SHIFT, the rectangle will go back to changing shape as the tool
MOVesS.

- Create arectangle as described above.

- While setting the rectangl€'s shape, press and release SHIFT
severa times, and note how the rectangle responds.

- Maketherectangle afew inches wide and high, for usein
the next exercise.

- Release the mouse button.
- Leaverectangle creation mode (ESC).
The graphicstool reappears. The rectangle is now complete, and the
handles are visible.
Adding Text to a Rectangle

Y ou can add textual information to a rectangle by switching from
graphics mode to text mode:

- Choose Turn On Text from theT ext menu.
Four things happen:
1. The mouse pointer becomes the text tool.

2. The handles disappear from the edges of the rectangle.

4-10 Design/CPN Tutorial for X-Windows

Using the Editor

3. A small editing box appearsthat just covers the rectangle.
The box has scroll bars and a text insertion cursor.

4. The status bar displays Text: On.

Y ou can now perform simple text editing operations. Y ou can enter
characters via the keyboard, and del ete them by pressing DELETE.

If you move the text tool onto the rectangle, it will changeto an |-
beam. The I-beam can be used to position the insertion cursor, and
to select sections of text; these sections can be copied, cut, and
pasted.

The editing box is part of the X-Windows environment; it is not
specific to Design/CPN. Therefore you can use all three mouse
buttons to manipulate its scroll bars and edit its text, using the tech-
nigques characteristic of the X-Windows user interface.

- Enter and edit text until you are comfortable with the pro-
cess.

- Choose Turn Off Text from the T ext menu.
The editing box disappears, handles reappear, the graphics tool
reappears, and the status bar displays Text: Off. The editor is back

in graphics mode. Thetext you created using the editing box isin
the rectangle's text field.

Creating a Series of Rectangles
Y ou don't have to enter and leave rectangle creation mode once for
each rectangle you create. Onceyou areinit, you can cregate as
many rectangles as you like, by repeating the sequence:
1. Depress and hold the mouse button.
2. Usethe adjustment tool to position the diagonal corner.
3. Release the mouse button.
once for each rectangle.
- Enter rectangle creation mode viathe A ux menu.
- Create severd rectangles at various locations.
- Leaverectangle creation mode.

The graphicstool reappears, and handles appear on the rectangle
you created last.

Adding Text to a Rectangle While Creating It

Design/CPN Tutorial for X-Windows 4-11

Design/CPN Tutorial

When you create a rectangle, an editing box with scroll bars and a
cursor appears over the rectangle after you specify the second cor-
ner. Thisfacility exists as a convenience to alow immediate text
entry.

- Createarectangle

- Remain in rectangle creation mode, and enter and edit some
text in the editing box.

Examine the status bar while you are entering the text. Notethat it
displays Text: On even though you did not explicitly enter text
mode. The editor has automatically entered a special form of text
mode, called creation text mode, to give you the opportunity to enter
text during the rectangle creation process. It will leave creation text
mode as soon as you do anything other than enter or edit text, so
you don't have to leave it explicitly.

- Leaverectangle creation mode.

Creation text mode ends automatically, because you have done
something other than enter or edit text. The editor returnsto graph-
ics mode.

Preserving a Rectangle's Aspect Ratio

4-12

A rectangle's aspect ratio istheratio of its height to itswidth. Itis
sometimes useful to preserve the aspect ratio while adjusting a rect-
angle. For example, suppose the rectangle is a square, and you
want to change its size while maintaining its squareness: it would
then be inconvenient to have the height and width vary indepen-
dently during the adjustment process.

To preserve arectangle's aspect ratio during either the adjustment
phase of rectangle creation, or later reshaping of the rectangle, set
CAPs Lock before you begin adjusting its shape, or at any time
during the adjustment process. While CAPS LOCK is set, the rectan-
gle's aspect ratio is fixed, and motion of the adjustment tool changes
only the rectangle's size. When you release CAPS LOCK, the aspect
ratio ceases to be fixed, and again varies with motion of the adjust-
ment tool. You can set and release CAPS LOCK as desired during
the shape-adjustment process.

- Set CAPSLOCK.
- Enter rectangle creation mode.
- Createarectangle.

Therectangleretainsitsinitia square shape as you adjust its shape.

Design/CPN Tutorial for X-Windows

Using the Editor

- Release CAPS LOCK.
The aspect ratio now varies with motion of the adjustment tool.
- Complete the rectangle and |eave the creation mode.
- Set CAPSLOCK.
- Reshapetherectangle.
The rectangl€e's aspect ratio is preserved; only the size changes.

- Setandrelease CAPS LOCK severa times as you continue
reshaping.

The aspect ratio is preserved whenever CAPS LOCK is set.

Working With More Than One Object on a Page

When there is more than one graphical object on a page, and you

want to edit one of them, you must tell the editor which one, or it
will not know where to apply your instructions. The way to give
the editor this information isto select the object.

The object that is currently selected is called the current object. A
description of the current object (e.g. Auxiliary Node) is displayed
on the left side of the status bar. If the editor isin graphics mode,
handles appear around the current object, so you can change its

shape. Intext mode, an editing box appears on top of it, so you can
edit itstext field.

When you create a new object, it automatically becomes the current
object.

Selecting an Object

When a page contains only one object, that object is always sel ected.
When there is more than one object, and the object you wish to edit
is not selected, click the mouse anywhere on or inside the object of
interest. That object isthereby selected, and the object that was se-
lected previously ceases to be selected.

Y ou can select an object whenever the editor isin graphics or text
mode. Its appearance (with handles or covered by an editing box)
will become the one appropriate to the mode. When you change
modes, the current object will change its appearance accordingly.

Design/CPN Tutorial for X-Windows 4-13

Design/CPN Tutorial

- Click on various rectangles, and notice what happens when
one becomes selected. Move or reshape some of the rectan-
gles.

- Enter text mode, select various rectangles, and notice what
happens. Edit sometext in some of the rectangles.

- Return to graphics mode.

Selection After Deletion

4-14

When there is more than one object on a page, the editor keeps them
in an order, called the occlusion order. When an object is created, it
isput at the front of the occlusion order.

The occlusion order is used primarily to control what happens when
objects with opaque interiors are drawn on top of each other. The
objects you create in this chapter are al transparent, so the occlusion
order does not affect their display appearance.

Another use of the occlusion order is to determine what object will
become selected when the current object isdeleted. Theruleis:
when an object is deleted, the object at the front of the occlusion or-
der becomes current. This behavior can be useful when you have
created severa objects in sequence, but then decide to delete them al
and try a different approach.

- Press DELETE until no rectangles remain on the page, then
press it once more.

A dialog appears:

Stop

0 This command cannot be applied when

the active page is empty.

Thisresponseistypical of Design/CPN generdly: if you attempt
anything that is meaningless or impossible (such astrying to delete

Design/CPN Tutorial for X-Windows

Using the Editor

an object that is not there), it refusesto carry out the attempt, and
instead warns you of the problem.

Working With Ellipses

Working with elipsesis very similar to working with rectangles.
This section shows you how to create, reshape, move, and delete
ellipses.

Creating an Ellipse

To create asingle dlipse, execute the following steps:

Enter Ellipse Creation Mode
- Choose Ellipse from the Aux menu.

- Move the mouse pointer over the page on which you will
draw the ellipse.

The editor enters ellipse creation mode; the mouse pointer changes to
thedlipsetool:

O

- Position the elipse tool anywhere over the page, and depress
and hold the mouse button.

Specify the First Corner

The editor draws asmall circle that fills an invisible square whose
upper right corner is at the location of the ellipse tool, switchesto
the adjustment tool, and positionsit to point at the lower left corner
of theinvisible square.

Specify the Diagonal Corner

- Holding the mouse button depressed, move the adjustment
tool around on the page.

Asthetool moves, the invisible corner at which it points moves with

it, and the ellipse changes shape so that it dwaysfillsthe invisible
rectangle. Autoscrolling works as with rectangles.

Design/CPN Tutorial for X-Windows 4-15

Design/CPN Tutorial

- Using the adjustment tool, give the ellipse whatever appear-
anceyou like.

Finish the Ellipse
Tofinishthe élipse:
- Release the mouse button.

The dlipse tool reappears, and an editing box appears over the -
lipse. It can be used to write text inside the ellipse.

Leave Ellipse Creation Mode
- PressEsc.

The dlipsetool isreplaced by the graphicstool, and eight handles
appear on the invisible rectangle that the ellipsefills. These can used
to reshape the dllipse.

Other Operations With Ellipses
All the operations that work with rectangles work with ellipsesin
exactly the same way. The reason ellipses and rectangles are so
similar isthat an ellipseis completely defined by the rectangle that
containsit.

CAPS LOCK preserves an ellipse's aspect ratio just as it does that of
arectangle.

- Perform with ellipses all of the operations that you per-
formed with rectangles.

Working With More Than One Object Type

When a page contains objects of more than one type, they are al
kept in asingle occlusion order.

Y ou don't have to |leave one object creation mode before you enter
another. You can go directly from one to another by choosing the
new mode while you are still in the old one.

- Create amixture of rectangles and €llipses by going directly
from one creation mode to the other and back again.

4-16 Design/CPN Tutorial for X-Windows

Using the Editor

Creating Objects From Text Mode

In the exercises so far, the editor was aways in graphics mode
when you entered a creation mode, and therefore returned to graph-
ics mode when you exited the creation mode.

Y ou can also enter a creation mode from text mode. While the editor
isin the creation mode, it makes no difference that it got there from
text mode. The only difference isthat when you leave the creation
mode, the editor will return to text mode, since that iswhere it
started. The editor's automatic activation and deactivation of cre-
ation text mode during object creation is orthogonal to the underly-
ing text mode.

- Enter text mode.

- Enter éllipse creation mode.

- Createandlipse.
The editor has automatically entered creation text mode.

- Enter sometext.

- Exit the creation mode.
The editor leaves creation text mode, because you have done some-
thing other than enter or edit text, and returnsto text mode. The edi-
tor isnow in the same state that it would have been in if you had
created the object from graphics mode, returned to graphics mode,
then entered text mode from graphics mode.

- Edit the text you entered in creation text mode.

- Return to graphics mode.

Working With Connectors

Objects of the types we have worked with so far can exist indepen-
dently of other objects. In Design/CPN parlance, such objects are
caled nodes.

A connector is an arrow that runs between one node and another,
establishing adirected link between them. A connector cannot exist
independently: it can exist only when there are two nodesfor it to
connect. Every Design/CPN auxiliary object is either anode or a
connector that links two nodes.

This section shows you how to create, reroute, edit, and delete con-
nectors. In general, the methods are the same as for other objects.

Design/CPN Tutorial for X-Windows 4-17

Design/CPN Tutorial

Y ou should have various rectangles and ellipses (nodes) scattered
around on the page. If you do not, create some now. Be surethe
editor isin graphics mode before you proceed.

Creating a Connector

To create a connector:
- Choose Connector from the Aux menu.

The editor is now in connector creation mode, and the mouse pointer
is the connector tool:

-

- Position the connector tool in the interior of some node.
- Depress and hold the mouse button.
- Move the connector tool to the interior of some other node.
- Reease the mouse button.
A connector now points from the first node to the second. The edi-
tor is il in connector creation mode, so you can create additional
connectors.
Look at the left side of the status bar: it displays Auxiliary

Connector, because that is the type of the object you have just cre-
ated.

Routing a Connector

4-18

When there are many objects on a page, the best route for a connec-
tor may not be astraight line. 'Y ou can make a connector follow any
path you want.

- Position the connector tool inside a node not used so far, and
depress and hold the mouse button.

- Movethetool to alocation not inside any node, and release
the mouse button.

- Movethetool around without depressing the mouse button.
The location at which you released the mouse button becomes a

fixed point. Asyou move the tool, the connector tracksiit, extend-
ing between the fixed point and the current connector tool location.

Design/CPN Tutorial for X-Windows

Using the Editor

- Click the mouse somewhere outside any node.
Another fixed point results. Y ou can repeat this sequence as often
asyou like, creating an arbitrarily complex connector. Thefixed
points are called vertexes. The lines between them are called seg-
ments.

- Create severa more vertexes and segments.

- Click the mouse inside some node other than, and not con-
nected to, the node where you began.

A convoluted connector now points from the first node to the sec-
ond.

- Create severa more connectors.

- Leave connector creation mode.
The editor isback in graphics mode. The last connector you created
isthe current object, as with any newly created object. Handles ap-
pear at each vertex, in the center of each segment, and at each end of
the connector you just created.

Editing a Connector

To reroute a connector, drag its handles. If you drag the point at the
center of a segment, resulting in a new vertex and two new seg-
ments, new handles appear on the two new segments.
Y ou can use the handles at either end of a connector to detach it from
one node and attach it to another: just drag the handle to the edge or
interior of the node you want to connect to.

- Reroute and reattach connectors until you are familiar with
the process.

Y ou can edit connectors in most of the ways that you can edit ob-
jects generdly. Y ou can make aconnector current in text mode and
add text to it, delete it with DELETE, etc.

- Perform some object editing operations on connectors.

Automatic Rerouting of Connectors

If you move a node that has an attached connector, the connector
automatically reroutes itself so that it remains connected to the node.

- Move some nodes that have connectors, and note how the
connectors change.

Design/CPN Tutorial for X-Windows 4-19

Design/CPN Tutorial

No agorithm for automatic rerouting can give ideal resultsin all
cases, so you will sometimes need to manually adjust a connector's
route after automatic rerouting has occurred.

Deletion of Dangling Connectors
If you delete a node that has any attached connector, the connector
no longer has anode at each end. Such a connector isillegal; the
editor deletesit automatically.

- Dedete afew nodesthat have connectors.

Working With Labels

A label isanode that consists entirely of text; it has no associated
geometric form. For editing purposes, alabel is no different from
the text field that is associated with every rectangle or dlipse. Its
lack of an accompanying geometric formisits only unusua prop-
erty.

Creating a Label

To create alabel, execute the following steps:

Enter Label Creation Mode
- Choose L abel from the Aux menu.

- Move the mouse pointer over the page on which you will
draw the label.

The editor enters label creation mode; the mouse pointer changes to

thelabd tool:

Create the Label

- Position the label tool anywhere over the page, then click the
Mmouse.

A text insertion cursor appears at the location where you clicked the
mouse.

4-20 Design/CPN Tutorial for X-Windows

Using the Editor

Enter and Edit Text

Y ou can now enter and edit text just asiif the editor were in text
mode, and you were editing the text field of arectangle or ellipse.

- Typeand edit severa short lines of text.
Note that there are no scroll bars. Since alabel consists only of its
text, thereis no frame in which the text must fit, and hence no need
for scrolling.
Create Additional Labels
- Create afew more labels at various locations on the page.

- Leavelabd creation mode.

The editor is back in graphics mode.

Other Operations With Labels

Aswith other objects, you can create as many labelsin succession
asyou like. To edit alabel'stext after the label has been created,
select the label in text mode. Y ou can either select it first or enter
text mode first.

For most purposes, labels are the same as rectangles and ellipses,
and can be treated in the sameway. The only differences are:

1. Youcan't movealabel whileyou are creating it, because its
creation is a one-step process.

2. You can't reshape alabel in graphics mode, sinceit has no
geometric form: its shape is just the shape of the text it con-
sists of, and changes only when you edit that text.

3. Anempty label would serve no purpose, so the editor deletes
any label that contains no text.

With these three points in mind:
- Create various labels and do various things with them until
you feel comfortable with them. Intermix them with ellipses

and rectangles, and be sure that you are clear on the similari-
ties and differences among the various types.

Design/CPN Tutorial for X-Windows 4-21

Design/CPN Tutorial

Nodes and Regions

It isfrequently useful to define anode as being logically subordinate
to some other object. Such a subordinate nodeiscalled aregion. A
node that is aregion does not cease to be anode. It just takeson
some additional propertiesthat make it aregion aswell.

An object may have any number of regions. These may in turn have
regions, sometimes called subregions, and so on indefinitely. An
object and any associated regions always form atree; non-tree-
structured relationships may not be defined. Objects and their re-
gions are referred to as parents and children, asis customary with
tree structures.

When anodeisaregion, it is affected not only by operations per-
formed on itself, but also by operations performed on its parent.
For example, when aregion's parent is deleted, the region is auto-
matically deleted aswell. Details appear later in this section.

Both nodes and connectors can have regions, but only a node can be
aregion: aconnector cannot be. The reason isthat allowing a con-
nector to be aregion would lead to unresolvabl e contradictions be-
tweenitsroleasalink and itsrole as a subordinate object.

Designating a Region

4-22

Y ou should have avariety of nodes and connectors on the page | eft
over from previous exercises. If not, create some now.

Y ou can designate a node to be aregion of an object whenever the
editor isin graphics mode or text mode. The operation of designat-
ing aregion does not affect the editing mode.
To designate anode as aregion:

- Select the node that will be the region.

- Choose M ake Region from the Aux menu.

The status bar displays Select Parent, and the mouse pointer be-

comes the pointer tool:

- Movethetool sothat itison or inside the object that isto be
the parent of the region. (Any node or connector will do at
this point.)

Design/CPN Tutorial for X-Windows

Using the Editor

A dark border flashes on and off around the prospective parent. An
object that could not legally become the parent, because the result
would not be atree, would not show such a border.

- Click onthe object that isto be the parent.

The selected node is now aregion of the object you designated asiits
parent.

- Create some more regions. Make some of them be subre-
gions of other regions.

Y ou can execute M ak e Region on anode that is already aregion.
It will ceaseto be aregion of its current parent, and become instead
aregion of the newly designated parent.

- Transfer aregion from one parent to another.

Restoring the Independence of a Region
Y ou can disconnect aregion from its parent, restoring its indepen-
dent status, whenever the editor isin graphics or text mode. If the
region has subregions, their status relative to the region is not af-
fected by its disconnection.
- Select aregion that isto be returned to independent status.
- Choose M ake Node from the Aux menu.
Theregion is returned to independent status (note the changein its

status bar description). It has the same propertiesthat it would have
if it had never been aregion.

Editing Parents and Regions
Editing aregion does not affect its parent, but editing the parent can
affect the region in anumber of ways:
Moving a Region's Parent

When aregion's parent is a node, and the parent is moved, the re-
gion moves with it so that they retain the same relative positions.

- Edtablish achain or tree of regions.
- Experiment with moving parent nodes.

When aregion's parent is a connector, the situation is complicated
by the fact that a connector (unlessit isa straight line) has no center

Design/CPN Tutorial for X-Windows 4-23

Design/CPN Tutorial

point that can be taken asits position. Consequently there is no way
to define how rerouting a connector would move aregion.
Rerouting a connector therefore does not affect region position.
The position of a connector is defined as the midpoint of a straight
line connecting its endpoints. When that point moves, because one
of the connected nodes moves, any regions will move aso.

- Establish aregion whose parent is a connector.

- Experiment with rerouting the connector and with moving

the nodes it connects.

Deleting a Region's Parent

When aregion's parent is deleted, the region is automatically deleted
along with it.

- Déelete aparent object and note the results.

- Déeeteanodethat islinked to some other by a connector that
has aregion.

The deletion of the node del etes the connector, and the del etion of
the connector deletes the region.

Groups of Objects

4-24

It isfrequently necessary to perform the same operation on more
than one object, and it would be inefficient to have to select and then
operate on them one a atime. Therefore the editor alowsyou to
designate a group of objects and operate on them simultaneoudly.
Thereisthen no one selected object: al the objectsin the group are
selected.

When a group has been selected, the editor indicates the group by
drawing agray border around each of its members. Handles do not
appear around group members, since they intrinsically refer only to
individual objects.

Whenever you select more than one object simultaneoudly, the editor
entersgroup mode. Thismode is not an alternative to graphics or
text mode; it is orthogonal to them.

When the editor isin group mode, the mouse pointer becomes the
group tool:

Design/CPN Tutorial for X-Windows

Using the Editor

Mixed Groups

Selecting a Group

'G

Thistool is displayed whether the editor isaso in graphics or text
mode. Examine the status bar to tell which modeisin effect.

The properties of nodes, connectors, and regions are so different
that it is not possible to create a useful group that combines objects
from more than one of these classes. The reasons are:

1.

2.

Whenever anode is changed, any connectors and regions
associated with it automatically adjust themselves. Therefore
thereis never any reason to include connectors and regions
in agroup that contains nodes.

Allowing connectors and regions to be part of the same
group could lead to unresolvable conflicts among the various
operations that are performed on them automatically when
their associated nodes are edited.

Therefore when more than one object is selected at atime, they must
al be nodes, or al connectors, or all regions.

There are many ways to select agroup. None of them can be used
to create a mixed group.

The Group menu contains the commands Select All
Nodes, Select All Regions, and Select All
Connectors. These have the obvious effects. They may be
combined with mouse and keyboard techniques to further
specify the group.

Pressing and holding SHIFT and then clicking on an object
selectsit (if it was not selected and is of appropriate type) or
desdlectsit (if it was selected) without affecting the selection
status of other objects.

Depressing the mouse button when it is not inside an object,
then moving it, creates arectangular selection area. When the
mouse button isreleased, all objectsin the area (that are not
selected and are of appropriate type) will become selected,
and any other selected objects will cease to be selected.

Pressing and holding SHIFT, then using the mouse to create a
rectangular selection area, toggles the selection status of all

Design/CPN Tutorial for X-Windows 4-25

Design/CPN Tutorial

objectsin the area (except that none becomes selected that is
not of appropriate type) without affecting that of other ob-
jects.

Whenever a group rather than asingle object is current, the status
bar displays a description of the content of the group.

- Experiment with creating and manipulating groups in various
ways, in both graphics and text mode. Note the status bar
descriptions of the groups you create.

Deselecting a Group

When the editor isin group mode, the command Ungr oup isavail-
ableinthe Group menu. If you choose this command, the group
will cease to be selected, and the object that was current before you
entered group mode will become current again.

A group is aso deselected if you select some other group in its
place, or use the mouse to select a single object that is not a member
of the group.

Reconstructing a Group

Sometimes a particular group will be useful more than once during
an editing session, but is not useful continuously. To save you the
effort of reconstructing such a group each time you need it, the edi-
tor always records the composition of the group that is current when
you leave group mode. It can use thisinformation later to recon-
struct the group.

When the editor is not in group mode, the command Regroup is
availablein the Group menu. If you choose this command, and
you had previously defined a group at some time, the editor will re-
enter group mode and reselect the group.

- Create agroup, then deselect and reselect it by toggling
group mode.

- Find out what happensif you move or delete group members
while not in group mode, and then reenter the mode.
Operating on Groups
Y ou can do anything to agroup of objects that:

1. Could be doneto each of its members individually, and:

4-26 Design/CPN Tutorial for X-Windows

Using the Editor

Intermission

2. Ismeaningful when applied to more than one object smulta-
neously.

For example, you can move a group, delete a group, make all the
members of a group regions of the same parent, or turn a group of
regions back into nodes even if they had different parents. But you
cannot edit the text in agroup of nodes, or reroute a group of con-
nectors, since there is no way to deal with text fields or connector
routes generically.

- Define various groups and operate on them until you are
familiar with what you can and cannot do with them.

There are also operations that are meaningful for groups but not for
the individuals within them. Most of them concern the physical lay-

out of the group's members on the page, and are used to improve
the physical appearance of anet.

- Closethe diagram you have been working on. Thistutorial
doesn't make any further use of it, but you might want to
save it to examine later as areference.

- Quit Design/CPN.

- Takeabresk.

There's lots more to come.

Design/CPN Tutorial for X-Windows 4-27

Chapter 5
CP Net Components

Aswe noted in Chapter 3, a CP net isagraphical structure with as-
sociated computer language statements. The principal components
of aCPnet are:

» Data: CP nets make use of datatypes, data objects, and vari-
ablesthat hold datavalues. CP net datais defined using a
computer language called CPN ML.

* Places: Locationsfor holding data.
* Transitions: Activities that transform data.

» Arcs: Connect places with transitions, to specify data flow
paths.

* Input Arc Inscriptions: Specify datathat must exist for an
activity to occur.

* Guards: Define conditions that must be true for an activity to
occur.

* Output Arc Inscriptions: Specify datathat will be pro-
duced if an activity occurs.

This chapter defines all of these components, and shows how they
interrelate syntactically to form a CP net. This chapter does not dis-
cuss how they work together dynamically to define a CP net's be-
havior when it is executed. That is covered in Chapter 7.

The CPN ML Language

General descriptions of data flow suffice for a static paradigm such
as|IDEFO. A dynamic paradigm like CPN needs more: it must in-
clude the representation of actual data, with clearly defined types and
values. The presence of dataisthe fundamental difference between
dynamic and static modeling paradigms. All of the other differences
exist to allow datato be manipulated in clearly defined ways, or re-
sult from the possibility of doing so.

Design/CPN Tutorial for X-Windows 5-1

Design/CPN Tutorial

CP nets allow datato be of any type that can be defined on the com-
puter. In order to define and manipulate such data, CP nets use
computer language statements.

CP nets require an extremely rigorous approach to data. A weakly
typed language like LISP, or even a strongly typed language that
automatically coerces types as C does, would not provide the abso-
lutely unambiguous approach to data that a CP net needs. Thelan-
guage ML (for Meta Language, no relation to Meta Software) is par-
ticularly well suited for use by CP nets. It isastrongly typed func-
tional language that provides great economy of expression, is easily
extended by the user, and can execute interpretively or be compiled.

To facilitate the use of ML with CP nets, Meta Software has added
various extensions, resulting in the language CPN ML (for Colored
Petri Net ML). Very little of ML isever needed for working with
CP nets, so in practice CPN ML isavery small language.

Y ou do not need to become a CPN ML programmer in order to use
CP nets. The CPN equivalent of programming is done by creating
graphical net structure, not by writing language statements. Y ou
need only learn the particular syntactic conventions through which
CPN ML does various low-level things that any computer language
does. declaring datatypes and variables, comparing one data value
with another, and so on. Information on these conventions will be
presented as needed throughout this tutorial.

A CP Net Example

Order

The various CP net components will be discussed in the context of
the small CP net that appeared in Chapter 3. Thisnet is called
FirstNet.

[ordent = Big]

ProductShipped

N Process Orders N
<::§f%ji:> 1 ordent > 1 ordent Product Out

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

5-2 Design/CPN Tutorial for X-Windows

CP Net Components

Nets and Models

CP Net Data

As each CP net component is discussed, the instance(s) of it in
FirstNet will be shown in boldface (for text) or with thickened bor-
ders (for graphics).

A CPnet existsin an of itself as a syntactic structure. Thereisno
requirement that anet be amodel of anything in particular. A net
that isentirely meaningless, if it is syntactically correct, isjust as
much a net as one that constitutes a useful model. The relevance of
a CP net to a system, by virtue of which the net functionsas a
model, really exists only in our minds: the net itself isjust a struc-
ture that executes according to certain rules.

FirstNet is not very interesting as amodel, because it does not de-
fine any structure or behavior that is complex enough to justify a
modeling effort, and what little structure and behavior it does define
isunredlistic. Nevertheless, it contains most of the constructs that
are used by CP nets of any size, and can be used to demonstrate the
essentia algorithm by which CP nets execute. Once you understand
these mattersin the minimal context of FirstNet, you should have
little difficulty applying them to much more interesting nets

CP nets use datatypes, data objects, and variables. CPN datatypes
arecalled colorsets. CPN data objects are called tokens. Tokens are
somewhat like objects in an object-oriented programming system. |If
you are familiar with object-oriented programming, you are ahead of
the game, but such familiarity is not necessary.

All CPN datatypes and variables must be declared. They are de-

clared in adeclaration box called a global declaration node.
FirstNet's global declaration node contains three declarations:

Design/CPN Tutorial for X-Windows 5-3

Design/CPN Tutorial

Order

[ordent = Big]

ProductShipped

< Process Orders <
<::ff§ji:> 1 ordent > 1 ordent Product Out

Colorsets

5-4

color Order = with Big | Small;
col or Product Shi pped = Order;
var ordent : Order;

The meanings of these declarations are explained in this section.

CP net tokens can be of al the datatypes generally availablein a
computer language: integers, reals, strings, booleans, lists, tuples,
records, and so on. In the context of CP nets, these types are called
colorsets.

“Colorset” isredly just asynonym for “token datatype.” Theterm
“colorset” is used, rather than a standard term such as “datatype,” to
avoid confusion between token datatypes, which are extensions to
standard ML, and ordinary ML datatypes. The origin of the term
“color” was described in Chapter 1.

Just as every piece of datain an ordinary computer program is of
some datatype, so every token in a CP net is of some colorset. All
colorsets used in a CP net must be explicitly declared. The declara-
tion syntax is:

color name = definition;

where nane isthe name of the colorset, and def i ni t i on speci-
fieswhat it consists of. The syntax for def i ni ti on varies, de-
pending on what sort of colorset isbeing declared.

Enumerated Colorsets

One common colorset defines tokens that may have any of a set of
predefined literal values. The possible values are all enumerated in
the colorset declaration, so this colorset is called an enumerated col-
orset. The syntax of an enumerated colorset declaration is:

color name = with value {| value}.. .

Design/CPN Tutorial for X-Windows

CP Net Components

Order

The construction “{}. . .” indicates that the material in braces may
be repeated zero or moretimes. Underliningindicatesatermthat is

to be replaced with an actual value.

Examples:
col or oneval = with EXI STS;
col or bool tok with yes | no;

color chord = with Major | M nor |
Augrment ed | Di m ni shed,;

The first declaration defines an enumerated colorset named

oneval . All tokensof this colorset have the same value: EXI STS.
The second defines an enumerated colorset bool t ok. Every token
of typebool t ok hasether thevalueyes or thevalueno. The
third declaration defineschor d, whose tokens may have any of the
valuesMaj or, M nor, Augnment ed, or Di mi ni shed. All of
these names and values, and all CPN ML textual objects, are case-
sensitive.

FirstNet uses an enumerated colorset, Or der :

[ordent = Big]

ProductShipped

- Process Orders <

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

The declaration indicates that Or der tokens may have either of the
valuesBi g or Smal | . Thus FirstNet provides the ability to model
ordersthat are of two kinds: “big” ordersand “small” orders. This
isafairly coarse granularity, but it will suffice for now.

Mnemonic names such as Or der , Bi g, and Snal | , are very help-
ful in making amodel easy to understand, but their meaningfulness
has no syntactic significance. Syntactically, we could just aswell
declare:

color A=with B | C
If weused A, B, and Cjust aswewould useOr der, Bi g, and

Smal | , the model would be functionally the same, but of course
would be harder to make sense of.

Design/CPN Tutorial for X-Windows 5-5

Design/CPN Tutorial

5-6

Order

String and Integer Colorsets

Strings and integers are commonly used in CP nets. The syntax for
adtring colorset declaration is:

For example:

col or name = string;

The syntax for an integer colorset declaration is:

color nanme = int;

It is possibleto restrict the length and character set of a string col-
orset, and the range of an integer colorset, by adding clauses to the
declaration.

The syntax for other colorsets, including composite colorsets, will
be given as needed in later chapters. Complete information on CPN
ML colorset declaration appearsin The Design/CPN Reference
Manual.

Duplicate Colorsets

It is often useful, both in programming and in modeling (whichis
really just akind of programming), to have more than one datatype
that consists of the same values. In CPN ML, such adatatypeis
caled aduplicate colorset. The declaration syntax is:

col or DuplicateNane = Exi stingName;

whereDupl i cat eNanme isthe name of the duplicate type being
defined, and Exi st i ngNane isthe name of some colorset that has
already been declared. FirstNet declares a duplicate colorset called
Pr oduct Shi pped:

[ordent = Big]

ProductShipped

< Process Orders <
<::ff?ji:> 1 ordent > 1 ordent Product Out

color Order = with Big | Snmall;
col or Product Shi pped = Order;
var ordent : Order;

Design/CPN Tutorial for X-Windows

CP Net Components

Tokens

Pr oduct Shi pped tokens may have the same valuesthat Or der
tokens can: Bi g or Smal | .

Again, the granularity isfairly crude. Thelevel of realismisalso
fairly low: big and small orders make some sense, but shipped
products would probably be categorized differently. For exampleit
might be more useful to have heavy and light shipped products, and
use the distinction to determine how the products should be shipped.
But our goal now isto study CP net components, not to do realistic
modeling: greater realism at this early stage would just add com-
plexity.

CPN data objects are called tokens. They are called tokens rather
than objects to avoid confusion with graphical objects. Every token
used in a CP net must be of one of the colorsets declared for the net.

A CP net token is represented by giving itsvalue. For example:

Xeni a
"Clifton"
45387

Thefirst example specifies atoken of an enumerated colorset. The

token'svalueis Xeni a. The second specifies token of a string col-
orset (a string token) with thevalue“ Cl i f t on” . Thethird speci-
fiesan integer token; itsvalueis45387.

Note that when there is more than one colorset that includes some
possible value, there isno way to tell by looking at atoken which
colorset the token belongsto. This doesn't create ambiguity, be-
cause the way tokens are used in CP nets always indicates the cor-
rect colorset contextually.

Multisets of Tokens

In dealing with CP nets, it is often necessary to manipulate and refer
to collections of tokens. A collection of zero or moretokensis
caled amultiset.

All tokens in amultiset must be of the same colorset. A multiset
may contain multiple tokens that have the same value. Any subset
or union of multisetsis again a multiset.

A multiset is not a data structure that exists separately from the to-
kensit contains. It isjust aconvenient way to refer to a collection of
tokens. Thus a single token and amultiset of one token are the same
thing. A multiset of no tokens has no properties of its own, so there
isonly one such multiset, called the empty multiset. When the
empty multiset must be designated explicitly, it iswritten asenpt y.

Design/CPN Tutorial for X-Windows 5-7

Design/CPN Tutorial

5-8

Specifying Multisets

A multiset is specified by giving an expression that describesthe
multiset. The simplest such expression specifies amultiset of iden-
tical tokens. Such an expression is called a multiset designator.

A multiset designator consists of an integer denoting the number of
tokens in the multiset, followed by a backquote (), followed by the
value of the tokens:

count “val ue
For example:
1" Xeni a

37"Clifton"
2745387

The first example specifies a (multiset containing @) single token of
an enumerated colorset. Thetoken'svalueis Xeni a. The second
specifiesamultiset of three string tokens, each with the value
“Clifton”. Thethird specifiesamultiset of two integer tokens,
each with thevalue 45387.

Multiset Addition

Multisets of the same colorset may be added:

1""Springfield" + 3 "Springfield" =>
4" " Springfield"

A multiset containing tokens with different values is specified by
giving an expression that is a sum of multiset designators. Thus:
767 + 73+ 31

isamultiset expression. It specifiesamultiset of 17 integer tokens:
seven with the value 67, seven with the value 3, and three with the
value 1. (The same multiset would result if the termswere added in
any other order.)

FirstNet contains a multiset expression:

Design/CPN Tutorial for X-Windows

CP Net Components

Order

[ordent = Big]

ProductShipped

< Process Orders <
<::ff§ji:> 1 ordent > 1 ordent Product Out

1'Big +
2 Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

The expression specifies one token with value Bi g, and two with
vaueSmal | . Itssignificance will be explained as we proceed.
Multiset Subtraction

Multisets of the same colorset may be subtracted:

5’"Clifton" - 3 "Clifton" => 2 ""Clifton"
2 Gegner - 2 Gegner => enpty

The empty multiset may be subtracted from any multiset:
1°513 - enpty => 1°513

Multiset subtraction may not attempt to take away tokens that do not
exist. Therefore:

2°10 - 3°5

1""Helen" - 1°""d en"

enpty - 2°Birch

are not valid subtractions, and would result in an error.

Multiset Subsets

When al the elements of one multiset also exist in a second multiset,
so that the first could be subtracted from the second, the secondisa
subset of thefirst. (Thereisno needto call it a“submultiset”, be-
cause the context always prevents confusion with ordinary sets and
subsets.) By definition, the empty multiset is a subset of every
multiset.

Thus the subsets of the multiset;

1 Land + 2 Sea

Design/CPN Tutorial for X-Windows 5-9

Design/CPN Tutorial

are:

1'Land + 2 Sea
1°'Land + 1 Sea
1" Land
2" Sea
1° Sea

enpty

CPN Variables

CP net execution often requires token values to be accessed and
used in various ways. Such usageis no different than the manipu-
lation of data valuesthat occursin ordinary computer programs.

It would not work to restrict a CP net to handling only token values
that are known in advance. Thiswould be equivalent to requiring a
computer program to use only constants. Therefore CP nets contain
variables that can take on token values as needed. These variables
are called CPN variables.

Like colorsets, CPN variables must be explicitly declared. Every
CPN variableis of aparticular colorset, and can take on only values
of that type. When a CPN variable has taken on the value of some
token, it is said to be bound to that value. Often aCPN variableis
not bound to any value, and is said to be unbound.

FirstNet usesone variable: or dent :

[ordent = Big]
Order ProductShipped
- Process Orders -
Order In 1 ordent 1 ordent Product Out
g
1'Big +
2'Small

color Order = with Big | Snmall;
col or Product Shi pped = O der;
var ordent : Order;

Sinceor dent isof typeOr der, it can be bound to either the value
Bi g or thevalue Smal | . Those arethe only valuesit can ever
have.

5-10 Design/CPN Tutorial for X-Windows

CP Net Components

Places

Order

Tokenswould be of little use if they could not be stored and ac-
cessed as needed. CP nets keep tokensin locations called places.

A placeisalocation that can contain zero or more tokens (a multiset)
of some particular colorset. A place's colorset is one of the col-
orsets defined for the net. All tokensin a place must be of that col-
orset.

A place may optionally have aname. Such anameis useful for in-
dicating what the place means as a part of amodel, for identifying
the place when humans confer about the net, and for labeling com-
puter-generated information about activity in the place during smu-
lation runs.

A placeis graphically represented as an ellipse. Its name and/or col-
orset may optionally be displayed next to or inside the place. They
are graphically represented as labels that are regions of the place.
The regions are named for their contents: a placesnameiskeptina
name region, its colorset in acolorset region, etc.

FirstNet contains two places:

[ordent = Big]

ProductShipped

@ 1 ordent Process Orders 1~ordent -
>

1'Big +
2°Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

The placeontheleftisnamed Or der I n. ItscolorsetisOr der .
The place on theright isnamed Pr oduct Qut ;itisof type
Pr oduct Shi pped.

The locations, fonts and styles shown for the various place regions
arefairly typical, but there is nothing special about them.
Design/CPN allows you to position regions wherever you like, and
to put them in any fonts and styles available on the computer. You
can also make aregion invisible; thisis often useful to avoid visual
clutter resulting from regions that must exist but are not currently of
interest. The sameistrue of al CP net regions.

Design/CPN Tutorial for X-Windows 5-11

Design/CPN Tutorial

Place Markings

The purpose of aplaceisto hold tokens. Thetokensin aplace, like
any group of tokens, congtitute amultiset. The multiset in aplaceis
called the marking of the place. A place always has amarking: if it
contains no tokens, its marking isthe multiset enpt y.

When a placeis empty, no marking is shown for it. (An explicit
enmpt y could be written, but that would serve no purpose.) The
marking of a nonempty place is depicted as a circle with a number
inside indicating the number of tokensin the multiset, followed by
an expression that describes its contents:

States and Markings

Taken together, the markingsin al the placesin a CP net contitute
the gtate of the net. Thefirst state of the net, before execution be-
gins, iscalled the initial Sate of the net, and the place markings that
congtitute it are called the initial markings of the places.

As anet executes, tokens are put into and removed from places, so
that the state of the net changes. Its state at agiven timeis called its
current ate, and the place markings that constitute that state are the
current markings of the places. Thusanet'sinitia stateisthefirst
of asuccession of current states, and a place'sinitial marking is the
first of a succession of current markings.

Initial Marking Regions

In FirstNet, Or der | n has an associated multiset expression:
1'Big + 2 Small. Thisisanother region of the place, called
theinitial marking region. When FirstNet is executed, the tokens
specified in thisregion will be put into the place Or der | n before
execution starts, providing Or der | n'sinitial marking.

Product Out hasno initial marking region, so no tokenswill be
put in it before execution starts. Put another way, itsinitial marking

isenpty.

5-12 Design/CPN Tutorial for X-Windows

CP Net Components

Order

Appearance of Markings

FirstNet with initial markings shown looks like this:

[ordent = Big]

ProductShipped

Order In 1 ordent 1 ordent Product Out
_ >
1 BAg+

1'Big +
2'Small

Transitions

2°Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

In thisfigure, the place Or der | n contains three tokens, one of
valueBi g and two of value Smal | , as specified by theinitial
marking region. These tokens congtitute the initial marking of the
place, and are its current marking as well.

The existence of both an initial marking region and a current mark-
ing for aplaceis not aredundancy. Theinitial marking regionis
just alabel with sometext in it that specifies some tokens that will be
put in the place before execution starts. The current marking repre-
sents the actual tokens.

A place's current marking may be depicted anywhere that is conve-
nient. Placing it as shown above isjust a convention, used because
it gives agood appearance in this case.

A CP net trangition is an activity whose occurrence can change the
number and/or value of tokensin one or more places. A CP net
transition may optionally have a name, kept in a name region, which
serves the same purposes as a place name. A transition is graphi-
cally represented as arectangle. If it has an associated name, it may
optionally be displayed next to or inside the transition.

FirstNet has onetransition: Pr ocess Or der s:

Design/CPN Tutorial for X-Windows 5-13

Design/CPN Tutorial

Arcs

5-14

Order

Order

[ordent = Big]

ProductShipped

< Process Orders <
@ 1 ordent I 1 ordent Product Out

1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

WE'l look at exactly how transitions work in Chapter 7.

Anarc isaconnection between a place and atransition. Every arc
connects one place with one transition. Every arc hasadirection,
either from a place to atransition, or from atransition to a place.

An arcis represented graphically as an arrow with ahead that indi-
catesitsdirection. FirstNet hastwo arcs:

[ordent = Big]

ProductShipped

< Process Orders <
@ 1 ordent > 1 ordent > Product Out

1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

Anarc that runsfrom aplace to atrangtion is called an input arc,
and the placeit connectstoiscalled an input place. An arc that runs
from atrangition to aplaceis caled an output arc, and the place to
which it connectsis called an output place. Thusin FirstNet,
Order I nisaninput place, and Pr oduct Qut isan output place.
It ispossible for a place to be both an input place and an output
place.

Design/CPN Tutorial for X-Windows

CP Net Components

When atransition occurs, it may remove tokens from any or all of
itsinput places, and put tokens into any or all of its output places.
The number and values of tokens removed and added are determined
by arc inscriptions and guards.

Arc Inscriptions

Order

Anarcinscription isamultiset expression associated with an arc. It
iskept in aregion of the arc called an arc inscription region.
FirstNet has two arc inscriptions:

[ordent = Big]

ProductShipped

~ Process Orders ~

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

An arcinscription on aninput arc is called an input arc inscription;
an arc inscription on an output arc is called an output arc inscription.

The tokens in the multiset specified by an input arc inscription must
be present in the input place in order for the transition to occur (there
may be other tokens there also). These tokens will be removed from
the input placeif the transition does occur. The multiset specified by
an output arc inscription will be put into the output placeif the tran-
sition occurs. Details on how arc inscriptions specify multisets are
in Chapter 7.

An arc inscription need not be given explicitly. The default arc in-
scriptionisenpt y, the multiset of no tokens. When an input arc
inscription is given as or defaultsto enpt y, no tokens need to be in
the input place in order for the transition to occur. When an output
arcinscription isgiven as or defaultsto enpt y, no tokenswill be
put into the output place if the transition does occur.

Design/CPN Tutorial for X-Windows 5-15

Design/CPN Tutorial

Guards
A guard is a boolean expression associated with atransition.
Guards are customarily written inside square brackets, to help dis-
tinguish them from other regions.
Thereisonly onetransition in FirstNet, and hence only one guard:
[ordent = Big]
Order ProductShipped
@ 1" ordent > Process Orders 1" ordent
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

A transition's guard must evaluate to boolean true in order for the
transition to occur. Details on guard syntax and usage appear in
Chapter 7.

A guard need not be given explicitly. The default guard is boolean
true. When aguard is given asor defaultsto true, the guard never
restricts the transition from occurring.

CP Net Execution

We have now looked at the principal components of a CP net, and
have seen how they relate to each other syntactically. But that is
only part of the story. We wouldn't need al this machinery just to
describe the structure of a system: a static modeling paradigm such
as IDEFO can do that much less effort.

A CP net is more than a description of system structure: CP nets are
intended to be executed. Such execution can provide information
about system dynamics that could never be derived by looking at a
static model and considering itsimplications. Thereisjust too much
information involved in the functioning of acomplex system for the
unaided human mind to cope with.

This chapter has not addressed the question of how CP net compo-

nents work together to define how a net will behave during execu-
tion. Thisquestion isanswered in Chapter 7. But before we pro-

5-16 Design/CPN Tutorial for X-Windows

CP Net Components

ceed to CP net dynamics, it will be useful to gain alittle more famil-
iarity with CP nets as static representations. The best way to do this
isto build one.

Design/CPN Tutorial for X-Windows 5-17

Chapter 6

Creating a Net
With Design/CPN

This chapter shows you how to use the Design/CPN editor to create
asmall CP net. The net is FirstNet, the net that was used in Chapter
5 to illustrate the components of CP nets:

[ordent = Big]
Order ProductShipped
- Process Orders <
Order In 1 ordent 1 ordent Product Out
>
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

Auxiliary Graphics and CPN Graphics

Y ou could easily draw graphicsthat ook exactly like the above net
using the techniques covered in Chapter 4. But the result would not
be a CP net: it would just be a collection of auxiliary graphical ob-
jects. A human who knows what is intended by the graphics can in-
terpret them as a CP net, but acomputer cannot, because the objects
do not carry sufficient syntactic information.

In order for graphics to be meaningful to the computer as a CP net,
the CPN meanings of the various objects must be explicitly indicated
to the computer. There are two waysin which this can be done:

1. Draw auxiliary graphical objectsfirst, and establish their

CPN meanings afterwards. For example, one could draw an
ellipse and arectangle linked by a connector, then convert

Design/CPN Tutorial for X-Windows 6-1

Design/CPN Tutorial

the ellipse to a place, the rectangle to atransition, and the
connector to an arc.

2. Construct the net out of objects that have appropriate CPN
meanings from the start.

The problem with the first method is that converting large numbers
of graphical objectsto CPN objects would be very laborious and
repetitive: the same stereotyped sequences of commands would have
to be given over and over again. Therefore the second method is al-
ways used in practice.

The Design/CPN editor provides commands that let you draw a
graphical object, make it aregion if appropriate, specify its CPN
meaning, and give it display attributes appropriate to that meaning,
using only one command per object. These commands are available
from the CPN menu. This chapter shows you how to use them.

A graphical object that is also a CP net component is called a CPN
graphical object, which is usually shortened to CPN object. A node
that is also a CP net component is called aCPN Node. A region that
isalso a CP net component iscalled a CPN Region. Asthese names
suggest, the realms of auxiliary objects and of CPN objects are ex-
actly parald. Theonly difference between an auxiliary object and
the corresponding CPN object is the presence or absence of a CPN
meaning: graphically the objects are identical.

Setting the Graphical Environment

6-2

A diagram contains many kinds of information, and all of them are
represented in some way in the physical appearance of the diagram.
To help make diagrams and net execution behavior visually self-ex-
planatory, different types of information are customarily given dif-
ferent physical appearances, using avariety of graphical and textual
conventions. These conventions are called display attributes. Their
combined effect isto establish a particular graphical environment.

Display attributes exist at three levels: object attributes, diagram de-
fault attributes, and system default attributes.

Object Attributes

Each graphical object has a set of display attributes that governsits
individual appearance. These are the object attributes.

Design/CPN Tutorial for X-Windows

Creating a Net

Diagram Default Attributes

Each diagram has a set of display attributes that it applies by default
to every newly created graphical object. These are the diagram de-
fault attributes. For brevity they are usually called the diagram de-
faults

System Default Attributes

Design/CPN keeps amaster list of display attributes that it copies by
default into every newly created diagram. These are the system de-
fault attributes. For brevity they are usualy called the system de-
faults. (This*system” has nothing to do with the computer's op-
erating system; it refers only to Design/CPN's internal record-keep-
ing system.)

Changing the Display Attributes

Display attributes can be changed whenever anet is not being exe-
cuted. The change can be applied to a selected object or group of
objects, to the diagram default attributes, to the system default at-
tributes, or to any combination of these. Such changes are de-
scribed in the next chapter.

Itisaso possibleto replace al of adiagram's default attributes with
the current system default attributes, or vice versa, as described later
in this chapter.

Establishing an Environment

In order for you to use thistutorial effectively, you must be working
in the environment that the tutorial assumes. That environment is
called the tutorial environment.

Thisisamatter of considerable importance. Design/CPN can pro-
vide very different environments for use in the very different pur-
poses for which CP nets are created. Once you understand how to
use Design/CPN, you will have no trouble establishing and working
with any environment it can provide. But at this early stage, if you
are not in the particular environment that this tutorial assumes, the
results of carrying out the tutorial's instructions might bear little re-
semblance to the results the tutorial describes. Thiswould be frus-
trating at bet, if not totally confusing.

Thetutorial environment is given by the diagram defaults of the dia-
gram FirstNetDemo. To establish the tutorial environment, you
must copy these defaultsinto Design/CPN's system defaults, as
follows:

Design/CPN Tutorial for X-Windows 6-3

Design/CPN Tutorial

6-4

- Open the diagram FirstNetDemo in the Tutoria Diagrams di-
rectory.

The diagram opens.

Preserving the ML Configuration Options
When Design/CPN isinstalled, one of the stepsisto record in the
system defaults some information that Design/CPN needs in order to
communicate with the ML process that was described at the begin-
ning of this chapter. Thisinformation must be preserved when the
tutorial environment is established. To preserveit:

- Choose ML Configuration Optionsfrom the Set menu.
A dialog appears. One of itsoptionsisL oad.

- ClickL oad.

- ClickOK.
The necessary information about the ML processis copied from the
system defaults to FirstNetDemo's diagram defaults. Y ou can now
make those diagram defaults the system defaults without erasing the
information about the ML process.
Copying the Diagram Defaults

- Choose Copy Defaultsfrom the Set menu.

TheCopy Defaultsdialog appears:

Copy Defaults

@ System -> Diagram
{_» Diagram -> System

- ClickDiagram -> System.

- ClickOK.

The dialog disappears. The system defaults are now the same asthe
FirstNetDemo diagram defaults. Thisinsuresthat when you create
new diagrams while working through this tutorial, they will have the
correct defaults.

Design/CPN Tutorial for X-Windows

Creating a Net

- Close theFirstNetDemo diagram.

In exercises later in this tutorial, you will be setting specific features
of the environment to various values. An error might then leave you
in an environment that does not match the tutorial's assumptions, so
that its instructions do not have the effects described for them. If
this occurs, and you cannot identify and correct the error, re-estab-
lish the tutoria environment, and start over from the beginning of
the exercise where you encountered the difficulty.

Creating the Net

The components of a CP net can be created in almost any order.
The only requirements are:

1. A region's parent must be drawn before the region is drawn.

2. Thenodesthat an arc connects must be drawn before the arc
isdrawn.

Within these requirements, the choice of how to create anetisa
matter of individual style. The order we will follow in this chapter
has been chosen for smplicity rather than for efficiency. Later in
this tutorial we will look ate more efficient ways to create and mod-
ify nets.

