
Artificial Locust Swarm Routing Algorithm:
An Approach to Consider both Routing via FRA and Applying RAD

Vladyslav Alieksieiev
Department of Applied Mathematics
Lviv Polytechnic National University

Lviv, Ukraine
vladyslav.i.alieksieiev@lpnu.ua,

 https://orcid.org/0000-0003-0712-0120

Abstract� A problem of routing in airspace looks both similar and
different to the problem of routing on the ground. There are many
peculiarities in air routing. However, due to the complexity of the
problem and its similarity to 2D routing, there are many
applications of a good known routing techniques from graph
theory, like Dijkstra, A-Star etc. Nevertheless, these algorithms
remain nearly useless or reveal poor efficiency at least in case of
implementing specificity of a free routing airspace (FRA) and/or
applying some kind of restrictions derived from route availability
document (RAD). The results of research presented in current
paper give the approach to solve routing problem in airspace with
an ability to involve both understanding of routing via FRA and
necessity of applying some known restrictions from RAD. The key
idea of the developed algorithm is to combine routing in both
regular and free airspaces and to apply some permanent
requirements from route availability documents within a single
route construction procedure. The solution was found in area of so
named nature-inspired algorithms. The routing algorithm was
considered similar to behavior of a locust swarm according to a
few basic principles of movement. Applying some abstraction of a
single locust behavior within a swarm allows considering the
artificial locust swarm to be a good approach in search of route
between departure and destination points for the routing problem
in airspace. A couple of algorithm modifications and its areas of
applicability were discussed also. Artificial locust swarm routing
(ALSR) algorithm can be used as a platform solution for routes
construction in airspace and is expected to allow further
implementation of some particular routes optimization
techniques, like genetic algorithms (GA) and/or other.

Keywords- routing; path planning; FRA; RAD; artificial locust
swarm; metaheuristic approach, nature inspired approach

I. INTRODUCTION
Current efforts in air routing had faced recent years many

problems yielded from specificity of routing in airspace. If one
compares a routing problem in airspace to a classic routing
problem, there are many similarities. However, the differences
are significant to make it rather difficult or even almost
impossible finding the route in airspace. Sure, it is not a question
to find some route itself, but the question is for what price it is
done. If having a predefined network topology as a graph, then
some of the good known algorithms, like Dijkstra [1], A* [2] or
B* [3] algorithm, still could be used to build a route. However,
computational efforts to build some valid routes may require
using supercomputers or huge clusters to find a viable solution.

Or it may take hours and days to get the only route, making the
search process unsuitably time consuming.

First, remember, that an airspace routing has to consider
three dimensions (unlike to on-ground routing problem solved
typically in two dimensions). This means, if consider routing
network, that each waypoint has projections to each flight level.
And this fact can yield a multiplicative growth of possible edges
(see Fig. 1): an edge connecting two waypoints means at least an
existence of this edge in each flight level and, if applicable,
edges to change flight level higher (climb) and/or lower
(descend) from each flight level. This may result a combinatorial
burst and critically raise the complexity for the route search if
one would add all these edges to a routing network topology.
Assessment for a maximum possible number of edges (the real
number of edges) based on the number of edges on a plane is

 NAllEdges NEdges  NFL  3, (1)

where NEdges is the number of edges on a plane, NFL is the number
of flight levels, and number 3 stands for ability to fly higher, fly
lower or to stay in a current flight level (FL).

Second, there is a set of rules and restrictions that are forcing,
forbidding or allowing to fly between some pair of points. This
may also look similar to an on-ground routing, like when there
are road works and a road is closed. But in the sky it all may look
imaginary. For example, on-ground routing is a somewhat
simple when someone needs to cross the country border � this
could be made only by crossing a border control points from one
state to another and there are directly connected waypoints in
both neighboring states. There are no visible country borders in
airspace, so a pilot can violate country borders unintentionally.
Moreover, there could be no defined direct connection between
couple of waypoints in neighboring airspaces or this can be even
marked as a single waypoint in both airspaces. So, the pilot may
choose to fly between airspaces along the border and it violates
the rules, but there is no road and fence in the sky to make
someone to follow the rules. Another option is that the pilot can
change flight level to avoid an obstacle (i.e., an airspace closed
for military flights etc.). This means the same �road� could be in
use, but it will require only to go above or below the closed
levels. On a horizontal plane the route may look quite the same
like a route violating the restriction and ignoring the obstacle
presence.

This research is sponsored by RocketRoute Ltd. (London, UK).

