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over the next 20 years. Air traffi c control faces yet another 
critical challenge: ever­increasing requirements for air 
traffi c operation involving manned and unmanned aerial 
assets. Small unmanned aerial vehicles—often used, for 
example, for emergency surveillance and monitoring—
must be able to operate near airports with heavy civilian 
air traffi c. Clearly, current air traffi c management systems 
can’t effi ciently support such requirements or handle much 
more than the current density. Sophisticated, intelligent 
technology is needed for further growth in the capacity 
and safety of worldwide, mixed­initiative air traffi c.

The free­fl ight concept,1 currently a hot paradigm, sug­
gests moving away from centralized, predefi ned, pre­
booked fl ight corridors and recommends decentralizing 
air traffi c control among multiple (manned or unmanned) 
fl ying assets. Decentralizing air traffi c planning and con­
trol is expected to provide more effi cient use of the avail­
able airspace and improve support for replanning and col­
lision avoidance (CA), especially in the case of dynamic 
unmanned operations.

Intelligent­agent technology, supported by the research 
results from AI and from autonomous agents and multi­
agent systems, provides a set of mechanisms and protocols 
for negotiation, coordination, and decentralized decision
making in communities of self­interested or partially 
cooperative actors. This functionality has the potential 
to directly support free­fl ight operations by modeling 
individual assets as agents and providing each asset with 
automated decision­making support aimed at coordinated, 
collision­free, effi cient fl ight. At the same time, agent tech­
nology provides a valuable computational experimental 
environment that can be effi ciently used for testing the 
properties of free­fl ight coordination algorithms prior to 
their deployment in real hardware and real air traffi c. 

AgentFly
In cooperation with the US Air Force, researchers in 
the Agent Technology Center at the Czech Technical 
University have developed AgentFly—a scalable, agent­
based technology for free­fl ight simulation, planning, and 
CA. In AgentFly, each fl ying asset represents a specifi c 
software container hosting multiple intelligent software 
agents. Each agent either models a specifi c hardware 
functionality such as sensory capability, dynamic fl ight 
control, or communication, or encapsulates an intelligent 
decision­making technology that supports planning or 
CA. Such an architecture supports three principal Agent­
Fly use cases:

multiagent modeling and simulation of free fl ight,
control of free­fl ight unmanned aerial platforms, and
alternative approaches to planning, which supports ci­
vilian air traffi c control.

We can use multiagent simulation of free­fl ight opera­
tions to empirically analyze various planning and CA 
algorithms before physically deploying them. If the simu­
lation is realistic enough (AgentFly can provide all the 
tools and technology needed), an empirical analysis of 
the fi ndings could provide valuable information about the 
properties of free fl ight in various circumstances (such 
as surveillance tracking, worsened weather conditions, 
dense civilian traffi c, or emergency situations).

AgentFly is designed so that no centralized component 
is needed; all the planning and CA are based on the fl y­
ing assets’ sensory capability and distributed (peer­to­
peer) decision­making capability. We can deploy the 
planning and CA agents directly onto hardware platforms 
and thus support real free­fl ight exercise of unmanned as­
sets. The AgentFly system is based on Aglobe multi agent 
technology, which supports seamless migration from com­
putational simulation to hardware deployment. Previously, 
researchers successfully migrated an Aglobe­based model 
of a ground­based robotic scenario to the RoboCup soccer 
environment. 
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The most promising direction for ap­
plying AgentFly is in the area of air- 
traffic planning. The US Federal Aviation 
Authority (FAA) is interested in testing 
AgentFly’s planning capacity for heav­
ily overloaded civilian air traffic across 
the entire national air space. The idea is to 
relax the planning problem and perform 
multiagent flight simulations. Instead of 
planning a collision-free operation for 
numerous aircraft, we’d construct a flight 
plan for each individual craft without 
considering possible collisions. Subse­
quently, we simulate such an operation in 
the AgentFly environment, detect possible 
collisions, and solve them through either 
individual replanning or peer-to-peer 
negotiation.

