Design/CPN
Occurrence Graph Manual

Version 3.

0

O

University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark
Tel: +45 89 42 31 88

Fax: +45 89 42 32 55

© 1996 University of Aarhus

© 1996 University of Aarhus

Computer Science Department
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark
Tel: +4589 42 31 88

Fax: +45 89 42 32 55

e-mail: designCPN-support@dai mi.aau.dk

Authors: Kurt Jensen, Sgren Christensen and Lars M. Kristensen.

Design/CPN is atrademark of Meta Software Corporation.

Macintosh is aregistered trademark of Apple Computer, Inc.

0G-2 Design/CPN Occurrence Graph Manual

Design/CPN
Occurrence Graph Manual

Version 3.0

Table of Contents

Chapter 1

Introduction to Occurrence Graphs
The History of the Design/CPN Occurrence Graph Tool.........ccccccceeevviivnneee. 9
Example: Dining PhIlOSOPNENSc..oviiiiiec e 10

Chapter 2

How to Calculate an Occurrence Graph
Generation of Occurrence Graph Codeccccveviiiiie e 13

Details and LImitationS..........coceriieriiiriiie e 14

Generation of the Occurrence Graphccveeveeiiiiiiiee e 14
StANAAIT REPOM. ...t e e ae e sreeennee s 15

Chapter 3

How to Refer to the Items of an Occurrence Graph
Nodes, Arcs and Strongly Connected Components...........ccceeeeeeevevveeeevnnnnnnne 17
Place INSLANCES.......cooiiieiiieie ettt s sneeesaeeen 17
TranSItioN INSTANCES.......ccuii et e e e e nneas 18
IMBIKINGS. ..ttt b et nb ettt b et sae b e ae et 19
BiNdING EIEMENLS.......cccveeieeeee et 20
StrNG REPIrESENLALIONS.cc.viieieiie et cee s st e e e et e e saae e s reeesnreeenneeeas 21
TIME VAIUES.......eeieeee et s sae e 22

Design/CPN Occurrence Graph Manual 0G-3

Occurrence Graph Manual

Chapter 4
How to Make Standard Queries
Reachability PropertiesS.........ccuviiiee e 23
Boundedness Properties.........cuvoiuieiiiee ittt aee st 25
HOME PIOPEIIES.eoeiviee ittt e e e sr e e s e e e na e e nnreas 27
LIVENESS PrOPEITIES.eeiiiieiiee ettt ettt sttt e e e e 29
FairmeSS ProPeITIES.coiiiiiiieietee et 32
Chapter 5
How to Make Your Own Queries
NOUES QNG AFCS.....eieiiieeiee ettt ettt ettt sae e et e esbeesbeesaeeeseesneeeseesnneens 35
Strongly Connected COMPONENTS.......cccuiiiiiieiiiie it 36
SEAICNNOUES.......octee ettt e e e s e e ssee e e ree e snneesnseesneeennees 37
PredNodes and EVaINOUES............c.cuuvviviiieieiieeeeeee e 40
Examples of SearchNodes Calls.............ccccuveeeiiiiiee e, 41
ST=Te Lo 7 AN (o2 43
Examples of SearchArcs Calls........c.cccoooieieiiiiiiiiie e 44
SEAICNSCCS. ...uteieeeeettiee ettt e et e e e e et e e e e e et e e e e e s abaeeeeeeabaeeeeeeansreeeeeennnes 44
Examples of SearchSccs Calls..........ccooceveiiiiieiiiiiee e 45
Chapter 6
How to Draw an Occurrence Graph
ODJECT TYPES ..ttt b ettt n e bt b sne e a7
OCC MENU ...ttt st eae e bt e e sb b e e s be e e snteesnbeeennneeans 49
Calculate OCC Graph.......oeocieeiie e 49
CalCUulate SUCCESSOIS.......ciiieeiieeiieeeiie ettt 50
Calculate SCC Graph........c.oveiiiiii e 50
SNOW SEALISHCS.coveeeiie e 50
SAVE REPOM.... .o 51
(@ ol o] r= 1= (0 10 o PSP 51
SiM SEALE 10 OCC....uiiiiiiiiiisiie ettt saee e 51
AIDULES/OPLIONS......cceee ettt 51
DISPIaY NOE.........oeeeiiiiiecee e 52
D15 0] = | Y (oS PR 52
DiISPIAY SUCCESSOIS.eeeiieiiiiiieeie ettt ettt 52
DiSplay PredECESSOIS.ciiieeiiiiieeriee ettt 53
Display SCC Graph......cuuciieeiiecie et see e see e saeeseeens 53
TOQQIE DESCIIPION.vieeeiie ettt e e e 53
Update NOGE........ooiiiie et 53

0G-4 Design/CPN Occurrence Graph Manual

Table of Contents

Chapter 7

How to Change Attributes and Options
Attributes/Options COMMANGcocueeiiieeiiie e 55
ATTDULES ..ottt e nns 57
String Representation OPLIONSceviiiiiiiiiee e 58
Node and Arc DescCriptor OPLIONSoocveeriiiiiieiiee e 60
Successor/Predecessor OPLIONSccoiiieeiiiieriee e 61
1(0] o @] o110 1 KT TPV PR P URRURRTRPPIN 61
Branching OPLIONScooiiiiiie e e e nee e 62
INSPECHION OPLIONS ..o et e st esnae e sneeennes 63

RETFEIENCE LISt e 65

Design/CPN Occurrence Graph Manual 0G-5

Index

Index

AllReachable 24

arc 17

arc descriptor option 60
Arcs 35

ArcslnPath 35
ArcToBE 20
ArcToScc 36

ArcToTl 20

attribute 55

attribute default 57
Attributes/Options command 51, 55

BEsDead 30

BEsFairness 32

BEsLive 31
BEsStrictlyLive 31

BEToTI 20

Bind 19

binding element 19
boundedness property 16, 25
branching option 62

Calculate Occ Graph command 15, 49
Calculate Scc Graph command 15, 50
Calculate Successors command 50
CalculateOccGraph 15
CalculateSccGraph 15

chatty version 23

combination function 38
CreationTime 21

DeadMarking 29

DestNode 35

diagram default 55

dining philosopher 10

Display Arc command 52
Display Node command 52
Display Predecessors command 53
Display Scc Graph command 53
Display Successors command 52
DisplayArcPath 52
DisplayArcs 52
DisplayNodePath 52
DisplayNodes 52

EqualUntimed 22
EqualsUntimed 22

EntireGraph 38
EntireGraphCalculated 50
EvalAllArcs 43
EvalAllNodes 41
EvalAllSccs 45
EvalArcs 43

EvalNodes 41

EvalSccs 45

evaluation function 37

fairness property 32
FairnessProperty 32
FullyProcessed 36

generation of occurrence graph 14

generation of occurrence graph code 13

home property 16, 27
HomeMarking 28
HomeMarkingExists 28
HomeSpace 27

InArcs 35

Initial HomeMarking 28
InitNode 17

InitScc 17

InNodes 35

inspection option 63
Inst 17

ListDeadMarkings 29
ListDeadTls 30
ListFairTls 33
ListHomeMarkings 28
ListHomeScc 28
Listimpartial Tls 33
ListJustTIs 33
ListLiveTls 31
liveness property 16, 29
Lowerlnteger 25
LowerMultiSet 26

Mark 19

marking 19
MinimalHomeSpace 27

ML Evaluate 23

ML Evaluate command 15, 56

Design/CPN Occurrence Graph Manual

OoG-7

Occurrence Graph Manual

node 17 SccOutNodes 36
node descriptor option 60 SccReachable 24
NodeslnPath 35 SccSourceNode 36
NodeToScc 36 SccTerminal 37
NoLimit 39 SccToArcs 36
NoOfArcs 50 SccToNodes 36
NoOfNodes 50 SccTrivial 37
NoOfSecs 50 search area 37

search limit 37
object type 47 SearchAllArcs 43
Occ menu 49 SearchAllNodes 41
Occ State to Sim command 51 SearchAllSccs 45
occurrence graph code 13 SearchArcs 43
OccurrenceTime 21 SearchNodes 37
OG arc 47 SearchReachableArcs 43
OG arc descriptor 47 SearchReachableNodes 41
OG node 47 SearchReachableSccs 45
OG node descriptor 47 SearchSccs 44
option 55 Show Statistics command 50
OutArcs 35 Sim State to Occ command 51
OutNodes 35 SourceNode 35

standard report 15
PI 17 start value 38
PILLAIl 18 statistics 15
place instance 17 stop option 61
PredAllArcs 43 string representation 21
PredAlINodes 41 string representation option 58
PredAllSccs 45 StripTime 22
PredArcs 43 strongly connected component 17
predicate function 37 st Arc 20
PredNodes 40 st BE 20
PredSccs 45 st Mark 21
Processed 36 st Node 20

st Pl 20
reachability property 23 st TI 20
Reachable 24 successor/predecessor option 61

system default 55
Save Report command 15, 51

Scc 17 Terminal 35

SccArcs 36 Tl 18

SccArcsinPath 37 TI.AIl 18

SccDestNode 36 timed occurrence graph 21
SccGraphCalculated 51 TlsDead 30

ScclnArcs 36 TIsFairness 32
SccinNodes 36 TlsLive 31
SccListDeadMarkings 30 Toggle Descriptor command 47, 53
SccNodeslnPath 37 transition instance 18
SccNoOfArcs 51

SccNoOfNodes 51 Update Node command 53
SccNoOfSecs 51 Upperinteger 25
SccOutArcs 37 UpperMultiSet 26

0G-8 Design/CPN Occurrence Graph Manual

Chapter 1

Introduction to
Occurrence Graphs

The History of the Design/CPN Occurrence Graph Tool

This manual describes atool to calculate, analyse and draw occurrence
graphs (also called state spaces, reachability graphs or reachability
trees).

