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Abstract� A problem of routing in airspace looks both similar and 
different to the problem of routing on the ground. There are many 
peculiarities in air routing. However, due to the complexity of the 
problem and its similarity to 2D routing, there are many 
applications of a good known routing techniques from graph 
theory, like Dijkstra, A-Star etc. Nevertheless, these algorithms 
remain nearly useless or reveal poor efficiency at least in case of 
implementing specificity of a free routing airspace (FRA) and/or 
applying some kind of restrictions derived from route availability 
document (RAD). The results of research presented in current 
paper give the approach to solve routing problem in airspace with 
an ability to involve both understanding of routing via FRA and 
necessity of applying some known restrictions from RAD. The key 
idea of the developed algorithm is to combine routing in both 
regular and free airspaces and to apply some permanent 
requirements from route availability documents within a single 
route construction procedure. The solution was found in area of so 
named nature-inspired algorithms. The routing algorithm was 
considered similar to behavior of a locust swarm according to a 
few basic principles of movement. Applying some abstraction of a 
single locust behavior within a swarm allows considering the 
artificial locust swarm to be a good approach in search of route 
between departure and destination points for the routing problem 
in airspace. A couple of algorithm modifications and its areas of 
applicability were discussed also. Artificial locust swarm routing 
(ALSR) algorithm can be used as a platform solution for routes 
construction in airspace and is expected to allow further 
implementation of some particular routes optimization 
techniques, like genetic algorithms (GA) and/or other. 

Keywords- routing; path planning; FRA; RAD; artificial locust 
swarm; metaheuristic approach, nature inspired approach 

I.  INTRODUCTION 
Current efforts in air routing had faced recent years many 

problems yielded from specificity of routing in airspace. If one 
compares a routing problem in airspace to a classic routing 
problem, there are many similarities. However, the differences 
are significant to make it rather difficult or even almost 
impossible finding the route in airspace. Sure, it is not a question 
to find some route itself, but the question is for what price it is 
done. If having a predefined network topology as a graph, then 
some of the good known algorithms, like Dijkstra [1], A* [2] or 
B* [3] algorithm, still could be used to build a route. However, 
computational efforts to build some valid routes may require 
using supercomputers or huge clusters to find a viable solution. 

Or it may take hours and days to get the only route, making the 
search process unsuitably time consuming. 

First, remember, that an airspace routing has to consider 
three dimensions (unlike to on-ground routing problem solved 
typically in two dimensions). This means, if consider routing 
network, that each waypoint has projections to each flight level. 
And this fact can yield a multiplicative growth of possible edges 
(see Fig. 1): an edge connecting two waypoints means at least an 
existence of this edge in each flight level and, if applicable, 
edges to change flight level higher (climb) and/or lower 
(descend) from each flight level. This may result a combinatorial 
burst and critically raise the complexity for the route search if 
one would add all these edges to a routing network topology. 
Assessment for a maximum possible number of edges (the real 
number of edges) based on the number of edges on a plane is 

 NAllEdges  NEdges  NFL  3, (1) 

where NEdges is the number of edges on a plane, NFL is the number 
of flight levels, and number 3 stands for ability to fly higher, fly 
lower or to stay in a current flight level (FL). 

Second, there is a set of rules and restrictions that are forcing, 
forbidding or allowing to fly between some pair of points. This 
may also look similar to an on-ground routing, like when there 
are road works and a road is closed. But in the sky it all may look 
imaginary. For example, on-ground routing is a somewhat 
simple when someone needs to cross the country border � this 
could be made only by crossing a border control points from one 
state to another and there are directly connected waypoints in 
both neighboring states. There are no visible country borders in 
airspace, so a pilot can violate country borders unintentionally. 
Moreover, there could be no defined direct connection between 
couple of waypoints in neighboring airspaces or this can be even 
marked as a single waypoint in both airspaces. So, the pilot may 
choose to fly between airspaces along the border and it violates 
the rules, but there is no road and fence in the sky to make 
someone to follow the rules. Another option is that the pilot can 
change flight level to avoid an obstacle (i.e., an airspace closed 
for military flights etc.). This means the same �road� could be in 
use, but it will require only to go above or below the closed 
levels. On a horizontal plane the route may look quite the same 
like a route violating the restriction and ignoring the obstacle 
presence. 
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Figure 1.  Multiplicative growth of actual number of edges 

