
M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

O F F I C I A L M I C R O S O F T L E A R N I N G P R O D U C T

20463C
Implementing a Data Warehouse with
Microsoft® SQL Server®

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii Implementing a Data Warehouse with Microsoft SQL Server

Information in this document, including URL and other Internet Web site references, is subject to change
without notice. Unless otherwise noted, the example companies, organizations, products, domain names,
e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with
any real company, organization, product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the
user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

The names of manufacturers, products, or URLs are provided for informational purposes only and
Microsoft makes no representations and warranties, either expressed, implied, or statutory, regarding
these manufacturers or the use of the products with any Microsoft technologies. The inclusion of a
manufacturer or product does not imply endorsement of Microsoft of the manufacturer or product. Links
may be provided to third party sites. Such sites are not under the control of Microsoft and Microsoft is not
responsible for the contents of any linked site or any link contained in a linked site, or any changes or
updates to such sites. Microsoft is not responsible for webcasting or any other form of transmission
received from any linked site. Microsoft is providing these links to you only as a convenience, and the
inclusion of any link does not imply endorsement of Microsoft of the site or the products contained
therein.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks
of the Microsoft group of companies. All other trademarks are property of their respective owners

Product Number: 20463C

Part Number (if applicable): X19-32474

Released: 08/2014

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

MICROSOFT LICENSE TERMS
MICROSOFT INSTRUCTOR-LED COURSEWARE

These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its
affiliates) and you. Please read them. They apply to your use of the content accompanying this agreement which
includes the media on which you received it, if any. These license terms also apply to Trainer Content and any
updates and supplements for the Licensed Content unless other terms accompany those items. If so, those terms
apply.

BY ACCESSING, DOWNLOADING OR USING THE LICENSED CONTENT, YOU ACCEPT THESE TERMS.
IF YOU DO NOT ACCEPT THEM, DO NOT ACCESS, DOWNLOAD OR USE THE LICENSED CONTENT.

If you comply with these license terms, you have the rights below for each license you acquire.

1. DEFINITIONS.

a. “Authorized Learning Center” means a Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, or such other entity as Microsoft may designate from time to time.

b. “Authorized Training Session” means the instructor-led training class using Microsoft Instructor-Led

Courseware conducted by a Trainer at or through an Authorized Learning Center.

c. “Classroom Device” means one (1) dedicated, secure computer that an Authorized Learning Center owns

or controls that is located at an Authorized Learning Center’s training facilities that meets or exceeds the
hardware level specified for the particular Microsoft Instructor-Led Courseware.

d. “End User” means an individual who is (i) duly enrolled in and attending an Authorized Training Session

or Private Training Session, (ii) an employee of a MPN Member, or (iii) a Microsoft full-time employee.

e. “Licensed Content” means the content accompanying this agreement which may include the Microsoft
Instructor-Led Courseware or Trainer Content.

f. “Microsoft Certified Trainer” or “MCT” means an individual who is (i) engaged to teach a training session
to End Users on behalf of an Authorized Learning Center or MPN Member, and (ii) currently certified as a
Microsoft Certified Trainer under the Microsoft Certification Program.

g. “Microsoft Instructor-Led Courseware” means the Microsoft-branded instructor-led training course that
educates IT professionals and developers on Microsoft technologies. A Microsoft Instructor-Led
Courseware title may be branded as MOC, Microsoft Dynamics or Microsoft Business Group courseware.

h. “Microsoft IT Academy Program Member” means an active member of the Microsoft IT Academy
Program.

i. “Microsoft Learning Competency Member” means an active member of the Microsoft Partner Network

program in good standing that currently holds the Learning Competency status.

j. “MOC” means the “Official Microsoft Learning Product” instructor-led courseware known as Microsoft

Official Course that educates IT professionals and developers on Microsoft technologies.

k. “MPN Member” means an active Microsoft Partner Network program member in good standing.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

l. “Personal Device” means one (1) personal computer, device, workstation or other digital electronic device
that you personally own or control that meets or exceeds the hardware level specified for the particular
Microsoft Instructor-Led Courseware.

m. “Private Training Session” means the instructor-led training classes provided by MPN Members for
corporate customers to teach a predefined learning objective using Microsoft Instructor-Led Courseware.
These classes are not advertised or promoted to the general public and class attendance is restricted to
individuals employed by or contracted by the corporate customer.

n. “Trainer” means (i) an academically accredited educator engaged by a Microsoft IT Academy Program

Member to teach an Authorized Training Session, and/or (ii) a MCT.

o. “Trainer Content” means the trainer version of the Microsoft Instructor-Led Courseware and additional
supplemental content designated solely for Trainers’ use to teach a training session using the Microsoft
Instructor-Led Courseware. Trainer Content may include Microsoft PowerPoint presentations, trainer
preparation guide, train the trainer materials, Microsoft One Note packs, classroom setup guide and Pre-
release course feedback form. To clarify, Trainer Content does not include any software, virtual hard
disks or virtual machines.

2. USE RIGHTS. The Licensed Content is licensed not sold. The Licensed Content is licensed on a one copy
per user basis, such that you must acquire a license for each individual that accesses or uses the Licensed
Content.

2.1 Below are five separate sets of use rights. Only one set of rights apply to you.

a. If you are a Microsoft IT Academy Program Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User who is enrolled in the Authorized Training Session, and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware being provided, or

2. provide one (1) End User with the unique redemption code and instructions on how they can
access one (1) digital version of the Microsoft Instructor-Led Courseware, or

3. provide one (1) Trainer with the unique redemption code and instructions on how they can
access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure each End User attending an Authorized Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized Training
Session,

v. you will ensure that each End User provided with the hard-copy version of the Microsoft Instructor-
Led Courseware will be presented with a copy of this agreement and each End User will agree that
their use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement
prior to providing them with the Microsoft Instructor-Led Courseware. Each individual will be required
to denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

vii. you will only use qualified Trainers who have in-depth knowledge of and experience with the
Microsoft technology that is the subject of the Microsoft Instructor-Led Courseware being taught for
all your Authorized Training Sessions,

viii. you will only deliver a maximum of 15 hours of training per week for each Authorized Training
Session that uses a MOC title, and

ix. you acknowledge that Trainers that are not MCTs will not have access to all of the trainer resources
for the Microsoft Instructor-Led Courseware.

b. If you are a Microsoft Learning Competency Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Authorized Training Session and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware provided, or

2. provide one (1) End User attending the Authorized Training Session with the unique redemption
code and instructions on how they can access one (1) digital version of the Microsoft Instructor-
Led Courseware, or

3. you will provide one (1) Trainer with the unique redemption code and instructions on how they
can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Authorized Training Session has their own valid

licensed copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized
Training Session,

v. you will ensure that each End User provided with a hard-copy version of the Microsoft Instructor-Led
Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for your Authorized Training
Sessions,

viii. you will only use qualified MCTs who also hold the applicable Microsoft Certification credential that is
the subject of the MOC title being taught for all your Authorized Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

c. If you are a MPN Member:
i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft

Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Private Training Session, and only immediately prior to the commencement
of the Private Training Session that is the subject matter of the Microsoft Instructor-Led
Courseware being provided, or

2. provide one (1) End User who is attending the Private Training Session with the unique
redemption code and instructions on how they can access one (1) digital version of the
Microsoft Instructor-Led Courseware, or

3. you will provide one (1) Trainer who is teaching the Private Training Session with the unique
redemption code and instructions on how they can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Private Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Private Training Session,
v. you will ensure that each End User provided with a hard copy version of the Microsoft Instructor-Led

Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Private Training Session has their own valid licensed
copy of the Trainer Content that is the subject of the Private Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for all your Private Training
Sessions,

viii. you will only use qualified MCTs who hold the applicable Microsoft Certification credential that is the
subject of the MOC title being taught for all your Private Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

d. If you are an End User:
For each license you acquire, you may use the Microsoft Instructor-Led Courseware solely for your
personal training use. If the Microsoft Instructor-Led Courseware is in digital format, you may access the
Microsoft Instructor-Led Courseware online using the unique redemption code provided to you by the
training provider and install and use one (1) copy of the Microsoft Instructor-Led Courseware on up to
three (3) Personal Devices. You may also print one (1) copy of the Microsoft Instructor-Led Courseware.
You may not install the Microsoft Instructor-Led Courseware on a device you do not own or control.

e. If you are a Trainer.
i. For each license you acquire, you may install and use one (1) copy of the Trainer Content in the

form provided to you on one (1) Personal Device solely to prepare and deliver an Authorized
Training Session or Private Training Session, and install one (1) additional copy on another Personal
Device as a backup copy, which may be used only to reinstall the Trainer Content. You may not
install or use a copy of the Trainer Content on a device you do not own or control. You may also
print one (1) copy of the Trainer Content solely to prepare for and deliver an Authorized Training
Session or Private Training Session.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

ii. You may customize the written portions of the Trainer Content that are logically associated with

instruction of a training session in accordance with the most recent version of the MCT agreement.
If you elect to exercise the foregoing rights, you agree to comply with the following: (i)
customizations may only be used for teaching Authorized Training Sessions and Private Training
Sessions, and (ii) all customizations will comply with this agreement. For clarity, any use of
“customize” refers only to changing the order of slides and content, and/or not using all the slides or
content, it does not mean changing or modifying any slide or content.

2.2 Separation of Components. The Licensed Content is licensed as a single unit and you may not
separate their components and install them on different devices.

2.3 Redistribution of Licensed Content. Except as expressly provided in the use rights above, you may
not distribute any Licensed Content or any portion thereof (including any permitted modifications) to any
third parties without the express written permission of Microsoft.

2.4 Third Party Notices. The Licensed Content may include third party code tent that Microsoft, not the
third party, licenses to you under this agreement. Notices, if any, for the third party code ntent are included
for your information only.

2.5 Additional Terms. Some Licensed Content may contain components with additional terms,
conditions, and licenses regarding its use. Any non-conflicting terms in those conditions and licenses also
apply to your use of that respective component and supplements the terms described in this agreement.

3. LICENSED CONTENT BASED ON PRE-RELEASE TECHNOLOGY. If the Licensed Content’s subject

matter is based on a pre-release version of Microsoft technology (“Pre-release”), then in addition to the
other provisions in this agreement, these terms also apply:

a. Pre-Release Licensed Content. This Licensed Content subject matter is on the Pre-release version of

the Microsoft technology. The technology may not work the way a final version of the technology will
and we may change the technology for the final version. We also may not release a final version.
Licensed Content based on the final version of the technology may not contain the same information as
the Licensed Content based on the Pre-release version. Microsoft is under no obligation to provide you
with any further content, including any Licensed Content based on the final version of the technology.

b. Feedback. If you agree to give feedback about the Licensed Content to Microsoft, either directly or

through its third party designee, you give to Microsoft without charge, the right to use, share and
commercialize your feedback in any way and for any purpose. You also give to third parties, without
charge, any patent rights needed for their products, technologies and services to use or interface with
any specific parts of a Microsoft technology, Microsoft product, or service that includes the feedback.
You will not give feedback that is subject to a license that requires Microsoft to license its technology,
technologies, or products to third parties because we include your feedback in them. These rights
survive this agreement.

c. Pre-release Term. If you are an Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, MPN Member or Trainer, you will cease using all copies of the Licensed Content on
the Pre-release technology upon (i) the date which Microsoft informs you is the end date for using the
Licensed Content on the Pre-release technology, or (ii) sixty (60) days after the commercial release of the
technology that is the subject of the Licensed Content, whichever is earliest (“Pre-release term”).
Upon expiration or termination of the Pre-release term, you will irretrievably delete and destroy all copies
of the Licensed Content in your possession or under your control.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

4. SCOPE OF LICENSE. The Licensed Content is licensed, not sold. This agreement only gives you some
rights to use the Licensed Content. Microsoft reserves all other rights. Unless applicable law gives you more
rights despite this limitation, you may use the Licensed Content only as expressly permitted in this
agreement. In doing so, you must comply with any technical limitations in the Licensed Content that only
allows you to use it in certain ways. Except as expressly permitted in this agreement, you may not:
• access or allow any individual to access the Licensed Content if they have not acquired a valid license

for the Licensed Content,
• alter, remove or obscure any copyright or other protective notices (including watermarks), branding

or identifications contained in the Licensed Content,
• modify or create a derivative work of any Licensed Content,
• publicly display, or make the Licensed Content available for others to access or use,
• copy, print, install, sell, publish, transmit, lend, adapt, reuse, link to or post, make available or

distribute the Licensed Content to any third party,
• work around any technical limitations in the Licensed Content, or
• reverse engineer, decompile, remove or otherwise thwart any protections or disassemble the

Licensed Content except and only to the extent that applicable law expressly permits, despite this
limitation.

5. RESERVATION OF RIGHTS AND OWNERSHIP. Microsoft reserves all rights not expressly granted to
you in this agreement. The Licensed Content is protected by copyright and other intellectual property laws
and treaties. Microsoft or its suppliers own the title, copyright, and other intellectual property rights in the
Licensed Content.

6. EXPORT RESTRICTIONS. The Licensed Content is subject to United States export laws and regulations.
You must comply with all domestic and international export laws and regulations that apply to the Licensed
Content. These laws include restrictions on destinations, end users and end use. For additional information,
see www.microsoft.com/exporting.

7. SUPPORT SERVICES. Because the Licensed Content is “as is”, we may not provide support services for it.

8. TERMINATION. Without prejudice to any other rights, Microsoft may terminate this agreement if you fail

to comply with the terms and conditions of this agreement. Upon termination of this agreement for any
reason, you will immediately stop all use of and delete and destroy all copies of the Licensed Content in
your possession or under your control.