        

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Multiplicative growth of actual number of edges

Third, there is a special kind of routing network part named
FRA � free routing airspace. This means there are no �roads�
there, but only a set of waypoints and/or some parts of routing
network (i.e., SID/STAR routes close to airport) �hanging�
alone in the sky. Actually, the case of routing through the FRA
may become a �hell network� for the routing engine based on
algorithms working with predefined topology. The reason is the
existence of each-to-each connection between all waypoints (see
a simplified view of FRA at Fig. 2 with only entry and exit
points). And don�t forget about the first concern of
multiplicative growth of edges (1). The assessment for a number
of maximum possible edges within FRA is

 NFRAEdges NPoints  (NPoints �1)  NFL  3, (2)

where NPoints is the number of FRA waypoints on a plane, NFL is
the number of flight levels, and number 3 stands for ability to fly
higher, fly lower or to stay in a current flight level (FL).

Figure 2. A simplified FRA view with only entry and exit points

Finally, the problem looks like more related to finding of a
less cost path, rather than only the shortest path. Sure, there are
many cases, when the shortest route has the less cost if to
consider all the possible options. In general, when a route for an
aircraft is needed, both distance, time and fuel consumption,
route smoothness, flight safety, weather forecast and pilot
preferences should be considered. This means, the problem
requires a multifactor analysis approach to find some viable
route for the flight. The complexity of the problem to find a route
in airspace in compare to an on-ground routing problem is clear.

This paper is focused on discussion for development of a
new approach to search for routes in airspace, including

necessity to fly through FRA and ability to consider restrictions
during the search process. The algorithm is focused on 3D
routing as in airspace. Further development should involve
understanding of weather conditions and allow improvements to
a 4D routing.

II. PROBLEM STATEMENT
Initially, the problem is to find a route between departure and

destination points to be able to perform a flight. Typically, this
problem can be reduced to a 2D routing with predefined
topology as a graph and an algorithm to find a path between two
vertices on a graph is applicable. Some key aspects and factors
for the analysis of the problem were discussed previously [4].
Current approach to solve routing problem is devoted to
following specifics:

 Build a path between departure and destination points �
a core problem.

 Consider existing ATS route network (as a topology
presented by a directed graph with a set of vertices and
a set of directed edges).

 Consider FRA (as an extension of topology presented
by a subset of vertices with attributes of affiliation to
FRA and role within this FRA).

 Consider basic restrictions for the flight (RAD, avoid
areas, etc.).

 Get the result as a set of possible routes suitable for
further optimization.

III. APPROACHES TO SOLVE THE PROBLEM

A. Core problem of path finding
As mentioned above, the core of the problem to find a path

can be solved using known approaches to build a path over the
network presented as a graph. Many researchers apply this
approach using Dijkstra or A* or similar methods [5�9] to find
shortest path or exploiting shortest path search to build routes.
Most researchers prefer using Dijkstra algorithm due to it is
finite and it finds the optimal solution (unlike to possible sub-
optimal solutions in A*). However, the A* often gives fast and
robust solutions and its use looks preferable for directed search.

B. Approaches considering FRA
One approach to path finding in FRA [9] uses also a

discretization to obtain a graph representation and relies on
further application of Dijkstra and A* algorithms directly.
Another approach to routing within FRA [10] relies on analysis
of congestions in separate flight levels in FRA and shortest
direct flights between entry and exit points. In general, this
means direct flights within FRA can be considered as a shortest
straight line between entry and exit points.

C. Nature-inspirde and other approaches
There is a number of researchers using a dynamic

programing method to solve different problems related to path
planning and path optimization [8]. The dynamic programming
is mentioned often when some weather conditions are involved
for routing [11, 12].

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

An approach for route optimization using cellular automata
was used to offer air network optimization in China [13]. This
research is particularly interesting for discussing routing
problems because of consideration of restricted (forbidden)
areas in China and building routes avoiding these areas.

A weighted Euclidean shortest path was used within an
approach of a framed-subspaces [14]. The idea of
implementation of weighted region problem looks very simple:
the whole space split into weighted regions with some weights
(special cell decomposition technique was offered) and then a
weighted Euclidean shortest path is used. This approach was
offered to be used both in 2D and 3D environments. However,
there are many other researches considering airspace splitting,
like sectorization or segmentation or discretizing into cells.

One may also meet an approach called constrained shortest-
path [15]. It was offered to be used in military aviation and path
planning for strike aircraft, unmanned aerial vehicles (UAVs) or
cruising missiles.

It is very important to mention here, that all previously
described approaches consider the specificity of airspace routing
problem and in particular regarding presence of obstacles and
areas with different characteristics of applicability to fly
through. This is the reason for search not only the shortest path,
but an optimal path. As one can see, many solutions start with
solving the shortest path problem with further implementation
of some optimization technique. Some other solutions are the
attempts to build an optimal solution combining path search with
optimization efforts.