Third, there is a special kind of routing network part named 
FRA � free routing airspace. This means there are no �roads� 
there, but only a set of waypoints and/or some parts of routing 
network (i.e., SID/STAR routes close to airport) �hanging� 
alone in the sky. Actually, the case of routing through the FRA 
may become a �hell network� for the routing engine based on 
algorithms working with predefined topology. The reason is the 
existence of each-to-each connection between all waypoints (see 
a simplified view of FRA at Fig. 2 with only entry and exit 
points). And don�t forget about the first concern of 
multiplicative growth of edges (1). The assessment for a number 
of maximum possible edges within FRA is 

 NFRAEdges  NPoints  (NPoints �1)  NFL  3, (2) 

where NPoints is the number of FRA waypoints on a plane, NFL is 
the number of flight levels, and number 3 stands for ability to fly 
higher, fly lower or to stay in a current flight level (FL). 

Figure 2.  A simplified FRA view with only entry and exit points 

Finally, the problem looks like more related to finding of a 
less cost path, rather than only the shortest path. Sure, there are 
many cases, when the shortest route has the less cost if to 
consider all the possible options. In general, when a route for an 
aircraft is needed, both distance, time and fuel consumption, 
route smoothness, flight safety, weather forecast and pilot 
preferences should be considered. This means, the problem 
requires a multifactor analysis approach to find some viable 
route for the flight. The complexity of the problem to find a route 
in airspace in compare to an on-ground routing problem is clear. 

This paper is focused on discussion for development of a 
new approach to search for routes in airspace, including 

necessity to fly through FRA and ability to consider restrictions 
during the search process. The algorithm is focused on 3D 
routing as in airspace. Further development should involve 
understanding of weather conditions and allow improvements to 
a 4D routing. 

II. PROBLEM STATEMENT 
Initially, the problem is to find a route between departure and 

destination points to be able to perform a flight. Typically, this 
problem can be reduced to a 2D routing with predefined 
topology as a graph and an algorithm to find a path between two 
vertices on a graph is applicable. Some key aspects and factors 
for the analysis of the problem were discussed previously [4]. 
Current approach to solve routing problem is devoted to 
following specifics: 

 Build a path between departure and destination points � 
a core problem. 

 Consider existing ATS route network (as a topology 
presented by a directed graph with a set of vertices and 
a set of directed edges). 

 Consider FRA (as an extension of topology presented 
by a subset of vertices with attributes of affiliation to 
FRA and role within this FRA). 

 Consider basic restrictions for the flight (RAD, avoid 
areas, etc.). 

 Get the result as a set of possible routes suitable for 
further optimization. 

III. APPROACHES TO SOLVE THE PROBLEM 

A. Core problem of path finding 
As mentioned above, the core of the problem to find a path 

can be solved using known approaches to build a path over the 
network presented as a graph. Many researchers apply this 
approach using Dijkstra or A* or similar methods [5�9] to find 
shortest path or exploiting shortest path search to build routes. 
Most researchers prefer using Dijkstra algorithm due to it is 
finite and it finds the optimal solution (unlike to possible sub-
optimal solutions in A*). However, the A* often gives fast and 
robust solutions and its use looks preferable for directed search. 

B. Approaches considering FRA 
One approach to path finding in FRA [9] uses also a 

discretization to obtain a graph representation and relies on 
further application of Dijkstra and A* algorithms directly. 
Another approach to routing within FRA [10] relies on analysis 
of congestions in separate flight levels in FRA and shortest 
direct flights between entry and exit points. In general, this 
means direct flights within FRA can be considered as a shortest 
straight line between entry and exit points. 

C. Nature-inspirde and other approaches 
There is a number of researchers using a dynamic 

programing method to solve different problems related to path 
planning and path optimization [8]. The dynamic programming 
is mentioned often when some weather conditions are involved 
for routing [11, 12]. 
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An approach for route optimization using cellular automata 
was used to offer air network optimization in China [13]. This 
research is particularly interesting for discussing routing 
problems because of consideration of restricted (forbidden) 
areas in China and building routes avoiding these areas. 