Planning
Each agent hosts its own path planner 
that provides a smooth flight plan trajec­
tory, respecting all of the airplane model’s 
constraints and goals (its mission). Each 
planner transforms these goals and re­
quests for CA maneuvers into a sequence 
of waypoints, each with specified time and 
cruise-speed restrictions. The planners pre­
pare detailed descriptions of the individual 
flight corridor—a geographical definition 
and cruise-speed changes over time. The 
given flight trajectory can be executed 
imprecisely by integrating the Required 
Navigation Performance (RNP) standard2 
into the planning process, thereby specify­
ing permissible deviations in the plane’s 
horizontal and vertical positions within its 
corridor. When an RNP level is no longer 
reachable, the planner finds another plan.

Internally, the path-planning process 
runs in two coupled phases: spatial and 
time planning. During the first phase, the 
planner prepares the spatial part of the 
flight plan, respecting the specified trajec­
tory restrictions by means of the Acceler­
ated A* (AA*) algorithm (see Figure 1). 
This algorithm is suitable for fast plan­
ning in large environments with numerous 
operational restrictions (such as dynamic 
no-flight zones, minimal flight levels, and 
noncooperative light operations). Defined 
airspace is kept in a tree structure, where 
each inner node is a composition or trans­
formation operator and each leaf holds a 
zone definition with a geometrical descrip­
tion, a height map, and octant tree repre­
sentations. Using such tree compositions, 
complex airspaces can be modeled. 

In the second phase, the planner plans 
the cruise-speed changes, mapping them to 
the prepared spatial part of the trajectory. 
The goal here is to fit all given time and 
cruise-speed restrictions. The spatial and 
time phases are connected in a loop so that 
the system can handle extreme cases—for 
instance, if a plane must fly more slowly 
than its minimal cruise speed, its spatial 
plan must be lengthened.

Collision Avoidance
No matter whether AgentFly is used for 
simulation, planning, or real hardware con­
trol, its capability to autonomously avoid 
collisions is at the center of its research 
contribution and is critical for its commer­
cial exploitation. AgentFly features four 
classes of CA mechanisms.

First, the Rule-Based CA (RBCA) al­
gorithm is a domain-dependent algorithm 
based on the FAA’s Visual Flight Rules 
(VFRs). Upon detecting a collision threat, 
the agent determines the collision type on 
the basis of the angle between the direc­
tion vectors of the aircrafts involved. Each 
collision type has a predefined fixed ma­
neuver, which the agent applies in replan­
ning. Each asset independently performs 
VFR-based changes to flight plans, rely­
ing on the counterpart asset detecting and 
avoiding the same collision from its point 
of view using the same algorithm. We im­
plemented this RBCA in AgentFly as a ref­

erence mechanism for testing efficiency of 
the following three CA algorithms.

The Iterative Peer-to-Peer Collision 
Avoidance (IPPCA) algorithm deploys 
multiagent negotiations aimed at finding 
the pareto-optimal CA maneuver. Software 
agents hosted by each asset generate a set 
of viable CA maneuvers (by means of the 
planning mechanism described earlier) and 
compute the costs associated with each 
maneuver (on the basis, for example, of the 
flight plan’s total length, time deviations for 
mission waypoints, altitude changes, cur­
vature, flight priority, fuel status, possible 
damage, and type of load). Figure 2 (on the 
next page) shows an example of a pair ne­
gotiation that’s searching for a combination 
of maneuvers that will minimize their joint 
cost associated with avoiding the collision.

The Multi-Party Collision Avoidance 
(MPCA) algorithm extends the first two 
algorithms by allowing several assets to 
negotiate their collective CA maneuvers. 
The order in which collision threats occur 
and are solved strongly affects the quality 
of the overall plan provided by IPPCA. The 
MPCA algorithm is designed to minimize 
CA maneuvers’ ability to cause conflicts 
between future trajectories. This strategy 
requires substantially more computational 
and communication resources for solving 
a single encounter, but it provides more ef­
ficient free-flight collision-free trajectories 
in the long run.

Figure 1. A path-planning example in a mountainous environment, with defined 
cylindrical no-flight zones. The white flight corridor highlights the final solution.
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The Noncooperative Collision Avoid­
ance (NCCA) algorithm supports CA when 
communication between assets is impos­
sible. This situation can arise, for example, 
when on-board communication devices 
are temporarily unavailable or when an 
asset avoids a hostile flying object. This 
class of algorithms is based on modeling 
and predicting the noncooperative object’s 

future airspace occupancy and represent­
ing its possible future positions in terms of 
dynamic no-flight zones. On the basis of 
this information, the algorithm performs 
continuous replanning using the previously 
described planning algorithm.