The original version of the Design/CPN occurrence graph tool (OG tool)
was designed and implemented in 1991-92. It was developed by Meta
Software, Cambridge MA, USA, in close cooperation with researchers
from the Computer Science Department of University of Aarhus,
Denmark.

The present version of the OG tool has been developed at University of
Aarhusin 1995. It improves and extends the original occurrence graph
tool in several ways.

The OG tool is now fully integrated with Design/CPN. This means that
you can switch between the editor/ssimulator and the OG tool. When an
occurrence graph node has been found, it can be inspected in the simula-
tor. This means that you can see the marking directly on the graphical
representation of the CPN model. Y ou can see the enabled transition in-
stances, investigate their bindings and make simulations. Analogoudly,
when a marking has been found in the smulator, it can be added to the
occurrence graph or used as the initial marking for a new occurrence

graph.

The new version of the OG tool has alarge number of built-in standard
queries. They can be used to investigate all the standard properties of a
CP-net, such as reachability, boundedness, home properties, liveness
and fairness. In addition to the standard queries there are a number of
powerful search facilities allowing you to formulate your own, non-
standard queries. The standard queries require no programming at all.
The non-standard queries usually requires that you write 2-5 lines of
quite straightforward ML code.

Design/CPN Occurrence Graph Manual 0G-9

Occurrence Graph Manual

The ML interface has been totally rewritten. The naming system and the
typing system have been redesigned and ssimplified. This means that the
tool now is easier and more straightforward to use. The manual has
been totally rewritten, and alot of examples have been added.

The new version of the OG tool is much easier to use than the old one —
and it should present few problemsto people who are familiar with
CP-nets and Design/CPN. To use the OG tool, the user simply enters
the smulator and invokesthe Enter Occ Graph command (intheFile
menu). Thishasasimilar effect asEnter Simulator. It creates the oc-
currence graph code, i.e., the ML code necessary to calculate, analyse
and draw occurrence graphs. Moreover, it creates a new menu, called
Occ. This menu contains all the commands which are used to perform
the calculation and drawing of occurrence graphs

Example: Dining Philosophers

The basic idea behind occurrence graphsis to make a directed graph
with anode for each reachable marking and an arc for each occurring
binding element. An introduction to occurrence graphs can be found in
Sect. 5.1 of [CPN 1] and in Sect. 1.1 of [CPN 2].

In this manual we use the dining philosopher system as our main ex-
ample. Five Chinese philosophers are sitting around a circular table. In
the middle of the table there isadelicious dish of rice, and between each
pair of philosophersthereis asingle chopstick. Each philosopher alter-
nates between thinking and eating. To eat, the philosopher needs two
chopsticks, and heis only allowed to use the two which are situated
next to him (on hisleft and right side). The sharing of chopsticks pre-
vents two neighbours from eating at the same time.

csl cs2
Y @
Rice

= \Dish ~~

csb cs3

‘ cs4 ‘

0G-10 Design/CPN Occurrence Graph Manual

Introduction to Occurrence Graphs

The philosopher system is modelled by the CP-net shown below. The
PH colour set represents the philosophers, while the CS colour set rep-
resents the chopsticks. The function Chopsticks maps each philosopher
into the two chopsticks next to him.

valn=5;

color PH = index ph with 1..n declare ms;

color CS =index cs with 1..n declare ms;

var p : PH;

fun Chopsticks(ph(i)) = 1'cs(i)+1 cs(if i=n then 1 else i+1);

Chopsticks(p)

" €S
@ Unused
PH Chopsticks
p& / Cs

Put Down ;
Chopsticks
Chopsticks P)

___J

An occurrence graph for the dining philosophersis shown below. Each
node represents a reachable marking, while each arc represents the oc-
currence of asingle binding element — leading from the marking of the
source node to the marking of the destination node. To improve read-
ability, we have only shown the detailed contents of some of the mark-
ings and some of the binding elements. It should be noted that all arcs
are double arcs (i.e., represents two individual arcs).

Design/CPN Occurrence Graph Manual 0G-11

Occurrence Graph Manual

Unused: 1 cs(3)
Think: 1" ph(2)+ 1" ph(3)+ 1 ph(5)
Eat: 1 ph(1)+ 1" ph(4)

10
2:2
Take: {p=ph(1)}
2
p 3.3

Take: {p=ph(4)}

Put: {p=ph(2)}

Put: {p=ph(3)}

Unused: 1 cs(1) Unused: 1 cs(5)
Think: 1 ph(1)+ 1 ph(3)+ 1 ph(5) | |Think: 1 ph(2)+ 1 ph(4)+ 1 ph(5)
Eat: 1 ph(2)+ 1 ph(4) Eat: 1 ph(1)+ 1 ph(3)

The occurrence graph for the dining philosophers is made by means of
the OG toal. In the following we shall show how thisis done.

However, it should be noted that this occurrence graph is rather atypi-
cal. Most occurrence graphs are much larger. The present version is able
to handle graphs with 20,000-200,000 nodes and 50,000-2,000,000
arcs— provided that you have sufficient RAM in your machine. Future
versions are expected to be able to handle much larger occurrence

graphs.

0G-12 Design/CPN Occurrence Graph Manual

Chapter 2

How to Calculate an
Occurrence Graph

Before an occurrence graph can be calculated, it is necessary to generate
theoccurrence graph code, i.e., the ML code which is used to calcu-
late, analyse and draw occurrence graphs. The occurrence graph codeis
generated in away which is similar to the switch from the editor to the
simulator.

Generation of Occurrence Graph Code

To generate the occurrence graph code the following steps must be per-
formed (in the specified order):

a)

b)

0)

d)

f)

Make sure that you are using Design/CPN version 3.0 (or later)
and the CPN ML image provided together with it.

Use Syntax Optionsto select OG Tool Violations. Y ou may
also want to select the five check boxes for missing and duplicate
place, transition and page names.

Use General Simulation Optionsto tell whether you want
your occurrence graph to be with or without time. To choose the
setting which you want it may first be necessary to use
Simulation Code Options.

Use Enter Simulator to make asyntax check and to enter the
simulator.

Use Change M arking (or asimulation) to obtain the marking
which you want to use as the initial marking of your occurrence
graph. — If you want to use theinitial marking of CPN model as
theinitial marking of your occurrence graph, nothing needs to be
done.

Invoke Enter Occ Graph (in the File menu). Thiswill create the
occurrence graph code. For large netsit takes a while — compara-
ble to the time for afull ssmulator switch.

Design/CPN Occurrence Graph Manual 0G-13

Occurrence Graph Manual

When Enter Occ Graph terminates, anew Occ menu is added to the
menu bar (at the rightmost end). This menu contains all the commands
which are used to perform the calculation and drawing of occurrence
graphs. A detailed description of the menu and the commands can be
found in Chap. 6. Most of the commands are used to draw occurrence
graphs (and hence you don't need to read about them at this stage).

The generation of new nodes progresses in awidth first fashion. This
means that the nodes are being processed in the order in which they
were created. To acertain extent, a depth first generation can be ob-
tained by using " narrow” Branching Options (described in Chapter 7).

For atimed occurrence graph the processing order is determined by the
creation time (i.e., the model time at which the individual markings start
to exist).

We propose that you now try to generate the occurrence graph code for
the dining philosopher system. To do this use the CPN model called
“DiningPhilosophers’. It can be downloaded from the Design/CPN
WWW pages.

Details and Limitations (can be skipped in a first reading)

When you make a modification of the CPN diagram, it is necessary to
regenerate al the occurrence graph code from scratch. This also means
that the occurrence graph (if any) islost. When the modification is made
inthe simulator it is sufficient to invoke Reswitch and Enter Occ
Graph.

The OG tool respects the relevant mode attributes. The occurrence graph
is calculated for those parts of the net which would participate in asmu-
lation. Please note that, in occurrence graphs, it only makes sense to use
code segmentsin avery limited fashion, e.g., to initialise a CPN model.

The settings for timed simulations are al so observed. Hence, it is pos-
sible to generate occurrence graphs, for timed CP-nets, with or without
the time mechanism in effect. Use General Simulation Optionsto
determine whether you want your occurrence graph to be timed or not.

Free variables on output arcs are not alowed — unless they are variables
of asmall color set.

Generation of the Occurrence Graph

0G-14

When you have generated the occurrence graph code (by following the
steps described above), you are ready to cal culate the occurrence graph.

Design/CPN Occurrence Graph Manual

How to Calculate an Occurrence Graph

If the occurrence graph is expected to be small (e.g., with afew hun-
dred nodes and arcs), you can simply invoke Calculate Occ Graph.
Otherwise you may need to change the Sop Options and/or the
Branching Options described in Chap. 7.

Many of the query functionsin Chap. 4 use the Scc-graph (i.e., the
strongly connected components of the occurrence graph). To calculate
the Scc-graph you invoke Calculate Scc Graph.

The occurrence graph and the Scc-graph can also be calculated by using
theM L Evaluate command to evaluate the following ML functions,
which work exactly as the menu commands. This can, e.g., be useful if
you want to handle exceptions raised by the CPN model or the Stop op-
tions (in Chap. 7):

fun Cal cul ateOccGraph unit -> unit
fun Cal cul ateSccGraph wunit -> unit

Additiona information about the menu commands mentioned above can
be found in Chap. 6.

Standard Report

When you have generated the occurrence graph for a CP-net, you can
use Save Report to generate atext file which containsastandard re-
port providing information about:

» Statistics (size of occurrence graph and Scc-graph).

» Boundedness Properties (integer and multi-set bounds for place in-
stances).

» Home Properties (home markings).

* Liveness Properties (dead markings, dead/live transition instances).

» Fairness Properties (impartial/fair/just transition instances).

