Communication and Control
Software Development
for Experimental Unmanned Aerial System
— Selected Issues

Dariusz Rzoncal!, Stawomir Samolej!,
Dariusz Nowak?, and Tomasz Rogalski?

! Department of Computer and Control Engineering,
Rzeszow University of Technology,

al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland

drzonca@prz.edu.pl, ssamolej@prz.edu.pl
2 Department of Avionics and Control Systems,

Rzeszow University of Technology,

al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland

darnow@prz.edu.pl, orakl@prz.edu.pl

Abstract. Recently the functionality and applicability of Unmanned
Aerial Systems have been dynamically growing. In the paper such an
experimental system, based on the ”MP-02 Czajka” ultra light plane, is
presented. Generation of the C source code for the autopilot firmware in
the Matlab environment is discussed. Furthermore, several issues raised
during implementation of the STANAG 4586 communication protocol
are considered.

Keywords: Unmanned Aerial Systems, STANAG 4586, Matlab Em-
bedded Coder, Simulink Coder, source code generation

1 Introduction

Unmanned Aerial Systems (UAS) development has become a well defined and
dynamically changing area of knowledge [1-3] as well as a growing branch of
both Polish national [4, 5] and global [6, 7] industry. Modern UAS consist of an
Unmanned Aerial Vehicle (UAV) cooperating with a Ground Control Station
(GCS) (comp. Fig. 1). Typically, the UAV mission is to follow a 4D trajectory
in an autonomous way when the UAV’s payload executes its predefined tasks.
GCS should enable to plan, supervise and manually conduct a mission. A GCS
operator supervises mission execution and is able to take over the UAV any
time to manually correct the flight route or the payload state. Every year UAS
have to conduct more complex missions and are gradually becoming the con-
trolled airspace members [8]. This in consequence forces rapid development of
communication, control and software components of such systems.

Unmanned
Aerial Vehicle

Ground Control
Station

Fig. 1. General overview of the Experimental UAS

This paper discusses some selected control engineering related problems solved
during an experimental UAS development. The experimental system is a hard-
ware - software platform created for research on advanced control systems for
UAS [8,9], including automatic take-off, landing, and autonomous on-airfield
navigation.

From the control engineering point of view the experimental UAS constitutes
a real-time distributed control system integrated by means of a heterogeneous
computer network. The software of the system is regularly updated due to re-
search continuation. Simultaneously, the computer network structure evolves as
some new on-board devices are introduced. This in consequence enforces a spe-
cific integration and the software development approach which will be presented
in subsequent sections of the paper. The main subjects raised in this paper are
GCS — UAV communication protocol implementation issues and automatic code
generation for the UAV’s autopilot.

The subsequent subsections of the paper are organised as follows: firstly,
the experimental UAS system is presented. The on-going system architecture
is adopted for the current research task which involves a development of new
automatic take-off and landing procedures as well as on-airfield navigation ones.
The new procedures extend the modern UAS operability to commercial airfields
and controlled airspace. Secondly, selected inter UAV and GCS communication
problems are explained. This implies a discussion on communication software
development. The following part describes automatic generation of the C source
code for the autopilot firmware in the Matlab environment.

2 Experimental UAS Overview

Main components of the experimental UAS consist of the ?MP-02 Czajka” |9,
10] ultra light plane and the GCS installed on a car (comp. Fig. 1). The GCS and
UAV communicate via a digital data link. All hardware and software components
of the UAS, apart from the core flying and driving platform, are original solutions
developed by partners of the research programmes mentioned.

Figure 2 depicts the UAS from the hardware integration perspective. The ul-
tra light plane has been adapted to perform unmanned flights. Its ailerons, flaps,