- Start Design/CPN.
- Choose N ew from theFile menu.
An new empty diagram appears. It has the diagram defaults that you

just established as the system defaults by copying them from
FirstNetDemo. The page displayed is named New#1.

Creating the Transition

From the graphical standpoint, creating atransition isthe same as
creating arectangle. The only difference isin the command you use
to specify its creation.

- Choose Transition from theCPN menu.

The editor is now in trangition creation mode. The transition tool
appears.

Design/CPN Tutorial for X-Windows 6-5

Design/CPN Tutorial

6-6

O
In transition creation mode, you can draw rectangles that are prede-
fined as representing transitions.

- Draw arectangle (transition) in the upper middle of the win-
dow.

A small editing box appears over the rectangle, just as with auxiliary
rectangle creation. If you entered text, and did not specified a sepa-
rate name region later, the text would by default become the name of
thetrangition. If you did create a name region later, the text would
thereafter have no functional significance. Such text is often used as
acommentsfield. Don't type any text now.

- Leavetrangtion creation mode via one of the techniques you
used in Chapter 4 for exiting creation modes.

The window should now look something like this:

I
[]

SN A——————————————— =

.

T
=

The rectangle you have just drawn looks like any other, and has all
the usual graphical properties of arectangle. But look at the status
bar: it showsthat you have drawn atransition, not just arectangle.
The editor has automatically performed the additiona operations
needed to designate the rectangle as atransition.

- Move and reshape the trangition.

Design/CPN Tutorial for X-Windows

Creating a Net

Thetransition acts exactly like an ordinary rectangle. Graphically it
isarectangle. Its CPN status as atransition has nothing to do with

its graphical nature.

- Regtorethetransition to its original location and size.

Naming the Transition
To name atransition, we attach alabel region to it and type the name
into the label. Thisisdone with asingle command. If there were
more than one node on the page you would have to select which one
you want to name, but thereis only one, so it is selected already.

- Choose CPN Region from theCPN menu.

TheCPN Region dialog for transitions appears.

CPN Region —rD|

® Name
 y Guard
{3y Code
) Log
1 Time

oK]

The default is Name, which iswhat we want, so:
- ClickOK.

The dialog disappears. The editor is now in name region creation
mode. The mouse pointer becomes the region tool:

R

Thistool isexactly like the label tool, except that the result of using
itisaCPN region of whatever kind you have indicated, rather than a
generic label.

- Movethetool to the inside top of the transition and click the
mouse.

- Type“Process Orders’.

Design/CPN Tutorial for X-Windows 6-7

Design/CPN Tutorial

L eave name region creation mode.

Theresult looks like alabel, and has all the graphical properties of a
label, but the status bar shows that it isalso anameregion. The edi-
tor has automatically performed the additional operations needed to
designate the label as aregion that specifies aname.

Reshape the transition and reposition the name region as
needed so that the transition looks like this:

Process Orders

Creating the Transition's Guard

Creating aguard isjust like creating a name, except that you specify
aguard region rather than a name region.

Sdlect the trangition.

Again choose CPN Region from theCPN menu.

TheCPN Region dialog for transitions reappears:

Click Guard.
Click OK.

The dialog disappears. The editor isnow in guard region creation
mode. The mouse pointer is again the region tool.

Move the tool to the area above the transition and click the
MOouse.

Type “[ordent = Big]".
Leave guard region creation mode.

Reposition the guard region as needed so that the transition
looks like this:

[ordent = Big]

Process Orders

6-8 Design/CPN Tutorial for X-Windows

Creating a Net

Y ou have now created atransition with aname and a guard.

Creating the Input Place

Creating aplaceis graphically the same as creating an elipse. The
only differenceisin the command you use:

- Choose Place from theCPN menu.

The editor is now in place creation mode. The placetool appears.

O

- Draw an dllipse (place) halfway between the transition and
the left side of the window. Don't enter any text into the
place.

The window should now look something like this:

New# 1

HIE
it

| srchank = B]

I [GE

Look at the status bar: it shows that you have drawn a place, not just
an ellipse.

Design/CPN Tutorial for X-Windows 6-9

Design/CPN Tutorial

6-10

Naming the Place

Naming aplace is essentially the same as naming atransition. Since
you just created the place, it is already the current object.

- Choose CPN Region from theCPN menu.

TheCPN Region diaog for places appears.

CPN Region =——

i Name
{3 Color Set
i_)» Initial Marking

oK]

The default isName, which is what we want, so:
- ClickOK.

The dialog disappears. The editor enters name region creation
mode, and the mouse pointer becomes the region tool.

- Movethetool to theinside top of the place and click the
mouse.

- Type“Order In".
- Leave name region creation mode.
The status bar shows that the region is a name region.

- Reshape the place and reposition the name region as needed
so that the place looks like this:

Specifying the Place's Colorset and Initial Marking

By now you probably see the general pattern for creating a CPN re-
gion:

Design/CPN Tutorial for X-Windows

Creating a Net

1
2
3.
4
5

. Select the object that is to have the region.
. Choose CPN Region from theCPN menu.

Indicate the desired type of region.

Enter the text of the region.

. Adjust appearance as needed.

This pattern works for all CPN regions that you create with the edi-
tor. Letsuseit to establish a colorset and initial marking for the

place.

Select the place.

Choose CPN Region from theCPN menu.
Click Color Set.

Click OK.

The editor enters colorset region creation mode; the mouse pointer
becomes the region toal.

Move the tool to the area above the ellipse and click the
mouse.

Type“Order”.
L eave colorset region creation mode.

Position the colorset region so the place looks like this:

Order

Now let's add the initial marking:

Select the place.

Choose CPN Region from theCPN menu.
Click Initial Marking.

Click OK.

The editor entersinitial marking region creation mode; the mouse
pointer becomes the region tool.

Design/CPN Tutorial for X-Windows 6-11

Design/CPN Tutorial

- Movethetool to the area below the élipse and click the
mouse.

- Type“1Big+2Smal”. TypeaRETURN just before
“2'Small”, to create aline break. Be careful to use back-
guote, not single quote.

- Leaveinitia marking region creation mode.

- Podition theinitial marking region so the place looks like
this:

The reason for bresking theinitial marking region onto two linesis
to leave space for information that will be displayed during execu-
tion, aswe will seein Chapter 8. Such linebreaks have only graphi-
cal significance: they count as whitespace, and do not affect mean-
ing.

Creating the Output Place

Creating the output place is exactly like creating the input place, ex-
cept that thereisno initial marking region.

- Create the output place, positioning it halfway between the
transition and the right side of the window.

Don't worry if the output place isn't exactly the same size asthein-
put place, or about any other minor variations in appearance that oc-
cur asyou create the net. Techniques for polishing a net's appear-
ance are covered in Chapter 11.

- Add the name and colorset regions to the output place.

When you are done, the growing net should ook about as follows:

[ordent = Big]

Order ProductShipped
Process Orders

1'Big +

2'Small

6-12 Design/CPN Tutorial for X-Windows

Creating a Net

Creating the Arcs and Arc Inscriptions

Creating an arc with an arc inscription is graphically the same as
creating a connector with atext region.

- Choose Arc from theCPN menu.

The editor isnow in arc creation mode. The arc creation tool ap-

pears:
—

- Draw aconnector (arc) from the place Or der | n to the
transition.

- Leavearc creation mode.

The status bar shows that the connector isan arc. The net should

look like this:

[ordent = Big]

Order ProductShipped
Process Orders

Order In Product Out
>
1'Big +
2'Small

Now to add the inscription:

- Choose CPN Region from theCPN menu.
No CPN Region dialog appears. Noneis needed, because an arc
can have only one type of region. The editor isnow in arc inscrip-
tion creation mode, and the mouse pointer is the label tool.

- Podition the labdl tool above the input arc and click the
mouse.

- Type“1ordent”. (Backquote, not single quote.)
- Leavearcinscription creation mode.

- Reposition the inscription so the net looks like this:

Design/CPN Tutorial for X-Windows 6-13

Design/CPN Tutorial

[ordent = Big]

Order ProductShipped

< Process Orders
@ 1 ordent > Product Out

- Usethe same stepsto create an arc from the transition to
Product Out,withaninscription “1 ordent”.

The net should now look as follows:
[ordent = Big]

Order ProductShipped

< Process Orders <
@ 1 ordent > 1 ordent

Y ou have now created two arcs with inscriptions. Y ou have al'so
finished creating the graphics of the net. All that remainsisthe
creation of the global declaration node.

Creating the Global Declaration Node

Graphically, creating aglobal declaration nodeis just a matter of
drawing arectangle and typing some text into it.

- Choose Declar ation Node from theCPN menu.

TheDeclaration Node diaog appears.

Declaration Node

@ Glohal
{_» Temporary
> Local

Global isthe default, indicating aglobal declaration node.

- ClickOK.

6-14 Design/CPN Tutorial for X-Windows

Creating a Net

Order

The editor isnow in global declaration node creation mode, and the
mouse pointer becomes the declaration node tool:

D
Thistool draws arectangle that is aso a declaration node.

- Draw arectangle. Position it so the net looks about as fol-
lows. (Recall that depressing SHIFT while creating a rect-
angle causes the rectangle to move with the mouse rather
than reshaping.)

[ordent = Big]

ProductShipped

< Process Orders <
<::ff?ji:> 1 ordent > 1 ordent Product Out

A small editing box appears over the rectangle. Text entered now or
later into the declaration node's text field will be treated by
Design/CPN as CPN ML code that specifies global declarations.

Y ou can stay in the creation mode and enter text immediately, but it
is generally more convenient to enter it from text mode.

- Leavethe creation mode.

Enter text mode.

Type three lines of text:

color Order = with Big | Small;
col or Product Shi pped = Order;
var ordent : Order;

Leave text mode.

Y ou have now created the global declaration node. The net should
look like this:

Design/CPN Tutorial for X-Windows 6-15

Design/CPN Tutorial

Order

[ordent = Big]

ProductShipped

- Process Orders <

color Order = with Big | Snmall;
col or Product Shi pped = O der;
var ordent : Order;

That'sit. The net isdone.

Saving the Diagram

The net you have just created will be the foundation of all the nets
you build while going through this tutorial. Y ou should saveit
now, so it will be available when the time comes to extend it.

- Choose Save Asfrom theFile menu.
TheSave Asdiaog appears.

- Savethediagram in NewTTDiagrams (the directory you
created in Chapter 2). Call the diagram NewFirstNet.

More Efficient Editing Techniques

6-16

The editing techniques you used in this chapter are sufficient to cre-
ate any CP net, but they would not be particularly convenient. For
example, it is often useful to sketch out a net beforefilling in its de-
tails. 'You might then want to draw some or al of the graphics be-
fore creating any regions. Frequently a net has many similar or
identical arc inscriptions; it would be useful to be able to create just
one inscription and then copy it to every arc that needsit, perhaps
modifying the various copies dightly after all have been created.

The Design/CPN editor provides both of these capabilities, and very
many more. It can be used to create CP net structure with littleif
any wasted effort, and is compatible with essentially any editing
style. Many of these techniques will be demonstrated later in this tu-
torial. They are all described in The Design/CPN Reference
Manual .

Design/CPN Tutorial for X-Windows

Chapter 7
CP Net Dynamics

CP net components were covered in Chapter 5. This chapter shows
how those components interrelate to specify the behavior of an exe-
cuting CP net.

This chapter does not give complete details on any topic that it cov-
ers. Trying to cope with every detail of CP net dynamics from the
start just obscures the essentials. 1t ismore efficient to develop an
overall understanding first, then systematically extend that under-
standing to provide a complete picture.

Executing CP Nets

CP nets are actually programs, expressed in a hybrid language of
graphics and text. CP net syntax is designed to insure that any legal
CP net is completely and unambiguously defined.

CP nets do not execute themselves. Like any program, a CP net is
executed. A CP net could be compiled into a stand-al one executable
file, and executed directly by the computer. The problem with this
method is that the file would have to contain alot of code to manage
the details of net execution, and to provide an interactive interface to
it. Thiscode would be the samein each file, which would be very
wasteful. Therefore CP nets are executed by a run-time package
cdled the smulator.

The Design/CPN Simulator

Design/CPN contains a CP net smulator that is closely integrated
with the editor, allowing anet to be iteratively constructed and exe-
cuted with aminimum of overhead. The simulator both manages
and displays CP net execution, and allows its course to be controlled
in various ways to facilitate study and debugging.

The simulator is not just a passive intermediary between the com-
puter and an executing net. It isan active agency that drives net exe-
cution forward by investigating the state of the net, determining how
to change that state, and making the requisite changes.

Design/CPN Tutorial for X-Windows 7-1

Design/CPN Tutorial

When a CP net is given to the simulator for execution, the ssimulator
first creates tokens as specified by any initial marking regions, and
puts the tokensin the places. This establishesthe initial state of the
net. The simulator then executes the net by identifying transitions
that can occur and effecting their occurrence.

Understanding CP Net Execution

In order to build an understanding of CP net execution, and of what
the ssimulator does to accomplishit, we must first look at two topics:

1. When can atransition occur?
2. What happens when atransition occurs?

Let's take each of these topics up in turn.

When Can a Transition Occur?

A transition can occur whenever certain conditions are met. When
those conditions are met, the transition is said to be enabled. The
fact that atrangition is enabled does not mean that it will actually oc-
cur: some other enabled transition might occur first, and change the
state of the net so that the first transition is no longer enabled.

Three factors work together to determine whether atransition isen-
abled:

1. Themultiset of tokensin each input place of the transition.

2. Theinput arc inscription on each input arc connected to the
transition.

3. Thetransition's guard.

These three factors work together to determine whether atransition
can occur. They work together so closely that none of them can be
fully understood without understanding the other two. Therefore
we must proceed iteratively in describing their contributions, until
the nature of their shared activity becomes clear.

Input Arc Inscriptions

7-2

Aninput arc inscription is an expression on an arc that connects a
placeto atrangition. Theinscription (possibly in conjunction with a
guard) specifies amultiset, which may be empty. The default input
arcinscriptionisenpty.

Design/CPN Tutorial for X-Windows

CP Net Dynamics

Guards

A guard is aboolean expression that is associated with atransition.
This expression must evaluate to true in order for the transition to
be enabled. The default guardistrue.

Criteria for Enablement

If each of atrangition's input places contains the multiset specified
by the place's input arc inscription (possibly in conjunction with the
guard), and the guard evaluatesto true, the transition is enabled, and
can occur. Otherwiseit isnot enabled, and cannot occur. A transi-
tion's output places have no effect on its enablement.

A multiset whose existence allows atransition to be enabled is called
an enabling multiset. When an enabling multiset exists, so that a
transition is enabled, the transition is said to be enabled with that
multiset

Don't be surprised if you experience rather more heat than light at
this point. Therest of this chapter should clarify matters consider-
ably.

Examples in This Chapter

Our standard example so far, FirstNet, has morein it than we need
for examining transition enablement. Therefore we will start with an
even smaller net:

Order

Process Orders
Order In >
@ 1'Bj
. Small

1'Big +
2'Small

color Order = with Big | Small;

Output places don't affect enablement, so thereis no output placein
this net.

Or der I n'smarking is shown, sinceit is afactor in whether
Process Or der s isenabled. From this point on we will show
place markings whenever they are relevant to some point being
made. But keep in mind that markings are not part of the net, as
places and transitions are, but rather indicators of its state.

Design/CPN Tutorial for X-Windows 7-3

Design/CPN Tutorial

Process Or der s hasno (explicit) guard. Such aguard defaults
to true, and so can be ignored: its requirement is guaranteed to be
satisfied irrespective of other factors.

Enablement in this simple case is determined only by the tokensin
the input place, and the input arc inscription. The above figure
shows no inscription. Let's see how different inscriptions affect the
enablement of Pr ocess Or der s.

Specifying Exact Token Values

Sometimes the exact token values that are to enable atrangition are
known in advance. In such acase, input arc inscriptions can specify
the needed values literally, and no guard is needed.

Specifying a Single Token

7-4

The ssimplest form of input arc inscription specifies amultiset of one
token, and gives the tokens value as a constant:

Order

Order In 17 Big Process Orders
‘Ri Small

1'Big +

color Order = with Big | Small;

Here the input arc inscription specifiesthemultiset 1° Bi g: that is, a
multiset of one token whose valueisBi g. Does such atoken exist
intheinput place Or der 1 n? Yes. Therefore Pr ocess Or der s
isenabled (can occur). Thefact that there are also two Smal | to-
kensin Or der | n makes no difference one way or the other.

The Simulator's Algorithm

When the smulator examines the above net to see whether
Process Or der s isenabled, it scansthetokensin Or der I n and
tests each one to see whether itsvalueisBi g. If such atokenis
found (asit will bein this case), the smulator ends its search at that
point, and puts Pr ocess Or der s on alist called the enabled list.
The purpose of thislist will be described |ater.

Design/CPN Tutorial for X-Windows

CP Net Dynamics

Omitting a Count of One

Asaconvenience, the count in an arc inscription that specifies just
one token can be omitted. Thusthe following net is exactly equiva-
lent to the one above:

Order

. Process Orders
Order In Big >
@ 1'Bj
. Small

1'Big +

color Order = with Big | Small;

Specifying More Than One Token Instance

An input arc inscription can specify more than one tokens of agiven
vaue:

Order

Order 1 2~Small Process Orders
rder In
. Small

1'Big +
2'Small

color Order = with Big | Small;

Here the input arc inscription requires two tokens of value Smal | .
(Of course, thisis not areasonable requirement for an actual order
processing system, but our purpose now isjust to study CP net ma-
chinery.) Thetokensexist, so the transition isenabled. The simula-
tor will end its search as soon asit encounters the second value

Smal | token, and put Pr ocess Or der s on the enabled list.

Specifying More Than One Token Value

An arc inscription can specify tokens of more than one value. For
example:

Design/CPN Tutorial for X-Windows 7-5

Design/CPN Tutorial

Order 1°Big +
Order 1 1~Small Process Orders

1'Big + Small

2'Small

color Order = with Big | Small;

Process Or der s isagain enabled.

The General Rule

In general, Pr ocess Or der s will be enabled whenever the multi-
set specified by the input arc inscription is asubset of the multiset in
Or der I n. Thusany of the following arc inscriptions (some of
which we have seen already) will enable Pr ocess Or der s:

1'Big + 2 Smal |
1'Big + 1 Smal |
1'Big

2" Smal |

1" Smal |

enpty

However:

Order

~n: Process Orders
Order In 2 Big >
@ 1'Bj
Small

1'Big +
2'Small

color Order = with Big | Small;

Thereisonly oneBi g tokeninOr der | n, but the arc inscription
requirestwo, so Pr ocess Or der s isnot enabled. Thereisanin-
finite number of possible non-enabling arc inscriptions. All share
the same property: they define a multiset that is not a subset of the
multiset in Or der I n.

7-6 Design/CPN Tutorial for X-Windows

CP Net Dynamics

Specifying Variable Token Values

Sometimes it does not matter exactly what values enabling tokens
have: al that mattersisthat they are present in appropriate numbers.
To allow for such a case, input arc inscriptions can use variables
rather than constants:

Order

Order 2~ ordent Process Orders
g
(3® v8i
. Small

1'Big +

color Order = with Big | Small;
var ordent : Order;

Hereor dent (which standsfor “order entered”) isa CPN variable
that can take on any vaue from the colorset Or der .

Binding an Arc Inscription Variable

Initially or dent has no particular value: it is said to be unbound.
Sinceor dent isunbound, the arc inscription that usesit does not
evaluate to amultiset: trying to evaluate it would just produce an er-
ror.

The ssimulator'stask at this point isto determine whether Pr ocess
Or der s isenabled. To do that it needs to evaluate the arc inscrip-
tion2" or dent , and to perform the evaluation it must have avalue
for or dent . Lacking any other source for avalue, it chooses one
from among the possible legal values and makesit the value of or -
dent . When this has occurred, ordent is said to be bound to that
value.

Suppose the simulator bindsor dent toBi g. Theinscription then
evaluatesto 2" Bi g. But thereisonly oneBi g tokeninOr der
In, soProcess Or der s isnot enabled when or dent isbound
toBi g. The simulator does not give up, however: it next tries
bindingor dent toSmal | . The arc inscription then evaluates to
2' Smal | . TherearetwoSmal | tokensinOr der | n, SO
Process Or der s isenabled when or dent isbound to Smal | .

A binding that causes atransition to be enabled is called an enabling
binding, and the transition is said to be enabled with that binding.

In this case, there is one enabling binding, or dent = Smal | . The
smulator will put Pr ocess Or der s on the enabled list along with
arecord of the enabling binding.

Design/CPN Tutorial for X-Windows 7-7

Design/CPN Tutorial

Constraining Token Values

We have now looked at away to specify the values of enabling to-
kens exactly (with constants), and away to leave their values un-
specified (with variables). Obviousdly these methods would not be
enough in areadistic model. In order to model real systems, we
need away to require token values to meet any criterion we can de-
fine. Such arequirement is called a congtraint.

In order to constrain token values, CP nets use arc inscriptionsin
conjunction with guards. The method isto bind CPN variablesin
arc inscriptions, and perform boolean tests on those valuesin a
guard.

Guard Syntax

A guard is aboolean expression that operates on token values (or
parts of composite values). Guards have the syntax typical of
boolean expressions with infix notation. The comparison operators
used are:

equal

greater than or equal
greater than

less than or equal
less than

not equal

NNNV VI
I I

V

These may be linked together with (in order of precedence):

not boolean NOT

andalso boolean AND

orelse boolean OR
Guards are customarily written enclosed in brackets, to help distin-
guish them visually from other net components.

Use of Parentheses

When not, andalso, or or el se are used, parentheses are required
around the comparisons that they link. Thus:

[A < B andalso C > D]
isillegal. Instead use:
[(A < B) andalso (C > D)]

Parentheses may also be used as needed for clarity or to override the
precedence order.

7-8 Design/CPN Tutorial for X-Windows

CP Net Dynamics

Shortcut for andalso

A commamay be used in place of andalso. Thus:
[(A < B) andalso (C > D)]

and:
[(A<B), (C>D]

mean the same thing.

Constraining a Single Token

The simplest constraint restricts the value of a single token:

[ordent = Big]
Order
Order In 1 ~ordent Process Orders
@ 1'Bj >
1'Big + Small
2'Small

color Order = with Big | Small;
var ordent : Order;

In order for Pr ocess Or der s to be enabled, there must be a
binding for or dent suchthat1” or dent evauatesto amultiset
that existsin Order In, and [or dent = Bi g] istrue.

Obvioudy thisis not much of aconstraint: the transition is enabled
when or dent = Bi g. Wemight aswell have stuck with our very
first example:

Order

Order 1 1°Big Process Orders
. Small

1'Big +

color Order = with Big | Small;

The equivalence between these two netsis a smple example of a
very general truth: the realms of arc inscriptions and guards are not

Design/CPN Tutorial for X-Windows 7-9

Design/CPN Tutorial

digoint. A given constraint can often be implemented in severa
ways, each of which uses the capabilities of arc inscriptions and
guards in a different manner to produce the same effect.

More Complex Constraints

Let'slook at adightly more interesting example:

[(ordent = Big) orelse (ordent = Medium)]

Order

Order 1 ordent Process Orders
@ 1'Bj q
Small

1'Big +
2'Small

color Order = with Big | Medium | Small;
var ordent : Order;

There are now threetypesof Or der : Bi g, Medi um and Smal | ;
and hence three possible bindingsfor or dent . Binding or dent
to Smal | doesn't work, because then the guard is not true.
Binding it to Medi umdoesn't work, because there are no Medi um
tokensinOr der I n. BindingittoBi g works. ThereisaBi g to-
keninOr der | n, which satisfies the arc inscription, and the bind-
ing causes the guard to evaluate to true. Such abinding is some-
times said to satisfy the guard.

On the other hand:

[(ordent = Big) orelse (ordent = Medium)]

Order

Order 1 2>~ordent Process Orders
@ 1'Bi >
mall

1'Big +
2'Small

color Order = with Big | Medium| Small;
var ordent : Order;

Herethetransitionisnot enabled. If or dent = Bi g or or dent =
Medi um there are not enough tokens to satisfy the requirements of
thearc inscription, but if or dent = Smal | , the guard isfalse.

7-10 Design/CPN Tutorial for X-Windows

CP Net Dynamics

Constraining More Than One Token

The techniques we have looked at are completely general: you can
do anything with them that makes syntactic sense. For example:

[((ordentl = Big) orelse (ordentl = Medium))
andalso (ordentl <> ordent2)]

Order 2~ ordentl +

Order 1 ordent2 Process Orders
: P
@ Big +

1'Big + 1"'Medium +
1°'Medium + 2 Small
2 Small

color Order = with Big | Medium| Small;
var ordentl, ordent2 : Order;

In this case there are two CPN variablesto bind. The simulator will
try various bindings for each of them, looking for a binding that
satisfies the arc inscription and the guard. A successful binding will
bindor dent 1 toBi g or Medi um and or dent 2 to either of the
valuesthat or dent 1 isnot bound to; and will cause the arc inscrip-
tion to evaluate to amultiset such that Or der | n contains two of
whatever or dent 1 is bound to, and one of whatever or dent 2 is
bound to.

Thistrangition is not enabled. Examineit carefully until you are
sure you understand why.

What Happens When a Transition Occurs

Y ou now have apicture of what is necessary in order for atransition
to be enabled: that is, in order for it to be able to occur. Now let's
look at what happensif it actually does.

The“if” issignificant. Not every enabled transition actually occurs:
some other enabled transition might occur first, and change the net
so that the first transition is no longer enabled. The nature of such a
change will soon become obvious.

It is often convenient to imagine atransition as an active principle
that changes the state of a net when it occurs, but that is not actually
the case. The smulator performs all actions that congtitute transition
occurrence: atransition is not really an independent agency, but a
representation of an activity that can change the state of a system.

Design/CPN Tutorial for X-Windows 7-11

Design/CPN Tutorial

When the simulator effects the occurrence of atransition, it issaid to
firethe trangition. For brevity, transitions themselves are often said
to fire, but it isimportant to remember that the ssmulator actually
does everything: the transition just defines what is to be done.

When the simulator fires atransition, it does the following:

1. Rebind any CPN variables asindicated by the enabling
binding.

Evaluate each input arc inscription.
Remove the resulting multiset from the input place.

Evaluate each output arc inscription.

o w D

Put the resulting multiset into the output place.

A Simple Example

7-12

To illustrate net execution we need an output place. Let's start off
with our old friend, FirstNet, and see how it executes.

[ordent = Big]
Order ProductShipped
Order In 1 ordent Process Orders 1 ordent Product Out
1'Big + Small
2'Small

color Order = with Big | Snmall;
col or Product Shi pped = O der;
var ordent : Order;

Note the highlighting around Pr ocess Or der s. Thisisacon-
vention that indicates that the transition is enabled.

Rebind any CPN Variables Per the Enabling Binding

A transition doesn't necessarily fire as soon asit is found to be en-
abled. The enabling binding has to be restored before firing can
proceed.

The enabling binding wasor dent = Bi g, SO or dent becomes
bound to that value.

Design/CPN Tutorial for X-Windows

CP Net Dynamics

Evaluate Each Input Arc Inscription

Thereisonly oneinput place, so thereis only one input arc inscrip-
tionto evaluate. When 1" or dent isevauated with the binding
ordent = Bi g, theresultisthemultiset 1° Bi g. Thisistheen-
abling multiset: its existenceiswhat caused Pr ocess Or der s to
be listed as enabled.

Remove the Enabling Multiset from Each Input Place

Thisisjust amatter of multiset subtraction. Thereisamultisetin
the input place, and there is an enabling multiset. Subtracting the
latter from the former removes the enabling multiset from the input
place. When the subtraction has been accomplished, FirstNet looks

likethis:
[ordent = Big]
Order ProductShipped
< Process Orders <
Order In 1 ordent 1 ordent Product Out
. >
2 all
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

Process Or der s isdtill highlighted, but the highlighting is now
twice asthick. Double-thickness highlighting indicates that atransi-
tionisin the process of firing. The marking of Or der | n isnow
2" Smal | , reflecting the subtraction of the enabling multiset 1° Bi g
from the place's previous marking, 1" Bi g + 2" Smal | .

Y ou may wonder where subtracted tokens go. They don't go any-
where: they just disappear. Thisisthe principa difference between
atoken and an object in an object-oriented programming system: to-
kens are really indicators of the state of a net, not objectsthat are
conserved. This has many advantages, aswe shall see.

Evaluate Each Output Arc Inscription

Thereisonly one output place, so thereisonly one output arc in-
scription to evaluate. The inscription uses the CPN variable or -
dent, whichiscurrently bound toBi g. When 1" or dent is
evaluated with the binding or dent = Bi g, theresult isthe multiset
1" Bi g. Thisisthe output multiset.

Design/CPN Tutorial for X-Windows 7-13

Design/CPN Tutorial

Order

Put the Output Multiset into the Output Place

Thisisjust amatter of multiset addition. Thereisamultiset in the
output place (in the current case it isthe multiset enpt y), and there
isanewly created multiset. Adding the latter to the former puts the
output multiset into the output place, where it joins any tokens that
were already there. When the addition has been accomplished,
FirstNet looks like this:

[ordent = Big]

ProductShipped

< Process Orders <
Order In 1 ordent 1 ordent Product Out
@ zssi > @Orex

1'Big +
2'Smal

color Order = with Big | Snmall;
col or Product Shi pped = O der;
var ordent : Order;

There is no highlighting now, because firing is complete and the
transition is no longer enabled. The marking of Pr oduct Qut is
now 1" Bi g, reflecting the addition of the output multiset 1° Bi g to
the output place's previous marking, enpt y.

Thel" Bi g that hasbeen added to Pr oduct Out has no connec-
tion whatever with 1" Bi g that was subtracted from Or der I n. It
isanew token: the fact that its value is the same as that of the sub-
tracted token results fro the fact that both got their values from the
binding of or dent . If the output arc inscription had been

10" or dent , there would now be tenBi g tokensinPr oduct
Qut .

Executing a Net in the Simulator

7-14

We have now covered the essentials of CP net execution. We could
go on to trace many other execution possibilities for FirstNet, paral-
leling the variations we looked at when looking at enablement, but
doing so would not be efficient. FirstNet is appropriate for illustrat-
ing the rules that govern net execution, but it istoo smpleto do
anything very interesting. We would just see the same things over
and over again.

The theory of net execution is not the practice of it. Let'stake
FirstNet into the simulator and actually execute it. Once you can use
both the editor and the ssimulator, we will begin to extend FirstNet

Design/CPN Tutorial for X-Windows

CP Net Dynamics

so that it becomes arealistic model, rather than just an exercise.
Ultimately it will evolve into avery useful and informative model,
called the Sales Order Model, that demonstrates the skills you need
to make any CPN model.

Design/CPN Tutorial for X-Windows 7-15

Chapter 8

Executing a Net
With Design/CPN

This chapter shows you how to use the Design/CPN simulator to
execute a CP net. The net you will execute is FirstNet, the same net
that was used in Chapter 5 to illustrate the components of CP nets,
and that you created a version of in Chapter 6.

Y ou could take NewFirstNet, the diagram you created in Chapter 6,
into the smulator and execute it, but the results might not be ideal.
Aswith any computer programming task, a variety of errors can oc-
cur during the creation of anet. If you attempted now to execute
NewFirstNet, you might encounter errors that this tutorial does not
anticipate, and has not yet equipped you to deal with.

Thereis aso the problem of being able to observe what happensas a
net executes. Effective observation sometimes requires rearranging
anet somewhat, so that graphical information about the course of
execution is not obscured by components of the net. We have not
yet studied the techniques necessary for doing such rearranging.

Therefore we will begin working with the smulator by executing
one of the diagrams supplied with thistutorial: FirstNetDemo. This
diagram contains aversion of FirstNet that is known to be error
free, and has been arranged for optimum observability. Following
this course will allow you to learn the techniques used to execute a
net, and to study the standard information Design/CPN displaysto
describe the phases of net execution, without interference from
unanticipated factors.

Opening the Net
- Choose Open from theFile menu.

- Navigate to the directory Tutoria Diagrams.

- Open the diagram FirstNetDemo.

Design/CPN Tutorial for X-Windows 8-1

Design/CPN Tutorial

The diagram opens, and a page named Fnet#1 appears. The page
contains a standardized version of FirstNet:

[ordent = Big]
Order ProductShipped
< Process Orders <
@ 1 ordent > 1 ordent
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

Loading ML Configuration Information

The diagram you have just opened was not created on your system,
so it does not contain the information necessary to alow
Design/CPN to communicate with the ML process. Therefore you
must load that information into the diagram.

- Choose ML Configuration Optionsfrom the Set menu.
A dialog appears.

- ClickL oad.

- ClickOK.
The necessary information about the ML processis copied from the
system defaults to FirstNetDemo's diagram defaults. Design/CPN

can now access the ML process, permitting it to syntax check and
then execute the net.

Performing a Syntax Check
There would be no use attempting to execute a net that had syntax
errors. Therefore Design/CPN requires that a syntax check be per-
formed before you take a net into the ssmulator.

- Choose Syntax Check from the CPN menu.

8-2 Design/CPN Tutorial for X-Windows

Executing a Net

Design/CPN now starts a separate application called the ML
Interpreter, which it usesto compile and execute computer code
written in alanguage called CPN ML. If you see adialog that men-
tions a problem of any kind, see Appendix C before you proceed.
The diagram on which you are performing the check had an ML file
when it was under development at Meta Software, but does not have
one now. Therefore, adialog appears that states:

Cannot find ML file.
and offers you two options:

Build from scratch

Modify ML file name
Thefirst choice, Build from scratch, isthe default: choosing it
will cause the simulator to build anew ML file based on information
in the diagram and DB files.

- ClickOK.
Several things happen in sequence:

1. The status bar displays. Checking Syntax.

. The ML process becomes active.

2
3. The status bar displays: Checking Globa Declaration Node.
4

. The status bar displays: 0 Pages, 0 Places, 0 Transitions
Checked.

5. Asthe syntax check proceeds, the count of pages, places,
and transitions changes to indicate the progress of the check.

6. The status bar displays: Finished Syntax Check.

7. TheSyntax Check Successful dialog appears:

Design/CPN Tutorial for X-Windows 8-3

Design/CPN Tutorial

5top

0 syntax check was successful,

- ClickOK.

Design/CPN has found no syntax errors. If there were errors, the
course of events would have been different, as described in Chapter
0.

Y ou may have noticed some other status bar messages that flashed
by very rapidly while the syntax check was underway. These mes-
sages describe operations that are of interest only to those concerned
with Design/CPN internals, so you can ignore them.

If you direct Design/CPN to enter the smulator, and have not first
done asyntax check, Design/CPN will do one automaticaly. If the
check is unsuccessful, Design/CPN will remain in the editor and
display information about the error(s), as described in Chapter 9.

Designating a Prime Page

8-4

The process of creating and debugging alarge net is a substantial
undertaking. It would not be feasible to require that a net be com-
pletely executable before any of it could be executed. The same
consideration arisesin ordinary programming: a program must be
usable in pieces, with the piecesin various stages of completion, in
order for efficient development work to be done.

To facilitate incremental net devel opment, Design/CPN does not
automatically execute an entire diagram if it executes any of it. It ex-
ecutes only those parts of the diagram that either appear on a spe-
cialy designated type of page, caled a prime page, or are in some
way referenced (directly or indirectly) by aprime page. A diagram
may have any number of prime pages. In order to execute, adia-
gram must have at least one prime page, or the smulator will not
find anything to execute.

Design/CPN Tutorial for X-Windows

Executing a Net

The diagram has only one executable page, but that page must still
be designated as a prime page. To so designateit:

- Choose Open Page from the Page menu.

The hierarchy page appears.

=== Hierarchy#10010

(Hierarchy#10010) Fnet#1

EE|
1 f

e T B

(The window will be larger on your screen, but will contain thein-
formation shown here.)

- Select the page node for Fnet#1 (it may already be selected).
- Choose M ode Attributesfrom the Set menu.

TheMode Attributesdialog appears:

Design/CPN Tutorial for X-Windows 8-5

Design/CPN Tutorial

8-6

Mode Attributes

—Mode
i@ Standard
[] Do Not Include in Simulation (1)
[]Do Mot Make Dbservable (0]
[] Do Not Propose Occ Set (P)
[] Do Not Use in Interactive Runs (R)
[] Do Not Execute Code Segments (C)

[] Change for Substitution Transitions

Prime Page

No
g'ﬂes Multiplicity

[Save...]| Load...][Reset][Cancel]

- Under Prime Page, click Y es.
- ClickOK.

The page Fnet#1 is now a prime page. Some new information ap-
pears on the hierarchy page to indicate this.

[I==————= Hierarchy#10010

(Hierarchy#10010) Fnet#1

The new information consists of two regions. The iscaleda

page mode key region; the""'ﬂIE is called a page mode region.
These regions together indicate that Fnet#1 is a prime page.

Now let's go back to Fnet#l:

Design/CPN Tutorial for X-Windows

Executing a Net

- Double-click on the page node for Fnet#1.

Fnet#1 becomes the current page.

Entering the Simulator
Y ou have insured that the net has no syntax errors, and have desig-
nated a prime page. Y ou can now enter the simulator and execute
the net.
- Choose Enter Simulator from theFile menu.

If you see adialog that mentions a problem of any kind, see
Appendix C before you proceed.

Design/CPN displays the following diaog:

save %I

Oo you want to save the diagram
before starting the switch?

[Eancel][Mo]

Thisisagood time to save a copy of the diagram. If you must inter-
rupt your work with the tutorial while you go through the rest of this
chapter, resume by opening your copy, not the original. 'Y ou will
also need this copy in later chapters. Meta

- ClickYes.

The origina diagram in TutorialDiagrams is locked, so the Save As
dialog appears.

- Navigate to the NewT TDiagrams directory.

- Save acopy of FirsstNetDemo under the name FirstNetCopy.

When you save the file, adialog will appear offering you an oppor-
tunity to specify the name of the ML file. Thisdiaog appears only
when anew ML file has been created “from scratch.” The default
name shown in the dialog is correct, so:

Design/CPN Tutorial for X-Windows 8-7

Design/CPN Tutorial

Simulation Regions

8-8

Click OK.

Design/CPN now generates the code needed to execute the diagram.
As before, status bar messages that appear only momentarily and are
not of genera interest are omitted.

1.

6.
7.

The status bar displays: 0 Pages and 0 Transitions Switched.
To “switch” apage or transition isto generate the code
needed to execute it.

As Design/CPN switches pages and transitions, it updates
the page and transition counts to indicate its progress.

The status line displays: Creating Instances. Design/CPN is
generating tokens as specified by the initial markingsin the
diagram.

The status line displays: Generating Automatic Code.
Design/CPN is generating code to be used during automatic
execution.

The status line displays: Updating Open Pages.

Design/CPN is making the tokens and regions it has gener-
ated visible on any open pages, so that the appearance of the
pages correctly depicts the current diagram state.

The status line displays: Ready to Simulate.

When the switch is finished, Design/CPN beeps.

Y ou have successfully entered the smulator, and are ready to exe-
cute the net.

Now that you are in the ssmulator, the net has a different appearance
than it did in the editor. A multiset representation has appeared in-
sideOr der I n, indicating its current marking, and Pr ocess

Or der s has been highlighted, indicating that it is enabled. All of
these indications are provided automatically by the simulator to make
the state of the net more obvious.

Design/CPN Tutorial for X-Windows

Executing a Net

[ordent = Big]
Order ProductShipped
- Process Orders -
Order In 1" ordent > 1" ordent Product Out
(3® vsi
1°Big + Small
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

The simulator changes a net's appearance to indicate its state by
adding various regions to the net. Such regions are called simula-
tionregions. Simulation regions are similar to the CPN regions you
created in Chapter 4, in that they are subsidiary graphical objects.
The differenceisthat they are created automatically by the simulator
to indicate net state, rather than by a human to indicate net structure.

Simulation Regions Indicating Place Markings

The multiset representationin Or der | n consists of two regions:
the number inacircleis called the current marking key region, and
thecount " val ue parsnext to it constitute the current marking re-
gion. Together these regionsindicate that there are currently three
tokens in the place, one of value Big and two of value Small, as
specified by theinitial markingregion1°Big + 2" Smal | .

As Chapter 5 pointed out, the existence of both theinitial marking
region and the current marking regionsis not aredundancy. The
initial marking region isjust alabel region with some text in it that
tellsthe simulator what tokens to create as the place's initial mark-
ing. The current marking regions represent actual tokens, created on
entry to the ssimulator.

As the net executes, the current marking regions will change to indi-
cate the changing marking of Or der | n, but theinitial marking re-
gion will remain the same. Current marking regions are used during
simulation to indicate all non-empty place markings.

Simulation Region Indicating Enablement and Firing
The highlighting around Or der | n indicatesthat it is enabled, as
you can verify by looking at its marking and the arc inscription.

This highlighting is actually aregion called a transition feedback re-
gion, or for brevity afeedback region.

Design/CPN Tutorial for X-Windows 8-9

Design/CPN Tutorial

The Sim Menu

Whenever atransition is enabled or isin the process of firing, itis
highlighted with afeedback region. When the transition is enabled,
thisregion looks asit doesin the case of Or der 1 n. When atran-
sition isfiring, the thickness of the region doubles.

Net appearance is not the only thing that changes when you enter the
smulator. Look at the menu bar: the CPN menu item has been re-
placed by Sim. Inthe smulator, you cannot create new net struc-
ture (though you can modify existing structure to some extent) so
there isno need for the CPN menu commands. In their place
Design/CPN provides the Sim menu. The commandsin the Sim
menu start, stop, and control net execution, as described in the rest
of this chapter.

Executing the Net

We will execute this net several times, and look at every detail of
what happens. First let's watch the execution sequence as awhole:

- Choose Interactive Run from the Sim menu.
A variety of actionsfollow. These constitute one step of the simula-

tor's execution algorithm, which was described in detail in Chapter
7. When the step isfinished, the Step Finished dialog appears:

Step Finished S
Step 1 is finished

- ClickCont (for Continue).

The simulator displays thisdialog:

8-10 Design/CPN Tutorial for X-Windows

Executing a Net

Order

StDD |

0 There are no more enabled transitions.

When the simulator attempted to continue execution, it found that
there was nothing more for it to do, because there are no more en-
abled transitions. Execution of the net is complete.

- ClickOK.

The net now has this appearance:

[ordent = Big]

ProductShipped

< Process Orders ~
Order In 1 ordent > 1 ordent Product Out
(2) 2 spal (D vBig

1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

As specified by the arc inscriptions and guard, one token of value
Bi g has been subtracted from Or der | n, and one token of value
Bi g hasbeen added to Pr oduct Out. Since Pr oduct Out isho

longer empty, current marking regions have appeared in it to indicate
itsmarking, 1" Bi g.

Design/CPN Tutorial for X-Windows 8-11

Design/CPN Tutorial

Observing Net Execution

A lot of action occurred during execution of the net, and most of it
went by too fast to be observable. In order to study what happens
during execution, we need to slow things down. Thisisaccom-
plished by setting breakpoints that cause the simulator to suspend
execution at various points during its execution cycle.

- Choose I nteractive Simulation Optionsfrom the Set
menu.

Thelnteractive Simulation Optionsdiaog appears.

Interactive Simulation Options

__Breakpoints —_Update Graphics
[] Beginning of Substep (@ During Substeps
[JEnd of Substep Between Substeps
[<] Between Steps {3 Between Steps
3 End of Run

[Saue...] [Load] [Heset] [Eancel] | oK |

Notice which choices are selected. Y ou have aready seen the ef-
fects of these choices:

1. TheStep Finished diaog appeared because Between
Stepsisseected under Breakpoints. Selecting this
breakpoint causes the ssmulator to pause after each execution
cycle (step) and display the Step Finished dialog, as
shown above.

2. Variousregions appeared briefly as the net executed, be-
causeDuring Substepsisselected under Update
Graphics. Selecting this option causes the simulator to
display regions that depict the details of trangition firing, as
described below.

To better display the details of net execution:
- ClickonBeginning of Substep. Selecting this break-
point causes the smulator to pause when it has determined

what input tokens to subtract, and what output tokens to
add.

8-12 Design/CPN Tutorial for X-Windows

Executing a Net

- Click onEnd of Substep. Selecting this breakpoint
causes the smulator to pause immediately after the firing
transition has subtracted the input tokens and added the out-
put tokens.

The dialog should now look like this:

Interactive Simulation Options

__Breakpoints __Update Graphics
[] Beginning of Substep (@ During Substeps
[<] End of Substep Between Substeps
[<] Between Steps y Between Steps
3 End of Run

[Saue...] [Load] [Heset] [Eancel]

- Click OK.

Re-Executing the Net
The net cannot be re-executed in its current state, for the same rea-
son that execution could not continue: there are no enabled transi -
tions. To execute the net again, we must first restoreits original
state.

- Choose I nitial State from the Sim menu.

A dialog appears.

Save State =————

Do you want to save the changes to
the current state?

[Eancel][No]

Design/CPN Tutorial for X-Windows 8-13

Design/CPN Tutorial

8-14

When acomplex net has been executing for along time, its current
state represents a considerable investment in time, sinceit could be
recreated only by redoing the entire execution process. Thisdialog
helpsto protect against accidental erasure of such astate. Inthis
case:

- ClickNo.

The status bar describes the stages of initialization. When initiaiza-
tion is complete, the status bar displays Finished Initiaizing State.
The net isnow in exactly the same state that it was in before it exe-
cuted.

Starting Execution
It isn't possible to explain everything you will see the smulator do
asyou re-execute the net. Some of its actionsrelate to things we
have not as yet covered. For now, just ignore anything you don't
understand: all will be made clear in duetime.

- Choose I nteractive Run from the Sim menu.
Severd things happen is sequence:

1. Thehighlighting around Pr ocess Or der s disappears.

2. The status bar displays three messages

Calculating Occurrence Set

Updating Graphics

Breakpoint 1 Step: 1

3. Highlighting reappears around Pr ocess Or ders.
The highlighting is twice asthick as before. The highlighting indi-
cates that the transition is now in the process of firing.
Breakpoint 1
Execution has stopped. You are at the breakpoint Beginning of

Substep. (For brevity, the status bar describes this breakpoint as
Breakpoint 1.) The net now looks as follows:

Design/CPN Tutorial for X-Windows

Executing a Net

[ordent = Big]
Order ProductShipped
Order In 1 ordent Process Orders 1 ordent Product Out
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

At this point, the smulator has done the following (among other
things):

1. Reserved the tokensthat will be subtracted from Or der I n
when the transition fires. Tokens that have been reserved in
thisway are called input tokens and are said to be commit-
ted. Their committed status isindicated by perching them on
the boundary between Or der | n and the input arc.

2. Changed the current marking region of Or der | n sothat it
does not include the committed tokens. (This avoids confu-
sion that could arise if the same token were represented in
two multiset regions.)

3. Constructed the tokens that will be added to Or der Qut
when the trangition fires. Such tokens are called output to-
kens. They are shown perched on the join between
Process Or der s and the output arc.

The input tokens and output tokens are shown in regions similar to
those used to indicate a current marking. Such regions are known
generically as multiset regions. The multiset regions representing
input tokens are called the input token key region and theinput token
region; the regions representing output tokens are called the output
token key region and the output token region.

Order of Net Execution Events

Y ou may have noticed an inconsistency between what you are see-
ing now and the description of net execution in Chapter 7. Theal-
gorithm for firing atransition was there described as:

1. Rebind any CPN variables asindicated by the enabling
binding.

2. Evaluate each input arc inscription.

Design/CPN Tutorial for X-Windows 8-15

Design/CPN Tutorial

8-16

3. Remove the resulting multiset from the input place.
4. Evauate each output arc inscription.
5. Put the resulting multiset into the output place.

But the smulator has so far done the following:

1. Rebind any CPN variables asindicated by the enabling
binding.

2. Evaluate each input arc inscription.
3. Evauate each output arc inscription.

The explanation isthis. 1t makes no functional difference whether
the smulator completes processing of input places before turning to
output places, or first evaluates al the arc inscriptions and then
changes all the markings: the net ends up in exactly the same state
either way. Thefirst order is better for gaining an initial understand-
ing of net execution, so it was used in Chapter 7. The second order
produces a more useful net appearance at Breakpoint 1, so that is
what the simulator uses. in practice.

Continuing Execution
No tokens have been subtracted or added as yet, but all is ready:
- Choose Continue from the Sim menu.
The transition fires, subtracting tokensfrom Or der | n and adding

themto Or der Out. The status bar displaysBreakpoint 2 Step:
1. Execution has stopped again.

Breakpoint 2

You are at the breakpoint End of Substep. The net now hasthis
appearance:

Design/CPN Tutorial for X-Windows

Executing a Net

[ordent = Big]
Order ProductShipped
- Process Orders -
Order In 1" ordent > 1" ordent Product Out
(2) 2 spal (D vBig
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

The simulator has fired the transition, subtracted the input token,
and added the output token. The transition is still double-high-
lighted, even though firing is complete. By leaving this highlighting
visible at the breakpoint, the ssimulator makesit easier for you to
keep track of which transition(s) have just fired. This can be very
useful when you are studying the execution of acomplex net.

Completing Execution

- Choose Continue from the Sim menu.
The Step Finished diaog appears. We aready know that execu-
tion is complete (which the smulator does not yet know because it
has not tried to start the next step) so thereis no use continuing exe-
cution:

- Click Stop.
The dialog disappears, and the ssimulator updates the graphicsto in-

dicate the final state of the net. The net looksjust asit did after it
finished executing last time:

Design/CPN Tutorial for X-Windows 8-17

Design/CPN Tutorial

[ordent = Big]
Order ProductShipped
< Process Orders <
Order In 1" ordent > 1" ordent Product Out
(2) 2 spal (D vBig
1'Big +
2'Small

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

Canceling Net Execution

The net you have been working with is through executing after one
step, so thereislittle advantage to canceling execution beforeit is
complete. Redlistic nets execute in many steps, and commonly exe-
cute indefinitely. Therefore amethod for canceling execution is
needed. Let'slook at one way to do this:

- ChooseInitial Statefrom theSim menu.

- Choose I nteractive Run from the Sim menu.
Execution proceeds to Breakpoint 1.

- Choose Stop from the Sim menu.

A dialog appears.

Caution §|

The interactive run will be stopped
when the current step is finished.

|Eﬂncel| | [1].4 |

8-18 Design/CPN Tutorial for X-Windows

Executing a Net

The smulator cannot cancel execution partway through a step, be-
cause the net would be left in an intermediate state that could not cor-
rectly represent whatever the net models. Instead, it records the fact
that execution isto be canceled after the current step.

- ClickOK.

- Choose Continue from the Sim menu.
Y ou are now at Breakpoint 2.

- Choose Continue from the Sim menu.

Execution stops at the end of the step. The Step Finished dialog
does not appear: there is no need for it, since you have aready indi-
cated that you want to Stop.

Y ou could resume execution by again choosing I nter active Run
from the Sim menu. The run would proceed from where the previ-
ous run ended. However, doing so would serve no purpose at this
point, since the ssimulator would only discover that there are no en-
abled transitions and hence nothing left to do.