A weighted Euclidean shortest path was used within an 
approach of a framed-subspaces [14]. The idea of 
implementation of weighted region problem looks very simple: 
the whole space split into weighted regions with some weights 
(special cell decomposition technique was offered) and then a 
weighted Euclidean shortest path is used. This approach was 
offered to be used both in 2D and 3D environments. However, 
there are many other researches considering airspace splitting, 
like sectorization or segmentation or discretizing into cells. 

One may also meet an approach called constrained shortest-
path [15]. It was offered to be used in military aviation and path 
planning for strike aircraft, unmanned aerial vehicles (UAVs) or 
cruising missiles. 

It is very important to mention here, that all previously 
described approaches consider the specificity of airspace routing 
problem and in particular regarding presence of obstacles and 
areas with different characteristics of applicability to fly 
through. This is the reason for search not only the shortest path, 
but an optimal path. As one can see, many solutions start with 
solving the shortest path problem with further implementation 
of some optimization technique. Some other solutions are the 
attempts to build an optimal solution combining path search with 
optimization efforts. 

The most interesting subset of approaches to solve routing 
problem is a group of so named �nature-inspired� approaches. 
One of the latest approaches for 4D flight trajectories 
optimization was inspired by an artificial bee colony (ABC) 
[16]. The ABC algorithm allows both to search for path and 
build an optimized route between departure and destination 
airports, involving weather information and considering fuel 
consumption. It is worth mentioning, that the idea of swarm 
intelligence methods to search for path on a graph was also 
offered in an ant colony optimization (ACO) algorithm [17]. 

For example, among other recent nature inspired approaches 
there are BNMR (blind, naked mole-rat) algorithm [18] and 
grasshopper optimization algorithm (GOA) [19, 20]. These two 
approaches were used in numerical functions optimization and 
structural design problems, but not yet implemented to air 
routing problem. It is also interesting that the grasshopper 
optimization algorithm has a reference to a model of rolling 
swarms of locusts [21] offered for modeling a physical process. 

IV. ARTIFICIAL LOCUST SWARM ROUTING (ALSR) 

A. General analogy for locust swarm and aircraft flights 
First of all, it is important to understand key features making 

it possible to apply an analogy from real-life to a technical 
system. Among these features of locust swarm are the following: 

 Model for 3D flights: ability of locusts to fly allows 
applicability in 3D environments (like airspace). 

 Non-returning route: effective devastation of fields and 
gardens allows to perform a movement always forward 
and not to return back, where all the food was eaten. 

 Stay within boundaries: the swarm moves forward as a 
whole and each locust tends to keep together within the 
swarm, which means low probability of scattering. 

 Wind optimization: the locust swarm is wind vulnerable 
and considering wind directions is similar to an aircraft 
flight. 

Next, there would be a set of basic ideas in a model to make 
it easy to understand connection between nature processes and 
technical analogue. One can consider a network as a set of 
waypoints filled with some quantity of food. The locust will 
stand for an aircraft performing the flight across one possible 
route. The swarm stands for a set of all possible (or found) routes 
(not only to destination point). 

B. Basic ideas 
The artificial locust swarm will act as a whole and through 

each particular locust. These acts would be made with respect to 
the following ideas or rules: 

 Swarm is a set of locusts and each locust aims to �eat� 
more �food�. 

 The food is distributed over the network, some quantity 
of �food� ( 0) at each waypoint. 

 Locust moves over the network (by default, using 
known topology edges connecting waypoints) to eat 
more and a �hunger� makes locust to move due to 
exhaustion of previously visited waypoints. 

 A track of each locust is stored and is added to a set of 
routes found, once the target was reached by the locust 
(and locust stops moving). 

 Locust can �choose� whether to stay at a waypoint or to 
�jump� to a neighboring waypoint according to food 
quantity. 

 If a waypoint is exhausted (zero food quantity) locusts 
can �fly� over the waypoint to its next neighboring 
waypoint. 