9. LINKS TO THIRD PARTY SITES. You may link to third party sites through the use of the Licensed

Content. The third party sites are not under the control of Microsoft, and Microsoft is not responsible for
the contents of any third party sites, any links contained in third party sites, or any changes or updates to
third party sites. Microsoft is not responsible for webcasting or any other form of transmission received
from any third party sites. Microsoft is providing these links to third party sites to you only as a
convenience, and the inclusion of any link does not imply an endorsement by Microsoft of the third party
site.

10. ENTIRE AGREEMENT. This agreement, and any additional terms for the Trainer Content, updates and

supplements are the entire agreement for the Licensed Content, updates and supplements.

11. APPLICABLE LAW.

a. United States. If you acquired the Licensed Content in the United States, Washington state law governs
the interpretation of this agreement and applies to claims for breach of it, regardless of conflict of laws
principles. The laws of the state where you live govern all other claims, including claims under state
consumer protection laws, unfair competition laws, and in tort.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

b. Outside the United States. If you acquired the Licensed Content in any other country, the laws of that
country apply.

12. LEGAL EFFECT. This agreement describes certain legal rights. You may have other rights under the laws
of your country. You may also have rights with respect to the party from whom you acquired the Licensed
Content. This agreement does not change your rights under the laws of your country if the laws of your
country do not permit it to do so.

13. DISCLAIMER OF WARRANTY. THE LICENSED CONTENT IS LICENSED "AS-IS" AND "AS

AVAILABLE." YOU BEAR THE RISK OF USING IT. MICROSOFT AND ITS RESPECTIVE
AFFILIATES GIVES NO EXPRESS WARRANTIES, GUARANTEES, OR CONDITIONS. YOU MAY
HAVE ADDITIONAL CONSUMER RIGHTS UNDER YOUR LOCAL LAWS WHICH THIS AGREEMENT
CANNOT CHANGE. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAWS, MICROSOFT AND
ITS RESPECTIVE AFFILIATES EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

14. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES. YOU CAN RECOVER FROM

MICROSOFT, ITS RESPECTIVE AFFILIATES AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP
TO US$5.00. YOU CANNOT RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL,
LOST PROFITS, SPECIAL, INDIRECT OR INCIDENTAL DAMAGES.

This limitation applies to
o anything related to the Licensed Content, services, content (including code) on third party Internet

sites or third-party programs; and
o claims for breach of contract, breach of warranty, guarantee or condition, strict liability, negligence,

or other tort to the extent permitted by applicable law.

It also applies even if Microsoft knew or should have known about the possibility of the damages. The
above limitation or exclusion may not apply to you because your country may not allow the exclusion or
limitation of incidental, consequential or other damages.

Please note: As this Licensed Content is distributed in Quebec, Canada, some of the clauses in this
agreement are provided below in French.

Remarque : Ce le contenu sous licence étant distribué au Québec, Canada, certaines des clauses
dans ce contrat sont fournies ci-dessous en français.

EXONÉRATION DE GARANTIE. Le contenu sous licence visé par une licence est offert « tel quel ». Toute
utilisation de ce contenu sous licence est à votre seule risque et péril. Microsoft n’accorde aucune autre garantie
expresse. Vous pouvez bénéficier de droits additionnels en vertu du droit local sur la protection dues
consommateurs, que ce contrat ne peut modifier. La ou elles sont permises par le droit locale, les garanties
implicites de qualité marchande, d’adéquation à un usage particulier et d’absence de contrefaçon sont exclues.

LIMITATION DES DOMMAGES-INTÉRÊTS ET EXCLUSION DE RESPONSABILITÉ POUR LES
DOMMAGES. Vous pouvez obtenir de Microsoft et de ses fournisseurs une indemnisation en cas de dommages
directs uniquement à hauteur de 5,00 $ US. Vous ne pouvez prétendre à aucune indemnisation pour les autres
dommages, y compris les dommages spéciaux, indirects ou accessoires et pertes de bénéfices.
Cette limitation concerne:

• tout ce qui est relié au le contenu sous licence, aux services ou au contenu (y compris le code)
figurant sur des sites Internet tiers ou dans des programmes tiers; et.

• les réclamations au titre de violation de contrat ou de garantie, ou au titre de responsabilité
stricte, de négligence ou d’une autre faute dans la limite autorisée par la loi en vigueur.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Elle s’applique également, même si Microsoft connaissait ou devrait connaître l’éventualité d’un tel dommage. Si
votre pays n’autorise pas l’exclusion ou la limitation de responsabilité pour les dommages indirects, accessoires
ou de quelque nature que ce soit, il se peut que la limitation ou l’exclusion ci-dessus ne s’appliquera pas à votre
égard.

EFFET JURIDIQUE. Le présent contrat décrit certains droits juridiques. Vous pourriez avoir d’autres droits
prévus par les lois de votre pays. Le présent contrat ne modifie pas les droits que vous confèrent les lois de votre
pays si celles-ci ne le permettent pas.

Revised July 2013

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 Implementing a Data Warehouse with Microsoft SQL Server xi

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xii Implementing a Data Warehouse with Microsoft SQL Server

Acknowledgments
Microsoft Learning would like to acknowledge and thank the following for their contribution towards
developing this title. Their effort at various stages in the development has ensured that you have a good
classroom experience.

Graeme Malcolm – Lead Content Developer
Graeme Malcolm is a Microsoft SQL Server subject matter expert and professional content developer at
Content Master—a division of CM Group Ltd. As a Microsoft Certified Trainer, Graeme has delivered
training courses on SQL Server since version 4.2; as an author, Graeme has written numerous books,
articles, and training courses on SQL Server; and as a consultant, Graeme has designed and implemented
business solutions based on SQL Server for customers all over the world.

Chris Testa-O’Neill – Technical Reviewer
Chris Testa-O’Neill is a SQL Server Microsoft Most Valuable Professional (MVP), Microsoft Certified Trainer
and independent DBA and SQL Server Business Intelligence consultant at Claribi. He is a regular speaker
on the international circuit and runs the Manchester (UK) SQL Server User Group, SQLBits and co-founder
of SQLRelay. Chris is a Microsoft Certified Trainer (MCT), MCDBA, MCTS, MCITP, MCSA and MCSE in SQL
Server. He can be contacted at chris@claribi.com or @ctesta_oneill.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 Implementing a Data Warehouse with Microsoft SQL Server xiii

Contents
Module 1: Introduction to Data Warehousing

Module Overview 1-1

Lesson 1: Overview of Data Warehousing 1-2

Lesson 2: Considerations for a Data Warehouse Solution 1-8

Lab: Exploring a Data Warehousing Solution 1-15

Module Review and Takeaways 1-20

Module 2: Planning Data Warehouse Infrastructure
Module Overview 2-1

Lesson 1: Considerations for Data Warehouse Infrastructure 2-2

Lesson 2: Planning Data Warehouse Hardware 2-10

Lab: Planning Data Warehouse Infrastructure 2-19

Module Review and Takeaways 2-21

Module 3: Designing and Implementing a Data Warehouse
Module Overview 3-1

Lesson 1: Data Warehouse Design Overview 3-2

Lesson 2: Designing Dimension Tables 3-8

Lesson 3: Designing Fact Tables 3-15

Lesson 4: Physical Design for a Data Warehouse 3-18

Lab: Implementing a Data Warehouse 3-30

Module Review and Takeaways 3-35

Module 4: Creating an ETL Solution with SSIS
Module Overview 4-1

Lesson 1: Introduction to ETL with SSIS 4-2

Lesson 2: Exploring Source Data 4-7

Lesson 3: Implementing Data Flow 4-14

Lab: Implementing Data Flow in an SSIS Package 4-25

Module Review and Takeaways 4-30

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xiv Implementing a Data Warehouse with Microsoft SQL Server