Leaving the Simulator

Leaving the smulator issimilar to entering it. Y ou can leave the
simulator whenever execution is stopped between steps.

- Choose Enter Editor from theFile menu.
The Save State dialog appears. Leaving and reentering the smula-
tor restores the initial state of anet, so you will lose the current state
if you do not save it before you leave the smulator. Thereisno
need to save the state now, since it has no particular value, so:

- ClickNo.

Y ou are now back in the editor. The net looks the same, but can no
longer be executed. The CPN menu has replaced the Sim menu.

Leaving During Execution
If you attempt to leave the simulator but find that Enter Editor is
grayed out, the reason is that execution is not stopped between

steps. Proceed to such a stopping point, and you will be able to
leave the smulator.

Design/CPN Tutorial for X-Windows 8-19

Design/CPN Tutorial

Removing Simulation Regions

8-20

Design/CPN doesn't automatically remove simulation regions when
you transfer back to the editor. Y ou might want to keep the infor-
mation in them around for some reason, perhaps to help with deci-
sions about net modification. Inthiscase, Or der Out still has
multiset regions showing its current marking.

If you don't want to keep leftover simulation regions after you are
back in the editor, you can remove them by selecting them and
deleting them with DELETE. However this method would be incon-
venient if there were alarge number of unwanted ssimulation re-
gions, so Design/CPN allows you to eliminate them all in one op-
eration.

- Choose Remove Sim Regionsfrom theCPN menu.

TheRemove Sim Regionsdiaog appears.

HRemove Sim Regions

—Remouve

[<] Current Marking
[<] Feedback

(<] Input Token

(<] Output Token

[Reset] [Eancel] | 0K |

The four options describe various types of simulation region; the
details don't matter at this point. To remove all simulation regions
on the current page:

- ClickOK.

Any simulation regions left over from net execution are gone. The
results of any manual adjustments of simulation regions are gone
also, whether or not the regions were visible in the editor when you
removed all simulation regions. If you now re-entered the simulator
and re-executed the net, the various simulation regions would appear
in their default positions: with respect to simulation regions, it isas
if you had never entered the smulator at al.

Design/CPN Tutorial for X-Windows

Executing a Net

Y ou can remove simulation regions from pages other than the cur-
rent page. To do this, open the hierarchy page, select agroup con-
taining the page nodes for all the pages whose simulation regions
you want removed, and execute Remove Sim Regionsasde-
scribed above.

Design/CPN Tutorial for X-Windows 8-21

Chapter 9

Handling CP Net
Syntax Errors

Y ou need only one more skill before you can build and execute your
own CP nets with no assistance from prefabricated examples: the
ability to cope with CP net syntax errors. The best way to acquire
this skill isto intentionally create errorsin anet that initially has
none, and see what happens. The net we will useis FirstNet, the
net you executed in Chapter 8.

CPN syntax errors never involveillegal net structure, because the
Design/CPN editor does not allow you to create anything struc-
turaly illegal. Most CPN syntax errorsinvolve one of the follow-

ing:
* Missing net components.
» Typographical errors.
* CPN ML syntax errors.

The errors you create in this chapter do not cover the spectrum of
possible errors, nor do they need to. The goal here isto show you
how Design/CPN responds when an error occurs. Once you have
the general picture, you can dea with any particular error by just
reading the resulting error message(s) and responding as appropri-
ate.

Opening the Net

- OpenFirstNetCopy, the diagram you saved in the
NewTTDiagrams directory while going through Chapter 8
(unlessit is aready open).

Using the copy you saved in Chapter 8 allows you to avoid having
to reload the ML information and redeclare a prime page.

FirstNet inits error-free state looks like this:

Design/CPN Tutorial for X-Windows 9-1

Design/CPN Tutorial

[ordent = Big]

Order

ProductShipped

- Process Orders <

color Order = with Big | Small;
col or Product Shi pped = O der;
var ordent : Order;

We know this net is error-free because we just syntax-checked and
executed it. Let's change that.

Missing Colorset Specification

Failure to specify aplace's colorset is one of the most common
syntax errors.

- Select the colorset region (Order) associated with Or der
In.

- Deéeletetheregion by pressing DELETE:

The graphical part of the net should now look like this:

[ordent = Big]

ProductShipped

- Process Orders <

- Perform a syntax check.

A dialog appears:

9-2 Design/CPN Tutorial for X-Windows

CPN Syntax Errors

Stop ae———————|

0 Syntax errors were found.

Locating the Error

- ClickOK.

This dialog appears whenever you request a syntax check on adia-
gram that is correct enough to be checkable, but that contains one or
more syntax errors.

In this case, you know where the error is and what it consists of,
but this would not ordinarily be the case. Unintentional errors must
first be located in the diagram, then analyzed, then repaired.

When syntax errors are found, Design/CPN brings the hierarchy
page to the front, and adds to that page an auxiliary rectangle called
anerror box. Thisbox isinitialy positioned in the upper left corner
of the page border. Itstext field identifies each page that has one or
more errors.

=[]

Hierarchy#10010 =1

Errors
Fnet# Jx<l285

(Hierarchy#lOOlO) (Fnetil) Prime

Design/CPN Tutorial for X-Windows 9-3

Design/CPN Tutorial

9-4

The error box isreally just an auxiliary rectangle: it can be moved
and reshaped just as any rectangle can be.

- Movethe hierarchy page error box away from the page
nodes, and enlargeit if necessary until you can read its con-
tents:

=01

Hierarchy# 10010

(Hierarchx#lOOlo) (Fnet#l) Prime

Errors
Fnet#1««1285»»

B

Thetext in the box indicates that thereis an error on the page
Fnet#l. If there were other pages with one or more errors, the name
of each page would be listed below the Fnet#1 line.

We now know thereisan error on the page Fnet#l. The next step is
to go to that page and determine what the error is. Y ou could just
double-click on the page node for Fnet#l: the nodeis easy to find,
since thereis only one candidate. But redlistic diagrams often have
many pages; it would be inconvenient to have to scan the fine print
in many page nodes looking for the right one every time you had to
track down an error. Design/CPN provides an easier way.

Text Pointers

Every Design/CPN error message that relates to a particular compo-
nent of the diagram contains a pointer to that component. Such a
pointer iscaled atext pointer. A text pointer consists of a number
surrounded by angle braces. In the error message depicted above,
the text pointer is ««1285»».

The number in atext pointer isjust an arbitrary number that
Design/CPN generates to distinguish one pointer from another. The
number you see on your screen may be different from the one
shown above.

Y ou can use atext pointer to jump directly to whatever it points to.
For example, the pointer in the hierarchy page error box can take
you to the page Fnet#1.

Design/CPN Tutorial for X-Windows

CPN Syntax Errors

Fixing the Error

- Enter text mode.

- Place thetext insertion cursor anywhere inside the text
pointer.

- Press ALT-DOWN-ARROW.
Design/CPN opens the page Fnet#1.
Like the hierarchy page, Fnet#1 now has an error box, positioned in
the upper left corner of the page border. That box is now the current

object on Fnet#l. (Thetext pointer you just followed was actually a
pointer to this error box, and thus to the page that containsit.)

- Leavetext mode.

- Movethe error box away from the diagram, and enlargeit if
necessary until you can read its contents:

Errors

C.6 Place must have a color set
««1290»»

Now all you need to do isfind a place on Fnet#1 that lacks a col-
orset region, and you have located the error. That is easy enough in
this case — you aready know, and even if you didn't, there are
only two placesto check. But asimilar error might have happened
on a page with dozens or hundreds of places. It would be inconve-
nient to have to examine all the places, and there is no need to: the
text pointer in the error message can take you directly to the placein
guestion.

- Follow the text pointer in the error message.
Design/CPN selectsthe place Or der | n. Sinceyou are still in text

mode, you could now edit the place'stext field if that were appro-
priate.

In this case editing Or der | n'stext field isn't the answer, so:
- Leavetext mode.

All you need to do now is supply a colorset region:
- Choose CPN Region from theCPN menu.

Design/CPN Tutorial for X-Windows 9-5

Design/CPN Tutorial

- Createacolorset region for Or der | n, and type“Order” as
the region's content.

- Leavethe creation mode.

The graphical part of the net should now look asit did before you

deleted the colorset region:
[ordent = Big]
Order ProductShipped
- Process Orders -
Order In 1" ordent 1" ordent Product Out
g
1'Big +
2'Small

Y ou have now fixed the syntax error - probably. To make sure:
- Repeat the syntax check.

Y ou should see the Syntax Check Successful dialog. If you
don't, something went wrong in the process of creating the colorset
region. Perhaps you specified aregion of the wrong type, or mis-
spelled the colorset. In the former case, delete the region and start
over. Inthelatter, select the region, enter text mode, and edit the
name until it is correct.

Undeclared Variables

Another common error isfailure to declare avariable.

- Select the global declaration node, enter text mode, and
changeor dent to XXX:

color Order = with Big | Small;
col or Product Shi pped = O der;
var XXX : Order;

- Do asyntax check.

A dialog appears:

9-6 Design/CPN Tutorial for X-Windows

CPN Syntax Errors

Locating the Error

Recheck F—————|

The global declaration node or the time
part of the simulation code options
might have changed. Do you want to
build an ML image from scratch?

[Eancel][Mo]

The purpose of thisdialog is to facilitate incrementa syntax check-
ing. Syntax-checking alarge global declaration node can be time-
consuming, and you might have made changes in such a node that
have no bearing on your purpose in doing a syntax check. If you
clicked N 0, Design/CPN would assume that the global declaration
node has not changed since the last time you syntax-checked it, and
the global declarations that existed then would remain in effect.

In this case rechecking the global declaration node is needed, so:
- ClickYes.

After aminute or so of syntax checking, the Syntax Errors
Found dialog appears.

- ClickOK.

As before, the hierarchy page is now on top. Since the page aready
had an error box, Design/CPN has not created another; it has left the
existing box in the position you gave it, and has updated its text
field. You may need to readjust the box to see dl of the new infor-
mation.
The hierarchy page error box looks the same asit did before.

- Follow the text pointer to Fnet#1.
The page Fnet#1 comes to the front.

As on the hierarchy page, Design/CPN has reused the existing error
box. The box now reads:

Design/CPN Tutorial for X-Windows 9-7

Design/CPN Tutorial

Fixing the Error

Errors
C.9 Guard region must be legal

Type checking error in:ordent
Unbound value identifier: ordent
[Closing <string>]

««1303»»

If the error box istoo small to show al its contents, leave text mode,
reshape it, then re-enter text mode.

Use the text pointer in the error message to navigate to the diagram
component it designates. That component turns out to be the transi-
tionPr ocess Or der s, even though the actua error, afalureto
provide a variable declaration, occurred in the global declaration
node.

Design/CPN does not attempt to analyze the ultimate origin of the er-
rors it encounters. doing so would be unacceptably time-consuming,
and could not produce reliable resultsin any case. Instead it indi-
cates the location at which it encountered a problem, leaving it to
you to determine whether the problem originates there or is a conse-
guence of a problem somewhere else.

In this case, Design/CPN happened to check the transition before
checking either arc inscription, and found an unbound variablein the
guard. The error message therefore points to the transition. It isup
to you to determine whether the wrong variable is used in the guard,
or theright variableis used but has not been declared: thisisa se-
mantic rather than a syntactic question, so Design/CPN cannot de-
termine the answer.

In this case, editing the transition's text field is not the answer, but
editing the global declaration nodeis. You are already in text mode,
So:

- Select the global declaration node.

- Editit sothat it again reads:

color Order = with Big | Snall;
col or Product Shi pped = O der;
var ordent : Order;

9-8 Design/CPN Tutorial for X-Windows

CPN Syntax Errors

- Do asyntax check.

Y ou should seethe Syntax Check Successful dialog. If you
don't, continue to work on the error until you do.

lllegal CPN ML Constructs

The CPN ML parts of a CP net can experience the same kinds of er-
rors that can occur with programming languages generally.
Sometimes an almost invisible error can occur: Design/CPN's way
of handling errors can lead you directly to it.

- Change the backquote (*) in the input arc inscription between
Order I'nandProcess Or der s toasingle quote ():

[ordent = Big]
Order ProductShipped
. Process Orders <
@ 1'ordent > 1 ordent
1'Big +
2'Small

- Do asyntax check.

The Fnet#1 error box reads:

Errors

C.11 Arc expression must be legal

Parse error:
Was expecting ;"

In: ... fun CPN'AF6 (CPN'bb : CPN'BT4) : Order
ms = 1 <?>'ordent

[Closing <string>]
[Closing <string>]

The description in the error box is not that informative. 1t describes
the error asit appeared to the CPN ML syntax checker, not asit ap-
pears to a human observer. But:

- Follow the text pointer in the error box.

The input arc becomes the selected object.

Design/CPN Tutorial for X-Windows 9-9

Design/CPN Tutorial

Conclusion

- Sdect theinput arc inscription region (Y ou can select it
without leaving text mode - just click onit.)

Evenif you didn't already know what was wrong, alittle examina-
tion would soon revedl it.

- Restore the single quote to a backquote.
- Run another syntax check.

This time there should be no errors.

The three errors you have worked with in this chapter illustrate the
three basic types of errors that happen with CP nets: missing net
components, typographical errors, and CPN ML syntax errors. The
techniques you used to investigate the errors are applicable to all
CPN errors.

Of course, an introduction such as this chapter provides cannot cre-
ate instant proficiency in error handling. Real proficiency comes
only with time and experience: atutoria cannot supply it.

Asyou proceed through thistutorial, you will build a series of in-
creasingly complex nets. The potential for errors will increase cor-
respondingly. Careful attention to detail will minimize the likelihood
of errors. When they do occur, the techniques shown in this chapter
can help you to track them down.

9-10 Design/CPN Tutorial for X-Windows

PART 2

Design/CPN
Techniques

Chapter 10
Extending a CP Net

Everything we have done so far has been based on the same net:

FirstNet. Thisnet isuseful for demonstrating essential points about
CP nets and Design/CPN, but not much else. In particular, it sheds
no useful light on how a CP net can be used to model areal system.

Let's begin to remedy that now, by extending FirstNet until it be-
comes SalesNet, the net that appeared, but was not explained, in

Chapter 1.

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped

1'Big +
2'Small

1" staff 1" equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1'Fast

2'Novice

color Order = with Big | Snall;

col or Product Shi pped = O der;

color Staff = with Expert | Novice;
col or Equipnent = with Fast | Slow,

var ordent : Order;
var staff : Staff;
var equi pnent : Equi pnent;

Design/CPN Tutorial for X-Windows

Product Out

@ 1 ordent Process Orders 1 ordent
>

10-1

Design/CPN Tutorial

Building SalesNet

Y ou have aready practiced most of the skillsyou need to create and
execute SalesNet. Instructions on how to use these skillswill not be
repeated. If you are not sure how to do any of the things that this
chapter assumes you can do, you should review earlier chapters as
needed to gain the needed information.

- OpenNewFirstNet the diagram you created in Chapter 6 and
saved in the NewT TDiagrams directory.

Modifying the Global Declaration Node

To make room for the places to be added to the graphical part of the
net:

- Movethe global declaration node down about two inches.
To make room for the additional declarations:

- Reshapethe global declaration node to be about two inches
tall.

To add the additional declarations:

- Enter text mode and edit the global declaration node so that it
lookslikethis:

color Order = with Big | Small;

col or Product Shi pped = O der;

color Staff = with Expert | Novice;
col or Equipnent = with Fast | Sl ow,

var ordent : Order;
var staff : Staff;
var equi pnent : Equi pnent;

Modifying the Guard
Y ou can change the contents of any region whenever you are in text
mode in the editor. Y ou should still bein text mode after editing the
global declaration node.
- Click the mouse on the guard.
The guard is now the current object, and you can edit it.

- Edit the guard so that it looks like this:

10-2 Design/CPN Tutorial for X-Windows

Extending a Net

[if ordent = Big then staff = Expert else staff = Novice]

- Leavetext mode.

Extending the Graphics

There is nothing new in the graphics: it isjust more places, arcs, and
regions, no different from those you created when you build
NewFirstNet. Don't worry about perfecting minor details of ap-
pearance. Techniquesfor polishing a net's appearance are covered
in Chapter 11.

When you are done, the net should look as shown at the beginning
of this chapter.

Performing a Syntax Check
To verify that the extended net is correct:
- Choose Syntax Check from the CPN menu.
If any syntax errors are found, correct them before you go on. If
you cannot get a successful syntax check, open SalesNetDemo in

the Tutoria Diagrams directory and compare that version of SalesNet
to your own. When your net passes the syntax check:

- Saveyour net in NewTTDiagrams under the name
NewSalesNet.

Discussion of the Model

SalesNet is ahigh-level model of a system we will call the Order
Processing System. The model is“high level” in that it represents
the whole system as a single activity, Pr ocess Or der s, and
makes no attempt to show the particular operations through which
the orders are processed. Let'stake alook at the system first, and
then see how SalesNet modelsit as a CP net.

Description of the System

The Order Processing System inputs orders, processesthemin
some way that uses staff and equipment, and ships product for each
order. There are two types of order, big and small; two types of
staff, expert and novice; and two types of equipment, fast and slow.
The origin of the orders, and the nature of the product shipped, are
unknown.

Design/CPN Tutorial for X-Windows 10-3

Design/CPN Tutorial

Each order is handled by one staff member, uses one piece of
equipment, and results in one shipped product. Big orders are pro-
cessed differently from small orders: abig order must be handled by
an expert staff member, while asmall order must be handled by a
novice staff member. There isno requirement that big or small or-
ders use any particular type of equipment: any equipment will do.

Obvioudly thisisfar from a complete description of aviable system
for processing orders. That isnot significant at this point: it is de-

scription enough for our current purposes. We will specify consid-
erably more detail later in this chapter, and extend the model accord-

ingly.

How SalesNet Represents the System

10-4

Y ou can probably tell alot about how SalesNet models the Sales
Order System just by looking at the net, but let's go over it com-
pletely to be sure that everything is clear.

Entities and Colorsets

Thereisacolorset in the model for each entity in the system, and
each colorset provides the values necessary to represent the distinc-
tions we want to make:

color Order = with Big | Small;

col or Product Shi pped = Order;

color Staff = with Expert | Novice;
col or Equipment = with Fast | Sl ow;

var ordent : Order;
var staff : Staff;
var equi pnent : Equi prent;

We could make finer distinctions by adding more values to the enu-
merations, or shifting over to integer colorsets; or more detailed de-
scriptions, by using record colorsets with fields for various things
we want to specify; or we could have even coarser colorsets, that of -
fered only one type of order, onetype of staff, and one type of
equipment.

However, the colorsets as specified represent the system insofar as
we know of it, neither blurring distinctions we want kept nor offer-
ing more distinctions than we need, so they are appropriate.

Design/CPN Tutorial for X-Windows

Extending a Net

Locations for Storing Data

In this high level view, we don't represent any details about what
happens as an order is processed. Therefore we don't need to rep-
resent any data about what entities do. All we need to know is

wherethey are. Thereforethereisaplace for entities of each col-
orset:

[if ordent = Big then staff = Expert else staff = Novice]

Order

ProductShipped
Process Orders

Order In 1" ordent 1" ordent &
P

1'Big +
2 Small
1" equipment
1" equipment
Staff Equipment
2 Expert + 1'Fast
2'Novice
The description of the system didn't specify anything about how
many there are of any type of entity, so arbitrarily chosen values ap-
pear, represented asinitial marking regions:
[if ordent = Big then staff = Expert else staff = Novice]
Order

ProductShipped

< Process Orders <
Order In 1 ordent > 1" ordent

1'Big +
2 'Small

1 staff 1 equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1'Fast

2 'Novice

Design/CPN Tutorial for X-Windows 10-5

Design/CPN Tutorial

Theseinitial values are one of the things we might vary while exper-
imenting with the mode, to try to determine their effect on system
throughput.

Activities for Transforming Data

Thereisonly one activity, representing the entire system, so thereis
only onetrangition: Pr ocess Or der s.

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders N

@ 1 ordent I 1 ordent Product Out

1'Big + I

1-staff 1" equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1'Fast

2 Novice

Data and Conditions Needed for Activities to Occur
In order for Pr ocess Or der s tofire, there must be:
1. AtleastoneOr der inOrder In.

2. Atleastone St af f member of appropriate typein St af f
Pool .

3. Atleast onepieceof Equi pment inEqui p Pool .

The numbers of each entity needed are specified by the input arcs
and arc inscriptions:

10-6 Design/CPN Tutorial for X-Windows

Extending a Net

Order

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <
@ 1~ ordent > 1 ordent Product Out

Order

1-staff 1~ equipment

1" staff 1~ equipme
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1 Fast

2 Novice

The matching of Exper t staff withBi g orders, and Novi ce staff
with Smal | orders, is performed by the guard:

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <
@ 1 ordent > 1 ordent

1 staff 1 equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1'Fast

2"Novice

Thisguard will evaluateto true only when or dent isbound to
Bi g andst af f toisboundtoExpert, or or dent isbound to
Smal | andst af f toNovi ce. Any other combination of bind-
ings will cause the guard to evaluate to fal se, so the transition will
not be enabled with that binding. When the ssimulator checks
Process Or der s for enablement, it will try various bindings for
ordent andst af f, until it finds one that satisfiesit (makesit
true) or runs out of bindingsto try.

Design/CPN Tutorial for X-Windows 10-7

Design/CPN Tutorial

10-8

Order

The ability of aguard to constrain bindings of variables on more
than one input arc was not demonstrated in Chapter 7, because there
isonly oneinput arc in FirstNet, but the practice does not introduce
anything new. We saw in that chapter how a guard can be used to
constrain two variables bound on the same arc. Using it on vari-
ables bound on different arcsis no different.

Data That Will Be Produced if an Activity Occurs.

Thisis specified by the output arcs and arc inscriptions:

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <
@ 1 ordent > 1~ ordent Product Out

1 -staff 1~ equipment
1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1'Fast
2 Novice

These arcs and inscriptions specify that if Pr ocess Or der s fires,
thefiring will put aSt af f tokeninto St af f Pool , an

Equi pment tokeninto Equi pment Pool , and a

Product Shi pped tokeninto Pr oduct Out .

Thest af f tokenswill havethe valueto which st af f was bound
as part of the enabling binding, and smilarly for the Equi pment
token. ThePr oduct Shi pped token will have the value to which
or dent wasbound in the enabling binding. ThusaBi g order is
biginthat it resultsin aBi g product, whatever that might be.

Design/CPN Tutorial for X-Windows

Extending a Net

What Happens When SalesNet Executes

After initial tokens are generated, but before any transitionsfire, the
SalesNet looks like this:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <

@ 1 ordent o 1 ordent

1'Big + 1'Big+

2°Small 2°Small

1~ equipment

1" staff 1 equipment

Staff Equipment

Staff Pool Equ|p Pool
O @ 7
2’ Expert + g\ﬁxp_em 1"Fast
2 Novice ovice

As SalesNet executes, Pr ocess Or der s will fireoncefor each
orderinOrder I n. Eachtimeit fires, the smulator will do the
following:

Rebind Any CPN Variables Per the Enabling Binding
Remember that a transition doesn't necessarily fireassoon asit is
found to be enabled. The enabling binding has to be restored before
firing can proceed.

Let's suppose that the enabling binding was:

ordent = Smal |
staff = Novice
equi pment = Fast

The three CPN variables become bound to those values.

Evaluate Each Input Arc Inscription
Given the bindings above, the input arc inscriptions eval uate to:
1" Smal |

1" Novi ce
1° Fast

Design/CPN Tutorial for X-Windows 10-9

Design/CPN Tutorial

10-10

Evaluate Each Output Arc Inscription

Given the bindings above, the output arc inscriptions also evaluate
to:

1" Smal |
1" Novi ce
1° Fast

Note that we're using the simulator's ordering here. If we were ex-
ecuting SalesNet in the ssmulator (which we soon will be), and

stopped at Breakpoint 1 (Before Any Tokens Are Moved), the net
would look likethis:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped

< Process Orders <
Order In - 1 ordent > @ 1 ordent Product Out
@ 1°Small 1'Small

‘Ri 1'Big + o o
1 Big + - .) .
2°Small 1'Small 1'Novice 1 Fast

1 staff 1 equipment

1" equipment

Equipment

0 Equip Pool
2 Expert + iﬁ)ésieggr 1 Fast
2"Novice

There are alot of detailshere. To help you disentangle them, the
regions that show tokens that are about to be removed from or added
to places have been boldfaced, and the regions that show current
markings have been italicized. This figure follows the simulator's
convention that tokens about to be removed from an input place are
not shown in the place's current marking, even though they have not
actually been removed yet.

Please study thisfigure carefully. If you understand everything
about it, you understand all the material that this tutorial has pre-
sented so far. If not, you should review as needed until you know
what everything isin thisfigure, and why it isthat way.

Remove the Enabling Multiset from Each Input Place

After the input tokens have been removed, but before any output to-
kens have been added, the net looks like this:

Design/CPN Tutorial for X-Windows

Extending a Net

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <
Order In 1" ordent > @ 1" ordent Product Out
@ 1°Small
1'Big + 1'Big +
2°Small 1'Small 1‘Novice 9 1 Fast

1-staff 1~ equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 2‘Expt_art+ 1 Fast
< - 1 Novice
2"Novice

Thereiscurrently no tokenin Or der | n for theSmal | order, in
St af f Pool fortheNovi ce staff member, and in Equi p Pool
for theFast equipment piece. The tokens have been subtracted and
thrown away.

Put the Output Multiset into Each Output Place.

After the output tokens have been added, the net looks like this:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped

Process Orders ~
1" ordent Product Out
@ 1'Big

Order In 1" ordent
@ >
1'Big + 1'Big +
2°Small 1'Small

1 staff 1 equipment

1" staff 1 equipment
Staff Equipment
Staff Pool Equ|p Pool
O @ 7
2 Expert + ;Exp_em 1'Fast
2°'Novice ovice

Design/CPN Tutorial for X-Windows 10-11

Design/CPN Tutorial

TheNovi ce staff and the Fast equipment have been restored to
their pools, and are available for use with subsequent orders. The
Bi g order that was just processed is now represented in Pr oduct
Qut .

Continue Execution

Thefiring of Pr ocess Or der s isnow complete. But itisstill en-
abled, so it will fireagain. After ishasfired twice more, once for
each job remaining in Or der | n, it will cease to be enabled, be-
causetherewill beno Or der tokens|eft to satisfy the input arcin-
scription1” or dent . Execution will then be complete, because
there will be no more enabled transitions.

Executing SalesNet

10-12

Let's take SalesNet into the simulator and see what it does. Y ou
should have a pretty good idea aready, but there are always some
surprises.

- Enter the simulator, asyou did in Chapter 8. (Review that
chapter if necessary.)

In the simulator, SalesNet looks like this:;

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
Order In 1" ordent Process Orders 1 ordent Product Out

1'Big + Small

2'Small

1" staff 1" equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
(D) 1Fs
2 Expert + 1" Fast

2'Novice

Design/CPN Tutorial for X-Windows

Extending a Net

Setting Substep Options

For starters, let's set the same substep options that we used with
FirstNet in Chapter 8.

- ChooseInteractive Simulation Optionsfrom the Set
menu.

- Click options as needed to set al three breakpoints:

Interactive Simulation Options

__Breakpoints —Update Graphics
[<] Beginning of Substep (@ During Substeps
(<] End of Substep { Between Substeps
[<] Between Steps {3 Between Steps
{3 End of Run

[Saue...] [Load] [Heset] [Eancel] [T]

- ClickOK.

Adjusting Simulation Regions

WEe'll need to do alittle work to make the executing SalesNet look as
good asit did in the figures earlier in this chapter.

- Choose I nteractive Run from theSim menu.

When execution stops at Breakpoint 1, the net should look like this:

Design/CPN Tutorial for X-Windows 10-13

Design/CPN Tutorial

10-14

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
Order In 1" ordent Process Orders 1 ordent Product Out

1'Big +

2'Small “Fast

1" staff 1~ equipment

1" equipment

Staff Equipment

Staff Pool e Equip Pool
(3) rEe “Fast
Novice .

2 Expert + 1 Fast

2 Novice

What you see may be different from the above, because the smula-
tor may have happened to start with aSmal | job, and/or with Fast
equipment. It uses arandom number generator to make arbitrary
choices of thiskind.

Thisisobviously not avery clear presentation of current markings,
input tokens, and output tokens. The problem isthat thereisno al-
gorithmic way for Design/CPN to decide where to put smulation
regions. Therefore, it just follows aformula, and leavesit to the
user to make adjustments as needed.

To help you see what iswhat, here is the net again, with input and

output token regions again in boldface, and current marking re-
gionsinitalics:

Design/CPN Tutorial for X-Windows

Extending a Net

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
Order In 1" ordent Process Orders 1 ordent Product Out

1'Big +

2'Small

1-staff 1~ equipment

1" equipment

Staff Equipment
Staff Pool e Equip Pool
(3) rEe ‘Fast
. Novice .
2 Expert + 1 Fast

2 Novice

Key and Popup Regions

Y ou may have noticed aregular pattern in the names given to the
current marking, input token, and output token regionsin Chapter 8.
Thereisaways akey region, anumber in acircle that tells the num-
ber of tokensin the multiset, and an associated region that shows the
exact composition of the multiset. These associated regions are
called popup regions

Popup regions are so called because they can be made to appear
(“pop up”) and disappear at any time by double-clicking on the as-
sociated key region. Thistrick worksin both the editor and the
simulator.

- Double-click on one of the key regionsin SalesNet.
The associated popup region disappears.

- Double-click on the key region again.
The popup region reappears.
Popup regions are often agreat convenience: the detailed informa-
tion in the popup region can be displayed when it is useful, and hid-
denwhenitisnot. When it ishidden, the key region remains to
provide asummary and to permit quick access to the completein-
formation in the popup region.
Popup regions are used for more than just representing multisets.

For instance, the Page Mode Region that appeared on the hierarchy
page when you made Fnet#l a prime page is actually a popup re-

Design/CPN Tutorial for X-Windows 10-15

Design/CPN Tutorial

10-16

Order

e
@

1'Big +
2'Small

2°Small

Staff

Staff Pool
Cap

gion, and would disappear and reappear if you double-clicked the
associated Page Mode Key Region. Whenever aregion is described
as akey region, there is an associated popup region, and vice versa.

The observability of acomplex net can often be greatly enhanced by
hiding all popup regions except those that are of immediate interest.
But right now, al the regions are of interest, so there would be little

advantage in hiding the popups. Instead, letslook at how they can
be repositioned to provide a better appearance when they are dis-

played.
Repositioning Simulation Regions
Key and popup regions are just ordinary graphical objects. You can
move them anywhere you like by dragging them with the mouse. A
popup region is aregion of its key region: you can drag the key re-
gion and the popup will follow:

- Drag one of the key regions to some other location.
The popup tracks its parent.

- Dragthe key region back to its origina position.

Asit happens, the various key regionsin SalesNet are in good posi-
tions. Their popups however are not. Let's change that.

- Dragthe various popup regionsto the positionsindicated in
thisfigure:

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped
< Process Orders
1" ordent

1 ordent Product Out
> O—
1'Big 1'Big

1~ equipment

1" staff

1" equipment

Equipment

o Equip Pool

1 Expert

2Expert+ L Expert+ 1'Fast
2'Novice 2" Novice

Design/CPN Tutorial for X-Windows

Extending a Net

If you accidentally grab the wrong object with the mouse, just put it
back and try again. When you have moved al the regions, the net
should look like this:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
- Process Orders -
Order In - 1 ordent > @ 1" ordent Product Out
@ 1'Big 1'Big
1'Big+ 2 Small
2'Small 1 Expert 0 9 1'Fast

1~ equipment

1" equipment

Staff Equipment

Staff Pool e e Equip Pool
@ 1"Expert
2Expert+ 1 Expert+ 1'Fast

2*Novice 2°Novice

Continuing Execution

Thereisn't any need for detailed instructions at this point. Continue
execution until it is complete, return to the initial state, and execute
the net again, until you are entirely familiar with what is going on.
Asyou gain experience with CP nets, you will find it increasingly
easy to tell which component iswhich, and to decide where to put
components for maximum clarity.

Creating a Page for Global Declarations

SalesNet, and its predecessor FirstNet, are each contained on asin-
gle page. This page contains both the data declarations for the net
(in the global declaration node) and all graphical structure that makes
use of those declarations.

Putting the global declaration node on the same page as anet's
graphics can be helpful when you arefirst learning about CP nets,
but otherwiseit is not the best practice. Asanet grows, the global
declaration node ends up competing with it for page space, and has
to be move aside where it can only be seen by scrolling over toit.
Furthermoreit is of little interest once you know what isin it.
Thereforeit is customarily kept on a page of its own, where it can be
quickly accessed when needed and ignored otherwise.

Design/CPN Tutorial for X-Windows 10-17

Design/CPN Tutorial

Creating a New Page
Putting the global declaration node on a page of itsown isjust a
matter of creating the page, and then creating or moving the declara-
tion node there. Let's move SalesNet's global declaration node to
its own page.
- Leavethesmulator.
- Choose New Page from thePage menu.

A new, blank page appears. Its nameis New#2.

Naming the Page

That name does not tell much about the page's intended purpose, so
let's rename it to something meaningful.

- Choose Page Attributesfrom the Set menu.

ThePage Attributesdialog appears.

Page Attributes —————=

Name & No [* [2

[<] Change Current Page
[] Save as Defaults

- Page Kind
@ Standard Fage [c. o
(") Palette Width

- Page Border Page 396
(m lisible Height
3 Inuvisible

[Heset] [Eancel]

The page name field contains the current page name, New.

- Edit the page name field to specify the name “Declare’.
- ClickOK.

10-18 Design/CPN Tutorial for X-Windows

Extending a Net

The name of the page is now Declaret#2.

Improving the Hierarchy Page

After you create anew page, it isagood ideato check the hierarchy
page to be sure that it still has a good appearance.

- Choose Open Page from thePage menu.

The hierarchy page appears.

=[=—————= Hierarchy# 10010

(Hierarchy#100) (Fnet#1) [m][Brieclarg#2)

The page node for Global#2 has been put in a default position,
which unfortunately overlays the page mode region for Fnet#1.

- Usethe mouse to reposition Global#2's page node to be un-
derneath the hierarchy page node.

The page should look likethis:

sS[I==————— Hierarchy#10010 =——

(Hierarchy#lOO) (Fnet#1) |Prime |

Design/CPN Tutorial for X-Windows 10-19

Design/CPN Tutorial

Renaming a Page From the Hierarchy Page

The page name Fnet#1 is obsolete now, because you have extended
FirstNet to become SalesNet. The page should be named Sales#l.

Y ou don't have to make a page the current page in order to rename
it. You can renameit, and make many other changes to its status,
directly from the hierarchy page.

- Select the page node for Fnet#l.

- Choose Page Attributesfrom the Set menu.

- Renamethe page Sales#l.

Siie——————————— Hierarchg#lﬂﬂlﬂ 1l

Saewr) [l e

Moving the Global Declaration Node

Now let's move the global declaration node to the new page
Declaretf2.

- Double-click on the page node for Sales#1.
Sales#1 becomes the current page.
- Select the global declaration node.
- Execute Cut (viathe File menu or a keystroke shortcut).
- Choose Open Page from the Page menu.
The hierarchy page appears.
- Double-click on the page node for Declaret#2.
Declare#2 becomes the current page.

- Execute Paste (viathe File menu or akeystroke shortcut).

10-20 Design/CPN Tutorial for X-Windows

Extending a Net

Saving the Net

The global declaration node is pasted onto Declare#2.
- Position the node in the upper right corner of the window.

Note that neither putting the global declaration node on its own page
nor naming that page Declare has any functiona significance. The
global declaration node may appear on any page, and that page may
have any name.

NewSalesNet in its current form will be the basis of al the netswe
build in the following chapters.

- Savethenet. 1t isOK to overwrite the existing version.
We won't be using NewSalesNet in the next chapter, so:
- Close NewSalesNet.

Design/CPN Tutorial for X-Windows 10-21

Chapter 11

Concurrency and Choice

All of the nets we have looked at so far executed sequentially: only
onething happened at atime. Such execution does not require any
particular sophistication or complexity on the part of the CPN simu-
lator. It does onething, and then the next, and then the next, as
long as anything remains to be done.

Sequentia operation isnot typical of real systems. Systemsthat
perform many operations and/or deal with many entities usually do
more than one thing at atime. Activities that happen at the same
time are called concurrent activities. A system that contains such ac-
tivitiesis called a concurrent system. The phenomenon of concur-
rent activitiesis called concurrency.

Concurrency Problems

Concurrency can create problemsthat do not arisein sequential sys-
tems. These problemstypically involve competition for resources.
In a system in which thereis only one active agency, there can be no
such competition, because there is nothing for the agency to compete
with. But where there are concurrent activities that need the same
resources, and there are not enough resources to insure that every
activity will always have all that it needs, the activities are forced to
compete for what resources there are.

There are two possible ways to deal with competition for resources.
Oneisto implement a determinate agorithm for resource allocation.
This solutionissimple, but it is not always possible or desirable.
Whereit is not, the only way to resolve the competitionisto ran-
domly allocate resources to some contenders, and require others to
wait. The subsequent course of eventsin the net often depends on
which activities prevailed and which had to wait.

Activitiesthat vie for resourcesin the absence of a determinate allo-
cation mechanism are said to bein conflict. The act of adjudicating
such aconflict iscaled choice. Since the choice is made at random,
and may affect the subsequent course of execution in unpredictable
ways, the result of choice isindeterminacy.

Design/CPN Tutorial for X-Windows 11-1

Design/CPN Tutorial

Due to the possibility of conflict and the resulting need for choice, it
isimpossible for the simulator to get by using only the simple meth-
odswe have ascribed to it so far. 1t must be able to handle conflicts
and make choices that can be quite complex, and it must be able to
do so efficiently, or the execution of anet that requires many choices
will betoo dlow. This chapter describes the capabilities that the
simulator uses to adjudicate conflicts by making choices.

Representing Concurrency

Before we see how the simulator handles conflict and choice, we
need to see how concurrency and conflict are actually represented in
anet, and how they affect its execution. First let'slook at the sim-
plest form of concurrency.

Multiple Enabling Bindings

11-2

In Chapter 7, al of the examples based on FirstNet shared a charac-
terigtic that was not pointed out: in each example, there was at most
one binding for which the transition Pr ocess Or der s wasen-
abled. But this need not be the case. For example:

Order

P
Order In 1 ordent > rocess Orders
(2 18i
‘Ri Small

1'Big +
1'Small

color Order = with Big | Small;
var ordent : Order;

Here there are two orders waiting to be processed, aBi g order and
aSmal | order. Consequently there are two bindings of or dent
for whichPr ocess Or der s isenabled: or dent = Bi g andor -
dent = Smal | .

How should the simulator handle this situation? The two possibili-
tiesare:

1. Processone of the orders, and then process the other.
2. Process both orders at the same time.

Thefirst is straightforward enough. It would entail Pr ocess
Or der s firing with one binding, and later firing with the other.

Design/CPN Tutorial for X-Windows

Concurrency and Choice

The second option may seem a bit strange: how can the same activity
occur in two different ways at the same time? How can one thing do
several things simultaneously?

Concurrent Transition Firing

Nothing in the net specifiesthat Pr ocess Or der s can do more
than one thing at atime. But neither does anything specify that it
cannot! CP nets make no assumption of sequential behavior: they
allow as many things as possible to happen at the sametime. Since
concurrency abounds in real systems, this property is extremely
convenient in amodeling paradigm.

In this case there are two jobs ready to process, represented by the
two tokens that produce the two enabling bindings, so Pr ocess
Or der s will process them concurrently. If we don't want them
processed concurrently, we must explicitly specify something that
preventsit, as described later in this chapter.

It istempting to see atrangition like Pr ocess Or der s asan active
principle that maps inputs to outputsin a sequentia way, but this
imageiswrong. A trangitionisjust arepresentation of away in
which the state of anet can change: it hasno life of itsown. The
mapping of inputs to outputsis done by the ssmulator, not by the
transition. Nothing prevents the simulator from carrying out more
than one such mapping at atime, and thereby implementing concur-
rency.

Identical Enabling Bindings

Nothing requires that enabling bindings be unique. For example:

Order

Order 1 1~ordent Process Orders
@ 1'Bj q
“Big + Small

1Big+

color Order = with Big | Small;
var ordent : Order;

Here there are three enabling bindings, not two. The fact that two of
them are identical does not mean they are not distinct entities. 1f we
allowed only one binding at atime with agiven value, thiswould be
equivalent to ruling out the possibility of concurrently processing
identical entitiesin the same way. Thiswould obviously be unac-
ceptable as ageneral restriction in amodeling paradigm.

Design/CPN Tutorial for X-Windows 11-3

Design/CPN Tutorial

Concurrent CP Net Execution

Let'stake alook at a concurrent execution of FirstNet. One possible
sequenceis.

Initial State of the Net

Order

ProductShipped
Order In
(3 vsi

1 ordent Process Orders 1 ordent Broduct O
>
Small

color Order = with Big | Snall;
col or Product Shi pped = O der;
var ordent : Order;

Breakpoint 1: Beginning of Substep

Order ProductShipped

1" ordent Process Orders 1" ordent Product Out
s > ®
1'Big+ 1'Big+

1'Big + 2°Small 2°Small

Breakpoint 2: End of Substep

Order ProductShipped
< Process Orders <
Order In 1" ordent > 1 ordent Product Out
@ 1°BigH
1°Big + Small
2'Small

114 Design/CPN Tutorial for X-Windows

Concurrency and Choice

Execution Is Complete

Order ProductShipped

Order In 1" ordent Process Orders 1" ordent Product Out
CrD—=s
1'Big + Small
2'Small

Analysis of the Execution

The only difference between this execution sequence and any previ-
ous execution of FirstNet isthat three Or der tokens were pro-
cessed in the same step, while previously only one Or der token
was processed, after which there was nothing left to do. This
merely reflects the fact that this time there are three enabling bind-
ings, one for each of three Or der tokens, while previoudly there
was only one enabling binding.

Note that nothing special was doneto Pr ocess Or der s to makeit
process one order or three: it just processes the ordersthat giverise
to enabling bindings. If the result is concurrent processing, then it
is. InaCP net, no special effort isrequired to specify either concur-
rent of sequential behavior: one just creates a net that has the desired
structure, and its behavior, whether concurrent or sequential, fol-
lows as a matter of course.

Representing Conflict

FirstNet places no limitation on the number of orders that can be
processed concurrently. There could be athousand or amillion or-
ders, and they would all be processed at once. Obvioudly thisis un-
redlistic: in area system, there is aways some limit to how much
can be done at one time.

Nothing requiresthat a CP net be realistic, or protects automatically
against the consequences of unrealistic modeling. The problem here
isthat FirstNet istoo simple. It contains no representation of any-
thing that would limit concurrent processing of orders, so thereisno
limit. If wewant to limit concurrency in amodel, we must explicitly
gpecify some limiting factor. A CP net is exactly what we make it
be, and nothing more.

SalesNet shows how concurrency can be limited:

Design/CPN Tutorial for X-Windows 11-5

Design/CPN Tutorial

Order

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <
@ 1 ordent > 1 ordent Product Out

1 staff 1~ equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1'Fast

2 Novice

SalesNet specifiesthat aBi g order can be processed only when
thereisan Exper t staff member and one piece of equipment avail-
able, whileaSmal | order can be processed only when thereisa
Novi ce staff member and one piece of equipment available.

Thereis no problem with staff availability: there are enough staff
members to process all three orders concurrently. But thereisonly
one piece of equipment. Since each order must have a piece of
equipment in order to be processed, and there is only one piece, the
three orders cannot be processed concurrently. One must use it and
then replace it, after which another can use it, and so on.

The fact that the three orders cannot use the piece of equipment si-
multaneously means that they must compete to obtain it. That is,
they are in conflict for the piece of equipment, and this conflict pre-
vents them from being processed concurrently. It is conflict that
limits concurrency.

If there were two pieces of equipment, concurrency would be par-
tially limited. Two orders could be processed at atime, but there are
three; the third would have to wait until one of the two has returned
its equipment to Equi p Pool . If there were three or more pieces
of equipment, there would be no conflict in the net as shown, but
increasing the number of orders to be processed would cause re-
newed conflict for equipment and possibly for staff aswell.

Conflicts and Bindings

It may seem strange to describe “orders’ as being in conflict. This
isreally just ashorthand for saying that the activities of processing
the orders are in conflict.

11-6 Design/CPN Tutorial for X-Windows

Concurrency and Choice

In SalesNet the three activities of processing the three orders are rep-
resented by the transition Pr ocess Or der s in conjunction with
three enabling bindings. The activitiesare in conflict because the
transition can fire with only one of these bindings at atime.

Thereason it can fire with only one binding at atimeisthat any one
firing will remove the equipment token from Equi p Pool , so that
it is not there to be removed by some other firing. Consequently
there can be no other firing until the equipment has been returned.

In other words, though there are three enabling bindings, only one
of them at atime can actually be used. As soon asthe transition
fires with any one of them, there is no equipment token for use by
any other. The other enabling bindings have in fact disappeared,
since any enabling binding for Pr ocess Or der s must include a
piece of equipment and thereis no longer any such piece.

When the transition has finished firing, restoring the equipment, two
enabling bindings will remain, only one of which can actualy fire;
and so on, until no enabling bindings remain.

Don't be surprised if thisisnot all perfectly clear. Y ou will soon be
able to use the smulator to explore concurrency and conflict, and the
experiments you can perform will reveal that there is actually con-
siderably less here than meetsthe eye.

Concurrent Execution of SalesNet

Let's go into the simulator and watch SalesNet execute concurrently.
WEe'l look first at the case where there are enough resources to pre-
vent conflict, then cut the number down so that conflict arises.

We could start with NewSalesNet, the net you constructed in the
previous chapter, but that would not beideal. Thereasonisthat in
order to approach concurrent execution systematically, we need
some parameters that control ssmulator behavior to be set in a par-
ticular way. These parameters are described in Chapter 15; it would
not work for you to try to cope with them yet. So we will begin
with anet in which they are appropriately set aready.

- Open the diagram SalesNetDemo in the NewT TDiagrams di-
rectory.

The diagram opens. Except for minor variations, it isthe same as
NewSalesNet:

Design/CPN Tutorial for X-Windows 11-7

Design/CPN Tutorial

Order

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <
@ 1 ordent > 1 ordent Product Out

1~ equipment

1" staff
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1'Fast

2 Novice

Loading ML Configuration Information

The diagram you have just opened was not created on your system,
S0 it does not contain the information necessary to allow
Design/CPN to communicate with the ML process. Therefore you
must load that information into the diagram.

- Choose ML Configuration Optionsfrom the Set menu.
A diaog appears.

- ClickL oad.

- ClickOK.
The necessary information about the ML process is copied from the
system defaults to SalesNetDemo's diagram defaults. Design/CPN

can now access the ML process, permitting it to syntax check and
then execute the net.

Adding More Equipment

11-8

In order for SalesNet to execute concurrently, there must be enough
equipment for more than one order to be processed at atime. In or-
der for it to execute without conflict, there must be enough for all
orders to be processed at the same time.

- Enter text mode and change the initial marking region of
Equi p Pool to3" Fast.

Design/CPN Tutorial for X-Windows

Concurrency and Choice

The net should look like this (bolding excepted):

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <

@ 1 ordent > 1 ordent

1'Big +

2'Small

1~ equipment

1" staff
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 3 Fast

2 Novice

Executing SalesNet

Now let's see how SalesNet executes. SalesNetDemo already hasa
prime page, so you don't need to designate one.

- Enter the smulator.
Breakpoints and the display of input and output tokens are already

set, and the various simulation regions have aready been positioned
for good appearance:

Design/CPN Tutorial for X-Windows 11-9

Design/CPN Tutorial

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped

< Process Orders <
Order In 1" ordent 1" ordent Product Out
® "
1'Big+

1'Big +
2°Small 2°Small

1" staff 1~ equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2Expert+ 3'Fast 3’ Fast
2'Novice 2 Expert+
2 Novice

- Start simulation.

- Choose Continue until execution is complete.
The net should go through the following states:
Breakpoint 1: Beginning of Substep

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

1 ordent Process Orders 1 ordent Product O
s > ®
1'Big+ 1'Big+

@i 2'Small 2'Small
1Big +
2°Small 1 Expert+ e e

2 Novice

1" staff 1" equipment

1" equipment

Staff Equipment
Staff Pool e e Equ|p Pool
@ 1 Expert+

2'Novice
2 Expert +

3 Fast
2'Novice 1 Expert

11-10 Design/CPN Tutorial for X-Windows

Concurrency and Choice

Breakpoint 2: End of Substep

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <
Order In 1 ordent 1" ordent Product Out
" ©
1'Big + 1'Big+
2'Small 2'Small
1-staff 1" equipment
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2Expert+ 3'Fast 3'Fast
2°Novice 2 Expert+
2"'Novice
Execution Is Complete
[if ordent = Big then staff = Expert else staff = Novice]
Order ProductShipped
- Process Orders ~
Order In 1" ordent > 1 ordent
1'Big + 1'Big+
2'Small 2'Small

1 equipment

1 equipment

Staff Equipment

Staff Pool Equ|p Pool
2'Expert+ 3'Fast 3'Fast
2°Novice 2 Expert+

2 'Novice

Design/CPN Tutorial for X-Windows

11-11

Design/CPN Tutorial

Analysis of the Execution

Y ou probably didn't see much that was new in this execution. The

reason is that there was no conflict: the three orders were processed

concurrently in asingle step, and that wasit. The next execution of
SalesNet will provide only two pieces of equipment, so that concur-
rency will be partially but not completely limited by conflict.

Changing a Net in the Simulator

Order

Let'sliven things up in SalesNet by cutting back to two pieces of
equipment and watching the orders compete for them. To accom-
plish this, you need only change the initial marking of Equi p
Pool . You don't have to return to the editor to make minor
changes such as this. Y ou make them directly in the smulator.

- Sdect theinitial marking region of Equi p Pool .

- Enter text mode.

- Edittheregiontobe?2" Fast .

- Leavetext mode.

The net should now look as follows:

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

- Process Orders -
Order In 1 ordent 1" ordent Product Out
g ©

1'Big+
2'Small

1~ equipment

1" equipment

Staff Equipment
Staff Pool Equip Pool
2"Expert + 2'Fast 3'Fast

2'Novice 2 Expert+

2'Novice

- Pull down the Sim menu and examineit.

11-12 Design/CPN Tutorial for X-Windows

Concurrency and Choice

Note that most of the commands are disabled, but that Reswitch is
available. After you make a change in the smulator, the parts of the
net that you have changed must be syntax checked again, and new
executable code must be generated for them. This processiscalled
reswitching.

- Choose Reswitch from the Sim menu.

Keep an eye on the status bar: you will seeit briefly display the
same messages that it does when you are entering the smulator from
the editor. The displays are brief because only the parts of the net
that are affected by the change need to be rechecked.

Now look at the state of the net overall. The marking of Equi p
Pool hasnot changed because you changed itsinitial marking re-
gion. Thereason isthat the creation of initial tokens as specified by
an initial marking region happens only when anet'sinitia stateis
established on entry to the ssimulator or viathe I nitial State com-
mand.