The command invokes a dialogue box allowing the user to specify the
kind of information which he wants to obtain. Thisis done by choosing
one or more of the possibilities mentioned above (home and fairness
properties can only be chosen if the Scc-graph has been calculated). For
the dining philosopher system the full standard report looks as follows:

Statistics

Qccurrence Graph

Nodes: 11
Arcs: 30
Secs: 1
Status: Full

Design/CPN Occurrence Graph Manual 0G-15

Occurrence Graph Manual

Scc Graph
Nodes: 1
Arcs: 0
Secs: 0

Boundedness Properties

Best | nteger Bounds
System Eat 1
System Think 1
System Unused 1

Best Upper Milti-set Bounds

Systeni Eat 1 1'ph(1)+ 1
1 ph(4)+ 1
System Think 1 1" ph(1)+ 1
1 ph(4)+ 1 ph(5)
Syst eni Unused 1 lcs(l)+ 1
1'cs(4)+ 1 cs(5)
Best Lower Milti-set Bounds
System Eat 1 enpty
System Think 1 enpty
System Unused 1 enpty

Home Properties

Hone Markings: Al

Li veness Properties

Dead Markings: None
Dead Transitions |Instances: None
Li ve Transitions |Instances: All

Fai rness Properties

System Put 1 | mparti al
System Take 1 | mparti al

“ph(2)+ 1" ph(3)+
“ph(5

_ph(2)+ 1 ph(3)+
"cs(2)+ 1 cs(3)+

It is possible to customise the way the system displays place instances
and transition instances (e.g. toreplace"Syst em Eat 1" by
"Eat "). Thisis done by means of the Sring Representation Options

described in Chap. 7.

0G-16 Design/CPN Occurrence Graph Manual

Chapter 3

How to Refer to the Items
of an Occurrence Graph

This chapter describes how you can refer to the items of an occurrence
graph, such as nodes, place instances, binding elements and markings.

Nodes, Arcs and Strongly Connected Components

We denote nodes and ar cs by positive integers while we denote
strongly connected components (Sccs) by negative integers.

type Node = int (* positive *)
type Arc = int (* positive *)
type Scc = int (* negative *)

By convention 1 denotesthe initial marking of the occurrence graph:

val I ni t Node = 1: Node

while ~1 (minus one) denotes the Scc to which node 1 belongs:

val I nitScc = ~1: Scc

Place Instances

To denote place instances the following ML structure is available:
type I nst = int

con Pl . <PageName>' <Pl aceNanme>
Inst -> PI.Placel nst

Design/CPN Occurrence Graph Manual 0G-17

Occurrence Graph Manual

For the dining philosophers we use:

Pl . System Think 1

to refer to place Think on thefirst instance of page System. For thering
network from Sect. 3.1 of [CPN 1] we use:

Pl.Site' PackNo 3
to refer to place PackNo on thethird instance of the page Ste.

Y ou may want to make an alias for place instances frequently referred
to, e.g.:

val Eat = Pl.Systenm Eat 1

To denote the set of al place instances, the following notation is avail-
able:

Pl . Al Pl . Pl acelnst |i st

Transition Instances

0G-18

To denotetransition instances the following ML structureis avail-
able. It istotally analogousto Pl above:

con Tl . <PageName>' <Tr ansNanme>
I nst -> TI.Transl nst

For the dining philosophers we use:
Tl . System Take 1

to refer to transition Take on thefirst instance of page System. For the
ring network we use:

TI.Site' Send 3
to refer to trangition Send on the third instance of page Site.

To denote the set of all transition instances, the following notation is
avalable:

TI . Al'l Tl . Translnst |i st

Design/CPN Occurrence Graph Manual

How to Refer to the Items of an Occurrence Graph

Markings

To ingpect the mar kings of the different place instances the following
ML structureisavailable:

fun Mar k. <PageName>' <Pl aceNane>
Inst -> (Node -> CS ns)

where CSisthe colour set of the place instance. For the dining philoso-
phers we use:

Mar k. System Think 1 10

to refer to the multi-set of tokens on place Think on thefirst instance of
page System in the marking M 1g (by convention we use M;j to refer to
the marking of node). For the ring network we use:

Mark. Site' PackNo 3 217

to refer to the marking of place PackNo on thethird instance of the page
Stein M217. It should be noted that the Mark function returns the inter-
na ML representation of the multi-set. To obtain a more readable string
representation the st Mark function should be used (see Sring
Representations below).

For atimed occurrence graph the above functions return atimed
multi-set (for places with atimed colour set). For an untimed occurrence
graph of atimed CPN model places with timed multi-sets have
"dummy” time stamps (as in the ssmulator) and hence the Mark func-
tions return atimed multi-set.

Binding Elements

To denote binding elements the following ML structure is available:

con Bi nd. <PageName>' <Tr ansName>
Inst * record -> Bind. El em
where the second argument is a record specifying the binding of the

variables of the transition. The type of this argument depends upon the
trangition. For the dining philosophers we use:

Bi nd. System Take (1, {p=ph(3)})

Design/CPN Occurrence Graph Manual 0G-19

Occurrence Graph Manual

to refer to the binding element where transition Take on thefirst instance
of page System has the variable p bound to ph(3). For the ring network
we use:

Bi nd. Si te' NewPack (3,{n=2,r=S(1),s=S(3)})

to refer to the binding element where transition NewPack on thethird
instance of page Ste has the variables n, r and s bound to 2, S(1) and

S(3), respectively.

The two following functions map an arc into its binding ele-
ment/transition instance. The third function maps a binding element into
its transition instance.

fun ArcToBE Arc -> Bind. El em

fun ArcToTI Arc -> TI. Transl nst

fun BEToOTI Bi nd. El em -> TI. Transl nst
It should be noted that

Bi nd. <PageNanme>"' <Tr ansNane>

isaconstructor. This meansthat it can be used in pattern matches.
Examples can be found in Examples of SearchArcs Callsin Chap. 5.

String Representations

0G-20

The following functions are used to obtain string representations of
nodes, arcs, place instances, transition instances and binding elements:

fun st _Node Node -> string

fun st _Arc Arc -> string

fun st _PI Pl.Placelnst -> string

fun st _TI TI. Translnst -> string

fun st _BE Bi nd. El em -> string
Examples:

st _Node (3) " 3"

st_Arc (18) "18: 6->10"

st Pl (Pl.SystemEat 1) "SysteniEat 1"

st _TI (ArcToTl (18)) "System Take 1"

st BE (ArcToBE(18)) "System Take 1: {p=ph(4)}"

Design/CPN Occurrence Graph Manual

How to Refer to the Items of an Occurrence Graph

To produce string representations of the markings of place instances the
following ML structure is provided:

fun st _Mar k. <PageName>' <Pl aceName>
Inst -> (Node -> string)

Example (the produced string ends with a carriage return):

st _Mark. Systemi Eat 1 10
"System Eat 1: 1 ph(1)+1 ph(4)"
The string representations produced by the st-functions can be modified
by means of the String Representation Optionsin Chap. 7. It is, e.g.,
possible to get the following more compact representations (in which
place instances and page names are omitted):

st_Pl (Pl.System Eat 1) " Eat "
st_TlI (ArcToTl(18)) "Take"
st _BE (ArcToBE(18)) "Take: {p=ph(4)}"

Analogoudly, it is possible to get a compact version of st Mark (for
empty markings the result is the empty string):

st _Mark. Systemi Eat 1 10
"Eat: 1 ph(1)+1 ph(4)"

st _Mark.System Eat 1 1

Time Values

The following functions can only be used for timed occurrence
graphs.

Each node has atime value — denoting the model time at which the
marking started to exist:
fun CreationTi nme Node -> TI ME

Anaogoudly, each arc has atime value — denoting the model time at
which the binding e ement occurred:

fun OccurrenceTi me Arc -> TIME

Design/CPN Occurrence Graph Manual 0G-21

Occurrence Graph Manual

The following function maps a timed multi-set into an untimed multi-set:
fun StripTime ‘atns -> 'a ns

The following function tells whether the markings of the two specified
nodes are identical when time stamps are ignored:

fun Equal Unti med Node * Node -> bool

The following function maps a node into all those nodes which have the
same marking when time stamps are ignored:

fun Equal sUnti med Node -> Node |i st

Most occurrence graphs with time will be non-cyclic (since all nodesin
acycle must have the same creation time).

0G-22 Design/CPN Occurrence Graph Manual

Chapter 4

How to Make Standard Queries

This chapter explains how to perform standard queriesto investigate the
properties of a CPN model. It is, e.g., possible to investigate the reach-
ability, boundedness, home, liveness and fairness properties defined in

[CPN 1]. Many of the query functions return results which already are

included in the standard report described in Chap. 2.

The query functions are typically used in auxiliary boxes—alone or as
part of alarger ML expression. The box is evaluated by means of the
ML Evaluate command. If you select a non-empty part of the text ,
ML Evauate only deals with that part.

Some of the functions also have achatty ver sion which returns the
same result asthe ordinary query function. The difference is that the
chatty version (sometimes) prints atext string with a more elaborated
explanation of the result. Each chatty query function has the same name
as the corresponding ordinary query function, with a single quote ap-
pended to the end (e.g., Reachabl e').

Reachability Properties

The query functions for reachability properties are based on Prop 1.12

in [CPN 2].

fun Reachabl e Node * Node -> bool
fun SccReachabl e Node * Node -> bool
fun All Reachabl e unit -> bool

Design/CPN Occurrence Graph Manual 0G-23

Occurrence Graph Manual

0G-24

Reachabl e determines whether there exists an occurrence sequence
from the marking of the first node to the marking of the second. Thisis
done by investigating whether the occurrence graph contains a directed
path from the first node to the second. For the dining philosopher sys-
tem:

Reachabl e (5, 3)
returnstrue. Thistells usthat there exists an occurrence sequence from

the marking M5 (of node 5) to the marking M3 (of node 3). The function
also has a chatty version:

Reachabl e' (5, 3)

which returns the same result together with the explanation:

"A path fromnode 5 to node 3 is: [5 9, 3]"

Thistells us that there exists an occurrence sequence containing the
markings Ms, Mg and M3 (in that order). The path is of minimal length.