LAN AN

Pilot %

AHRS

Data
Recorder

Actuators

GPS

Fig. 2. UAS’ Control Hardware Components

elevator and rudder as well as engine can be operated remotely with the aid of
digital servos. The in-build autopilot computer produces setpoint values for all
the servos on the basis of reference signals acquired from an Attitude Heading
Reference System (AHRS), GPS, a flight trajectory plan and a GCS, if neces-
sary. Yet, the plane can be still operated by a human pilot located on-board.
This makes it possible to partially test the developed control and communica-
tion subsystems in the air. The autopilot, AHRS, Human Pilot, Data Recorder,
GPS, and servos (actuators) are connected via a local Controlled Area Network
(CAN) [11] running CAN Aerospace [12] protocol. At the current system de-
velopment phase two additional, physically separated digital control subsystems
are introduced. They are responsible for automatic take-off and landing (ATL)
and on-airfield navigation (AN) of the UAV. The new modules — autopilot and
data link, are connected by an IEEE 802.3 (Ethernet) based Local Area Net-
work (LAN). This heterogeneous network structure reflects system evolution. A
preliminary on-board network was CAN. Due to system development and in-
corporation of data-intensive applications a new IEEE 802.3 based network has
been introduced on-board.

The GCS is a computer cluster which supports planning, execution and
recording of a flight mission. A dedicated graphics interface supports these tasks
(comp. Fig. 3). The mission planner software unit is a separate non-control pro-
gram where a flight plan is generated. A flight plan includes a set of waypoints
the UAV has to go through as well as a set of manoeuvres the UAV is obliged
to do, if necessary, around these points. The mission executioner software unit
combines different data streams to graphically depict UAV’s current state for
the operator. It combines video, map database as well as a current aircraft’s
speed, position, course and orientation. This unit also enables to take over the

Synthetic
vision system

Computer
Cluster L~

Virtual Cockpit . /

Fig. 3. GCS Graphics Components

UAYV and lets the operator control it manually. Usually, a separate GCS module
supports an UAV’s payload control (such as on-board camera operation).

The GCS and UAV belong to the same LAN segment. They are connected
by a pair of specialised radio modems which enable to set up a VPN connection
between these two remote UAS components. The operation range of the UAV is
up to 80 km. This solution gives the possibility to set up communication between
UAV and GCS as standard TCP/IP or UDP/IP based data streams. At the
current system development stage a ”standard” IEEE 802.3 network has been
applied as a new UAS communication medium. This implies some doubts about
data transfer predictability and timekeeping which have been already discussed
n [13]. Simultaneously, the new UDP/TCP/IP/Ethernet UAS LAN enables to
apply an advanced STANAG 4586 [14] protocol dedicated to sophisticated UAV’s
management and control. Its implementation will be the subjects of the following
sections.

The central UAV control module is the autopilot. Its main task is to stabilise
the aircraft in the air and let it follow the 4D trajectory during mission execution.
It is also the bridge between the on-board CAN and LAN. Finally, it interpreters
data streams produced by GCS, ATL and AN, and reports the UAV status to the
GCS. As this module has the predominant role for the whole system execution,
its software is analysed and generated automatically. One of the subsequent
sections will raise the problem in a detailed way.

3 GCS to UAV Communication Standard

One of the new trends in UAS development is standardisation of the interface
between the GCS and the UAV. The idea comes from the NATO where different
UAVs could be controlled by GCSs provided by any ally. This also gives the op-

portunity to split the generation of GCSs and UAVs between separate providers.
A significant step towards standardisation was STANAG 4586 [14] publication.
This document provides a complete protocol specification that covers most of
data exchange that may occur between the GCS and UAV.

UDP Source Port UDP Destination Port
UDP Packet Length UDP Checksum
Sequence# Message Length
Source ID

Destination 1D

Message Type Message Properties

Optional Checksum

Fig. 4. STANAG 4586 Message Wrapper

STANAG 4586 utilises UDP/IP protocol as a background. All messages
have the same wrapper structure as in Fig. 4. The source and destination
IDs reflect individual UAS element or even a dedicated device on-board which
sends/receives data. Message type is a STANAG 4586 defined message number.
Each message has predefined data to transfer. Some messages may require re-
ceiver’s automatic response. The protocol behaviour depends on the message
type and it is possible to derive precise message — respond pattern that must be
implemented for proper protocol implementation.

