
Design/CPN
Occurrence Graph Manual

Version 3.0

 University of Aarhus
Computer Science Department

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88
Fax: +45 89 42 32 55 © 1996 University of Aarhus

OG-2 Design/CPN Occurrence Graph Manual

© 1996 University of Aarhus

Computer Science Department

Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark

Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@daimi.aau.dk

Authors: Kurt Jensen, Søren Christensen and Lars M. Kristensen.

Design/CPN is a trademark of Meta Software Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

 Design/CPN Occurrence Graph Manual OG-3

Design/CPN
Occurrence Graph Manual

Version 3.0

Table of Contents

Chapter 1
Introduction to Occurrence Graphs

The History of the Design/CPN Occurrence Graph Tool................................. 9
Example: Dining Philosophers .. 10

Chapter 2
How to Calculate an Occurrence Graph

Generation of Occurrence Graph Code ... 13
Details and Limitations.. 14

Generation of the Occurrence Graph ... 14
Standard Report.. 15

Chapter 3
How to Refer to the Items of an Occurrence Graph

Nodes, Arcs and Strongly Connected Components...................................... 17
Place Instances... 17
Transition Instances... 18
Markings... 19
Binding Elements.. 20
String Representations.. 21
Time Values... 22

Occurrence Graph Manual

OG-4 Design/CPN Occurrence Graph Manual

Chapter 4
How to Make Standard Queries

Reachability Properties.. 23
Boundedness Properties... 25
Home Properties... 27
Liveness Properties.. 29
Fairness Properties.. 32

Chapter 5
How to Make Your Own Queries

Nodes and Arcs... 35
Strongly Connected Components... 36
SearchNodes.. 37

PredNodes and EvalNodes.. 40
Examples of SearchNodes Calls... 41

SearchArcs.. 43
Examples of SearchArcs Calls... 44

SearchSccs... 44
Examples of SearchSccs Calls.. 45

Chapter 6
How to Draw an Occurrence Graph

Object Types ... 47
Occ Menu .. 49

Calculate Occ Graph.. 49
Calculate Successors.. 50
Calculate Scc Graph.. 50
Show Statistics.. 50
Save Report... 51
Occ State to Sim... 51
Sim State to Occ... 51
Attributes/Options.. 51
Display Node... 52
Display Arc... 52
Display Successors.. 52
Display Predecessors.. 53
Display Scc Graph.. 53
Toggle Descriptor... 53
Update Node... 53

Table of Contents

Design/CPN Occurrence Graph Manual OG-5

Chapter 7
How to Change Attributes and Options

Attributes/Options Command ... 55
Attributes .. 57
String Representation Options .. 58
Node and Arc Descriptor Options ... 60
Successor/Predecessor Options .. 61
Stop Options ... 61
Branching Options ... 62
Inspection Options ... 63

Reference List... 65

Index

Design/CPN Occurrence Graph Manual OG-7

Index

AllReachable 24
arc 17
arc descriptor option 60
Arcs 35
ArcsInPath 35
ArcToBE 20
ArcToScc 36
ArcToTI 20
attribute 55
attribute default 57
Attributes/Options command 51, 55

BEsDead 30
BEsFairness 32
BEsLive 31
BEsStrictlyLive 31
BEToTI 20
Bind 19
binding element 19
boundedness property 16, 25
branching option 62

Calculate Occ Graph command 15, 49
Calculate Scc Graph command 15, 50
Calculate Successors command 50
CalculateOccGraph 15
CalculateSccGraph 15
chatty version 23
combination function 38
CreationTime 21

DeadMarking 29
DestNode 35
diagram default 55
dining philosopher 10
Display Arc command 52
Display Node command 52
Display Predecessors command 53
Display Scc Graph command 53
Display Successors command 52
DisplayArcPath 52
DisplayArcs 52
DisplayNodePath 52
DisplayNodes 52

EqualUntimed 22
EqualsUntimed 22

EntireGraph 38
EntireGraphCalculated 50
EvalAllArcs 43
EvalAllNodes 41
EvalAllSccs 45
EvalArcs 43
EvalNodes 41
EvalSccs 45
evaluation function 37

fairness property 32
FairnessProperty 32
FullyProcessed 36

generation of occurrence graph 14
generation of occurrence graph code 13

home property 16, 27
HomeMarking 28
HomeMarkingExists 28
HomeSpace 27

InArcs 35
Initial HomeMarking 28
InitNode 17
InitScc 17
InNodes 35
inspection option 63
Inst 17

ListDeadMarkings 29
ListDeadTIs 30
ListFairTIs 33
ListHomeMarkings 28
ListHomeScc 28
ListImpartialTIs 33
ListJustTIs 33
ListLiveTIs 31
liveness property 16, 29
LowerInteger 25
LowerMultiSet 26

Mark 19
marking 19
MinimalHomeSpace 27
ML Evaluate 23
ML Evaluate command 15, 56

Occurrence Graph Manual

OG-8 Design/CPN Occurrence Graph Manual

node 17
node descriptor option 60
NodesInPath 35
NodeToScc 36
NoLimit 39
NoOfArcs 50
NoOfNodes 50
NoOfSecs 50

object type 47
Occ menu 49
Occ State to Sim command 51
occurrence graph code 13
OccurrenceTime 21
OG arc 47
OG arc descriptor 47
OG node 47
OG node descriptor 47
option 55
OutArcs 35
OutNodes 35

PI 17
PI.All 18
place instance 17
PredAllArcs 43
PredAllNodes 41
PredAllSccs 45
PredArcs 43
predicate function 37
PredNodes 40
PredSccs 45
Processed 36

reachability property 23
Reachable 24

Save Report command 15, 51
Scc 17
SccArcs 36
SccArcsInPath 37
SccDestNode 36
SccGraphCalculated 51
SccInArcs 36
SccInNodes 36
SccListDeadMarkings 30
SccNodesInPath 37
SccNoOfArcs 51
SccNoOfNodes 51
SccNoOfSecs 51
SccOutArcs 37

SccOutNodes 36
SccReachable 24
SccSourceNode 36
SccTerminal 37
SccToArcs 36
SccToNodes 36
SccTrivial 37
search area 37
search limit 37
SearchAllArcs 43
SearchAllNodes 41
SearchAllSccs 45
SearchArcs 43
SearchNodes 37
SearchReachableArcs 43
SearchReachableNodes 41
SearchReachableSccs 45
SearchSccs 44
Show Statistics command 50
Sim State to Occ command 51
SourceNode 35
standard report 15
start value 38
statistics 15
stop option 61
string representation 21
string representation option 58
StripTime 22
strongly connected component 17
st_Arc 20
st_BE 20
st_Mark 21
st_Node 20
st_PI 20
st_TI 20
successor/predecessor option 61
system default 55

Terminal 35
TI 18
TI.All 18
timed occurrence graph 21
TIsDead 30
TIsFairness 32
TIsLive 31
Toggle Descriptor command 47, 53
transition instance 18

Update Node command 53
UpperInteger 25
UpperMultiSet 26

 Design/CPN Occurrence Graph Manual OG-9

Chapter 1

Introduction to
Occurrence Graphs

The History of the Design/CPN Occurrence Graph Tool

This manual describes a tool to calculate, analyse and draw occurrence
graphs (also called state spaces, reachability graphs or reachability
trees).

The original version of the Design/CPN occurrence graph tool (OG tool)
was designed and implemented in 1991-92. It was developed by Meta
Software, Cambridge MA, USA, in close cooperation with researchers
from the Computer Science Department of University of Aarhus,
Denmark.

The present version of the OG tool has been developed at University of
Aarhus in 1995. It improves and extends the original occurrence graph
tool in several ways.

The OG tool is now fully integrated with Design/CPN. This means that
you can switch between the editor/simulator and the OG tool. When an
occurrence graph node has been found, it can be inspected in the simula-
tor. This means that you can see the marking directly on the graphical
representation of the CPN model. You can see the enabled transition in-
stances, investigate their bindings and make simulations. Analogously,
when a marking has been found in the simulator, it can be added to the
occurrence graph or used as the initial marking for a new occurrence
graph.

The new version of the OG tool has a large number of built-in standard
queries. They can be used to investigate all the standard properties of a
CP-net, such as reachability, boundedness, home properties, liveness
and fairness. In addition to the standard queries there are a number of
powerful search facilities allowing you to formulate your own, non-
standard queries. The standard queries require no programming at all.
The non-standard queries usually requires that you write 2-5 lines of
quite straightforward ML code.

Occurrence Graph Manual

OG-10 Design/CPN Occurrence Graph Manual

The ML interface has been totally rewritten. The naming system and the
typing system have been redesigned and simplified. This means that the
tool now is easier and more straightforward to use. The manual has
been totally rewritten, and a lot of examples have been added.

The new version of the OG tool is much easier to use than the old one –
and it should present few problems to people who are familiar with
CP-nets and Design/CPN. To use the OG tool, the user simply enters
the simulator and invokes the Enter Occ Graph command (in the File
menu). This has a similar effect as Enter Simulator. It creates the oc-
currence graph code, i.e., the ML code necessary to calculate, analyse
and draw occurrence graphs. Moreover, it creates a new menu, called
Occ. This menu contains all the commands which are used to perform
the calculation and drawing of occurrence graphs

Example: Dining Philosophers

The basic idea behind occurrence graphs is to make a directed graph
with a node for each reachable marking and an arc for each occurring
binding element. An introduction to occurrence graphs can be found in
Sect. 5.1 of [CPN 1] and in Sect. 1.1 of [CPN 2].