The most interesting subset of approaches to solve routing
problem is a group of so named �nature-inspired� approaches.
One of the latest approaches for 4D flight trajectories
optimization was inspired by an artificial bee colony (ABC)
[16]. The ABC algorithm allows both to search for path and
build an optimized route between departure and destination
airports, involving weather information and considering fuel
consumption. It is worth mentioning, that the idea of swarm
intelligence methods to search for path on a graph was also
offered in an ant colony optimization (ACO) algorithm [17].

For example, among other recent nature inspired approaches
there are BNMR (blind, naked mole-rat) algorithm [18] and
grasshopper optimization algorithm (GOA) [19, 20]. These two
approaches were used in numerical functions optimization and
structural design problems, but not yet implemented to air
routing problem. It is also interesting that the grasshopper
optimization algorithm has a reference to a model of rolling
swarms of locusts [21] offered for modeling a physical process.

IV. ARTIFICIAL LOCUST SWARM ROUTING (ALSR)

A. General analogy for locust swarm and aircraft flights
First of all, it is important to understand key features making

it possible to apply an analogy from real-life to a technical
system. Among these features of locust swarm are the following:

 Model for 3D flights: ability of locusts to fly allows
applicability in 3D environments (like airspace).

 Non-returning route: effective devastation of fields and
gardens allows to perform a movement always forward
and not to return back, where all the food was eaten.

 Stay within boundaries: the swarm moves forward as a
whole and each locust tends to keep together within the
swarm, which means low probability of scattering.

 Wind optimization: the locust swarm is wind vulnerable
and considering wind directions is similar to an aircraft
flight.

Next, there would be a set of basic ideas in a model to make
it easy to understand connection between nature processes and
technical analogue. One can consider a network as a set of
waypoints filled with some quantity of food. The locust will
stand for an aircraft performing the flight across one possible
route. The swarm stands for a set of all possible (or found) routes
(not only to destination point).

B. Basic ideas
The artificial locust swarm will act as a whole and through

each particular locust. These acts would be made with respect to
the following ideas or rules:

 Swarm is a set of locusts and each locust aims to �eat�
more �food�.

 The food is distributed over the network, some quantity
of �food� (0) at each waypoint.

 Locust moves over the network (by default, using
known topology edges connecting waypoints) to eat
more and a �hunger� makes locust to move due to
exhaustion of previously visited waypoints.

 A track of each locust is stored and is added to a set of
routes found, once the target was reached by the locust
(and locust stops moving).

 Locust can �choose� whether to stay at a waypoint or to
�jump� to a neighboring waypoint according to food
quantity.

 If a waypoint is exhausted (zero food quantity) locusts
can �fly� over the waypoint to its next neighboring
waypoint.

 If there is no food in either current, any neighboring or
next neighboring waypoint, then a locust stops and
�dies�.

 If a dead-end is found, then all edges leading to the
waypoint are marked as �closed�.

The most common schema of the algorithm is shown at
Fig. 3.

        

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Common schema of ALSR algorithm

C. Additional assumptions
There is also a set of additional assumptions about locust

swarm and each locust behavior (implementation of these ideas
and rules can be optional):

 Locusts may avoid non-vacant waypoints (locust can
�see� if the waypoint is vacant, when choosing a
waypoint for the jump/fly).

 Locusts may avoid already used edges (edges can be
marked as used and other locust should avoid these
edges).

 Locust may be considered as died if there is no more
food and no chance to reach target (the object for the
locust can be deleted).

 Locust may have an intention to keep close to a swarm
(not to be left far from the swarm).

 A long jump closer to the target is considered better than
a short one.

 The wind could be considered to choose better edge to
jump.

 Jumps between two waypoints without a connecting
edge could be allowed (like in FRA).

 Food distribution could be a significant factor, but may
relate actually to a maximum number of locusts allowed
to pass through.

D. Locust movement
The movement of each locust is the core action allowing the

route search. Performing a random movement may cause swarm
scattering and overall algorithm failure. Due to importance of
correct movement there is a set of strategies to be implemented:

 Next waypoint selection strategy � a set of rules to
choose where to move.

 Time distribution strategy � a set of rules to make
algorithm pick a locust to perform a move.

 Best route part strategy � a set of rules to use within a
swarm the best route parts for the locusts which had
routes crossings.