Module 5: Implementing Control Flow in an SSIS Package
Module Overview 5-1

Lesson 1: Introduction to Control Flow 5-2

Lesson 2: Creating Dynamic Packages 5-9

Lesson 3: Using Containers 5-14

Lab A: Implementing Control Flow in an SSIS Package 5-19

Lesson 4: Managing Consistency 5-24

Lab B: Using Transactions and Checkpoints 5-29

Module Review and Takeaways 5-33

Module 6: Debugging and Troubleshooting SSIS Packages
Module Overview 6-1

Lesson 1: Debugging an SSIS Package 6-2

Lesson 2: Logging SSIS Package Events 6-8

Lesson 3: Handling Errors in an SSIS Package 6-13

Lab: Debugging and Troubleshooting an SSIS Package 6-17

Module Review and Takeaways 6-22

Module 7: Implementing a Data Extraction Solution
Module Overview 7-1

Lesson 1: Planning Data Extraction 7-2

Lesson 2: Extracting Modified Data 7-10

Lab: Extracting Modified Data 7-22

Module Review and Takeaways 7-34

Module 8: Loading Data into a Data Warehouse
Module Overview 8-1

Lesson 1: Planning Data Loads 8-2

Lesson 2: Using SSIS for Incremental Loads 8-7

Lesson 3: Using Transact-SQL Loading Techniques 8-16

Lab: Loading a Data Warehouse 8-22

Module Review and Takeaways 8-31

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 Implementing a Data Warehouse with Microsoft SQL Server xv

Module 9: Enforcing Data Quality
Module Overview 9-1

Lesson 1: Introduction to Data Quality 9-2

Lesson 2: Using Data Quality Services to Cleanse Data 9-8

Lab A: Cleansing Data 9-11

Lesson 3: Using Data Quality Services to Match Data 9-16

Lab B: Deduplicating Data 9-21

Module Review and Takeaways 9-25

Module 10: Master Data Services
Module Overview 10-1

Lesson 1: Introduction to Master Data Services 10-2

Lesson 2: Implementing a Master Data Services Model 10-6

Lesson 3: Managing Master Data 10-15

Lesson 4: Creating a Master Data Hub 10-23

Lab: Implementing Master Data Services 10-29

Module Review and Takeaways 10-38

Module 11: Extending SQL Server Integration Services
Module Overview 11-1

Lesson 1: Using Scripts in SSIS 11-2

Lesson 2: Using Custom Components in SSIS 11-9

Lab: Using Custom Scripts 11-13

Module Review and Takeaways 11-15

Module 12: Deploying and Configuring SSIS Packages
Module Overview 12-1

Lesson 1: Overview of SSIS Deployment 12-2

Lesson 2: Deploying SSIS Projects 12-6

Lesson 3: Planning SSIS Package Execution 12-14

Lab: Deploying and Configuring SSIS Packages 12-19

Module Review and Takeaways 12-23

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xvi Implementing a Data Warehouse with Microsoft SQL Server

Module 13: Consuming Data in a Data Warehouse
Module Overview 13-1

Lesson 1: Introduction to Business Intelligence 13-2

Lesson 2: Enterprise Business Intelligence 13-5

Lesson 3: Self-Service BI and Big Data 13-8

Lab: Using a Data Warehouse 13-15

Module Review and Takeaways 13-19

Lab Answer Keys
Module 1 Lab: Exploring a Data Warehousing Solution L01-1

Module 2 Lab: Planning Data Warehouse Infrastructure L02-1

Module 3 Lab: Implementing a Data Warehouse L03-1

Module 4 Lab: Implementing Data Flow in an SSIS Package L04-1

Module 5 Lab A: Implementing Control Flow in an SSIS Package L05-1

Module 5 Lab B: Using Transactions and Checkpoints L05-8

Module 6 Lab: Debugging and Troubleshooting an SSIS Package L06-1

Module 7 Lab: Extracting Modified Data L07-1

Module 8 Lab: Loading a Data Warehouse L08-1

Module 9 Lab A: Cleansing Data L09-1

Module 9 Lab B: Deduplicating Data L09-7

Module 10 Lab: Implementing Master Data Services L10-1

Module 11 Lab: Using Custom Scripts L11-1

Module 12 Lab: Deploying and Configuring SSIS Packages L12-1

Module 13 Lab: Using a Data Warehouse L13-1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 About This Course i

About This Course
This section provides you with a brief description of the course, audience, suggested prerequisites, and
course objectives.

Course Description
This course describes how to implement a data warehouse platform to support a BI solution. Students will
learn how to create a data warehouse with Microsoft® SQL Server® 2014, implement ETL with SQL Server
Integration Services, and validate and cleanse data with SQL Server Data Quality Services and SQL Server
Master Data Services.

Audience
This course is intended for database professionals who need to create and support a data warehousing
solution. Primary responsibilities include:

 Implementing a data warehouse.

 Developing SSIS packages for data extraction, transformation, and loading.

 Enforcing data integrity by using Master Data Services.

 Cleansing data by using Data Quality Services.

Student Prerequisites
This course requires that you meet the following prerequisites:

 At least 2 years’ experience of working with relational databases, including:

 Designing a normalized database.

 Creating tables and relationships.

 Querying with Transact-SQL.

 Some exposure to basic programming constructs (such as looping and branching).

 An awareness of key business priorities such as revenue, profitability, and financial accounting is
desirable.

Course Objectives
After completing this course, students will be able to:

 Describe data warehouse concepts and architecture considerations.

 Select an appropriate hardware platform for a data warehouse.

 Design and implement a data warehouse.

 Implement Data Flow in an SSIS Package.

 Implement Control Flow in an SSIS Package.

 Debug and Troubleshoot SSIS packages.

 Implement an ETL solution that supports incremental data extraction.

 Implement an ETL solution that supports incremental data loading.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii About This Course

 Implement data cleansing by using Microsoft Data Quality Services.

 Implement Master Data Services to enforce data integrity.

 Extend SSIS with custom scripts and components.

 Deploy and Configure SSIS packages.

 Describe how BI solutions can consume data from the data warehouse.