In this manual we use the dining philosopher system as our main ex-
ample. Five Chinese philosophers are sitting around a circular table. In
the middle of the table there is a delicious dish of rice, and between each
pair of philosophers there is a single chopstick. Each philosopher alter-
nates between thinking and eating. To eat, the philosopher needs two
chopsticks, and he is only allowed to use the two which are situated
next to him (on his left and right side). The sharing of chopsticks pre-
vents two neighbours from eating at the same time.

Rice
Dish

ph1

ph5

ph4 ph3

ph2

cs1 cs2

cs4

cs3cs5

Introduction to Occurrence Graphs

Design/CPN Occurrence Graph Manual OG-11

The philosopher system is modelled by the CP-net shown below. The
PH colour set represents the philosophers, while the CS colour set rep-
resents the chopsticks. The function Chopsticks maps each philosopher
into the two chopsticks next to him.

Think
PH

PH

Eat
PH

Take
Chopsticks

Put Down
Chopsticks

Unused
Chopsticks

CS

CS

val n = 5;
color PH = index ph with 1..n declare ms;
color CS = index cs with 1..n declare ms;
var p : PH;
fun Chopsticks(ph(i)) = 1`cs(i)+1`cs(if i=n then 1 else i+1);

p

p

p

p

Chopsticks(p)

Chopsticks(p)

An occurrence graph for the dining philosophers is shown below. Each
node represents a reachable marking, while each arc represents the oc-
currence of a single binding element – leading from the marking of the
source node to the marking of the destination node. To improve read-
ability, we have only shown the detailed contents of some of the mark-
ings and some of the binding elements. It should be noted that all arcs
are double arcs (i.e., represents two individual arcs).

Occurrence Graph Manual

OG-12 Design/CPN Occurrence Graph Manual

1
5:5

2
3:3

3
3:3

4
3:3

5
3:3

6
3:3

7
2:2

8
2:2

9
2:2

Unused: 1`cs(1)
Think: 1`ph(1)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(2)+ 1`ph(4)

10
2:2

Unused: 1`cs(3)
Think: 1`ph(2)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(4)

11
2:2

Unused: 1`cs(5)
Think: 1`ph(2)+ 1`ph(4)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(3)

Put: {p=ph(2)}

Take: {p=ph(4)}Take: {p=ph(1)}

Put: {p=ph(3)}

The occurrence graph for the dining philosophers is made by means of
the OG tool. In the following we shall show how this is done.
However, it should be noted that this occurrence graph is rather atypi-
cal. Most occurrence graphs are much larger. The present version is able
to handle graphs with 20,000-200,000 nodes and 50,000-2,000,000
arcs – provided that you have sufficient RAM in your machine. Future
versions are expected to be able to handle much larger occurrence
graphs.

 Design/CPN Occurrence Graph Manual OG-13

Chapter 2

How to Calculate an
Occurrence Graph

Before an occurrence graph can be calculated, it is necessary to generate
the occurrence graph code, i.e., the ML code which is used to calcu-
late, analyse and draw occurrence graphs. The occurrence graph code is
generated in a way which is similar to the switch from the editor to the
simulator.

Generation of Occurrence Graph Code

To generate the occurrence graph code the following steps must be per-
formed (in the specified order):

a) Make sure that you are using Design/CPN version 3.0 (or later)
and the CPN ML image provided together with it.

b) Use Syntax Options to select OG Tool Violations. You may
also want to select the five check boxes for missing and duplicate
place, transition and page names.

c) Use General Simulation Options to tell whether you want
your occurrence graph to be with or without time. To choose the
setting which you want it may first be necessary to use
Simulation Code Options.

d) Use Enter Simulator to make a syntax check and to enter the
simulator.

e) Use Change Marking (or a simulation) to obtain the marking
which you want to use as the initial marking of your occurrence
graph. – If you want to use the initial marking of CPN model as
the initial marking of your occurrence graph, nothing needs to be
done.

f) Invoke Enter Occ Graph (in the File menu). This will create the
occurrence graph code. For large nets it takes a while – compara-
ble to the time for a full simulator switch.

Occurrence Graph Manual

OG-14 Design/CPN Occurrence Graph Manual

When Enter Occ Graph terminates, a new Occ menu is added to the
menu bar (at the rightmost end). This menu contains all the commands
which are used to perform the calculation and drawing of occurrence
graphs. A detailed description of the menu and the commands can be
found in Chap. 6. Most of the commands are used to draw occurrence
graphs (and hence you don't need to read about them at this stage).

The generation of new nodes progresses in a width first fashion. This
means that the nodes are being processed in the order in which they
were created. To a certain extent, a depth first generation can be ob-
tained by using ”narrow” Branching Options (described in Chapter 7).

For a timed occurrence graph the processing order is determined by the
creation time (i.e., the model time at which the individual markings start
to exist).

We propose that you now try to generate the occurrence graph code for
the dining philosopher system. To do this use the CPN model called
“DiningPhilosophers”. It can be downloaded from the Design/CPN
WWW pages.

Details and Limitations (can be skipped in a first reading)

When you make a modification of the CPN diagram, it is necessary to
regenerate all the occurrence graph code from scratch. This also means
that the occurrence graph (if any) is lost. When the modification is made
in the simulator it is sufficient to invoke Reswitch and Enter Occ
Graph .

The OG tool respects the relevant mode attributes. The occurrence graph
is calculated for those parts of the net which would participate in a simu-
lation. Please note that, in occurrence graphs, it only makes sense to use
code segments in a very limited fashion, e.g., to initialise a CPN model.

The settings for timed simulations are also observed. Hence, it is pos-
sible to generate occurrence graphs, for timed CP-nets, with or without
the time mechanism in effect. Use General Simulation Options to
determine whether you want your occurrence graph to be timed or not.

Free variables on output arcs are not allowed – unless they are variables
of a small color set.

Generation of the Occurrence Graph

When you have generated the occurrence graph code (by following the
steps described above), you are ready to calculate the occurrence graph.

How to Calculate an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-15

If the occurrence graph is expected to be small (e.g., with a few hun-
dred nodes and arcs), you can simply invoke Calculate Occ Graph .
Otherwise you may need to change the Stop Options and/or the
Branching Options described in Chap. 7.

Many of the query functions in Chap. 4 use the Scc-graph (i.e., the
strongly connected components of the occurrence graph). To calculate
the Scc-graph you invoke Calculate Scc Graph .

The occurrence graph and the Scc-graph can also be calculated by using
the ML Evaluate command to evaluate the following ML functions,
which work exactly as the menu commands. This can, e.g., be useful if
you want to handle exceptions raised by the CPN model or the Stop op-
tions (in Chap. 7):

fun CalculateOccGraph unit -> unit

fun CalculateSccGraph unit -> unit

Additional information about the menu commands mentioned above can
be found in Chap. 6.

Standard Report

When you have generated the occurrence graph for a CP-net, you can
use Save Report to generate a text file which contains a standard re-
port providing information about:

• Statistics (size of occurrence graph and Scc-graph).

• Boundedness Properties (integer and multi-set bounds for place in-
stances).

• Home Properties (home markings).

• Liveness Properties (dead markings, dead/live transition instances).

• Fairness Properties (impartial/fair/just transition instances).

The command invokes a dialogue box allowing the user to specify the
kind of information which he wants to obtain. This is done by choosing
one or more of the possibilities mentioned above (home and fairness
properties can only be chosen if the Scc-graph has been calculated). For
the dining philosopher system the full standard report looks as follows:

Statistics
--
 Occurrence Graph
 Nodes: 11
 Arcs: 30
 Secs: 1
 Status: Full

Occurrence Graph Manual

OG-16 Design/CPN Occurrence Graph Manual

 Scc Graph
 Nodes: 1
 Arcs: 0
 Secs: 0

 Boundedness Properties
--
 Best Integer Bounds Upper Lower
 System'Eat 1 2 0
 System'Think 1 5 3
 System'Unused 1 5 1

 Best Upper Multi-set Bounds
 System'Eat 1 1`ph(1)+ 1`ph(2)+ 1`ph(3)+
 1`ph(4)+ 1`ph(5)
 System'Think 1 1`ph(1)+ 1`ph(2)+ 1`ph(3)+
 1`ph(4)+ 1`ph(5)
 System'Unused 1 1`cs(1)+ 1`cs(2)+ 1`cs(3)+
 1`cs(4)+ 1`cs(5)

 Best Lower Multi-set Bounds
 System'Eat 1 empty
 System'Think 1 empty
 System'Unused 1 empty

 Home Properties
--
 Home Markings: All

 Liveness Properties
--
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: All

 Fairness Properties
--
 System'Put 1 Impartial
 System'Take 1 Impartial

It is possible to customise the way the system displays place instances
and transition instances (e.g. to replace "System'Eat 1" by
"Eat"). This is done by means of the String Representation Options
described in Chap. 7.

