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Flight planning: node-based trajectory prediction and turbulence avoidance
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ABSTRACT: To tackle the ever-growing demand for air travel, the aviation industry has expressed great interest in assessing
the impact weather uncertainty has on flight planning. However, due to the opacity of commercial flight planning systems,
there has been an absence of a suitable research platform which weather centres could use to test and convey advancements
in numerical weather prediction (NWP) to benefit operational flight planning.
In this paper, a simple yet versatile trajectory prediction system that aims to bridge the gap between NWP centres and the
industry is proposed. The proposed system is based on A*, a node-based pathfinding approach which is simple to implement
and configured to suit any requirements. Unlike analytical solutions, research findings from the proposed system can be readily
implemented in commercial flight planning systems. An example of how clear air turbulence could have been considered before
take-off and avoided is presented.
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1. Introduction

Node-based pathfinding algorithms are designed to find the
cheapest route between two vertices through a network of
connected nodes. In aviation, different variants are adopted
and tailored for use by air navigation service providers/flight
dispatchers in operational flight planning. Commercial airlines
are often interested in finding a route with the least operating
cost (e.g. fuel, time or overflight charges) without compromising
on safety for any given flight.

Trajectory prediction (TP) for commercial flights is currently
performed using deterministic numerical weather prediction
(NWP) as input, with the assumption that the wind forecast is
accurate. It is therefore impossible to assess the uncertainties due
to weather, which could have significant impact on many lev-
els of operations. For instance, if the jet stream turns out to be
stronger than predicted, scheduled eastbound flights will arrive
early while westbound flights will have to detour around the
unexpected headwind, causing congestion at busy airports such
as Heathrow Airport (EGLL).

The aviation industry has recently expressed interest in assess-
ing the impact weather uncertainty has on flight planning. It is
difficult, however, to study the impact of NWP uncertainty on
flight planning without access to their TP systems, which are
commercially sensitive and not available to meteorological (Met)
service providers. This is also one of the reasons why the aviation
industry still relies on deterministic Met data whilst ensemble
NWP has been made operational by major NWP centres over the
last 10–20 years.

Whilst analytical solutions to time-optimal trajectories
(Sawyer, 1950; Lunnon and Marklow, 1992; Kim et al., 2015)
exist in atmospheric science, they are fundamentally different
from those in operational flight planning. It could therefore be
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difficult for the industry to implement new findings from such
test platforms in their existing TP systems. In addition, analytical
solutions generally lack flexibility. For instance, extending an
analytical solution to multiple flight levels or optimizing against
a different parameter (e.g. fuel burn instead of time) would
require derivation of the solution from scratch.

Given the opacity of commercial flight planning systems, the
purpose of this study was to take the initiative and propose a
simple TP algorithm that resembles the basics of those used for
operational flight planning, with the hope of narrowing the gap
in TP between atmospheric research and the aviation industry in
the long run. In fact, the proposed algorithm has already been
used as a research platform to allow Met service providers to
assess the impact weather uncertainty has on flight planning
and to introduce ensemble NWP to commercial flight planning
(Cheung et al., 2015). The same algorithm was also used to
generate time-optimal flight trajectories in a separate study on
the quantification of spatial spread in track-based applications
(Cheung, 2016). This study describes in detail how the TP system
is formulated and other considerations such as choice of grids and
hazard avoidance.

2. Method

2.1. Choice of pathfinding algorithm

Pathfinding is an active research area in computer science and
originated from the work of Dijkstra (1959). Given a network of
nodes each with a non-negative cost function:

f
(
Nn

)
=

n∑
i=1

g
(
Ni

)
(1)

where Ni denotes the ith node along the path under investigation
and g(Ni) is the cost of going to node Ni from its parent node
Ni−1, Dijkstra’s algorithm (Dijkstra hereafter) guarantees the
cheapest path between any two nodes. The algorithm works by
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calculating the lowest possible f (Nn) (cheapest cost to travel from
the starting node Nstart to Nn), caching its immediate parent node
Nn−1, and updating f (Nn) for its neighbours iteratively until the
destination node Ndest is reached. The solution can subsequently
be retrieved by using Nn−1 stored previously in each node as a
tracer, working backwards from Ndest. Dijkstra has no knowledge
about the structure of the node network and explores not only
nodes that lead towards but also those that lead away from the
destination. As a result, Dijkstra often explores more nodes than
necessary and is not practical in most pathfinding applications.