SccReachabl e returnsthe sameresult asReachabl e, but it uses
the Scc-graph, i.e., the strongly connected components. This means that
it isfaster than Reachabl e (at least for occurrence graphs which con-
tain cycles). The function also has a chatty version:

SccReachabl e' (5, 3)

which returns the same result together with the explanation:

"A path fromthe SCC of node 5 to the
SCC of node 3 is: [~1]"

Thistells us that both M5 and M3 belong to the strongly connected com-
ponent ~1 (i.e. the strongly connected component of the initial mark-

ing).

Al | Reachabl e determineswhether all the reachable markings are
reachable from each other. Thisisthe caseiff thereis exactly one
strongly connected component. For the dining philosopher system:

Al | Reachabl e ()

returns true.

Design/CPN Occurrence Graph Manual

How to Make Standard Queries

Boundedness Properties

The query functions for boundedness properties are based on Prop 1.13

in [CPN 2].

fun Upperl nteger (Node -> "a ns) ->int
fun Lower | nt eger (Node -> "a ns) ->int
fun Upper Mul ti Set (Node ->'"a ns) ->'"a ns
fun Lower Mul ti Set (Node ->'"a ns) ->'"a ns

Upper | nt eger usesaspecified function F of type:
Node -> '"a ns

to calculate an integer ¥4(n)%2 Thisis done for each node n in the occur-
rence graph, and the maximum of the calculated integers is returned. For
the dining philosopher system:

Upper | nt eger (Mark. System Eat 1)
calculates the maximal number of tokens on place Eat on thefirstin-

stance of page System. Theresult is 2, and thistells us that at most two
philosophers can eat at the same time.

Lower | nt eger isanalogoustoUpper | nt eger, but returnsthe

minimal value of the integers ¥#(n)%2 For the dining philosopher sys-
tem:

Lower | nt eger (Mark. System Thi nk 1)
calculates the minima number of tokens on place Think on thefirstin-

stance of page System. Theresult is 3, and this tells us that there always
are at least three thinking philosophers.

Design/CPN Occurrence Graph Manual 0G-25

Occurrence Graph Manual

Upper Mul t i Set isanalogoustoUpper | nt eger, but it calcu-

lates F(n) instead of ¥4(n)%2 The result isthe smallest multi-set which is
larger than or equal to al the cal culated multi-sets. For the dining
philosopher system:

Upper Mul ti Set (Mark. System Eat 1)
returns:
1L ((1,ph 1)!'! ((1,ph 2)!! ((1,ph 5)!!
((1,ph 3) 't ((1,ph 4) enpty)))))
which isthe ML representation of the multi-set:
1" ph(1)+1" ph(2) +1" ph(3) +1" ph(4) +1" ph(5)
Thistells usthat each of the five philosophersis ableto eat. To obtain

the second, more readable format of the result, evaluate the following
ML code:

nmkst _ns' PH (Upper Mul ti Set (Mark. Systeml Eat 1))

Lower Mul t i Set isanaogoustoUpper | nt eger, but returns the
largest multi-set which issmaller than or equal to all the calculated
multi-sets. For the dining philosopher system:

Lower Mul ti Set (Mark. Systenmi Eat 1)
returns the empty multi-set. Thistells us that each of the five philoso-

phersis ableto think (because thereis a marking in which the philoso-
pher is not eating).

When the four query functions for boundedness are used for atimed
placeinstance of atimed CP-net, youcanuse St ri pTi e to get rid of
the time stamps, e.g.:

Lower Mul ti Set (StripTinme o (Mark. System Eat 1))

For more informationon St ri pTi e, see Time Valuesat the end of
Chap. 3.

0G-26 Design/CPN Occurrence Graph Manual

How to Make Standard Queries

Home Properties

The query functions for home properties are based on Prop 1.14 in

[CPN 2].

fun HomeSpace Node |ist -> bool
fun M ni mal HomeSpace unit -> int

fun HomeMar ki ng Node -> bool

fun Li st HomeMar ki ngs unit -> Node |i st
fun Li st HomeScc unit -> Scc

fun HomeMar ki ngExi st's unit -> bool

fun I nitial HomeMar ki ng unit -> bool

Home Space determines whether the set of markings (specified in the
list of nodes) is a home space, i.e., whether, from each reachable
marking, it is possible to reach at least one of the markings. For the
dining philosopher system:

HonmeSpace [2, 6]
returns true. The function also has a chatty version.
M ni mal HomeSpace returnsthe minimal number of markings
which is needed to form ahome space. Thisisidentical to the number of
terminal strongly connected components. For the dining philosopher
System:

M ni mal HoneSpace ()
returns 1. This function cannot be used for atimed CPN model.

Design/CPN Occurrence Graph Manual 0G-27

Occurrence Graph Manual

0G-28

Home Mar ki ng determines whether the marking of the specified
node is ahome marking, i.e., whether it can be reached from all
reachable markings. Thisisthe caseiff thereis exactly one terminal
strongly connected component and the specified marking belongs to that
component. For the dining philosopher system:

HoneMar ki ng (6)

returns true. The function also has a chatty version.

Li st HomeMar ki ngs returnsalist with all those nodes that are
home markings. For the dining philosopher system:

Li st HoneMar ki ngs ()

returns alist which contains all 11 nodes of the occurrence graph. This
function cannot be used for atimed CPN model.

Li st HomeScc issmilarto Li st HomeMar ki ngs, but theresult is
given in amore compact way. The result is either a single Scc (and then
the home markings are exactly those markings that belong to the Scc) or
the result is zero (and then there are no home markings). For the dining
philosophers:

Li st HomeScc ()

returns ~1 (i.e. the Scc to which theinitial marking belongs). Thistells
usthat all reachable markings are home markings. This function cannot
be used for atimed CPN model.

HomeMar ki ngExi st s determines whether the CP-net has any
home markings. Thisisthe case iff there is exactly one terminal strongly
connected component. For the dining philosopher system:

HormeMar ki ngExi sts ()

returns true. This function cannot be used for atimed CPN model.

I ni tial HomeMar ki ng determineswhether the initial marking
of the occurrence graph is a home marking, i.e., whether it can be
reached from all reachable markings. Thisisthe caseiff thereis exactly
one strongly connected component. The result of this function isidenti-
cal to theresult of Al | Reachabl e (defined in Reachability
Properties). For the dining philosopher system:

I nitial HoneMarking ()

returns true.

Design/CPN Occurrence Graph Manual

How to Make Standard Queries

Liveness Properties

The query functions for liveness properties are based on Prop 1.15in

[CPN 2].
fun DeadMar ki ng Node -> bool
fun Li st DeadMar ki ngs unit -> Node |i st

fun ScclLi st DeadMar ki ngs unit -> Node |i st

fun Tl sDead TI.Translnst list * Node -> bool

fun BEsDead Bind.Elemlist * Node -> bool

fun Li st DeadTlI s unit -> Tl.Translnst |i st
fun Tl sLi ve TlI.Translnst |ist -> bool
fun BEsLi ve Bind. Elem|ist -> bool

fun BEsStrictlyLive Bind.Elemlist -> bool

fun Li stLiveTls unit -> Tl.Translnst |ist

DeadMar ki ng determines whether the marking of the specified
nodeis dead, i.e., has no enabled binding elements. For the dining
philosopher system:

DeadMar ki ng (/8)

returns false. Thistells usthat Mg has some enabled binding elements.

Li st DeadMar ki ngs returnsalist with all those nodes that are
dead, i.e., have no enabled binding elements. For the dining philoso-
pher system:

Li st DeadMar ki ngs ()

returns the empty list.

Design/CPN Occurrence Graph Manual 0G-29

Occurrence Graph Manual

0G-30

ScclLi st DeadMar ki ngs returns the sameresult as

Li st DeadMar ki ngs, but it uses the Scc-graph, i.e., the strongly
connected components. Thismeansthat it isfaster than

Li slt I;)eadl\/lar ki ngs (at least for occurrence graphs which contain
cycles).

Tl sDead determines whether the set of transition instances (specified
inthelist) isdead in the marking of the specified node, i.e., whether it
isimpossible to find an occurrence sequence which startsin the marking
and contains one of the trangition instances. For the dining philosopher
System:

TIsDead ([Tl. System Take 1], 4)

returns false. Thistells us that there exists an occurrence sequence
which startsin M4 and contains an occurrence of transition Take on the
first instance of the page System. The function also has a chatty version:

TIsDead” ([TI.Systen Take 1], 4)

which returns the same result together with the explanation:

"Atransition instance fromthe given
list is contained in the SCC. ~1
(which is reachabl e fromthe SCC of

t he gi ven node)"

BEsDead isanalogousto Tl sDead except that the argument isalist
of binding elements (instead of transition instances). For the dining
philosopher system:

BEsDead ([Bi nd. Syst emi Take
(1, {p=ph(3)})].4)

returns false. Thistells us that there exists an occurrence sequence
which startsin M4 and contains an occurrence of transition Take on the
first instance of page System, with the variable p bound to ph(3). The
function also has a chatty version.

Li st DeadTI s returnsalist with all those transition instances that

aredead, i.e., do not appear in any occurrence sequence starting from

the initial marking of the occurrence graph. For the dining philosopher
system:

Li st DeadTls ()
returns the empty list.

Design/CPN Occurrence Graph Manual

How to Make Standard Queries

Tl sLi ve determines whether the set of transition instances (specified
inthelist) islive, i.e., whether, from each reachable marking, it is pos-
sible to find an occurrence sequence which contains one of the transition
instances. For the dining philosopher system:

TIsLive [Tl. System Take 1]

returnstrue. Thistellsusthat it isimpossible to reach a marking such
that transition Take on thefirst instance of page System never can occur.
The function also has a chatty version.

BEsLi ve isanaogousto Tl sLi ve except that the argument isalist
of binding elements (instead of transition instances). For the dining
philosopher system:

BEsLi ve [Bi nd. System Take (1, {p=ph(3)})]

returns true. This tells us that philosopher ph(3) aways has a chanceto
Take his chopsticks. He cannot do that in al the reachable markings
—but it is always possible to choose a sequence of steps so that this
may happen. The function aso has a chatty version.

