
1

Sławomir Samolej Ph.D.
D102 C, tel.: 865 1766,
email: ssamolej@prz-rzeszow.pl
www: ssamolej.prz-rzeszow.pl

COMPUTER GRAPHICS

 Prerequisities

 Some programming skills in C (or C++)
• Basic Data Structures

­ Linked lists
­ Arrays

• Geometry
• Simple Linear Algebra

2

Lectures:
2. Introduction to Computer Graphics, Windows Programming

Principles
3. OpenGL – OpenGL for Windows, Primitives and Attributes,
4. OpenGL – Coordinate transformations,
5. OpenGL – Colour and Shading,
6. OpenGL – Lighting,
7. OpenGL – Texture Mapping
8. OpenGL – Quadrics, Blending, Fog, Curves and Surfaces
9. OpenGL – Some Advanced Tricks, Game Programming
10. Graphic Files Structures,
Labs:
12. Windows Programming
13. Building 3D Models
14. Coordinate transformations
15. Lighting, Colour and Shading
16. Texture Mapping
17. Blending, Fog, Curves and Surfaces

Course programme

3

1. Angel Edward : „Interactive Computer Graphics: A Top-
Down Approach with OpenGL”, Addison-Wesley 2006.

2. Richard S. Wright jr, Michael Sweet: „ OpenGL
Superbible”, Sams 2004.

3. „OpenGL Programming Guide” (www.opengl.org).

4. „OpenGL Reference Manual” (www.opengl.org).

5. Kevin Hawkins, Dave Astle: „OpenGL Game
Programming”, Premier Press 2004.

6. David M. Bourg: „Physics for Game Developers”, O’Reilly
2001.

7. Petzold Charles, „ Programming Windows”, Microsoft
Press 1998.

 References

http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/

4

• http://ssamolej.prz-rzeszow.pl

OpenGL:
• http://www.opengl.org
• http://www.codeproject.com/opengl

Game programming:
• http://www.gamedev.net
• http://nehe.gamedev.net
• http://www.gametutorials.com

 Web Links

http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.opengl.org/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.codeproject.com/opengl/
http://www.gamedev.net/
http://www.gamedev.net/
http://www.gamedev.net/
http://www.gamedev.net/
http://www.gamedev.net/
http://www.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://www.gametutorials.com/
http://www.gametutorials.com/
http://www.gametutorials.com/
http://www.gametutorials.com/
http://www.gametutorials.com/
http://www.gametutorials.com/

5

• OpenGL library (a part of Windows)

• Any C/C++ Compiler

• There are OpenGL implementations for most operating
systems, including:

• Linux

• Unix

 Software tools

6

Computer graphics deals with all aspects of creating images
with a computer

­Hardware
­Software
­Applications

Introduction - Definitions

Example
• Where did this image come from?

• What hardware/software did we need to produce it?

7

Answer

•Application: The object is an artist’s rendition of the sun for
an animation to be shown in a domed environment
(planetarium)
•Software: Maya for modeling and rendering but Maya is built
on top of OpenGL
•Hardware: PC with graphics card for modeling and rendering

Introduction - Definitions

8

1960-1970:

 Wireframe graphics - Draw only lines
•Sketchpad – first interactive graphic
programme; Loop:

•Display something
•User moves light pen
•Computer generates new display

•Display Processors - Rather than have
the host computer try to refresh display
use a special purpose computer called a
display processor (DPU)
•Storage tube – when a portion of the
screen is illuminated by the CRT's
electron gun, it stays lit until a screen
erase command is given

Some History

wireframe
representation
of sun object

http://en.wikipedia.org/wiki/Electron_gun

9

1970-1980:

•Raster Graphics
•Beginning of graphics standards

­IFIPS
•GKS: European effort

–Becomes ISO 2D standard
•Core: North American effort

– 3D but fails to become ISO standard
•Workstations and PCs

Some History

10

Raster Graphics:
Some History

• Image produced as an array
(the raster) of picture
elements (pixels) in the
frame buffer

• Frame buffer has the depth (number of
bits for one pixel) and the resolution
(number of pixels in the framebuffer)
• 1-bit-deep framebuffer allows 2 colors,
8-bit-deep allows 256 colors; full color
system has 24 or more bit-deep
framebuffer.

• Allows us to go from lines and wire frame
images to filled polygons

11

1980-1990 (1):

•Realism comes to computer graphics

Some History

smooth shading environment
 mapping bump mapping

12

1980-1990 (2):

•Special purpose hardware
­Silicon Graphics geometry engine

•VLSI implementation of graphics pipeline
•Industry-based standards

­PHIGS
­RenderMan

•Networked graphics: X Window System
•Human-Computer Interface (HCI)

Some History

13

1990-2000:

• OpenGL API
• Completely computer-generated feature-length movies
(Toy Story) are successful
• New hardware capabilities

­Texture mapping
­Blending
­Accumulation, stencil buffers

Some History

14

2000- :
•Photorealism
•Graphics cards for PCs dominate market

­Nvidia, ATI, 3DLabs
•Game boxes and game players determine direction of market
•Computer graphics routine in movie industry: Maya, Lightwave
•Programmable pipelines

Some History

Polish accents:

• Wacław Franciszek Sierpiński
•proposed a mathematical object called
Sierpiński gasket – one of the first fraktals

• Marek Hołyński
•proposed software SGI workstations

Sierpiński gasket

http://upload.wikimedia.org/wikipedia/commons/b/b7/SierpinskiTriangle.PNG
http://upload.wikimedia.org/wikipedia/commons/b/b7/SierpinskiTriangle.PNG

15

• Display of information
• Plots; Maps
• Computer tomography, magnetic resonanse imaging,
ultrasound
• Molecular biology, phisics, bioinformatics – representing
huge amount of data as graphical patterns.