 If there is no food in either current, any neighboring or 
next neighboring waypoint, then a locust stops and 
�dies�. 

 If a dead-end is found, then all edges leading to the 
waypoint are marked as �closed�. 

The most common schema of the algorithm is shown at 
Fig. 3. 
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Figure 3.  Common schema of ALSR algorithm 

C. Additional assumptions 
There is also a set of additional assumptions about locust 

swarm and each locust behavior (implementation of these ideas 
and rules can be optional): 

 Locusts may avoid non-vacant waypoints (locust can 
�see� if the waypoint is vacant, when choosing a 
waypoint for the jump/fly). 

 Locusts may avoid already used edges (edges can be 
marked as used and other locust should avoid these 
edges). 

 Locust may be considered as died if there is no more 
food and no chance to reach target (the object for the 
locust can be deleted). 

 Locust may have an intention to keep close to a swarm 
(not to be left far from the swarm). 

 A long jump closer to the target is considered better than 
a short one. 

 The wind could be considered to choose better edge to 
jump. 

 Jumps between two waypoints without a connecting 
edge could be allowed (like in FRA). 

 Food distribution could be a significant factor, but may 
relate actually to a maximum number of locusts allowed 
to pass through. 

D. Locust movement 
The movement of each locust is the core action allowing the 

route search. Performing a random movement may cause swarm 
scattering and overall algorithm failure. Due to importance of 
correct movement there is a set of strategies to be implemented: 

 Next waypoint selection strategy � a set of rules to 
choose where to move. 

 Time distribution strategy � a set of rules to make 
algorithm pick a locust to perform a move. 

 Best route part strategy � a set of rules to use within a 
swarm the best route parts for the locusts which had 
routes crossings. 

All three of these strategies relies, in some way, on a distance 
metric for the routing network. When selecting a next waypoint 
or picking a locust to move, an assessment of distance to the 
target can be performed and this requires some distance 
calculation. When comparing route parts, a calculation of 
distance covered should be made. So, anyway the question of 
distance calculation for any kind of locust movements is 
important. The most popular distance metrics are Euclidean 
distance, Manhattan distance and Chebyshev distance. Actually 
one can replace any of these distance metrics with a Minkowski 
distance: 

 D (x, y) = ( i=1..n |xi � yi|p )1/p. (3) 

Here x Rn, y Rn and n is the number of dimensions (n=2 or 
n=3 for 2D and 3D respectively), p 1 is the distance order (p=1 
and p=2 for Manhattan and Euclidean distance respectively, and 
p  for Chebyshev distance). This kind of distance metric is 
not enough accurate for distance measuring on geoid. 
Nevertheless, this is quite enough to use as an initial approach to 
measure distance on a plane (or in Cartesian coordinate system). 

Now let�s discuss next waypoint selection strategy. 
General schema of next waypoint candidates are shown at Fig. 4. 
Here are some thoughts about neighboring waypoints to perform 
selection of a next waypoint on the route: 

 Current waypoint is the last waypoint added to a track. 

 Previous waypoints from the track should remain 
�blocked� to move to. 

 Some edges connected to current waypoint give only a 
backward (reverse) direction way. 

 Other edges connected to current waypoint give a 
forward direction (also a bi-directional edges) way. 

 Waypoints from the other side of forward direction 
edges can be chosen as a candidate to become a next 
waypoint in the track. 
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Figure 4.  Next waypoint candidates from ATS route network 

Besides the ATS route network with a predefined topology 
and edges connecting different waypoints, the movements 
through a FRA should be considered also if the current waypoint 
is an entry point to some FRA. Next waypoint candidates within 
a FRA are shown at Fig. 5. 

Figure 5.   Next waypoint candidates from FRA 

According to possible selection of next waypoint candidates 
both from ATS route network and from FRA previous thoughts 
should be extended with the following ones: 

 Current waypoint is the last waypoint added to a track 
and located on the FRA border as an entry (or both 
entry/exit) point. 

 Some waypoints on the FRA border are marked as entry 
points only. 

 Other waypoints on the FRA border are marked as exit 
(or both entry/exit) points. 