It is possible to improve the efficiency of Dijkstra by specifying
a heuristic function h(Nn) (Hart et al., 1968), which estimates the
cost from Nn to Ndest. Equation (1) then becomes:

f
(
Nn

)
= h

(
Nn

)
+

n∑
i=1

g
(
Ni

)
(2)

The heuristic function allows longer paths to be eliminated
progressively during the search, effectively shortlisting the nodes
that need examining before an optimal solution can be found.
This algorithm, known as A*, guarantees an optimal solution like
Dijkstra if the heuristic is admissible, i.e. never overestimates the
actual cost, such that:

h
(
Nn

)
≤ h∗ (Nn

)
∀n (3)

where h*(Nn) is the true cost from Nn to Ndest. When
h(Nn)= h*(Nn), A* explores the minimum number of nodes
required for the optimal route to be found. Note that, as h(Nn)
decreases, A* becomes less efficient and takes longer to find the
optimum path. When h(Nn)= 0, A* reduces to Dijkstra.

It should be mentioned that over the last few decades the con-
cept of node-based pathfinding has been extended and variants
have been proposed for different applications. These range from
any-angle movements (e.g. Ferguson and Stentz, 2007; Nash
et al., 2007, 2009), fast replanning capabilities (e.g. Koenig and
Likhachev, 2002; Koenig et al., 2004), moving target points (e.g.
Sun et al., 2008, 2010) to fast suboptimal solutions (e.g. Botea
et al., 2004; Likhachev et al., 2005). For simplicity and the pur-
pose of the study, the proposed TP system presented is based on
that of classic A*, with minimal modifications to allow move-
ment in an arbitrary number of directions on a fixed flight level.
Although it is possible to extend the idea to allow movement
in the vertical, it is beyond the scope of this study due to the
increased computing cost. In fact, for the same reason, major
flight planning companies take an iterative approach where hor-
izontal and vertical optimizations are performed separately.

2.2. Nodes

In addition to human-related factors (e.g. air traffic control
(ATC)), weather has a significant impact on flight planning. It
is therefore natural to define the nodes that represent the possi-
ble points A* can explore for an optimal path at the grid points
specified by the output of the NWP model.

In classic A*, each node Nn ‘sees’ only the neighbouring nodes
it is connected to and updates g(Nn) and tracing parent as it is
explored. In other words, the nodes do not carry information
about their positions in the network, making it challenging to
retrieve the appropriate weather data at each node.

In this study, all the nodes are defined in exactly the same way
as in classic A* but with the geographical co-ordinates each is
representing embedded. Note that this does not affect how A*
works as the nodes are still clueless about the network. The
retrieval of the relevant space−time weather data is handled in

Wx Wt

Dire
cti

on
 of

 fl
igh

t

v

u𝜃

Figure 1. Transformation of zonal (u) and meridional (v) winds to
tailwind−crosswind (W t,Wx) components. [Colour figure can be viewed

at wileyonlinelibrary.com].

the cost function (Section 2.3) just before the calculation of g(Nn)
and h(Nn) as the latitude and longitude are now embedded. This
approach benefits from the fact that, when extra weather fields
are to be introduced in the TP model and hence the cost function,
the rest of the algorithm stays unaffected.

2.3. Cost function

Pathfinding is essentially a minimization problem. The param-
eters of interest and the complexity of the cost function depend
solely on the application and user’s requirements. For the purpose
of this study, the cost function g(Nn) is simply defined as the time
to travel from Nn−1 to Nn along the great circle with distance d at
ground speed Vg:

g
(
Nn

)
= d

Vg
(4)

where
Vg =

√
V2

a −W2
x +Wt (5)

Va = MS0

√
T
T0

(6)

W t and Wx represent the tailwind and crosswind respectively, T
is the temperature, Va is the true airspeed and S0 is the speed
of sound at T0. M is the Mach number. Subscript zero denotes
that the specified variable takes its value at sea level. Assuming
an aircraft travelling at an angle 𝜃 from the zonal direction as
shown in Figure 1, W t and Wx are given by:[

Wt
Wx

]
=
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]
·
[
u
v

]
(7)

where u and v are the zonal and meridional wind components
from the NWP model.