- Choose I nitial State from the Sim menu.
When the new initial state has been established, the status bar dis-

plays Finished Initializing State. There are now two Fast tokensin
Equi p Pool :

[if ordent = Big then staff = Expert else staff = Novice]
Order ProductShipped

< Process Orders <
@ 1 ordent ol 1 ordent Product Out

1'Big + 1'Big+
2°Small 2°Small

1~ equipment

1" staff
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2Expert+ 2 Fast 2 Fast
2'Novice 2 Expert+
2 Novice

Y ou can now run the net just asif Equi p Pool 'sinitial marking
had always been 2° Fast . All effectsof previous executions were
erased when you executed I nitial State.

Design/CPN Tutorial for X-Windows 11-13

Design/CPN Tutorial

The Simulator's Execution Algorithm

11-14

In Chapter 8, when you first watched a CP net execute, you were
asked to ignore anything the smulator did that did not make obvious
sense, and you were promised that all would be made clear in due
time. Thetime has come to keep that promise.

When anet is given to the ssimulator for execution, the simulator
does the following:

1. Evauate any initial marking regions and put tokensinto
places as the regions specify.

2. Scanthe net and make alist of al transitions for which there
exists at least one enabling binding. Thisisthe enabled list.

3. Dothefollowing:

3A. Scan the enabled list and construct alist of transi-
tions and enabling bindings such that thereis no conflict
among the bindings. Such alist iscalled an occurrence
set. Itselements are called binding elements.

3B. For every binding element in the occurrence s¢t, fire
the transition it indicates with the binding it indicates.
Since the bindings are nonconflicting, al these firings
can happen concurrently.

3C. Update the enabled list by rechecking the enable-
ment of all transitions whose input places were changed
by the firings just completed. (Transitionswhose input
places have not changed do not need to be rechecked.)

4. If theenabled list is not empty after the update in 3C, repeat
from 3A.

5. If theenabled list is empty, terminate execution. (Y ou can
also terminate execution at any time by pressing ESC.)

Each iteration of 3A, 3B, and 3C iscaled a Step. Thefiring of an
individual binding element is called a Substep.

Design/CPN Tutorial for X-Windows

Concurrency and Choice

Executing SalesNet With Conflict

Let's execute SalesNet now, and ook at everything the smulator's
execution algorithm does to carry out the execution.

1: Establish Initial Markings

This has already been done by the I nitial State command. There-
sulting markings are shown in the above figure.

2: Put All Enabled Transitions on the Enabled List

This has dready been done by the I nitial State command. There
was at least one enabling binding for Pr ocess Or der s, soitis
enabled and has been put on the enabled list. The simulator indi-
cates the transition's enabled status by highlighting it, as shown in
the above figure.

3A: Scan the Enabled List and Construct an Occurrence Set
- Choose I nteractive Run from the Si m menu

The status bar displays Constructing Occurrence Set. The simulator
now examines all transitions on the enabled list, and constructs alist
of transitions with enabling bindings such that there is no conflict
among the bindings. Thislist isthe occurrence set for the step that
is currently underway.

When several transitions exist and have mutual conflicts, adjudicat-
ing the conflicts can become quite complex, but the situation is fun-
damentally no different when only one transition isinvolved: the
same sorts of decisions have to be made, and the same rules are
followed in making them. In the current case thereis only one
transition, Pr ocess Or der s, and there are three enabling bind-
ingsfor it. Thereisone binding:

ordent: Big
staff: Expert
equi p: Fast

And there are two identical bindings:
ordent: Small
staff: Novice
equi p: Fast
Any two of these bindings can fire concurrently, because there are

two (and only two) Fast tokensavailable. Thereisno way to pre-
fer one binding over another, so the simulator chooses any two at

Design/CPN Tutorial for X-Windows 11-15

Design/CPN Tutorial

random. Thisisthe choice that must be made whenever conflict
exists. Sinceit is made at random, the result isindeterminacy.

In this case the indeterminacy is of little import, due to the smplicity
of the net, but amore complex net could behave very differently in
future steps depending on what orders are processed now and what
orders are forced to wait.

3B: Execute the Elements in the Occurrence Set

Chapter 8 described the algorithm for firing atransition as follows:

1. Rebind any CPN variables asindicated by the enabling
binding.

2. Evaluate each input arc inscription. The result is amultiset
of tokens called input tokens.

3. Evauate each output arc inscription. The result isamultiset
of tokens called output tokens.

4. Subtract each multiset of input tokens from each input place.
5. Add each multiset of output tokens to each output place.

It was convenient but imprecise to describe this as the algorithm for
firing atrangition. Itismore correct to cal it the algorithm for exe-
cuting a binding element. When an occurrence set has only one el-
ement (asthey al did in previous chapters) the distinction is unim-
portant, but now we can be more precise.

Executing an Occurrence Set

11-16

Since the elements in an occurrence set are not in conflict, they can
be executed in any order. On amultiprocessing computer they could
all be executed simultaneoudly by different processors. Thiswould
be faster than executing them in some order, but neither the presence
of some particular order nor the absence of any order makes any dif-
ference, because the net ends up in the same state in any case.

Thislack of dependence on, or even need for, an ordering for bind-
ing element execution allows the simulator to intersperse such exe-
cutions. This makes possible the breakpoints Beginning of
Substep and End of Substep.

The agorithm for executing an occurrence set is:

Design/CPN Tutorial for X-Windows

Concurrency and Choice

1. For each dement in the set:

1A. Rebind any CPN variables as indicated by the en-
abling binding.

1B. Evaluate each input arc inscription.

1C. Evaluate each output arc inscription.
2. If Show Input Tokensis set, display the input tokens.
3. If Show Output Tokensis set, display the output tokens.

4. If the breakpoint Beginning of Substep is set, pause ex-
ecution.

5. When execution continues:

5A. Subtract each multiset of input tokens from each
input place.

5B. Add each multiset of output tokensto each output
place.

6. If thebreakpoint End of Substep is set, pause execution.

Execution of the occurrence set is now complete. When net execu-
tion continues, the simulator will recheck enablement, as described
below.

SalesNet's Appearance at Breakpoint 1

When you chosel nter active Run above, the smulator con-
structed an occurrence set and began to executeit. Breakpoint 1is
set, so execution has paused after creating and displaying the input
and output tokens.

Suppose that the ssimulator created an occurrence set that contains
two binding elements. One specifiesfiring Pr ocess Or der s with
ordent =Bi g, staff = Expert, equi p = Fast ; theother
specifiesor dent = Smal |, st af f = Novi ce, equi p = Fast.
The net would look like this at Breakpoint 1.

Design/CPN Tutorial for X-Windows 11-17

Design/CPN Tutorial

[if ordent = Big then staff = Expert else staff = Novice]

Order

ProductShipped
< Process Orders <
Order In > 1" ordent > @ 1" ordent Product Out
@ 1'Big+ 1'Big+

‘Ri . 1'Small 1'Small
1'Big + 1'Small N
2'Small 1 Expert+ 2'Fast

1 Novice

1" staff 1~ equipment
1" equipment

Staff Equipment

Staff Pool e e Equ|p Pool
@ 1 Expert+
N 1 Novice R
2 Expert+ 2 Fast
2'Novice 1 Expert+
1 'Novice

Y our smulator may have constructed an occurrence set in which

both elements specified or dent = Smal |, in which case the net
you see will look likethis:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders N
Order In > 1 ordent > @ 1 ordent Product Out
@ 2'Small 2'Small
1'Big + 1'Big
2°Small 2'Novice e e

1~ equipment

1" equipment

Staff Equipment
Staff Pool e e Equip Pool
@ 2 Novice

2 Expert +

2 Fast
2'Novice 2 Expert

SalesNet's Appearance at Breakpoint 2

- Choose Continue from the Sim menu.

11-18 Design/CPN Tutorial for X-Windows

Concurrency and Choice

The ssimulator proceeds with the execution of the occurrence set: it
subtracts the input tokens, and it adds the output tokens. Since
Breakpoint 2 is set, it then pauses execution once more. Assuming
the first occurrence set described above, the net would look like this
at Breakpoint 2:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped

< Process Orders <
Order In 1" ordent 1" ordent Product Out
® " ©

1'Big + 1'Small 1'Big+
2'Small 1"Small
1~ equipment
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2Expert+ 2 Fast 2'Fast
2'Novice 2 Expert+
~ 2'Novice
If your simulator constructed an occurrence set in which both ele-
ments specified or dent = Smal | , in which case the net you see
will look like this:
[if ordent = Big then staff = Expert else staff = Novice]
Order ProductShipped

< Process Orders N
Order In 1 ordent 1" ordent Product Out
® " ®

1'Big + 1'Big 2'Small
2°Small

1~ equipment

1" staff 1" equipment

Staff

Equipment

Staff Pool Equip Pool
2Expert+ 2'Fast 2'Fast
2°Novice 2 Expert+

2’Novice

Design/CPN Tutorial for X-Windows 11-19

Design/CPN Tutorial

Execution of the occurrence set is now compl ete.

3c: Update the Enabled List

- Choose Continue from the Sim menu.

Transitions whose input places have not changed need not be
rechecked for enablement, because their status cannot have changed.
Process Or der s hasachanged input place, so it will be
rechecked and found to be enabled. It istherefore again highlighted.

With the enabled list has been updated, the step is over. The break-
point Between Stepsisset, so the Step Finished diaog appears

Step Finished ===
Step 1 is finished

| S5top |I[ﬂ]l

4: Continue Execution
- Click Cont.

SincePr ocess Or der s isenabled, the smulator executes another
step (3A-3C). This step involves no choices, since thereisonly one
order to be processed, but the stages are the same.

- Continue execution through the two breakpoints

TheStep Finished dialog reappears.

5: Complete Execution
- ClickCont.

Now the situation is different. When the smulator rechecked en-
ablement, it found that there is no enabling binding for any transi-
tion. It therefore displays adialog that states this fact:

11-20 Design/CPN Tutorial for X-Windows

Concurrency and Choice

StDD |

0 There are no more enabled transitions.

- ClickOK.

Experimenting With Concurrency and Conflict

There is only one way to become comfortable with the materid this
chapter has presented so far: experiment with it.

- Change one or more initial markings in some way that you
think will produce interesting conflicts.

- Leavetext mode. (You can't reswitch in text mode.)
- Execute Reswitch, Initial State, and I nteractive Run.

- Track execution of the net, noting how it responds to the
conflicts you have created.

Y our goal should be not only to learn about concurrency and con-
flict, but to become familiar with the simulator's execution algo-
rithm. The algorithm contains afair amount of detail, but no great
conceptua depth. With experience you will soon cometo take it for
granted.

- Perform additional experiments, using various initial mark-
ings, until you feel comfortable working with the smulator.

- Quit Design/CPN and take a break.

Congratulations. Y ou have just survived the most difficult phase of
learning about CP nets.

Design/CPN Tutorial for X-Windows 11-21

Chapter 12

CPN Hierarchical
Decomposition

FirstNet and SalesNet, the nets we have worked with so far, each
has al of its graphics on asingle page. It would not be feasible to
implement alarge model inthisway. Effective CPN modeling re-
quires the ability to distribute a net across multiple pages, so asto
divide it into modules small enough to keep track of. Such a module
iscalled a submodel.

Distributing a net across multiple pages requires some mechanism
for interconnecting the submodels on the various pages, so that the
state of one can influence the state of another. Otherwise we would
have several disconnected nets rather than one distributed net.

Design/CPN offers two mechanisms for interconnecting net struc-
ture on different pages. substitution transitions and fusion places. A
substitution transition is a transition that stands for awhole page of
net structure. A fusion place is a place that has been equated with
one or more other places, so that the fused places act asasingle
place with a single marking.

Substitution transitions and fusion places together provide avery
genera capability for organizing a net into submodels. This capa
bility iscaled CPN Hierarchy. A complete discussion of CPN hier-
archy appearsin Appendix A.

This chapter shows you how to use a substitution transition to create
aone-level hierarchical decomposition. This use demonstrates only
afew of the capabilities that substitution transitions provide.
Appendix A demonstrates the rest.

Definition of Hierarchical Decomposition

Consider SalesNet, the net you created in Chapter 10. SalesNet rep-
resents avery high-level view of the system it models. Such aview
can be useful, of course; but it would also be useful to have more
detailed information about how orders are processed, staff and
equipment used, and products shipped. Idealy we would like to

Design/CPN Tutorial for X-Windows 12-1

Design/CPN Tutorial

represent this additional information without having to lose the
simplicity of the high-level overview that SalesNet currently pro-
vides.

In order to add detail to amodel without losing overview, atransi-
tion may have associated with it a separate page of CP net structure
caled asubpage This page contains amore detailed view of the ac-
tivity that the transition represents. Such atransition is called a sub-
gtitution transition. The details on the subpage are called the decom+
position of the transition. The page that holds the transition is called

the superpage.

Transitions on a subpage may in turn have associated subpages, and
so on. Since this method of representing details resultsin a hierar-
chy of subpagesthat contain decompositions, it is called hierarchical
decomposition.

Top-Down and Bottom-Up Development

There are two different ways to specify a decomposition for atran-
gtion:

1. Create a page containing a submodel, then link the submodel
to the transition. The page then becomes a subpage, and the
transition becomes a substitution transition on a superpage.
Thisisbottom-up development.

2. Start with atransition, have Design/CPN create a subpage
for it, then edit the subpage to create the submodel. Thisis
top-down devel opment.

Neither of these methods isintrinsically preferable. The choice of
which to useislargely a matter of how one prefersto work. This
chapter gives an example of top-down development. Bottom-up de-
velopment, and much more about top-down development, are dis-
cussed in Appendix A.

Creating a Hierarchical Decomposition

12-2

Let's extend SalesNet by specifying a decomposition for the transi-
tionProcess Or ders.

- OpenNewSalesNet, the diagram you created in Chapter 10
and saved in the NewTTDiagrams directory.

The net looks about like this:

Design/CPN Tutorial for X-Windows

Hierarchical Decomposition

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <

@ 1 ordent > 1 ordent

1'Big +

2'Small

1~ equipment

1" staff
1" staff 1" equipment
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1" Fast

2 Novice

Designating the Transition to Decompose

- Sdectthetrangtion Pr ocess Or der s.

Initiating Subpage Creation
- Choose Move to Subpage from theCPN menu.

Y ou may wonder why the command is M ove to Subpage rather
than something like Cr eate Decomposition Page. Thereasonis
that the using a substitution transition to create a decomposition page
for asingle existing transition isjust a special case of amuch more
general mechanism. Design/CPN alows you to designate awhole
section of existing net structure and move it to a subpage, leaving
behind a substitution transition to represent it all. When the section
moved isitself just asingle transition, asin this case, the effect isto
create a decomposition page for that transition.

Specifying the Substitution Transition's Location

Design/CPN does not assume that you want the substitution transi-
tion to appear at the location of the transition you have selected. It
therefore enters a specialized editor mode: substitution transition
creation mode. Thismode is similar to ordinary transition creation
mode, except that the result is a substitution transition. Aswith or-
dinary transition creation, moving the mouse during the creation
process reshapes the transition at its current location, while depress-

Design/CPN Tutorial for X-Windows 12-3

Design/CPN Tutorial

ing SHIFT and moving the mouse moves the transition while pre-
serving its shape.

- Usethe mouse with the SHIFT key to create atransition that
just surrounds the transition Pr ocess Or der s.

Just before you release the mouse button, Pr ocess Or der s
should look like this:

[if ordent = Big then staff = Expert else staff = Novice]

Order ProductShipped
< Process Orders <

@ 1 ordent 1 ordent

1'Big +

2'Small

1" staff 1~ equipment

1" equipment

Staff Equipment
Staff Pool Equip Pool
2 Expert + 1 Fast
2 Novice
- Reease the mouse button.

The adjustment tool disappears. Design/CPN moves Pr ocess

Or der s, to anew pagethat it createsfor this purpose. That pageis
a subpage, and the page you have been working on is now a super-
page. The superpage lookslikethis:

12-4 Design/CPN Tutorial for X-Windows

Hierarchical Decomposition

Order ProductShipped
Order In 1" ordent Product Out
> [
1'Big +
2'Small

1" staff 1~ equipment

1" staff 1 equipment
Staff Equipment
Staff Pool Equ|p Pool
2’ Expert + 1'Fast

2 Novice

Process Or der s hasbeen replaced by a substitution transition.
Toindicate this, aregion called the hierarchy key region has been

created. Thisconsists of abox, [h=]. The box is currently partly
obscured by thearcto Pr oduct Out . The next section shows you
how to move this region to a better location.

Next to the hierarchy key region is another region, called the hierar-
chy region, containing the text New#3. Thisregion indicates that
the net structure that the substitution transition stands for is on the
page New#3. It isapopup region, so you can make it appear and
disappear by double-clicking on the key region.

Naming the Substitution Transition

Design/CPN does not assume that you will want a substitution
transition that replaces a single transition to have the same name as
the replaced transition, so it does not name such atransition
automatically.

When you create a substitution transition viaM ove to Subpage,
Design/CPN automatically enters text mode. Y ou could name the
substitution transition immediately by typing in text, but you would
not be able to reposition the text afterwards to improve its appear-
ance, so:

- Leavetext mode.

In this case, the substitution transition should have the same name as
the original.

Design/CPN Tutorial for X-Windows 12-5

Design/CPN Tutorial

- Use CPN Region to name the substitution transition
Process Or der s. Position the nameregionin thetop
center of the transition:

Order ProductShipped
. Process Orders
Order In 1 ordent Product Out
> [
1'Big +
2'Small

1~ equipment

1 equipment

Staff

Equipment
Staff Pool Equ|p Pool
2’ Expert + 1 Fast
2"'Novice

Improving the Substitution Transition's Appearance

The substitution transition would look better if the hierarchy regions
weren't right on top of the arc. But moving the regions presents a
problem: they are so small that it is difficult to grab onto them with
the mouse without getting the arc instead. The hierarchy key region
is particularly hard to get hold of .

To deal with situations like this, Design/CPN provides commands in
the M akeup menu that allow you to select and move objects with-
out using the mouse.

- Select the subgtitution transition.

- Choose Child Object from theM akeup menu.
The transition has only one child object, the hierarchy key region, so
the region becomes selected. (If there were more than one child ob-
ject, and Child Object did not select the needed object, you could
use Next Object and Previous Object to select anong the child
objects.)
So much for selecting the region. In order to moveit:

- Choose Drag from theM akeup menu.

The editor isnow in drag mode. The mouse pointer becomes the
drag tool:

12-6 Design/CPN Tutorial for X-Windows

Hierarchical Decomposition

N

b
e

In drag mode, you can move objects without having to position the
mouse pointer directly over them. If you depress the mouse button
anywhere over the current window, then move the mouse, all se-
lected objects will move along with the mouse.

- Movethedragtool to the generd vicinity of the obscured hi-
erarchy key region.

- Depress the mouse button.

- Move the mouse around.
Note how the key region tracks the movement of the mouse. Since
the hierarchy region isaregion of the key region, it follows the
movement also.

- Podtion the hierarchy key region in the lower right corner of
the substitution transition:

Order ProductShipped
. Process Orders .
Order In 1 ordent 1 ordent Product Out
g
1'Big + HS| [New#3 |
2'Small

1 staff 1 equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1'Fast
2 Novice
To exit drag mode:
- PressEsc.

The editor returns to graphics mode.

Design/CPN Tutorial for X-Windows 12-7

Design/CPN Tutorial

Connecting Superpages to Subpages

The page now looks about asit did before, except that Pr ocess
Or der s isno longer an ordinary transition: it is a substitution

transition, as indicated by the hierarchy key region that is asso-
ciated with it. The name of the subpage is New#3, as indicated by
the hierarchy key region.

Thefour placesOr der I n, St af f Pool , Equi p Pool , and
Product Out havethe same appearance as before, but their status
has changed. Each of them is now a socket, and is linked with a
place on the subpage called aport. Thislinkage isthe key to under-
standing how Design/CPN implements hierarchical decomposition,
and substitution transitions generally.

Theintroduction to this chapter briefly mentioned fusion places. A
fusion place is a place that has been equated with one or more other
places, so that the fused places act as asingle place with asingle
marking.

Sockets and ports are atype of fusion place. When aplacethatisa
socket has been equated with a place that is a port, thetwo are a
single functional entity. They are not really two places any more:
they are one place that has been drawn on two different pages.

This double representation allows us to see the place no matter
which page we are looking at, and it provides the interconnecting
capability that allows pagesto be linked into hierarchical decompo-
sitions.

Structure of the Subpage

12-8

Let'stake alook at the subpage now.
- Double-click the substitution transition Pr ocess Or der s.

The subpage appears.

Design/CPN Tutorial for X-Windows

Hierarchical Decomposition

[if ordent = Big then staff = Expert else staff = Novice]

Order

ProductShipped

< Process Orders <
Order In 1" ordent 1 ordentl_| Product Out
[P]n > Lo

2 Expert +
2 Novice

1-staff 1~ equipment

1" staff 1" equipment

Equipment
Equip Pool

1 Fast

The surprise here is how little surprise there is. The subpage looks
almost exactly like the superpage. The only differenceis the appear-

ance of the box |E| and an associated string next to each of the four
places.

TheE iscalled aport key region. It indicates that the associated
placeisaport. The associated string is contained in aregion called a

port region.

The similarity between this subpage and the superpage it was de-
rived from isan artifact of the smplicity of the superpage, and of the
way Design/CPN creates a decomposition.

How Design/CPN Creates a Decomposition

When you useM ove to Subpage to create adecomposition page
for asingle transition, Design/CPN does the following:

Copy the selected transition to a newly created subpage
Replace the selected transition with a substitution transition.

Copy every place directly adjacent to that transition to the
subpage.

Copy all arcs between the transition and any of the copied
places to the subpage.

Design/CPN Tutorial for X-Windows 12-9

Design/CPN Tutorial

» Equate each copied place on the superpage with its copy on
the subpage, so that the original becomes a socket, and its

copy becomes a port.

Most of this copying isjust a convenience. Except for the
port/socket matching, the copied entities have no functional connec-
tion with the originals: they could just as well have been omitted,
leaving you to supply them yourself if appropriate. By copying
them, Design/CPN guarantees that anything on the superpage that
might also be useful on the subpage is aready there. It thereby
gives you the option of deleting things from the subpage if you
don't want them, rather than requiring the more difficult course of

recreating them if you do.

Simplifying the Decomposition Page

In this case, the transition and arcs that Design/CPN copied to the
subpage will not be helpful : adapting them to fit into the submodel
that we will build on the subpage would take much more effort than
just deleting them and starting over. Therefore:

- Select the copied transition Pr ocess Or der s on the sub-

page.

- Dédetethetranstion by pressing DELETE.

Thetransition and all connecting arcs are deleted, leaving nothing

but the ports:
Order
=
1'Big +
2'Small
Staff
Staff Pool
[p] o
2 Expert +
2 Novice

12-10

Design/CPN Tutorial for X-Windows

ProductShipped

Product Out
[r] ou

Equipment

o

Hierarchical Decomposition

Theinitial markings on the ports are redundant with those on the
corresponding sockets, and aren't necessary for what we well be
doing with the subpage, so:

- Makeagroup that includes al threeinitial marking regions.
- Déeetethem dl by pressing DELETE.

The subpage should now look likethis:

ProductShipped

2 2D
n u

Staff Equipment

Staff Pool Equip Pool

Y ou can now fill in any net structure that you want, and connect it
with these ports however you like, without bothering with anything

nonessential that was copied from the superpage. Chapter 14 shows
how thisis done.

Substitution and the Hierarchy Page

When you create a substitution transition, Design/CPN automatically
updates the hierarchy page to reflect the change.

- Open the hierarchy page.
The page appears.

Design/CPN Tutorial for X-Windows 12-11

Design/CPN Tutorial

= ==—-=— Hierarchy#10010 i
{ '}
(Hierarchy#lOOlO)
Declare#2

Sales#1

New#3

Process

]

T |

The arrow between Sales#1 and New#3 indicatesthat New#3 isa
subpage that holds the decomposition of some transition on Sales#1.
Thelabd Pr ocess below New#3 is asubstitution tag region. It
indicates the name of the substitution transition on Sales#1,
Process Or der s. Namesin substitution tag regions are trun-
cated to avoid cluttering up the hierarchy page.

Improving the Hierarchy Page's Appearance

When Design/CPN updates a hierarchy page, it does not attempt to
do so intelligently, because such an attempt could destroy a hand-
crafted hierarchy page organization that could not have been pro-
duced agorithmically. Asaways, it uses defaults, and as aways,
sometimes they work well and sometimes they don't. In this case
they have not.

If the hierarchy page was in fact already hand-crafted, we would
want to adjust it by hand. But it isn't, so we can tell Design/CPN to
do the job automatically.

- Choose Redraw Hierar chy from thePage menu.

TheRedraw Hierarchy diaog appears.

12-12 Design/CPN Tutorial for X-Windows

Hierarchical Decomposition

Redraw Hierarchy

5pacing
@ Compressed

{3y Non Compressed

[] Start from Scratch
[Heset][Cancel]

- ClickOK.

The dialog disappears. Design/CPN redraws the hierarchy page:

S[1==—=— Hierarchy#10010

(Hierarchy#10010) Declare#2

Prime

Sales#1

New#3

Process

Thisisaconsiderably better arrangement.

Renaming the Page

New#3 isn't a particularly meaningful name for the decomposition
page, so:

- Select the page node for New#3.

- Choose Page Attributesfrom the Set menu.

Design/CPN Tutorial for X-Windows 12-13

Design/CPN Tutorial

- Change the new page's name to ProcOrds#3
The hierarchy page should now ook like this:

=[[==———— Hierarchy#10010

(Hierarchy#10010) Declare#2

ProcOrds#3

Process

<

Saving the Net

In Chapter 14, you will add additional net structure to the decom-
position page you created in this chapter. The resulting net won't be
SalesNet any more, so it needsanew name. Sinceit is destined to
become a useful model, not just anet for making points about CPN,
let'scall it FirssModel, and save it in adiagram called
NewFirstModel.

- Save NewSalesNet in NewTTDiagrams under the name
NewFirstM odel.

12-14 Design/CPN Tutorial for X-Windows

Chapter 13

Understanding a
Simple Model

In the previous chapter you modified SalesNet (in the diagram
NewSalesNet) by creating a subpage named ProcOrds#3 that con-
tains the beginnings of a hierarchical decomposition for the transi-
tionProcess Or ders. You then saved the modified
NewSalesNet in NewTTDiagrams under the name NewFirstModel.

In the next chapter you will add both global declarations and graphi-
cal structure to the subpage in NewFirstModel, resulting in a some-
what realistic model of an order processing system. Thismodel is
caled FirstMode.

It would be of little use to build FirstModdl without understanding it:
thiswould just be arote exercise in editor techniques. In this chap-
ter we will take avery closelook at FirstModd, both in itself and in
relation to its antecedent, SalesNet.

Asyou go through this chapter, you may find it useful to open the
diagramsthat it references and look at them on your screen. The
original SalesNet isin SalesNetDemo (in Tutorial Diagrams); the cur-
rent FirstModel, which has a decomposition page that contains
nothing but ports, isin NewFirstModel (in NewTTDiagrams), and a
completed version of FirstMode can be found in FirstM odel Demo
(in Tutorial Diagrams).

Overview of FirstModel

FirstModel isamoderately detailed model of ageneric order pro-
cessing system. The model does not specify what product is being
ordered, and omits many of the details that would be part of areal
order processing operation. The model represents entities of four

types:

1. Orders. These arerequests by customersto buy the prod-
uct being sold. Orders come in two varieties, designated Big
and Small.

Design/CPN Tutorial for X-Windows 13-1

Design/CPN Tutorial

2. Staff members. These are people who process orders.
Staff members come in two varieties, designated Expert and
Novice.

3. Equipment. These are pieces of machinery that are used
by staff membersto processjobs. Equipment comesin two
varieties, designated Fast and Slow.

4. Products. These arethe output of the system. There are
two types, designated Big and Small. ThusaBig order is
big because it is an order for a Big product, and similarly for
aSmall order.

FirstModel processes orders through a cycle of actions that occurs
once for each order. Those actions are:

1. Anorder beginsto be processed.

2. A saff personisassigned from astaff pool to handle the or-
der. A Bigjob requires an Expert staff person; a Small job
requires aNovice staff person.

3. The staff person entersthe order into the system in some
way.

4. The staff person obtains a piece of equipment from an
equipment pool, usesit in some way to process the order,
then returns the equipment to the pool. A Big order requires
aFast piece of equipment; a Small order requires a Slow
piece of equipment.

5. The staff person ships the product that was ordered.

6. The staff person returnsto the staff pool, and isimmediately
available to process another order.

7. Processing of the order is complete.

FirstModel and SalesNet Compared

13-2

The entitiesin FirstModel are exactly the same entitiesasin
SalesNet, and much the same things are done with them. The dif-
ference between SalesNet and FirstModel is entirely amatter of the
level of detail.

All we know from SalesNet is that an order is processed using a
staff person and a piece of equipment, resulting in the return of the
staff and equipment to their pools and the shipping of a product.
Such an overview can be quite useful in beginning to organize one's
thinking about a system, but it does not constitute a precise descrip-
tion of system organization, and executing it cannot provide exact

Design/CPN Tutorial for X-Windows

Understanding a Model

measurements of system behavior. To obtain these, we need a more
detailed model.

FirstMode begins to show some details of the operation by which
orders are processed. It too could be much more detailed than it is,
but for now it will suffice.

Structure of FirstModel

Now let'slook at the details of FirstModel, and see exactly how it
models the order processing system.

Data Declarations in FirstModel

FirstModdl's data declarations are a superset of those in SalesNet:

color Order = with Big | Small;

col or Product Shi pped = O der;

color Staff = with Expert | Novice;
col or Equiprment = with Fast | Sl ow,

var ordent : Order;
var staff : Staff;
var equi pnent : Equi pnent;

var order: Oder;
var staff: Staff;
var equi p: Equi pnent;

color Oder =with Big | Small; (* Oders for products *)

col or Product Shi pped = Order; (* Oders shipped *)

color Staff = with Expert | Novice; (* Staff menbers *)

col or Equiprent = with Fast | Sl ow, (* Pieces of equipment *)

color OrderEntered = product O der * Staff; (* Oders entered but unprocessed *)
col or OrderProcessed = O der Entered; (* Orders processed but unshi pped *)

(* An order *)
(* Astaff menber *)
(* A piece of equipnent *)

(The second figure, containing FirstModel's declaration node, has
been reduced in size to fit on the printed page. Many other figures
in this and future chapters will be ssimilarly reduced. The versions
you actually work with on the computer will all be full-size))

Order, St af f, Equi pnent , and Pr oduct Shi pped have not
changed, and are used the same way in SalesNet and FirstMode.
Thevariablesor dent and equi pment have been replaced by
order andequi p.

Design/CPN Tutorial for X-Windows 13-3

Design/CPN Tutorial

13-4

The changefromor dent toor der isbeing made because
FirstModel needs to distinguish between orders and entered orders
inaway that did not apply to SalesNet, and the termor dent could
lead to ambiguity under the new circumstances. The change from
equi pment toequi p isbeing made to save space: a CP net page
can easily become too crowded, and brief names can help to control
this trend.

Name changes such as these are common in the devel opment of a
real model. Rarely doesamodel haveitsfinal form when first con-
structed. A real model typically begins with a sketch, such as
SalesNet, and evolves by decomposition and other elaborations until
it has the desired structure and detail. Some backtracking isin-
evitable when development proceeds in thisway.

Tuple Colorsets

Thereisonly one new feature to FirssModel's colorsets: the colorset
Or der Ent er ed:

col or Order Ent ered = product Order * St aff;

Or der Ent er ed isacomposite colorset: a colorset that is con-
structed of other colorsets. CPN ML provides many composite col-
orsets: records, lists, tuples, and various others. Or der Ent er ed
isatuple.

A tupleisacolorset that is a cartesian product of two or more other
colorsets. Every member of atuple colorset isan ordered sequence
of values, each of which is drawn from the subsidiary colorset de-
fined for its position in the tuple. Thus every member of

Or der Ent er ed isasequence of two values, thefirst of whichis
of typeOr der, and the second of which is of type St af f .

A tuple value is denoted by listing the constituent valuesin parenthe-
ses separated by commas. Or der Ent er ed consists of the four
values:

(Bi g, Expert)
(Bi g, Novice)
(Smal | , Expert)
(Smal |, Novi ce)

These values are simply the cartesian product of the colorsets
Order and St af f.

Tuples in FirstModel

Tuples are often used to keep track of transient associations between

entities. For example, in FirstModel entering an order into the sys-
tem is accomplished by temporarily assigning a staff member to pro-

Design/CPN Tutorial for X-Windows

Understanding a Model

cessthe order. Thismakesit convenient to represent an entered or-
der with atoken that consists of the order and the staff member as-
signedtoit. Thecolorset Or der Ent er ed provides such tokens.

The colorset Or der Pr ocessed isjust aduplicate of

Or der Ent er ed. InFirstModd, it is aso convenient to represent
an order that has been processed but not yet shipped with atoken
that consists of the order and the assigned staff member. We could
just use Or der Ent er ed tokens again, but the name

Or der Pr ocessed ismore suggestive of the meaning of the to-
kens at that stage of order processing, so using it makes the model
easier to understand.

Y ou may have noticed that the global declaration node declares vari-
ablesfor tokens of type Or der, St af f, and Equi pment (namely
order, st af f,and equi p) but nonefor Or der Ent er ed and
Or der Processed. Wewon't need variables for

Or der Ent er ed and Or der Pr ocessed. The reason will be
explained later in this chapter.

The Superpage in FirstModel

Order

FirstModel's superpage is structurally identical to SalesNet:

SalesNet

[if ordent = Big then staff = Expert else staff = Novice]

ProductShipped

< Process Orders <

1 staff 1 equipment

1" staff 1" equipment
Staff Equipment
Staff Pool Equ|p Pool
2 Expert + 1"Fast

2 Novice

Design/CPN Tutorial for X-Windows 13-5

Design/CPN Tutorial

FirstModel Superpage

Order ProductShipped
. Process Orders N
Order In 1" order 1 order Product Out
>
1'Big + HS| | ProcOrds#3 |

1" staff 1 equip

1" staff 1 equip
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1"Fast

2 Novice

Differences Between SalesNet and the FirstModel
Superpage

The only differences are:
» Thevariableor dent hasbeen replaced by or der .
» Thevariableequi pment has been replaced by equi p.
* Process Or der s has become asubstitution transition.

The changes to variable names are not strictly necessary. By con-
tinuing to declareor dent and equi prent inthegloba declara-
tion node, we could continue to use them on the superpage, or any-
where else. But keeping them around would add clutter while pro-
viding no advantage: it is better to replace them with their updated
equivalents, or der andequi p. A CPN model can build up areas
that are outdated but still functional just as a conventional program
can. Itisbest to prevent this from happening, or clarity will suffer.

The Subpage in FirstModel

The conversion of Pr ocess Or der s to asubstitution transition
holds great promise, but it has no significance as yet, because there
is nothing executable on the subpage: it contains nothing but a
framework of ports. These provide an interface that links the sub-
page to the superpage:

13-6 Design/CPN Tutorial for X-Windows

Understanding a Model

Staff

Staff Pool
[p] o

Soon we will fill in this framework so that it becomes the

FirstModel subpage:

ProductShipped

Product Out
[F] ou

Equipment

Equip Pool
[p]wo(—*P

order

Order

Eln

7] vo

[if (order = Big)

lif

then staff = Expert
else staff = Novice]

Enter Order

(order, staff)

OrderEntered

staff

Staff

Staff Pool

Entered
Order

(order = Big)
then equip = Fast
else equip = Slow]

[7] out

(order, staff)

Process Order

(order, staff)

Equipment

Equip Pool

] vo

Processed
Order

equip

(order, staff)

OrderProcessed

l Ship Product

ProductShipped

order

staff

Function of FirstModel

Now letslook at the details of how FirstModel operates. The sim-
plest way to do thisisto look at each of the three transitions and its
environment in isolation from the others.

Design/CPN Tutorial for X-Windows 13-7

Design/CPN Tutorial

Enter Order

Ent er Or der and itsenvironment look like this:

[if (order = Big)
then staff = Expert
else staff = Novice]

Enter Order

(order, staff)

OrderEntered

Entered
Order

Order

@

staff

Staff

1 Expert

Ent er Or der isenabled whenever thereisaBi g order inOr der
I n and anExpert staff memberin St af f Pool , or thereisa
Smal | order inOr der | n and aNovi ce staff member in St af f
Pool . Enabling tokens exist, so the transition is enabled.

When Ent er Or der firesit will renovethe Or der and St af f

tokens that produced the enabling binding from the input places.
But what will it put into Ent er ed Or der ?

Tuple Constructors

Thecolorset of Ent er ed Or der isOr der Ent er ed, which was
declared as.

col or Order Ent ered = product Order * Staff;
That is, every member of Or der Ent er ed isatuplethefirst ele-
ment of which hasthevalueBi g or Smal | (the elements of

Or der) and the second element of which hasthevalue Expert or
Novi ce (theelementsof St af f).

13-8 Design/CPN Tutorial for X-Windows

Understanding a Model

The output arc inscription to Ent er ed Or der hasthe form of an
Or der Ent er ed tuple, but instead of using wired-in values of ap-
propriate type, asin:

(Bi g, Expert)
it uses CPN variables of appropriate type:
(order, staff)

This specification is called atuple constructor. It isjust away of
specifying atuple value by using variables rather than constants.
For example, if or der isboundtoBi g and st af f isbound to
Expert,then (order, st aff) evauatesto(Bi g, Expert).

Example of Tuple Construction

When atrangition fires, each output arc inscription is evaluated with
any variables used on input arcs bound to the values they havein the
enabling binding, and the resulting multiset is put into the output
place. When thereisno count on an arc inscription, 1 is assumed,
so that the inscription on the output arc to Ent er ed Or der isac-
tudly 1° (order, staff).

Supposethat Ent er Or der fireswithor der bound to Bi g and
staff toExpert:

[if (order = Big)
then staff = Expert
else staff = Novice]

Enter Order
order (order, staff)

Order OrderEntered

— &
@ rder

E In 1'Big

staff

Staff

Staff Pool
[p] 170

1 Expert

Design/CPN Tutorial for X-Windows 13-9

Design/CPN Tutorial

When the constructor (or der, st af f) isevauated with these
bindings, theresultisthetuple (Bi g, Expert). The output arc
inscription thus evaluatesto 1™ (Bi g, Expert), and thefiring of

Ent er Order will resultinone (Bi g, Expert) token being put
into the output place:

[if (order = Big)
then staff = Expert
else staff = Novice]

Enter Order
order (order, staff)

order OrderEntered
Entered
E'” 1°(Big, Expert)

staff

Staff

Staff Pool
[p] 70

Process Order

Thetrangition Pr ocess Or der takesup whereEnt er Or der
leaves off:

13-10 Design/CPN Tutorial for X-Windows

Understanding a Model

[if (order = Big)
then equip = Fast
else equip = Slow]
OrderEntered
Entered
Order

o Process Order
1'(Big, Expert) (order, staff)

(order, staff)

OrderProcessed

Processed
Order

equip

Equipment

[r]io

Equip Pool

1 Fast

Bidirectional Arcs

The arc between Equi p Pool andProcess Or der hasaprop-
erty we have not seen before: it isbidirectional. Such an arc can be
used (but does not have to be) whenever both an input and an output
arc connect a given place and transition, and the inscriptions on the
two arcsareidentical. Thus these two structures are exactly equiva
lent:

Process Order Process Order

equip equip equip

Equipment Equipment

Equip Pool Equip Pool

Bidirectiona arcs are commonly used when transition enablement
requires the existence of aresource that firing does not consume, or
of acondition that firing does not change.

Design/CPN Tutorial for X-Windows 13-11

Design/CPN Tutorial

Tuple Patterns

The key to understanding Pr ocess Or der istheinput arc inscrip-
tion(or der, staf f), anditsinteraction with the guard and the
other inscriptions.

Suppose that Pr ocess Or der did not care about the composition
of the entered ordersthat it processes, but merely passed them
through unexamined and unchanged. We could then declare a CPN
variable of type Or der Ent er ed:

var orderentered: Order Ent er ed;

and Process Or der s could usethisvariable to input and output
Or der Ent er ed tokens:

OrderEntered
Entered
Ogder
1 (Big, E) Process Order
ig, Exper
L 9 =xp I orderentered
orderentered
OrderProcessed
Processed
equip Order
Equipment

Equip Pool

[p] V0

1"Fast

(Wecanuseor der ent er ed to put atoken into Pr ocessed
Or der becauseOr der Pr ocessed isaduplicate colorset of
Or der Ent er ed.)

Now Pr ocess Or der isenabled whenever thereisatokenin

Ent er ed Or der, and itsfiring puts an identical token into
Processed Or der. Thefact that the token happensto have a
substructure is now irrelevant: it is being dealt with only asawhole.

But thereisaprice. The substructure of the value bound to or -
der ent er ed isnot just irrelevant, it isunavailable. We have lost
the ability to predicate the enablement of Pr ocess Or der s ona
relationship between order type and equipment type, because this
ability requires accessing the constituent values of the tokensin

Ent er ed Or der and testing one of those valuesin aguard.

13-12 Design/CPN Tutorial for X-Windows

Understanding a Model

There are several ways to access the constituent values of acompos-
itetoken. The simplest isthe one used in the origina formulation of
Process Order:

[if (order = Big)
then equip = Fast

else equip = Slow]
OrderEntered

Entered
o

1°(Big, Expert)

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order

equip

Equipment

The specification on the arc between Ent er ed Or der and
Process Or der iscaled atuplepattern. Itistheinverse of atu-
ple constructor. Where a constructor takes bound variables and
produces a composite value, a pattern takes a composite value and
bindsits constituents to variables.

When the smulator checks the enablement of a transition with that
has a pattern on an input arc, it does not bind whole token values to
variables. Instead it matches the value of each token that it looks at
against the pattern, and binds the variables in the pattern to the com-
ponentsin the token value. The bound values are then available for
usejust asif the variables had been bound directly, asor der and
st af f areinthe context of theEnt er Or der transition.

Enablement of Process Or der

In the above figure, Ent er ed Or der contains one token whose
valueis(Bi g, Expert). Whenthe simulator checksthe transi-
tion for enablement, it will match the value of that token against the
pattern (or der, staff). Thiswill bindor der toBi g and
staf f toExpert.

Theguardistrueif or der isboundtoBi g andequi p isbound to
Fast, ororder isboundtoSmal | andequi p toSl ow. There

isaFast tokeninEqui p Pool , sothesimulator bindsits value to
equi p. Now bindings have been found for al input arc inscription

Design/CPN Tutorial for X-Windows 13-13

Design/CPN Tutorial

13-14

Entered
Order

variables such that the multisets that the inscriptions specify exist in
the input places, and the guard istrue. Process Or der isthere-
fore enabled with the binding or der = Bi g, st af f = Expert,
andequi p = Fast .

Firing of Process Or der

WhenPr ocess Or der fires, the enabling binding is restored to all
arc variables. Theinput arcinscription (or der, st af f) then
evauatesto 1™ (Bi g, Expert),andequi ptol® Fast. These
tokens are subtracted from the input places.

Evaluation of the output arc inscription (or der, st af f) isthe
same asfor thefiring of Ent er Or der . Giventhe bindingsor -
der =Bi g, st aff = Expert, theconsructor (or der,
st af f) evaluatesto (Bi g, Expert), andtheinscriptionto

1' (Bi g, Expert). Thattokenis created and added to
Processed Or ders. Sinceequi p isboundtoFast , the output
arcinscriptionto Equi p Pool evaluatesto 1® Fast, and the Fast
equipment is restored to the pool:

[if (order = Big)
then equip = Fast
OrderEntered else equip = Slow]

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed

equip Qpeig

Equipment 1°(Big, Expert)

Design/CPN Tutorial for X-Windows

Understanding a Model

Ship Product

Shi p Product does contain any fundamentally new features:

ProductShipped

eles

A

OrderProcessed

Processed
Qreer
o order

1°(Big,Expert)

Staff

Staff Pool
G

Ship Product

(order, staff)

staff

The transition does not specify aguard, so it hasan implicit guard of
true. Thusitisenabled whenever thereisatokenin Processed
Or der, irrespective of the constituent values of the token.

When Shi p Product fires, it separates the components of what-
ever token enabled it and dispatches them to different destinations.
It createsaPr oduct Shi pped token whose value is given by the
first element in the enabling token's value, and putsit in Pr oduct
Out ; andit createsa St af f token whose value is given by the sec-
ond element in the token's value, and putsitin St af f Pool . This
makes the staff member available for processing additional jobs:

Design/CPN Tutorial for X-Windows 13-15

Design/CPN Tutorial

ProductShipped

Product Out

1'Big

|E| Out

OrderProcessed

Processed
Order
Staff
Staff Pool Ship Product

(order, staff)

order

1 Expert

staff

Summary of FirstModel

We have now looked at FirstModel piece by piece. Hereitisagain

with the pieces put together:
[if (order = Big) [if (order = Big)
then staff = Expert then equip = Fast
else staff = Novice] else equip = Slow]
Enter Order
order (order, staff)

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order
l Ship Product

(order, staff)

order

staff
equip

Staff Equipment

IE' o Staff Pool IE' /o

Equip Pool

staff

13-16 Design/CPN Tutorial for X-Windows

Understanding a Model

Entering an Order

Doubtless this figure means a great deal more now than it did when
you first saw it. Let's summarize what FirtModel does and how it
doesit.

When an order isreceived (thereisan Or der tokeninOr der 1 n),
and an appropriate staff member is available (the order isBi g and
St af f Pool containsan Expert token, or the order isSnal |
and St af f Pool containsaNovi ce token), the order is entered
into the system. (Ent er Or der isenabled and fires. This sub-
tractsthe Or der and St af f tokens from their places, and adds a
tuple token containing their valuesto Ent er ed Or der .)

If thereis no appropriate staff member (no tokenin St af f Pool
that satisfiesEnt er Or der 'sguard given the binding of or der)
the order waits until one becomes available because a product has
been shipped (until an appropriate token has been added to St af f
Pool becauseShi p Product hasfired).

Processing an Order

Shipping an Order

When an order has been entered into the system (thereisatoken in
Ent er ed Or der) and an appropriate piece of equipment is avail-

able (the order isBi g and Equi p Pool containsaFast token, or
the order isSmal | and Equi p Pool containsa Sl owtoken), the
order isprocessed. (Process Or der isenabled and fires. This

subtracts the tokens from Ent er ed Or der and Equi p Pool , re-
placesthe Equi p token, and addsto Pr ocessed Or der atoken
identical to the one subtracted from Ent er ed Or der .)

If there is no equipment piece (no token in Equi p Pool that satis-
fiesPr ocess Or der 'sguard given the binding of or der) the or-
der waits until one becomes available because an order has been
processed (until an appropriate token has been added to Equi p
Pool becausePr ocess Or der hasfired).

When an order has been processed (thereisatokenin Pr ocessed
Or der), aproduct is shipped and the staff member becomes avail-
able to process another order. (Shi p Product isenabled and
fires. Thisremovesthe enabling token from Pr ocessed Or der,
addsaPr oduct Shi pped tokentoPr oduct Out, and addsa
St af f tokentoSt af f Pool . The values of the

Pr oduct Shi pped and St af f tokens are taken from the con-
stituent values of the enabling token.)

Design/CPN Tutorial for X-Windows 13-17

Design/CPN Tutorial

Concurrency in FirstModel

13-18

The preceding summary is completein that it fully describes every
piece of FirstModel, but it does not really capture the model's
overall behavior. Onereasonisthat it is essentially a sequential
view.

Itistrue that FirstMode puts any one job through a sequence of
digoint steps. But the model as awhole does not necessarily exe-
cute sequentialy. If there are sufficient orders and resources, it can
execute concurrently in two respects.

First, each of its transitions can handle as many orders concurrently
asthe supply of resources allows. If there are ten jobs and ten staff
members of the required types, al ten jobswill be entered in the
same step by Ent er Or der ; and if there is equipment of the re-
quired types, they will all be processed in the same step by
Process Order. Lesser suppliesof resources will of coursere-
sult in reduced concurrency. Thisisthe same phenomenon that we
saw in the case of the single transition in SalesNet.

Second, FirstModdl's transitions can execute concurrently with each
other. If there are many orders, staff members, and equipment
pieces, some orders can be being entered, others processed, and still
others shipped, al in the same step.

Nothing special is needed to specify such concurrency among tran-
sitions: we just set up the model and the entities it processes, and
any concurrency thereby implied naturally arises, both among tran-
sitions and for each transition individually. Thisisagenera princi-
ple of CP nets.

In trying to understand FirstModel, or any CP net model, itisim-
portant to avoid assuming a sequential paradigm. Concurrency is
the normin CP nets. If you approach them by looking for concur-
rent operations, you will find them much easier to understand than if
you concentrate on sequentia flows.

Take amoment now to look at FirstModel and imagineit al happen-
ing at once. Focus on its behavior as a concurrently operating
whole, rather than on the individual ordersthat it processes by exe-
cuting a sequence of operations on each one. This shift in view-
point, from focusing on sequences of transformations of objectsto a
focusing on concurrencies of processes in systems, is an essential
part of learning to work with CP nets.

Design/CPN Tutorial for X-Windows

Understanding a Model

Locality in CP Nets

At onelevel, looking at amodel piece by piece gives a complete de-
scription of the model. By looking separately at each transitionin a
CP net and the places directly connected to it, in total isolation from
the rest of the net, we can completely characterize the conditions that
enable the transition and the result of firing it. Such characterization
describes atransition completely: there is no more to atransition
than when it happensand what it does.

Since nothing happensin a CP net except transition firing, ade-
scription of every transition is a description of the whole.
Everything that the whole doesis completely determined by what
each transition does separately.

Thefact that we can completely understand any transition in isola
tion from al othersis an essential property of CP nets. Every tran-
sition congtitutes aworld of its own, handling inputs and outputs
according to fixed rules, with no knowledge of where itsinputs
come from or where its outputs go. Transitions affect each other
only indirectly, by putting tokensin each other'sinput places: they
have no other relationship whatsoever. This mutual independence
of trangitionsis called locality.

Locality and Arc Inscription Variables

Y ou may have wondered about the fact that FirsstModel uses the
same few CPN variables over and over in inscriptions on arcs con-
nected to different transitions. If all the appearances of a CPN vari-
able anywhere in the net had to have the same binding, useful exe-
cution would obviously be impossible.

Locality prevents any problem from arising. The use of a CPN
variable by one transition has no connection at all with the variable's
use by any other transition. Each transition establishesits own
bindings for al variables used on arcs connected to it. Those vari-
ables may at the same time be bound to other values by other transi-
tions. If so, the several bindings have no effect on each other what-
soever: each isrestricted in scope to the separate world of a particu-
lar transition.

Locality and Overview

Locality has an important general consequence: a CP net contains no
inherent overview of itself. If an overview capability is needed, it
must be explicitly created as part of the net. But it too will consist of
trangitions aware only of local information. The only difference will
be that the information has global significance.