Figure 5 depicts a sample message payload. This particular message reports
the current UAV internal state to the GCS. Each data element has its type
and interpretation. For example "Integer 3” means that data will be stored in
a signed three-byte word, and ”Unsigned 5” informs that data will be stored in
an unsigned five-byte word. The ”Time Stamp” data element enables to latch
and transfer the time when the message has been created. The message data
should follow most significant byte first order. This implies specific protocol
implementation rules: message payload will include untypical (in the length) data
elements, where byte order has to be strictly preserved. The current experimental
UAS configuration offers all of technical facilities to effectively implement the
STANAG 4586 based communication layer.

4 STANAG 4586 Communication Library
Implementation

Implementation of STANAG 4586 communication library for the described project
has been prepared in a way to meet several requirements. The library has to
be written in C99 language (ISO/IEC 9899:1999 [15]) for maximum portabil-
ity. In fact C90 standard would be even more portable, but some features, e.g.

Inique ID Field Elg(;';i':iwoa;f/ Type Units Range
4000.00 0 Presence Vector Unsigned 3 Bitmapped No Restrictions
0101.01 1 Time Stamp Unsigned 5 0,001 s See Section 1.7.2
0101.04 2 Lattitude Integer 4 BAM -T2 <x<T2
0101.05 3 Longitude Integer 4 BAM No Restrictions
0101.06 4 Altitude Integer 3 0,02m -1,000 < x < 100,000
0101.07 5 Altitude Type Unsigned 1 Enumerated Oorlor2or3
0101.08 6 U_Speed Integer 2 0,05 m/s -1,000 < x <1,000
0101.09 7 V_Speed Integer 2 0,05 m/s -1,000 < x < 1,000
0101.10 8 W_Speed Integer 2 0,05 m/s -1,000 < x < 1,000
0101.11 9 U_Accel Integer 2 0,005 m/s? -100 <x <100
0101.12 10 V_Accel Integer 2 0,005 m/s? -100 <x <100
0101.13 11 W_Accel Integer 2 0,005 m/s? -100 <x <100
0101.14 12 Roll Integer 2 BAM No Restrictions
0101.15 13 Pitch Integer 2 BAM -T2 <x<T2
0101.16 14 Heading Integer 2 BAM No Restrictions
0101.17 15 Roll Rate Integer 2 0,005 rad/s No Restrictions
0101.18 16 Pitch Rate Integer 2 0,005 rad/s No Restrictions
0101.19 17 Heading Rate Integer 2 0,005 rad/s No Restrictions
0101.20 18 Magnetic Variation Integer 2 BAM No Restrictions

Fig. 5. STANAG 4586 Message 4000

long long int type, which is necessary, are introduced in C99. The same li-
brary is used on different hardware platforms, e.g. ADS512101 board — autopilot
(Freescale MPC5121e processor, VxWorks 6.8 operating system) and PC com-
puter — GCS module. It is noteworthy that these platforms differ in endianness,
with the ADS512101 board being a big endian (BE) whereas PC is a little en-
dian (LE) machine. Of course the library should work in both cases, and it would
be beneficial if the code was endian independent, so no assumption about byte
order should be made and direct byte swapping should be avoided. Instead the
conversions should base on >>=8 and <<=8 bit shifts, which in fact will be op-
timized by a compiler to correct byte transfers, regardless of target endianness.
An example of the converting macro using byte shifts is shown below.

#define stanag_set_msb(pointer, val, size) signed char i; \
for (i = size-1; i >= 0; i--) \

{\

*((unsigned char *)pointer+i) = val & OxFF; \

val >>= 8; \

3

As already mentioned, the STANAG 4586 communication protocol also in-
troduces variables which are three or five bytes long. Such variables should be
converted by the communication library to the smallest types in C which are
able to represent them, i.e. long int and long long int. For such purpose
appropriate types representing STANAG 4586 have been defined (e.g. typedef
unsigned long stanag u3; etc.), together with constants of their sizes (e.g.
#define stanag u3_size 3 etc.). Unfortunately such conversions between vari-
ables of different sizes, as well as possible difference in endianness, exclude the
possibility of treating STANAG 4586 frame as struct in C. Instead it has to
be implemented as an array of unsigned chars, and dedicated functions have to
be prepared for conversion (serialization) of the variables from C types to the
STANAG 4586 frame, and vice versa. Of course in such case the bodies of several
convert functions are very similar, differing mainly in handled data type. The
”don’t repeat yourself” (DRY) principle of software development aims at reduc-
ing unnecessary repetitions, so similar parts of code should be avoided. In this
case it is not trivial, because C language lacks sophisticated features like tem-
plates or polymorphism, but similar functionality can be achieved using macros
with ## symbol, that will produce different conversion functions automatically,
basing on a single piece of code. An exemplary source code of such a macro is
provided below.