 A DCT between current waypoint and FRA exit point 
can be generated and added to a track. 

 Further fitting of DCT should be made to meet all 
requirements to fly through the FRA. 

Now, combining selection of next waypoint candidates from 
both ATS route network and FRA allows to define a set of 
waypoints for possible locust movement. Meanwhile, there can 
be a set of restrictions to use some edge or to build a DCT. These 
restrictions can be given by a route availability document (also 
known as RAD). Considering such restrictions to select next 
waypoint candidates is mandatory for the successful route 
search. 

However, it is not yet enough to perform the best move. 
There are two sub-strategies involved to influence the best move 
selection: swarm size strategy and �food� initialization strategy. 
These two sub-strategies can also dynamically change both the 
whole state of a routing network system and the whole algorithm 
performance. 

The swarm size sub-strategy can be one of the following: 

 Fixed-size swarm. The swarm size can be a predefined 
value. The number of locusts in the swarm can be found 
according to number of waypoints in ATS routing 
network. The number of locusts in the swarm should be 
enough to find a route. Nevertheless, it is possible that 
all locusts in the swarm can get lost on a specified 
network. Moreover, there is no guarantee that the swarm 
size would be enough to find the optimal (the best) 
route. Each locust will use a special procedure to select 
the best next waypoint to move forward. 

 Growing swarm. The swarm size can grow up according 
to the need to cover all possible routes from current 
waypoint to each next possible waypoint. This means, 
that a locust at a current waypoint will produce N�1 
clones (descendants) to move to all N neighboring 
waypoints. This strategy makes the algorithm similar to 
Dijkstra and A-Star algorithms. 

The food initialization sub-strategy can be one of the 
following: 

 Food �distribution�. The distribution strategy can be 
used as way to set up food attribute for each waypoint 
in ATS routing network. This means that before the 
route search starts, all waypoints should be initialized. 
On one hand, this may become a time consuming 
process in case of a big amount of waypoints. On the 
other hand, this process can be considered as a part of 
preparation to run algorithm, but not the route search 
algorithm itself. 

 Food �discovery�. The discovery strategy implements 
a �lazy initialization� pattern: the value of food attribute 
for the waypoint is generated when it is needed. Once 
the waypoint was seen by a locust, a food quantity for 
the waypoint is generated. All following requests of the 
waypoint will use this value as an initialized. The same 
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special procedure (as in distribution strategy) to define 
a food stock at each waypoint can be used. 

The combination of two sub-strategies for the initial 
preparation to run the algorithm is presented in Table I. 

TABLE I.  SWARM SIZE AND FOOD INITITIALIZATION STRATEGIES 

Swarm 
size 

Food 
Fixed-sized swarm Growing swarm 

Distributed 
Both food quantity and 
swarm size should be defined 
before route search starts. 

Food quantity should be 
defined before route search 
starts. 
The starting swarm size is 
equal to 1. 

Discovered 

Food quantity is unknown 
and to be discovered at first 
analysis of a waypoint. 
Swarm size should be defined 
before route search starts. 

Food quantity is unknown and 
to be discovered at first 
analysis of a waypoint. 
The starting swarm size is 
equal to 1. 

 

Both cases of food initializations may rely on a special 
procedure calculating the quantity of food at a particular 
waypoint. This food quantity may also represent the distance to 
a destination (targeted) waypoint: closer to a destination gives 
bigger food quantity. Such policy in food initialization looks 
similar to A* cost of path function. The quantity of food will be 
changed in time while ALSR algorithm works. Using (3) the 
food initialization function can be defined like: 

 Qfood (wcur) = D (wdep, wdes) / (q0 + D (wcur, wdes)) + q1, (4) 

where wcur, wdep and wdes are current, departure and destination 
waypoints respectively; q0 = const > 0 and q1 = const > 0 are 
fitting parameters (q0 allows to avoid zero in denominator and 
q1 allows to avoid very small values near departure point). Such 
definition of Qfood (wcur) is not the best one, but gives a very 
simple way to �put� more food closer to destination waypoint. 