 Design/CPN Occurrence Graph Manual OG-17

Chapter 3

How to Refer to the Items
of an Occurrence Graph

This chapter describes how you can refer to the items of an occurrence
graph, such as nodes, place instances, binding elements and markings.

Nodes, Arcs and Strongly Connected Components
We denote nodes and arcs by positive integers while we denote
strongly connected components (Sccs) by negative integers:

type Node = int (* positive *)

type Arc = int (* positive *)

type Scc = int (* negative *)

By convention 1 denotes the initial marking of the occurrence graph:

val InitNode = 1:Node

while ~1 (minus one) denotes the Scc to which node 1 belongs:

val InitScc = ~1:Scc

Place Instances

To denote place instances the following ML structure is available:

type Inst = int

con PI.<PageName>'<PlaceName>

Inst -> PI.PlaceInst

Occurrence Graph Manual

OG-18 Design/CPN Occurrence Graph Manual

For the dining philosophers we use:

PI.System'Think 1

to refer to place Think on the first instance of page System. For the ring
network from Sect. 3.1 of [CPN 1] we use:

PI.Site'PackNo 3

to refer to place PackNo on the third instance of the page Site.

You may want to make an alias for place instances frequently referred
to, e.g.:

val Eat = PI.System'Eat 1

To denote the set of all place instances, the following notation is avail-
able:

PI.All PI.PlaceInst list

Transition Instances

To denote transition instances the following ML structure is avail-
able. It is totally analogous to PI above:

con TI.<PageName>'<TransName>

Inst -> TI.TransInst

For the dining philosophers we use:

TI.System'Take 1

to refer to transition Take on the first instance of page System. For the
ring network we use:

TI.Site'Send 3

to refer to transition Send on the third instance of page Site.

To denote the set of all transition instances, the following notation is
available:

TI.All TI.TransInst list

How to Refer to the Items of an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-19

Markings

To inspect the markings of the different place instances the following
ML structure is available:

fun Mark.<PageName>'<PlaceName>

Inst -> (Node -> CS ms)

where CS is the colour set of the place instance. For the dining philoso-
phers we use:

Mark.System'Think 1 10

to refer to the multi-set of tokens on place Think on the first instance of
page System in the marking M10 (by convention we use Mi to refer to
the marking of node i). For the ring network we use:

Mark.Site'PackNo 3 217

to refer to the marking of place PackNo on the third instance of the page
Site in M217. It should be noted that the Mark function returns the inter-
nal ML representation of the multi-set. To obtain a more readable string
representation the st_Mark function should be used (see String
Representations below).

For a timed occurrence graph the above functions return a timed
multi-set (for places with a timed colour set). For an untimed occurrence
graph of a timed CPN model places with timed multi-sets have
”dummy” time stamps (as in the simulator) and hence the Mark func-
tions return a timed multi-set.

Binding Elements

To denote binding elements the following ML structure is available:

con Bind.<PageName>'<TransName>

Inst * record -> Bind.Elem

where the second argument is a record specifying the binding of the
variables of the transition. The type of this argument depends upon the
transition. For the dining philosophers we use:

Bind.System'Take (1,{p=ph(3)})

Occurrence Graph Manual

OG-20 Design/CPN Occurrence Graph Manual

to refer to the binding element where transition Take on the first instance
of page System has the variable p bound to ph(3). For the ring network
we use:

Bind.Site'NewPack (3,{n=2,r=S(1),s=S(3)})

to refer to the binding element where transition NewPack on the third
instance of page Site has the variables n, r and s bound to 2, S(1) and
S(3), respectively.

The two following functions map an arc into its binding ele-
ment/transition instance. The third function maps a binding element into
its transition instance.

fun ArcToBE Arc -> Bind.Elem

fun ArcToTI Arc -> TI.TransInst

fun BEToTI Bind.Elem -> TI.TransInst

It should be noted that

Bind.<PageName>'<TransName>

is a constructor. This means that it can be used in pattern matches.
Examples can be found in Examples of SearchArcs Calls in Chap. 5.

String Representations

The following functions are used to obtain string representations of
nodes, arcs, place instances, transition instances and binding elements:

fun st_Node Node -> string

fun st_Arc Arc -> string

fun st_PI PI.PlaceInst -> string

fun st_TI TI.TransInst -> string

fun st_BE Bind.Elem -> string

Examples:

st_Node (3) "3"

st_Arc (18) "18:6->10"

st_PI (PI.System'Eat 1) "System'Eat 1"

st_TI (ArcToTI(18)) "System'Take 1"

st_BE (ArcToBE(18)) "System'Take 1: {p=ph(4)}"

How to Refer to the Items of an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-21

To produce string representations of the markings of place instances the
following ML structure is provided:

fun st_Mark.<PageName>'<PlaceName>

Inst -> (Node -> string)

Example (the produced string ends with a carriage return):

st_Mark.System'Eat 1 10

"System'Eat 1: 1`ph(1)+1`ph(4)"

The string representations produced by the st-functions can be modified
by means of the String Representation Options in Chap. 7. It is, e.g.,
possible to get the following more compact representations (in which
place instances and page names are omitted):

st_PI (PI.System'Eat 1) "Eat"

st_TI (ArcToTI(18)) "Take"

st_BE (ArcToBE(18)) "Take: {p=ph(4)}"

Analogously, it is possible to get a compact version of st_Mark (for
empty markings the result is the empty string):

st_Mark.System'Eat 1 10
"Eat: 1`ph(1)+1`ph(4)"

st_Mark.System'Eat 1 1 ""

Time Values

The following functions can only be used for timed occurrence
graphs.

 Each node has a time value – denoting the model time at which the
marking started to exist:

fun CreationTime Node -> TIME

Analogously, each arc has a time value – denoting the model time at
which the binding element occurred:

fun OccurrenceTime Arc -> TIME

Occurrence Graph Manual

OG-22 Design/CPN Occurrence Graph Manual

The following function maps a timed multi-set into an untimed multi-set:

fun StripTime 'a tms -> 'a ms

The following function tells whether the markings of the two specified
nodes are identical when time stamps are ignored:

fun EqualUntimed Node * Node -> bool

The following function maps a node into all those nodes which have the
same marking when time stamps are ignored:

fun EqualsUntimed Node -> Node list

Most occurrence graphs with time will be non-cyclic (since all nodes in
a cycle must have the same creation time).

 Design/CPN Occurrence Graph Manual OG-23

Chapter 4

How to Make Standard Queries

This chapter explains how to perform standard queries to investigate the
properties of a CPN model. It is, e.g., possible to investigate the reach-
ability, boundedness, home, liveness and fairness properties defined in
[CPN 1]. Many of the query functions return results which already are
included in the standard report described in Chap. 2.

The query functions are typically used in auxiliary boxes – alone or as
part of a larger ML expression. The box is evaluated by means of the
ML Evaluate command. If you select a non-empty part of the text ,
ML Evaluate only deals with that part.

Some of the functions also have a chatty version which returns the
same result as the ordinary query function. The difference is that the
chatty version (sometimes) prints a text string with a more elaborated
explanation of the result. Each chatty query function has the same name
as the corresponding ordinary query function, with a single quote ap-
pended to the end (e.g., Reachable').

Reachability Properties

The query functions for reachability properties are based on Prop 1.12
in [CPN 2].

fun Reachable Node * Node -> bool

fun SccReachable Node * Node -> bool

fun AllReachable unit -> bool

Occurrence Graph Manual

OG-24 Design/CPN Occurrence Graph Manual

Reachable determines whether there exists an occurrence sequence
from the marking of the first node to the marking of the second. This is
done by investigating whether the occurrence graph contains a directed
path from the first node to the second. For the dining philosopher sys-
tem:

Reachable (5,3)

returns true. This tells us that there exists an occurrence sequence from
the marking M5 (of node 5) to the marking M3 (of node 3). The function
also has a chatty version:

Reachable' (5,3)

which returns the same result together with the explanation:

"A path from node 5 to node 3 is: [5, 9, 3]"

This tells us that there exists an occurrence sequence containing the
markings M5, M9 and M3 (in that order). The path is of minimal length.

SccReachable returns the same result as Reachable, but it uses
the Scc-graph, i.e., the strongly connected components. This means that
it is faster than Reachable (at least for occurrence graphs which con-
tain cycles). The function also has a chatty version:

SccReachable' (5,3)

which returns the same result together with the explanation:

"A path from the SCC of node 5 to the
SCC of node 3 is: [~1]"

This tells us that both M5 and M3 belong to the strongly connected com-
ponent ~1 (i.e. the strongly connected component of the initial mark-
ing).

AllReachable determines whether all the reachable markings are
reachable from each other. This is the case iff there is exactly one
strongly connected component. For the dining philosopher system:

AllReachable ()

returns true.