The definition of g(Nn) in Equation (4) implies that any solution
found will be time-optimal with respect to winds and tempera-
ture. For a balance between trajectory optimality and comput-
ing time, u, v and T are taken from the nearest time-step avail-
able from the NWP model output each time the cost function is
invoked in the pathfinding phase.

2.4. Heuristic function

The heuristic function h(Nn) estimates the cost of going from
Nn to Ndest by assuming a direct great circle route and using
Equations (4)–(6). Since an optimal solution is only guaranteed
if h(Nn) is admissible, a constant tailwind with zero crosswind
is assumed in the calculation of h(Nn). In other words, given a
chosen value of W t, the aircraft will always fly at the highest
possible Vg, which in return underestimates the cost to finish the
journey in a preferable way.
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(a)

oDir=1

(b)

oDir=2

(c)

oDir=3

(d)

oDir=4

Figure 2. Illustration of neighbouring scheme with different values of oDir. Let N(i, j) be the node located at the ith longitude and jth latitude of the
gridded numerical weather prediction data (circle) and the arrowheads denote the neighbour nodes that N(i, j) is connected to. The co-ordinates relative
to the N(i, j) are marked in (a), (b) but are left out in parts with higher oDir (c), (d) for legibility. [Colour figure can be viewed at wileyonlinelibrary

.com].

The choice of W t depends on typical maximum wind speeds
on a given flight level and area of interest. A high value of W t
would provide extra assurance of the optimality of the solution at
the price of increased computing time. On the other hand, the TP
model might fail to report the true optimum route ifW t is too low
such that Equation (3) does not hold. A value of W t = 80 m s−1

was verified to give true optimal solutions consistently at 250 hPa
(not shown) and was used to calculate h(Nn) in this study.

2.5. Neighbouring scheme

As described in Section 2.2, the nodes of the proposed TP sys-
tem are assigned at grid points defined by the NWP data. It
is therefore natural to register nodes immediately adjacent to
a given node as its neighbours as shown in Figure 2(a) (here-
inafter oDir= 1). This is analogous to many other pathfinding
applications where the nodes are assigned at the grid points of a
Cartesian grid.

Figure 3(a) shows the ‘optimum’ trajectory (solid) predicted
by A* for an aircraft going from Narita International Airport
(RJAA) to EGLL under zero wind condition, which in theory
should be identical to the great circle (dashed). In fact, it is
a common issue that node-based pathfinding algorithms only
offer suboptimal solutions in low-density node networks as the
directions the algorithm can manoeuvre are heavily hindered by
the neighbouring scheme. Such effect is especially prominent in
the case shown, where an optimal route is to be found on a curved
surface (the Earth) rather than a standard 2D Cartesian grid.

Although any-angle pathfinding algorithms do exist (e.g. Fer-
guson and Stentz, 2007; Nash et al., 2007, 2009), which allow
smoother solutions that resemble the true optimal route better,
they are not always straightforward to implement. This is espe-
cially true in the case of this study, in which time-varying weather
data have to be imposed.

In applications such as flight planning, where short computing
time is favourable but not critical, it is possible to achieve
smooth solutions using basic A* alone, with minimal adjust-
ment to the neighbouring scheme, which allows A* to explore
in 16 rather than 8 directions as in Figure 2(a). Given a node
N(i, j) where i and j denote its coordinates, all nodes within
two grid points away that form an eigenvector with N(i, j)
are considered as neighbours. Rejecting nodes that share any
existing eigenvectors prevents the algorithm exploring the same
direction repeatedly and hence improves code efficiency. For
example, the ‘east’ direction is represented by both N(i+ 1, j)
and N(i+ 2, j) and therefore the latter is excluded. Examples

of neighbouring schemes with higher oDir are also provided in
Figures 2(c) and (d).