Design/CPN Tutorial for X-Windows 13-19

Design/CPN Tutorial

This property of CP nets might seem alimitation, but infact itis
both realistic and advantageous. Real-world systems have no
overall viewpoint unless one has been explicitly created. Often there
isno possibility of creating such aviewpoint.

When a human makes amental model of asystem, it isall too easy
to inadvertently include in the mental model the effects of aglobal
understanding that exists nowhere in the system itself. A CP net
model does not permit thistype of error: it is exactly what one
makesit be, and no more. Thus modeling a system as a CP net will
uncover any areas in which an intelligence has been assumed that
does not actually exist in the system.

Emergent Behavior in CP Nets

13-20

But there is another sense in which we definitely do miss something
when we look at a CP net only in pieces. Though a complete defi-
nition of each piece of a net completely defines the whole, both stati-
cally and dynamically, complete understanding of the individual
pieces of a CPN model of any complexity rarely sheds any light on
what will happen when it executes.

The reason isthat the properties that emerge when a CP net executes
are functions of the whole net: they cannot be deduced from any part
or parts taken separately. If there are only afew parts we may be
able to grasp the whole and predict its behavior, but where there are
many, asthere are usually are when a system is complex enough to
be worth modeling in the first place, human understanding cannot
possibly predict the outcome of execution.

Thus CP nets allow usto model systems that we cannot possibly
understand by looking at their parts, yet never require usto deal di-
rectly with anything larger than apart. We can build amodel one
trangition at atime, taking advantage of locality to reduce the model-
building task to the construction of small, tractable pieces, so that
we never have to cope with the model, or the system, asawhole.
When we execute the model, the simulator does the coping for us,
leaving us free to concentrate on analyzing the results.

Design/CPN Tutorial for X-Windows

Chapter 14

Building a
Simple Model

The time comes again to move away from theory and into practice.
Let'sbuild FirstModd (in this chapter) and execute it (in the next
chapter). Theresultswill clarify many things, and open the way to
many more.

In Chapter 12 you modified SalesNet (in the diagram NewSalesNet)
by creating a subpage named ProcOrds#3 that contains the begin-
nings of ahierarchical decomposition for the transition Pr ocess

Or der s. You then saved the modified NewSalesNet in
NewTTDiagrams under the name NewFirstModel.

- OpenNewFirstModel in theNewTTDiagrams directory.

In order to turn the diagram in NewFirstModel into FirstModel, we
must do three things:

1. Addsome global declarations, on page Declare#2.

2. Modify the superpage, Sales#l, to reflect the new declara
tions.

3. Build the model itself, on the subpage ProcOrds#3.

Thefirst two are trivial, but the third should be more interesting.
Let's get the easy changes out of the way first.

Adding Global Declarations
Doing thisisjust amatter of editing the global declaration node.
- Open the page Declare#2 (if it is not already open).

The global declaration node looks like this:

Design/CPN Tutorial for X-Windows 14-1

Design/CPN Tutorial

O der
Pr oduct
St af f
Equi pme

col or
col or
col or
col or

var ordent
var staff
var equi pnent

Staff;

with Big | Small;

Shi pped = Order;

with Expert | Novice;
nt with Fast | Slow,

O der;

Equi pnent ;

- Reshapethe globa declaration nodeto fill most of the win-

dow.

- Enter text mode.

- Edit the global declaration node so that it looks likethis:

color Oder =with Big | Snall; (* Oders for products *)

col or Product Shi pped = Order; (* Oders shipped *)

color Staff = with Expert | Novice; (* Staff menbers *)

color Equiprent = with Fast | S ow (* Pieces of equipnent *)

color OderEntered = product Order * Staff; (* Orders entered but unprocessed *)
col or O derProcessed = O der Ent ered; (* Oders processed but unshi pped *)
var order: Cder; (* An order *)

var staff: Staff; (* Astaff nenber *)

var equi p: Equi pnent; (* A piece of equipnent *)

Y ou may be tempted to skip typing in the comments. After all, this
is“just an exercise”. But don't omit them: comments are asimpor-
tant in a CP net asin aconventional program.

- Leavetext mode.

- Reshape the global declaration node so that it fitsits con-
tents.

Take amoment to be sure you understand the meaning of these dec-
larations. If you have any questions, review the previous chapter
before proceeding.

Modifying the Superpage

14-2

Only trivia changes are needed.
- Open the superpage Sales#1.
The page looks like this:

Design/CPN Tutorial for X-Windows

Building a Model

Order ProductShipped

. Process Orders .
Order In 1" order > 1" order Product Out

HS| | ProcOrds#3 |

1'Big +
2'Small
1" staff 1"equip
1" staff
Staff Equipment
2’ Expert + 1"Fast
2 Novice
All we need to do isreplace the variable or dent by or der, and
thevariableequi pment by equi p.
- Enter text mode.
- Edit each of the inscriptions that need updating to use the
new names.
- Leavetext mode.
- Reposition the inscriptions as needed for clarity.
The superpage should now look like this (bolding excepted):
Order ProductShipped
R Process Orders R
Order In 1 order > 1 order Product Out
1'Big + HS| | ProcOrds#3 |
2'Small

1" staff
1" staff
Staff Equipment
Staff Pool Equip Pool
2 Expert + 1'Fast

2 Novice

That's it for the superpage.

Design/CPN Tutorial for X-Windows 14-3

Design/CPN Tutorial

Building FirstModel on the Subpage

Let'slook at ProcOrds#3 asitisand asit will be.

- Open the subpage ProcOrds#3.

The Current Subpage
The subpage currently looks likethis:

Order ProductShipped

2 2D
n u

Staff Equipment

Staff Pool Equip Pool

As described in Chapter 12, these four places are ports. Eachis
equated with the place of the same name on the superpage. The
places on the superpage are sockets. A port and its socket are func-
tionally the same place: the marking of one isthe marking of the
other. This property provides the link between superpage and sub-

page.

On the superpage Sales#1, the four sockets are connected to asingle
trangition: the subgtitution transition Pr ocess Or der s. Onthe
subpage, the four portswill connect to a considerably more complex
piece of net structure. This structure will not do anything funda
mentally different from what Pr ocess Or der s does. Rather, it
will express the functionality of Pr ocess Or der s inamore de-
tailed way: onethat ismore likely to be useful in analyzing the sales
order system that FirstModel will represent.

The Future Subpage

When you have completed this chapter, ProcOrds#3 will look like
this:

14-4 Design/CPN Tutorial for X-Windows

Building a Model

[if (order = Big)

then staff = Expert then equip = Fast
else staff = Novice] else equip = Slow]

[if (order = Big)

Enter Order
order

(order, staff)

ProductShipped

staff

Staff

Staff Pool
7] vo

OrderEntered
Product Out
Entered E Out -
Order

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order
l Ship Product

(order, staff)

order

equip

Equipment

[r] vo

Equip Pool

staff

Thisis exactly the net that we looked at in detail in the previous
chapter. If you are unclear on any aspect of it, review that chapter
before proceeding.

For brevity we will often describe the net structure to be built on
page ProcOrds#3 as FirstModel. The model actualy includesthe
global declarations and superpage as well, but we will rarely be con-
cerned with these, so it will often be convenient to ignore them and
just look at ProcOrds#3.

Thisisacommon phenomenon in CP net modeling: the global dec-
larations, and the high-level pages, tend to stabilize and become
taken for granted; the interesting activity mostly occurs on the sub-
pages, where detailed changes are often made and specific execution
events can be observed.

Editing the Subpage

Y ou aready know most of the editor techniques you will need in or-
der to build FirstModdl. Various additiona techniqueswill be intro-
duced throughout this chapter.

Many of the techniques covered in this chapter relate to improving
the graphical appearance of net. These are asimportant asthe basic
net construction techniques. Though net appearance has no func-
tional significance, it isnot just a matter of aesthetics: it can make the
difference between clarity and total incomprehensibility.

Design/CPN Tutorial for X-Windows 14-5

Design/CPN Tutorial

The sequence we will follow to create FirstModel will be:

1
2
3
4
5.
6
7
8
9

Rearrange the ports on the subpage.

. Create the transitions.

Name the transitions.

. Create and name the places.

Give the new places their colorsets.

. Align net components.
. Connect ports, transitions, and new places by drawing arcs.
. Create the arc inscriptions.

. Create the transition guards.

This sequence represents only one of many waysin which
FirstModel could be created. There is no one best way to create a
net: it isamatter of individual preference. The approach used in this
chapter has been selected to allow various net-creation techniquesto
be demonstrated one at atime; it is not necessarily an approach you
would want to use generally.

The Starting Point

14-6

All thefigures that depict ProcOrds#3 in this chapter are reduced to
fit on the printed page. To give you an idea of the scale of reduc-
tion, the following shows the ports now on ProcOrds#3:

Design/CPN Tutorial for X-Windows

Building a Model

Order ProductShipped

n

Staff Equipment

Staff Pool Equip Pool
@) @0

- Adjust the size of the ProcOrds#3 window so that it provides
at least as much room relative to the ports as the above figure
indicates. If you want alarger window relative to the ports,
and your monitor is big enough, make the window as much
larger asyou like.

Rearranging the Ports

- Drag the port key regionElfor Or der I n sothatitisim-
mediately below the port.

The port region tracks its parent.
- Drag the port key regions for the other three ports alittle to
the |eft, to provide more clearance between the places and the
port regions.

- Drag each of the ports so that their positions relative to the
window are as shown:

Design/CPN Tutorial for X-Windows 14-7

Design/CPN Tutorial

Order ProductShipped

2o

Staff Equipment

[F] vo Staff Pool Equip Pool
X

Y ou have now created room for the additional net structure you will
be drawing on the subpage. Of course, you could not be so clear
about just where to put the portsif you were designing the page
from scratch; you would have to experiment somewhat, moving
them as required to make room for additional net structure.

Asyou proceed with these instructions, feel free to make whatever
adjustments are needed to create the correct overall result. Don't

worry about exactly matching the appearance of the figures: any-
thing essentially equivalent will do.

Creating the Transitions

- Enter transition creation mode (Choose T ransition from the
CPN menu)

- Create atransition as shown:

14-8 Design/CPN Tutorial for X-Windows

Building a Model

Order ProductShipped
Product Out
E Out
(el m
Staff

Equipment

Staff Pool
E [lfe] Equip Pool
[?] vo

Once you are in trangition creation mode, you can create as many
transitions asyou like:

- Create two more transitions;

Order ProductShipped
Product Out
E Out
[e]n
Staff

Equipment
E Staff Pool Equio Pool
l[e} IE' /o quip

- Leavetrangition creation mode (PressESC).

Design/CPN Tutorial for X-Windows 14-9

Design/CPN Tutorial

- Move thetransitions as needed to match the above figure.

Matching the Transition Sizes

Itisdifficult to get different graphical objectsto have exactly the
same size and shape using the mouse. But having similar net com-
ponents look the same can do alot to cut down on visual clutter.
Design/CPN therefore provides an easy way to make one graphical
object look exactly like another. Let'suseit to make dl threetransi-
tionsthe same size:

- Reshape one of the transitions so that it has the size and
shape you want them all to have.

- Makeagroup that contains the other two transitions.
- Choose Change Shape from theM akeup menu.

The status bar displays: Select Node or Region as amodel for shape
change

- Move the mouse over the transition that has the desired
shape.

The transition's border flashes on and off.
- Click the mouse.

The other two transitions are reshaped to be identical to the one that
you clicked on.

Naming the Transitions

14-10

- Choose CPN Region from theCPN menu.
The CPN Region dialog for transitions appears.
The defaultis Name, which is what we want, so:

- ClickOK.

The dialog disappears. The editor isnow in name region creation
mode. The mouse pointer becomes the region tool.

- Movethetool to theinside of thetop left transition and click
the mouse.

- Type“Enter Order”.

Design/CPN Tutorial for X-Windows

Building a Model

The page should look like this, except that the transition name prob-
ably won't be so well positioned:

Enter Order

Staff

Staff Pool
&l vo

ProductShipped

Product Out
E Out

Equipment

B

Once you are in name region creation mode, you can name as many
transitions (and also places) as you like without leaving the mode.

Click the mouse on the middle transition.
Namethetransition Pr ocess Or der .
Name the lower right transition Shi p Pr oduct .
L eave the creation mode (ESC).

Use the mouse to position al three names at the tops of the
transitions:

Design/CPN Tutorial for X-Windows 14-11

Design/CPN Tutorial

Enter Order
Order ProductShipped
Product Out
E Out
] in Process Ordpr

Staff

Equipment
Staff Pool :
E 110 IE' Vo Equip Pool Ship Produc

Y ou may need to reshape the transitions so the names will fit inside
them.

Creating and Naming the Places

The steps are the same as for transitions, except that you start by
selecting Place rather than Transition from the CPN menu.

- Create two places, positioned about like this:

14-12 Design/CPN Tutorial for X-Windows

Building a Model

Enter Order

& O

Staff

Staff Pool
Bl vo

Process Order

-

Equipment

B

Product Out
E Out

ProductShipped

Ship Product

- Use Change Shapeto make the two new places, and all
four ports, the same size.

- NametheplacesEnt er ed Or der and Pr ocessed
Or der . Uselinefeeds to make the names break as shown,
unless you are making very large places and don't need to,
and put the names at the tops of the places.

Enter Order

Order
Entered
Order

Eln

Staff

Staff Pool
Bl o

Process Order

Processed
Order
Equipment

@

E out Product Out

ProductShipped

Ship Product

Design/CPN Tutorial for X-Windows 14-13

Design/CPN Tutorial

Give the New Places Their Colorsets

- SdectEnter Order

- Choose CPN Region from theCPN menu.
- ClickColor Set.

- ClickOK.

- GiveEnt er Order thecolorset Or der Ent er ed:

Order

Enter Order

OrderEntered ProductShipped

Entered
@ Order E out Product Out

Eln

Process Order

Processed
Order
Staff Equipment
Staff Pool .
Equip Pool Ship Product
[0 [E o ’

14-14

- Click ontheplace Pr ocessed Or der.

- GiveProcessed Or der thecolorset Or der Pr ocessed:

Design/CPN Tutorial for X-Windows

Building a Model

Enter Order
order OrderEntered ProductShipped
Entered
E In Process Order

OrderProcessed

Processed
Order
Staff Equipment
Staff Pool .
E 110 E o Equip Pool Ship Product

- Leavethe mode.

- Adjust the colorset region positions as needed.

Aligning Net Components

The figures we have been using to illustrate the growing net have
everything lined up fairly nicely, but your version is probably less
regular. Let's correct that now by doing the following:

1. Align the new transitions and places (nodes) into a diagonal
line.

2. Alignst af f Pool , Equi p Pool , and Shi p Pr oduct
into arow.

3. MovesSt af f Pool directly under Ent er Or der .
4. MoveEqui p Pool directly under Pr ocess Or der.
The changes made in this section are largely a function of the details

of the net you are building, and are likely to be too small to show up
in areduced figure anyway, so we won't try to illustrate them.

Design/CPN Tutorial for X-Windows 14-15

Design/CPN Tutorial

Diagonally Aligning the New Nodes

14-16

The five new nodes would bein adiagond line if they were evenly
spaced both horizontally and vertically. To accomplish this, we will
use two commands from the Align menu: Horizontal Spread,
which evenly spaces graphical objects horizontally between two ob-
jectsyou designate, and Vertical Spread, which does the same
vertically.

Horizontal Spread
- Select dl five nodes. Be sure nothing else is selected.

The status bar displays: Group Of 5 Nodes.

- Choose Horizontal Spread fromtheAlign menu.

Y ou can now designate two nodes, called reference nodes, between
which the selected objects will be evenly spread. The status bar
prompts for the first reference node by displaying: Please select
node as reference for alignment.

- Move the mouse pointer through the interiors of various
nodes.

A dark border flashes on and off around each node while it contains
the mouse pointer: the flashing node is a prospective reference node
for the horizontal spread. Note that the reference node does not
have to be one of the nodes in the selected group.

- Click themouseon Ent er Or der.

The status bar prompts for the second reference node by displaying:
Pl ease select second node.

- Click themouse on Shi p Pr oduct .
The five nodes are now evenly spaced horizontally, but not verti-
cally.
Vertical Spread
Frequently a horizontal (or vertical) spread alone givestheresult is
needed, but in this case we need both. Aswith ahorizontal spread,
the reference nodes for a vertical spread don't have to be members
of the group that is affected. Such membership is optional.

- RemoveEnt er Or der and Shi pped Pr oduct fromthe
selected group

- Choose Vertical Spread from theAlign menu.

Design/CPN Tutorial for X-Windows

Building a Model

- Clickthemouseon Ent er Or der.

- Click themouse on Shi p Pr oduct .
The five nodes are now evenly spaced both horizontally and verti-
cally, and so arein adiagonal line.

Aligning Nodes Into a Row

ThenodesSt af f Pool , Equi p Pool , and Shi p Product
would be more aesthetically arranged if they were dligned into a
row.

- Create agroup that contains all three nodes.

The status bar displays: Group Of 3 Nodes.

- Choose Horizontal from theAlign menu.

This command aligns nodes horizontally, so that the centers of the
nodes lie exactly in arow.

- Click themouse on Shi p Pr oduct.

The three nodes (specifically, their centers) are now inarow. The
row passes through the center of the reference node Shi pped
Pr oduct . Thisnode need not have been a member of the group to
be aligned.

Aligning Nodes Into a Column
Y ou probably noticed Vertical intheAlign menu. It hasthe same
effect on vertical adignment that Horizontal does on horizontal
alignment.
Letsput St af f Pool directly under Ent er Or der, and Equi p
Pool directly under Pr ocess Or der. Thingswill look alot bet-
ter later if we do.

Align menu commands work the same way on single nodes as they
do on groups:

- Sdect St af f Pool
- Choose Vertical from theAlign menu
- ClickonEnt er Order.

St af f Pool isnow directly below Ent er Or der.

Design/CPN Tutorial for X-Windows 14-17

Design/CPN Tutorial

- AlignEqui p Pool directly below Process Or der.

Other Adjustments
If there are other adjustments that would make your particular net
look better, perform them now. If you don't like the results of any

command in the Align menu, you can undo the operation by
choosing Undo from the Edit menu.

Connect the Net Components With Arcs
- Sdect Arc from the CPN menu.

- Draw the arcs shown:

Enter Order

ProductShipped

OrderEntered

[] Entered E out Product Out
Order
&
Process Order
OrderProcessed
Processed
Order

Order

Eln

Staff Equipment

Staff Pool Equip Pool
o O E o (0

Ship Product

Drawing a Bidirectional Arc

ThearcfromPr ocess Or der s toEqui p Pool isunusua inthat
itisbidirectional. Todraw it:

- Draw anordinary arcfromPr ocess Or der toEqui p
Pool :

14-18 Design/CPN Tutorial for X-Windows

Building a Model

ProductShipped

Product Out
E Out

Enter Order
Order
/' OrderEntered
A
Entered
Order
[e]
Process Order
OrderProcessed
Processed
Order
Staff Equipment

m.,o@ [o -

Equip Pool

Ship Product

- Leavearc creation mode.

The new arc isthe current graphical object.

- Sdect Shape A

ttributesfrom the Set menu.

The Shape Attributesdiaog for arcs appears.

Design/CPN Tutorial for X-Windows

14-19

Design/CPN Tutorial

Shape Attributes

Shape Attributes
Texrt Head
(< Change Current Object width || [4
[]Save as Defaults Height |1 8
Curpvature 15
Orientation Shape
1] 2]]]]
v 1] 1] [1]
Tl . [| [| [| [| [| [|
0 @ Segmented O Curve Top) Curve Side
(Reset) (Goncer)

- Under Orientation, click on the third option, the double-
headed arrow:

The option becomes selected:

Shape Attributes

Shape Attributes

Text Head
<] Change Current Object width |[H| (4
[]Save as Defaults Height |1 8
Curvature 15

Orientation Shape

[1] o 2]

[1]
v

0 @ Segmented O Curve Top O Curve Side

[Fleset] [Cancel]

14-20 Design/CPN Tutorial for X-Windows

Building a Model

- ClickOK.

Thearc between Pr ocess Or der and Equi p Pool isnow bidi-
rectional:

Enter Order

ProductShipped

Order
/' OrderEntered
A Product Out
Entered E Out
Order
[e]
Process Order
OrderProcessed
Processed
Order

Staff Equipment

[0 @ [o

Ship Product
Equip Pool

Adjusting Arc Appearance
The arcs as now drawn are functionally correct, but they would look
better, and provide more room for attaching arc inscriptions, if they
followed right-angled paths.
Two tricks are often helpful in adjusting arcs:

1. Tomakeahandleof an arc the center of astraight line, press
SPACEBAR while you are dragging the handle.

2. Tomake ahandlethe vertex of aright angle, drag the handle
until the “jaggies’ caused by the granularity of screen pixels
disappear from the arc segments adjacent to the vertex.

First adjust the arc leading from Or der | n toEnt er Or der:

- Selectthearc.

- Position the mouse pointer over the handle at the center of
the arc.

- Depress the mouse button.

Design/CPN Tutorial for X-Windows 14-21

Design/CPN Tutorial

- Makethearc exactly right-angled by eliminating the
“Jaggies’.

- Rdease the mouse button.

The arc is now right angled:

Enter Order

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order
Process Order
OrderProcessed
Processed
Order

Eln

Staff Equipment Ship Product
Equip Pool

m.,o@ [o -

Just for practice:

- Podition the mouse pointer over the adjustment point at the
center of the arc.

- Depress the mouse button.
- Press SPACEBAR.
Thearcisnow astraight line.
- Makethearc right-angled again.
- Adjust the other arcs as needed to make the net ook like this:

14-22 Design/CPN Tutorial for X-Windows

Building a Model

Enter Order

Order

ProductShipped

Eln

Staff

Staff Pool
&l o

t

OrderEntered
Entered E out Product Out
Order

Process Order

OrderProcessed

Processed
Order

Equipment

E lfe}

Ship Product
Equip Pool

Creating the Arc Inscriptions

Y ou can create a series of arc inscriptions just as you can create a
series of transition names. The technique can be used with al types
of CPN text region.

- Sdect thearc between Pr ocess Or der and Equi p Pool .

The fact that an arc is bidirectional makes no difference to the pro-
cess of giving it an inscription.

- Choose CPN Region from theCPN menu.

The editor enters arc inscription creation mode; the mouse pointer
becomes the region creation tool.

- Click the mouse to the | eft of the selected arc.
- Givethearctheinscriptionequi p.

The net now looks something like this:

Design/CPN Tutorial for X-Windows 14-23

Design/CPN Tutorial

Enter Order

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order
[e]
Process Order

equip

Order

OrderProcessed

Processed
Order
l Ship Product

Staff Equipment

IE o Staff Pool IE' o

Equip Pool

- Givethearc between St af f Pool and Ent er Or der the
inscription st af f .

- Givethearc between Or der | n and Ent er Or der thein-
scriptionor der .

- Givethearc between Ent er Or der and Ent er ed Or der
theinscription (or der, staff):

14-24 Design/CPN Tutorial for X-Windows

Building a Model

7] vo

Enter Order

(order, staff)

ProductShipped

staff

Staff
Staff Pool

OrderEntered
Product Out
Entered E Out -
Order
| Process Order

equip

OrderProcessed

Processed
Order
l Ship Product

Equipment

[r] vo

Equip Pool

- Leavearcinscription creation mode.

- Reposition the new arc inscriptions as needed.

Copying and Pasting Text Regions

All the other arc inscriptions that FirstModel uses are copies of in-
scriptions that already exist. When a net needs more than one copy
of the same region, you don't have to type them in individually.

Y ou can copy the region that already exists, and pasteit into as
many locations (of appropriate type) asyou like.

This technique works with all types of CPN text region. Let'suseit
now to clone some arc inscriptions.

- Select theinscription on the arc between Or der | n and
Ent er Order.

- Execute Copy (viathe File menu or akeystroke shortcut).
- Execute Paste (viathe File menu or akeystroke shortcut).
The editor pastes a copy of the inscription next to the original. This

location is only temporary. The mouse pointer becomes the pointer
tool, and the status bar displays. Select Arc for next arc inscription

region.

- Move the mouse over various arcs.

Design/CPN Tutorial for X-Windows 14-25

Design/CPN Tutorial

Whenever the mouse is over an arc, the arc is highlighted. 1f you
click the mouse while an arc is highlighted, the pasted inscription
will become the inscription of the arc, and will be moved to aloca
tion near it.

- Click the mouse on the arc between Shi p Pr oduct and
Pr oduct Qut.

The copied inscription moves, but not to an ideal location:

Enter Order
order

Order

(order, staff)

ProductShipped

Eln

staff

Staff

Staff Pool
7] vo

OrderEntered
Product Out
Entered E Out -
Order
| Process Order order

OrderProcessed

Processed
Order
l Ship Product

equip

Equipment

[r] vo

Equip Pool

The problem of where to paste a cloned region has no reliable algo-
rithmic solution. Therefore manual adjustment is sometimes neces-
sary, asinthis case:

- Movethe pasted arc inscription region to the correct position
for it:

14-26 Design/CPN Tutorial for X-Windows

Building a Model

Enter Order
order (order, staff)

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order
[e]
Process Order

staff

Order

OrderProcessed

Processed
Order
order
l Ship Product

equip

Staff Equipment

IE o Staff Pool IE' o

Equip Pool

- Usethe sametechniquesto clonetheinscription st af f onto
the arc between Shi p Pr oduct and St af f Pool :

Enter Order
order (order, staff)

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order
[e]
Process Order

staff

Order

OrderProcessed

Processed
Order
order
l Ship Product

J

staff

equip

Staff Equipment

IE o Staff Pool IE' o

Equip Pool

- Clonetheinscription (or der, st af f) ontoal thearcs
that useit:

Design/CPN Tutorial for X-Windows 14-27

Design/CPN Tutorial

Enter Order
order (order, staff)

ProductShipped

Order
OrderEntered
A Product Out
Entered E Out
Order
[e]

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order

(order, staff)

staff

equip order

Staff Equipment

IE o Staff Pool IE' o

Ship Product
Equip Pool

staff

Creating the Transition Guards
Thisisthe last thing we need to do in order to create the net:
- Sdect thetrangition Ent er Or der.
- Choose CPN Region from theCPN menu.
- Choose Guard.
Creating aguard is exactly like creating any other kind of region.

- GiveEnt er Or der theguard:

[if (order = Big)
then staff = Expert
el se staff = Novice]

14-28 Design/CPN Tutorial for X-Windows

Building a Model

order

7] vo

[if (order = Big)

then staff = Expert
else staff = Novice]

Enter Order

staff

Staff
Staff Pool

(order, staff)

OrderEntered
Product Out
Entered E Out -
Order

ProductShipped

Process Order

(order, staff)

(order, staff)
OrderProcessed

Processed
Order
order
l Ship Product

(order, staff)

equip

Equipment

[r] vo

Equip Pool

staff

Remain in guard creation mode and click on Pr ocess
Or der.

GiveProcess Or der theguard:

[if (order = Big)
then equi p = Fast
el se equip = Sl ow

Design/CPN Tutorial for X-Windows 14-29

Design/CPN Tutorial

[if (order = Big) [if (order = Big)
then staff = Expert then equip = Fast
else staff = Novice] .
else equip = Slow]

Enter Order
order (order, staff)

ProductShipped

OrderEntered
Product Out
Entered E Out -
Order

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order order
l Ship Product

(order, staff)

staff
equip

Staff Equipment

IE o Staff Pool IE' o

Equip Pool

staff

- Leave guard creation mode.

- Adjust the guards as needed.

Final Adjustments to the Net

Thefina appearance of the net should be about like this:

14-30 Design/CPN Tutorial for X-Windows

Building a Model

[if (order = Big)

[if (order = Big)

order

then staff = Expert then equip = Fast
else staff = Novice] else equip = Slow]
Enter Order

(order, staff)

ProductShipped

staff

Staff

Staff Pool
7] vo

OrderEntered
Product Out
Entered E Out -
Order

Process Order

(order, staff)

(order, staff)

OrderProcessed

Processed
Order
order
l Ship Product

(order, staff)

equip

Equipment

[r] vo

Equip Pool

staff

Adjust the net as needed so that it generally matchesthisfigure. Do
anything you like that improves the appearance of the net. Check all
the text regions for typographical errors.

Y ou are finished with the construction of FirstModd . . . almost.

Performing a Syntax Check

A model isn't finished until it is syntactically correct.
- Choose Syntax Check from theCPN menu.

If you have followed the directions in this chapter carefully, and
there are no typos in any text regions, there should be no errors. |If
any errors are found, track them down using the techniques de-
scribed in Chapter 9, then redo the syntax check. When no errors
remain:

- Save NewFirstModel in NewTTDiagrams.

It's OK to overwrite the existing version of NewFirstModel. We
will not need it further, and you can always recreate it from
SalesNet.

Design/CPN Tutorial for X-Windows 14-31

Chapter 15

Executing a
Simple Model

In this chapter you will execute FirstModel, the model that you built
in Chapter 14. If you experience any problems with the mechanics
of net execution, review Chapters 8 and 11 as needed. If you have
problems that lead you to believe that your net, though syntactically
correct, differs from what this chapter expectsit to be, compare it
with FirstModelDemo in Tutoria Diagrams, and correct any vari-
ances.

After executing the net in various ways, we'll look at some of topics
that relate to net execution generally: studying it, understanding it,
controlling it, debugging it, doing it faster, and saving the results of
it.

Executing the Net

- Open NewFirstModel in the NewTTDiagrams directory (if it
is not open already).

- Enter the smulator.

The net should ook like this:

Design/CPN Tutorial for X-Windows 15-1

Design/CPN Tutorial

[if (order = Big)
then staff = Expert
else staff = Novice]

Enter Order

order

staff

[if (order = Big)
then equip = Fast
else equip = Slow]

(order, staff)

ProductShipped

Product Out
E Out

OrderEntered
Entered
Order

(order, staff)

Process Order

(order, staff)

OrderProcessed
Processed
Order

(order, staff)

equip order

Equipment Ship Product

Equip Pool
@ 1Ese

staff

As always, marking regions need to be repositioned for best appear-

ance.

Reposition the marking regionsof Or der 1 n, St af f
Pool , and Equi p Pool asshown:

[if (order = Big) [if (order = Big)
then staff = Expert then equip = Fast
else staff = Novice] else equip = Slow]
Enter Order
order (order, staff)
order ProductShipped
” OrderEntered
Order In Product Out
A Entered E Out
@ Order
1'Big+
E In .
2'Small Process Order
(order, staff)
(order, staff)
OrderProcessed
Processed
staff : Order
equip order
Staff Equipment Ship Product
Staff Pool Equip Pool
@] vo 7] vo
N (order, staff)
2°Expert+ 1°Fast
2Novice]
staff

15-2

Design/CPN Tutorial for X-Windows

Executing a Model

We'll want to look at execution in detail, so:

- Choose I nteractive Simulation Optionsfrom the Set
menul.

- Set the breakpoints Beginning of Substep, End of
Substep, and Between Steps, and the update of graphics
During Substeps.

Previously when you executed a net, this tutorial showed the
changesin the net step by step. This practice was useful in describ-
ing exactly what the smulator does when it executes a net, but at
this point it would not provide any information you can't get by just
looking at the screen, so we will forgo reproducing every simulator
action in print. Exact reproduction is not possible anyway, because
the simulator makes random choices when conflict exists, so thereis
often no way to predict exactly what you will see.

- Choose I nteractive Run from the Sim menu.
Execution stops at Breakpoint 1.

- Move and reshape the input and output token regions as
needed to produce a good appearance.

More such regions will appear as tokens propagate through the net.
Adjust them as needed at each breakpoint.

- Continue execution until there are no more enabled transi-
tions.

Analysis of Execution

The things that happened as the net executed should not have pre-
sented any surprises. We have already looked at al the essentid
principles that govern CP net execution. These principles never
change: the same sorts of things therefore happen over and over
when CP nets execute.

Takealook at theplace Ent er ed Or der . It containstwo Smal |
tokens, even though net execution is compl ete.

Design/CPN Tutorial for X-Windows 15-3

Design/CPN Tutorial

order

Order

OrderEntered
Product Out
Entered N . E Out
C@r 2°(Small,Novice) G
E | A 1'Big
n
Process Order
(order, staff)
(order, staff)
OrderProcessed
Processed
staff .
equip order
Staff Equipment Ship Product
Staff Pool Equip Pool
L&l vo (el o i

[if (order = Big) [if (order = Big)
then staff = Expert then equip = Fast
else staff = Novice] else equip = Slow]

Enter Order

(order, staff)

ProductShipped

(order, staff)

2 Expert 1'Fast

staff

They have been |eft stranded because the guard on Pr ocess

Or der specifiesthat aSmal | job must use aSl ow piece of
equipment, and there are no SI ow pieces of equipment in Equi p
Pool : thereareonly asingle Fast pieces of equipment.
Consequently thereis no enabling binding possible for aSmal | to-
keninEnt er ed Or der, and the Smal | tokens could not be pro-
cessed.

Obvioudy a sales order department should be able to process al
types of order, so amodel of it should also. Let's change
FirsstModd so it can do that.

Subpages and Initial Markings

154

The way to provide more equipment isto change theinitial marking
on Equi p Pool . But that marking is not on the subpage
ProcOrds#3; it is on the superpage Sales#1. Why isit not defined
on the page whereit is actually used?

The reason isthat a CP net subpage is not restricted to being the de-
composition of a single substitution transition: it can be used repeat-
edly inanet. Each usage isindependent of all other usages. The ef-
fect issimilar to the use of subroutinesin a conventional program.
The same subroutine can be used in many different placesin apro-
gram, and each use is separate from all other uses. A subpage can
smilarly be used at many different placesin anet. See Appendix A
for details.

Design/CPN Tutorial for X-Windows

Executing a Model

It would obviously be undesirable to wire the values of the argu-
ments to a subroutine into the subroutine. Similarly it would be un-
desirable to wire theinitial markings of the ports on a subpage into
the subpage. The subpage then could be used only with those
markings, which would greatly restrict its usefulness.

- Open the superpage Sales#1.

- Sdect theinitial marking region of Equi p Pool . (You
can't enter text mode in the smulator unless you have se-

lected something editable.)
- Changetheinitial marking of Equi p Pool to1" Fast +
1" Sl ow.
Order ProductShipped
. Process Orders -
Order In 1" order 1" order Product Out
g
1'Big + HS| [ProcOrds#3 |
2°Small

1" staff 1 equip

1" staff
Staff Equipment
2 Expert + 1 Fast +
2 Novice 1‘SIOW
- Return to page ProcOrds#3.

- Leavetext mode. (You can't reswitch in text mode.)
- Choose Reswitch from the Sim menu.

The changed marking region is compiled into the executable code for
the diagram.

- Chooselnitial Statefrom theSim menu.

The state of the net isinitialized, and now reflects the change to the
marking region.

- Executethe net.

Thistime no tokens are | eft behind, because there is appropriate
equipment for any order.

Design/CPN Tutorial for X-Windows 15-5

Design/CPN Tutorial

Experimenting With FirstModel

So far we've just used FirstModel primarily to demonstrate CP net
techniques. Let'suseit to find out something about the system it
models. How would the sales order system respond if there were
more jobs than resources, so that the demand on the resourcesis
high, and the compositions of the two resource pools are not well
matched to each other? Specificaly:

- Open the superpage Salest1.

- ChangeOr der | n'sinitial marking regionto 10" Bi g +
10" Smal | .

- ChangesSt af f Pool 'sinitial marking region to
4" Expert + 2 Novi ce.

- ChangeEqui p Pool 'sinitial marking regionto 2* Fast +
4" Sl ow.

- Leavetext mode.

How to Do Experiments

15-6

Thereisno way for this tutoria to anticipate how much or how little
you will want to see of a particular experiment. In general you
should continue executing and/or re-executing until you see the gen-
era pattern of execution, and then cancel execution.

Y ou may find that you don't always want to examine the net at all of
the breakpoints that are set, or even at any of them. If theinstruc-
tions specifically say to set or clear some breakpoint, be sure to do
it, asthere will be some specific point to be observed. But when the
task isjust to execute a net and see what can be learned, you should
feel freeto set and clear breakpoints as needed to produce the level
of observability you want.

If you find that net execution has run away because you have no
breakpoints set, press ESC. When the current step is complete
(nothing will seem to happen until then) the simulator will offer you
achance to cancel execution.

With these comments in mind:

- Return to the subpage, execute Reswitch and I nitial
State, then execute the net.

Design/CPN Tutorial for X-Windows

Executing a Model

Analysis of Execution

Thisisthefirst time we have executed a model under heavy load.
Thereis not enough staff or equipment to process all the orders, so
orderswait inOr der | n for staff members, and inEnt er ed

Or der for equipment. Due to the overload, some of the orders
must wait through many steps before their turn comes, but eventu-
aly all get through.

The asymmetry in resource availability produces a corresponding
asymmetry in waiting behavior. Smal | jobstendtoremanin

Or der | n through more stepsthen Bi g jobs do, because there are
moreFast than Sl ow staff members, but Bi g jobstend to remain
inEnt er ed Or der through more stepsthan Smal | jobs do, be-
cause there are more Sl owthan Fast equipment pieces.

The heavy load, and the increased St af f and Equi pmment pools,
also made obvious the concurrency in FirstModel. During execution
there was usually concurrent activity of transitions both with them-
selves and with other transitions. Many things were happening in
paralel, with al the details handled automatically by the simulator.
All we had to do iswatch.

Complicating FirstModel

The behavior shown by FirstModel in the previous experiment con-
sisted of many operations, but its overall wasn't really that surpris-

ing. You could probably have predicted about what would happen

when you executed the model, and quite possibly you did.

Onereason that FirstModel is so easy to predict isthat the realms of
Fast and Sl owjobs have no effect on each other. From a model-
ing viewpoint, thereis really no need to have them both. Anything
learned by running FirstModel with some distribution of Bi g,
Expert,and Fast tokens, and another of Smal | , Novi ce, and
S| owtokens, could just as well have been learned by using only

Bi g, Expert,and Fast tokens, and running the model twice,
once with one distribution and once with the other.

Let's change FirstModel so that its behavior isn't so obvious. Let's
say that aBi g job must have an Expert staff member and aFast
piece of equipment, whileaSmal | job can have any available staff
member and any available piece of equipment. Thiswill causethe
two types of order to compete and interfere with each other in such a
way that system performance becomes a highly nonlinear function

of the exact compositions of the set of ordersto be processed and of
the staff and equipment pools.

Design/CPN Tutorial for X-Windows 15-7

Design/CPN Tutorial

Using a Guard to Create a Partial Constraint

Executing the Net

The simplest way to implement the new rulesisto change the guards
onEnt er Order andProcess Or der.

The guards we have used so far have been very simple. Their only
effect has been to predicate enablement on the existence of tokens
with fixed values or combinations of values. Thisisan extremely
common use of guards, but it barely scratches the surface of their
capabilities.

The definition of aguard isvery general. It isaboolean expression
that must evaluate to true in order for atransition to be enabled.
Nothing requires aguard to constrain tokens to fixed values.
Nothing requires aguard to constrain tokens at al! A guard can be
anything wewant it to be. If it evaluatesto true, the transition can
be enabled; if it evaluatesto fal se, the transition cannot be enabled.
Therestisup to us.

What we want now is aguard that will enforce a constraint in some
cases, and no constraint in others. Therequisite guard hasathen
clause that requires a particular binding, and an else clause that is
awaystrue irrespective of any binding. Specificaly:

ChangeEnt er Or der 'sguard to be:

[if (order = Big)
then staff = Expert
el se true]

ChangePr ocess Or der 'sguard to be:
[if (order = Big)
t hen equi p = Fast
el se true]

Leave text mode.

- ExecuteReswitch and I nitial State.

Would you care to predict how this net will execute? It isamost
impossible. It isalso unnecessary. The whole purpose of modeling
and simulation isto help usto dea with systems whose behavior
cannot be predicted by the unaided human mind, but can be com-
puted if the structure of the system can somehow be represented as
an executable mode.

- Executethe net.

15-8 Design/CPN Tutorial for X-Windows

Executing a Model

Analysis of Execution

What did you see when the net executed? How exactly did it per-
form? A lot of things went on, but what was the overall trend?

Thefact is, you probably aren't sure. Many things happened, but
there was no way to see what the overall pattern was. No doubt the
execution created much information about system behavior and per-
formance, but that information is not necessarily obvious from
watching the flow of tokens.

Observing theindividua eventsthat constitute the execution of a
model, as we have been doing, is not the best way to gather infor-
mation about behavior. It isuseful primarily for developing and de-
bugging anet. Let'slook at some of the tools that Design/CPN
provides to facilitate this process. Then we'll go the other way, and
look methods for deriving information from a model without
watching any tokens at all.

Controlling the Appearance of Concurrency

Onething that made it difficult to see what FirstMode doesisthe
fact that it does so many things at once. Concurrency, as Chapter
11 pointed out, is a distinguishing feature of Petri nets. But concur-
rency can get in the way when the need isfor avery detailed and lo-
calized view of exactly what anet isdoing. Thisisparticularly true
when anet is being debugged. When dozens of transitions are con-
currently enabled, each with dozens of enabling bindings, so much
can happen in one execution step that debugging is almost impossi-
ble.

Therefore Design/CPN provides away to control how concurrency
is presented to the observer. By setting some parameters, you can
control how much, or how little, is done in each step of the smula
tor's execution algorithm. Such control has no effect on the mean-
ing of the net: it has the same structural and behavioral properties no
matter how its execution is made to appear.

By controlling the appearance of concurrency you can in effect look
at net execution through amicroscope. Y ou can see each individual
microevent of net execution, without interference from other things
that are happening concurrently. Thisisexactly what is needed
when it isunclear exactly what a net does, and/or why it is not doing
what it is supposed to do.

The appearance of concurrency is controlled by tuning the algorithm
that Design/CPN uses to construct occurrence sets. Let's see how
thisworks, then useit to look at FirstModel's execution from vari-
0US perspectives.

Design/CPN Tutorial for X-Windows 15-9

Design/CPN Tutorial

Review of Occurrence Sets

In Chapter 11, we looked in detail at the smulator's execution al-
gorithm. Part of that agorithm is the construction of an occurrence
set. An occurrence set isalist of elements called binding elements,
each of which specifiesabinding for a particular transition.

The smulator changes the state of anet by executing the elementsin
an occurrence set. Executing a binding element consists of rebind-
ing the arc inscription variables of the transition that the element in-
dicatesto the valuesin the binding that the element indicates, and
then firing the transition.

By definition, the elementsin an occurrence set are not in conflict:
the trangition firings that the set indicates can al occur in the same
step without attempting to subtract more tokens from any input place
than currently exist in the place. That is, the firings can occur con-
currently.

Constructing an Occurrence Set

15-10

When it constructs an occurrence set, the smulator has many deci-
sionsto make. Even SalesNet, which has only one transition, pro-
vided the possibility of several different occurrence sets. When
there are many transitions with many bindings that conflict in many
ways, the number of possible occurrence sets may be very large.

There is no one best algorithm for constructing an occurrence set.
One algorithm might result in very fast execution, but obscure the
details of net execution by doing too many things at once. Another
might execute Slowly but illuminate every detail. A third might ac-
complish both these ends very well, and afourth very poorly. An
algorithm that gives the desired results with one net might be inef-
fective with another.

Therefore CP nets do not require that occurrence sets be constructed
in any particular way, or have any particular property other than the
nonexistence of conflict anong the constituent binding e ements. In
particular, nothing requires the smulator to construct the largest
possible occurrence set, or one of the largest possible. If we want
to look at very small increments in the behavior of amodel, we
might want very small occurrence sets.

The obvious question is: how can we be sure that changing the oc-
currence set algorithm will not change the meaning of the net itself?
How can we be sure that the behavior of amodel isinvariant of the
way in which occurrence sets are constructed? To answer this
guestion, we need a precise definition of concurrency.

Design/CPN Tutorial for X-Windows

Executing a Model

What Is Concurrency?

Informally, concurrent activities are those that happen “ at the same
time’. But what exactly doesthat mean? If we are to have auseful
modeling paradigm, it cannot mean “in the same instant,” because
no real activity isinstantaneous; there is always some duration. Nor
can it mean “ occurring during exactly the same interval,” because
rarely if ever could this property be guaranteed for different activities
at different physical locations.

CP nets define concurrency asfollows: A collection of activitiesis
concurrent if the result of their occurrence is unaffected by the pres-
ence or even the existence of any particular occurrence order. That
is, the defining property of concurrency is not that activities do
overlap in time, but only that they can. 1t makes no difference
whether they actually do or not, and if they do, it makes no differ-
ence just how they overlap. When al are complete, the result will
be the same regardless of all such details.

Asaresult of this definition, we have complete freedom to construct
occurrence setsin any way we like. We know that all the eventswe
might put into an occurrence set can happen concurrently, because
they are guaranteed not to be in conflict. Therefore, by the defini-
tion of concurrency, no ordering of events that results from this or
that choice of occurrence sets makes any difference, because the or-
dering does not matter at al.

Similarly it makes no difference whether we execute a set of concur-
rent events by creating a single occurrence set or severa of them. At
the extreme we could require that every occurrence set consist of just
one binding element, and it would make no difference: the effect
would be the same asif we concatenated binding elementsin al the
setsinto asingle set, and then executed that set; or into severa sets;
or in different ordersinto one or severa sets. It makes no difference
at dl to the outcome.

Occurrence Set Parameters

Most features of the smulator's execution agorithm are determined
by the rules of CP net dynamics (Chapter 7), and so cannot be
changed. But the agorithm by which the simulator constructs oc-
currence sets can be anything that is useful, as we have seen. Since
different algorithms are better with different nets and for different
purposes, Design/CPN allows you to specify various features of the
algorithm that the simulator uses. Thisis done by setting parameters
called occurrence set parameters.

The occurrence set parameters specified in the diagram
NewFirstModel tell Design/CPN to create occurrence sets that are as
large as possible. That iswhy so much happens at once when

Design/CPN Tutorial for X-Windows 15-11

Design/CPN Tutorial

FirstModel executes. Let'stake alook at these parameters, and see
what each of them means.

- Choose Occurrence Set Optionsfrom the Set menu.

TheOccurrence Set Optionsdiaog appears.

Occ S5et Options

One MaH
0% 0%
Pages [o] 100%
Page Instances [Jf [c 100%
Transitions [Qf |{ 100%
Different Bindings [QJf] 100%
Identical Bindings [Jf] 100%
Method S5eed
o Random
[Fair Bindings Draws @
[] Fair Time Stamps 1 OIffne
[Sﬂue...] [Load] [Reset] [Eancel]

Under X-Windows, the dider bars shown in the above figure are
replaced by edit boxes, but the dialog is otherwise similar.

The settings for Pages and Page | nstances apply only when
there are enabled transitions on more than one page. The model you
are now working with has only one page with enabled transitions,
so we can ignore these parameters for the present and consider only
the settingsfor Transitions, Different Bindings, and
Identical Bindings.

15-12 Design/CPN Tutorial for X-Windows

Executing a Model

Transitions

The setting for Transitions determines how the s mulator will
construct occurrence sets when more than one transition is simulta-
neously enabled on a page.

When the setting is 100%, all enabled transitions will be represented
in the set, subject to the restriction that no occurrence set will be
constructed that contains conflicting binding elements.

Settings between 1% and 99% define the probability that a particular
enabled transition will be represented in the occurrence set. For ex-
ample, at a setting of 50%, each candidate transition has a 50%
chance of being represented. Note that setting a value of 50% does
not mean that 50% of the candidates will be represented: more or
less might be, depending on chance and the requirement to avoid
conflicting binding elementsin a set.

There would be no purpose in constructing an empty occurrence set.
Therefore at least one transition will be represented in the set no
matter what the outcome of any random choices. When the setting
is 0%, exactly one enabled transition will be represented in the set.

Different Bindings

The setting for Differ ent Bindings determines how the simulator
will construct occurrence sets when a given transition is enabled
with two or more nonidentical bindings.

When the setting is 100%, all enabling bindings will be represented
in the set, subject to the restriction that no occurrence set will be
constructed that contains conflicting binding elements.

Settings between 1% and 99% define the probability that a particular
binding will be represented in the occurrence set.

Subject to the restriction on conflicting binding elements, at least one
binding will be represented in the set no matter what the outcome of
any random choices. When the setting is 0%, exactly one of the
bindings will be represented.

Identical Bindings

The setting for I dentical Bindings determines how the ssimulator
will construct occurrence sets when atransition is enabled with two
or more bindingsthat are identical, i.e. consist of the exactly the
same values.

Subject to the restriction on conflicting binding e ements: when the
setting is 100%, all the bindings will be represented in the occur-

Design/CPN Tutorial for X-Windows 15-13

Design/CPN Tutorial

rence set; when it is 0%, exactly one will be; and intermediate set-
tings give proportionate intermediate results.

Scope of Occurrence Set Parameters

Each of the five parameter settings works within the bounds estab-
lished by those higher inthelist. Thus Transitions determines
how many enabled transitions (if there is more than one) will be rep-
resented in an occurrence set; Differ ent Bindings determines
how many different bindings (if there is more than one) will bein-
cluded for each represented trangition; and | dentical Bindings
determines how many copies (if there is more than one) will bein-
cluded for each represented binding.

Setting Occurrence Set Parameters

To set any of the occurrence set parameters, edit the number in the
box to the right of the name of the particular parameter. Thevaue
must be between 0 and 100.

- Modify some parameters by editing their values.

- When you are done, restore all of the settings to 100%

Experimenting With Net Execution

15-14

Y ou now have the information you need in order to execute
FirstModel with different settings for the occurrence set parameters.
Let's start with an extreme case:

- Set Transitions, Different Bindingsand | dentical
Bindingsto 0%

- Executethe net.

The simulator now fires just one transition with one binding in each
step, because the current occurrence set parameters specify one-ele-
ment occurrence sets. This does NOT mean that things that previ-
ously happened concurrently now happen sequentially. The Situa-
tion with respect to concurrency, as defined above, has not changed
a al. We have enforced an order on net execution by specifying
very small occurrence sets, but since order isirrelevant to concurrent
activities, the imposition changes nothing fundamental: it isonly a
change of appearance.

- Perform additional experiments, using various settings for
the occurrence set parameters, until you feel thoroughly at
home with setting and using them.

Design/CPN Tutorial for X-Windows

Executing a Model

Nothing you can do with occurrence set parameters makes any fun-
damental difference. But an appropriate choice of parameters can be
very useful in studying and debugging anet. Deciding what pa-
rameter choiceswill probably produce an interesting and useful view
of net execution is part of the art of modeling.

- ChangeFirstModd's initial markings to something you think
will give very different results.

- Execute the net with the parameters set to 100%, and then at
other settings that you think will help to revea the details of
what it is doing.

- Leavethe parameters set at 100%

Faster Model Execution

Interactive Mode

The emphasisin this tutorial so far has been on creating nets and
watching every detail of their execution. There have been two rea-
sons for this emphasis:

1. Itisappropriate for beginning the process of learning how to
model and simulate.

2. A model isnot useful until it has been developed and ob-
served enough to justify some confidence that it correctly re-
flects the relevant parts of the modeled system.

Once amode has been judged to accurately reflect its system, em-
phasis generally shifts from watching the details of its execution to
evaluating the overall performance of the system. Such evaluation
typicaly requires amodel to process agreat deal of data. Thisre-
guirement makes it desirable for the model to run asfast as possible.