Even though AgentFly can compare the 
effectiveness of various CA methods in 
different scenarios, the free-flight dynamic 

environments are rarely suited for using 
a single CA algorithm at all times. So, 
AgentFly features an efficient multilayer 
CA architecture that provides sophisticated 
mechanisms for the flexible selection of an 
appropriate CA algorithm in various situ­
ations. This architecture features a meta­
reasoning process that analyzes time-to- 
collision and estimated time require­
ments for each CA method with respect 
to efficiency of the process needed. The 
multilayer module works in a fully de­
centralized manner and doesn’t use any 
central planner. Its architecture is domain 
independent and therefore ready for de­
ployment in autonomous vehicles such as 
airplanes, robots, cars, and submarines.

Deployment Scenarios  
and Selected  
Experimental Results
We used AgentFly to validate and test 
decentralized CA algorithms mainly in 
two ways: we compared selected prop­
erties (such as quality of solution and 
required computational and communica­
tion resources) of given algorithms under 
the same configuration, and we validated 
algorithms in mixed cooperative and non­
cooperative configurations. Algorithms are 
often benchmarked in complicated colli­
sion cases—for example, in a superconflict 
scenario in which airplanes are located in 
a circle and are all flying to opposite sides 
of the circle, implying the multicollision 
of all the planes in the center of the circle 
(see Figure 3). Figure 4 presents compari­
sons of the RBCA, IPPCA, and MPCA 
algorithms regarding the quality of the 
final solution and the number of algorithm 
invocations when airplanes are randomly 
generated in the restricted area.3 Although 
MPCA provided the most efficient flight 
plans (in terms of the total flight distance), 
it required frequent, voluminous commu­
nication among the assets as well as sub­
stantial computational requirements. So, 
IPPCA is regarded as the most suitable for 
existing flight scenarios.

The second group of deployment sce­
narios validates algorithms in the mixed 
mode, in which airplanes operate in the 
airspace shared with others (noncoopera­
tive objects) with which they can’t com­
municate. The noncooperation mode can 
be caused by malfunctions in a communi­
cation transceiver, an incompatible system, 
or a manned airplane. In such situations, 

Figure 2. A state-space example of pair negotiation using the Iterative Peer-to-Peer 
Collision Avoidance (IPPCA) algorithm in the superconflict setup of 10 airplanes. 
Yellow points represent identified collision boundaries between the original flight 
plans of those two airplanes. 

Figure 3. A 3D solution after several IPPCA iterations for the superconflict setup of 
10 airplanes. Each experiment compared the final trajectory addition to the optimal 
(shortest) path.
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we can validate the solution if the tested 
algorithm can simultaneously take advan­
tage of a communication­based solution for 
cooperating airplanes and avoid nonco­
operative objects. For example, a team of 
autonomous assets might fulfi ll their mis­
sions near the airport where manned traffi c 
can’t be suspended.

A lthough we’d be happy to support 
AgentFly deployment on fl ying hardware 
platforms, we’re currently investigating 
AgentFly’s scalability toward modeling 
tens of thousands of fl ying assets. For ex­
ample, we’re modeling the weather using 
various commercial airplanes’ physical 
properties (on the basis of Base of Air­
craft Data models provided by Eurocon­
trol). Meanwhile, a project funded by the 
US Army’s Communications­Electronics 
Research, Development, and Engineer­
ing Center is using AgentFly to investigate 
the agent­based approach in collaborative, 
dynamic planning of tactical surveillance 
operations. Here, the CA capability is 
complemented with negotiation­based al­
gorithms aimed at coordinating collective 
fl ight and planning coordinated surveil­
lance. BAE Systems used AgentFly as a 
testbed for their MOD­funded research 
effort studying probability­based CA 
mechanisms.
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Figure 4. Comparisons of the RBCA, IPPCA, and MPCA algorithms. Using all three 
algorithms, we calculated (a) the fi nal trajectory addition, in nautical miles, to the 
optimal (shortest) total fl ight distance for each experimental setting—that is, the 
length of all fl ight trajectories after all iterations minus the length of all shortest 
trajectories, divided by the number of planes. We also calculated (b) the number of 
fl ight plan iterations necessary to remove all collisions, averaged across 50 repeated 
experiments. The smallest blue value means that for simple scenarios MPCA avoids 
collision by one change only. So, averaging it across 10 airplanes results in these 
small values. 
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