With oDir> 1, it is advised to resample the NWP data along
each eigenvector under inspection and integrate the cost function
to the associated neighbour node (see Figure 4). This will give a
much better assessment of the cost of travelling from N(i, j) to its
neighbours that are not immediately adjacent (i.e. N(i±m, j± n)
where m≥ 2 and n≥ 2), especially in cases where the resolution
of NWP data is coarse or when weather is highly variable in space
and time. Figures 3(b)–(d) are the same as Figure 3(a) but for
oDir= 2, 3, 4 respectively (cf. Figures 2(b)–(d)). It is obvious
that there is an immediate improvement on the solution (solid)
found by A*, which resembles the great circle (true optimal
solution under zero wind condition, dashed) much better. As
oDir increases, A* has more freedom to explore in different
directions and hence the solution resembles the true optimal
route better. However, as there are more neighbour nodes to be
explored at each iteration, the computing time is also longer. In
the cases shown in Figure 3, the computing time has gone from
9 to 76 s as oDir is increased from 1 to 4 on a standard desktop
computer (benchmark times based on an implementation of A*
in Python, using only one of the eight available cores on an Intel
Xeon E5-1620 CPU). Despite the increase, the actual computing
time for oDir= 4 is still very short and perfectly feasible in
applications like flight planning.

The benchmark times are only meant to highlight the trade-off
between quality and performance. There are various ways to
reduce the computing time further. For instance, implementation
in languages like C++ or Fortran rather than Python as in this
study would have decreased the computing time significantly. On
the other hand, as multi-core CPUs have become widely avail-
able nowadays, parallel programming allows multiple neighbour
nodes to be explored simultaneously and hence greatly improves
on the performance.

3. Grid resolution

The number of nodes in a network dictates the number of possible
routes between any given pair of nodes in the network. Although
the heuristic function in A* allows early elimination of costly
paths, the increase in the number of possible routes with respect
to available nodes is complex and nonlinear such that the search
for an optimal solution could take an unreasonable amount
of time.

Figures 5(a) and (b) show examples of a low resolution and
a high resolution grid. The crosses denote the placement of
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(a)(a) (b)

(c)(c) (d)

Figure 3. Great circle route (dashed) and trajectory predicted by the trajectory prediction model (solid) under zero wind condition from Narita
International Airport (RJAA) to London Heathrow Airport (EGLL). (a)–(d) Each part shows the trajectory predicted using a different value of oDir,

as depicted by the corresponding part in Figure 2. [Colour figure can be viewed at wileyonlinelibrary.com].

(a) (b)

Figure 4. Graphical representation of how the cost function should be evaluated under the proposed neighbouring scheme with oDir> 1. Both parts
show the eigenvector from a given node (circle) to one of its non-adjacent neighbours N(i− 3, j− 4) (arrow). The example shown is for oDir= 4. In
(a) the cost function is evaluated by noting the values of u, v, T at the origin node (circle) and assuming they stay constant along the eigenvector.
In (b) u, v, T are first interpolated onto the sampling points (cross). The cost function is then evaluated progressively at each sampling point,
using interpolated values of u, v, T at the correct space and time t until the target neighbour node is reached. [Colour figure can be viewed at

wileyonlinelibrary.com].

the A* nodes. For reference the great circles between Keflavík
International Airport (BIKF) and EGLL and between John F.
Kennedy International Airport (KJFK) and EGLL are shown. A
dense network of nodes as shown in Figure 5(b) provides high
manoeuvrability for A* which implies that any solution found
will be identical to or, if not, very close to the true optimal route.
Referring to Figure 5(a), while the number of nodes between
KJFK and EGLL would give A* enough manoeuvrability, there
is only a limited selection of nodes between BIKF and EGLL
where A* could explore. This implies that, in the latter case, any
solution found is likely to be suboptimal compared to the true
optimal route, despite being optimal in the given grid.

On the other hand, while a network with high node density as
shown in Figure 5(b) would allow the true optimal route to be
found for both airport pairs shown, it would take more computing
power in the case of KJFK−EGLL as there are more nodes than
necessary between the two airports. In other words, Figure 5(a)
would be an appropriate choice for KJFK−EGLL and Figure 5(b)
would be an appropriate choice for BIKF−EGLL.