All three of these strategies relies, in some way, on a distance
metric for the routing network. When selecting a next waypoint
or picking a locust to move, an assessment of distance to the
target can be performed and this requires some distance
calculation. When comparing route parts, a calculation of
distance covered should be made. So, anyway the question of
distance calculation for any kind of locust movements is
important. The most popular distance metrics are Euclidean
distance, Manhattan distance and Chebyshev distance. Actually
one can replace any of these distance metrics with a Minkowski
distance:

 D (x, y) = (i=1..n |xi � yi|p)1/p. (3)

Here x Rn, y Rn and n is the number of dimensions (n=2 or
n=3 for 2D and 3D respectively), p 1 is the distance order (p=1
and p=2 for Manhattan and Euclidean distance respectively, and
p for Chebyshev distance). This kind of distance metric is
not enough accurate for distance measuring on geoid.
Nevertheless, this is quite enough to use as an initial approach to
measure distance on a plane (or in Cartesian coordinate system).

Now let�s discuss next waypoint selection strategy.
General schema of next waypoint candidates are shown at Fig. 4.
Here are some thoughts about neighboring waypoints to perform
selection of a next waypoint on the route:

 Current waypoint is the last waypoint added to a track.

 Previous waypoints from the track should remain
�blocked� to move to.

 Some edges connected to current waypoint give only a
backward (reverse) direction way.

 Other edges connected to current waypoint give a
forward direction (also a bi-directional edges) way.

 Waypoints from the other side of forward direction
edges can be chosen as a candidate to become a next
waypoint in the track.

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Next waypoint candidates from ATS route network

Besides the ATS route network with a predefined topology
and edges connecting different waypoints, the movements
through a FRA should be considered also if the current waypoint
is an entry point to some FRA. Next waypoint candidates within
a FRA are shown at Fig. 5.

Figure 5. Next waypoint candidates from FRA

According to possible selection of next waypoint candidates
both from ATS route network and from FRA previous thoughts
should be extended with the following ones:

 Current waypoint is the last waypoint added to a track
and located on the FRA border as an entry (or both
entry/exit) point.

 Some waypoints on the FRA border are marked as entry
points only.

 Other waypoints on the FRA border are marked as exit
(or both entry/exit) points.

 A DCT between current waypoint and FRA exit point
can be generated and added to a track.

 Further fitting of DCT should be made to meet all
requirements to fly through the FRA.

Now, combining selection of next waypoint candidates from
both ATS route network and FRA allows to define a set of
waypoints for possible locust movement. Meanwhile, there can
be a set of restrictions to use some edge or to build a DCT. These
restrictions can be given by a route availability document (also
known as RAD). Considering such restrictions to select next
waypoint candidates is mandatory for the successful route
search.

However, it is not yet enough to perform the best move.
There are two sub-strategies involved to influence the best move
selection: swarm size strategy and �food� initialization strategy.
These two sub-strategies can also dynamically change both the
whole state of a routing network system and the whole algorithm
performance.

The swarm size sub-strategy can be one of the following:

 Fixed-size swarm. The swarm size can be a predefined
value. The number of locusts in the swarm can be found
according to number of waypoints in ATS routing
network. The number of locusts in the swarm should be
enough to find a route. Nevertheless, it is possible that
all locusts in the swarm can get lost on a specified
network. Moreover, there is no guarantee that the swarm
size would be enough to find the optimal (the best)
route. Each locust will use a special procedure to select
the best next waypoint to move forward.

 Growing swarm. The swarm size can grow up according
to the need to cover all possible routes from current
waypoint to each next possible waypoint. This means,
that a locust at a current waypoint will produce N�1
clones (descendants) to move to all N neighboring
waypoints. This strategy makes the algorithm similar to
Dijkstra and A-Star algorithms.

The food initialization sub-strategy can be one of the
following:

 Food �distribution�. The distribution strategy can be
used as way to set up food attribute for each waypoint
in ATS routing network. This means that before the
route search starts, all waypoints should be initialized.
On one hand, this may become a time consuming
process in case of a big amount of waypoints. On the
other hand, this process can be considered as a part of
preparation to run algorithm, but not the route search
algorithm itself.

 Food �discovery�. The discovery strategy implements
a �lazy initialization� pattern: the value of food attribute
for the waypoint is generated when it is needed. Once
the waypoint was seen by a locust, a food quantity for
the waypoint is generated. All following requests of the
waypoint will use this value as an initialized. The same

        

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

special procedure (as in distribution strategy) to define
a food stock at each waypoint can be used.

The combination of two sub-strategies for the initial
preparation to run the algorithm is presented in Table I.

TABLE I. SWARM SIZE AND FOOD INITITIALIZATION STRATEGIES

Swarm
size

Food
Fixed-sized swarm Growing swarm

Distributed
Both food quantity and
swarm size should be defined
before route search starts.