Course Outline
This section provides an outline of the course:

Module 1, “Introduction to Data Warehousing”

Module 2, “Planning Data Warehouse Infrastructure”

Module 3, “Designing and Implementing a Data Warehouse”

Module 4, “Creating an ETL Solution with SSIS”

Module 5, “Implementing Control Flow in an SSIS Package”

Module 6, “Debugging and Troubleshooting SSIS Packages”

Module 7, “Implementing a Data Extraction Solution”

Module 8, “Loading Data into a Data Warehouse”

Module 9, “Enforcing Data Quality”

Module 10, “Master Data Services”

Module 11, “Extending SQL Server Integration Services”

Module 12, “Deploying and Configuring SSIS Packages”

Module 13, “Consuming Data in a Data Warehouse”

Course Materials
The following materials are included with your kit:

 Course Handbook A succinct classroom learning guide that provides all the critical technical
information in a crisp, tightly-focused format, which is just right for an effective in-class learning
experience.

 Lessons: Guide you through the learning objectives and provide the key points that are critical to
the success of the in-class learning experience.

 Labs: Provide a real-world, hands-on platform for you to apply the knowledge and skills learned
in the module.

 Module Reviews and Takeaways: Provide improved on-the-job reference material to boost
knowledge and skills retention.

 Lab Answer Keys: Provide step-by-step lab solution guidance at your fingertips when it’s
needed.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
 About This Course iii

Course Companion Content on the http://www.microsoft.com/learning/companionmoc/ Site:
Searchable, easy-to-navigate digital content with integrated premium on-line resources designed to
supplement the Course Handbook.

 Modules: Include companion content, such as questions and answers, detailed demo steps and
additional reading links, for each lesson. Additionally, they include Lab Review questions and answers
and Module Reviews and Takeaways sections, which contain the review questions and answers, best
practices, common issues and troubleshooting tips with answers, and real-world issues and scenarios
with answers.

 Resources: Include well-categorized additional resources that give you immediate access to the most
up-to-date premium content on TechNet, MSDN®, Microsoft Press®.

Student Course files on the http://www.microsoft.com/learning/companionmoc/ Site: Includes the
Allfiles.exe, a self-extracting executable file that contains all the files required for the labs and
demonstrations.

 Course evaluation At the end of the course, you will have the opportunity to complete an online
evaluation to provide feedback on the course, training facility, and instructor.

 To provide additional comments or feedback on the course, send e-mail to
support@mscourseware.com. To inquire about the Microsoft Certification Program, send e-mail
to mcphelp@microsoft.com.

Virtual Machine Environment
This section provides the information for setting up the classroom environment to support the business
scenario of the course.

Virtual Machine Configuration
In this course, you will use Microsoft Hyper-V to perform the labs.

The following table shows the role of each virtual machine used in this course:

Virtual machine Role

20463C-MIA-SQL Database Server

20463C -MIA-DC Domain Controller

Software Configuration
The following software is installed on each VM:

 Windows Server® 2012

 Microsoft SQL Server 2014

 Microsoft SharePoint Server 2013

 Microsoft Office 2013

 Microsoft Visual Studio 2012

Course Files
There are files associated with the labs in this course. The lab files are located in the folder
D:\Labfiles\LabXX on the 20463C-MIA-SQL virtual machine.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
iv About This Course

Classroom Setup
Each classroom computer will have the same virtual machine configured in the same way.

To ensure a satisfactory student experience, Microsoft Learning requires a minimum equipment
configuration for trainer and student computers in all Microsoft Certified Partner for Learning Solutions
(CPLS) classrooms in which Official Microsoft Learning Product courseware are taught.

Course Hardware Level 6+

 Processor: Intel Virtualization Technology (Intel VT) or AMD Virtualization (AMD-V)

 Hard Disk: Dual 120 GB hard disks 7200 RM SATA or better (Striped)

 RAM: 12GB or higher. 16 GB or more is recommended for this course.

 DVD/CD: DVD drive

 Network adapter with Internet connectivity

 Video Adapter/Monitor: 17-inch Super VGA (SVGA)

 Microsoft Mouse or compatible pointing device

 Sound card with amplified speakers

In addition, the instructor computer must be connected to a projection display device that supports SVGA
1024 x 768 pixels, 16 bit colors.

Note: For the best classroom experience, a computer with solid state disks (SSDs) is recommended. For
optimal performance, adapt the instructions below to install the 20463C-MIA-SQL virtual machine on a
different physical disk than the other virtual machines to reduce disk contention.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-1

Module 1
Introduction to Data Warehousing

Contents:
Module Overview 1-1

Lesson 1: Overview of Data Warehousing 1-2

Lesson 2: Considerations for a Data Warehouse Solution 1-8

Lab: Exploring a Data Warehousing Solution 1-15

Module Review and Takeaways 1-20

Module Overview
Data warehousing is a solution that organizations can use to centralize business data for reporting and
analysis. Implementing a data warehouse solution can provide a business or other organization with
significant benefits, including:

 Comprehensive and accurate reporting of key business information.

 A centralized source of business data for analysis and decision-making.

 The foundation for an enterprise Business Intelligence (BI) solution.

This module provides an introduction to the key components of a data warehousing solution and the
high-level considerations you must take into account when you embark on a data warehousing project.

Objectives
After completing this module, you will be able to:

 Describe the key elements of a data warehousing solution.

 Describe the key considerations for a data warehousing project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-2 Introduction to Data Warehousing

Lesson 1
Overview of Data Warehousing

Data warehousing is a well-established technique for centralizing business data for reporting and analysis.
Although the specific details of individual solutions can vary, there are some common elements in most
data warehousing implementations. Familiarity with these elements will enable you to better plan and
build an effective data warehousing solution.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the business problem addressed by data warehouses.

 Define a data warehouse.

 Describe the commonly-used data warehouse architectures.

 Identify the components of a data warehousing solution.

 Describe a high-level approach to implementing a data warehousing project.

 Identify the roles involved in a data warehousing project.

 Describe the components and features of Microsoft® SQL Server® and other Microsoft products you
can use in a data warehousing solution.

The Business Problem

Running a business effectively can present a
significant challenge, particularly as it grows or is
affected by trends in its target market or the
global economy. To be successful, a business must
adapt to changing conditions, which requires
individuals within the organization to make good
strategic and tactical decisions. However, the
following problems can often make effective
business decision-making difficult:

 Key business data is distributed across
multiple systems. This makes it hard to collate
all the information necessary for a particular
business decision.

 Finding the information required for business decision-making is time-consuming and error-prone.
The need to gather and reconcile data from multiple sources results in slow, inefficient decision-
making processes that can be further undermined by inconsistencies between duplicate,
contradictory sources of the same information.

 Fundamental business questions are hard to answer. Most business decisions require a knowledge of
fundamental facts, such as “How many customers do we have?” or “Which products do we sell most
often?” Although these may seem like simple questions, the distribution of data throughout multiple
systems in a typical organization can make them difficult, or even impossible, to answer.

By resolving these problems, it is possible to make effective decisions that will help the business to be
more successful, both at the strategic, executive level and during day-to-day operations.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-3

What Is a Data Warehouse?

A data warehouse provides a solution to the
problem of distributed data that prevents effective
business decision-making. There are many
definitions for the term “data warehouse,” and
disagreements over specific implementation
details. It is generally agreed, however, that a data
warehouse is a centralized store of business data
that can be used for reporting and analysis to
inform key decisions.