Considering the fact that the grid resolution has a direct impact
on the quality of the solution and performance, it is recommended
to regrid the NWP data to an appropriate resolution before any

A* node is assigned. A simple but effective regridding scheme,
which dynamically determines a useful grid resolution for any
given airport pair and available computing power, is proposed.

For a given airport pair, the grid resolutions rlat and rlon are
determined by:

rlat =
Δlat

ng
rlon = 270(

180∕rlat

)
− 1

if ||Δlat
|| > ||Δlon

|| (8)

rlon =
Δlon

ng
rlat =

180(
270∕rlon

)
+ 1

if ||Δlat
|| ≤ ||Δlon

|| (9)

where Δlat and Δlon are the differences in latitude and longi-
tude between the two airports respectively. ng is the maximum
number of grid points in any given direction. Figure 6 shows the
route optimality (in terms of flight duration) and correspond-
ing computing time as a function of ng for EGLL−KJFK and
EGLL−BIKF as an example. It is observed that the flight dura-
tion (route optimality) decreases (increases) and the associated
computing costs increase as ng increases. In both cases, the
flight durations reach their minima at ng = 25 while computing
time continues to rise. The actual choice of ng depends on the
complexity of the weather (see the example in Section 5) and
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Figure 5. Examples of numerical weather prediction (NWP) grids at
different resolutions. The crosses denote the grid points specified by the
NWP which also mark the A* node locations. The solid lines show the
great circles between John F. Kennedy International Airport (KJFK) and
London Heathrow Airport (EGLL) and between Keflavík International
Airport (BIKF) and EGLL. For reference, the World Area Forecast

Centre grid resolution is currently 1.25o × 1.25o.

computing power available. For a good balance between opti-
mality and performance, a value ≥25 is recommended for ng in
nominal weather conditions, based on extensive testing on vari-
ous airport pairs (not shown).

4. Validation

For validation, TP hindcast was performed for all EGLL to KJFK
flights in December 2016 to February 2017 from FlightAware
using the baseline values of oDir= 4 and ng = 25 described in
previous sections. The wind and temperature fields used for TP
were taken from the control member of Met Office Global and
Regional Ensemble Prediction System (MOGREPS) (Bowler
et al., 2008). The MOGREPS data used are 3 h and have a
horizontal resolution of 33 km. Only data from the 0000 Z run
were used.

For each flight record, the TP hindcast with a validity time that
was closest to the actual take-off time was used for validation.
For instance, assuming a lead time of at least 24 h, a flight which
took off at 1050 Z on 2 February 2017 would be compared against
the t+ 36 TP valid at 1200 Z on the same date. Similarly, a flight
which took off at 1652 Z on 22 February 2017 would be verified
against the t+ 42 forecast valid at 1800 Z.

As the proposed TP does not account for delays due to ATC,
flight records with a flight duration that lay outside two standard
deviations and exhibited a holding pattern were discarded. It is
inevitable, however, that some of the remaining flights still con-
sist of a holding pattern but the impact on this study is minimized.

Figure 7 shows the flight times from EGLL to KJFK in Decem-
ber 2016 to February 2017. It is observed that the flight times

(a)

(b)

Figure 6. Route optimality in terms of flight durations (blue) and com-
puting time (red) as a function of ng. The example data shown are
the trajectory prediction for a single flight from London Heathrow Air-
port (EGLL) to John F. Kennedy International Airport (KJFK) (a) and
Keflavík International Airport (BIKF) (b), taking off at 0000 Z on 28

February 2017.

predicted by the TP system (blue) have a high correlation value
of r = 0.911 with the actual flight records (black). As the TP
assumed a fixed cruise airspeed of 0.82 Mach for all phases of
flight, the predicted flight times are generally underestimated.
Assuming the errors are systematic, the TP output could be cor-
rected by a least-squares fit (red):

tactual (i) = 𝛼tpredicted (i) + 𝛽 (10)

where tactual(i) and tpredicted(i) are actual and predicted forecast
flight durations for a given flight i. 𝛼 and 𝛽 are co-efficients to be
determined by linear regression to minimize the root mean square
error (RMSE) and were computed independently for each aircraft
ID. For operation use, 𝛼 and 𝛽 could be continuously updated
using previous flight records (e.g. from the last 3 months) for
calibration purposes. It is important to note that the correlation
co-efficient, which represents the performance of the TP, is
unaffected. The RMSE after linear regression is 7.8 min.