BEsStrictl yLi ve determineswhether the set of binding ele-
ments (specified in the list) isstrictly live, i.e., whether each individual
element inthelist islive. For the dining philosopher system:
BEsStrictlyLive |

Bi nd. Syst em Take (1, {p=ph(1)}),

Bi nd. System Take (1, {p=ph(2)}),

Bi nd. System Take (1, {p=ph(3)}),

Bi nd. Syst em Take (1, {p=ph(4)}),

Bi nd. System Take (1, {p=ph(5)})]

returns true. Thistells usthat each philosopher always has a chance to
Take his chopsticks. He cannot do that in all the reachable markings
—but it is always possible to choose a sequence of steps so that this

may happen.

Li st Li veTl s returnsalist with all those transition instances that
arelive. For the dining philosopher system:

Li stLiveTls ()

returns:

[TI.System Put 1, Tl. Systeni Take 1]

Design/CPN Occurrence Graph Manual 0G-31

Occurrence Graph Manual

Thistellsusthat it isimpossible to reach a marking such that one of the
transition instances never can occur.

Fairness Properties

0G-32

The query functions for fairness properties are based on Prop 1.16 in
[CPN 2].

fun Tl sFai rness TI.Translnst |list ->
Fai r nessProperty

fun BEsFairness Bind. lemlist ->
Fai r nessProperty

fun Listlnpartial Tls unit -> TlI.Translnst |ist
fun ListFairTls unit -> TI.Translnst |i st

fun Li stJustTIls unit -> TI.Translnst |ist

Thetype Fair nessProperty hasthe following four e ements:

{Inpartial, Fair, Just, No_Fairness}.

A definition and explanation of impartial, fairness and justice can be
found in Sect. 4.5 of [CPN 1].

Tl sFai r ness determines whether the set of transition instances
(specified in the list) isimpartial, fair or just. For the dining philosopher
system:

TI sFai rness [Tl. System Take 1]
returns| npar ti al . Thistells usthat we cannot have an infinite occur-

rence segquence unless transition Take on thefirst instance of page
System continues to occur.

BEsFai rness isanaogoustoTl sFai r ness except that the
argument isalist of binding elements (instead of transition instances).
For the dining philosopher system:

BEsFai r ness[Bi nd. Syst emi Take (1, {p=ph(3)})]

Design/CPN Occurrence Graph Manual

How to Make Standard Queries

returnsNo_Fai r ness. Thistellsusthat it is possible to have an infi-
nite occurrence sequence (starting from a reachable marking) in which
philosopher three never takes his chopsticks.

Li stl nmpartial Tl s returnsalist with al those transition in-
stances that are impartial. For the dining philosopher system:

Listlnpartial TIs ()
returns the list:

[TI.System Put 1, Tl.Systen Take 1]
Thistellsusthat al infinite occurrence sequences (starting from the ini-

tial marking) contains an infinite number of both transition instances.

Li st Fair Tl sandLi st Just Tl s areanalogous to
Li stl mpartial Tl s exceptthat they return all those transition
instancesthat are fair and just, respectively.

Impartiaity implies fairness which in turn impliesjustice. Hence, we
always have:

Listlnmpartial TIs() |
ListFairTls() |
Li st Just Tl s()

Design/CPN Occurrence Graph Manual 0G-33

Chapter 5

How to Make Your Own Queries

This chapter describes how you can make your own non-standard
gueries— by writing some simple ML functions. First we introduce a
number of functions to inspect the structure of an occurrence graph and
an Scc-graph. Then we describe three search functions by which you
can traverse the nodes, arcs and strongly connected components of an
occurrence graph.

Nodes and Arcs

The following functions allow you to “move’ between adjacent nodes
and arcs of the occurrence graph:

fun Sour ceNode Arc -> Node

fun Dest Node Arc -> Node

fun Arcs Node * Node -> Arc |i st
fun I nNodes Node -> Node |i st

fun Out Nodes Node -> Node |i st

fun I nArcs Node -> Arc |ist

fun Out Arcs Node -> Arc |ist

The following function tells whether anode isterminal (i.e., have no
outgoing arcs). The result isidentical to the result of DeadMar ki ng (in
Chap. 4).

fun Ter m nal Node -> bool
The following functions return the nodes/arcs in one of the shortest
paths between the two specified nodes. If no path exists the exception
NoPat hExi st s israised:

fun Nodesl| nPat h Node * Node -> Node |i st
fun Arcsl nPat h Node * Node -> Arc |i st

Design/CPN Occurrence Graph Manual 0G-35

Occurrence Graph Manual

By definition we always have:

Nodesl nPath (n,n) = [n]

ArcslinPath (n,n) =[]
The following functions determine to which extent a node has been pro-
cessed. The Branching Options (in Chap.7) allow you to specify that a
node can be processed without calculating all the immediate successors.
The second function checks whether thisisthe case:

fun Processed Node -> bool

fun Full yProcessed Node -> bool

Strongly Connected Components

0G-36

Each node of an Scc-graph is a strongly connected component while
each arc of an Scc-graph is an ordinary occurrence graph arc. We have
an Scc arc for each occurrence graph arc that startsin one Scc and ends
in another.

The following functions allow you to “move” between strongly con-
nected components and their nodes/arcs. The first function maps an oc-
currence graph node into the Scc to which it belongs. The second func-
tion maps an occurrence graph arc into the Scc from which it starts (i.e.,
the Scc to which the source node belongs). The third function maps an
Scc node into the occurrence graph nodes that belong to the Scc.
Finally, the fourth function maps an Scc node into the occurrence graph
arcsthat start in the Scc (while we don't care where the arcs end):

fun NodeToScc Node -> Scc
fun ArcToScc Arc -> Scc
fun SccToNodes Scc -> Node |i st
fun SccToArcs Scc -> Arc list

The following functions (for Scc-graphs) are analogous to the functions
defined in Nodes and Arcs (at the beginning of this chapter). Hence they
have the same names — prefixed with “Scc”.

fun SccSour ceNode Arc -> Scc

fun SccDest Node Arc -> Scc

fun SccArcs Scc * Scc -> Arc |ist
fun Sccl nNodes Scc -> Scc list

fun SccOut Nodes Scc -> Scc list

fun Sccl nArcs Scc -> Arc list

Design/CPN Occurrence Graph Manual

How to Make Your Own Queries

fun SccOut Arcs Scc -> Arc |ist

fun SccTer m nal Scc -> bool

fun SccNodesl nPat h Scc * Scc -> Scc |ist
fun SccArcsl nPath Scc * Scc -> Arc |ist

The following function tells whether a strongly connected component is
trivial (i.e., consists of a single node and no arcs):

fun SccTri vi al Scc -> bool

SearchNodes

Thefunction Sear chNodes traverses the nodes of the occurrence
graph. At each node some specified calculation is performed and the re-
sults of these calculations are combined, in some specified way, to form

the final result.

Sear chNodes takes six different arguments and by varying these ar-
gumentsit is possible to specify alot of different queries, e.g., many of
the standard queries from Chap. 4. The following description is taken
from Sect. 1.7 of [CPN 2]:

Search Area

This argument specifies the part of the occurrence
graph which should be searched. It is often all
nodes, but it may also be any other subset of
nodes, e.g., those belonging to a strongly con-
nected component.

Predicate
function

This argument specifies afunction. It maps each
node into a boolean value. Those nodes which
evaluate to false are ignored; the others take part in
the further analysis — as described below.

Search Limit

This argument specifies an integer. It tells us how
many times the predicate function may evaluate to
true before we terminate the search. The search
limit may beinfinite. This means we always search
through the entire search area.

Evaluation
function

This argument specifies afunction. It maps each
node into avalue, of sometype A. It isimportant to
notice that the evaluation function isonly used at
those nodes (of the search area) for which the
predicate function evaluates to true.

Design/CPN Occurrence Graph Manual 0G-37

Occurrence Graph Manual

Start value This argument specifies a constant, of some type

Combination This argument specifies afunction. It maps from
function A’ B into B, and it describes how each individual
result (obtained by the evaluation function) is
combined with the prior results.

Sear chNodes works as described by the following Pascal-style
pseudo-code. When the function terminates it returns the value of
Resullt:

SearchNodes (Area, Pred, Limit, Eval, Start, Comb)
begin
Result := Start; Found :=0
forall nl Area do
if Pred(n) then
begin
Result := Comb(Eval (n), Result)
Found := Found + 1
if Found = Limit then stop for-loop
end
end
end.

The arguments have the following types:

area search area Node |i st
pred predi cate function Node -> bool
[imt search limt i nt

eval eval uati on function Node -> 'a
start start val ue "b

conb conbi ne function 'a* 'b->"b

The ML types' aand' b are arbitrary and may beidentical. The search
areais specified by alist of nodes (if anodeislisted twiceit will be
searched twice). By convention we use:

val EntireGraph

0G-38 Design/CPN Occurrence Graph Manual

How to Make Your Own Queries

to denote the set of all nodes in the occurrence graph. The search limit is
specified by a positive integer. By convention we use:

val NoLimt

to specify aninfinite limit, i.e., that the search continues until the entire
search area has fully been traversed.