Typically, a data warehouse:

 Contains a large volume of data that relates to
historical business transactions.

 Is optimized for read operations that support querying the data. This is in contrast to a typical Online
Transaction Processing (OLTP) database that is designed to support data insert, as well as update and
delete operations.

 Is loaded with new or updated data at regular intervals.

 Provides the basis for enterprise BI applications.

Data Warehouse Architectures

There are many ways that you can implement a
data warehouse solution in an organization. Some
common approaches include:

 Creating a single, central enterprise data
warehouse for all business units.

 Creating small, departmental data marts for
individual business units.

 Creating a hub-and-spoke architecture that
synchronizes a central enterprise data
warehouse with departmental data marts
containing a subset of the data warehouse
data.

The right architecture for a given business might be one of these, or a combination of various elements
from all three approaches.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-4 Introduction to Data Warehousing

Components of a Data Warehousing Solution

A data warehousing solution usually consists of
the following elements:

 Data sources. Sources of business data for
the data warehouse, often including OLTP
application databases and data exported from
proprietary systems, such as accounting
applications.

 An Extract, Transform, and Load (ETL)
process. A workflow for accessing data in the
data sources, modifying it to conform to the
data model for the data warehouse, and
loading it into the data warehouse.

 Data staging areas. Intermediary locations where the data to be transferred to the data warehouse is
stored. It is prepared here for import and to synchronize loading into the data warehouse.

 A data warehouse. A relational database designed to provide high-performance querying of
historical business data for reporting and analysis.

Many data warehousing solutions also include:

 Data cleansing and deduplication. A solution for resolving data quality issues before it is loaded
into the data warehouse.

 Master Data Management (MDM). A solution that provides an authoritative data definition for
business entities used by multiple systems across the organization.

Data Warehousing Projects

A data warehousing project has much in common
with any other IT implementation, so it is possible
to apply most commonly-used methodologies,
such as Agile or Microsoft Solutions Framework
(MSF). However, a data warehousing project often
requires a deeper understanding of the key
business objectives and metrics that are used to
drive decision-making than other software
development or infrastructure.

A high-level approach to implementing a data
warehousing project usually includes the following
steps:

1. Work with business stakeholders and information workers to determine the questions to which the
data warehouse must provide answers. They may include questions such as:

o What was the total sales revenue for each geographic territory in a given month?

o What are our most profitable products or services?

o Are business costs growing or reducing over time?

o Which sales employees are meeting their sales targets?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-5

2. Determine the data required to answer these questions. It is normal to think of this data in terms of
“dimensions” and “facts.” Facts contain the numerical measures required to aggregate data so you
can answer the business questions identified in step 1. For example, to determine sales revenue, you
may need the sales amount for each individual transaction. Dimensions represent the different
aspects of the business by which you want to aggregate the measures. For example, to determine
sales revenue for each territory in a given month, you may need a geographic dimension, so you can
aggregate sales by territory, and a time dimension enabling you to aggregate sales by month. Fact
and dimensional modeling is covered in more detail in Module 3, Designing and Implementing a Data
Warehouse.

3. Identify data sources containing the data required to answer the business questions. These are
commonly relational databases used by existing line-of-business applications, but they can also
include:

o Flat files or XML documents that have been extracted from proprietary systems.

o Data in Microsoft SharePoint® lists.

o Commercially available data that has been purchased from a data supplier such as the Microsoft
Windows Azure™ Marketplace.

4. Determine the priority of each business question based on:

o The importance of answering the question in relation to driving key business objectives.

o The feasibility of answering the question from the data available.

A common approach to prioritizing the business questions you will address in the data warehousing
solution, is to work with key business stakeholders and plot each question on a quadrant-based matrix like
the one shown below. The position of the questions in the matrix helps you to agree the scope of the data
warehousing project.

Bu
si

ne
ss

 im
po

rt
an

ce
 o

f t
he

 q
ue

st
io

n

High importance, low feasibility

High importance, high feasibility

Low importance, low feasibility

Low importance, high feasibility

Feasibility of answering the question

If a large number of questions fall into the high importance, high feasibility category, you may want to
consider taking an incremental approach to the project in which you break down the challenge into a
number of sub-projects. Each sub-project tackles the problem of implementing the data warehouse
schema, ETL solution, and data quality procedures for a specific area of the business, starting with the
highest-priority questions. If you adopt this incremental approach, take care to create an overall design
for dimension and fact tables in early iterations of the solution so that subsequent additions can reuse
them.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-6 Introduction to Data Warehousing

Data Warehousing Project Roles

A data warehousing project typically involves
several roles, including:

 A project manager. Coordinates project tasks
and schedules, ensuring that the project is
completed on time and within budget.

 A solution architect. Has overall
responsibility for the technical design of the
data warehousing solution.

 A data modeler. Designs the data warehouse
schema.

 A database administrator. Designs the
physical architecture and configuration of the data warehouse database. In addition, database
administrators with responsibility for data sources used in the data warehousing solution, must be
involved in the project to provide access to the data sources required by the ETL process.

 An infrastructure specialist. Implements the server and network infrastructure for the data
warehousing solution.

 An ETL developer. Builds the ETL workflow for the data warehousing solution.

 Business users. Provide requirements and help to prioritize the questions that the data warehousing
solution will answer. Often, the team includes a business analyst as a full-time member, helping to
interpret the questions and ensuring that the solution design meets the users’ needs.

 Testers. Verify the business and operational functionality of the solution as it is developed.

 Data stewards for each key subject area in the data warehousing solution. Determine data
quality rules and validate data before it enters the data warehouse. Data stewards are sometimes
referred to as data governors.

In addition to ensuring the appropriate assignment of these roles, you should also consider the
importance of executive-level sponsorship of the data warehousing project. It is significantly more likely
to succeed if a high-profile executive sponsor is seen to actively support the creation of the data
warehousing solution.

SQL Server as a Data Warehousing Platform

SQL Server includes components and features that
you can use to implement various architectural
elements of a data warehousing solution,
including:

 The SQL Server database engine. A highly
scalable Relational Database Management
System (RDBMS) on which you can implement
a data warehouse.

SQL Server Enterprise includes features that

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-7

make it particularly appropriate for data warehousing solutions. One feature is optimization of star
join queries, which significantly enhances the performance of queries in a typical data warehouse
schema. Also, column store indexes can significantly enhance the performance of data warehouse
workloads.

 SQL Server Integration Services. A comprehensive and extensible platform for creating ETL
solutions, including support for a wide range of data sources and numerous built-in data flow
transformations and control flow tasks for common ETL requirements.

 SQL Server Master Data Services. A master data management solution that enables organizations
to create authoritative data definitions for key business entities, and ensure data consistency across
multiple applications and systems.

 SQL Server Data Quality Services. A knowledge-based solution for validating, cleansing, and
deduplicating data.

These components of the Microsoft data platform are the focus of this course.