Food quantity should be
defined before route search
starts.
The starting swarm size is
equal to 1.

Discovered

Food quantity is unknown
and to be discovered at first
analysis of a waypoint.
Swarm size should be defined
before route search starts.

Food quantity is unknown and
to be discovered at first
analysis of a waypoint.
The starting swarm size is
equal to 1.

Both cases of food initializations may rely on a special
procedure calculating the quantity of food at a particular
waypoint. This food quantity may also represent the distance to
a destination (targeted) waypoint: closer to a destination gives
bigger food quantity. Such policy in food initialization looks
similar to A* cost of path function. The quantity of food will be
changed in time while ALSR algorithm works. Using (3) the
food initialization function can be defined like:

 Qfood (wcur) = D (wdep, wdes) / (q0 + D (wcur, wdes)) + q1, (4)

where wcur, wdep and wdes are current, departure and destination
waypoints respectively; q0 = const > 0 and q1 = const > 0 are
fitting parameters (q0 allows to avoid zero in denominator and
q1 allows to avoid very small values near departure point). Such
definition of Qfood (wcur) is not the best one, but gives a very
simple way to �put� more food closer to destination waypoint.

The quantity of food can be given by an integer value. Once
a locust come to a waypoint the quantity of food to be
decremented. If a locust stays at a waypoint for the next
algorithm iteration, then a quantity to be decremented again. The
rule can be formulated like �a locust eats 1 portion of food in a
waypoint at each algorithm iteration�.

The time distribution strategy allows to choose which
locust is better to pick for the next step. By default, each locust
has the same �attention� of the algorithm at each step � every
locust makes a move. Implementing a time distribution strategy
(see Fig. 6) allows to skip (at least for a while) some locusts.

Locusts far from targeted waypoint (destination point) may
have less time for moves compared to those closer to a target �
probability of the move (due to location) for the locust should be
used (means less �attention� to wrong locations).

Locust that came to a dead-end or facing an obstacle can get
lower probability to move (down to zero to be considered as
died), the same as those located very far from the target.

Figure 6. Time distribution strategy implementation

Giving an equal time to each locust may have following
characteristics:

 Always moving the whole swarm. Each locust will move
at each step. Each locust in a swarm is considered and
granted a time for the move. This guarantees movement
of every locust in a swarm.

 Moving to a wrong direction. Locusts can keep moving
opposite to a destination point during a long time. This
is similar to Dijkstra algorithm (searching wide).

 Avoiding obstacles can slower the algorithm. If there
are many locusts faced the obstacle and unable to move
forward, this may cause a waste of time to attempt a
move. Edge lock can be the only way to avoid these
obstacles if these edges leaded to a dead-end.

Using a special time distribution strategy according to
probability of success may have following characteristics:

 Moving only part of the swarm. Those locusts going far
from target or moving in �wrong� direction will be
granted with less algorithm attention. This means after
some time they can miss a step while others are moving.

 More moves in a right direction. Paying more attention
to locusts that come closer to target may yield a quicker
route search.

 Probabilistic obstacles avoiding. The �attention� of
algorithm is focused on those locusts that can move. If
a locust come to a dead-end or facing the obstacle, then
the probability of granting a time for move can be
lowered (down to zero) for these locusts. This means
more attention to other locusts, which are possibly
avoiding an obstacle or a dead-end.

The best route parts strategy can be used to make crossing
routes better. If there are two routes with different paths between
two waypoints (this means the routes has crossing), then one

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

route may have a better route part between these waypoints (see
Fig. 7).

Figure 7. Best route parts strategy implementation

By default, there is no best parts replacement and the routes
found remain the same as it were found. This can be named as a
neutral to best route parts strategy with the following
characteristics:

 Keep the route as it was found. Each locust finds its own
route and this route remains the same until the
destination is reached or locust can�t move any more.
This means the best parts of different routes cannot be
combined to make a much better route.

 Higher diversity. All the routes in a resulting set will
differ to each other. This can be a good and quick way
for following route optimization (i.e., using GA, etc.).

 No optimal route. Among the routes found there could
be no one optimal route.

When choosing to implement replacement with best route
parts, then the algorithm can be named sensitive to best route
parts strategy and will have following characteristics:

 Detecting significant �cross-roads�. If there are some
locusts coming to the same waypoint by different ways,
then the check for best way is performed. Both length
and difficulty of the route should be considered to
choose the best route to a �cross-road�. Tracks for each
locust moved through the �cross-road� should be
replaced with the best route (replacement of route part
is made).