The Sear chNodes function isabit complicated. But it is also extremely
genera and powerful. As an example, we can use Sear chNodes toim-
plement the query function Li st DeadMar ki ngs from Chap.4, i.e., to
find all the dead markings. Then we simply use the following arguments:

Search area EntireGraph

Predicate function fun Pred(n) = (Iength(OutArcs(n)) = 0)
Search limit 10

Evauation function fun Eval(n) =n

Start value []

Combination function fun Comb(new,old) = new::old

The predicate function uses the function Qut Ar cs (from Nodes and
Arcs at the beginning of this chapter) to get alist of al the output arcs. If
the length of thislist is zero there are no successors, and thus we have a
dead marking. The evaluation function maps anodeinto itself, i.e., into
the unique node number. The combination function adds each new dead
marking to the list of those which we have previoudly found. With these
arguments Sear chNodes returns alist with at most 10 dead markings.
If thelist is empty there is no dead marking. If the length islessthan 10,
thelist contains all the dead markings. The exact ML call looks asfol-
lows:

Sear chNodes (
EntireG aph,
fnn=>(length(QutArcs(n)) = 0),
10,
fnn=>n,
[1,
op ::)

Design/CPN Occurrence Graph Manual 0G-39

Occurrence Graph Manual

As a second example, we may use Sear chNodes to implement the
guery function Upperinteger from Chap. 4, i.e., to find the best upper
integer bound for agiven place instance p1 Pl. Thisis done by using the
following arguments:

Search area EntireGraph

Predicate function fun Pred(n) = true

Search limit NoLimit

Evaluation function fun Eval(n) = YMark(p)(n)¥2
Start value 0

Combination function max

The exact ML call looks asfollows (for the place Eat on thefirst in-
stance of the page System):

Sear chNodes (

EntireG aph,

fn __ => true,

NoLimt,

fn n =>size (Mark. System Eat 1 n),
0,

max)

PredNodes and EvalNodes

0G-40

For convenience we also define some abbreviated forms of

Sear chNodes where one or more of the arguments are predefined.
Thefirst function searches the specified areaand returns alist of all
those nodes that satisfy the specified predicate. The predeclared function
id maps an arbitrary ML value into itself:

fun PredNodes (area, pred, limt) : Node |ist
= SearchNodes (area, pred, limt, id, [], op ::

Design/CPN Occurrence Graph Manual

How to Make Your Own Queries

The second function searches the specified areaand returns alist of al

the calculated values:
fun Eval Nodes (area, eval) : '"b list
= SearchNodes (area, fn _ => true,

NoLimt, eval, [], op ::)

The next three functions are identical to Sear chNodes, Pr edNodes
and Eval Nodes, except that they always search the entire occurrence

graph:
fun Sear chAl | Nodes
(pred, eval, start, conb) : 'Db

= Sear chNodes (EntireG aph, pred,
NoLimt, eval, start, conb)

fun PredAl | Nodes (pred) : Node |i st
= PredNodes (EntireG aph, pred, NoLimt)

fun Eval Al | Nodes (eval) : "b list
= Eval Nodes (EntireG aph, eval)

Thefinal function isidentical to Sear chNodes, except that the search
area consists of those nodes that are reachable from the node in the first
argument:

fun Sear chReachabl eNodes
(node, pred, limt, eval, start, conb) : 'b

Examples of SearchNodes Calls

Two of the query functions from Chaps. 4 and 6 can be implemented as
follows:

fun Li st DeadMar ki ngs () : Node |i st
= PredAl | Nodes Term nal

fun EntireGraphCal cul ated () : bool

= (PredAl | Nodes (fn n =>
not (Ful | yProcessed n)) = [])

Design/CPN Occurrence Graph Manual 0G-41

Occurrence Graph Manual

If the occurrence graph contains unprocessed nodes, it may be desirable
to exclude these from the node list returned by Li st DeadMar ki ngs.
We then get the following function:

fun Li st DeadMar ki ngsFP () : Node Ii st

= PredAl | Nodes (fn n => (Term nal n)
andal so (Ful |l yProcessed n))

All nodesin which aparticular philosopher is eating can be found as
follows (where cf returns the coefficient of the specified colour in the
specified multi-set):

fun Eating (p:PH : Node Iist

= PredAl I Nodes (fn n =>
cf (p, Mark. System Eat 1 n) > 0)

The maximal number of simultaneoudly enabled transition instances can
be found as follows (wherer endupl removes duplicates from alist,
while map uses the specified function on al the elements of the speci-

fied list):
fun MaxTl Enabled () : int

= Sear chAl | Nodes(
fn _ => true,
fn n =>1ength(rendupl (

map ArcToTl (QutArcs n))),

0,
max)

Checking whether there are reachable markings in which two neigh-
bouring philosophers simultaneoudly eat, can be done as follows (where
next is afunction mapping each philosopher in its successor, ext _col
extendsafunction' a -> 'btoafunction'a nms -> 'b ns,while
<<=|sthelessthan-equal operation on multi-sets):

fun Eati ngNei ghbours () : Node |ist
= PredAl | Nodes(fn n =>

| et

val Eating = Mark.System Eat 1 n
in

not (Eating +

ext _col next Eating <<= PH)

end)

0G-42 Design/CPN Occurrence Graph Manual

How to Make Your Own Queries

SearchArcs

Checking whether there are nodes which violate the linear invariant:
M (Unused) + Chopsticks(M(Eat)) = CS

can be done in the following way (where <><> is the operator which
checks whether two multi-sets are different from each other):

fun I nvariantViolations () : Node list
= PredAl | Nodes(
fn n=> Murk.System Unused 1 n +

ext _ns Chopsticks (Mark. Systemi Eat 1 n)
<><> CS)

Thefunction Sear chAr cs traversesthe arcs of the occurrence
graph. At each arc some specified calculation is performed and the re-
sults of these calculations are combined, in some specified way, to the
form the final result.

We define Sear chAr ¢s inaway which istotally analogous to
Sear chNodes. The arguments have the following types:

area search area Arc |ist

pred predi cate function Arc -> bool
[imt search limt i nt

eval eval uati on function Arc ->"a
start start val ue "b

conb conbi ne function 'a* 'b->"Db

WedefinePr edAr cs, Eval Arcs, SearchAl | Arcs,
PredAl | Arcs, Eval Al | Arcs, and

Sear chReachabl eAr cs analogoudy to Pr edNodes,

Eval Nodes, Sear chAl | Nodes, PredAl | Nodes,

Eval Al | Nodes, and Sear chReachabl eNodes. The latter
searches al the arcs which are reachable from the node specified in the
first argument.

Design/CPN Occurrence Graph Manual 0G-43

Occurrence Graph Manual

Examples of SearchArcs Calls

The following function returns all the arcs where transition Take occurs
on thefirst instance of page System with the variable p bound to a spec-
ified philosopher:

fun TakeChopsticks (p:PH) : Arc |ist
= PredAl I Arcs(
fn a => case ArcToBE a
of Bind. System Take (1,{p=p’'}) => p=p'
| _ => fal se)

For the ring network, the following function returns all the arcs where
trangition Send occurs on some instance of page Ste with variables s
and r bound to the same value:

fun SendToWysel f () : Arc |ist
= PredAl I Arcs(
fna= case ArcToBE a
of Bi nd. Syst em Send
(1,{s=vl,r=v2,...}) => vl=v2
| _ => fal se)

SearchSccs

Thefunction Sear chSccs traversesthe strongly connected compo-
nents of the occurrence graph. At each strongly connected component

some specified calculation is performed and the results of these calcula
tions are combined, in some specified way, to the form the final result.

We define Sear chSccs in away which istotally analogous to
Sear chNodes and Sear chAr cs. The arguments have the following
types:

0G-44 Design/CPN Occurrence Graph Manual

How to Make Your Own Queries

ar ea search area Scc |ist

pred predi cate function Scc -> bool
limt search limt i nt

eval eval uation function Scc ->'a
start start val ue "b

conb conbi ne function 'a* 'b->"'b

WedefinePr edSccs, Eval Sccs, SearchAl | Sccs,
PredAl | Sccs, Eval Al | Sccs, and

Sear chReachabl eSccs analogousy to Pr edNodes,
Eval Nodes, Sear chAl | Nodes, PredAl | Nodes,

Eval Al | Nodes, and Sear chReachabl eNodes. The latter
searches al the strongly connected components which are reachable
from the Scc specified in the first argument.

Examples of SearchSccs Calls

Two of the query functions from Chap. 4 can be implemented as fol-
lows:

fun HomeMar ki ngExi sts () : bool
= (length(PredAl | Sccs SccTermnal) = 1)

fun HomeMar ki ng (n: Node) : bool
= SccTerm nal (NodeToScc(n)) andal so
HoneMar ki ngEXxi st s()

Design/CPN Occurrence Graph Manual 0G-45

Chapter 6

How to Draw an Occurrence
Graph

In addition to the standard report described in Chap. 2 and the query
functions described in Chaps. 4 and 5, you may investigate the be-
haviour of a CPN model by making a drawing of the occurrence graph.
For large occurrence graphsit only makes sense to draw small parts
e.g., the nearest surroundings of some interesting nodes, found by
means of the query functions. This chapter describes how to make
drawings of the occurrence graph and the Scc-graph.

Object Types

The occurrence graph for the dining philosopher system may be drawn
as shown below.

The rounded boxes are OG nodes whilethe arcsare OG arcs. The
dashed boxes next to the OG nodes are OG node descriptorswhile
those next to the OG arcsare OG arc descriptors. For readability we
have only shown some of the node and arc descriptors.

Each OG node contains the node number and the number of immediate
predecessors and successors — in the presently calculated occurrence
graph. The full occurrence graph may have more predecessors/ succes-
sors while the present drawing may have less. In the example above,
node number 1 has five predecessors and five successors. Nodes 2-6
have three predecessors and three successors, while the remaining
nodes have two predecessors and two successors. Y ou can create/delete
anode/arc descriptor by double clicking the corresponding node/arc (or
by using the T oggle Descriptor command).

Design/CPN Occurrence Graph Manual 0G-47

Occurrence Graph Manual

Unused: 1 cs(3)
Think: 1" ph(2)+ 1" ph(3)+ 1 ph(5)
Eat: 1 ph(1)+ 1" ph(4)

5

| Take: {p=ph(1)} | | Take: {p=ph(4)} |

Unused: 1 cs(1) Unused: 1 cs(5)
Think: 1 ph(1)+ 1 ph(3)+ 1 ph(5) | |Think: 1 ph(2)+ 1 ph(4)+ 1 ph(5)
Eat: 1 ph(2)+ 1 ph(4) Eat: 1 ph(1)+ 1 ph(3)

For an unprocessed OG node a double quote is appended to the node
number, for apartially processed node a single quote is appended, and
for afully processed node a blank.