In addition, you can use some SQL Server components and other Microsoft products to build an
enterprise BI solution that significantly extends the value of your data warehouse. These components and
products include:

 SQL Server Analysis Services. A service for creating multidimensional and tabular analytical data
models for so-called “slice and dice” analysis, and for implementing data mining models you can use
to identify trends and patterns in your data.

 SQL Server Reporting Services. A solution for creating and distributing reports in a variety of
formats for online viewing or printing.

 Microsoft® SharePoint® Server. A web-based portal through which information workers can
consume reports and other BI deliverables.

 Microsoft Office®. In particular Microsoft Excel®.

To learn more about using data platform components to implement enterprise BI solutions, you should
attend course 20466C: Implementing Data Models and Reports with Microsoft SQL Server.

If you need to move beyond a traditional managed enterprise BI solution, you can empower business
users to perform self-service analysis and reporting, and engage in Big Data analysis with the following
data platform components:

 Excel Add-Ins. Add-ins such as PowerPivot, Power Query, Power View, and Power Map help extend
Excel to make it a powerful tool for self-service data modeling, analysis, and reporting.

 Microsoft Office 365® Power BI. Power BI is a cloud-based BI collaboration platform that enables
business users to share queries, datasets, and reports and to access data visualizations from virtually
any device.

 Microsoft Windows Azure™ HDInsight™. As analytical data grows in volume and complexity, new
techniques for processing it have evolved. HDInsight is a cloud-based implementation of Hadoop
from Microsoft, and provides a platform for Map/Reduce processing of Big Data.

To learn more about these components of the Microsoft data platform, you should attend course 20467C:
Designing Self-Service Business Intelligence and Big Data Solutions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-8 Introduction to Data Warehousing

Lesson 2
Considerations for a Data Warehouse Solution

Before starting a data warehousing project, you need to understand the considerations that will help you
create a data warehousing solution that addresses your specific needs and constraints.

This lesson describes some of the key considerations for planning a data warehousing solution.

Lesson Objectives
After completing this lesson, you will be able to describe considerations for:

 Designing a data warehouse database.

 Data sources.

 Designing an ETL process.

 Implementing data quality and master data management.

Data Warehouse Database and Storage

A data warehouse is a relational database that is
optimized for reading data for analysis and
reporting. When you are planning a data
warehouse, you should take the following
considerations into account:

Database Schema
The logical schema of a data warehouse is typically
designed to denormalize data into a structure that
minimizes the number of join operations required
in the queries used to retrieve and aggregate data.
A common approach is to design a star schema in
which numerical measures are stored in fact tables
that have foreign keys to multiple dimension tables containing the business entities by which the
measures can be aggregated. Before designing your data warehouse, you must know which dimensions
your business users employ when aggregating data, which measures need to be analyzed and at what
granularity, and which facts include those measures. You must also carefully plan the keys that will be
used to link facts to dimensions, and consider whether your data warehouse must support the use of
dimensions that change over time. For example, handling dimension records for customers who change
their address.

You must also consider the physical implementation of the database, because this will affect the
performance and manageability of the data warehouse. It is common to use table partitioning to
distribute large fact data across multiple file groups, each on a different physical disk. This can increase
query performance and enables you to implement a file group-based backup strategy that can help
reduce downtime in the event of a single-disk failure. You should also consider the appropriate indexing
strategy for your data, and whether to use data compression when storing it.

 Note: Designing a data warehouse schema is covered in more detail in Module 3,
Designing and Implementing a Data Warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-9

Hardware
Your choice of hardware for your data warehouse solution can make a significant difference to the
performance, manageability, and cost of your data warehouse. The hardware considerations include:

 Query processing requirements, including anticipated peak memory and CPU utilization.

 Storage volume and disk input/output requirements.

 Network connectivity and bandwidth.

 Component redundancy for high availability.

You can build your own data warehouse solution by purchasing and assembling individual components,
using a pre-tested reference architecture, or purchasing a hardware appliance that includes preconfigured
components in a ready-to-use package. Factors that influence your choice of hardware include:

 Budget.

 Existing enterprise agreements with hardware vendors.

 Time to construct the solution.

 Hardware assembly and configuration expertise.

 Note: Hardware for data warehousing solutions is discussed in more detail in Module 2,
Data Warehouse Hardware.

High Availability and Disaster Recovery
A data warehouse can very quickly become a business-critical part of your overall application
infrastructure, so it is essential to consider how you will ensure its availability. SQL Server includes support
for several high-availability techniques, including database mirroring and server clustering. You must
assess these technologies and choose the best one for your individual solution, based on:

 Failover time requirements.

 Hardware requirements and cost.

 Configuration and management complexity.

In addition to a server-level high-availability solution, you must also consider redundancy at the individual
component level for network interfaces and storage arrays.

The most robust high-availability solution cannot protect your data warehouse from every eventuality, so
you must also plan a suitable disaster recovery solution that includes a comprehensive backup strategy.
This should take into account:

 The volume of data in the data warehouse.

 The frequency of changes to data in the data warehouse.

 The effect of the backup process on data warehouse performance.

 The time to recover the database in the event of a failure.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-10 Introduction to Data Warehousing

Security
Your data warehouse contains a huge volume of data that is typically commercially sensitive. You may
also want to provide access to some data by all users, but restrict access to other data for a subset of
users.

Considerations for securing your data warehouse include:

 The authentication mechanisms that you must support to provide access to the data warehouse.

 The permissions that the various users who access the data warehouse will require.

 The connections over which data is accessed.

 The physical security of the database and backup media.

Data Sources

You must identify the sources that provide the
data for your data warehouse, and consider the
following factors when planning your solution:

Data Source Connection Types
Your data warehouse may require data from a
variety of sources. For each source, you must
consider how the ETL process can connect and
extract the required data. In many cases, your data
sources will be relational databases for which you
can use an OLEDB or ODBC provider. However,
some data sources may use proprietary storage
that requires a bespoke provider or for which no
provider exists. In this case, you must develop a custom provider or determine whether it is possible to
export data from the data source in a format that the ETL process can easily consume, such as XML or
comma-delimited text.

Credentials and Permissions
Most data sources require secure access with user authentication and, potentially, individual permissions
on the data. You must work with the owners of the data sources used in your data warehousing solution
to establish:

 Credentials that your ETL process can use to access the data source.

 The required permissions to access the data used by the data warehouse.

Data Formats
A data source may store data in a different format. Your solution must take into account issues arising
from this, including:

 Conversion of data from one data type to another, for example, extracting numeric values from a text
file.

 Truncation of data when copying to a destination with a limited data length.

 Date and time formats used in data sources.

 Numeric formats, scales, and precisions.

 Support for Unicode characters.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-11

Data Acquisition Windows
Depending on the workload patterns of the business, there may be times when individual data sources are
not available or the usage level is such that the additional overhead of a data extraction is undesirable.
When planning a data warehousing solution, you must work with each data source owner to determine
appropriate data acquisition windows based on:

 The workload pattern of the data source, and its resource utilization and capacity levels.

 The volume of data to be extracted, and the time that process takes.