The quantity of food can be given by an integer value. Once 
a locust come to a waypoint the quantity of food to be 
decremented. If a locust stays at a waypoint for the next 
algorithm iteration, then a quantity to be decremented again. The 
rule can be formulated like �a locust eats 1 portion of food in a 
waypoint at each algorithm iteration�. 

The time distribution strategy allows to choose which 
locust is better to pick for the next step. By default, each locust 
has the same �attention� of the algorithm at each step � every 
locust makes a move. Implementing a time distribution strategy 
(see Fig. 6) allows to skip (at least for a while) some locusts. 

Locusts far from targeted waypoint (destination point) may 
have less time for moves compared to those closer to a target � 
probability of the move (due to location) for the locust should be 
used (means less �attention� to wrong locations). 

Locust that came to a dead-end or facing an obstacle can get 
lower probability to move (down to zero to be considered as 
died), the same as those located very far from the target. 

Figure 6.  Time distribution strategy implementation 

Giving an equal time to each locust may have following 
characteristics: 

 Always moving the whole swarm. Each locust will move 
at each step. Each locust in a swarm is considered and 
granted a time for the move. This guarantees movement 
of every locust in a swarm. 

 Moving to a wrong direction. Locusts can keep moving 
opposite to a destination point during a long time. This 
is similar to Dijkstra algorithm (searching wide). 

 Avoiding obstacles can slower the algorithm. If there 
are many locusts faced the obstacle and unable to move 
forward, this may cause a waste of time to attempt a 
move. Edge lock can be the only way to avoid these 
obstacles if these edges leaded to a dead-end. 

Using a special time distribution strategy according to 
probability of success may have following characteristics: 

 Moving only part of the swarm. Those locusts going far 
from target or moving in �wrong� direction will be 
granted with less algorithm attention. This means after 
some time they can miss a step while others are moving. 

 More moves in a right direction. Paying more attention 
to locusts that come closer to target may yield a quicker 
route search. 

 Probabilistic obstacles avoiding. The �attention� of 
algorithm is focused on those locusts that can move. If 
a locust come to a dead-end or facing the obstacle, then 
the probability of granting a time for move can be 
lowered (down to zero) for these locusts. This means 
more attention to other locusts, which are possibly 
avoiding an obstacle or a dead-end. 

The best route parts strategy can be used to make crossing 
routes better. If there are two routes with different paths between 
two waypoints (this means the routes has crossing), then one 
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route may have a better route part between these waypoints (see 
Fig. 7). 

Figure 7.  Best route parts strategy implementation 

By default, there is no best parts replacement and the routes 
found remain the same as it were found. This can be named as a 
neutral to best route parts strategy with the following 
characteristics: 

 Keep the route as it was found. Each locust finds its own 
route and this route remains the same until the 
destination is reached or locust can�t move any more. 
This means the best parts of different routes cannot be 
combined to make a much better route. 

 Higher diversity. All the routes in a resulting set will 
differ to each other. This can be a good and quick way 
for following route optimization (i.e., using GA, etc.). 

 No optimal route. Among the routes found there could 
be no one optimal route. 

When choosing to implement replacement with best route 
parts, then the algorithm can be named sensitive to best route 
parts strategy and will have following characteristics: 

 Detecting significant �cross-roads�. If there are some 
locusts coming to the same waypoint by different ways, 
then the check for best way is performed. Both length 
and difficulty of the route should be considered to 
choose the best route to a �cross-road�. Tracks for each 
locust moved through the �cross-road� should be 
replaced with the best route (replacement of route part 
is made). 

 Less diversity. Resulted set of routes could become less 
diverse or even all routes (previously found as different) 

can be replaced with the same �best� route. An 
important option is to clearly identify what should be 
considered as a route part, because in general all routes 
will have crossing in departure and in destination points. 
So, for example, a route part can be defined to be not 
longer than a half or a quarter of the whole path. 

 Optimal route. The best of the best route among all 
others can be found and it may be expected to be initially 
optimal. 

E. Formal ALSR algorithm description 
The pseudocode for the main algorithm flow can be 

presented like the following: 









Here the method �PickNextLocust()� is responsible for 
selecting a locust to perform a move. 