Of course, such performance evaluation often reveals information
not otherwise derivable that motivates additional changesto the
model; modeling is at every stage an iterative process, and one can
never be sure that the last iteration has been accomplished.

In order to facilitate model development and observation while pro-
viding a capability for very fast execution, the smulator provides
two execution environments: interactive mode and automatic mode.

The execution mode you have been using so far is called Interactive
mode. The purpose of thismode isto facilitate interactive observa
tion and control of an executing net.

Design/CPN Tutorial for X-Windows 15-15

Design/CPN Tutorial

Automatic Mode

In interactive mode the s mulator maintains, manipulates, and dis-
plays much information that is not necessary for net execution, and
exists only to provide an interface to humans. Interactive modeis
designed for use with techniques like setting breakpoints and tuning
occurrence set parameters, which can provide avery detailed view
of individua events.

The overhead of providing an interactive interface to net execution
resultsin an execution speed that isfar too ow to allow efficient
evaluation of amodel's performance during prolonged execution.
Therefore the smulator provides a very fast execution mode called
automatic mode. This mode is optimized for speed rather than for
the observation of individual execution events. During execution in
automatic mode, changes to a net's state are not displayed on the
screen.

Automatic mode is intended for use with techniques such as graphi-
cal animation or the statistical variables and charts facility, which
provide ahigh-level view of model performance but ignore individ-
ual details.

Fair and Fast Execution

There are actually two kinds of automatic mode: fair automatic and
fast automatic. Infair automatic mode, al possible enabling bind-
ings are equally likely to be used. In fast automatic mode, possible
enabling bindings are used in the order in which the smulator dis-
covers them.

The tradeoff between fair and fast exists because insuring the fair
selection of bindings requires additional processing, which slows
down execution, while fast selection can result in very skewed net
executions: some bindings may be used over and over, while others
are never used. Such execution isnot formally incorrect, but it may
not represent what would happen in the system that the net repre-
sents.

Interactive execution isalwaysfair. A fast interactive mode could
exist, but it would serve no purpose: interactive mode slows execu-
tion so much that the additiona overhead of insuring fair behavior is
imperceptible.

Selecting the Execution Mode

Some netswill be executed only interactively, and others only auto-
matically; some will be executed both ways at different stages of

15-16 Design/CPN Tutorial for X-Windows

Executing a Model

their development. Of those that are executed automatically, some
will executed only in fair mode, others only in fast mode, and some
will be executed both ways as they develop.

Design/CPN could compile every net to permit every type of execu-
tion, but thiswould result in the generation of much unnecessary
code for a net that will be executed in only oneway. The generation
of this code would needlessly slow down the process of switching
the net into the simulator.

Therefore, Design/CPN allows you to specify anet’s intended exe-
cution mode(s) before you enter the smulator. This specification
can be changed in the smulator, but the net will then have to be
reswitched. When more than one execution mode will be needed,
Design/CPN allows you to specify the desired possibilities, then
choose among them on a per-run basis.

Specifying Possible Execution Modes

To specify possible execution modes, use the Simulation Code
Options command.

- Choose Simulation Code Optionsfrom theSet menu:

Simulation Code Options =

__ Mode
i Fair Simulation (Interactire and Automatic)
. Fast Simulation (Automatic)

i1 Both

— Time
o With @ Integer B
1 Without 1 Real b.8
i Both

— Code Segments
@ With

o Without

i_) Both

[Saue...] [Load] [Fleset] [Eancel]

Design/CPN Tutorial for X-Windows 15-17

Design/CPN Tutorial

The optionsin the M ode section control the possible execution
modes. Fair Simulation providesfor either interactive smulation
(whichisawaysfair), or fair automatic smulation. Fast
Simulation providesfor fast automatic smulation only. Both
makes all three simulation modes available.

AstheM ode section of the dialog shows, the net was compiled to
provide a choice of interactive or fast automatic simulation when you
took it into the simulator. There is no need to change this option
now, so:

- ClickCancel.

Specifying the Actual Execution Mode

To specify the execution mode that will actually be used, use the
General Simulation Optionscommand.

- Choose General Simulation Optionsfrom theSet
menu:

General Simulation Options §—|

—_ Simulate With %top Criteria

1 Fair Automatic @ Mo Limit

o Fast fintamaii [] Additional $teps _

@ Fair Interactive (] Until Step Number Is a

(<] Time] Additional Time g

(<] Code Segments] Until Time Is a8
 Record] Until Time Advances

1 Mone

(<] Step Information

(] Bindings

[Saue...] [Lnad] [Heset] [[:am:el]

The Simulate With section determines which of the possible exe-
cution modes will actually be used when the net executes. Modes
that are not possible, because the Simulation Code Options set-
tings do not allow for them, are grayed out, as Fast Automatic
currently is.

15-18 Design/CPN Tutorial for X-Windows

Executing a Model

The currently selected option isFair Interactive, whichiswhy all
net execution so far has been interactive. Let’s change thisto spec-
ify fair automatic execution.

- Sdect Fair AutomaticintheSimulate With section of
the dialog.

Leave the dialog open for use in the next section.

Specifying Stop Criteria

When you use interactive mode, you can set breakpoints to stop net
execution. If no breakpoints are set, anet will run until there are no
more enabled transitions. Some nets never run out of enabled tran-

sitions. Unless something stops them, they will run indefinitely.

Breakpoints provide only the simplest control over interactive exe-
cution, and have no effect during automatic execution. A more gen-
eral method is therefore needed for stopping net execution. The
Stop Criteriasection of the General Simulation Optionsdia
log provides this capability. Stop Criteria options apply during
both interactive and automatic execution. They may be changed
whenever anet is not executing.

The currently selected optionisNo L imit, meaning that a net will
execute until it reaches a breakpoint in interactive mode, or runs out
of enabled transitions (which may never happen) in any mode.
Let’s set the net to stop executing when Step 50 is compl ete.

- SdecttheUntil Step Number Isoption.

- Edit the number to the left of the option to be 50.

The dialog should now look like this:

Design/CPN Tutorial for X-Windows 15-19

Design/CPN Tutorial

General Simulation Options = |

__ Simulate With %top Criteria
i Fair Automatic {3 Mo Limit
o Fast futomall (] Additional $teps)
) Fair Interactive (<] Until Step Number Is o8
B Time] Additional Time a
(] Code Segments C1Until Time Is B
 Record] Until Time Advances
3y None
(<] Step Information
(<] Bindings

[Saue...] [Lnad] [Heset] [[:am:el]

- ClickOK.

Automatic Net Execution

15-20

Let’ s give automatic net execution atry. First let's provide plenty
for the net to do.

- ChangeOr der | n'sinitiadd markingto 100" Bi g +
100" Smal | .

- ChangesSt af f Pool 'smarkingto 10" Expert +
5 Novi ce.

- ChangeEqui pment Pool 'sinitial markingto 10" Fast +
5" Sl ow.

- Leavetext mode execute Reswitch and I nitial State.
The net is now ready to execute:
- Choose Automatic Run from the Sim menu.

After only a second or two, adialog appears.

Design/CPN Tutorial for X-Windows

Executing a Model

0 One of the set stop criteria is
satisfied

- ClickOK.

The simulator updates the appearance of the net to indicate its new
state. The status bar shows that execution is stopped at Step 50.
The 50 steps took much less time than even asingle step in interac-
tive mode. In fast automatic mode, execution would have been even
faster.

Alternating Execution Modes

Y ou can dternate interactive and automatic execution fregly: each
will begin where the other left off.

- Choose General Simulation Optionsfrom theSet
menu.

- Specify Fair Interactive simulation.

- Choose I nteractive Run from the Sim menu.
TheStop Criteria Satisfied dialog appearsimmediately. The
status bar shows that you are still at Step 50. Execution cannot pro-
ceed, because the stop criteriaUntil Step Number is 50istill
in effect.

- UsetheGeneral Simulation Optionscommand to spec-
ify aStop Criteriaof Until Step Number is52.

- Choose I nteractive Run from the Sim menu.
Execution proceeds interactively through the usual breakpoints.
When Step 52 is complete, a breakpoint will be reached and a stop
criterion satisfied at the same time. What will happen?

- Experiment with execution modes and stop criteria until you
feel comfortable with them.

Design/CPN Tutorial for X-Windows 15-21

Design/CPN Tutorial

Be careful what stop criteria you specify for automatic execution,
because there is no way to interrupt such execution onceit is under-
way. Inorder to be interruptible, automatic mode would have to re-
peatedly check for an interrupt request. Thiswould slow execution
down, which would be inconsi stent with the purpose of automatic
execution.

Saving and Loading Execution States

Saving a State

After acomplex net has been executed for along time, its state rep-
resents a considerable investment of time: if that state were lost, the
information contained in it could be recovered only by repeating the
whol e execution process.

When adiagram is saved with an ordinary Save command, al state
information islost: if it isreopened, the net will revert to itsinitial
state on entry to the smulator.

Y ou can aso save anet along with its current state. A diagram that
contains a net saved in a particular stateis called a saved state dia-
gram, or for brevity, a saved state. When a saved state is reopened,
the net is still in the state it was in when it was saved, and execution
can continue from that point asif there had been no interruption.

Y ou can create a saved state whenever you are in the simulator and
execution is stopped between steps.

- Choose Save State from theFile menu.

TheSave Asdiaog appears. If thereisaready a saved copy of the
net, you can overwrite it, or you can create a new copy by giving a
different name. In either case the net will be saved along with its
current state.

- Savethenet in NewTTDiagrams under a name other than the
original.

Loading a Saved State

Loading asaved state is no different from opening a diagram gen-
eraly, except that it is done from within the ssimulator.

- Executethe net alittle more, in interactive or automatic
mode.

- Choose L oad Statefrom theFile menu.

15-22 Design/CPN Tutorial for X-Windows

Executing a Model

The Save State dialog appears:

Save State =——m———|

Do you want to save the changes to
the current state?

[Eancel][Mo]

If you clicked Y es, the Save A sdiaog would appear; you could
then save the net's current state, just asif you had explicitly chosen
Save StatefromtheFile menu. Thereisno reason to do this
now, so:

- ClickNo.

The Save State diaog disappears. The Open Filediaog ap-
pears.

- Open the diagram you just created that contains the saved
state.

The diagram opens. It isin the same state that it was in when you
saved it.

Starting With a Saved State

Y ou don't have to aready be in the smulator and use L oad State
in order to make use of asaved state. You can use L oad State
from the editor, open a saved state from the editor, or you can start
Design/CPN by opening the saved state, as you could with any or-
dinary diagram.

- Leavethesmulator.

- Closethe diagram containing the saved state.

- Openthediagram again.
If you took a saved state into the editor, and then into the simulator,
the state would be destroyed and the net'sinitial state established.

To protect against this, Design/CPN displays a dialog when you
open a saved state rather than loading it:

Design/CPN Tutorial for X-Windows 15-23

Design/CPN Tutorial

Saving the Net

Switch to Simulator =S

The diagram is in a saved simulation
state. Do you want to enter the
Simulator?

If you clicked N o, you would remain in the editor, and the saved
state diagram would remain unopened.

- ClickYes.

The saved state diagram opensin the simulator. Everything isjust
asit would have been if you had already been in the ssimulator and
had |oaded the saved state with L oad State.

Now let's save FirstModel to have the appearance, properties, and
initial markings we'll need in the next chapter.

- Enter the editor.

All the simulation regions are till visible, for the reasons mentioned
in Chapter 8. It will be convenient not to haveto look at them while
editing the net in the next chapter, but if you destroyed them with
Remove Sim Regions (in theCPN menu) you would have to
reposition them again next time you executed the net. The answer is
to hide them.

- Select agroup that consists of al visible marking key re-
gions (the numbersin little circles).

- Choose Hide Regionsfrom theM akeup menu.

The key regions and associated popups disappear. They till exist
internally, and will reappear in the positions you moved them to,
next time you execute the net.

Y ou can't select atransition feedback region, so you can't hide such
regions this way, but they represent no investment anyway, so if
any arevisible:

15-24 Design/CPN Tutorial for X-Windows

Executing a Model

- Choose Remove Sim RegionsfromtheCPN menu.
- Click options so that only Feedback Regionsisselected:
- ClickOK.

All transition feedback regions disappear. They will be back when
they are needed.

- Set the occurrence set options so that Transitions,
Different Bindings, and I dentical Bindingsareal at
100%.

- Set dl breakpoints and token displays.

- SetOrder I n'sinitial marking regionto 10" Bi g +
10" Smal | .

- SetStaff Pool 'sinitial marking regionto 4™ Expert +
2" Novi ce.

- SetEqui p Pool 'sinitial marking regionto 2° Fast +
4" Sl ow

Thisnet will be the basisfor all future work you do in thistutorial.

- Savethenet in NewTTDiagrams under the name
NewFmodTimed

Design/CPN Tutorial for X-Windows 15-25

Chapter 16

Simulated Time

In the last three chapter, you studied, built and executed a model
caled FirstModd. Thismodel consists of a superpage containing an
overview of asales order system, a subpage containing a decom-
position of that overview, and (as aways) aglobal declaration node.

FirstMode givesafairly redlistic, though still quite high-level, view
of asimple Sales Order System, except for one thing: it contains no
representation of time. Thisresultsin many anomalies, some of
which you may have noticed already.

This chapter shows you how to represent and manage timein a CP
net, and how to use this understanding to create a version of
FirstModel that takes account of the fact that no activity happensin-
stantaneously.

The Untimed Version of FirstModel

- Open the diagram NewFmodTimed that you saved in the
NewTTDiagrams directory while going through Chapter 15
(if it isnot already open).

Be sure the net has the appearance, properties, and initia markings
specified for it at the end of Chapter 15, or the instructionsin this
chapter may not have the effects described for them.

We don't need to be concerned with the hierarchy page or the super-

pagein this chapter. The subpage and global declaration node ook
likethis:

Design/CPN Tutorial for X-Windows 16-1

Design/CPN Tutorial

[if (order = Big)

[if (order = Big)

then staff = Expert then equip = Fast

else true]

else true]

Enter Order
order

(order, staff)

ProductShipped

Order OrderEntered
4 Entered E Out
Order
[e]in
Process Order
(order, staff)
(order, staff)
OrderProcessed
staff order
. Order
equip
Staff Equipment | Ship Product
E 170 Staff Pool E /0 Equip Pool
(order, staff)
staff

color Oder =with Big | Smll; (* Oders for products *)

col or Product Shi pped = Order; (* O ders shipped *)

color Staff = with Expert | Novice; (* Staff menbers *)

col or Equiprent = with Fast | S ow (* Pieces of equipnent *)

color OderEntered = product Order * Staff; (* Oders entered but unprocessed *)
col or OderProcessed = O der Ent er ed; (* Oders processed but unshi pped *)

var order: Oder;
var staff: Staff;
var equi p: Equi prent ;

(* An order *)
(* Astaff nenber *)
(* A piece of equipnent *)

The Nature of Simulated Time

In order to understand how time is represented in a CP net, we must
first distinguish clearly between real time and smulated time. Real
timeisjust that: timein the real physical world in which the smula-
tor executes amodel and we can watch what happens. Smulated
timeisjust asymbolic representation of time that we may optionally
build into amodel. It has no reality outside the symbolic world of
the model that containsit.

Real time and smulated time have no intrinsic relationship whatso-
ever. Wemay or may not build a symbolic representation of time
into amodel. If we do not, the sequence of states that an executing
model passes through has no temporal interpretation: it isjust ase-
guence of states.

16-2 Design/CPN Tutorial for X-Windows

Simulated Time

Thismay seem strange. The state of an executing model evolves
over time; we can watch it do so. How could a model's state change
without aflow of time? The answer isthat it cannot change without
real time in which to execute, but it can change without reference to
simulated time, because simulated timeisjust asymbol. It isnoth-
ing but what we defineit to be, and if we do not defineit at all, it
does not exist.

It is easy but incorrect to equate the occurrence of a sequence of
events within amodel with the passage of time in the system that the
model represents. Theillusion arises because model execution oc-
curs sequentially over real timein therea world. But you must re-
sist thisillusion in order to understand simulated time. It is nothing
but a symbol that means what we define it to be

Non-Representation of Time in FirstModel

Our approach to FirstMode up until now hasintentionally glossed
over any consideration of time. We have spoken of orders
“waiting” in Or der | n for astaff member to become availablein
St af f Pool ,andin Ent er ed Or der for equipment to become
avallablein Equi p Pool , but the relationship (if any) of such
waiting to the passage of time has not been addressed.

Thewaiting of ordersfor staff members has a reasonabl e appearance
toit. Anorder may existin Or der I n, but if al appropriate staff
members are busy with other orders, the order waitsin Or der | n
until Shi p Pr oduct returns an appropriate staff member to

St af f Pool .

But the waiting of orders for equipment is obviously problematical.
Chapter 13 claimed that when an order existsin Ent er ed Or der,
but all appropriate equipment pieces are busy with other orders, the
order waitsinEnt er ed Or der until Pr ocess Or der returnsan
appropriate equipment pieceto Equi p Pool . You may have won-
dered about this statement, because equipment pieces are never
“busy with other orders.” They arereturned to Equi p Pool inthe
same step that removes them.

Since no events intervene between the allocation of equipment and
its return, equipment is being used instantaneoudly: it is used, but it
isnever in use. Equipment that exists but is never in useis, by
definition, always available. So what are ordersthat remainin

Ent er ed Or der waiting for? They are waiting for the net reach a
state such that there is an enabling binding for Pr ocess Or der so
that the transition can fire and process one or more orders.

There cannot be more such bindings in any one step than there are

tokensinEqui p Pool , so when there are more orders than pieces
of equipment, the additional orders must wait for subsequent steps.

Design/CPN Tutorial for X-Windows 16-3

Design/CPN Tutorial

But this stretching-out of order processing into a sequence of execu-
tion steps has no temporal implication within FirstModel, because
we have not included in the model any representation of time.

Thus the unrealistic way in which orders and equipment interact is
actualy an artifact of the way we have constructed the model. We
have represented activities that make sense only when thereisadi-
mension of time, but have failed to provide the dimension. It isnot
even correct to say that equipment usage is “instantaneous,” because
thereis no simulated time and hence there are no simulated instants.
There isonly a sequence of states.

Actually the temporal unrealism of FirsModel isworse than it
seems. The “reasonable appearance” of the waiting of ordersin

Or der I n for staff membersisan illusion, caused by the fact that
events do occur between the removal of a staff member from the
staff pool and the subsequent return of that member. But these
events have no temporal significance, so they provide no more tem-
poral realism to the waiting of orders for staff than exists for the
waiting of orders for equipment.

Duration and Causality

The preceding arguments make it clear that the sequence of states
that FirstModel goes through asit executes does not represent atime
dimension, or reflect any structuring of events due to considerations
of time. But the sequence of states must represent something. What
doesit represent?

The answer is: it represents the causal relationships that are defined
by the structure of the model. These exist independently of the
presence or absence of smulated time. The structure of FirstModel
defines exactly what must be true in order for each possible event to
occur. We can see these causal relationships by examining the net's
structure, and observe their effects by watching the net execute.

Without an underlying structure of cause and effect there could be
no events that might take time. Given such a structure, time can be
expressed interms of it. Let's see how that isdonein a CP net.

Representing Time in a CP Net

16-4

In order to take time into account, we need away to represent and
manipulate time within amodel. A surprisingly simple methodol ogy
provides everything we need in order to represent time in a CP net:

1. A token may have an associated number, called atime

stamp. Such atokenis called atimed token, and its colorset
isatimed colorset.

Design/CPN Tutorial for X-Windows

Simulated Time

2. The smulator contains a counter called the clock. The clock
isjust anumber (integer or real) whose current valueisthe
current time.

3. A timed token is not available for any purpose whatever un-
lessthe clock timeis greater than or equal to the token'stime
stamp.

4. When there are no enabled transitions, but there would be if
the clock had a greater value, the smulator increments the
clock by the minimum amount necessary to enable at least
one transition.

That's al we need to create a dimension of simulated time that has
exactly the properties that we need. Let'slook more exactly at how
these rules work to provide ssimulated time.

How Simulated Time Works

Simulated time has nothing to do with the external time during
which the simulator steps through net execution and observers pos-
sibly watch the execution process, or with the numbered sequence
of steps by which the smulator executesanet. Simulated timeis
just an incrementable number that is globally available within an ex-
ecuting model. The value of this number can be thought of asthe
timeindicated by asimulated clock. When the number isincre-
mented, the clock moves forward to alater time.

The units of simulated time do not inherently represent any particular
absolute time unit. We may interpret smulated time units as mi-
croseconds or millennia, depending on what we are modeling, but
syntactically timeisjust anumber. For brevity, smulated timeis
sometimes referred to as model time

Simulated Time and Transition Enablement

The state of anet changes only when enabled transitionsfire. In or-
der for smulated time to affect on net execution, it must therefore af-
fect transition enablement and firing.

This effect is produced by the rule that atimed token is unavailable
for any purpose unless the clock is greater than or equal to the to-
ken'stime stamp. Such atoken isignored when transitions are
checked for enablement: it might aswell not be there at all.

In effect, atimed token does not exist until the clock reaches a cer-

tain time, given by the token's time stamp. When the clock reaches
that time, the token suddenly springsinto existence, becomes a fac-

Design/CPN Tutorial for X-Windows 16-5

Design/CPN Tutorial

tor in determining enablement, and can be subtracted by transition
firing.

The Simulated Clock

Simulated time could tick forward continually, as real time does, but
that would be a very inefficient way to do things: the clock would
frequently waste real time counting off intervals of smulated time
during which the model remains unchanged. Such counting would
accomplish nothing. Itismore efficient in such acase to jump the
simulated clock immediately to the next time when some changeis
possible, and proceed with executing the net.

Therefore the smulated clock does not move at a steady rate.
Instead, it remains at its current value aslong asthere are any en-
abled transitions. When there are no enabled transitions | eft the
clock jumps forward by the smallest amount necessary for at least
one transition to become enabled. Thisimpliesthat time will never
move forward in a net that always has enabled transitions indepen-
dently of time.

Simulated time passes when and only when the clock isincre-
mented. Everything that happens while the clock remains at a par-
ticular setting is both simultaneous and instantaneous in simulated
time.

Thisis convenient when a system contains an event that happens at a
particular moment, but that is sufficiently complex that modeling it
by firing a sequence of simple transitions, rather than one complex
trangitions, is most convenient. Leaving the clock unincremented
during such a sequence lets us model the event as a manageable se-
ries of small changes, while preserving the instantaneity of the
event's effect on the state of the model.

Other Uses for Simulated Time

16-6

Simulated time is just a mechanism that follows certain rules.
Nothing requires this mechanism to be used only for the purpose of
simulating the passage of time. It can be used in any way that is
useful.

A net that will use the charting facility to display information about
net execution will probably need to initialize one or more statistical
variables at the start of execution. Y ou can accomplish thisby using
timing, but it is much more convenient to usethei ni t section of a
chart’ s code segment, as described in The Design/CPN Reference
Manual .

Design/CPN Tutorial for X-Windows

Simulated Time

Specifying Timed Simulation

Not all nets need to usetiming. To avoid adding overhead to such
nets, a net that will use timing must declare the fact explicitly speci-
fying the generation of timed codein Simulation Code Options
didog in the Set menu, and by specifying simulation with timein
theGeneration Simulation Optionsdiaoginthe Set menu.

Declaring a Timed Colorset

To declare atimed colorset, declareit as you ordinarily would, and
append the keyword t i med to the declaration.

When a colorset is timed, duplicate colorsets and composite col-
orsetsthat include it are timed also, and therefore do not need be
explicitly declared t i med.

- EditFrstMode's global declaration node to declare the col-
orsetsOr der, St af f, and Equi pnent to betimed:

col or Order

= with Big |

Smal | ti med; (* Orders for products *)

col or Product Shi pped = O der;
color Staff = with Expert |
col or Equipment = with Fast |

color OderEntered = product Order * Staff;
col or O derProcessed = O der Ent er ed;

Novi ce ti med;
Sl ow ti med;

(* Orders shipped *)
(* Staff nmenbers *)
(* Pieces of equipnment *)

(* Oders entered but unprocessed *)
(* Oders processed but unshi pped *)

var order: Qder;
var staff: Staff;
var equi p: Equi prrent ;

(* An order *)
(* A staff nenber *)
(* A piece of equiprent *)

Pr oduct Shi pped, Or der Ent er ed, and Or der Processed
inherit the timed attribute, so all colorsets are now timed.

Giving a Token a Time Stamp

Tokens get time stamps via expressions called delay expressions A
delay expression has the form:

@ expression

where“@" appearsliterally, and expr essi on isan arithmetic ex-
pression.

A delay expression defines atime equa to the current ssimulated time
(symbolized by the @ sign) plus (+) the value of theexpr essi on.

Design/CPN Tutorial for X-Windows 16-7

Design/CPN Tutorial

This value becomes the time stamp of any tokens created under the
aegis of the delay expression.

There are two ways to use a delay expression to provide time stamps

for tokens: by putting it in atime region, and by appending it to an
output arc inscription.

Delay Expressions in Time Regions

A timeregion is aregion associated with atransition. Theregion
contains adelay expression. Every output token of atimed colorset
that is created by the transition will have atime stamp as designated
by the delay expression. Output tokens of non-timed colorsets will
be handled just asif there was no timeregion. For example:

ProductShipped

A

OrderProcessed

Processed
Order
order

1°(Big,Expert)

Staff
Staff Pool Ship Product
(order, staff) @+5
staff

All tokensthat Shi p Pr oduct addstoPr oduct Qut or St af f
Pool will have atime stamp equal to the model time when the to-
kens were created plus 5. They will therefore be effectively nonex-
istent until the clock has been incremented by at least 5. This might
represent a situation in which shipping a product takes 5 minutes,
after which the staff member is again available to process orders.

Delay Expressions on Output Arc Inscriptions

When atimeregion is used, al output tokens of timed col orsets nec-
essarily get the same time stamp. It is often convenient to give dif-
ferent time stampsto the tokens in different output places. Thiscan

16-8 Design/CPN Tutorial for X-Windows

Simulated Time

be accomplished by appending delay expressionsto individual out-
put arc inscriptions. For example:

ProductShipped

on (0

order @+5

OrderProcessed

Processed
Order
Staff
Staff Pool Ship Product

(order, staff)

J

staff @+10

All tokensthat Shi p Pr oduct addstoPr oduct Qut will havea
time stamp equal to the model time when the tokens were created
plus5, and al tokensthat it addsto St af f Pool will haveatime
stamp equal to the model time plus 10.

This might represent a situation in which shipping a product takes 5
minutes, after which the staff member takes a5 minute break. The
product is thus available for further processing after 5 minutes, but
the staff member is not available to process another order for 10
minutes. (Since no logic is shown that uses the tokensin Pr oduct
Qut , thelr time stamp would make no actual difference, but such
logic could easily exist.)

Omitting a Time Stamp

The fact that a colorset istimed does not mean that time is necessar-
ily of interest in everything atoken of that colorset does. Therefore
atimed token does not have to have atime stamp; it only has the op-
tion to have one. If no time stamp is given to atimed token, the de-
fault time stamp is the current time. Since the clock never has a
negative value, such atoken is guaranteed to be immediately avail-
able, just asif it came from a non-timed colorset but was otherwise
the same.

Design/CPN Tutorial for X-Windows 16-9

Design/CPN Tutorial

For example, sincetime delays ontokensin Pr oduct Out ac-
complish nothing because the tokens will never be used again, the
preceding example would be more economically expressed as:

ProductShipped

00 (o0

OrderProcessed

Processed
Order
order
Staff
Staff Pool Ship Product

(order, staff)

J

staff @+10

Time Stamps and Initial Markings

It is often useful to give atime stamp to the tokensin aplace'sinitia
marking. Thisisaccomplished by appending adelay expression to
theinitial marking region. For example:

Order ProductShipped

. Process Orders .
@ 1~ order > 1" order Product Out

10'Big + Hs| [ProcOrds#3 |
10°Small

1" staff 1-equip

1" staff 1 equip
Staff Equipment
Staff Pool Equip Pool
4’Expert + 2 Fast +
2 'Novice 4°Slow @+20

16-10 Design/CPN Tutorial for X-Windows

Simulated Time

This could represent a situation in which equipment must warm up
for 20 minutes at the beginning of awork day, and is not available
until the warmup time has elapsed.

When noinitial time stamp is specified for an initial token of atimed
colorset, the default initial time stamp is the time specified in the
Time section of the Simulation Code Optionsdialog (Set
menu).

Time Stamps and Multisets

Order

When a multiset that defines more than one token is created, by an
initial marking region or any other net component, all of the tokens
in the multiset get the same time stamp. Thus:

ProductShipped
Process Orders

10°Big +
10" Small

HS| | ProcOrds#3 |

1" staff 1"equip

1" staff
Staff Equipment
Staff Pool Equ|p Pool
4 Expert + 2 Fast @+10 +
2"Novice 4°Slow @+20

Thisisillegal, and would cause a syntax error.

Changing FirstModel to Assign Time Stamps

With these principlesin mind, let's put some time delaysinto
FirstModel. Well stick with time regions rather than putting delay
expressions on output arc inscriptions, and avoid putting time
stampsinto initial markings. Examples of these techniques would
not demonstrate anything fundamental that examples of time regions
do not.

For starters, suppose that every order takes 5 minutesto enter, 10
minutes to process, and 5 minutes to ship. To represent this, we
will give Pr ocess Or der thetimeregion @ 10, and the other two
trangitions atime region of @5.

Design/CPN Tutorial for X-Windows 16-11

Design/CPN Tutorial

- Sdectthetransition Pr ocess Or der .

- Choose CPN Region from theCPN menu.
TheCPN Region dialog for transitions appears.

CPN Region ==—|

@ Name
7y Guard
{3 Code

i_) Log
1 Time

Lo]

- ClickTime.

- ClickOK.

Creating atime region is no different graphically from creating a
guard or any other text region.

- Click the mouse inside the transition.
- Type*@+10"
The transition should now ook this (bolding excepted):

OrderEntered

Entered
Order
Process Order
l (order, staff)
@+ 10

(order, staff)

OrderProcessed

Processed
Order

equip

Equipment

[p]I70

Equip Pool

1" Fast

16-12 Design/CPN Tutorial for X-Windows

Simulated Time

All the usual tricks work with time regions:
- ClickonEnt er Order.
- Giveitthetimeregion @5.
- Press ESc to leave the creation mode.
- Execute Copy (viathe File menu or akeystroke shortcut).
- Execute Paste

The editor pastes copy of the time region next to the original. This
location isonly temporary.

- Click onShi p Product.
The pasted time region movesto Shi p Pr oduct .
- Adjust the time regions to center each in itstransition.

The net should look like this:

[if (order = Big) [if (order = Big)
then staff = Expert then equip = Fast
else true] else true]

Enter Order
order (order, staff)

+5 i
Order @ ProductShipped

OrderEntered
> El o
Order
[e]in

Process Order

(order, staff)

(order, staff) @+10

OrderProcessed

Processed
Order
Staff Equipment Ship Product
Staff Pool i L ’
E 170 aff Poo E /0 Equip Pool

(order, staff) @+5

order

staff

equip

J

staff

Compiling a Timed Net

When anet that usestime is compiled, code must be generated that
is not necessary for an untimed net. Generating this code slows
down the process of switching to the smulator. To allow you to

Design/CPN Tutorial for X-Windows 16-13

Design/CPN Tutorial

16-14

avoid this overhead, Design/CPN provides an option whereby you
can specify whether a net isto be executed with or without time.

- Choose Simulation Code Optionsfrom theSet menu:

Simulation Code Options §—|

~ Mode
o Fair Simulation (Interactive and Automatic)

_» Fast Simulation (Automatic)

(") Both

— Time
o With @ Integer B
3 Without _» Real 0.8
i Both

— Code Segments
i@ With
1 Without
i_ Both

[Saue...] [Load] [Fleset] [Eancel]

Note that the With option in the Time section is selected. This
specifies that the compiler isto generate code for timed simulation.
Thelnteger option specifiesthat time will be kept as an integer,
and the number by the option specifies that the clock will read 0
when execution begins.

If you selected Without, then switched to the ssimulator, no code
for managing time would be generated. If you tried thiswith the
FirstModel, syntax errors would result, since it now containsin-
scriptions that make sense only in the context of timed smulation.

If you selected Both, code for timed simulated would be generated,
but you could use the General Simulation Optionsdiaogto
specify that the net isto execute just asit would if there were no time

constraints specified init. Wewill do just that later in this chapter,
So:

- Sdect Both intheTime section of the diaog.
- ClickOK.

Design/CPN Tutorial for X-Windows

Simulated Time

Executing

Enter the ssimul ator.

The switching process includes the generation of code for timed
simulation.

a Timed Net

A timed net is executed just asany net is. The only differenceisin
what the net does as it executes.

Reshape/reposition marking regions as needed.

The net should now look something like:

order

Order

@
Elln

[®] 7o

10'Big@]0,0,0,0,0,0,0,0,0,0]+
10°small@[0,0,0,0,0,0,0,0,0,0

[if (order = Big)
then equip = Fast
else true

[if (order = Big)
then staff = Expert
else true]

Enter Order
(order, staff)

@+5

ProductShipped

NG

OrderProcessed

Processed
Order

OrderEntered
Entered
Order

(order, staff)

A

Process Order

(order, staff)

@+10

staff order

equip
Staff Equipment Ship Product
Staff Pool E /0
@ (order, staff) @+5
4'Expert@]0,0,0,0] 2'Fast@[0,0]+
+ 2 Novice@[0,0] 4°Slow@[0,0,0,0])

staff

Note the way the time stamps of the individual tokens are indicated.
Thetimesindicated are not delays, but the actual times that the clock
must reach before the various tokens become available. Thetime
stamps all happen to be the same now, but thiswill not generally be
the case as the net executes.

Take alook at the status bar. It displays: Time: 0 Step: 1.

Set options to specify interactive execution with all break-
points on and a stop criterion of No Limit.

Execute three steps. Study the net carefully during and after
each one.

Design/CPN Tutorial for X-Windows 16-15

Design/CPN Tutorial

Stop execution when the simulator finishes Step 3:

Asyou can see, timing hasn't made any great difference in the sorts
of things you see as a net executes. All it has added is more realistic
behavior with respect to time.

Unfortunately, it is not possible to depict with certainty how your
net will look at this point, because the s mulator may have made dif-
ferent random choices on your machine than it did when the figures
in this chapter were made. |f what you see differs from the figures
so much that it failsto exemplify the points the tutorial is making,
just study the tutorial figuresinstead.

The following shows one appearance that the net may have at this
point:

order

Order In

Eln

6°Big@]0,0,0,0,0,0]+
8'Small@[0,0,0,0,0,0,0,0]

[] vo

[if (order = Big)
then staff = Expert
else true]

Enter Order

staff

[if (order = Big)
then equip = Fast
else true]

(order, staff)

@+5

ProductShipped
E out Prod(u;:)tOut
2°Small@[20,20]

OrderProcessed

OrderEntered

Entered
Opder

©,

2°(Big,Expert) Process Order
@[5,5]

(order, staff)

(order, staff) @+10

order

equip

Staff

Equipment
Staff Pool

Equip Pool
[Flvo
e (order, staff) @+5
2"Novice@[20,20] 2 Fast@[25,25]+ J
4’Slow@[0,0,0,0]

2'(Big,Expert),
l @[25,25]

Ship Product

staff

16-16

Carefully examine Pr ocess Or der anditsinput places. Thereare
two Bi g ordersin Ent er ed Or der , each with an associated
Expert, and there aretwoFast equipment piecesin Equi p

Pool , but Process Or der isnot enabled. Why not?

Look at upper left side of the statusbar. Thetimeis20. Now look
at thetime stampsin thetwo Fast equipment pieces. Both stamps
are 25. Therefore the tokens are not available; that iswhy
Process Or der isnot enabled.

The pieces of equipment that the two Fast tokens represent are ac-
tualy still in use to process the two orders whose tokens are now in
Processed Or der, aso with time stamps of 25. Notethat Shi p
Or der isalso not enabled: the jobswill not be ready to be shipped
until the model time reaches 25.

Design/CPN Tutorial for X-Windows

Simulated Time

Tokens that represent unavailable entities are visible in their places,
but functionally they might aswell not be there at al. The simulator
could have been designed to make such tokens actually invisible,
which would better reflect their functional status, but doing so
would make a net harder to understand by looking at it, since infor-
mation would be missing.

Simulation With and Without Time

It is sometimes useful to execute atimed net without taking account
of time. Such execution can make it easier to examine the causa
structure of amodel, which sometimes becomes obscured when
timing complicates the model's behavior.

Timed ssimulation can be turned on and off only if Both was se-
lected in the Time section of the Simulation Code Optionsdia-
log when the net was compiled. The option was selected, so you
can toggle timed ssimulation.

- Choose General Simulation Optionsfrom the Set
menu:

=———"—— General Simulation Options =

_ Simulate With stop Criteria
{ s Fair Automatic ™ No Limit
O Fant futamali [] Additional Steps _
i® Fair Interactive [] Until Step Number Is 8
(] Time [] Additional Time B
(] Code Segments (] Until Time Is B
" Record [] Until Time Advances
{1y None
(<] Step Information
(<] Bindings

[Luad] [Heset] [Eancel]

- Under Simulate With, click Time, so that it becomes de-
selected.

Design/CPN Tutorial for X-Windows 16-17

Design/CPN Tutorial

Click OK.

The net will now ignore all time stamps when it executes: tokens are
available if they exist, no matter how they are stamped. Therefore
(assuming the net state shown above) both Pr ocess Or der and
Ent er Or der are now enabled:

order

Order

4
]in

6°Big@]0,0,0,0,0,0]+

[if (order = Big)

[if (order = Big)

then staff = Expert then equip = Fast

8'Small@]0,0,0,0,0,0,0,0]

else true] else true]
Enter Order
(order, staff)
@+5 .
ProductShipped
OrderEntered
A EI out Prod Out
2°Small@[20,20]
Z‘EBig,Expert) Process Order
@[5,5] (order, staff)
(order, staff) @+10

OrderProcessed

order

staff Processed

equip

Staff Equipment 2'(Big,Expert) Ship Product
Staff Pool Equip Pool @[25,25]
[F] vo o "4
e @+5
(order, staff)
2'Novice@[20,20] 2 Fast@[25,25]+
4°Slow@[0,0,0,0]]

staff

Choose General Simulation Optionsfrom the Set
menu.

Under Simulate With, select Time.
Click OK.

Time stamps are again operative. Pr ocess Or der and Ent er
Or der are no longer enabled.

More Realistic Timed Behavior

Let'sincrease the realism of the model by changing it so that orders
of different types are handled differently. To accomplish the
change, al we need to do is have one or moretime regions assign a
delay that is conditional on the type of the order.

All bound arc variables are available to atime region, so everything
we need to make this change is already available.

MovePr ocess Or der 'stimeregion to the clear area
above the transition.

16-18 Design/CPN Tutorial for X-Windows

Simulated Time

- EditProcess Or der 'stimeregion to be:

@ if (order = Big)
then 10 el se 2

The transition should ook like this:

OrderEntered

Entered @+ if (order = Big)
Order then 10 else 2
Process Order
l (order, staff)

(order, staff)

OrderProcessed

Processed
Order

equip

Equipment

[p] 170

Equip Pool

1'Fast
- Execute Reswitch and I nitial State, then execute the net.
- Executethe net for awhile in single steps.

Notice the more complex, and realistic behavior of the net.

- Removeal breakpoints, and just watch the net execute for
awhile.

Can you identify any general patterns seem to recur as execution
proceeds? Does the system appear to be operating efficiently?

- Make some changesto initial markings that you think will
improve efficiency. Experiment to discover the effects of
these changes.

- Change the timesthat orders spend in the various transitions
different values, and study the results. Try again to produce
efficiency.

Y ou will soon noticethat it is quite difficult to predict the results of a
change by just thinking about it. Y ou have to execute the net and
find out what happens experimentally.

If even thistiny net cannot be modified without unexpected conse-
guences, consider how impossible it would be to predict the results

Design/CPN Tutorial for X-Windows 16-19

Design/CPN Tutorial

of modifying alarge net that modelsarea system. The system itself
would be equally unpredictable in its response to change, but far
more expensive than amode to repair after a change has not worked
out as planned.

Observing Simulation Results

16-20

It should be obvious by now that it is not easy to get agood picture
of how efficiently (or inefficiently) amodel is executing by watching
the way tokens move. Gross efficiencies are generally obvious, but
guantitative comparisons of different levels of efficiency resulting
from different conditions cannot usually be made by just watching a
net.

To make exact measurements of system performance both possible
and accessible, Design/CPN includes numerous capabilities for
gathering and displaying data generated during simulation. These
capabilities are provided by the Statistical Variables and Charts
Facility. For information on how to use thisfacility, see The
Design/CPN Reference Manual.

Design/CPN Tutorial for X-Windows

APPENDIX A

CPN Hierarchy
Techniques

Chapter Al

Introduction to Hierarchy

Files for Use With This Appendix

CPN Hierarchy

Thefollowing files are used in this appendix:

1. ResourceMode (and ResourceModel.DB). These files con-
tain amodel called the Resource Use Model. Thismodel is
used to demonstrate CPN hierarchy.

2. ResmodSubtrans (and ResmodSubtrans.DB). Thesefiles
contain the Resource Use Model in hierarchical form.

Thesefiles are kept in the Tutorial Diagrams directory that is supplied
with thistutorial. Y ou may want to make copies of the filesto ex-
periment with. Such copies can be kept anywhere under any names
(be sure to preserve the name match between unsuffixed and .DB
files), and used in place of the files mentioned in this and the next
two chapters. If you cannot find the files, or if the originals have
been modified, (re)install them as directed in Chapter O of this tuto-
rial.

Models whose primary purpose is educational, or that represent very
small systems, can often be drawn on asingle page. However this
practice would not suffice for making arealistic model of alarge
and/or complex system. Trying to model such asystem onasingle
page would be like trying to write a complex program without using
subroutines. Such amodel, or such a program, would be far too
complex, poorly structured, and redundant to be useful, or in many
cases even constructible.

The answer isto allow a CP net to be kept on multiple pages that can
be organized into a functioning whole, much as an ordinary program
can be written as multiple modules that can be linked into an exe-
cutablefile. The system CP nets use to provide such modularization
isknown as hierarchy.

Design/CPN Tutorial for X-Windows Al-1

Design/CPN Tutorial

Fusion Places

CPN hierarchy consists of two capabilities: fusion places and substi-
tution transitions. These capabilities allow anet to be divided into
modules, and provide facilities for linking the modules in various
ways. Let'stake abrief look at each one of them.

The fusion place capability allows CP net places that exist in differ-
ent locationsin anet to act functionally asif they were the same
place. Such places are called fusion places and a group of such
placesis called afusion set.

Fusion places are similar to global variablesin a conventional pro-
gram. Just asreferencesto aglobal variable by different parts of a
program refer to the same variable and yield the same value, so uses
of “different” placesin afusion set by different parts of anet are ac-
tually uses of the same place, and will find that place to have the
same marking.

Fusion places can be used in many waysto simplify and generalize a
net. For example, anet might model many different activities that all
make use of the same pool of resources. Representing the pool as a
fusion place would allow the various activities to be drawn on dif-
ferent pages and yet al have access to a single shared resource pool.

Fusion places are also useful in the context of asingle page. When
many arcs connect to a place, and these arcs come from physically
distant locations on the page, it is often clearer to represent the place
more than once on the page, and equate the various representations
by including them al in afusion set.

Substitution Transitions

The substitution transition capability allows a CP net transition to
represent an entire page of CP net structure. The effect isthe same
asif the page that the transition represents appeared physically at the
site of thetransition. Such atransition is called a substitution transi-
tion, and the page of net structure that it representsis called a subnet
or asubmode!.

Substitution transitions are smilar to subroutines in a conventional
program. The effect is not identical, because the substitution occurs
physically, as with amacro, rather than by invocation, but the result
is essentialy the same:

1. A net can be implemented as multiple modules that can be
modified independently of each other.

Al-2 Design/CPN Tutorial for X-Windows

Introduction to Hierarchy

2. Thevarious modules can be linked together as needed to
Create anet.

3. The same module can be used repeatedly at different places
in anet, so that redundant logic need not be created to handle
the same situation in different contexts.

For example, anet might model a computer installation with many
identical workstations working in parallel on different tasks.
Creating a submodel that represents the details of aworkstation, and
using that submodel as the value of many different substitution
transitions, would allow just one submodel to represent all of the
workstations.

Design/CPN Tutorial for X-Windows Al-3

Chapter A2

Fusion Places

In the nets we have worked with so far, each place has been an in-
dependent entity: there was no relationship between places except
that provided by arcs and transitions.

Another form of relationship is possible in a CP net. We can estab-
lish amethod for defining sets of places so that anything that hap-
pens to each place in a set also happensto al the other placesin the
set. The places are then functionally identical. Such placesare
caled fusion places and a set of fusion placesis afusion set.

Fusion adds nothing fundamentally new. If al the membersof a
fusion set are on the same page, we could replace the set with asin-
gle place and connect to it al the arcs that connected to any member
of the set. If the members are on different pages, we could copy ev-
erything on the several pagesto a single page, and again collapse the
Set.

Conversdly, if anet contains a place that has many arcs connecting
to it, or requires very long arcsto reach it, we could unfold it into
severa places, on the same or different pages, and so simplify the
net's graphical structure without changing its meaning. Such un-
folding isacommon event during the process of net development.
Frequently the need for it can be anticipated, and fusion places used
from the beginning.

We redlly need only one type of fusion place to derive al the bene-
fitsfusion can provide. But aswe shall see, it is useful to have dif-
ferent types that have different scopes. Therest of this chapter
shows how to use fusion places.

The Resource Use Model

This chapter demonstrates fusion place techniques using a model
called the Resource Use Model. Let'stake aquick look at this
model before we begin working with it.

- Open the diagram ResourceModdl, in the Tutoria Diagrams
directory.

Design/CPN Tutorial for X-Windows A2-1

Design/CPN Tutorial
The diagram's hierarchy page appears.
EC] Hierarchy#10010 EIE
{ Resmod#]
SOOI [127N
¥ Globalgd4
L e ‘a
<af

Open the page Global#4.

This page contains the global declaration node:
color Process = with Proc2 |

var PROC:. Process;

Proc3 tined;
col or Resource = with Res tined;

Return to the hierarchy page.

Open the page Resmod#1.
This page contains the executable part of the diagram:

A2-2

Design/CPN Tutorial for X-Windows

Fusion Places

Process
Processing

L

5'Proc2
+ 4’Proc3

PROC

1‘_____

Request

PROC
Process

PROC

1‘_____

. Resource
if (PROC = Proc2)

Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11

PROC 7'Res

Process

PROC

\ Release

PROC @+5

1‘_____

Description of the Model

The Resource Use Model represents a simple computer systemin
which processes vie for resources. Each process goes through a
cyclein which it develops a need for resources, requests them, pos-
sibly waits for them, then obtains, uses, and rel eases them.

There are two kinds of processes, Pr oc2 and Pr oc 3, as defined
by the colorset Pr ocess. Thereisonly onetype of resource, Res,
defined by the colorset Resour ce. A Proc2 process usestwo Res
resources at atime, and aPr oc 3 process uses three Re s resources
at atime, as defined by the inscription on the input/output arc be-
tween Obt ai n and ResPool . A Pr oc2 process uses resources
for 7 time units, and aPr oc 3 process uses them for 11 time units,
as defined by the time region on the transition Obt ai n.

Design/CPN Tutorial for X-Windows A2-3

Design/CPN Tutorial

Executing the Model

Before we start working with this model, let's see how it executes.
Since the diagram containing the net was not created on your sys-
tem, it does not contain the information necessary to alow
Design/CPN to communicate with the ML process. Therefore you
must load that information into it before you can executeit.

- Choose ML Configuration Optionsfrom the Set menu.
A diaog appears.

- ClickL oad.

- ClickOK.

The necessary information about the ML processis copied to the di-
agram.

- Enter the smulator.
- Execute the model.
- Do afew of the usual experimentswith net execution.

Y ou should soon feel at home with what the Resource Use Model
does. It does not, of course, do very much, but that is not the point.
We will soon be using it to create a variety of sometimes complex
structures, and you will find it helpful to first become clear on what
it doesinits simplest form.

Fusion on a Single Page

A2-4

To study fusion places, let'simplement the example mentioned in
Chapter A1, in which different activities all share acommon pool of
resources. Let'slook first at the simplest case, in which all the ac-
tivities are represented on the same page, then proceed to the dightly
more complex case in which they are on different pages.

To implement fusion on a single page, we'll make three copies of
the net on page Resmod#1 (shown above), then create asingle re-
source pool that is shared by all three copies.

- Make Resmod#1 the current page.

- Sedlect and then Copy al nodes on the page.

- Execute Paste.

Design/CPN Tutorial for X-Windows

Fusion Places

The copied nodes will be pasted over the originals, alittle lower and
alittle to theright.

- Usethe mouse to adjust the group of pasted nodes so that it
is about an inch to the right of the originals.

- Scroll thewindow if necessary to provide room for athird
copy to the right of the one you just created.

- Execute Paste.

- Usethe mouse to adjust the group of pasted nodes so that it
is about an inch to theright of the first copy, with no over-

lap.

There will probably now be more graphics on the page than you can
see at once. If you could see the whole page, it would look about
likethis:

Therest of this chapter refersto the net you just copied as Resnet,
and the three copies as Resnetl (on the left), Resnet2 (in the mid-
dle), and Resnet3 (on the right).

Results of Executing the Diagram

If you executed the diagram as it is now, what would happen?
Since thereis no functional connection between the three copies,
they would execute side by side just asif each existed done. They
would have no effect on each other at all. We could consider the
copiesto be three independent nets or a single net with three digoint
components. Nothing requires a CP net to be connected, so the two
interpretations are equally valid.

However, it would obviously be uselessto have three identical in-
dependent nets executing simultaneously. None of them would do
anything that the others would not do; the only effect would be to
slow execution down.

Design/CPN Tutorial for X-Windows A2-5

Design/CPN Tutorial

Combining the Resource Pools

L et's make the situation more interesting by making al three copies
share asingle pool of resources. We could of course do this by
deleting two of the resource pools and connecting the third to all
three copies. The result could be something like:

This technique would be enough for the ssmple case we are working
with, but if the resource pool were needed in many more locations
that were much farther apart on the page, alot of very long arcs
would be needed. These would clutter up the page. 1t would be
better to leave the resource pools where they are, and combine them
functionally into asingle pool by putting them in afusion set.

Creating a Fusion Set

A2-6

Let's create afusion set that contains the place ResPool in
Resnetl, and then add theRes Pool sin Resnet2 and Resnet3to the
Set.

- Sdect ResPool inResnetl
- Choose Fusion PlacefromtheCPN menu.

TheFusion Place diaog appears.

Design/CPN Tutorial for X-Windows

Fusion Places

Fusion Place
Fusion Set Name
—Fusion 5e K
@ Create
3 Add to
O Bubtvas b from
1 Delete
Rename/Retype —
i yp T
—Type
i Global
) Page
{1 Instance
[Reset] [Cancel] | 0K |

Thisdialog alows you to create and edit fusion sets. Create, the
operation we want, is already selected as the defaullt.