We have customised the contents of the text strings in the node/arc de-
scriptors. This was done by means of the Sring Representation Options
in Chap. 7. In the default settings each node descriptor contains the
node number and the marking of the corresponding node. Each arc de-
scriptor contains the arc number, the source and destination node num-
bers and the binding element of the arc.

If an OG object is copied/cut and then pasted, the resulting object be-
comes an auxiliary object.

0G-48 Design/CPN Occurrence Graph Manual

How to Draw an Occurrence Graph

Occ Menu

To draw an occurrence graph the commands of the Occ menu is used:

\ Occ ‘

Calculate Occ Graph
Calculate Successors
Calculate Scc Graph

Show Statistics...
Save Report...

Occ State to Sim...

Sim State to Occ

Attributes/Options...

Display Node...
Display Arc...

Display Successors
Display Predecessors
Display Scc Graph

Toggle Descriptor
Update Node

Calculate Occ Graph

This command cal cul ates the occurrence graph. It observes the Sop
Options and Branching Options in Chap.7. The command must be used
with care since occurrence graphs tend to be quite large. During the cal-
culation of the occurrence graph a progress report is displayed in the
status bar (usually for every 60 seconds). The report may look as fol-
lows:

#nodes 218/500/623 #arcs 725/1000/1524 #secs 14/300/48

Thefirst number tells how many new nodes there have been generated
(for the present call of Calculate Occ Graph). The next number
shows the current Sop Option (for the number of nodes). If the stop

Design/CPN Occurrence Graph Manual 0G-49

Occurrence Graph Manual

option isinactive the number is omitted. The third number gives the total
number of nodes in the occurrence graph (up to now).

The next three numbers contain similar information for arcs while the
last three numbers contain information for the use of real time (not CPU
time).

Calculate Successors

This command cal culates the immediate successors of the selected OG
node(s). It observes the Stop Options and Branching Optionsin

Chap.7. When afull occurrence graph has been calculated, thereis no
need to useCalculate Successor s. However, for apartial occurrence
graph, the command allows you to determine the “direction” in which
you want the system to make further devel opments.

Calculate Scc Graph

Show Statistics

This command cal cul ates the Scc-graph of the occurrence graph. The
Scc-graph is used by many of the query functionsin Chap.4.

This command gives information about the size of the occurrence graph
and the size of the Scc-graph. The information isidentical to the statis-
ticsinSave Report —but it is displayed in a dialogue box instead of a
text file.

The occurrence graph will always have at least one node (even if
Calculate Occ Graph and Calculate Successor s have not been
used). By convention node number 1 represents the initial marking. If
the Scc-graph has not been cal culated, the second part of the statisticsis
missing.

If the occurrence graph is partial you may extend it by invoking
Calculate Occ Graph once more (perhaps after modifying some of
the Stop Options or Branching Options).

The information from Show Statistics can aso be accessed viathe
following set of ML functions:

fun NoOf Nodes unit -> int
fun NoOf Arcs unit -> int
fun NoCOf Secs unit -> int

fun EntireGraphCal cul ated unit -> bool

0G-50 Design/CPN Occurrence Graph Manual

How to Draw an Occurrence Graph

fun SccNoOf Nodes unit -> int
fun SccNoOf Arcs unit -> int
fun SccNoOf Secs unit -> int
fun SccGraphCal cul at ed unit -> bool

Save Report

This command generates atext file containing astandard report with

information about:

o Statistics (size of occurrence graph and Scc-graph).

» Boundedness Properties (integer and multi-set bounds for place in-
stances).

» Home Properties (home markings).

» Liveness Properties (dead markings, dead/live transition instances).

» Fairness Properties (impartial/fair/just transition instances).

For more details see the end of Chap. 2.

Occ State to Sim

This command allows you to “move” an occurrence graph state to the
simulator. Thisisvery useful. Y ou can inspect the marking directly on
the graphical representation of the CP-net. Y ou can see the enabled
transition instances, investigate their bindings and make simulations.
The OG node (to be moved) is either selected (prior to the invocation of
the command) or specified in adialogue box.

Sim State to Occ

This command alows you to “move” asimulator state to the occurrence
graph (where it becomes anode). A dialogue box reports the node num-
ber and whether the state already belonged to the occurrence graph. The
new node can (as all other nodes) be drawn by means of Display
Node, but this does not happen automatically.

Attributes/Options
This command allows you to change the diagram defaults for OG at-

tributes and the values of OG options. For more information see
Chap. 7.

Design/CPN Occurrence Graph Manual 0G-51

Occurrence Graph Manual

Display Node

Display Arc

This command draws a new OG node — providing a graphical represen-
tation of the specified node. The graphical appearance of the nodeis de-
termined by the Node Attributesin Chap. 7. The node is drawn at the
centre of the current page

If the node aready exists, on the current page, the corresponding OG
node becomes selected and nothing further happens. Hence, itisim-
possible to draw the same OG node more than once on a page (but it can
be drawn on different pages).

OG nodes can aso be drawn by means of the following ML functions:

fun Di spl ayNodes Node list -> unit
fun Di spl ayNodePat h Node list -> unit

Thefirst function draws the nodesin the list (on the current page,
reusing existing nodes). The second function checks whether the nodes
form apath (i.e., whether there is an arc between each node and itsim-
mediate successor). If thisis the case, the nodes and arcs are drawn (on
the current page, reusing existing nodes and arcs). If there are multiple
arcs, between two neighbouring nodes, they are all drawn. If the nodes
do not form a path, the exception Not APat h israised

This command draws an OG arc — providing a graphical representation
of the specified arc. If necessary the command a so draws the source
and destination node of the arc. Otherwise the command worksin away
whichisanaogousto Display Node. The graphica appearance of the
arcsisdetermined by the Arc Attributesin Chap. 7.

OG arcs can aso be drawn by means of the following ML functions,
which work in away which istotally analogousto Di spl ayNodes
and D spl ayNodePat h:

fun Di spl ayArcs Arc list -> unit
fun Di spl ayAr cPat h Arc list -> unit

Display Successors

This command draws the immediate successor nodes and the immediate
successor arcs of the selected node(s). The positioning of the new OG
nodes/arcs are determined by the Succ/Pred Optionsin Chap. 7, and
they a so determine the maximal number of successors which are drawn
by one call of Display Successor s. Additional callswill draw addi-

0G-52 Design/CPN Occurrence Graph Manual

How to Draw an Occurrence Graph

tional successors (if any). It should be noted that the command only
draws nodes and arcs which already have been calculated. Hence, it
may be necessary/desirableto call Calculate Occ Graph or
Calculate Successor s before the use of Display Successor s.

Display Predecessors

This command draws the predecessor nodes and predecessor arcs of the
selected node(s). It worksin away which istotally analogous to
Display Successors.

Display Scc Graph

This command draws the Scc-graph using a standard layout. It only
works well when there are reasonably few Scc nodes. In alater version,
we will alow the components of an Scc-graph to be drawn by the same
functions as the components of the occurrence graph.

Toggle Descriptor

Update Node

This command toggles the existence of the OG node/arc descriptor of
the selected OG node/arc(s). If the descriptor does not exist, it iscre-
ated. If it exists, it is deleted. The graphical appearance of the descrip-
torsis determined by the Node Descriptor Attributes and the Arc
Descriptor Attributesin Chap. 7 while the contents is determined by the
Node Descriptor Options and the Arc Descriptor Optionsin Chap. 7.

This command updates the information in the text string of the selected
OG node(s). It only has an effect if the occurrence graph has been ex-
tended since the OG node was drawn.

Design/CPN Occurrence Graph Manual 0G-53

Chapter 7

How to Change Attributes and
Options

The OG tool has alarge number of attributes and options. Attributes
determine the graphical appearance of theindividual OG objects.
Options determine the way in which the commands of the OG tool
works. Diagram defaults determinethe initial values of the attributes
of new objects. System defaults determine the diagram defaults of
new CPN diagrams.

In the current version of the OG tool, attributes and options are handled
inaprovisional way. The Attributes/Options command allows you
to change the diagram defaults of OG attributes and the vaues of OG
options. Attribute values of individual OG objects are changed viathe
usual attribute commandsin the Set menu. System defaults cannot be
changed.

Attributes/Options Command

When the command isinvoked it displays the following dialogue box:

Design/CPN Occurrence Graph Manual 0G-55

Occurrence Graph Manual

Attributes/Dptions —0——x=|

Get ML Function to Set

— Attributes (diagram defaults) ——
[1] MNode Attributes

[] Arc Attributes

[l Node Descriptor Attributes

[] Arc Descriptor Attributes

— Options (diagram values)

5tring Representation Options
Mode Descriptor Options

Arc Descriptor Options
Successor/Predecessor Options
5top Options

Branching Options

DOoooooan

Inspection Options

When the OK button is pressed, a new box is created (on the current
page). The box contains ML functions to change the diagram de-
faults'values of those attributes/options which you have selected (viathe
check boxes). The current values of the diagram defaults/options are
shown in the box — except in those cases where the valueisan ML
function (for these we show the system defaults). To change the op-
tions, you replace the values with those, which you want, and then
evaluate the ML functions by means of the ML Evaluate command.