The locust method �Move()� is responsible to perform a 
move of the locust, including analysis of neighboring waypoints 
and selection of a waypoint to move to.  



















The locust method �FindNextPosition()� is responsible for 
setting values for next waypoint and edge from current position 
to this next waypoint. In case of using FRA the edge will be left 
empty, so a DCT is generated instead. 





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















The locust method �BestPositionAssesment()� allows to 
perform assessment of possible next waypoints among two lists: 
a lists of edges leading from current position and a list of exit 
points in FRA if a current waypoint is marked as an entry point 
of the FRA. This assessment can include both a quantity of food 
at neighboring waypoints, a swarm attraction force, a vector of 
wind, a distance from each neighboring waypoint to the swarm 
target waypoint and cost of flight by the edge or by the FRA. 
Previous to call of �BestPositionAssesment()� there are calls to 
�RemoveVisitedWaypoints()� and to �ApplyRAD()�. These 
two methods should be used to avoid cycle in a flight (not to 
return twice to the same point) and to apply known restrictions 
for the flight (mark closed flight levels for the waypoints and 
edges, remove waypoints in a fully closed areas, mark 
mandatory usage of waypoints and edges). 

V. CONCLUSION 
The ALSR algorithm is still being developed and now it is 

offered as a concept to be implemented. A number of ideas 
described were not tested yet due to a wide range of parameters 
involved in the algorithm. Nevertheless, there were some tests 
made to check the ability of the algorithm to find routes on a 
randomly generated data set. These results for a fixed-size 
swarm were rather promising and had been presented in [4]. 

Current research was a test for growing swarm and a result 
is closely suitable for business use (see Fig. 8). This first route 
looks like: �EGNX DTY3N DTY UM605 FINMA M605 
SILVA M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM M195 
IBNID M195 MARUK N621 LELNA UN621 DOMOK UT260 
UPALO UN862 REN A25 GODAN UN862 TERPO UT176 
DESAB UN867 PEXOD UN867 NENEM UP75 OMILU UP75 
NEA UN864 ORBIS ORBIS1C LEMD� � 782,75 NM. It looks 
appropriate enough to be used. But it is not as bad as it may look. 
The simulation settings were set up to consider better routes with 
less number of legs. This explains a number of turns and some 
longer legs within the route. Like it was mentioned above, a set 
of fast made different routes is suitable for further optimization. 
And a deeper analysis of a resulting set of routes is promising 
enough. 

Figure 8.  Example of a route for EGNX-LEMD by ALSR test 

To compare to the best (shortest) route the RocketRoute 
routing engine was used. Among variety of other approaches, it 
allows to build a route according to Dijkstra algorithm, (see 
Fig. 9): �EGNX DCT DTY UM605 FINMA M605 SILVA Q41 
PEPIS Q41 SAM N63 LELNA UN621 BASIK UN90 NOVAN 
UN864 ORBIS DCT LEMD� � 774,8 NM. 

Figure 9.  Example of a route for EGNX-LEMD by RocketRoute engine 
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Both routes look similar and use many same waypoints. 
Nevertheless, the route from ALSR algorithm is about 8 NM 
longer. This is equal to 1% of difference and can be considered 
a very good result for the length of a sub-optimal route search. 
Moreover, the resulting set besides the discussed shortest one 
includes also some longer routes: 

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA 
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM 
M195 IBNID M195 MARUK N621 LELNA UN621 
DOMOK UT260 UPALO UN862 REN A25 GODAN 
UN862 TERPO UT176 DESAB UN867 PEXOD 
UN867 NENEM UP75 OMILU UP75 NEA UN864 
ORBIS ORBIS1C LEMD� � 782,75 NM of length. 

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA 
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM 
M195 IBNID M195 MARUK N621 LELNA UN621 
DOMOK UT260 UPALO UN862 REN A25 GODAN 
UP87 TERPO UN862 UVUDO UN862 OSMOB 
UN857 VAVIX UN857 NETUK UN10 PPN UN857 
VASUM UN857 BAN BAN3B LEMD� � 815,778 NM 
of length. 