 Less diversity. Resulted set of routes could become less
diverse or even all routes (previously found as different)

can be replaced with the same �best� route. An
important option is to clearly identify what should be
considered as a route part, because in general all routes
will have crossing in departure and in destination points.
So, for example, a route part can be defined to be not
longer than a half or a quarter of the whole path.

 Optimal route. The best of the best route among all
others can be found and it may be expected to be initially
optimal.

E. Formal ALSR algorithm description
The pseudocode for the main algorithm flow can be

presented like the following:









Here the method �PickNextLocust()� is responsible for
selecting a locust to perform a move.













The locust method �Move()� is responsible to perform a
move of the locust, including analysis of neighboring waypoints
and selection of a waypoint to move to.



















The locust method �FindNextPosition()� is responsible for
setting values for next waypoint and edge from current position
to this next waypoint. In case of using FRA the edge will be left
empty, so a DCT is generated instead.






        

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

















The locust method �BestPositionAssesment()� allows to
perform assessment of possible next waypoints among two lists:
a lists of edges leading from current position and a list of exit
points in FRA if a current waypoint is marked as an entry point
of the FRA. This assessment can include both a quantity of food
at neighboring waypoints, a swarm attraction force, a vector of
wind, a distance from each neighboring waypoint to the swarm
target waypoint and cost of flight by the edge or by the FRA.
Previous to call of �BestPositionAssesment()� there are calls to
�RemoveVisitedWaypoints()� and to �ApplyRAD()�. These
two methods should be used to avoid cycle in a flight (not to
return twice to the same point) and to apply known restrictions
for the flight (mark closed flight levels for the waypoints and
edges, remove waypoints in a fully closed areas, mark
mandatory usage of waypoints and edges).

V. CONCLUSION
The ALSR algorithm is still being developed and now it is

offered as a concept to be implemented. A number of ideas
described were not tested yet due to a wide range of parameters
involved in the algorithm. Nevertheless, there were some tests
made to check the ability of the algorithm to find routes on a
randomly generated data set. These results for a fixed-size
swarm were rather promising and had been presented in [4].

Current research was a test for growing swarm and a result
is closely suitable for business use (see Fig. 8). This first route
looks like: �EGNX DTY3N DTY UM605 FINMA M605
SILVA M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM M195
IBNID M195 MARUK N621 LELNA UN621 DOMOK UT260
UPALO UN862 REN A25 GODAN UN862 TERPO UT176
DESAB UN867 PEXOD UN867 NENEM UP75 OMILU UP75
NEA UN864 ORBIS ORBIS1C LEMD� � 782,75 NM. It looks
appropriate enough to be used. But it is not as bad as it may look.
The simulation settings were set up to consider better routes with
less number of legs. This explains a number of turns and some
longer legs within the route. Like it was mentioned above, a set
of fast made different routes is suitable for further optimization.
And a deeper analysis of a resulting set of routes is promising
enough.

Figure 8. Example of a route for EGNX-LEMD by ALSR test

To compare to the best (shortest) route the RocketRoute
routing engine was used. Among variety of other approaches, it
allows to build a route according to Dijkstra algorithm, (see
Fig. 9): �EGNX DCT DTY UM605 FINMA M605 SILVA Q41
PEPIS Q41 SAM N63 LELNA UN621 BASIK UN90 NOVAN
UN864 ORBIS DCT LEMD� � 774,8 NM.

Figure 9. Example of a route for EGNX-LEMD by RocketRoute engine

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

Both routes look similar and use many same waypoints.
Nevertheless, the route from ALSR algorithm is about 8 NM
longer. This is equal to 1% of difference and can be considered
a very good result for the length of a sub-optimal route search.
Moreover, the resulting set besides the discussed shortest one
includes also some longer routes:

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM
M195 IBNID M195 MARUK N621 LELNA UN621
DOMOK UT260 UPALO UN862 REN A25 GODAN
UN862 TERPO UT176 DESAB UN867 PEXOD
UN867 NENEM UP75 OMILU UP75 NEA UN864
ORBIS ORBIS1C LEMD� � 782,75 NM of length.

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM
M195 IBNID M195 MARUK N621 LELNA UN621
DOMOK UT260 UPALO UN862 REN A25 GODAN
UP87 TERPO UN862 UVUDO UN862 OSMOB
UN857 VAVIX UN857 NETUK UN10 PPN UN857
VASUM UN857 BAN BAN3B LEMD� � 815,778 NM
of length.