5. Hazard avoidance/airspace blocking

In day-to-day operations, airspace might be closed completely
for military training or events such as volcanic ash from the
Eyjafjallajökull eruption in 2010 (Petersen, 2010). As these
airspace constraints are static in space and time, they can be
accounted for by setting g(Nn) to infinity at the affected nodes.

On the other hand, flight hazards such as thunderstorms or
turbulence could be taken into account in flight planning, when
predicted in the NWP forecast. Although these are much more
variable compared to the static airspace blocking requirements
mentioned above, they could also be easily factored into the
proposed TP system by changing g(Nn), e.g.:

g
(
Nn

)
=

{
∞ if TI ≥ TIthreshold

d∕ Vg if TI < TIthreshold

(11)

where TI is some form of turbulence indicator and TIthreshold is
the threshold value chosen by the user.

Figure 8 shows an example TP with ng = 50 and oDir= 4 for
a flight cruising at 0.82 Mach on 250 hPa from EGLL to Los
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Figure 7. Time series of flight duration from London Heathrow Airport (EGLL) to John F. Kennedy International Airport (KJFK) in December 2016
to February 2017. The black line shows flight times reported by FlightAware. The blue line shows the flight times predicted by trajectory prediction
(TP) with lead times of at least 24 h. The red line is the same as blue but is least-squares fitted to minimize root mean square error. The r and p values

for the correlation between the predicted and the actual are shown. The IDs of the aircraft considered are listed in the top left.

Angeles International Airport (KLAX) with turbulence avoid-
ance capability. The take-off date and time were chosen such
that the unconstrained optimal path would coincide with the time
and space of the turbulence encounter reported over Greenland
in November 2014 (Elvidge et al., 2017). The exact date and
time of the encounter cannot be revealed for commercial reasons.
The parts of Figure 8 show the Met Office World Area Forecast
Centre (WAFC) clear air turbulence (CAT) (contour) and wind
(quiver) forecast valid at 165, 210, 240 and 600 min after take-off.
The WAFC CAT forecast is used as TI in Equation (11) in this
example.

The green path shows the optimal trajectory in the uncon-
strained case, where turbulence is completely ignored in the
pathfinding process. This is evident both in the southeast of
Greenland in Figure 8(a) and over Greenland in Figure 8(b),
where the green trajectory leads straight into regions with high
CAT potential.

The yellow line shows the optimal trajectory with TIthreshold set
to 15. This implies that A* will avoid regions at times when the
turbulence potential exceeds the chosen threshold. It is observed
that A* takes a high-latitude trajectory which is about 4.5 min
(0.74%) slower than the unconstrained case (see Figure 8 cap-
tion). It is worth mentioning that it is straightforward to apply
the static blocking described above over northern Greenland to
force A* to find a route at lower latitudes, if the user prefers (not
shown).

It is possible to reduce the risk of turbulence encounters further
at the cost of flight duration/fuel, as shown by the trajectory in
magenta where TIthreshold = 10. In this case, the path sets off in a
similar way compared to the green line, but bends around instead
of going straight through the turbulent region to the southeast
of Greenland in Figures 8(a) and (b). After the first turbulence
avoidance, A* bends towards the south to avoid the region with
high CAT potential predicted over Greenland (Figures 8(b) and
(c)), which coincides with the turbulence reports received in

November 2014. It is expected that the time taken to fly along
the magenta path is the slowest of all, taking 11.5 min (1.88%)
more than the trajectory in green.

The trade-off between optimality of route and constraints
applied, in this case risk of turbulence encounter, holds true as
long as the heuristic is admissible. In other words, the uncon-
strained route (green) will never be more costly than any of the
restricted (yellow and magenta) cases. The amount of trade-off,
however, depends on the temporal and spatial span of the con-
straint and its proximity to the unconstrained solution.

In the case shown, one could argue whether or not it is worth
making a horizontal detour, costing 1.88% more time and hence
fuel burn, assuming constant airspeed and altitude throughout the
flight. In fact, the actual extra fuel burn would be > 1.88% when
climb and descent are taken into account.