When you create a new fusion set, you must give it aname and indi-
cateitstype. Let's name the new fusion set “RPOOL”.

- Type“RPOOL” into the edit box immediately below the
Name section.

We want afusion set that simply equates all constituent places wher-
ever they occur. Such asetiscalled aglobal fusion set. Since
Global isthe default type in the dialog, we don't need to do any-
thing explicit to indicate the new set'stype. (Page and Instance
fusion setswill be explained later in this chapter.)

The dialog should now look as follows:

Design/CPN Tutorial for X-Windows A2-7

Design/CPN Tutorial

A2-8

Fusion Place

Fusion Set Mame
—Fusion Se i
(@ Create
) Add to
O Bubdvad fram
y Delete
R /Ret —
i_) Renmame/Retype Iy}
RPOOL
—Type
(@ Global
(_) Page
1 Instance

[“Reset | (cancer J[_ 0k |

- ClickOK.
The dialog disappears.
Y ou have now created a global fusion set named RPOOL. The set
contains one place, ResPool . A placethat isamember of aglobal
fusion set is called a global fusion place.

Physical Appearance of a Global Fusion Place

The status bar now lists the type of Res Pool as Place, Global-
Fusion, and ResPool 's appearance has changed:

Resource

ResPool

7 Res

The marker isa Fusion Key Region. It indicates that the place
isaglobal fusion place. The name of the fusion set to which the
place belongs, RPOOL, isindicated next to the Fusion Key Region,
in another region called the Fusion Region. The Fusion Regionisa

Design/CPN Tutorial for X-Windows

Fusion Places

popup, so you can hide and redisplay it by double-clicking on the
associated key region.

- Hideand redisplay “RPOOL” by double-clicking on .

Adding Places to a Fusion Set

A fusion set with one place obviously accomplisheslittle. Let'sadd
the other two ResPool placesto the set. We don't have to add
them one at atime: we can add them simultaneoudly.

- Select both ResPool in Resnet2 and ResPool in Resnet3.
Be sure that nothing else is selected: the status bar should
display: Group of 2 Nodes.

- Choose Fusion PlacefromtheCPN menu.

TheFusion Place dialog reappears.

Fusion Place
Fusion Set Name
[rHsion 3e Glob: RPOOL K
@ Create
() Add to
O Bubtvas b from
1 Delete
Rename/Retype —
i yp I3
—Type
i Global
) Page
{1 Instance
[Reset] [Cancel] | 0K |

Note thelisting of Gl ob: RPOOL inthe box under Name. This
box lists all existing fusion sets, both to help you keep track of what
they are, and to let you select an existing set without retyping its
name.

We want to add to an existing set, so:

Design/CPN Tutorial for X-Windows A2-9

Design/CPN Tutorial

- Click Add Tounder Fusion Set.

The edit box and the T ype section disappear, since we can add only
to afusion set that aready exists.

- Clickond ob: RPOOL inthe box under Name.
- ClickOK.

The dialog disappears. All three ResPool placesare now part of
the fusion set RPOOL: they are functionally not three places, but one
place that is represented three times in three different locations.

Asyou may have guessed, you could have selected all three
ResPool placesbefore creating RPOOL. They would al have then
been members of RPOOL from the start, and there would have been
no need to add any afterwards. In general, any fusion-related op-
eration that is meaningful for agroup of places can be executed on a

group.

Initial Markings and Fusion Sets

All three placesin RPOOL have an initia marking region, and each
region specifies the same marking. In the editor, they could just as
well have had different markings: they are just text regions, so it
does not matter if they agree or not.

The simulator is another matter. When you enter the ssmulator, any
initiadl marking regions are evaluated, and the tokens they specify are
put into the corresponding places. marking regions are converted
into actual markings. But the placesin afusion place, being func-
tionaly one place, intrinsically can have only one marking.
Therefore dl placesin afusion set must have the same initial mark-
ing region (if any) before entry to the simulator. If they do not, a
syntax error will occur, and you will remain in the editor.

Removing Places From a Fusion Set

A2-10

Removing places from afusion set isjust the inverse of adding
them.

- Sdect ResPool inResnet3. Be sure no other places are
selected.

- Choose Fusion PlacefromtheCPN menu.

- Subtract From isaready selected under Fusion Set.
That is the operation we want, so:

- ClickOK.

Design/CPN Tutorial for X-Windows

Fusion Places

ResPool inResnet3isnow an ordinary place. The other two
ResPool 'sare still equated in the fusion set.

Asashortcut, you can remove a place from afusion set by deleting
its Fusion Key Region.

- Select the Fusion Key Region of ResPool in Resnet2.
- Press DELETE.
The Fusion Key Region and the Fusion Region disappear.

ResPool inResnet2isnow an ordinary place. Theremaining
ResPool , in Resnetl, is still amember of the set.

- PuttheResPool sin Resnet2 and Resnet3 back into the
RPOOL set.

Deleting a Fusion Set

It is sometimes useful to delete afusion set. All of its constituent
places then revert to independent status.

- Choose Fusion Place from theCPN menu.
- ClickDeleteunder Fusion Set.

- Sdectd ob: RPOOL under Name.

- ClickOK.

The dialog disappears. RPOOL isgone; dl ResPool placesare
now freestanding, as if RPOOL had never existed.

Fusion Across More Than One Page

In the context of a single page, fusion does not add any fundamental
power, since anything fusion can do on a single page could be done
by drawing arcs. Fusion on a page can be very convenient, but the
real purpose of fusion isto make it possible to establish connections
between net structures that exist on different pages. Without fusion
there would be no way to do this, because there is no way to draw
an arc that runs between one page and another. With fusion we can
equate places on one page with places on another, and so connect
the pages.

We need an additional page to practice on, and we don't need all
three copies of Resmod any longer; two will be enough.

Design/CPN Tutorial for X-Windows A2-11

Design/CPN Tutorial

- Select all seven nodesin Resmod3. Be sure that nothing
elseis selected.

- Execute Cut (viathe File menu or a keystroke shortcut).

Resmod3 disappears. (You could also have used DELETE, but itisa
good practice to use Cut for large deletions: with Cut you can undo
the deletion via Paste, but if you DELETE the deleted structures are
goneirretrievably.)

Now let's make a copy of Resmod#1. We could create a new page,
then cut and paste from Resmod#1 to create the copy page, but let's
try something different: using the file system to copy Resmod#1 in
one operation.

Saving and Loading a Subdiagram

A2-12

Design/CPN alows you to save apage to adisk file, then load that
page into adiagram, resulting in a new page that is a copy of the
saved page. Thisfacility can be used to duplicate pages within adi-
agram, or to copy pages from one diagram to another.

- Make Resmod#1 the current page.

- Choose Save Subdiagram from theFile menu.
TheSave Asdialog appears.

- Save Resmod#1 under the name ResPagel.

- Choose L oad Subdiagram from theFile menu.
TheOpen Filedialog appears.

- Open the saved page ResPagel.

A new page is created, named New#2. It contains a copy of the
saved page Resmod#1.

- Open the hierarchy page.
The page looks approximately as follows:

Design/CPN Tutorial for X-Windows

Fusion Places

I - =
aaaaaaaaaaaaaaaaaaaaaaaa [EFRCICIIITI. |

Fesmodi1 ¥ Mgt 2]
aaaaaaaaaaaaaaaaaaaaaaaa I-.-.-.-.-.-.-.-..
[b] i Prime |

|

New#2 is shown as a box rather than an oval to indicate that it has
been |oaded into the diagram rather than created as part of it.

Notethat L oad Subdiagram doesn't care where the page it loads
came from: it just loadsit. If you had closed ResourceModdl,
opened some other diagram, and loaded ResPagel into it, the effect
would have been to copy Resmod#1 between diagrams.

Make the New Page Prime
New#2 must be a prime page, or the smulator will ignoreit.

- Make New#2 aprime page (M ode Attributesin the Set
menu)

The hierarchy page shows that New#2 is now prime:

sS[IE=———= Hierarchy#10010

Working With Fusion Sets That Span Pages

Working with afusion set that equates places on more than one page
is essentially the same as working with asingle-page set. The only
differences result from the fact that it isimpossible to form a group
of places (or anything else) that extends across pages. For example,
we could not create afusion set containing al four ResPool sin
one operation. We need at least two: one for the ResPool son
Resmod#1, and a second for those on New#2.

Design/CPN Tutorial for X-Windows A2-13

Design/CPN Tutorial

Let's create afusion set that equates all four ResPool s:
- Create agroup that contains both Res Pool s on Resmod#l.

- UseFusion PlaceintheCPN menu to create aglobal fu-
sion set named RPOOL. Use the same techniques that you
used to create RPOOL before.

RPOOL contains both ResPool s on Resmod#1, because they were
sdlected at thetimeit was created. Now let's add the other two
ResPool stothe set:

- Make New#2 the current page.
- Create agroup that contains both Res Pool s on New#2.

- UseFusion PlaceintheCPN menu to add the
ResPool sto RPOOL. Use the same techniques you used to
add places to RPOOL before.

Now look at each of thefour ResPool s. All have the same ap-
pearance:

Resource

ResPool

7 Res

Thisisjust how the two ResPool son Resmod#1 looked when
RPOOL equated places on only one page. Its extension to equate
places on more than one page adds nothing new.

Thereisno need at this point to practice deleting places from
RPOOL, or deleting RPOOL as awhole. Asyou probably expect,
these operations are no different when there are multiple pages than
when there isjust one.

Working With More Than One Fusion Set

A2-14

The existence of more than one fusion set at atime adds nothing
fundamentally new. The only requirement is that each fusion set
must have a unique name.

The current net models a system in which there are four computers
that share aresource pool. Each computer handlesfor itself al the
details of allocating, using, and releasing resources. Thisisacom-
mon configuration where many workstations are networked to-
gether.

Design/CPN Tutorial for X-Windows

Fusion Places

But consider adifferent system, in which there is a single mainframe
computer that handles all processes. Mainframe computer time
tends to be expensive, and resource usage can be very time consum-
ing. Thereforeit isacommon practice to connect a mainframe com-
puter to several less expensive subsidiary computers, and to let the
subsidiary computers handle the details of resource alocation, use,
and deallocation. The resources themselves remain in acommon
pool, available to any subsidiary.

Lets modify our net to model such asystem. The necessary change
isminor: al we need to do isto create a second fusion set that
equatesthefour Pr ocessi ng places. That set will represent the
mainframe, RPOOL will continue as the shared resource pool, and
unshared parts of the four Resnets will represent four subsidiary
computers. Let'scall the new fusion set MFRAME.

- Sedect both Pr ocessi ng places on Resmod#l.
- Choose Fusion PlacefromtheCPN menu.

TheFusion Place diaog appears.

Fusion Place
Fusion Set Name
rusion se Glob: RPOOL 3
@ Create
() Add to
O Bubtvas b from
1 Delete
Rename/Retype —
i yp T
—Type
i Global
) Page
{1 Instance
[Reset] [Cancel] | 0K |

Thefact that one fusion set aready exists makes no difference to the
creation of another set. Create and Global are already the de-
faults, so just:

- Type“MFRAME" in the edit box below the Name section.

Design/CPN Tutorial for X-Windows A2-15

Design/CPN Tutorial

- ClickOK.

Both Pr ocessi ng places on Resmod#1 now look like this.

Process
Processing
MFRAME
5"Proc2
+ 4°Proc3

Now to complete the new fusion set:
- Select both Pr ocessi ng places on New#2.
- Choose Fusion Place from theCPN menu.
- ClickAdd Tounder Fusion Set.
- ClickonG ob: MFRAME in the box under Name.
- ClickOK.
The net now models a mainframe computer, represented by

MFRANME; four subsidiary computers for handling resources; and a
shared resource pool, represented by RPOOL.

Page Fusion Sets

A2-16

A shared resource pool is often agood idea. For example, we
would not want every printer user to have its own dedicated printer
if one shared printer would be enough to servethem all. On the
other hand, compl ete resource sharing is not always desirable. A
computer network might be distributed through several buildings,
but its users would probably want print jobs to be done only on
printersin their own building. How can the net be modified to
model thiskind of situation.

The obvious answer isjust to use multiple fusion sets. we could re-
move some of the Res Pool sfrom RPOOL and put them into as
many other fusion sets as we needed. But if alarge model required
many similar but separate fusion sets, this technique would result an
annoying proliferation of different names for different instances of
essentially the same thing.

Thereis abetter way: page fusion sets. Page fusion sets are identi-
cal with global fusion sets (the kind we have been working with so
far) in every way but one: while aglobal fusion set equates every
constituent place irrespective of page, a page fusion set is divided

Design/CPN Tutorial for X-Windows

Fusion Places

into subsets, each of which equates only constituent places that are
on the same page.

Put another way, a page fusion set is a collection of fusion sets that
have the same name but exist on different pages. The members of
such a collection are caled page fusion subsets, and each constituent
placeis caled apage fusion place.

Page fusion sets are created and modified much as global sets are.
The only difference occurs at the beginning: when a page fusion set
isfirst created, select Page rather than Global intheType section
of theFusion Placediaog:

Fusion Place
Fusion Set Name
rusion se Glob: MFRAME 3
® Create Glob: RPOOL
) Add to
O Bubtvas b from
1 Delete
Rename/Retype —
i yp T
—Type
i 1 Global
@ Page
{1 Instance
[Reset] [Cancel] | 0K |

Once a page fusion set exists, al the techniques you have just used
for global fusion setswill work on it exactly asthey would if the set
were aglobal set.

Creating a Page Fusion Set
We could now delete RPOOL and create apage fusion setinits
place. But that would illustrate nothing new. Let's do something
more interesting: convert RPOOL directly from aglobal fusion set to
apage fusion set:

- Choose Fusion PlacefromtheCPN menu.

Design/CPN Tutorial for X-Windows A2-17

Design/CPN Tutorial

- Choose Rename/Retype under Fusion Set.

- ClickonGl ob: RPOOL inthe box under Name.
- Choose Page under Type.

- ClickOK.

The dialog disappears. RPOOL is now a page fusion set: the two
ResPool son Resmod#1 are functionally one place, and the two on
New#2 are functionally a second place. In other words, the page
fusion set RPOOL consists of two page fusion subsets, one for each
page that contains members of the set.

All of the placesin apage fusion set look the same:

Resource

ResPool

7 Res

Note the change from to , indicating the change from a
global fusion set to apage fusion set. Thereis nothing in the place's
appearance to indicate which page fusion subset the place belongs
to: its presence on the particular page isindication enough.

Asyou might expect, the members of a page fusion set on any one
page must agree asto initial marking, but the members on different
pages can have different initial markings. Members of a page fusion
set on different pages have no more relation to each other than they
would if they were members of different global fusion sets.

Watching Fusion in Action

A2-18

By now you should have afairly good idea of how fusion pages
work. But there's nothing like seeing it in action to make its prop-
ertiesclear. Let'sgo into the ssimulator and execute the net.

- Enter the smulator.

- Savethenet inthe NewTTDiagrams directory. Then saved
net can be used to make future entries to the ssimulator much
faster, and you won't have to load the ML information

again.

The diagram you have been working with already has a breakpoint
between steps and occurrence set parameters set to 100%. These are
the right parameters for observing this net. However you will need

Design/CPN Tutorial for X-Windows

Fusion Places

to adjust the various simulation regions that show place markings so
you can see clearly how the markings change during simulation.

- Adjust the s mulation regions on both pages.
- Start smulation.

Continue simulation through several steps. Between steps, |ook at
the various copies of Resnet, with particular attention to their
Processi ng and ResPool places. Sinceresources are put back
intoRes Pool assoon asthey are used, with time stamps to mark
them as unavailable, you will need to compare time stamps rather
than token counts when comparing Res Pool markings.

Verify by observation that:

1. All four Processi ng places dways have the same mark-
ing.

2. ThetwoResPool places on Resmod#l aways havethe
same marking.

3. ThetwoResPool placesonNew#2 always have the same
marking.

4. Themarkings of the ResPool places may differ between
Resmod#1 and New#2. (When they look the same it isjust
acoincidence.)

5. Themarkings of the placesWai t i ng and Usi ng may dif-
fer among the various copies of Resnet, both on the same
page and between pages. (When they look the sameit isjust
acoincidence.)

If you understand why these five properties must hold, you under-
stand fusion places. If you do not, be sure to not to proceed until
you have studied this chapter further and know how fusion places
work.

Instance Fusion Sets

In the smulation you just ran, there were two identical pages. Two
copies of apage is not that bad, but suppose we want to model a sit-
uation in which there are many hundreds or thousands of instances
of the same entity, and that this entity istoo complex to represent
with atoken but must be modeled with a piece of net structure? We
would not want to put hundreds or thousands of copies of the same
structure on a page, or worse yet, have hundreds or thousands of
copies of the same page. Either method would render the net com-
pletely unmanageable.

Design/CPN Tutorial for X-Windows A2-19

Design/CPN Tutorial

To deal with such situations, Design/CPN allows you to create a
single page in the editor, and then use that page as many times as
needed in the smulator. Thisalows usto have it both ways. physi-
cally thereisonly one page, but functionally there can be as many
copies of the page aswe need. This capability is called multiplicity,
and the different functional copies of the same page are called page
instances.

Aswe noted above, completely digoint copies of the same net
structure would serve no purpose, since none would do anything the
othersdo not do. The same argument applies when the copies are
multiple instances of apage: the instances must be interconnected in
some way to form alarger whole, or there is no reason to have
them. Aswith physically separate pages, the interconnection is ac-
complished by using fusion places.

Creating Multiple Page Instances

A2-20

Suppose that we need athird copy of Resmod#1. We could use

L oad Subdiagram again, resulting in athird identical page. But
by creating a second instance of the page, rather than loading in an-
other copy, and then using fusion appropriately, we can produce ex-
actly the same functional effect while avoiding the overhead that a
third physical copy would entail.

- Open the hierarchy page.
- Sdlect the page node for Resmod#1.
- Choose M ode Attributes from the Set menu.

TheM ode Attributesdialog appears.

Design/CPN Tutorial for X-Windows

Fusion Places

Mode Attributes

—Mode
i@ Standard
[] Do Not Include in Simulation (1)
[]Do Mot Make Dbservable (0]
[] Do Not Propose Occ Set (P)
[] Do Not Use in Interactive Runs (R)
[] Do Not Execute Code Segments (C)

[] Change for Substitution Transitions

Prime Page

Mo
%m Multiplicity |G-

[Save...][Load...][Heset][Cancel]

Notethefigurefor Multiplicity. Itis1, indicating that thereis
only one instance of Resmod#1. The number inthe M ultiplicity
edit box is aready selected, so:

- Type“2'.

The dialog should now |ook this:

Design/CPN Tutorial for X-Windows A2-21

Design/CPN Tutorial

Mode Attributes

—Mode
i Standard
[] Do Not Include in Simulation (1)
[]Do Mot Make DObservable (0]
[] Do Not Propose Occ Set (P)
[] Do Not Use in Automatic Runs (A)
[] Do Not Execute Code Segments (C)

[]Change Mode Attributes of Supernodes

Prime Page

No
g'ﬂes Multiplicity |2

[izxm?,,,][AT T][Reset][Cancel]

- ClickOK.

There are now two instances of Resmod#1. The hierarchy page
now looks as follows:

S[[==——= Hierarchy#10010

Wociviiis L B s ——
s Fesmod#] A | Mewd#? § (M| Frme]
. ffffffff I’ fffffff . -----------

aaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaa

Ik

Note the new designation Prime:2 for Resmod#1. The“2” indicates
that there are now two instances of the page.

Multiplicity and Fusion
Let's take amoment to look at the overall structure of the diagram,

with particular attention to relationships between fusion sets and
multiple page instances.

A2-22 Design/CPN Tutorial for X-Windows

Fusion Places

The diagram ResourceModel now has two executable pages:
Resmod#1 and New#2. These two pages areidentical. There are
furthermore two instances of Resmod#1. These are of course iden-
tical with each other and with New#2. There are physically four
copies of Resnet, two on each page; but functionally there are six
copies, because each copy on Resmod#1 exists twice, once on each
instance of the page.

There are two fusion sets: MFRAME and RPOOL. MFRAME isa
global fusion set, so it equates al six copies of the place

Pr ocessing: the two on the first Resmod#1 instance, the two on
the second, and the two on New#2. RPOOL isapage fusion set. It
equates the two copies of Res Pool on New#2 into one fusion sub-
set. But what should it do with the ResPool sin the two instances
of Resmod#1?

There are two possibilities, equally reasonable:

1. Form asinglefusion subset that includes all instances of the
page, on the grounds that thereisreally only one page and a
page fusion set, by definition, equates al congtituent places
on each page.

2. Form a separate fusion subset for each instance of the page,
on the grounds that the instances are so much like separate
pages that they deserve separate fusion subsets.

In practice, there are situations where the first method would more
useful, and situations when the second would be. Therefore
Design/CPN allows both possibilities. Page fusion sets conform to
the first possibility: there is one page fusion subset for all instances
of apage. To create a separate fusion subset for each instance of a
page, we use the third type of fusion set: the instance fusion set.

Working With Instance Fusion Sets

Instance fusion sets are identical with page fusion setsin every way
but one: while a page fusion set equates every constituent placeirre-
spective of page instance, an instance fusion set is divided into sub-
sets, each of which equates only constituent places that are on the
same page instance.

In other words, an instance fusion set is a collection of fusion sets
that have the same name but exist on different page instances. The
members of such acollection are called instance fusion subsets and
each constituent placeis called an instance fusion place.

Instance fusion sets are created and modified much as global and
page setsare. The only difference occurs at the beginning: when
you first create an instance fusion set, select | nstanceintheType
section of the Fusion Place dialog.

Design/CPN Tutorial for X-Windows A2-23

Design/CPN Tutorial

Let's create an instance fusion set for the Res Pool s of Resmod#1,
so that each instance of the page will have its own resource pool. |If
there were currently no fusion set for the Resmod#1 Res Pool s,
you could select both of them and create ainstance fusion set just as
if you were creating apage or global fusion set. Since we already
have a page fusion set, RPOOL, let's just change itstype, aswe did
when we converted it from a global to a page fusion set.

- Make Resmod#1 the current page.

Choose Fusion Place from theCPN menu.

- Choose Rename/Retype under Fusion Set.

- Click onPage: RPOOL inthebox under Name.
- Chooselnstance under Type.

- ClickOK.

RPOOL on Resmod#1 is now an instance fusion set. Note the
change in the appearance of the ResPool places:.

Resource

ResPool

7 Res

Now take alook at the ResPool son New#2. They have not
changed: RPOOL is still a page fusion set for New#2. It might seem
more consistent if RPOOL changed everywhere, but in practice a
per-page granularity for converting page to instance fusion sets turns
out to be more convenient.

Observing Fusion Across Multiple Instances

A2-24

Let'sre-enter the ssimulator, execute the model, and take alook at
how instance fusion sets look in action.

- Re-enter the smulator.

Y ou can examine New#2 as you did before. But what about
Resmod#1? Thereisonly one page, and hence only one window,
but there are two instances, and it will be useful to examine each one
of them.

To switch between instances of apage, usethelnstance Switch
diadog. Toactivateit:

Design/CPN Tutorial for X-Windows

Fusion Places

- Depressthe SHIFT key.
- Click the mouse on the title bar of Resmod#1.

Y ou can get the same effect by choosing Select | nstance from the
Sim menu. In either case, the I nstance Switch dialog appears:

Instance Switch

Fage Instances

(Z2:Resmod#1)

(1:Resmod#1) I

Full Mame

(2:Resmod#1)

| Cancel | |5I.I.Iit[:|1|

All the instances of Resmod#1 are listed under Page | nstances.
The instance currently on display in the Resmod#1 window is high-
lighted. Note that the highlighted name matches the namein the
Resmod#1 window'stitle bar. Thetitle bar of awindow that dis-
plays a page with multiple instances aways tellswhich instanceis
currently visible.

- Usethe mouse to select the other instance of Resmod#1.

- Click Switch.
The dialog disappears. Thetitle bar of the Resmod#1 window now
indicates that the other instance ison display. Y ou won't see any
other change, because both instances of the page arein the sameini-
tial state. Once simulation beginsthey will diverge.

- Start smulation.
Continue simulation through several steps. Switch back and forth

between the two instances of Resmod#1, and verify that both
ResPool placeson each instance always have the same marking,

Design/CPN Tutorial for X-Windows A2-25

Design/CPN Tutorial

but that the markings may be different on the two instances. (When
they look the sameit isjust a coincidence.) Everything elsereating
to fusion isthe samein the current simulation as it was in the previ-
ousone. If you have any doubts, verify by observation that thisis

SO.

A2-26 Design/CPN Tutorial for X-Windows

Chapter A3

Substitution Transitions

In the nets we have looked at so far, each transition has been afun-
damental unit: there was no functiona significance to atransition ex-
cept that defined by any associated places, arcs, arc inscriptions,
guard, code segment, and/or time region.

Another form of transitionis possible in a CP net. We can establish
amethod by which atransition can stand for an entire piece of net
structure, so that the net containing the transition executes asif the
logic that the transition represents were physically present at the lo-
cation of the transition. Such atransition is called a substitution
trangtion.

Substitution trangitions add nothing fundamentally new. Everything
that can be done with them can also be done by using fusion places,
which as we have seen add only convenience, not power, to a CP
net. But like fusion places, substitution transitions, add so much
convenience that they can make the difference between feasibility
and total impossibility.

When a CP net uses a substitution transition, the logic that the tran-
sition represents must be kept somewhere. It is kept on apage
caled a subpage and the logic on the subpage is called a subnet, or
sometimes a submodel. The page that contains the substitution
transition is called a superpage. Superpages and subpages are con-
nected by equating places on the two pages using special-purpose
fusion sets. A place that belongs to such afusion set is called a port
if it ison asubpage, and a socket if it is on a superpage.

It would be inconvenient to have to create substitution transitions by
manually creating the requisite fusion sets, though it could be done.
Design/CPN provides extensive capabilities for facilitating the cre-
ation and use of substitution transitions. This chapter tells you what
those capabilities are, and shows you how to use substitution transi-
tions to create hierarchical CP nets.

Design/CPN Tutorial for X-Windows A3-1

Design/CPN Tutorial

Structure of a Diagram With Substitution

Before we begin creating substitution transitions, let's take alook at
asimple diagram that already contains one.

- Open the diagram ResmodSubtrans, in the Tutorial Diagrams
directory.

The diagram's hierarchy page appears.

=[1=== Hierarchy#10010

aaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

fffffffffffff

aaaaaaaaaaaaaaaaaaa

The page Global#4 is the same page of globa declarationsthat is
used in ResourceModdl, the net you worked with in the previous
chapter, so we will ignoreit for now and consider the other pages.
Let's start with the hierarchy page itself.

The Hierarchy Page

We can tell alot about this (or any) diagram's structure just by
looking at its hierarchy page. The ResmodSubtrans hierarchy page
shows that ResmodSubtrans contains two executable pages,
Resmod#1 and New#2. The arrow linking the two page nodes indi-
cates that Resmod#1 contains a substitution transition representing
net structure that is kept on New#2. When two pages are related in
thisway, the page that contains the substitution transition is called a
superpage, and the page that contains the net structure that the tran-
sition representsis called asubpage The net structure on a subpage
is sometimes referred to as a subnet or a submodel.

Resmod#1 is a prime page, so the smulator will executeit. New#2
isnot a prime page, but it does not have to be: when a superpageis
prime, all subpagesthat it uses are automatically included in smula-
tion.

A3-2 Design/CPN Tutorial for X-Windows

Substitution Transitions

Below the node for New#2 the string “ResMgr” appears, in aregion
caled a substitution tag region. Thisindicates that the substitution
trangition in Resmod#1 has aname: ResMgr .

The Superpage Resmod#1
Now let's look at the superpage:
- Open Resmod#1.
The page looks like this:

Process
Processing

5"Proc2
+ 4°Proc3 PROC

) Resource
\ 4 if PROC = Proc2)
\ ResMgr then 2°Res else 3'Res ResPool
<
PROC @+5 | HS
T'Res

Doubtless thishasafamiliar look. Pr ocessi ng and ResPool

are the same as they werein the ResourceModel diagram with which
you worked in the previous chapter. However, in place of the rest
of the net there is a substitution transition named Res Mgr .

Note that this pageis, in and of itself, afunctional net. If ResMgr
were an ordinary transition, and everything else were as shown, you
could take this net into the smulator and execute it. 1ts behavior
would be asimplified version of the behavior of Resnet. Takea
moment to execute the net mentally, treating Res Mgr as an ordinary
transition, and notice that there is nothing unusual about what the net
does.

Look at the Status Bar. It describes the place Res Pool , whichis
currently selected, as a Place, [/0O-Socket. Thisindicates that

Design/CPN Tutorial for X-Windows A3-3

Design/CPN Tutorial

ResPool isasocket: somewhere, on some other page (by defini-
tion a subpage), there is another place, a port, associated with it.

- Sdecttheplace Pr ocessi ng, and look at the status bar.

It too is aPlace, I/O-Socket; that is, a socket, so it too has a port
somewhere on a subpage.

The Subpage New#2

A3-4

Now let'stake alook at what the sockets on the superpage
Resmod#1 are connected to.

New#2, as we saw on the hierarchy page, is the subpage for the
substitution transition Res Mgr on Resmod#1, so the ports must be
on New#2. To get to New#2, you could reopen the hierarchy page,
then open New#2 like any other page. But thereisamore conve-
nient method. By double-clicking on a substitution transition, you
can jump directly to the subpage that it represents.

- Double-click on the subgtitution transition Res Mgr . (Don't
click directly over its name or nothing will happen, because
the name region will intercept the clicks.)

The subpage New#2 opensjust asif you had navigated to it viathe
hierarchy page. It lookslikethis:

Design/CPN Tutorial for X-Windows

Substitution Transitions

Process 1/O
Processing

{

5'Proc2
+ 4°Proc3

PROC

—

Request

PROC
Process

PROC
Resource
l if (PROC = Proc2) [p] vo
Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11
PROC 7"Res

Process

lPROC

\ Release

PROC @+5

Thisisessentially Resnet, the net that you coped with so many
copies of in the previous chapter. But there is one obvious differ-

ence: theboxlE' and the string “1/0O” next to Pr ocessi ng and
ResPool .

The|E| iscalled aport key region. It indicates that the associated
placeisaport. The“I/O” iscontained in aregion called aport re-
gion. The“1/O” meansthat the ports have both input arcs and out-
put arcs connecting to them on the subpage.

Look at the Status Bar. It describes the place Res Pool , whichis
currently selected, asaPlace, I/0O-Port. Thistoo indicates that
ResPool isaport: somewhere, on some other page (by definition a
superpage), there is another place, a socket, associated with it.

- SdecttheplacePr ocessi ng, and look at the status bar.

It too is aPlace, I/0O-Port; that is, aport, so it too has a socket
somewhere on a superpage.

Design/CPN Tutorial for X-Windows A3-5

Design/CPN Tutorial

Ports and Sockets

We know now that there are two sockets on the superpage
Resmod#1, and two ports on the subpage New#2. How can we tell
what port is equated with what socket? In thiscaseit is easy: they
have the same name. ThePr ocessi ng places on the two pages
are one port-socket pair, and the Res Pool places are another. If
the names did not match, Design/CPN would show additional in-
formation to tell you what is equated with what, as we will see later
in this chapter.

A port-socket pair is nothing more that a two-member fusion set.
Port-socket pairs are what link superpages and subpages so asto
implement substitution transitions. Therefore substitution transi-
tionsarein practice just a specialized application of fusion sets.

Jumping Directly to a Superpage

Y ou can jump directly from a subpage to its superpage, bypassing
the hierarchy page, by double-clicking on any port on the subpage.

- Double-click on either port on New#2 (avoiding its name
region).

The superpage Resmod#1 becomes the current page.

Overall Structure of the Diagram

We have now looked at al the parts of this diagram. How do they
fit together? What do they add up to?

Y ou may already know the answer: this diagram is functionally
identical with ResourceModdl, the net we worked with in the previ-
ous chapter. The change from aflat to a hierarchical implementation
has made no functiona difference at all.

Before you proceed, be sure that you understand why thisisso. If
you don't seeit, imagine doing the following:

1. Replace each port-socket pair in ResmodSubtranswith a
two-member fusion set.

2. Physically move the net structure on New#2 to Resmod#1,
leaving New#2 empty.

3. Collapse the two fusion sets on Resmod#1 into single
places, as described in the previous chapter.

A3-6 Design/CPN Tutorial for X-Windows

Substitution Transitions

The net on Resmod#1 is now structurally identical to Resnet in the
ResourceModdl diagram. This proves that ResourceModel and
ResmodSubtrans contain functionally identical nets.

Creating a Substitution Transition

To study the creation of substitution transitions, with their attendant
superpages and subpages, let's convert Resnet to hierarchical form
and then restoreit to flat form.

- Open the diagram ResourceModdl, in the Tutoria Diagrams
directory.

The diagram's hierarchy page appears.

=[]=— Hierarchy#10010 =—FF]

n
¥ Global¥4 &
n

W P R

- Open the page Resmod#1.

The page looks as follows:

Design/CPN Tutorial for X-Windows A3-7

Design/CPN Tutorial

A3-8

Process
Processing

2

5'Proc2
+ 4’Proc3

PROC

Request

PROC
Process

PROC

‘_

. Resource
if (PROC = Proc2)

Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11

7 Res

PROC
Process

PROC

\ Release

PROC @+5

‘_

The simplest way to create a substitution trangition is to move part of
an existing net to a subpage, leaving a superpage behind. The steps
in this process are:
1. Designate which net component(s) to move to the subpage.
2. Initiate the process of subpage creation.

3. Specify where on the superpage you want the substitution
transition to appear.

4. Name the substitution transition (if desired).

Let'slook at these stepsin detail, and execute them on Resnet.

Design/CPN Tutorial for X-Windows

Substitution Transitions

Designate the Net Components to Move to the Subpage

Thisisjust amatter of selecting the component(s) to move. If you
want to move asingle transition, click the mouse on it so that it be-
comes the selected object. If you want to move alarger piece of net
structure, form agroup that contains all of the constituent nodes.

- SelectthenodesRequest, Wai ti ng, Obt ai n, Usi ng,
and Rel ease. Besure no other nodes are sdlected: the
status bar should display: Group of 5 Nodes.

Initiate Subpage Creation

- Choose Move to Subpage fromtheCPN menu.

Specify the Substitution Transition's Location
Design/CPN enters substitution transition creation mode. This
mode is similar to ordinary transition creation mode, except that the
result is a substitution transition.

- Usethe mouse with the SHIFT key to create atransition that
just surrounds the existing transition Obt ai n.

Just before you release the mouse button, Obt ai n should look like
this:

v

|| Obtain "

| .%-ﬁ- if PROC = Proc2) then 7 else 11

When you have finished creating the transition, Design/CPN moves
all the nodes you selected, and any associated regions, to a new
page that it creates for this purpose. That pageis a subpage, and the
page you have been working on is a superpage. The superpage now
looks like this:

Design/CPN Tutorial for X-Windows A3-9

Design/CPN Tutorial

Process
Processing

5 Proc2
+ 4°Proc3 PROC

. Resource
\ 4 if PROC = Proc2)
l_m.en_L‘R.ﬁ else 3'Res ResPool
E rvl\.,vv#z
7 Res

PROC @+5

The transition is now a substitution transition. To indicate this, a
region called the hierarchy key region has been created. This con-

sists of a box, . The box is currently partly obscured by the arc
to ResPool . The next section shows you how to move thisregion
to a better location.

Next to the hierarchy key region is another region, called the hierar-
chy region, containing the text New#2. This region indicates that
the net structure that the substitution transition stands for is on the
page New#2. Itisapopup region, so you can make it appear and
disappear by double-clicking on the key region.

Name the Substitution Transition (If Desired)
A substitution transition does not have to have aname. If it does

not, three dots will appear on the hierarchy page by the node for the
transition's subpage, where the transition's name would otherwise

A3-10 Design/CPN Tutorial for X-Windows

Substitution Transitions

be displayed. But it isgenerally agood ideato provide a name, par-
ticularly if adiagram is complex.

When you create a substitution transition viaM ove to Subpage,
Design/CPN automatically enterstext mode. Y ou could namethe
substitution transition immediately by typing in text, but you would
not be able to reposition the text afterwards to improve its appear-
ance, so:

- Leavetext mode.
Naming a substitution transition is exactly like naming any other
trangition: select the trangition, then use the CPN Region com-
mand from the CPN menu.

- Namethe subgtitution transition Res Mgr . Position the
name region in the top center of the transition.

The substitution transition should now look like this (with the hier-
archy regions obscured by an arc):

ResMgr
]

Status of the Diagram

The diagram you have been working on, ResourceModel, has now
been converted to a hierarchical diagram with one subpage and one
superpage. Itisnow structurally identical with the diagram
ResmodSubtrans, which you examined earlier in this chapter.
However it is not identical in appearance: its appearance leaves much
to be desired. The next section shows how its appearance may be
improved.

Improving the Net's Appearance

The appearance that has resulted from creating the substitution
transition is obviously not ideal. Let'simprove the appearance of
the superpage, and then look at and improve the subpage and hierar-
chy page also.

Improving the Superpage's Appearance
It israrefor asuperpage to have an ideal appearance from the first.

Usually some tuning is appropriate, asin the current case. Two
changes would obviously be useful:

Design/CPN Tutorial for X-Windows A3-11

Design/CPN Tutorial

1.

Reroute the arc that runs from the new substitution transition
toProcessi ng.

Move the hierarchy key region and hierarchy region so that
the arc does not obscure them.

Rerouting the Arc

Position the mouse pointer over the adjustment point of the
sharp corner of the arc (towards the bottom of the window).

Depress the mouse button.

Move the adjustment point so that the arc follows aright an-
gle (no “jaggies’ in the adjacent segments).

Release the mouse button.

Use the mouse to move the arc inscription until it isjust be-
low the bottom segment of the arc.

The superpage should now look like this:

Process
Processing

5'Proc2

+ 4°Proc3 PROC

. Resource
\ 4 if PROC = Proc2)
ResMgr I_ﬂ:f_\n_LE’% else 3'Res ResPool
] T R —
PROC @+5
7"Res

Moving the Regions

Moving the regions presents a small problem: they are so small that
itisdifficult to grab onto them with the mouse without getting the

A3-12 Design/CPN Tutorial for

X-Windows

Substitution Transitions

arcinstead. The hierarchy key region is particularly hard to get hold
of .

To deal with situations like this, Design/CPN provides commands in
the M akeup menu that allow you to select and move objects with-
out using the mouse.

- Select the subgtitution transition.

- Choose Child Object from theM akeup menu.
The transition has only one child object, the hierarchy key region, so
the region becomes selected. (If there were more than one child ob-
ject, and Child Object did not select the needed object, you could
use Next Object and Previous Object to select among the child
objects.)
So much for selecting the region. In order to moveit:

- Choose Drag from theM akeup menu.

The editor isnow in drag mode. The mouse pointer becomes the
drag tool.

- Podition the hierarchy key region in the lower right corner of
the substitution transition.

To exit drag mode:

- PressEsc.
The editor returnsto graphics mode. The hierarchy regionisstill a
bit closeto the arc, but it is far enough away to position directly with
the mouse:

- Podition the hierarchy region so that it is directly below the
key region, extending off to theright.

The superpage should now look like this:

Design/CPN Tutorial for X-Windows A3-13

Design/CPN Tutorial

Process
Processing

5 Proc2
+ 4°Proc3 PROC

. Resource
\ 4 if PROC = Proc2)
then 2°Res else 3'Res ResPool
\ ResMgr <
PROC @+5 | HS
T'Res

Improving the Subpage's Appearance

A subpage created by moving part of an existing page usually needs
little appearance tuning, but sometimes improvements can be made.

- Double-click on the subgtitution transition Res Mgr .

The subpage appears.

A3-14 Design/CPN Tutorial for X-Windows

Substitution Transitions

Process
Processing
2]

\

5'Proc2
+ 4’Proc3

PROC

1‘_____

Request

PROC
Process

PROC
Resource

if (PROC = Proc2)
Obtain < then 2°Res else S‘ResITI .
[

@+ if (PROC = Proc2) then 7 else 11
7"Res

1‘_____

PROC

Process

PROC

\ Release

PROC @+5

This page |ooks pretty good except for the placement of the port re-
gions. Let's move them to more felicitous locations:

1‘_____

Use Child Object, Next Object, Previous Object, and
Drag, from the CPN menu, to position the port regions at
the upper right edge of their places.

The subpage should now look like this:

Design/CPN Tutorial for X-Windows A3-15

Design/CPN Tutorial

Process /O

5'Proc2

+ 4 Proc3

Processing

{

PROC

‘_

Request

PROC

Process

PROC
Resource
l if (PROC = Proc2) [F] o
Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11
PROC 7"Res

Process

lPROC

N

PROC @+5

Release

Improving the Hierarchy Page's Appearance

A3-16

When you create a substitution transition, Design/CPN automatically
updates the hierarchy page. It does not attempt to do thisintelli-
gently, because such an attempt could destroy a hand-crafted hierar-
chy page organization that could not have been produced algorithmi-
cally.

- Open the hierarchy page.
The page appears.

Design/CPN Tutorial for X-Windows

Substitution Transitions

=[]== Hierarchy#10010 =]

=

Obvioudly thisis not an acceptable layout. But we don't have to
improve it by hand. Design/CPN can do the job automatically.

- Choose Redraw Hierar chy from thePage menu.

TheRedraw Hierarchy diaog appears.

Redraw Hierarchy

Spacing

@ Compressed

¢ yNon Compressed

[] Start from Scratch
[Reset][Cancel]

- ClickOK.

The dialog disappears. Design/CPN redraws the hierarchy page:

Design/CPN Tutorial for X-Windows A3-17

Design/CPN Tutorial

Hierarchy# 10010

Clearly thisisan improvement.

Status of the Diagram

The diagram you have been working on, ResourceMode, is now
not only structurally the same as ResmodSubtrans; it is, except for
minor variations, identical in appearance aswell. The steps you
have just performed were in fact exactly the steps by which
ResmodSubtrans was created.

Reversing Substitution Transition Creation

A3-18

Asamodel evolves, it sometimes happens that a substitution transi-
tion that was once useful ceasesto be so. When this occurs, you
can reverse the creation process, copying the subpage into the su-
perpage and eliminating the substitution transition. Let's see how
this works.

- Open the superpage Resmod#1.
The superpage appears.

Design/CPN Tutorial for X-Windows

Substitution Transitions

Process
Processing

5 Proc2
+ 4°Proc3 PROC

Resource

\ 4 if PROC = Proc2)
then 2°Res else 3'Res ResPool
\ ResMgr <
PROC @+5 | HS
T'Res

- Select the subgtitution transition Res Mgr .
- Choose Replace by Subpage from the CPN menu.
TheReplace By Subpage dialog appears.

Replace By Subpage =

Delete Pages which have
Mo Other Supernodes

Delete Port Nodes with
Mo Port Assignment

Duplicate Port Nodes with
Multiple Port Assignment

[Heset] [Eﬂncel] | oKk |

- ClickOK.

The dialog disappears. Design/CPN copies the subpage back into
the superpage. Theresultis:

Design/CPN Tutorial for X-Windows A3-19

Design/CPN Tutorial

\ Release

PROC @+5

Process
Processing

L

5 Proc2

+ 4°Proc3 PROC

1‘_____

Request

PROC
Process

PROC

1‘_____

. Resource
if (PROC = Proc2)

Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11

PROC 7 Res

Process

PROC

1‘_____

Status of the Diagram

A3-20

The diagram is now exactly as it was before you created the substi-
tution transition. It is not structurally or functionaly different in any
way for having been split into two hierarchical pages and then re-
assembled. The two operations are exactly inverse.

In this case, the origina appearance of the page was restored when
the subpage and superpage were reassembled, but in general this
will not the case. It happened here only because the subpage was
originally extracted from the superpage, and we did very little
graphical editing while they existed separately. |If the subpage had
not originally been extracted from the superpage but had originated
in some other way (as described later in this chapter), or if it or the
superpage had been modified significantly before reassembly, the
graphical appearance of the resulting combined page would probably
not be good. It would then have to be adjusted manually.

Design/CPN Tutorial for X-Windows

Substitution Transitions

We need ResourceModel back in hierarchical form in order to con-
tinue developing it, but there's no need to redo the work you just
undid. Theresults already exist in ResmodSubtrans:

- Close ResourceModd. Don't save changes.

- Open ResmodSubtrans.

Y ou are now back where you were before executing the Replace
by Subpage command.

Developing on a Subpage

In the preceding example, we created a net first, then moved part of
it to a subpage, leaving behind a substitution transition to represent
it.

It isalso possible to create a substitution transition first, open the re-
sulting subpage, and do devel opment work on the subpage. This
method is generally preferable to creating anet and then extracting
from it, because it never requires everything to be on the same page
a the sametime. After all, the whole purpose of hierarchy isto
avoid having to put everything on the same page.

For example, suppose we want to add additional logic to Resnet to
improve the way processes obtain resources. Currently the transi-
tion Obt ai n performsthistask, and it makes no attempt to do so
intelligently: this could be a source of inefficiency.

One possibility isto replace Obt ai n with something more complex
directly on the subpage that containsit. But that would clutter up the
subpage with details. These would obscure the clear view of
Resnet's overall structure that the subpage currently presents.

A better method isto move Obt ai n to a subpage, and then modify
the subpage to provide the behavior we want. Then the subpage on
which Obt ai n now appears, would a so be a superpage of alower
subpage. No specia problems result from such an arrangement:
substitution transitions may be nested to arbitrary depth.
Create the Substitution Transition and Subpage
- Make New#2 the current page.

- Sdect thetrangition Obt ai n. Be sure nothing elseis se-
lected.

- Choose Move to Subpage from theCPN menu.

Design/CPN Tutorial for X-Windows A3-21

Design/CPN Tutorial

- Draw the substitution transition so that it just surrounds
Obt ai n, just asyou did before.

- Namethe substitution transition “ Smart Obtain”.
- Movethe hierarchy regions to better positions.

New#2 should now look about like this:

Process El e}
Processing

5 Proc2
+ 4°Proc3 PROC

Request

PROC
Process

PROC
Resource
l if (PROC = Proc2) IE‘ Vo

Smart Obtain then 2°Res else 3'Res ResPool
<
HS

[New#3 | 7'Res

PROC

Process

lPROC
\ Release

PROC @+5

A3-22 Design/CPN Tutorial for X-Windows

Substitution Transitions

The Modified Hierarchy Page

The New Subpage

- Open the hierarchy page:

=[1==—== Hierarchy#10010

o |
nin N A g g]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

@<k

=

The page shows that New#2 is a subpage of Resmod#1 and con-
tains the details of the substitution transition Res Mgr , and that
New#3 is a subpage of New#2 and contains the details of the substi-
tution transition Smar t Obt ai n, which has been truncated to
Smar t . Design/CPN does thisto avoid cluttering up the hierarchy
page with long names.

Note that this time the hierarchy page was not disordered by the
creation of the subpage. Thereasonisthat it was already in a stan-
dardized configuration established by the Redraw Hier ar chy
command after New#2 was created, so Design/CPN could deter-
mine automatically how to update it. The hierarchy page prior to the
creation of New#2 had been rearranged manually.

- Double-click on the page node for New#3 to open the new
subpage.

The subpage opens.

Design/CPN Tutorial for X-Windows A3-23

Design/CPN Tutorial

Process

Elln

PROC

1‘_____

Resource
if (PROC = Proc2) [F] wo
Obtain then 2°'Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11
PROC 7"Res

Process

|E|Ou

Thereisonly one general difference between this subpage and
New#2, the subpage (which is now also a superpage) that you cre-
ated previously. Both portsonNew#2 werelisted as“1/O”. Here
Wai tingislistedas”In”, andUsi ng islisted as“Out”. These
designations refer to the status of the portsin the context of the sub-
page: Wai ti ngisan“In” port becauseit isan input place of

Obt ai n,and Usi ng isan“Out” port becauseit is an output place
of Obt ai n.

ResPool now exists on three different pages. It isasocket on
Resmod#1, both a port and a socket on New#2, and a port here on
New#2. All thisreally meansisthat ResPool isnow part of a
three-member fusion group that spansthree pages. Itisstill the
same place on al three pages: nothing new has been added.

Relationship of Pages in a Hierarchy

A3-24

The various pages in a hierarchy created with substitution transitions
are connected only by their ports and sockets. They have no other
functional relationship to each other. Therefore they can be modi-
fied completely independently of each other: changes made on a
subpage have no effect whatever on the net structure on a super-
page, and changes made on a superpage have no effect on a sub-

page.

Subpages and superpages interact directly only during simulation.
Their interaction consists only of the consequences of the fact that a
port and a socket are functionally the same place, so that any change
that a subpage makes to a port's marking intrinsically changes the
superpage's socket's marking, and vice versa.

Thus a subpage functions as a module in much the same way that a
subroutine does. Thereisaclearly defined interface, implemented

in this case by the ports and sockets, and the only connection be-
tween amodule and anything that usesit isthe interface. However a

Design/CPN Tutorial for X-Windows

Substitution Transitions

subpage is not exactly like a subroutine: it isin some ways more like
amacro, aswe will see later in this chapter.

Deleting a Subpage
Asadiagram evolves, it sometimes happens that a subpage is no
longer needed for some reason. The need then is not to copy it to a
superpage, but to get rid of it entirely.
Deleting such a subpage is no different from deleting any other
age. Design/CPN automatically makes all adjustments necessary to

reflect the fact that the subpage no longer exists.
For example, suppose we decided that implementing amoreintelli-
gent algorithm for Obt ai n isnot necessary after al, so that the
subpage New#3 on which we might have implemented such an a-
gorithmis no longer necessary. To delete the subpage:

- Open the hierarchy page.

- Select the page node for New#3.

- PressDELETE. (You can't Cut awhole page.)

A confirmation dialog appears.

Caution

5election contains page nodes. Are you
sure you want to delete the

corresponding pages?

- ClickOK.

The page node for New#3, and the connector designating it asa
subpage of New#2, both disappear. New#3 is gone.

- OpenNew#2.

Design/CPN Tutorial for X-Windows A3-25

Design/CPN Tutorial

Smart Obt ai nisnow just an ordinary transition, and the regions
designating it as a subgtitution transition have disappeared.

Isthe net functionally the same as before Smar t Obt ai n wascre-
ated? Itisnot! Smart Obt ai n does not have atime region, but
Obt ai n did: the region was moved to a subpage along with

Obt ai n, and disappeared from the diagram when the subpage was
deleted. Creating and then deleting a subpage, even if only one
transition was moved to the subpage, can permanently change a su-

perpage.

Let's go back to the origina diagram and proceed down another
path.

- Close ResmodSubtrans. Don't save changes.

- Re-open ResmodSubtrans.

Using a Subpage More Than Once

A3-26

The capabilities we have looked at so far would be more than
enough to make substitution transitions a useful technique. But
these capabilities are only the beginning. The real power of substi-
tution trangitions liesin the fact that a subpage need not be the value
of only one subgtitution transition: it can be used repeatedly, asthe
value of any number of substitution transitions on any number of
superpages. Let's see how thisworks.