 �EGNX DTY3N DTY UM605 FINMA M605 SILVA
M183 CPT Y321 NUBRI Y321 PEPIS Q41 SAM
M195 IBNID M195 MARUK N621 LELNA UN621
DOMOK UT260 UPALO UN862 REN UN862
GODAN UN482 KORER UN26 NORMI UN867
TEPRA UN873 DESAB UN867 PEXOD UN867
NENEM UP75 OMILU UP75 UNOVI UN864 ORBIS
ORBIS1C LEMD� � 809,75 NM of length.

To be more correct, let�s also see the reverse direction flight
from LEMD to EGNX. The best route result from ALSR is
presented at Fig. 10 and it is compared to the best (shortest) route
presented at Fig. 11.

The set of routes from ALSR includes following:

 �LEMD SIE1E SIE UN858 DGO UN867 BLV UN867
NENEM UN867 PEXOD UN867 DESAB UN867
TEPRA UN873 NORMI UN867 MOKOR UN867
TERPO UN867 RINSO UN867 EKRAS UN867
AKIKI N867 GARMI N867 VASUX UN867 AVANT
UM184 HEMEL T420 BUZAD T420 OLNEY T420
WELIN PIGOT1J EGNX� � 779,965 NM of length.

 �LEMD SIE1K SIE UN865 BUGIX UN865 DELOG
UN873 DESAB UN867 TEPRA UN873 NORMI
UN873 MOKOR UP87 TERPO UN867 RINSO
UM184 EKRAS UN867 AKIKI UN867 GARMI N867
VASUX N867 AVANT UM184 HEMEL T420
BUZAD T420 OLNEY T420 WELIN PIGOT1J
EGNX� � 783,065 NM of length.

 �LEMD SIE1E SIE UN858 DGO UN867 BLV UN867
NENEM UN867 PEXOD UN867 DESAB UN873
TEPRA UN867 NORMI UN867 MOKOR UN867
TERPO UN867 RINSO UM184 EKRAS UT507
REVTU UP87 BOLRO UP83 KATHY DCT SAM
ASTRA3A EGKK LAM5M LAM UN57 WELIN
PIGOT1J EGNX� � 824,454 NM of length.

Figure 10. Example of a route for LEMD- EGNX by ALSR test

The compared shortest route (see Fig. 11) is �DCT RBO
UN867 BLV UP87 BELEN DCT SUGOM DCT AGOTU DCT
ARTIV DCT REVTU UP87 BOLRO UP83 KATHY DCT
SAM Q41 PEPIS Y321 CPT UN859 HON DCT� � 759,6 NM.

Figure 11. Example of a route for LEMD-EGNX by RocketRoute engine

The difference of the best route from ALSR is 20,365 NM,
which means ALSR route is 2,7% longer. As one can see it has

        

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

some more differences on a route: many different waypoints and
different airways were used in ALSR. Nevertheless, the result is
still very satisfactory as for suboptimal routing algorithm, which
the ALSR algorithm is. Most currently known to be used
approaches in its basis rely on some algorithm [1�3], which
requires knowing the full graph topology. And this is a separate
serious problem of possible combinatorial burst considering full
set of interconnections in FRA to find the path through this FRA.
This problem typically makes it completely impossible or
inefficient the routing in real life and does not match business
needs. Unfortunately, there no other known or publicly available
algorithms which are practically used to solve the problem of
routing via FRA. Contrary, the ALSR algorithm approach has
such features involved, that may allow efficient enough routing.
The difference in length between the shortest route and the best
route from ALSR is not significant.

This means the implementation of best route parts strategy
allowed to achieve better or close to optimal first route
generation. Also a good result for ALSR algorithm is its ability
to generate a set of routes for further processing. This feature can
become particularly interesting in situations when there would
be a final validation failure for the �best� route (i.e., some
unexpected restrictions yet unknown during route search), and
not much time would be needed to offer alternative routes (these
routes would be actually ready to be compared with a newly
discovered restriction). Further researches would be made to
fully implement conditions described by RADs and allow easy
implementation of flights through the FRA within the single
routing algorithm.

ACKNOWLEDGMENT
This research was fully funded by RocketRoute Limited

(London, UK), owning the results of this research and all rights
of intellectual property for the developed ALSR algorithm.

REFERENCES
[1] E. W. Dijkstra, �A note on two problems in connexion with graphs�,

Numerische Mathematik, Vol. 1, Iss. 1, pp. 269�271, December 1959.
[2] P. E. Hart, N. J. Nilsson, B. Raphael, �A formal basis for the heuristic

determination of minimum cost paths�, IEEE Transactions on Systems
Science and Cybernetics, Vol. 4, Iss. 2, pp. 100�107, July 1968.