#define MAKE_SET_MSB_FROM(x) \

void set_msb_from_##x(void * where, stanag_##x value) \
{\

stanag_set_msb(where, value, stanag_ ##x##_size); \

}

The macro MAKE_SET_MSB_FROM is called multiple times with different parame-
ters to create several conversion functions. Example call MAKE_SET_MSB_FROM (u3)
will produce void set_msb_from u3(void *, stanag u3) function for conver-
sion from stanag_u3 variable stored as unsigned long in any endian to an array
of three bytes in big endian (most significant byte first). Other set functions, as
well as get functions for vice versa conversions, are implemented similarly.

For continuous testing of the implemented code for regression errors during
library development stage, assert macros have been used for runtime checks of
the converted values. The library has been tested both on the ADS512101 board,
as well as on a PC. Final compilation of the embedded and desktop applications
have been performed with NDEBUG defined, so the assertions were removed.

5 Flight control system designing — code generation

Simulation testing is an essential stage in the design process of flight control and
navigation systems for unmanned aerial vehicles. It allows for early identification
of possible errors that may occur at both the hardware level and the software
level of every part of the system. A very useful tool in the design process of a
flight control system is a software-in-the-loop simulation testbed (Fig. 6).

Dynamic model of
aircraft (Matlab/ Data Data

Simulink) Flight simulator recorder 1| |recorder 2

< Additional CAN bus
@ N @

Autopilot

System and software
development, code
generation, data
analysis (Matlab/
Simulink)

h I Datalink - STAN.

Ground Control
Station
r

Fig. 6. The simulation testbed structure

The test station consists of computer hardware equipped with specialized
software, such as a simulation environment (flight simulator), applications for
flight parameters recording and analysis, computational and simulation software
for designing control and navigation algorithms, development tools for the source
code generation, its compilation and implementation in memory of CPU [16].
The main component of the testbed is the on-board control computer (autopilot)
that communicates with the ground control station subsystem by using datalink
and STANAG 4586 protocol. This computer has the identical configuration as
the one installed in the UAS (comp. fig. 2). Data exchange between another
components is performed via CAN bus. The simulation environment contains
the dynamic model of MP-02A aircraft and its actuators. Thanks to source code
generation technology, the testbed allows to design flight control and navigation
algorithms, to verify instantly their correctness, and to prepare control comput-
ers for tests in flight [17].

Matlab/Simulink software modules such as Embedded Coder and Simulink
Coder have been applied for autopilot’s control algorithm code generation. These
development tools are equipped with user friendly interfaces that allow to design
control algorithms with the use of block diagrams and clear forms. Expanded
block diagrams of algorithms designed by using Simulink have been converted
into a source code in C programming language. The source code is split into sev-
eral files that can be attached to the project, compiled by C language compiler,
and finally stored in flash memory of control computer’s CPU.

The control computer software is modular and composed of elements respon-
sible for receiving and processing data according to specific control laws and
navigation algorithms developed and generated with the use of Matlab/Simulink
(Fig. 7). The main component of the control system is a module called mission
controller, which can work in one of three modes, follow a mission plan on the
basis of flight parameters and data from ground control station. Control system
unit represented by the block called navigation includes a set of navigation fea-
tures. They are used to calculate the desired heading and desired altitude based

on the information contained in a mission plan, current geographical position,
current heading and altitude values. Heading stabilization and altitude stabiliza-
tion modules use the control laws based on application of the special non-linear
controllers. The software produces a five types of output control signals: eleva-
tor deflection (dg), ailerons deflection (d4), rudder deflection (6r), flaps position
(0F), engine power (d7). These values are sent to the actuator drivers. The most
important elements of the control computer software are modules that are re-
sponsible for stabilization of flight parameters such as roll angle, pitch angle,
heading, air speed, altitude. These modules perform navigation procedures and
attitude stabilization by using actual values of angles and angular velocities from
flight parameters module and the desired values of these flight parameters from
higher order modules and then produce a control signal for the actuators [18]. At
the current stage of the Experimental UAS development the control algorithm
code has been successively integrated with the autopilot. Both on-ground and
in-the-air tests confirmed its proper execution.