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA 
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM 
M195 IBNID M195 MARUK N621 LELNA UN621 
DOMOK UT260 UPALO UN862 REN UN862 
GODAN UN482 KORER UN26 NORMI UN867 
TEPRA UN873 DESAB UN867 PEXOD UN867 
NENEM UP75 OMILU UP75 UNOVI UN864 ORBIS 
ORBIS1C LEMD� � 809,75 NM of length. 

To be more correct, let�s also see the reverse direction flight 
from LEMD to EGNX. The best route result from ALSR is 
presented at Fig. 10 and it is compared to the best (shortest) route 
presented at Fig. 11. 

The set of routes from ALSR includes following: 

 �LEMD SIE1E SIE UN858 DGO UN867 BLV UN867 
NENEM UN867 PEXOD UN867 DESAB UN867 
TEPRA UN873 NORMI UN867 MOKOR UN867 
TERPO UN867 RINSO UN867 EKRAS UN867 
AKIKI N867 GARMI N867 VASUX UN867 AVANT 
UM184 HEMEL T420 BUZAD T420 OLNEY T420 
WELIN PIGOT1J EGNX� � 779,965 NM of length. 

 �LEMD SIE1K SIE UN865 BUGIX UN865 DELOG 
UN873 DESAB UN867 TEPRA UN873 NORMI 
UN873 MOKOR UP87 TERPO UN867 RINSO 
UM184 EKRAS UN867 AKIKI UN867 GARMI N867 
VASUX N867 AVANT UM184 HEMEL T420 
BUZAD T420 OLNEY T420 WELIN PIGOT1J 
EGNX� � 783,065 NM of length. 

 �LEMD SIE1E SIE UN858 DGO UN867 BLV UN867 
NENEM UN867 PEXOD UN867 DESAB UN873 
TEPRA UN867 NORMI UN867 MOKOR UN867 
TERPO UN867 RINSO UM184 EKRAS UT507 
REVTU UP87 BOLRO UP83 KATHY DCT SAM 
ASTRA3A EGKK LAM5M LAM UN57 WELIN 
PIGOT1J EGNX� � 824,454 NM of length. 

Figure 10.  Example of a route for LEMD- EGNX by ALSR test 

The compared shortest route (see Fig. 11) is �DCT RBO 
UN867 BLV UP87 BELEN DCT SUGOM DCT AGOTU DCT 
ARTIV DCT REVTU UP87 BOLRO UP83 KATHY DCT 
SAM Q41 PEPIS Y321 CPT UN859 HON DCT� � 759,6 NM. 

Figure 11.  Example of a route for LEMD-EGNX by RocketRoute engine 

The difference of the best route from ALSR is 20,365 NM, 
which means ALSR route is 2,7% longer. As one can see it has 
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some more differences on a route: many different waypoints and 
different airways were used in ALSR. Nevertheless, the result is 
still very satisfactory as for suboptimal routing algorithm, which 
the ALSR algorithm is. Most currently known to be used 
approaches in its basis rely on some algorithm [1�3], which 
requires knowing the full graph topology. And this is a separate 
serious problem of possible combinatorial burst considering full 
set of interconnections in FRA to find the path through this FRA. 
This problem typically makes it completely impossible or 
inefficient the routing in real life and does not match business 
needs. Unfortunately, there no other known or publicly available 
algorithms which are practically used to solve the problem of 
routing via FRA. Contrary, the ALSR algorithm approach has 
such features involved, that may allow efficient enough routing. 
The difference in length between the shortest route and the best 
route from ALSR is not significant. 

This means the implementation of best route parts strategy 
allowed to achieve better or close to optimal first route 
generation. Also a good result for ALSR algorithm is its ability 
to generate a set of routes for further processing. This feature can 
become particularly interesting in situations when there would 
be a final validation failure for the �best� route (i.e., some 
unexpected restrictions yet unknown during route search), and 
not much time would be needed to offer alternative routes (these 
routes would be actually ready to be compared with a newly 
discovered restriction). Further researches would be made to 
fully implement conditions described by RADs and allow easy 
implementation of flights through the FRA within the single 
routing algorithm. 
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