How to Make Standard Queries

Design/CPN Occurrence Graph Manual OG-25

Boundedness Properties

The query functions for boundedness properties are based on Prop 1.13
in [CPN 2].

fun UpperInteger (Node -> 'a ms) -> int

fun LowerInteger (Node -> 'a ms) -> int

fun UpperMultiSet (Node -> 'a ms) -> 'a ms

fun LowerMultiSet (Node -> 'a ms) -> 'a ms

UpperInteger uses a specified function F of type:

Node -> 'a ms

to calculate an integer F(n). This is done for each node n in the occur-
rence graph, and the maximum of the calculated integers is returned. For
the dining philosopher system:

UpperInteger (Mark.System'Eat 1)

calculates the maximal number of tokens on place Eat on the first in-
stance of page System. The result is 2, and this tells us that at most two
philosophers can eat at the same time.

LowerInteger is analogous to UpperInteger, but returns the
minimal value of the integers F(n). For the dining philosopher sys-
tem:

LowerInteger (Mark.System'Think 1)

calculates the minimal number of tokens on place Think on the first in-
stance of page System. The result is 3, and this tells us that there always
are at least three thinking philosophers.

Occurrence Graph Manual

OG-26 Design/CPN Occurrence Graph Manual

UpperMultiSet is analogous to UpperInteger, but it calcu-
lates F(n) instead of F(n). The result is the smallest multi-set which is
larger than or equal to all the calculated multi-sets. For the dining
philosopher system:

UpperMultiSet (Mark.System'Eat 1)

returns:

!! ((1,ph 1)!! ((1,ph 2)!! ((1,ph 5)!!

((1,ph 3) !! ((1,ph 4) empty)))))

which is the ML representation of the multi-set:

1`ph(1)+1`ph(2)+1`ph(3)+1`ph(4)+1`ph(5)

This tells us that each of the five philosophers is able to eat. To obtain
the second, more readable format of the result, evaluate the following
ML code:

mkst_ms'PH (UpperMultiSet (Mark.System'Eat 1))

LowerMultiSet is analogous to UpperInteger, but returns the
largest multi-set which is smaller than or equal to all the calculated
multi-sets. For the dining philosopher system:

LowerMultiSet (Mark.System'Eat 1)

returns the empty multi-set. This tells us that each of the five philoso-
phers is able to think (because there is a marking in which the philoso-
pher is not eating).

When the four query functions for boundedness are used for a timed
place instance of a timed CP-net, you can use StripTime to get rid of
the time stamps, e.g.:

LowerMultiSet (StripTime o (Mark.System'Eat 1))

For more information on StripTime, see Time Values at the end of
Chap. 3.

How to Make Standard Queries

Design/CPN Occurrence Graph Manual OG-27

Home Properties

The query functions for home properties are based on Prop 1.14 in
[CPN 2].

fun HomeSpace Node list -> bool

fun MinimalHomeSpace unit -> int

fun HomeMarking Node -> bool

fun ListHomeMarkings unit -> Node list

fun ListHomeScc unit -> Scc

fun HomeMarkingExists unit -> bool

fun InitialHomeMarking unit -> bool

HomeSpace determines whether the set of markings (specified in the
list of nodes) is a home space, i.e., whether, from each reachable
marking, it is possible to reach at least one of the markings. For the
dining philosopher system:

HomeSpace [2,6]

returns true. The function also has a chatty version.

MinimalHomeSpace returns the minimal number of markings
which is needed to form a home space. This is identical to the number of
terminal strongly connected components. For the dining philosopher
system:

MinimalHomeSpace ()

returns 1. This function cannot be used for a timed CPN model.

Occurrence Graph Manual

OG-28 Design/CPN Occurrence Graph Manual

HomeMarking determines whether the marking of the specified
node is a home marking, i.e., whether it can be reached from all
reachable markings. This is the case iff there is exactly one terminal
strongly connected component and the specified marking belongs to that
component. For the dining philosopher system:

HomeMarking (6)

returns true. The function also has a chatty version.

ListHomeMarkings returns a list with all those nodes that are
home markings. For the dining philosopher system:

ListHomeMarkings ()

returns a list which contains all 11 nodes of the occurrence graph. This
function cannot be used for a timed CPN model.

ListHomeScc is similar to ListHomeMarkings, but the result is
given in a more compact way. The result is either a single Scc (and then
the home markings are exactly those markings that belong to the Scc) or
the result is zero (and then there are no home markings). For the dining
philosophers:

ListHomeScc ()

returns ~1 (i.e. the Scc to which the initial marking belongs). This tells
us that all reachable markings are home markings. This function cannot
be used for a timed CPN model.

HomeMarkingExists determines whether the CP-net has any
home markings. This is the case iff there is exactly one terminal strongly
connected component. For the dining philosopher system:

HomeMarkingExists ()

returns true. This function cannot be used for a timed CPN model.

Initial HomeMarking determines whether the initial marking
of the occurrence graph is a home marking, i.e., whether it can be
reached from all reachable markings. This is the case iff there is exactly
one strongly connected component. The result of this function is identi-
cal to the result of AllReachable (defined in Reachability
Properties). For the dining philosopher system:

InitialHomeMarking ()

returns true.

How to Make Standard Queries

Design/CPN Occurrence Graph Manual OG-29

Liveness Properties

The query functions for liveness properties are based on Prop 1.15 in
[CPN 2].

fun DeadMarking Node -> bool

fun ListDeadMarkings unit -> Node list

fun SccListDeadMarkings unit -> Node list

fun TIsDead TI.TransInst list * Node -> bool

fun BEsDead Bind.Elem list * Node -> bool

fun ListDeadTIs unit -> TI.TransInst list

fun TIsLive TI.TransInst list -> bool

fun BEsLive Bind.Elem list -> bool

fun BEsStrictlyLive Bind.Elem list -> bool

fun ListLiveTIs unit -> TI.TransInst list

DeadMarking determines whether the marking of the specified
node is dead, i.e., has no enabled binding elements. For the dining
philosopher system:

DeadMarking (8)

returns false. This tells us that M8 has some enabled binding elements.

ListDeadMarkings returns a list with all those nodes that are
dead, i.e., have no enabled binding elements. For the dining philoso-
pher system:

ListDeadMarkings ()

returns the empty list.

Occurrence Graph Manual

OG-30 Design/CPN Occurrence Graph Manual

SccListDeadMarkings returns the same result as
ListDeadMarkings, but it uses the Scc-graph, i.e., the strongly
connected components. This means that it is faster than
ListDeadMarkings (at least for occurrence graphs which contain
cycles).

TIsDead determines whether the set of transition instances (specified
in the list) is dead in the marking of the specified node, i.e., whether it
is impossible to find an occurrence sequence which starts in the marking
and contains one of the transition instances. For the dining philosopher
system:

TIsDead ([TI.System'Take 1],4)

returns false. This tells us that there exists an occurrence sequence
which starts in M4 and contains an occurrence of transition Take on the
first instance of the page System. The function also has a chatty version:

TIsDead’ ([TI.System'Take 1],4)

which returns the same result together with the explanation:

"A transition instance from the given
list is contained in the SCC: ~1
(which is reachable from the SCC of
the given node)"

BEsDead is analogous to TIsDead except that the argument is a list
of binding elements (instead of transition instances). For the dining
philosopher system:

BEsDead ([Bind.System'Take
(1,{p=ph(3)})],4)

returns false. This tells us that there exists an occurrence sequence
which starts in M4 and contains an occurrence of transition Take on the
first instance of page System, with the variable p bound to ph(3). The
function also has a chatty version.

ListDeadTIs returns a list with all those transition instances that
are dead, i.e., do not appear in any occurrence sequence starting from
the initial marking of the occurrence graph. For the dining philosopher
system:

ListDeadTIs ()

returns the empty list.

How to Make Standard Queries

Design/CPN Occurrence Graph Manual OG-31

TIsLive determines whether the set of transition instances (specified
in the list) is live, i.e., whether, from each reachable marking, it is pos-
sible to find an occurrence sequence which contains one of the transition
instances. For the dining philosopher system:

TIsLive [TI.System'Take 1]

returns true. This tells us that it is impossible to reach a marking such
that transition Take on the first instance of page System never can occur.
The function also has a chatty version.

BEsLive is analogous to TIsLive except that the argument is a list
of binding elements (instead of transition instances). For the dining
philosopher system:

BEsLive [Bind.System'Take (1,{p=ph(3)})]

returns true. This tells us that philosopher ph(3) always has a chance to
Take his chopsticks. He cannot do that in all the reachable markings
– but it is always possible to choose a sequence of steps so that this
may happen. The function also has a chatty version.

BEsStrictlyLive determines whether the set of binding ele-
ments (specified in the list) is strictly live, i.e., whether each individual
element in the list is live. For the dining philosopher system:

BEsStrictlyLive [

 Bind.System'Take (1,{p=ph(1)}),

 Bind.System'Take (1,{p=ph(2)}),

 Bind.System'Take (1,{p=ph(3)}),

 Bind.System'Take (1,{p=ph(4)}),

 Bind.System'Take (1,{p=ph(5)})]

returns true. This tells us that each philosopher always has a chance to
Take his chopsticks. He cannot do that in all the reachable markings
– but it is always possible to choose a sequence of steps so that this
may happen.