Flight Parameters
(AHRS, GPS,

Pilot ADC)
Interface

Mission Controller

Attitude mode AItitgde It
heading mode

Ground
Station

Heading Altitude
stabilization stabilization

Attitude and speed stabilization

‘Pitch stabilization H Roll stabilization H Yaw stabilization H IAS stabilization ‘

O [N Or O

’ Actuators ’-

Fig. 7. The flight control computer’s software structure

6

Conclusions

The development of the experimental Unmanned Aerial System has been de-
scribed and several selected issues were thoroughly discussed. Implementation
of the STANAG 4586 communication standard increases interoperability and
flexibility. The UAV also benefits from automatic generation of several parts of
autopilot control software in the Matlab environment.

References

1.

2.

12.

13.

14.

15.
16.

17.

18.

Lozano R. (Editor), Unmanned Aerial Vehicles: Embedded Control, Wiley-ISTE,
(2010).

Valavanis K. P. (Editor): Advances in Unmanned Aerial Vehicles, State of the Art
and the Road to Autonomy, Springer, (2007).

Lam T. M. (Editor): Aerial Vehicles, In-Tech, (2009).

UAS producer website
http://www.eurotech.com.pl/produkty-i-uslugi/2/lotnictwo-i-awionika, (2017).
UAS producer website
http://www.wb.com.pl/Rozwiazania,Systemy-C4ISR,Systemy-rozpoznania.html,
(2017).

UAS producer website http://www.avinc.com/uas/, (2017).

UAS producer website http://www.ga-asi.com/products/aircraft/, (2017).
European ERA GRANT Webpage http://www.era-research-project.org/, (2017).
Nowak D., Rogalski T., Walek L.: System lot jako latajace laboratorium, Technika
Transportu Szynowego 12/2015, pp. 1122-1126, (2015), (in Polish).

MP-02 Czajka ultralight aircraft producer website http://www.mp-02.pl/, (2017).

. Natale M. D., Zeng H., Giusto P., Ghosal A.: Understanding and Using the Con-

troller Area Network Communication Protocol, Theory and Practice, Springer Sci-
ence+Business Media, (2012).

CAN Aerospace, Interface specification for airborne CAN applications V
1.7, http://www.canaerospace.net/tl_files/downloads/canaerospace/canas_17.pdf,
2017).

(Samo%ej S., Rogalski T., Rzorica D.: Wybrane problemy wytwarzania systeméw
czasu rzeczywistego dla bezpilotowych statkéw powietrznych, in Madeyski L. Ko-
siuczenko P., Bolanowski M. (eds.), Inzynieria oprogramowania i systemy czasu
rzeczywistego: od badan do praktycznych zastosowan, Zeszyty Rady Naukowej
Polskiego Towarzystwa Informatycznego pp. 137-155, (2017), (in Polish).
STANAG 4586 (EDITION 3) — Standard Interfaces of UAV Control System (UCS)
for NATO UAV Interoperability, NSA//1235(2012)4586, (2012).

ISO/IEC 9899:1999: Programming languages — C (1999).

Nowak D., Kopecki G., Orkisz M., Rogalski T., Rzucidto P.: The Selected Inno-
vative Solutions in UAV Control Systems Technologies. In: Nawrat. M A. (eds)
Innovative Control Systems for Tracked Vehicle Platforms. Studies in Systems,
Decision and Control, vol 2, pp. 39-56. Springer, Cham (2014)

Dolega B., Kopecki G., Tomczyk A.: Possibilities of using software redundancy
in low cost aeronautical control systems, 2016 IEEE Metrology for Aerospace
(MetroAeroSpace), Florence, pp. 33-37 (2016).

Pieniazek J., Ciecinski P., Walek L., Nowak D.: Integrated measurement system
for UAV, 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, pp.
431-436 (2015).