- Make Resmod#1 the current page:

Design/CPN Tutorial for X-Windows

Substitution Transitions

Process
Processing

5'Proc2
+ 4'Proc3 PROC

Resource
v if (PROC = Proc2)
\ ResMgr then 2'Res else 3'Res ResPool
<
PROC @+5 | HS
7Res
Now modify the page so that it looks like this:
PROC @+5
Process w
Processing PROC ResMgr2
._/ ’
5'Proc2 A

+ 4°Proc3 PROC

if (PROC = Proc2)
then 2°Res else 3'Res

. Resource
\ 4 if PROC = Proc2)

\ ResMgrl then 2°Res else 3'Res ResPool
<
PROC @+5 | HS

Design/CPN Tutorial for X-Windows A3-27

Design/CPN Tutorial

Suggestions:

1. GetResMgr 2 to bethesamesizeasResMgr (now
ResMgr 1) by using Change Shape. To useit:

- SdectResMyr 2.
- Choose Change Shape from theM akeup menu.
- ClickonResMyr 1.

2. Use Align Horizontal and Align Vertical to position
ResMgr 2 exactly.

3. Create the new arc inscriptions by cutting and pasting the
existing inscriptions.

The next step isto convert Res Myr 2 to a substitution transition,
and associate it with the existing subpage New#2.

- SdectResMyr 2.

- Choose Substitution Transition from theCPN Menu.
In order to convert Res Mgr 2 into a substitution transition,
Design/CPN needs to know what subpage to associate with the
trangition. It therefore displays the hierarchy page, allowing you to
use the mouse to indicate the subpage.

- Click the mouse on the page node for New#2.

Resmod#1 reappears. ResMgr 2 isnow a subgtitution transition
whose value is the subpage New#2:

A3-28 Design/CPN Tutorial for X-Windows

Substitution Transitions

Process

Processing

B, > [Hs| [Newr2 |

PROC @+5

y

PROC ResMgr2

5'Proc2 A
+ 4°Proc3 PROC
if (PROC = Proc2)
then 2°Res else 3'Res
. Resourc
\ 4 if (PROC = Proc2)
then 2°Res else 3'Res ResPool
\ ResMgrl <
PROC @+5 | HS
T'Res

Thetwo port placesPr ocessi ng and ResPool on the subpage
have the same names as two socket places connected to Res Mgr 2
on the superpage. Design/CPN has used this information to assign
the ports to the sockets automatically. If any port had a name that
did not match that of a socket, you would need to assign that port to
a socket manually, as described later in this chapter.

- Open the hierarchy page:

Design/CPN Tutorial for X-Windows A3-29

Design/CPN Tutorial

Eress

Hierarchy# 10010

s EIERY . R k|
i 1
E M2]
R [R ..

" Global#d

=l

=]

New#2 isnow the value of two substitution transitions, so both
names appear below its page node in substitution tag regions.

A3-30

Open New#2:

Design/CPN Tutorial for X-Windows

Substitution Transitions

Process 1/O

Request

PROC

Process

PROC
Resource
l if (PROC = Proc2) IE‘ Vo
Smart Obtain then 2°Res else 3'Res ResPool
<
@+ if (PROC = Proc2) then 7 else 11
7 Res
Process PROC
PROC
\ Release
PROC @+5

It's appearance hasn't changed at all. Itistill the same asit was
when it was the value of only one substitution transition. It would
remain the same no matter how many substitution transitions it was
the value of .

Structure of the Diagram

The diagram now contains a superpage, Resmod#1, with two sub-
stitution transitions. Each of these transitions has asits value the
subpage New#2.

The structure of the diagram would be functionally the same if the
submodel on New#2 appeared physically on the superpage in place
of each of the substitution transitionsResMgr 1 and ResMgr 2. If
we actually made this change, and did some physical rearranging,
the result could look like this:

Design/CPN Tutorial for X-Windows A3-31

Design/CPN Tutorial

Those long arcs are perfect candidate for elimination by using fusion

sets:
] wrriws
. oy e
ham Tiir W Faalal N E —
PP R A ke e 1Y

You can't tell from the small print in the figure, but the two

Pr ocessi ng nodesarein afusion set called MFRAME, and the two
ResPool nodesarein afusion set called RPOOL. These names are
appropriate, because as the transformation we have just traced
proves, Resmod#1 in the current diagram is functionally identical to
the Resmod#1 with two copies of Resnet and two fusion sets that
you worked with in the previous chapter. The only difference is that
the previous Resmod#1 was implemented by using fusion places,
while this one was implemented using substitution transitions.

A3-32 Design/CPN Tutorial for X-Windows

Substitution Transitions

Since thereis only one page, any type of fusion set would produce
functional identity with Resmod#1 from the previous chapter. The
sets above happen to be global sets. Later in this chapter we will see
how to use substitution transitions to create the same effects as
global, place, and instance fusion sets.

Substitution Transitions and Multiplicity

Process

Processing

B, > [Hs] [Newsz]

Let's take another look at the current Resmod#1.
- Make Resmod#1 the current page:

PROC @+5

S

PROC ResMgr2

5'Proc2 A
+ 4’Proc3 PROC
if (PROC = Proc2)
then 2°Res else 3'Res
. Resourc
v if PROC = Proc2)
then 2°Res else 3'Res ResPool
\ ResMgrl <
PROC @+5 | HS
T'Res

To show the isomorphism between this page and Resmod#1 in the
previous chapter, we imagined physically replacing ResMgr 1 and
ResMgr 2 the submodel on New#2. Of course, we would not want
Design/CPN to actually perform such a copying operation when ex-
ecuting the diagram. If alarge subpage were used many times, the
result would be impossibly huge.

Design/CPN avoids such problems by using multiplicity: it createsa
separate instance of a subpage for each substitution transition that
usesit. Thisisthe same technique we used at the end of the previ-
ous chapter to avoid having to physically duplicate Resmod#1 to get
acopy of it. Theonly differenceisthat in this case we don't have to

Design/CPN Tutorial for X-Windows A3-33

Design/CPN Tutorial

explicitly indicate the number of instances needed, because
Design/CPN knows how many substitution transitions use a given
subpage, and generates instances accordingly.

Subpages, Subroutines, and Macros

The similarity between a subpage and a subroutine should now be
obvious. Just asyou can create a subroutine independently of other
code, have only one copy of it, and call it from many pointsin a
program, so you can create a submodel independently of other net
structures, have only one copy of it, and use it in many locationsin
amode.

However, subpages differ from subroutinesin one important way.
Although they are not physically copied into superpages, the effect
of such copying being provided by using instances, the functional
effect isthe same asif they actually had been copied. Consequently
substitution transitions are really more like macros than like subrou-
tines: they are not called during execution and instantiated only when
and if they are called, as subroutines are, but are replaced by their
values during compilation, as macros are.

In practice, the macro-like quality of substitution transitions has only
one consequence: substitution transitions cannot be used recur-
sively, either directly or indirectly, for such usage would lead to an
infinite loop of substitution. Design/CPN does not permit you to
specify recursive substitution.

Simulating With Hierarchy

A3-34

Now let's switch over to the ssimulator and see how the diagram ex-
ecutes.

Since the diagram containing the net was not created on your sys-
tem, it does not contain the information necessary to alow
Design/CPN to communicate with the ML process. Therefore you
must load that information into it before you can execute it.

- Choose ML Configuration Optionsfrom theSet menu.
A diaog appears.

- ClickL oad.

- ClickOK.

The necessary information about the ML processis copied to the di-
agram.

Design/CPN Tutorial for X-Windows

Substitution Transitions

- Enter the simulator.

- Adjust the simulation regions on Resmod#1 and New#2.

- Start simulation.
Continue simulation through several steps. Between steps, look at
both Resmod#1 and the two instances of New#2. Y ou will need to
switch between the instances as you did when watching simulation
with instance fusion sets.

- Depressthe SHIFT key.

- Click the mouse on the title bar of Resmod#1.
Thel nstance Switch dialog appears.

- Usethe mouse to sdlect the other instance of Resmod#1.

- Click Switch.

The dialog disappears. Thetitle bar of the Resmod#1 window now
indicates that the other instance is on display.

Verify that dl three Pr ocessi ng places (one socket and two ports)
always have the same marking, that the same istrue for all three
ResPool places, and that al other markings may be different on
the two instances of New#2.

When you have completed your observations:
- Leavethesmulator.

There will be various simulation regions left over, and these would
get in the way of future observations.

- UseRemove Sim RegionsfromtheCPN menutore-
move the simulation regions from each page.

Deleting a Reference to a Subpage

Sometimes thereis areason to bresk the association between a
substitution transition and its subpage. When such an association is
broken, the substitution transition becomes an ordinary transition.
The subpage remains associated with any other substitution transi-
tionsthat referenceit, and continues to be available for use by addi-
tional substitution transitions.

Design/CPN Tutorial for X-Windows A3-35

Design/CPN Tutorial

To delete areference to a subpage, al you need to do is delete the
hierarchy key region from the substitution transition that references

It.

- Open Resmod#1.

- Sdect the hierarchy key region next toResMyr 2.

- Press DELETE.

The hierarchy key region and associated hierarchy region disappear:

PROC @+5
Process w
Processing PROC ResMgr2
._/ ’
A

5°Proc2
+ 4°Proc3 PROC

if (PROC = Proc2)
then 2°Res else 3'Res

. Resource
A 4 if (PROC = Proc2)
\ ResMgrl then 2°Res else 3'Res ResPool
PROC @+5 | HS
T'Res

ResMgr 2 isnow an ordinary transition. Its statusisthe same as if
it had never been a substitution transition.

Manually Assigning Ports to Sockets

It was easy to convert Res Mgr 2 into a substitution transition, be-
cause there was no need to indicate explicitly which port should be
associated with which socket: Design/CPN made the assignment
automatically by matching port names with socket names.

A3-36 Design/CPN Tutorial for X-Windows

Substitution Transitions

Equating ports and sockets by matching their names can be a great
convenience, but it does not always provide what is needed.
Requiring port and socket names to match would be like requiring a
subroutine always to be called with the same variable namesin the
argument list. The disadvantages are obvious. To avoid such
problems, Design/CPN allows you to manually specify what port
will be matched with what socket when a substitution transition is
created.

Let's convert Res Mgr 2 back to a substitution transition, but this
time do the port assignments by hand. Thiswill be more interesting
of al the names don't match, so:

- Make New#2 the current page.
- Changethe name of ResPool toRezPool .

Y ou have now changed the name of a port that was already equated
to asocket, on ResMgr 1. This makes no functional difference.
Design/CPN matched the names when Res Myr 1 became a substi-
tution transition, but the association of port with socket that was
created then has no further connection with the name of either place.
Port and socket names may therefore be changed without reference
to one-another.

When names don't match, we need some other way to determine
what port is associated with what socket. The necessary informa:
tion is kept in the hierarchy region of the substitution transition.

- Expand the hierarchy region of Res Mgr 1 so that you can
see dl of its contents:

Design/CPN Tutorial for X-Windows A3-37

Design/CPN Tutorial

A3-38

PROC @+5
Process w
Processing PROC ResMgr2
_/ ’
5'Proc2 A

+ 4°Proc3 PROC

if (PROC = Proc2)
then 2°Res else 3'Res

. Resourc
v if (PROC = Proc2)
\ ResMgrl then 2°Res else 3'Res ResPool
PROC @+5 | HS
New#2 7'Res

ResPool->RezPool

The second line in the region indicates that the socket ResPool in
Resmod#1 is associated with a port named Rez Pool . Thefirst line
indicatesthat RezPool ison New#2. Thereisno linefor

Pr ocessi ng, becauseit hasthe same name asitsport (at least in
the context of ResMgr 1). Theregion could contain aline
"Processing->Processing”, but for economy such lines are just
omitted. If bothPr ocessi ng and ResPool matched their ports,
the region would contain only the name of the relevant subpage.

Now let's make Res Mgr 2 a substitution transition again, but do our
own port assignments.

- SdectResMyr 2.

- Choose Substitution Transition from theCPN Menu.
Design/CPN displaysthe hierarchy page.

- Click the mouse on the page node for New#2.

Resmod#1 reappears. ResMgr 2 isagain asubstitution transition
whose value is the subpage New#2.

Design/CPN Tutorial for X-Windows

Substitution Transitions

Process

- Expand the hierarchy region for ResMyr 2:

PROC @+5

Processing

/ g [

y

PROC ResMgr2

5‘P‘I‘OC2 ‘ New#2

+ 4 Proc3 PROC ResPool->?7?
if (PROC = Proc2)
then 2°Res else 3'Res

. Resourc
\ 4 if (PROC = Proc2)
\ ResMgril < then 2'Res else 3'Res ResPool
PROC @+5 | HS
New#2 7 Res

ResPool->RezPool

(The region has been repositioned to make the figure fit on the page,
but you don't need to bother changing your diagram.)

The port and socket named Pr ocessi ng have been matched auto-
matically, so no reference to them appears in the hierarchy region.
Theregion indicatesthat Res Mgr 2 has one unassigned socket:
ResPool .
Now let's make the necessary port assignment:

- Sdect ResPool .

- Choose Port Assignment from theCPN menu.

The status bar displays Select one of the substitution transitions.
We're working with Res Mgr 2 now, so:

- Click onResMyr 2.

Design/CPN Tutorial for X-Windows A3-39

Design/CPN Tutorial

Design/CPN displays the subpage for ResMgr 2, so that you can
indicate which port you want.

- ClickonRezPool .

Design/CPN returns you to Resmod#1. The hierarchy region for
ResMgr 2 now shows that the socket ResPool isassociated with

the port Rez Pool :
PROC @+5
Process w
Processing PROC ResMgr2
P
i [Hs
5'Proc2 A New#2
+ 4 Proc3 PROC ResPool->RezPool

if (PROC = Proc2)
then 2°Res else 3'Res

Resource
v if PROC = Proc2)
\ ResMgrl < then 2°Res else 3'Res ResPool
PROC @+5 | HS
New#2)

ResPool->RezPool

Y ou can aso use this technique to reassign ports and sockets. Just
make the assignment you want, and the existing assignment will be
replaced by the new one.

A3-40 Design/CPN Tutorial for X-Windows

APPENDIX B
The Sales Order M odel

Chapter B1

Introduction to the
Sales Order Model

Files for Use With This Appendix

The Sales Order Model consists of the following files:

1. BPMA Mode V2 and BPMA Modd V2.DB: Thesefiles
contain the model itself. They are kept in the
Tutoria Diagrams directory that is supplied with this tutorial.

2. SdesOrderParmsV2: Thisfile holds parameters that control
the behavior of the Sales Order Model. It iskept inthe
Tutoria Diagrams directory.

The exercisesin this appendix ask you to modify
SalesOrderParmsV 2, so that fileis not locked. To make it easy for
you to restore thefileto itsoriginal state, Tutoria Diagrams also
contains alocked copy of it, under the name
SalesOrderParmsV2.0RIG.

Overview of the Sales Order Model

The Sales Order Model isa high-level representation of ageneric
Sales Order System. The model is designed to be executed (run) re-
peatedly with different values representing attributes of the system.
After each run, the model displays charts that summarize the results
of therun.

The chartsthat are displayed at the end of arun may suggest
changes that would result in amore efficient system. The effect of
making such changes can then be investigated by setting appropriate
attributes in the model, running it again, and examining resulting
charts.

The Sales Order Model does not specify what product is being or-
dered, and omits many of the details that would be part of areal
sales order processing operation. Itsgoal isto demonstrate various
basi c techniques for making models and using them to analyze sys-

Design/CPN Tutorial for X-Windows B1l-1

Design/CPN Tutorial

tem performance. These techniques, once understood, can be used
to add additional capabilities to the model as needed to meet the re-
guirements of a particular situation.

This chapter gives an overview of the model. Chapter B2 shows
how to executeit. Chapter B3 shows how it might be used to iden-
tify and test possible improvements to the Sales Order System.
When you have read these chapters you will be able to use the Sales
Order Model to perform awide variety of observations and experi-

ments.

Entities Represented in the Model

The Sales Order Moddl represents entities of three types:

1.

Customer Requests. These are orders for the product being
sold. Customer requests come in two varieties, designated

Big and Small. For brevity, this document generally refers
to customer requests as jobs.

Staff members. These are people who process jobs. Staff
members comein two varieties, designated Expert and
Novice.

Equipment. These are pieces of machinery that are used by
staff members to process jobs. Equipment comesin two
varieties, designated Fast and Slow.

Action Cycle for Processing Orders

B1-2

Jobs are processed through a cycle of actions that occurs once for
each request. Those actions are:

1.
2.

A job begins to be processed.

A staff person is assigned from a staff pool to handle the re-
guest. A bigjob requires an expert staff person; asmall job
may be assigned either an expert or anovice.

The staff person entersthe order into the system in some
way.

The staff person obtains a piece of equipment from an
equipment pool, usesit in some way to process the order,
then returns the equipment to the pool. A bigjob requiresa
fast piece of equipment; asmall job may be assigned either
fast or slow equipment.

Design/CPN Tutorial for X-Windows

Sales Order Model

5. The staff person creates an invoice and shipsit along with
the requested product.

6. The staff person returnsto the staff pool.

7. Processing of the job is complete.

Inefficiency in the Sales Order System

There are several possible sources of inefficiency in the system that
the Sales Order Model depicts. They are:

1. There may be more staff members and/or equipment pieces
than are needed to keep up with the job stream. Inefficiency
results because staff members must be paid, and equipment
pieces maintained and amortized, whether or not they are ac-
tively producing revenue.

2. There may betoo few staff members and/or equipment
pieces to keep up with the job stream. Inefficiency results
because jobs that could be generating revenue are instead
waiting to be processed.

3. There may be a mismatch between the composition of the job
stream and the composition of the staff and/or equipment
pools. For example, if the job stream consists mostly of big
jobs, but most staff members are novices and/or most
equipment is slow, much unproductive waiting will occur.
Conversely, if the job stream consists mostly of small jobs,
but most staff members are experts and/or most equipment is
fast, there will be awasteful usage of expensive resources
on low-revenue jobs.

Using the Model to Reduce Inefficiency

The Sales Order Model can be used to detect inefficiency of the de-
scribed types, and to identify and test possible changes that would
reduceit. The general method for using the moddl is:

1. Set the properties of the job stream, staff pool, and equip-
ment pool.

2. Execute the model given these properties. The model will
gather and display statistics on the efficiency of the sales or-
der operation.

3. Examine the results of the smulation and identify changes
that are likely to improve efficiency.

Design/CPN Tutorial for X-Windows B1-3

Design/CPN Tutorial

4. Executethe model again with different properties that reflect
the changes identified in Step 3.

5. lterate until a satisfactory result is obtained.

An example of this method appears in the next chapter.

Simulation Parameters
To alow for the testing of different combinations of system load,
staff composition, and equipment composition, details on these
properties are not wired into the model: they are supplied as parame-
tersin afile that the model reads at the beginning of each simulation

run. Thisfileisan ordinary ASCII file, and may be edited with any
text editor to specify the properties for arun.

Job Stream Parameters

Jobs are created and entered into the model in batches at regular in-
tervals during execution of the model. The parameters that control
the stream of jobs are:

1. Thenumber of batchesto be generated during the run.

2. Thetimeinterval between batches.

3. The number of big jobsin each batch.

4

. The number of small jobsin each batch.

Job Value Parameters

Big and small jobs differ in the gross revenue that arequest of each
kind generates. The parameters are:

1. Thegrossrevenue generated by abig job.

2. Thegrossrevenue generated by asmall job.

Staff Parameters
The parametersthat control the staff composition are:
1. Thenumber of expert staff members.

2. The cost per time unit of an expert staff member.

B1-4 Design/CPN Tutorial for X-Windows

Sales Order Model

3. The speed of an expert staff member. The fastest member
has a speed of 1; ower members are represented by larger
numbers.

4. The number, cost and speed of novice staff members.

Equipment Parameters

The parameters that control equipment composition are exactly ana-
ogous to those that specify the staff parameters. The parameters are:

1. Thenumber of fast pieces of equipment.

2. Thecost per time unit of afast piece of equipment.

3. The speed of afast piece of equipment. The fastest piece has
aspeed of 1; lower pieces are represented by larger num-
bers.

4. The number, cost and speed of slow pieces of equipment.

Gathering and Displaying Statistics

Revenue Statistics

Asthe model executes, it gathers statistics that measure the perfor-
mance of the Sales Order System. These statistics can be used to
revea inefficiency caused by excessive, insufficient, inefficient, or
and/or inappropriate staff and equipment, and to identify changes
that are likely to result in amore efficient operation.

The dtatistics are accumulated using the Design/CPN Statistical
Variablesfacility. Thisfacility allows many types of statistical anal-
ysisto be performed on the data that results from a simulation run.
When arun is complete, the results are displayed in five bar charts.
These charts are produced by the Design/CPN Charting facility.

The gtatistics gathered by the Sales Order Model are of two kinds:
revenue statistics and efficiency statistics.

These statistics show the overall financia performance of the Sales
Order Model for arun, specificaly:

1. The gross revenue brought in by the jobs processed during
the run.

2. The operating cost incurred in processing the jobs.

Design/CPN Tutorial for X-Windows B1-5

Design/CPN Tutorial

3. The profit generated by therun. Thisisjust the difference
between the gross revenue and the operating cost.

Efficiency Statistics

These statistics provide aview of the internal behavior of the Sales
Order Model. Their goal isto revea areas of inefficiency, and
thereby indicate changes that might decrease operating cost and
hence increase profit. The statistics kept are;

1. Thetime spent and expense incurred in processing big jobs.
Thisfigure isdivided into useful time and expense, and
wasted time and expense caused by inefficiency.

2. Thetime spent and expense incurred in processing small
jobs. Thisfigureisdivided into useful and wasted time and
expense.

3. Statistics on productive and nonproductive time and expense
for expert and novice staff members.

4, Statistics on productive and nonproductive time and expense
for fast and slow equipment.

Using the Sales Order Model

Now that you have ageneral understanding of what the Sales Order
Model is and does, you can go on to use it to measure the efficiency
of the Sales Order System, and to identify and test possible im-
provements to that system. Methods for performing these opera-
tions are described in the next two chapters.

B1-6 Design/CPN Tutorial for X-Windows

Chapter B2
Running the Sales Order Model

This chapter tells you how to start and run the Sales Order Mode.
Methods for using the model to analyze and improve the Sales Order
System are covered in the next chapter.

Before you proceed, be sure you know where to find the following
files:

1. BPMA_Modd V2: Thisfileisused to open the model.

2. SalesOrderParmsV 2: Thisfile holds parameters that control
the behavior of the model.

The Simulation Parameter File

Before we run the model, let'stake alook at the parameter file.

- Open thefile SalesOrderParmsV 2 using any text editor.

Thefile as supplied by Meta Software looks like this:

(* This file contains the parameters for
t he BPMA Sal es Order nodel. *)

(* Parameters controlling the incom ng
stream of Customer Requests: *)

(* Total nunmber of batches of requests;
Ti me between batches; Big requests per
batch; Small requests per batch: *)

3 5 5

(* Parameters establishing the dollar

val ue of Custoner Requests *)

(* Big request value; Small request val ue:
*

200 50

(* Parameters establishing the Staff: *)

(* Number of Expert staff; Expert cost fac-
tor; Expert speed factor: *)

2 20 1

Design/CPN Tutorial for X-Windows B2-1

Design/CPN Tutorial

(* Number of Novice staff; Novice cost fac-
tor; Novice speed factor: *)
2 10 5

Paranmet ers establishing the Equi pment:

*
) . .
* Nunmber of Fast equip pieces; Fast cost
actor; Fast speed factor: *)

2 1
* Nunmber of Sl ow equip pieces; Slow cost
actor; Slow speed factor: *)

5

N =P~ N —h— ¥~

(* End O File. *)

The lines may not wrap on your screen exactly as shown above, but
the information should be the same.

Restoring the Simulation Parameter File

If the parameter file does not match the above figure, if you have
doubts about its correctness for any reason, or if you ever want to
restoreits original values after experimentation, make a new one by
copying SalesOrderParmsV 2.0RIG, which should be in the same
directory as SalesOrderParmsV2. See the beginning of the previous
chapter for details.

System Properties Specified by These Parameters

B2-2

The parameters shown above specify a Sales Order System with the
following properties:

1. A job stream consisting to 3 batches of jobs. A batch will
enter the system every 10 simulated time units. Each batch
will consist of 5 big jobs and 5 small jobs.

2. Job values of 200 value unitsfor abig job, and 50 for a
small job.

3. A staff pool consisting of 2 experts and 2 novices. Each ex-
pert costs 20 value units per time unit, and has a speed of 1,
the fastest possible speed. Each novice costs 10 value units
per time unit, and has a speed of 5, denoting a speed that is
one fifth that of an expert.

4. An equipment pool consisting of 2 pieces of fast equipment
and 2 pieces of dow equipment. Each fast piece costs 2
value units per time unit, and has a speed of 1, the fastest
possible speed. Each slow piece costs 1 value unit per time
unit, and has a speed of 5, denoting a speed that is one fifth
that of apiece of fast equipment.

Design/CPN Tutorial for X-Windows

Running the Sales Order Model

Note that it does not matter what real-world measures we equate
with a“timeunit” or a“value unit”. These arejust abstract measur-
ing units. To produce exact time and cost calculations, we could
equate them with any appropriate standard measures. If we care
only about relative changes in system performance, as will be the
case in this chapter, no particular identification with standard mea-
suresis needed.

Analysis of the Initial Parameters

Before we execute the model with these parameters, let'stry to an-
ticipate the results by looking at the figures. Do the values shown
seem likely to give efficient performance?

Thereisreally no way to tell. Nothing isglaringly wrong, but the
nonlinear relationships between the speed and the cost of a staff
member or equipment piece makesit hard to be sure. Thisistypical
of situations in which modeling and ssimulation are useful: thereis
just no way to tell what will happen by thinking about it. If there

were, there would be no need for modeling, and no profit in simula-
tion.

Starting the Model
To start the Sales Order Mode!:

- Start Design/CPN as you would any X-Windows applica-
tion.

Y ou are now in Design/CPN, and the editor is active.
- Choose Open from theFile menu.
TheOpen Filediaog appears.

- Navigate to the directory that containsthe file
BPMA Mode V2 and open thefile.

The Sales Order Model diagram opens.
- Choose ML Configuration Optionsfrom the Set menu.
- ClickL oad.
- ClickOK.

The necessary information about the ML processis copied to the di-

agram. We don't want to change the model, but only to executeit,
SO:

Design/CPN Tutorial for X-Windows B2-3

Design/CPN Tutorial

- Choose Enter Simulator from theFile menu.

Running the Model
We are now ready to run the model.
- Choose Automatic Run from the Sim menu.

Before the model can execute, it must read in the simulation parame-
tersfrom the parameter file. Thisrequiresindicating the location of
thefileto thefile system. The Open File dialog appears.

- Open the parameter file.

TheOpen Filediaog disappears. The mouse becomes the Wait
Timer.

When al jobs have been processed, the Wait Timer disappears and
an output fileiswritten. Thisfile contains arecord describing each
job that was processed. In order to write the output file, the com-
puter needsto know whereto put it. It will request thisinformation
by displaying the Save Filedialog. Usethisdiaogtoindicate
where you want the output fileto go. It is generally most conve-
nient to put it in the same directory as the mode.

After the output file has been written, five bar charts that display the
revenue and diagnostic statistics are created (this takes afew min-
utes), and a dialog appears:

Stop %I

0 There are no more enabled transitions.

Model execution isnow complete.
- ClickOK.

The dialog disappears. Y ou may now examine the charts.

B2-4 Design/CPN Tutorial for X-Windows

Running the Sales Order Model

Analyzing and Using Simulation Results

Now that you know how to run the Sales Order Model, you can
begin to use it to examine and improve the Sales Order System, as
described in the next chapter.

Design/CPN Tutorial for X-Windows B2-5

Chapter B3
Using the Sales Order Model

This chapter shows you how to interpret the results of an execution
of the Sales Order Model, identify possible improvements, modify

the smulation parameters to represent the improvement, and exam-
ine the results.

Interpreting the Results of a Simulation Run

The results of arun of the Sales Order Modd are written to an out-
put file and displayed in five bar charts.

The output file contains arecord for each job that was processed.
These records represent the invoices and products that the Sales
Order Model produces asit operates. The information in thisfile
does not relate to analysis of system performance, though such in-
formation could of course beincluded in it, so we will not consider
it further.

Theinformation in the five bar charts can be used to analyze system
performance. Itisdisplayed in three charts giving information about
revenues, and two giving information about efficiency.

Examining the Revenue Charts
First let'slook at the revenue charts that result from executing the
model given the parameters shown at the beginning of the previous
chapter. If you just executed the model, as described in the previous
chapter, these results are already on display. If not, execute the
model now.

The revenue charts that you see should look about likethis:

Design/CPN Tutorial for X-Windows B3-1

Design/CPN Tutorial

Gross Revenue

B BigJobs
I oo (0 Sma..bbg

0 1250 2500 3750

Oper ating Cost

B ExpertStaff
O NoviceStaf
| W 1683 | o FasEquip

BH SowEquip

0 561 1122 1683

Operating Profit

M 2067

0 689 1378 2067

(The charts you see may have dightly different numeric values,
caused by random differencesin the details of model execution, and
their appearance will be somewhat unpolished. The appearance of a
chart can be polished by using the Design/CPN Editor.)

These charts show a gross revenue of 3750 and a profit of 2067.

The expenses are 1683, divided as shown in the Operating Cost
chart.

B3-2 Design/CPN Tutorial for X-Windows

Using the Sales Order Model

In absolute terms, the profit islarge; but the question is not whether
profit islarge, but whether it could be larger. These three charts do
not help in answering that question. To answer it, we must look at
the efficiency charts.

Examining the Efficiency Charts

There are two efficiency charts. One of the charts depictstime
elapsed during the ssmulation run; the other depicts costs incurred.
Dueto the possibility of varying speed and expense parametersin-
dependently in the parameter file, the pictures presented by the time
and cost charts may be very different.

The efficiency charts are on the page immediately below the revenue
charts.

- Choose Open Page from thePage menu.

A page called the hierarchy page appears. This page contains a node
called a page node for every page in the diagram. Note the page
node named BAR#8. This node represents the page we were just
looking at, containing the revenue charts. Next to the BAR#8 node
isanode named BAR#7. That node represents the page that con-
tains the efficiency charts.

- Usethe mouseto select the node BAR#/.
- Choose Open Page from thePage menu.

The page BAR#7 opens. It contains atime chart and a cost chart.

Examining the Time Chart

The time chart should look about like this:;

Design/CPN Tutorial for X-Windows B3-3

Design/CPN Tutorial

Average Time

Big

Jobs 28

Small

Jobs 17

Expert 51

Staff [™ WorkingJ
Novice O Waiting
Staff o1

Fast

Equip o1

Slow

Equip 2

0O 6 12 18 24 30 36 42 48 54 60

B3-4

The information displayed by this chart, in order |€eft to right and top
to bottom, is:

1
2.

The average time required to completely process a big job.

The average time during which a big job waited for equip-
ment.

The same averages for small jobs.

The average time an expert staff member worked processing
jobs

The average time during which an expert staff member
waited for ajob to handle or for equipment to become avail-
able.

The same averages for novice staff.

The average time afast equipment piece worked processing
jobs

The average time afast equipment piece waited because there
was nothing for it to do.

Design/CPN Tutorial for X-Windows

Using the Sales Order Model

9. The same averages for slow equipment.

It isimmediately obvious from this chart that there is something very
wrong with the Sales Order System. Jobs spend alot of time wait-
ing to be processed, equipment spends alot of time unused, and the
staff is being used nearly to full capacity. Thereisobviously con-
siderable inefficiency. Since only the staff is closeto full utilization,
the probable cause isthat there istoo little staff capacity.

Examining the Cost Chart

Now let's ook at the cost chart:

Average Cost
Big
Jobs 8
Smdll
Jobs 123
Expert
1030

Staff] ([| WorkingJ
Novice O Waiting
Staff 510
Fast
Equip 102
Slow
Equip o1

0 112 224 336 448 560 672 784 896 10081120

The information displayed by this chart is the cost corresponding to
each time measurement shown in the time chart.

A comparison of the time and cost charts supports the hypothesis
that thereisinsufficient staff. The time chart showed that jobs are
waiting along time on the average, yet the cost chart shows that this
waiting is not causing an accumulation of expense. The only expla-
nation is that the jobs are waiting without using staff or equipment:
that is, they are waiting to enter the system in thefirst place. Since
the only requirement for ajob to enter the system is a staff person to

Design/CPN Tutorial for X-Windows B3-5

Design/CPN Tutorial

be assigned to the job, thisis further evidence that more staff is
needed.

Experimenting With Possible Improvements

It would be niceif there were some algorithmic way to examine the
results of ssimulation and determine exactly what changes will most
improve a system, but for realistic systems there usually isnot. If
there were, the algorithm could have been applied in the first place,
and there would have been no need for smulation. However this
does not mean that one is reduced to guesswork. Examination of
the results of simulation usually suggests one or several promising
approaches; it just does not provide exact figures.

The way to determine how best to improve amodeled system isto
use simulation to perform experiments. The generd agorithmis:

- Change some property or parameter of the model.

Run the simulation again.

Compare the results to those of the previous run(s).

Iterate to zero in on a solution.

In the case of the Sales Order Model the obvious hypothesis, based
on the charts shown above, is that there is not enough staff capacity
to either process al the jobs or use al the equipment. There aretwo
ways in which the staff capacity might be increased: by adding more
staff members, or by increasing the efficiency of existing staff
members. These approaches could also be used in combination.

For our first experiment, let's try adding more staff members. The
efficiency charts show that big jobs are doing much more waiting
than small ones. Since big jobs can be handled only by expert staff
members, we should probably add more experts than novices. Let's
add two experts and one novice, resulting in a staff pool of four ex-
perts and three novices, and see what happens.

Changing the Simulation Parameters

B3-6

Since the composition of the staff pool is specified in the simulation
parameter file, rather than being wired into the model, it can be
changed easily by editing thefile. The parameter fileis called
SalesOrderParmsV2. It isin the directory TutorialDiagrams, unless
it was placed elsewhere when the model was installed.

- Open the parameter file using any text editor.

Design/CPN Tutorial for X-Windows

Using the Sales Order Model

The parameter fileisjust an ASCII text file. Thefile appears as
follows:

(* This file contains the parameters for
the BPMA Sal es Order nodel. *)

(* Parameters controlling the incom ng
stream of Custoner Requests: *)

(* Total nunber of batches of requests;
Ti me between batches; Big requests per
batch; Small requests per batch: *)

3 5 5 5

(* Parameters establishing the dollar

val ue of Custoner Requests *)

(* Big request value; Small request val ue:
*)

200 50

(* Parameters establishing the Staff: *)

(* Number of Expert staff; Expert cost fac-
tor; Expert speed factor: *)

2 20 1

(* Number of Novice staff; Novice cost fac-
tor; Novice speed factor: *)

2 10 5

Parameters establishing the Equi pnment:

*
)
(* Number of Fast equip pieces; Fast cost
factor; Fast speed factor: *)

2 2 1

(* Number of Slow equip pieces; Slow cost
factor; Slow speed factor: *)

2 1 5

(* End OF File. *)
To change the parameters:

- Edit the parameter file to specify 4 expert and 3 novice staff
members. Be sure not to make any other changes.

(Be careful not to make any changesto the overall format of the file,
such as adding or deleting lines or parameter fields: the Sales Order
Model assumes the exact format shown. If the model failsto work
after you have edited the parameter file, you may accidentally have
changed thefile'sformat. Restore the file as described in the previ-
ous chapter and try again.)

The file should now look like this (changed figures are shown in
bold):

(* This file contains the parameters for
t he BPMA Sal es Order npodel. *)

Design/CPN Tutorial for X-Windows B3-7

Design/CPN Tutorial

(* Parameters controlling the incom ng
stream of Custonmer Requests: *)

(* Total nunmber of batches of requests;
Ti me between batches; Big requests per
batch; Small requests per batch: *)

3 5 5 5

(* Parameters establishing the dollar
val ue of Custoner Requests *)
(* Big request value; Small request val ue:

200 50

(* Parameters establishing the Staff: *)

(* Number of Expert staff; Expert cost fac-
tor; Expert speed factor: *)

4 20 1

(* Number of Novice staff; Novice cost fac-
tor; Novice speed factor: *)

3 10 5

Paranmeters establishing the Equi pment:

*
) . :
* Nunmber of Fast equip pieces; Fast cost
actor; Fast speed factor: *)

2 1
* Nunmber of Sl ow equip pieces; Slow cost
actor; Slow speed factor: *)

1 5

(* End OF File. *)

N —P—~ N —h—~ ¥~

When you have verified the changes:

- Savethefileasatext file (rather than in the editor's internal
format, if any).

- Enter the simulator.

Performing the Experiment
We cannot just re-execute the model, because it still contains the pa-
rameters and results of the previous run. We must first reset the
model toitsinitial state.

- Chooselnitial Statefrom theSim menu.

A dialog appears:

B3-8 Design/CPN Tutorial for X-Windows

Using the Sales Order Model

Save State =

Do you want to save the changes to
the current state?

[Eancel][No]

- ClickNo.

The net is now in the same state that it was in when we first entered
the simulator.

- Execute the model again, as described in the previous chap-
ter.

When execution is complete, a new set of bar charts appears.

Interpreting the New Results

The revenue charts you see should look about as follows:

Gross Revenue

B BigJobs
I oo (0 Sma..bbg

0 1250 2500 3750

Design/CPN Tutorial for X-Windows B3-9

Design/CPN Tutorial

Oper ating Cost

B ExpetStaff
O NoviceStaff
] W 9% | g FastEquip

E SlowEquip

0 330 660 990

Operating Profit

N 2760

0 920 1840 2760

The previous charts showed a gross revenue of 3750 and expenses
of 1683, yielding aprofit of 2067. These charts show the same
gross revenue, expenses of 990, and a profit of 2760. Thisisa
very substantial improvement.
Now let'slook at the efficiency charts.

- Use Page menu commands to go to the page BAR#O.

The efficiency charts should look about like this:

B3-10 Design/CPN Tutorial for X-Windows

Using the Sales Order Model

Average Time
Big
Jobs 12
Small
Jobs 1
Expert 0
Staf ([Working)
Novice 0 O Waiting
Staff
Fast
Equip 30
Slow 30
Equip
| [1 |
0O 4 8 12 16 20 24 28 32 36 40
Average Cost
Big
Jobs &
Small
Jobs 124
;Xa';ffrt 605
B working
Novice 300 O Waiting
Staff
Fast
Equip 60
Slow
Equip 30
0 66 132 198 264 330 396 462 528 594 660

Design/CPN Tutorial for X-Windows

B3-11

Design/CPN Tutorial

A comparison of these charts with the efficiency charts from the first
run makes the cause of the improvement shown in the revenue
charts obvious: job waiting time has been significantly reduced, and
throughput has ailmost doubled. Clearly the hypothesis that more
staff was needed was correct, and the addition of two experts and
one novice was a step in the right direction.

Look again at the original values in the parameter file, earlier inthis
chapter. These values do not give clear evidence of a staff shortage
or of any other problem. Y et the efficiency charts from the first
simulation run made the problem immediately obvious, and sug-
gested a solution that has proved effective. Modeling and simulation
have taken a thoroughly recondite set of figures and derived from
them aresult that can be seen at a glance and tested in afew minutes.

Additional Experiments

B3-12

Itisrarefor the first experiment with amodel to produce the best
possible results. Adding two experts and one novice has greatly
improved performance; perhaps additional staff would improve it
further. On the other hand, there is more staff waiting in the second
run than in thefirst. Have we added too much additional staff?
Perhaps only one additional expert was needed; perhaps the addi-
tional novice was not needed at all.

- Experiment with different staff compositions and note how
performance changes.

Equipment typically contributes much less direct cost than staff; the
parameter file values for equipment cost reflect thisfact. Excess
equipment is therefore not likely to be amajor handicap, but of
course any unnecessary cost isworth reducing. On the other hand,
insufficient equipment can cause substantia indirect cost by creating
delays that tie up staff members, and by reducing overall through-
put.

- Experiment with changes to the equipment pool and note
how performance changes.

Y our experiments with staff and equipment compositions should
yield results that would substantially improve performanceif imple-
mented. Obviously one would not want to hire and fire actual staff
members, or buy and discard real equipment, in trying to make such
an improvement. It ismuch faster and cheaper to work with a
model, performing experiments until the requirements of the situa-
tion become clear, and only then modifying the system that the
model represents.

Design/CPN Tutorial for X-Windows

Using the Sales Order Model

More General Use of the Sales Order Model

The preceding exercisesillustrate the techniques necessary to use the
Sales Order Modél to frame and test hypotheses. But the exercises
do not begin to exhaust the possibilities of the model: they have dealt
only with minor changes to the staff and equipment pools.

The ability to specify all smulation parametersin afile alowsyou to
specify and test models of drastically different Sales Order Systems.
Y ou can vary the characteristics of the job stream. Y ou can specify
different ratios of speed to cost for staff and/or equipment. Y ou can
experiment with the advantages of upgrading existing
staff/equipment performance versus adding more staff/equipment of
the kind currently used. These are only afew of the possible op-
tions.

Much more could be said, and many suggestions made, about ex-
perimenting with the Sales Order Model. But the best way to learn
about it, or about any model, isto useit, hands on, framing and
running experiments much as a scientist explores the unknown. In
modeling and simulation, no discussion, however exhaustive, can
substitute for hands-on experience.

- Make amajor change to the job stream parameters, and de-
termine by experiment what staff and equipment capabilities
give good performance under the new conditions.

Improving the Sales Order Model

As you experimented with the model, you probably noticed that
your experiments tended to fall into two classes. Sometimesthere
was an obvious bottleneck, shown by some type of staff or equip-
ment being at or near 100% utilization. Other times there was sig-
nificant waiting of al types. The system never reached 100% effi-
ciency, and the efficiency charts did not indicate the reason.

Apparently the capabilities provided by changing the smulation pa-
rameters do not provide sufficient control, or they could be used to
produce 100% efficiency. Theinformation displayed by the charts
isasoinsufficient, or it would reveal why 100% efficiency is not
obtainable.

These insufficiencies do not of course indicate that the parameters
and charts are valueless. Aswe have seen, they can provide very
useful information. Furthermore, without the capabilities that they
provide we could not have become aware that we need something
more; we would have remained entirely in the dark. Thisisacom-
mon phenomenon in modeling: amodel that was designed to explore
one type of problem has revealed the existence of other problems
that the model is not equipped to explore.

Design/CPN Tutorial for X-Windows B3-13

Design/CPN Tutorial

Analyzing the Problem

To get an idea of whereto start, let'slook at the overall structure of
the Sales Order System that the model represents. It contains an
obvious potential cause of trouble: the rule that abig job must be
assigned an expert staff member and fast equipment, while asmall
job may use any staff member or equipment. This rule creates op-
portunities for big and small jobs to interfere with each other in
ways that are not at all obvious from cursory examination, and that
inevitably cause inefficiency.

Obvioudly it would be useful to experiment with different staff and
equipment allocation rules, just as we experimented with different
simulation parameters. But the allocation rules used by the Sales
Order Model cannot be changed by dtering the parameter file: they
are wired into the model.

It would be possiblein principle to put information about allocation
rulesinto the parameter file, but this method would not provide a
sufficiently flexible approach to experimenting with such rules. In
general, parameter files are useful for supplying datato a model, but
not for specifying the model's properties. These are specified in the
model itself whenit is created, and changed by changing the model.

Changing the Model

Methods for creating and modifying CP net models are covered in
the Design/CPN Tutorial. If you learn the material presented there,
you will be able to ater the structure of the Sales Order Model to use
more efficient rules for staff and equipment allocation, and in any
other way that might be useful. Y ou could then derive information
by iteratively experimenting not only with the parameters of the
model, but the model itself.

Ending a Session With Design/CPN

B3-14

When you are through experimenting and want to exit Design/CPN:
- Choose Quit from theFile menu.
A diaog appears that offers an opportunity to create a saved state. |If
you want to execute the net in the future without having to rebuild an
ML file, and/or want to preserve the charts you have made for future
examination:
- ClickYes.

- Savethenet in NewTTDiagrams.

Design/CPN Tutorial for X-Windows

Using the Sales Order Model

Otherwise:
- ClickNo.

Design/CPN quits. Y ou are back in the environment from which
you started.

Design/CPN Tutorial for X-Windows B3-15

APPENDIX C
Troubleshooting

Chapter C1

Troubleshooting

This appendix describes various problems that you may encounter
when you attempt to run Design/CPN, and tells you how to solve
them. All of the problems relate in some way to the interface be-
tween Design/CPN and the computer on which it runs. The prob-
lems described are:

» CPN Settings fileis missing or obsolete.

» ML configuration is unspecified or incorrect.

* ML Interpreter cannot be started.
When one of these problems occurs, Design/CPN displays a de-

scriptive dialog box. These boxes, the problems they indicate, and
the solutions to those problems, are described in this appendix.

CPN Settings File Missing or Obsolete

When you try to start Design/CPN, and the .CPNSettings fileis
missing or obsolete, Design/CPN displays adialog that states:

Your .CPNSettings file was unreadable or not found.
To start up, generation of a new .CPNSettingsfileis
required.

The choices offered are OK and Cancel.
- ClickCancel.

Design/CPN quits.

Problem Description

When Design/CPN isinstalled, adirectory called Design/CPN is
created. Thisdirectory containsafile caled .CPNSettings. In order
for Design/CPN to run, thisfile must be copied to your home direc-
tory. If thefilewas not copied there, or was subsequently renamed

Design/CPN Tutorial for X-Windows Cl-1

Design/CPN Tutorial

or removed, Design/CPN cannot find the settings it needs in order to
run correctly. It therefore displays the above dialog.

Problem Solution
If you have a copy of .CPNSettings in your Design/CPN directory:
- Copy .CPNS&ettings to your home directory.

If you do not have a copy of .CPNSettings in your Design/CPN di-
rectory:

- Reingtal Design/CPN from the source tape.

- Copy .CPNS&ettings to your home directory.
After you have copied the settingsfile:

- Start Design/CPN.

The application should now start without problems relating to CPN
settings.

ML Configuration Unspecified or Incorrect.

Before you can run the ML interpreter to syntax check or execute a
diagram, you must usethe ML Configuration Optionscom-
mand (Set menu) to tell Design/CPN:

* Hostname: Wherethe ML interpreter isto be run.

e Port number: Which port is used by the daemon isto run
the interpreter.

ML image: Wheretheinterpreter islocated in the file sys-
tem.

Design/CPN keeps this information as system defaults. In order for
aparticular diagram to use it, the information must be present in its
diagram defaults.

Identifying the Problem

If any ML configuration information is missing or incorrect,
Design/CPN will be unableto start the ML interpreter, and will dis-
play adialog box. The dialog displayed depends on which informa:
tionisfaulty. If more than one of the parametersisfaulty, the dia-

C1l-2 Design/CPN Tutorial for X-Windows

Troubleshooting

log that appears will describe the first erroneous parameter encoun-
tered.

If theHostnameis missing or wrong, the dialog offers an oppor-
tunity to log in, with OK and Cancel buttons. Attemptingtologin
will fail, so:

- ClickCancel.
If thePort number ismissing or wrong, the dialog states:

Network not responding. Connection with host
could not be established.

The dialog containsan OK' button.
- ClickOK.
If the ML image is missing or wrong, the dialog states:

ML could not be started. Check available memory
and presence of default ML file.

The dialog containsan OK' button.

- ClickOK.
Y ou must now supply the necessary information. Y ou may be able
to do this by copying the system defaults, or you may have to sup-
ply correct information by typing it intothe ML Configuration
Optionsdiaog.

Copying Diagram Default ML Configuration Options

When the system defaults are correct, but the diagram defaults are
not, the system defaults must be copied to the diagram defaults.
Thisistypically necessary when the diagram was created on some
other computer. It isalso necessary if the system defaults have
changed since the diagram was created. To update the diagram de-
faults:

- Choose ML Configuration Optionsfrom the Set menu.
TheML Configuration Optionsdialog appears.

- ClickL oad.

- ClickOK.

Design/CPN Tutorial for X-Windows C1-3

Design/CPN Tutorial

The necessary information about the ML processis copied from the
system defaults to the diagram defaults. Design/CPN can now start
the ML process and use it to syntax check and execute the diagram.

When the ML process failsto start, loading the system defaultsis
thethingto try first. If Design/CPN is correctly installed on your
system, it will always work, and it can never do any harm since the
diagram defaults were wrong in any case. If it does not work, the
system default ML configuration options must be established or cor-
rected.
Setting ML Configuration Options

To establish new vauesfor any or al ML configuration options:

- Choose ML Configuration Optionsfrom the Set menu.

TheML Configuration Optionsdiaog appears.

ML Configuration Options

Hostname

Port Number

Default
ML Image

(Save...| [Load | [Reset][cancel] [0k |

- Enter correct values as needed for the Hostname, Port
number, and ML imagefields.

See the Design/CPN |nstallation Notes for information on determin-
ing these values.

If you want the new values to become system defaults:

- Click Save.

Cl4 Design/CPN Tutorial for X-Windows

Troubleshooting

A confirmation dialog appears.
- Click OK inthe confirmation dialog.

Thevauesinthe ML Configuration Options diaog are now
the system defaullts.

To make the new values the diagram defaullts:

- ClickOK intheML Configuration Options dialog .
Thevauesinthe ML Configuration Options diaog are now
the diagram defaults. Thedialog closes. If the values are correct,

you will now be able to use the ML interpreter to syntax check and
execute the diagram.

ML Interpreter Cannot Be Started
In order to run, the ML interpreter needs:
* A least 32 meg of RAM.
» At least twice as much swap space as RAM.
Larger alocations will result in better performance.
If the ML interpreter does not have enough RAM or swap space to
runin, attempting to start it will display adialog that mentions a lack
of available memory. There are two possible solutions:
- Terminate other processes that are running in your memory
space, freeing their memory allocations for use by the ML
interpreter.

If there are no such processes, or terminating them does not free
enough memory:

- Ask your system administrator to increase your memory al-
location.

Design/CPN Tutorial for X-Windows C1-5

X-Windows Version

@-1

	Title Page
	Table of Contents
	Fundamentals
	Techniques
	Hierarchy
	Sales Order Model
	Troubleshooting

	Index
	Special Chars.
	A
	B
	C
	D
	E
	F
	G
	H,I
	J,K,L
	M
	N,O
	P
	Q,R
	S
	T
	U,V,W,X,Y,Z

	Fundamentals
	1. The Tutorial
	2. Getting Started
	3. Modeling Paradigms
	4. Using the Editor
	5. CP-net Components
	6. Creating a Net
	7. Dynamics
	8. Executing a Net
	9. Handling Syntax Errors

	Techniques
	10. Extending a Net
	11. Concurrency and Choice
	12. Hierarchical Decomposition
	13. Understanding a Simple Model
	14. Building a Simple Model
	15. Executing a Simple Model
	16. Simulated Time

	Hierarchy Techniques
	A1. Introduction
	A2. Fusion Places
	A3. Substitution Transitions

	The Sales Order Model
	B1. Introduction
	B2. Running the Model
	B3. Using the Model

	Troubleshooting