ListLiveTIs returns a list with all those transition instances that
are live. For the dining philosopher system:

ListLiveTIs ()

returns:

[TI.System'Put 1,TI.System'Take 1]

Occurrence Graph Manual

OG-32 Design/CPN Occurrence Graph Manual

This tells us that it is impossible to reach a marking such that one of the
transition instances never can occur.

Fairness Properties

The query functions for fairness properties are based on Prop 1.16 in
[CPN 2].

fun TIsFairness TI.TransInst list ->
 FairnessProperty

fun BEsFairness Bind.Elem list ->
 FairnessProperty

fun ListImpartialTIs unit -> TI.TransInst list

fun ListFairTIs unit -> TI.TransInst list

fun ListJustTIs unit -> TI.TransInst list

The type FairnessProperty has the following four elements:

{Impartial, Fair, Just, No_Fairness}.

A definition and explanation of impartial, fairness and justice can be
found in Sect. 4.5 of [CPN 1].

TIsFairness determines whether the set of transition instances
(specified in the list) is impartial, fair or just. For the dining philosopher
system:

TIsFairness [TI.System'Take 1]

returns Impartial. This tells us that we cannot have an infinite occur-
rence sequence unless transition Take on the first instance of page
System continues to occur.

BEsFairness is analogous to TIsFairness except that the
argument is a list of binding elements (instead of transition instances).
For the dining philosopher system:

BEsFairness[Bind.System'Take (1,{p=ph(3)})]

How to Make Standard Queries

Design/CPN Occurrence Graph Manual OG-33

returns No_Fairness. This tells us that it is possible to have an infi-
nite occurrence sequence (starting from a reachable marking) in which
philosopher three never takes his chopsticks.

ListImpartialTIs returns a list with all those transition in-
stances that are impartial. For the dining philosopher system:

ListImpartialTIs ()

returns the list:

[TI.System'Put 1,TI.System'Take 1]

This tells us that all infinite occurrence sequences (starting from the ini-
tial marking) contains an infinite number of both transition instances.

ListFairTIs and ListJustTIs are analogous to
ListImpartialTIs except that they return all those transition
instances that are fair and just, respectively.

Impartiality implies fairness which in turn implies justice. Hence, we
always have:

ListImpartialTIs() ⊆
ListFairTIs() ⊆
ListJustTIs()

 Design/CPN Occurrence Graph Manual OG-35

Chapter 5

How to Make Your Own Queries

This chapter describes how you can make your own non-standard
queries – by writing some simple ML functions. First we introduce a
number of functions to inspect the structure of an occurrence graph and
an Scc-graph. Then we describe three search functions by which you
can traverse the nodes, arcs and strongly connected components of an
occurrence graph.

Nodes and Arcs

The following functions allow you to “move” between adjacent nodes
and arcs of the occurrence graph:

fun SourceNode Arc -> Node

fun DestNode Arc -> Node

fun Arcs Node * Node -> Arc list

fun InNodes Node -> Node list

fun OutNodes Node -> Node list

fun InArcs Node -> Arc list

fun OutArcs Node -> Arc list

The following function tells whether a node is terminal (i.e., have no
outgoing arcs). The result is identical to the result of DeadMarking (in
Chap. 4).

fun Terminal Node -> bool

The following functions return the nodes/arcs in one of the shortest
paths between the two specified nodes. If no path exists the exception
NoPathExists is raised:

fun NodesInPath Node * Node -> Node list

fun ArcsInPath Node * Node -> Arc list

Occurrence Graph Manual

OG-36 Design/CPN Occurrence Graph Manual

By definition we always have:

NodesInPath (n,n) = [n]

ArcsInPath (n,n) = []

The following functions determine to which extent a node has been pro-
cessed. The Branching Options (in Chap.7) allow you to specify that a
node can be processed without calculating all the immediate successors.
The second function checks whether this is the case:

fun Processed Node -> bool

fun FullyProcessed Node -> bool

Strongly Connected Components

Each node of an Scc-graph is a strongly connected component while
each arc of an Scc-graph is an ordinary occurrence graph arc. We have
an Scc arc for each occurrence graph arc that starts in one Scc and ends
in another.

The following functions allow you to “move” between strongly con-
nected components and their nodes/arcs. The first function maps an oc-
currence graph node into the Scc to which it belongs. The second func-
tion maps an occurrence graph arc into the Scc from which it starts (i.e.,
the Scc to which the source node belongs). The third function maps an
Scc node into the occurrence graph nodes that belong to the Scc.
Finally, the fourth function maps an Scc node into the occurrence graph
arcs that start in the Scc (while we don't care where the arcs end):

fun NodeToScc Node -> Scc

fun ArcToScc Arc -> Scc

fun SccToNodes Scc -> Node list

fun SccToArcs Scc -> Arc list

The following functions (for Scc-graphs) are analogous to the functions
defined in Nodes and Arcs (at the beginning of this chapter). Hence they
have the same names – prefixed with “Scc”.

fun SccSourceNode Arc -> Scc

fun SccDestNode Arc -> Scc

fun SccArcs Scc * Scc -> Arc list

fun SccInNodes Scc -> Scc list

fun SccOutNodes Scc -> Scc list

fun SccInArcs Scc -> Arc list

How to Make Your Own Queries

Design/CPN Occurrence Graph Manual OG-37

fun SccOutArcs Scc -> Arc list

fun SccTerminal Scc -> bool

fun SccNodesInPath Scc * Scc -> Scc list

fun SccArcsInPath Scc * Scc -> Arc list

The following function tells whether a strongly connected component is
trivial (i.e., consists of a single node and no arcs):

fun SccTrivial Scc -> bool

SearchNodes

The function SearchNodes traverses the nodes of the occurrence
graph. At each node some specified calculation is performed and the re-
sults of these calculations are combined, in some specified way, to form
the final result.

SearchNodes takes six different arguments and by varying these ar-
guments it is possible to specify a lot of different queries, e.g., many of
the standard queries from Chap. 4. The following description is taken
from Sect. 1.7 of [CPN 2]:

Search Area This argument specifies the part of the occurrence
graph which should be searched. It is often all
nodes, but it may also be any other subset of
nodes, e.g., those belonging to a strongly con-
nected component.

Predicate
function

This argument specifies a function. It maps each
node into a boolean value. Those nodes which
evaluate to false are ignored; the others take part in
the further analysis – as described below.

Search Limit This argument specifies an integer. It tells us how
many times the predicate function may evaluate to
true before we terminate the search. The search
limit may be infinite. This means we always search
through the entire search area.

Evaluation
function

This argument specifies a function. It maps each
node into a value, of some type A. It is important to
notice that the evaluation function is only used at
those nodes (of the search area) for which the
predicate function evaluates to true.

Occurrence Graph Manual

OG-38 Design/CPN Occurrence Graph Manual

Start value This argument specifies a constant, of some type
B.

Combination
function

This argument specifies a function. It maps from
A × B into B, and it describes how each individual
result (obtained by the evaluation function) is
combined with the prior results.

SearchNodes works as described by the following Pascal-style
pseudo-code. When the function terminates it returns the value of
Result:

SearchNodes (Area, Pred, Limit, Eval, Start, Comb)
begin

Result := Start; Found := 0

for all n ∈Area do

if Pred(n) then
begin

Result := Comb(Eval(n), Result)
Found := Found + 1
if Found = Limit then stop for-loop

end
end

end.

The arguments have the following types:

area search area Node list

pred predicate function Node -> bool

limit search limit int

eval evaluation function Node -> 'a

start start value 'b

comb combine function 'a * 'b -> 'b

The ML types 'a and 'b are arbitrary and may be identical. The search
area is specified by a list of nodes (if a node is listed twice it will be
searched twice). By convention we use:

val EntireGraph

How to Make Your Own Queries

Design/CPN Occurrence Graph Manual OG-39

to denote the set of all nodes in the occurrence graph. The search limit is
specified by a positive integer. By convention we use:

val NoLimit

to specify an infinite limit, i.e., that the search continues until the entire
search area has fully been traversed.