[3] H. Berliner, �The B* tree search algorithm. A best-first proof procedure�,
Artificial Intelligence, Vol. 12, Iss. 1, pp. 23�40, May 1979.

[4] V. Alieksieiev, �Air space routing and flights planning: a problem
statement and discussion of approaches to solution�, Mathematical
Modeling, Vol. 2 Iss.4, pp. 139�142, December 2018.

[5] Z. Xie, Z. W. Zhong, �Aircraft path planning under adverse weather
conditions�, MATEC Web of Conferences 77, 15001 (2016), ICMMR
2016 � 4 p.

[6] A. V. Sadovsky. �Application of the shortest-path problem to routing
terminal airspace air traffic�, Journal of Aerospace Information Systems,
Vol. 11, No. 3, pp. 118�130, March 2014.

[7] A. Murrieta-Mendoza, R. Botez, �Lateral Navigation Optimization
Considering Winds and Temperatures for Fixed Altitude Cruise using the
Dijsktra�s Algorithm�, Proceedings of the ASME International
Mechanical Engineering Congress and Exposition, 2014, Vol. 1 � 9 p.

[8] C. Kiss-Toth, G. Takacs, �A Dynamic Programming Approach for 4D
Flight Route Optimization�, IEEE International Conference on Big Data,
Oct. 27�30, 2014, pp. 24�28.

[9] C. K. Jensen, M. Chiarandini, K. S. Larsen, �Flight planning in free route
airspaces�, 17th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2017),
2017 � 14 p.

[10] M. Krzyanowski, �Conflict free and efficient flight routes planning in free
route airspace�, Prace Naukowe Politechniki Warszawskiej: Transport,
2013, pp. 277�285.

[11] L. Wirth, P. Oettershagen, J. Ambühl, R. Siegwart, �Meteorological Path
Planning Using Dynamic Programming for a Solar-Powered UAV�, IEEE
Aerospace Conference, Mar. 07�14, 2015 � 11 p.

[12] H.K. Ng, S. Grabbe, A. Mukherjee, �Design and Evaluation of a Dynamic
Programming Flight Routing Algorithm Using the Convective Weather
Avoidance Model�, AIAA Guidance, Navigation, and Control
Conference (Chicago, Illinois), Aug. 10-13, 2009 � 13 p.

[13] Shijin Wang, Xi Cao, Haiyun Li, Qingyun Li, Xu Hang, Yanjun Wang,
�Air route network optimization in fragmented airspace based on cellular
automata�, Chinese Journal of Aeronautics, No. 30 (3), 2017, pp. 1184�
1195.

[14] R.J. Szczerba, D.Z. Chen, J.J. Uhran Jr. �Planning shortest paths among
2D and 3D weighted regions using framed-subspaces�, The International
Journal of Robotics Research, Vol. 17, No. 5, 1998, pp. 531�546.

[15] J.O. Royset, W.M. Carlyle, R.K. Wood, �Routing military aircraft with a
constrained shortest-path algorithm�, Military Operations Research,
Vol. 14, No. 3, 2009, pp. 31�52.

[16] A. Murrieta-Mendoza, R.M. Botez, A. Bunel �Four-dimensional aircraft
en route optimization algorithm using the artificial bee colony�, Journal
of Aerospace Information Systems, Vol. 15, Iss. 6, pp. 307�334, June
2018.

[17] M. Dorigo, �Optimization, Learning and Natural Algorithms�, PhD
thesis, Politecnico di Milano, Italy, 1992.

[18] M. Taherdangkoo, M.H. Shirzadi, M.H. Bagheri, �A novel meta-heuristic
algorithm for numerical function optimization: Blind, naked mole-rats
(BNMR) algorithm�, Scientific Research and Essays, Vol. 7 (41),
pp. 3566�3583, October 2012.

[19] S. Saremi, S. Mirjalil, A. Lewis, �Grasshopper optimisation algorithm:
theory and application�, Advances in Engineering Software, Vol. 105,
pp. 30�47, March 2017.

[20] A.G. Neve, G.M. Kakandikar, O. Kulkarni �Application of grasshopper
optimization algorithm for constrained and unconstrained test functions�,
International Journal of Swarm Intelligence and Evolutionary
Computation, Vol. 6, Iss. 3, 2017 � 7 p.

[21] C. Topaz, A. Bernoff, S. Logan, W. Toolson, �A model for rolling
swarms of locusts�, The European Physical Journal Special Topics,
Vol. 157, 2008, pp. 93�109.

   

Authorized licensed use limited to: Politechnika Rzeszowska. Downloaded on September 11,2020 at 16:41:47 UTC from IEEE Xplore. Restrictions apply.