Given that the horizontal extent of a turbulent volume is typi-
cally 100 times larger than its vertical extent (Sharman, 2016),
a pilot will often slow down or request a climb/descent (sub-
ject to ATC approval) when CAT is encountered unexpectedly
during flight. However, the decision making process is time crit-
ical and not straightforward. For climbing, the pilot would have
to assess the coffin corner spread to make sure there is enough
lift for the aircraft. For descent, the fuel burn would be higher at
lower altitude due to denser air, plus extra fuel to bring the air-
craft back to its optimum cruise altitude once past the turbulent
region. Also, headwinds might be different at other flight levels
which incur extra fuel burn. Taking the planned horizontal diver-
sion, however, would take the stress off the pilot and ATC, with
added certainty about extra fuel burn due to weather hazards.

Without engine specification data, it is difficult to assess the
relative costs of taking a tactical diversion in the vertical versus
planning a horizontal diversion before take-off, which also vary
from case to case. Nevertheless, Figure 8 serves the purpose of
demonstrating the hazard avoidance capability of the proposed
system.

© 2017 Crown Copyright, Met Office. Meteorological Applications Meteorol. Appl. 25: 78–85 (2018)
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Figure 8. Examples of trajectory prediction (TP) for a given flight from London Heathrow Airport (EGLL) to Los Angeles International Airport
(KLAX). (a–d) The parts show snapshots of the specified flight at different times after take-off. The take-off date and time are chosen such that the
unconstrained predicted flight path (green) matches turbulence reports over Greenland on a given day in November 2014. The exact time and details
are not revealed for commercial reasons. The quiver and contour plots show the wind and Met Office World Area Forecast Centre clear air turbulence
(WAFC CAT) potential (%) forecast at least a day ahead of the event respectively. The trajectories shown are the time-optimal routes predicted by

the TP system under different turbulence indicator thresholds TIthreshold. The total flight time for each route is shown.

Other than the example shown above, it is worth noting that any
factor that might have an influence on the determination of the
‘best’ trajectory can be built into the cost function. For instance,
airlines might choose to take a longer and less direct path to avoid
high overflight fees. An easy way to achieve this would be to
incorporate a penalty factor p in Equation (4) such that:

g
(
Nn

)
= p

d
Vg

⎧⎪⎨⎪⎩
p > 1 penalized node
p = 1 non-penalized node
p < 1 preferred node

(12)

6. Conclusion

The aim of this study was to propose a trajectory prediction
(TP) system that resembles the basics of those used operationally
for flight planning, with the long-term goal of closing down the
gap in TP between atmospheric research and the industry in the
future.

The proposed TP system is based on classic A*, a node-based
pathfinding algorithm that is easy to implement and guarantees
an optimal path along any grid provided that the heuristic func-
tion is admissible. Minimal modifications are proposed to render
A* suitable for flight planning with gridded numerical weather
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prediction (NWP) data, which help to maintain versatility and a
low level of complexity of A*. This is important as the definition
of the ‘best’ route varies from user to user and is ultimately
down to the user’s own requirement. For example, some airlines
might prefer to be punctual while others might seek to reduce
costs wherever possible. The proposed TP system inherits the
properties of A*, meaning that any factors can be built into the
cost function.

More importantly, the TP system described also provides a
research platform for weather centres to test and translate any
advancement in NWP (e.g. ensemble forecasts) into flight plan-
ning. Due to the resemblance to existing node-based commercial
flight planning systems, research findings from the proposed
system are readily usable in existing operational systems and
hence much easier for the industry to adopt. In addition, rather
than operating on a predefined set of waypoints, the proposed
methodology promotes free routing, which coincides with
SESAR’s plan to move towards trajectory-based operations
(http://www.sesarju.eu, accessed on 11 August 2016).

An example of TP for a time-optimal flight path from London
Heathrow Airport to Los Angeles International Airport under dif-
ferent criteria for object avoidance was presented. The example
was chosen to coincide with turbulence encounter reports over
Greenland in November 2014 to demonstrate that the risk of tur-
bulence encounter can be reduced by using the proposed TP sys-
tem and space−time varying wind, temperature and World Area
Forecast Centre clear air turbulence forecasts.
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