•Design
• CAD: Architecture, Mechanics, VLSI circuts,

•Simulation and animation
• Flight simulators
• Animated television, motion-picture, advertising industries
• Virtual reality; Games

• User Interface
• X Window/Microsoft Windows/Macintosh graphic interfaces
• CAD software interfaces

Applications of Computer Graphics

16

• In computer graphics, we form images which
are generally two dimensional using a
process analogous to how images are formed
by physical imaging systems

­Cameras
­Microscopes
­Telescopes
­Human visual system

Image Formation

17

• Objects
•Viewer
•Light source(s)

•Attributes that govern how light interacts with
the materials in the scene
•Note the independence of the objects, the
viewer, and the light source(s)

Elements of Image Formation

18

• Light is the part of the electromagnetic
spectrum that causes a reaction in our visual
systems
•Generally these are wavelengths in the
range of about 350-750 nm (nanometers)
•Long wavelengths appear as reds and short
wavelengths as blues

Light

19

• Human visual system has two types of
sensors

­Rods: monochromatic, night vision
­Cones

•Color sensitive
•Three types of cones
•Only three values (the tristimulus
values) are sent to the brain

•Need only match these three values
­Need only three primary colors

Three-Color Theory

20

• Additive color
­Form a color by adding amounts of three
primaries

•CRTs, projection systems, positive film
­Primaries are Red (R), Green (G), Blue (B)

•Subtractive color
­Form a color by filtering white light with cyan (C),
Magenta (M), and Yellow (Y) filters

•Light-material interactions
•Printing
•Negative film

Additive and Subtractive Color

21

Synthetic Camera Model

center of projection

image plane

projector

p

projection of p

22

• Separation of objects, viewer, light sources
•Two-dimensional graphics is a special case
of three-dimensional graphics
•Leads to simple software API

­Specify objects, lights, camera, attributes
­Let implementation determine image

•Leads to fast hardware implementation

Advantages

23

• Can we mimic the synthetic camera model
to design graphics hardware software?
•Application Programmer Interface (API)

­Need only specify
•Objects
•Materials
•Viewer
•Lights

•But how is the API implemented?

Image Formation Revisited

24

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by objects
or go off to infinity

­Can handle global effects
•Multiple reflections
•Translucent objects

­Slow
­Must have whole data base
available at all times

•Radiosity: Energy based approach
­Very slow

Physical Approaches

25

• Process objects one at a time in the order
they are generated by the application

­Can consider only local lighting
•Pipeline architecture

•All steps can be implemented in hardware on
the graphics card

Practical Approach

26

• Much of the work in the pipeline is in converting
object representations from one coordinate system
to another

­Object coordinates
­Camera (eye) coordinates
­Screen coordinates

•Every change of coordinates is equivalent to a
matrix transformation
•Vertex processor also computes vertex colors

Vertex Processing

27

• Projection is the process that combines the
3D viewer with the 3D objects to produce the
2D image

­Perspective projections: all projectors meet at the
center of projection
­Parallel projection: projectors are parallel, center
of projection is replaced by a direction of projection

Projection

28

• Vertices must be collected into geometric
objects before clipping and rasterization can
take place

­Line segments
­Polygons
­Curves and surfaces

Primitive Assembly

29

• Just as a real camera cannot “see” the
whole world, the virtual camera can only see
part of the world or object space

­Objects that are not within this volume are said to
be clipped out of the scene

Clipping

30

• If an object is not clipped out, the appropriate pixels in
the frame buffer must be assigned colors
•Rasterizer produces a set of fragments for each object
•Fragments are “potential pixels”

­Have a location in frame bufffer
­Color and depth attributes

•Vertex attributes are interpolated over objects by the
rasterizer

Rasterization

31

• Fragments are processed to determine the color
of the corresponding pixel in the frame buffer
•Colors can be determined by texture mapping or
interpolation of vertex colors
•Fragments may be blocked by other fragments
closer to the camera

­Hidden-surface removal

Fragment Processing

32

• Programmer sees the graphics system through a
software interface: the Application Programmer
Interface (API)

The Programmer’s Interface

33

• Functions that specify what we need to form an
image

­Objects
­Viewer
­Light Source(s)
­Materials

•Other information
­Input from devices such as mouse and keyboard
­Capabilities of system

API Contents

34

• Most APIs support a limited set of primitives
including

­Points (0D object)
­Line segments (1D objects)
­Polygons (2D objects)
­Some curves and surfaces

•Quadrics
•Parametric polynomials

•All are defined through locations in space or
vertices

Object Specification

35

Example

glBegin(GL_POLYGON)
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(0.0, 0.0, 1.0);

glEnd();

type of object
location of vertex

end of object definition

36

• Six degrees of freedom
­Position of center of lens
­Orientation

•Lens
•Film size
•Orientation of film plane

Camera Specification

37

• Types of lights
­Point sources vs distributed sources
­Spot lights
­Near and far sources
­Color properties

•Material properties
­Absorption: color properties
­Scattering

•Diffuse
•Specular

Lights and Materials

38

• Interactive graphic libraries
­ OpenGL; Java3D/JOGL; DirectX
­ The rendering may be done in real-time with respect to
external stimuli (Games, Simulators, Visualisation)

•Off-line graphic tools
­ 3D Studio Max; Lightwave; Maya
­ The result of rendering is usually a film
­ Off-line graphic are often used for the model production
­ The models are often used in interactive programmes

Interactive vs. „off-line” graphics