0G-56 Design/CPN Occurrence Graph Manual

How to Change Attributes and Options

Attributes

The following ML function changes the diagram defaults of OG nodes
(the valuesindicate the system defaults):
OGSet . NodeAttri but es{
Size = {width = 35, height = 35},

G aphics = {fill = None, line = Solid,
thick = 1},

Text = {size = 10, font = Courier,
styl e = Pl ai nText,
just = Centered}}

Thefollowing ML function changes the diagram defaults of OG arcs
(the valuesindicate the system defaults):

OGSet . ArcAttri but es{

G aphics = {fill = Black, line = Solid,
thick = 1}}

Thefollowing ML function changes the diagram defaults of OG node
descriptors (the values indicate the system defaults):

OGSet . NodeDescri ptorAttri but es{
Size = {width = 250, height = 80},

G aphics = {fill = Wite, line =

Dashed/ D agonal , thick = 1},
Text = {size = 10, font = Couri er,

styl e = Pl ai nText,

just = LeftJustification}}

Thefollowing ML function changes the diagram defaults of OG arc de-
scriptors (the values indicate the system defaults):

Design/CPN Occurrence Graph Manual 0G-57

Occurrence Graph Manual

OGSet . ArcDescriptorAttri butes{
Size = {wdth = 100, height = 40},

G aphics = {fill = Wite, line =

Dashed/ Di agonal , thick = 1},
Text = {size = 10, font = Courier,

style = Pl ai nText,

just = LeftJustification}}

To specify fill and line patterns the following constants can be used:

Fill patterns on the Unix platform
None, Bl ack, Wite

Line patterns on the Unix platform
Solid, Dashed, LongDashed, Dotted,
Dot t edDashed

Fill and Iine patterns on the Mac platform

None, Bl ack, Wiite, Horizontal,
Vertical, D agonal

To specify text styles the following constants can be used (combinations
are obtained by adding the corresponding constants):

Bol d, Condense, Extended, Italic, CQutline,
Pl ai nText, Shadow, Underli ne

To specify text justification the following constants can be used:

Centered, LeftJustification,
Ri ght Justification

String Representation Options

The Sring Representation Options allow the user to specify how he
wants the st-functions in Chap. 3 to work. As an example, he may de-
termine whether he wants a transition instance to be represented as:

Syst em Take 1 or Take
Thefirst representation is convenient for a CP-net with many different

pages/page instances, while the second representation is convenient for
a system with only one or afew pages (and only one instance of each

page).

0G-58 Design/CPN Occurrence Graph Manual

How to Change Attributes and Options

The st-functions are used for the standard reports generated by Save
Report and for the contents of OG node/arc descriptors. Hence, the
options also influence these things. However, it should be noted that the
string representation options do not influence the input format of the dif-
ferent ML functionsin Chaps. 3-5. This means, e.g., that the user al-
ways has to specify the page and instance of atransition instance — even
though he may have decided to omit thisinformation from the text
strings created by st _ Tl .

For each of the st-functions we provide an ML function which specifies
how the individual substrings are put together (e.g., the order and the
separators). The options are changed by the following set of ML func-
tions (the values indicate the system defaults):

OGSet . Stri ngRepOpti ons' Node(
fn (node) => node)

OGSet . Stri ngRepOpti ons' Arc(
fn (arc, source, dest) =>

arc ~ ":" "N source M "->" N dest)

OGSet . StringRepOptions' Pl (
fn (page, pl ace,inst) =>

page ~ "'" ~ place " " ~ inst)

OGSet . StringRepOptions' TI (
fn (page, trans,inst) =>

page » "'" ~ trans M " " ~inst)

OGSet . Stri ngRepOpti ons' BE(
fn (Tl,bind) =TI ~ ": " ~ bind)

OGSet . Stri ngRepOpti ons' Mar k(
fn (Pl,mark) == Pl ~ ": " ~ mark » NEW.I NE)

The more compact string representations mentioned in Chap. 3 are ob-
tained by using the following options:

OGSet . Stri ngRepOpti ons' PI (
fn (page, pl ace,inst) => place)

Design/CPN Occurrence Graph Manual 0G-59

Occurrence Graph Manual

OGSet . StringRepOptions' Tl (
fn (page,trans,inst) => trans)

OGSet . StringRepOpti ons' BE(
fn (Tl,bind) =TI ~ ": " ~ bind)")

OGSet . Stri ngRepOpti ons' Mar k(

fn (Pl,mark) =>
if mark="enpty" orel se mark="tenpty"
then ""
else Pl A~ ": " A~ mark » NEW.I NE)

Node and Arc Descriptor Options

The Node Descriptor Options determine the contents of the OG node de-
scriptors. They are changed by the following ML function (the value
indicate the system defaults):

OGSet . NodeDescri pt or Opti ons(
fnn =

(st _Node n)NEW.I NEM

(st _Mark. System Unused 1 n)~

(st _Mark. System Think 1 n)»
(st _Mark. System Eat 1 n))

Y ou may replace the default by any other ML function of type:

Node -> string

In thisway it is possible to obtain a compact representation of a complex
marking. As an example it is possible to omit the marking of some place
instances or only show the number of tokens (ignoring the token
colours).

The Arc Descriptor Options determine the contents of the OG arc de-
scriptors. They are changed by the following ML function (the value
indicate the system defaults):
OGSet . ArcDescri ptor Opti ons(
fn (a:Arc):string =>
(st_Arc a)"NEW.I NEr
(st _BE(ArcToBE a)))

0G-60 Design/CPN Occurrence Graph Manual

How to Change Attributes and Options

Y ou may replace the default by any other ML function of type:
Arc -> string

Inthisway it is possible to obtain a compact representation of a complex
binding element.

Successor/Predecessor Options

The Successor/Predecessor Options determine how Draw Successor s
and Draw Predecessor s position the new nodes. They also determine
the maximum number of successors/predecessors to be drawn. The op-
tions are changed by the following ML function (the vauesindicate the
system defaults):

OGSet . SuccPredOpti ons{
FirstSucc = {horz = 0,vert = 80},

Next Succ = {horz = 50, vert = 10},
MaxSucc = 10,
FirstPred = {horz = 0,vert = ~80},

Next Pred = {horz = ~50,vert = ~10}
MaxPred = 10}

Thefirst argument determines the offset of the first successor (relative to
the original node). Positive values means “to the right” and
“downwards’. The second argument determines the offset of the second
successor (relative to the first successor). It also determines the offset of
the third successor (relative to the second) — and so on. The third argu-
ment determines the maximal number of successors drawn by one call

of Display Successor s. The last three arguments are anal ogous to the
first three, but determines the offset and maximal number of predeces-
sors (instead of successors).

Stop Options

The Siop Options alow you to determine when the calculation of an oc-
currence graph stops. This happens when all nodes have been processed
or when one of the stop options becomes satisfied. The options are
changed by the following ML function (the values indicate the system
defaults):

Design/CPN Occurrence Graph Manual 0G-61

Occurrence Graph Manual

OGSet . St opOpti ons{

Nodes = NoLimt,

Arcs = NoLimt,

Secs = 300,

Predicate = fn _ => fal se}

The first three arguments specify the maximal number of nodes, arcs
and seconds. By convention, zero indicates NoLimit (i.e., that the cor-
responding stop option isinactive). All counts are reset to zero when-
ever you call Calculate Occ Graph. This means that you can extend
an occurrence graph without changing the Sop Options. The fourth ar-
gument specifies a predicate function which is evaluated after the calcu-
lation of the successors:

Node -> bool

If the predicate eval uates to true the calculation of the occurrence graph
will be stopped. This can, e.g., be used to stop when adead marking is
found:

fn n=>Termnal n

When aStop Option has been met, the exception

StopQpti onSati sfi edisraised (thiscan, e.g., be seen if the oc-
currence graph is generated by means of the CalculateOccGraph
function described in Chap. 2). Furthermore a message is printed with
details about the activated stop option.

Warning: It isimpossible to stop a“run-away” occurrence graph gen-
eration in agraceful way. Hence, it isimportant that the Stop Optionsin
have some sensible values

Branching Options

0G-62

The Branching Options allow you to specify that, under certain circum-
stances, the OG tool need not calculate al the successors of anode. The
node is then said to be only partially processed. The options are changed
by the following ML function the values indicate the system defaults):
OGSet . Branchi ngOpti ons{

Translnsts = NoLimt,

Bi ndings = NoLimt,

Predicate = fn _ => true}

Design/CPN Occurrence Graph Manual

How to Change Attributes and Options

Thefirst argument specifies the maximal number of enabled transition
instances to be used to find successor markings (for each node).
Analogously, the second argument specifies the maximal number of en-
abled bindings to be used (for each enabled transition instance). By
convention zero indicates NoLimit. All counts are reset to zero when-
ever you invoke Calculate Occ Graph This meansthat you can ex-
tend the number of calculated successor markings without changing the
Branching Options The third argument specifies a predicate function
which is evaluated befor e the calculation of the successors:

Node -> bool
If the predicate evaluates to fal se no successors are cal culated.

Nodes which are processed, without calculating all successors, are
marked as partially processed. When you add to an existing occurrence
graph, some of the partially processed nodes may become fully pro-
cessed.

The generation of new nodes progresses in awidth first fashion. This
means that the nodes are being processed in the order in which they
were created. To acertain extent, a depth first generation can be ob-
tained by using " narrow” Branching Options.

For atimed occurrence graph the processing order is determined by the
creation time (i.e., the model time at which the individual markings start
to exist).

Inspection Options

The Inspection Options allow you to specify how often you want to get
aprogress report in the status bar — during an execution of Calculate
Occ Graph. The options are changed by the following ML function
(the valuesindicate the system defaults):

OGSet . I nspecti onOpti ons{
Frequency = 60,
Action = ! OGSet . St andar dl nspecti onReport}

The frequency is measured in seconds. The contents of the standard re-
port is explained in Chap. 6. Y ou may replace the standard report by
another ML function of type:

unit -> unit

Design/CPN Occurrence Graph Manual 0G-63

Reference List

[CPN 1] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science, Springer-Verlag, 1992. ISBN: 3-540-60943-1.

[CPN 2] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methods. Monographs in Theoretical
Computer Science, Springer-Verlag, 1994. ISBN: 3-540-58276-2

Design/CPN Occurrence Graph Manual 0G-65