The SearchNodes function is a bit complicated. But it is also extremely
general and powerful. As an example, we can use SearchNodes to im-
plement the query function ListDeadMarkings from Chap.4, i.e., to
find all the dead markings. Then we simply use the following arguments:

Search area EntireGraph

Predicate function fun Pred(n) = (length(OutArcs(n)) = 0)

Search limit 10

Evaluation function fun Eval(n) = n

Start value []

Combination function fun Comb(new,old) = new::old

The predicate function uses the function OutArcs (from Nodes and
Arcs at the beginning of this chapter) to get a list of all the output arcs. If
the length of this list is zero there are no successors, and thus we have a
dead marking. The evaluation function maps a node into itself, i.e., into
the unique node number. The combination function adds each new dead
marking to the list of those which we have previously found. With these
arguments SearchNodes returns a list with at most 10 dead markings.
If the list is empty there is no dead marking. If the length is less than 10,
the list contains all the dead markings. The exact ML call looks as fol-
lows:

SearchNodes (

EntireGraph,

fn n => (length(OutArcs(n)) = 0),

10,

fn n => n,

[],

op ::)

Occurrence Graph Manual

OG-40 Design/CPN Occurrence Graph Manual

As a second example, we may use SearchNodes to implement the
query function UpperInteger from Chap. 4, i.e., to find the best upper
integer bound for a given place instance p ∈PI. This is done by using the
following arguments:

Search area EntireGraph

Predicate function fun Pred(n) = true

Search limit NoLimit

Evaluation function fun Eval(n) = Mark(p)(n)

Start value 0

Combination function max

The exact ML call looks as follows (for the place Eat on the first in-
stance of the page System):

SearchNodes (

EntireGraph,

fn _ => true,

NoLimit,

fn n => size (Mark.System'Eat 1 n),

0,

max)

PredNodes and EvalNodes

For convenience we also define some abbreviated forms of
SearchNodes where one or more of the arguments are predefined.
The first function searches the specified area and returns a list of all
those nodes that satisfy the specified predicate. The predeclared function
id maps an arbitrary ML value into itself:

fun PredNodes (area, pred, limit) : Node list

 = SearchNodes (area, pred, limit, id, [], op ::)

How to Make Your Own Queries

Design/CPN Occurrence Graph Manual OG-41

The second function searches the specified area and returns a list of all
the calculated values:

fun EvalNodes (area, eval) : 'b list

 = SearchNodes (area, fn _ => true,
 NoLimit, eval, [], op ::)

The next three functions are identical to SearchNodes, PredNodes
and EvalNodes, except that they always search the entire occurrence
graph:

fun SearchAllNodes
(pred, eval, start, comb) : 'b

 = SearchNodes (EntireGraph, pred,
NoLimit, eval, start, comb)

fun PredAllNodes (pred) : Node list

 = PredNodes (EntireGraph, pred, NoLimit)

fun EvalAllNodes (eval) : 'b list

 = EvalNodes (EntireGraph, eval)

The final function is identical to SearchNodes, except that the search
area consists of those nodes that are reachable from the node in the first
argument:

fun SearchReachableNodes
(node, pred, limit, eval, start, comb) : 'b

Examples of SearchNodes Calls

Two of the query functions from Chaps. 4 and 6 can be implemented as
follows:

fun ListDeadMarkings () : Node list

 = PredAllNodes Terminal

fun EntireGraphCalculated () : bool

 = (PredAllNodes (fn n =>
not(FullyProcessed n)) = [])

Occurrence Graph Manual

OG-42 Design/CPN Occurrence Graph Manual

If the occurrence graph contains unprocessed nodes, it may be desirable
to exclude these from the node list returned by ListDeadMarkings.
We then get the following function:

fun ListDeadMarkingsFP () : Node list

 = PredAllNodes (fn n => (Terminal n)

andalso (FullyProcessed n))

All nodes in which a particular philosopher is eating can be found as
follows (where cf returns the coefficient of the specified colour in the
specified multi-set):

fun Eating (p:PH) : Node list

 = PredAllNodes (fn n =>
cf(p,Mark.System'Eat 1 n) > 0)

The maximal number of simultaneously enabled transition instances can
be found as follows (where remdupl removes duplicates from a list,
while map uses the specified function on all the elements of the speci-
fied list):

fun MaxTIEnabled () : int

 = SearchAllNodes(

fn _ => true,

fn n => length(remdupl(

map ArcToTI(OutArcs n))),

0,

max)

Checking whether there are reachable markings in which two neigh-
bouring philosophers simultaneously eat, can be done as follows (where
next is a function mapping each philosopher in its successor, ext_col
extends a function 'a -> 'b to a function 'a ms -> 'b ms, while
<<= is the less-than-equal operation on multi-sets):

fun EatingNeighbours () : Node list

 = PredAllNodes(fn n =>

let

val Eating = Mark.System'Eat 1 n

in

not(Eating +

ext_col next Eating <<= PH)

end)

How to Make Your Own Queries

Design/CPN Occurrence Graph Manual OG-43

Checking whether there are nodes which violate the linear invariant:

M(Unused) + Chopsticks(M(Eat)) = CS

can be done in the following way (where <><> is the operator which
checks whether two multi-sets are different from each other):

fun InvariantViolations () : Node list

 = PredAllNodes(

fn n => Mark.System'Unused 1 n +

ext_ms Chopsticks (Mark.System'Eat 1 n)
<><> CS)

SearchArcs

The function SearchArcs traverses the arcs of the occurrence
graph. At each arc some specified calculation is performed and the re-
sults of these calculations are combined, in some specified way, to the
form the final result.

We define SearchArcs in a way which is totally analogous to
SearchNodes. The arguments have the following types:

area search area Arc list

pred predicate function Arc -> bool

limit search limit int

eval evaluation function Arc -> 'a

start start value 'b

comb combine function 'a * 'b -> 'b

We define PredArcs, EvalArcs, SearchAllArcs,
PredAllArcs, EvalAllArcs, and
SearchReachableArcs analogously to PredNodes,
EvalNodes, SearchAllNodes, PredAllNodes,
EvalAllNodes, and SearchReachableNodes. The latter
searches all the arcs which are reachable from the node specified in the
first argument.

Occurrence Graph Manual

OG-44 Design/CPN Occurrence Graph Manual

Examples of SearchArcs Calls

The following function returns all the arcs where transition Take occurs
on the first instance of page System with the variable p bound to a spec-
ified philosopher:

fun TakeChopsticks (p:PH) : Arc list

 = PredAllArcs(

fn a => case ArcToBE a

of Bind.System'Take (1,{p=p’}) => p=p'

| _ => false)

For the ring network, the following function returns all the arcs where
transition Send occurs on some instance of page Site with variables s
and r bound to the same value:

fun SendToMyself () : Arc list

 = PredAllArcs(

fn a => case ArcToBE a

of Bind.System'Send

(1,{s=v1,r=v2,...}) => v1=v2

| _ => false)

SearchSccs

The function SearchSccs traverses the strongly connected compo-
nents of the occurrence graph. At each strongly connected component
some specified calculation is performed and the results of these calcula-
tions are combined, in some specified way, to the form the final result.

We define SearchSccs in a way which is totally analogous to
SearchNodes and SearchArcs. The arguments have the following
types:

How to Make Your Own Queries

Design/CPN Occurrence Graph Manual OG-45

area search area Scc list

pred predicate function Scc -> bool

limit search limit int

eval evaluation function Scc -> 'a

start start value 'b

comb combine function 'a * 'b -> 'b

We define PredSccs, EvalSccs, SearchAllSccs,
PredAllSccs, EvalAllSccs, and
SearchReachableSccs analogously to PredNodes,
EvalNodes, SearchAllNodes, PredAllNodes,
EvalAllNodes, and SearchReachableNodes. The latter
searches all the strongly connected components which are reachable
from the Scc specified in the first argument.

Examples of SearchSccs Calls

Two of the query functions from Chap. 4 can be implemented as fol-
lows:

fun HomeMarkingExists () : bool

 = (length(PredAllSccs SccTerminal) = 1)

fun HomeMarking (n:Node) : bool

 = SccTerminal(NodeToScc(n)) andalso

HomeMarkingExists()

 Design/CPN Occurrence Graph Manual OG-47

Chapter 6

How to Draw an Occurrence
Graph

In addition to the standard report described in Chap. 2 and the query
functions described in Chaps. 4 and 5, you may investigate the be-
haviour of a CPN model by making a drawing of the occurrence graph.
For large occurrence graphs it only makes sense to draw small parts
e.g., the nearest surroundings of some interesting nodes, found by
means of the query functions. This chapter describes how to make
drawings of the occurrence graph and the Scc-graph.

Object Types

The occurrence graph for the dining philosopher system may be drawn
as shown below.

The rounded boxes are OG nodes while the arcs are OG arcs. The
dashed boxes next to the OG nodes are OG node descriptors while
those next to the OG arcs are OG arc descriptors. For readability we
have only shown some of the node and arc descriptors.

Each OG node contains the node number and the number of immediate
predecessors and successors – in the presently calculated occurrence
graph. The full occurrence graph may have more predecessors/ succes-
sors while the present drawing may have less. In the example above,
node number 1 has five predecessors and five successors. Nodes 2-6
have three predecessors and three successors, while the remaining
nodes have two predecessors and two successors. You can create/delete
a node/arc descriptor by double clicking the corresponding node/arc (or
by using the Toggle Descriptor command).

Occurrence Graph Manual

OG-48 Design/CPN Occurrence Graph Manual

1
5:5

2
3:3

3
3:3

4
3:3

5
3:3

6
3:3

7
2:2

8
2:2

9
2:2

Unused: 1`cs(1)
Think: 1`ph(1)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(2)+ 1`ph(4)

10
2:2

Unused: 1`cs(3)
Think: 1`ph(2)+ 1`ph(3)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(4)

11
2:2

Unused: 1`cs(5)
Think: 1`ph(2)+ 1`ph(4)+ 1`ph(5)
Eat: 1`ph(1)+ 1`ph(3)

Put: {p=ph(2)}

Take: {p=ph(4)}Take: {p=ph(1)}

Put: {p=ph(3)}

For an unprocessed OG node a double quote is appended to the node
number, for a partially processed node a single quote is appended, and
for a fully processed node a blank.

We have customised the contents of the text strings in the node/arc de-
scriptors. This was done by means of the String Representation Options
in Chap. 7. In the default settings each node descriptor contains the
node number and the marking of the corresponding node. Each arc de-
scriptor contains the arc number, the source and destination node num-
bers and the binding element of the arc.

If an OG object is copied/cut and then pasted, the resulting object be-
comes an auxiliary object.

How to Draw an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-49

Occ Menu

To draw an occurrence graph the commands of the Occ menu is used:

 Occ

 Calculate Occ Graph
 Calculate Successors

 Calculate Scc Graph
 --

 Show Statistics…

 Save Report…
 --

 Occ State to Sim…

 Sim State to Occ
 --

 Attributes/Options…
 --

 Display Node…

 Display Arc…

 Display Successors

 Display Predecessors

 Display Scc Graph
 --

 Toggle Descriptor

 Update Node

Calculate Occ Graph

This command calculates the occurrence graph. It observes the Stop
Options and Branching Options in Chap.7. The command must be used
with care since occurrence graphs tend to be quite large. During the cal-
culation of the occurrence graph a progress report is displayed in the
status bar (usually for every 60 seconds). The report may look as fol-
lows:

#nodes 218/500/623 #arcs 725/1000/1524 #secs 14/300/48

The first number tells how many new nodes there have been generated
(for the present call of Calculate Occ Graph). The next number
shows the current Stop Option (for the number of nodes). If the stop

Occurrence Graph Manual

OG-50 Design/CPN Occurrence Graph Manual

option is inactive the number is omitted. The third number gives the total
number of nodes in the occurrence graph (up to now).

The next three numbers contain similar information for arcs while the
last three numbers contain information for the use of real time (not CPU
time).

Calculate Successors

This command calculates the immediate successors of the selected OG
node(s). It observes the Stop Options and Branching Options in
Chap.7. When a full occurrence graph has been calculated, there is no
need to use Calculate Successors. However, for a partial occurrence
graph, the command allows you to determine the “direction” in which
you want the system to make further developments.

Calculate Scc Graph

This command calculates the Scc-graph of the occurrence graph. The
Scc-graph is used by many of the query functions in Chap.4.

Show Statistics

This command gives information about the size of the occurrence graph
and the size of the Scc-graph. The information is identical to the statis-
tics in Save Report – but it is displayed in a dialogue box instead of a
text file.

The occurrence graph will always have at least one node (even if
Calculate Occ Graph and Calculate Successors have not been
used). By convention node number 1 represents the initial marking. If
the Scc-graph has not been calculated, the second part of the statistics is
missing.

If the occurrence graph is partial you may extend it by invoking
Calculate Occ Graph once more (perhaps after modifying some of
the Stop Options or Branching Options).

The information from Show Statistics can also be accessed via the
following set of ML functions:

fun NoOfNodes unit -> int

fun NoOfArcs unit -> int

fun NoOfSecs unit -> int

fun EntireGraphCalculated unit -> bool

How to Draw an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-51

fun SccNoOfNodes unit -> int

fun SccNoOfArcs unit -> int

fun SccNoOfSecs unit -> int

fun SccGraphCalculated unit -> bool

Save Report

This command generates a text file containing a standard report with
information about:

• Statistics (size of occurrence graph and Scc-graph).

• Boundedness Properties (integer and multi-set bounds for place in-
stances).

• Home Properties (home markings).

• Liveness Properties (dead markings, dead/live transition instances).

• Fairness Properties (impartial/fair/just transition instances).

For more details see the end of Chap. 2.

Occ State to Sim

This command allows you to “move” an occurrence graph state to the
simulator. This is very useful. You can inspect the marking directly on
the graphical representation of the CP-net. You can see the enabled
transition instances, investigate their bindings and make simulations.
The OG node (to be moved) is either selected (prior to the invocation of
the command) or specified in a dialogue box.

Sim State to Occ

This command allows you to “move” a simulator state to the occurrence
graph (where it becomes a node). A dialogue box reports the node num-
ber and whether the state already belonged to the occurrence graph. The
new node can (as all other nodes) be drawn by means of Display
Node, but this does not happen automatically.

Attributes/Options

This command allows you to change the diagram defaults for OG at-
tributes and the values of OG options. For more information see
Chap. 7.

Occurrence Graph Manual

OG-52 Design/CPN Occurrence Graph Manual

Display Node

This command draws a new OG node – providing a graphical represen-
tation of the specified node. The graphical appearance of the node is de-
termined by the Node Attributes in Chap. 7. The node is drawn at the
centre of the current page

If the node already exists, on the current page, the corresponding OG
node becomes selected and nothing further happens. Hence, it is im-
possible to draw the same OG node more than once on a page (but it can
be drawn on different pages).

OG nodes can also be drawn by means of the following ML functions:

fun DisplayNodes Node list -> unit

fun DisplayNodePath Node list -> unit

The first function draws the nodes in the list (on the current page,
reusing existing nodes). The second function checks whether the nodes
form a path (i.e., whether there is an arc between each node and its im-
mediate successor). If this is the case, the nodes and arcs are drawn (on
the current page, reusing existing nodes and arcs). If there are multiple
arcs, between two neighbouring nodes, they are all drawn. If the nodes
do not form a path, the exception NotAPath is raised

Display Arc

This command draws an OG arc – providing a graphical representation
of the specified arc. If necessary the command also draws the source
and destination node of the arc. Otherwise the command works in a way
which is analogous to Display Node. The graphical appearance of the
arcs is determined by the Arc Attributes in Chap. 7.

OG arcs can also be drawn by means of the following ML functions,
which work in a way which is totally analogous to DisplayNodes
and DisplayNodePath:

fun DisplayArcs Arc list -> unit

fun DisplayArcPath Arc list -> unit

Display Successors

This command draws the immediate successor nodes and the immediate
successor arcs of the selected node(s). The positioning of the new OG
nodes/arcs are determined by the Succ/Pred Options in Chap. 7, and
they also determine the maximal number of successors which are drawn
by one call of Display Successors. Additional calls will draw addi-

How to Draw an Occurrence Graph

Design/CPN Occurrence Graph Manual OG-53

tional successors (if any). It should be noted that the command only
draws nodes and arcs which already have been calculated. Hence, it
may be necessary/desirable to call Calculate Occ Graph or
Calculate Successors before the use of Display Successors.

Display Predecessors

This command draws the predecessor nodes and predecessor arcs of the
selected node(s). It works in a way which is totally analogous to
Display Successors.

Display Scc Graph

This command draws the Scc-graph using a standard layout. It only
works well when there are reasonably few Scc nodes. In a later version,
we will allow the components of an Scc-graph to be drawn by the same
functions as the components of the occurrence graph.

Toggle Descriptor

This command toggles the existence of the OG node/arc descriptor of
the selected OG node/arc(s). If the descriptor does not exist, it is cre-
ated. If it exists, it is deleted. The graphical appearance of the descrip-
tors is determined by the Node Descriptor Attributes and the Arc
Descriptor Attributes in Chap. 7 while the contents is determined by the
Node Descriptor Options and the Arc Descriptor Options in Chap. 7.

Update Node

This command updates the information in the text string of the selected
OG node(s). It only has an effect if the occurrence graph has been ex-
tended since the OG node was drawn.

 Design/CPN Occurrence Graph Manual OG-55

Chapter 7

How to Change Attributes and
Options

The OG tool has a large number of attributes and options. Attributes
determine the graphical appearance of the individual OG objects.
Options determine the way in which the commands of the OG tool
works. Diagram defaults determine the initial values of the attributes
of new objects. System defaults determine the diagram defaults of
new CPN diagrams.

In the current version of the OG tool, attributes and options are handled
in a provisional way. The Attributes/Options command allows you
to change the diagram defaults of OG attributes and the values of OG
options. Attribute values of individual OG objects are changed via the
usual attribute commands in the Set menu. System defaults cannot be
changed.

Attributes/Options Command

When the command is invoked it displays the following dialogue box:

Occurrence Graph Manual

OG-56 Design/CPN Occurrence Graph Manual

When the OK button is pressed, a new box is created (on the current
page). The box contains ML functions to change the diagram de-
faults/values of those attributes/options which you have selected (via the
check boxes). The current values of the diagram defaults/options are
shown in the box – except in those cases where the value is an ML
function (for these we show the system defaults). To change the op-
tions, you replace the values with those, which you want, and then
evaluate the ML functions by means of the ML Evaluate command.

How to Change Attributes and Options

Design/CPN Occurrence Graph Manual OG-57

Attributes

The following ML function changes the diagram defaults of OG nodes
(the values indicate the system defaults):

OGSet.NodeAttributes{

 Size = {width = 35, height = 35},

 Graphics = {fill = None, line = Solid,
thick = 1},

 Text = {size = 10, font = Courier,
style = PlainText,
just = Centered}}

The following ML function changes the diagram defaults of OG arcs
(the values indicate the system defaults):

OGSet.ArcAttributes{

 Graphics = {fill = Black, line = Solid,
thick = 1}}

The following ML function changes the diagram defaults of OG node
descriptors (the values indicate the system defaults):

OGSet.NodeDescriptorAttributes{

 Size = {width = 250, height = 80},

 Graphics = {fill = White, line =
Dashed/Diagonal, thick = 1},

 Text = {size = 10, font = Courier,
style = PlainText,
just = LeftJustification}}

The following ML function changes the diagram defaults of OG arc de-
scriptors (the values indicate the system defaults):

Occurrence Graph Manual

OG-58 Design/CPN Occurrence Graph Manual

OGSet.ArcDescriptorAttributes{

 Size = {width = 100, height = 40},

 Graphics = {fill = White, line =
Dashed/Diagonal, thick = 1},

 Text = {size = 10, font = Courier,
style = PlainText,
just = LeftJustification}}

To specify fill and line patterns the following constants can be used:

Fill patterns on the Unix platform:
None, Black, White

Line patterns on the Unix platform:
Solid, Dashed, LongDashed, Dotted,
DottedDashed

Fill and line patterns on the Mac platform:
None, Black, White, Horizontal,
Vertical, Diagonal

To specify text styles the following constants can be used (combinations
are obtained by adding the corresponding constants):

Bold, Condense, Extended, Italic, Outline,
PlainText, Shadow, Underline

To specify text justification the following constants can be used:

Centered, LeftJustification,
RightJustification

String Representation Options

The String Representation Options allow the user to specify how he
wants the st-functions in Chap. 3 to work. As an example, he may de-
termine whether he wants a transition instance to be represented as:

System'Take 1 or Take

The first representation is convenient for a CP-net with many different
pages/page instances, while the second representation is convenient for
a system with only one or a few pages (and only one instance of each
page).

How to Change Attributes and Options

Design/CPN Occurrence Graph Manual OG-59

The st-functions are used for the standard reports generated by Save
Report and for the contents of OG node/arc descriptors. Hence, the
options also influence these things. However, it should be noted that the
string representation options do not influence the input format of the dif-
ferent ML functions in Chaps. 3-5. This means, e.g., that the user al-
ways has to specify the page and instance of a transition instance – even
though he may have decided to omit this information from the text
strings created by st_TI.

For each of the st-functions we provide an ML function which specifies
how the individual substrings are put together (e.g., the order and the
separators). The options are changed by the following set of ML func-
tions (the values indicate the system defaults):

OGSet.StringRepOptions'Node(

 fn (node) => node)

OGSet.StringRepOptions'Arc(

 fn (arc,source,dest) =>

arc ^ ":" ^ source ^ "->" ^ dest)

OGSet.StringRepOptions'PI(

 fn (page,place,inst) =>

page ^ "'" ^ place ^ " " ^ inst)

OGSet.StringRepOptions'TI(

 fn (page,trans,inst) =>

page ^ "'" ^ trans ^ " " ^ inst)

OGSet.StringRepOptions'BE(

 fn (TI,bind) => TI ^ ": " ^ bind)

OGSet.StringRepOptions'Mark(

 fn (PI,mark) => PI ^ ": " ^ mark ^ NEWLINE)

The more compact string representations mentioned in Chap. 3 are ob-
tained by using the following options:

OGSet.StringRepOptions'PI(

 fn (page,place,inst) => place)

Occurrence Graph Manual

OG-60 Design/CPN Occurrence Graph Manual

OGSet.StringRepOptions'TI(

 fn (page,trans,inst) => trans)

OGSet.StringRepOptions'BE(

 fn (TI,bind) => TI ^ ": " ^ bind)")

OGSet.StringRepOptions'Mark(

 fn (PI,mark) =>
if mark="empty" orelse mark="tempty"
then ""
else PI ^ ": " ^ mark ^ NEWLINE)

Node and Arc Descriptor Options

The Node Descriptor Options determine the contents of the OG node de-
scriptors. They are changed by the following ML function (the value
indicate the system defaults):

OGSet.NodeDescriptorOptions(

 fn n =>
(st_Node n)^NEWLINE^
(st_Mark.System'Unused 1 n)^
(st_Mark.System'Think 1 n)^
(st_Mark.System'Eat 1 n))

You may replace the default by any other ML function of type:

Node -> string

In this way it is possible to obtain a compact representation of a complex
marking. As an example it is possible to omit the marking of some place
instances or only show the number of tokens (ignoring the token
colours).

The Arc Descriptor Options determine the contents of the OG arc de-
scriptors. They are changed by the following ML function (the value
indicate the system defaults):

OGSet.ArcDescriptorOptions(

 fn (a:Arc):string =>

(st_Arc a)^NEWLINE^

(st_BE(ArcToBE a)))

How to Change Attributes and Options

Design/CPN Occurrence Graph Manual OG-61

You may replace the default by any other ML function of type:

Arc -> string

In this way it is possible to obtain a compact representation of a complex
binding element.

Successor/Predecessor Options

The Successor/Predecessor Options determine how Draw Successors
and Draw Predecessors position the new nodes. They also determine
the maximum number of successors/predecessors to be drawn. The op-
tions are changed by the following ML function (the values indicate the
system defaults):

OGSet.SuccPredOptions{

 FirstSucc = {horz = 0,vert = 80},

 NextSucc = {horz = 50,vert = 10},

 MaxSucc = 10,

 FirstPred = {horz = 0,vert = ~80},

 NextPred = {horz = ~50,vert = ~10}

 MaxPred = 10}

The first argument determines the offset of the first successor (relative to
the original node). Positive values means “to the right” and
“downwards”. The second argument determines the offset of the second
successor (relative to the first successor). It also determines the offset of
the third successor (relative to the second) – and so on. The third argu-
ment determines the maximal number of successors drawn by one call
of Display Successors. The last three arguments are analogous to the
first three, but determines the offset and maximal number of predeces-
sors (instead of successors).

Stop Options

The Stop Options allow you to determine when the calculation of an oc-
currence graph stops. This happens when all nodes have been processed
or when one of the stop options becomes satisfied. The options are
changed by the following ML function (the values indicate the system
defaults):

Occurrence Graph Manual

OG-62 Design/CPN Occurrence Graph Manual

OGSet.StopOptions{

 Nodes = NoLimit,

 Arcs = NoLimit,

 Secs = 300,

 Predicate = fn _ => false}

The first three arguments specify the maximal number of nodes, arcs
and seconds. By convention, zero indicates NoLimit (i.e., that the cor-
responding stop option is inactive). All counts are reset to zero when-
ever you call Calculate Occ Graph . This means that you can extend
an occurrence graph without changing the Stop Options. The fourth ar-
gument specifies a predicate function which is evaluated after the calcu-
lation of the successors:

Node -> bool

If the predicate evaluates to true the calculation of the occurrence graph
will be stopped. This can, e.g., be used to stop when a dead marking is
found:

fn n => Terminal n

When a Stop Option has been met, the exception
StopOptionSatisfied is raised (this can, e.g., be seen if the oc-
currence graph is generated by means of the CalculateOccGraph
function described in Chap. 2). Furthermore a message is printed with
details about the activated stop option.

Warning: It is impossible to stop a “run-away” occurrence graph gen-
eration in a graceful way. Hence, it is important that the Stop Options in
have some sensible values

Branching Options

The Branching Options allow you to specify that, under certain circum-
stances, the OG tool need not calculate all the successors of a node. The
node is then said to be only partially processed. The options are changed
by the following ML function the values indicate the system defaults):

OGSet.BranchingOptions{

 TransInsts = NoLimit,

 Bindings = NoLimit,

 Predicate = fn _ => true}

How to Change Attributes and Options

Design/CPN Occurrence Graph Manual OG-63

The first argument specifies the maximal number of enabled transition
instances to be used to find successor markings (for each node).
Analogously, the second argument specifies the maximal number of en-
abled bindings to be used (for each enabled transition instance). By
convention zero indicates NoLimit. All counts are reset to zero when-
ever you invoke Calculate Occ Graph This means that you can ex-
tend the number of calculated successor markings without changing the
Branching Options The third argument specifies a predicate function
which is evaluated before the calculation of the successors:

Node -> bool

If the predicate evaluates to false no successors are calculated.

Nodes which are processed, without calculating all successors, are
marked as partially processed. When you add to an existing occurrence
graph, some of the partially processed nodes may become fully pro-
cessed.

The generation of new nodes progresses in a width first fashion. This
means that the nodes are being processed in the order in which they
were created. To a certain extent, a depth first generation can be ob-
tained by using ”narrow” Branching Options.

For a timed occurrence graph the processing order is determined by the
creation time (i.e., the model time at which the individual markings start
to exist).

Inspection Options

The Inspection Options allow you to specify how often you want to get
a progress report in the status bar – during an execution of Calculate
Occ Graph . The options are changed by the following ML function
(the values indicate the system defaults):

OGSet.InspectionOptions{

 Frequency = 60,

 Action = !OGSet.StandardInspectionReport}

The frequency is measured in seconds. The contents of the standard re-
port is explained in Chap. 6. You may replace the standard report by
another ML function of type:

unit -> unit

 Design/CPN Occurrence Graph Manual OG-65

Reference List

[CPN 1] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science, Springer-Verlag, 1992. ISBN: 3-540-60943-1.

[CPN 2] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methods. Monographs in Theoretical
Computer Science, Springer-Verlag, 1994. ISBN: 3-540-58276-2