 The frequency with which you need to update the data warehouse with fresh data.

 If applicable, the time zones in which business users are accessing the data.

Extract, Transform, and Load Processes

A significant part in the creation of a data
warehouse solution is the implementation of an
ETL process. When you design an ETL process for a
data warehousing solution, you must consider the
following factors:

Staging
In some solutions, you can transfer data directly
from data sources to the data warehouse without
any intermediary staging. In many cases, however,
you should consider staging data to:

 Synchronize a data warehouse refresh that
includes source data extracted during multiple data acquisition windows.

 Perform data validation, cleansing, and deduplication operations on the data before it is loaded into
the data warehouse.

 Perform transformations on the data that cannot be performed during the data extraction or data
flow processes.

If a staging area is required in your solution, you must decide on a format for the staged data. Possible
formats include:

 A relational database.

 Text or XML files.

 Raw files (binary files in a proprietary format of the ETL platform being used).

The decision on format is based on several factors including:

 The need to access and modify the staged data.

 The time taken to store and read the staging data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-12 Introduction to Data Warehousing

Finally, if a relational database is used as the staging area, you must decide where this database will reside.
Possible choices include:

 A dedicated staging server.

 A dedicated SQL Server instance on the data warehouse server.

 A dedicated staging database in the same instance of SQL Server as the data warehouse.

 A collection of staging tables (perhaps in a dedicated schema) in the data warehouse database.

Factors you should consider when deciding the location of the staging database include:

 Server hardware requirements and cost.

 The time taken to transfer data across network connections.

 The use of Transact-SQL loading techniques that perform better when the staging data and data
warehouse are co-located on the same SQL Server instance.

 The server resource overheads associated with the staging and data warehouse load processes.

Required Transformations
Most ETL processes require that the data being extracted from data sources is modified to match the data
warehouse schema. When planning an ETL process for a data warehousing solution, you must examine
the source data and destination schema, and identify what transformations are required. You must then
determine the optimal place within the ETL process to perform these transformations. Choices for
implementing data transformations include:

 During the data extraction. For example, by concatenating two fields in a SQL Server data source
into a single field in the Transact-SQL query used to extract the data.

 In the data flow. For example, by using a Derived Column data transformation task in a SQL Server
Integration Services data flow.

 In the staging area. For example, by using a Transact-SQL query to apply default values to null fields
in a staging table.

Factors affecting the choice of data transformation technique include:

 The performance overhead of the transformation. Typically, it is best to use the approach with the
least performance overhead. Set-based operations that are performed in Transact-SQL queries usually
function better than row-based transformations being applied in a data flow.

 The level of support for querying and updating in the data source or staging area. In cases
where you are extracting data from a comma-delimited file and staging it in a raw file, your options
are limited to performing row-by-row transformations in the data flow.

 Dependencies on data required for the transformation. For example, you might need to look up a
value in one data source to obtain additional data from another. In this case, you must perform the
data transformation in a location where both data sources are accessible.

 The complexity of the logic involved in the transformation. In some cases, a transformation may
require multiple steps and branches depending on the presence or value of specific data fields. In this
case, it is often easier to apply the transformation by combining several steps in a data flow than it is
to create a Transact-SQL statement to perform the transformation.

Incremental ETL
After the initial load of the data warehouse, you will usually need to incrementally add new or updated
source data. When you plan your data warehousing solution, you must consider the following factors that
relate to incremental ETL:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-13

 How will you identify new or modified records in the data sources?

 Do you need to delete records in the data warehouse when corresponding records in the data
sources are removed? If so, will you physically delete the records, or simply mark them as inactive
(often referred to as a logical delete)?

 How will you determine whether a record that is to be loaded into the data warehouse should be new
or an update to an existing one?

 Are there records in the data warehouse for which historical values must be preserved by creating a
new version instead of updating the existing one?

 Note: Managing data changes in an incremental ETL process is discussed in more detail in
Module 7, Implementing an Incremental ETL Process.

Data Quality and Master Data Management

The value of a data warehouse is largely
determined by the quality of the data it contains.
When planning a data warehousing project,
therefore, you should determine how you will
ensure data quality. You should consider using a
master data management solution.

Data Quality
To validate and enforce the quality of data in your
data warehouse, it is recommended that business
users with knowledge of each subject area
addressed by the data warehouse become data
stewards. A data steward is responsible for:

 Building and maintaining a knowledge base that identifies common data errors and corrections.

 Validating data against the knowledge base.

 Ensuring that consistent values are used for data attributes where multiple forms of the value may be
considered valid. For example, ensuring that a Country field always uses the value “United States”
when referring to America, even though “USA,” “The U.S.” and “America” are also valid values.

 Identifying and correcting missing data values.

 Identifying and consolidating duplicate data entities, such as records for “Robert Smith” and “Bob
Smith” that both refer to the same physical customer.

You can use SQL Server Data Quality Services to provide a data quality solution that helps the data
steward to perform these tasks.

 Note: SQL Server Data Quality Services is discussed in more detail in Module 9, Enforcing
Data Quality.

Master Data Management
It is common for large organizations to have multiple business applications, and in many cases, these
systems perform tasks that are related to the same business entities. For example, an organization may
have an e-commerce application enabling customers to purchase products, and a separate inventory

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-14 Introduction to Data Warehousing

management system that also stores product data. A record representing a particular product may exist in
both systems. In this scenario, it can be useful to implement a master data management system that
provides an authoritative definition of each business entity (in this example, a particular product) that you
can use across multiple applications to ensure consistency.

Master data management is especially important in a data warehousing scenario because it ensures that
data conforms to the agreed definition for the business entities to be included in any analysis and
reporting solutions that it must support.

You can use SQL Server Master Data Services to implement a master data management solution.

 Note: SQL Server Master Data Services is discussed in more detail in Module 10, Using
Master Data Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-15

Lab: Exploring a Data Warehousing Solution
Scenario
The labs in this course are based on Adventure Works Cycles, a fictional company that manufactures and
sells bicycles and accessories to customers worldwide. Adventure Works sells direct through an e-
commerce website, as well as an international reseller network. Throughout this course, you will develop a
data warehousing solution for Adventure Works Cycles, including a data warehouse, an ETL process to
extract data from source systems and populate the data warehouse, a data quality solution, and a master
data management solution.

The lab for this module provides a high-level overview of the solution you will create later. Use this lab to
become familiar with the various elements of the data warehousing solution that you will learn to build in
subsequent modules. Don’t worry if you do not understand the specific details of how each component of
the solution has been built, as you will explore these in greater depth later in the course.

Objectives
After completing this lab, you will be able to:

 Describe the data sources in the Adventure Works data warehousing scenario.

 Describe the ETL process in the Adventure Works data warehousing scenario.

 Describe the data warehouse in the Adventure Works data warehousing scenario.

Estimated Time: 30 minutes

Virtual Machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Exploring Data Sources

Scenario
Adventure Works uses various software applications to manage different aspects of the business, and each
has its own data store. Specifically these are:

 Internet sales processed through an e-commerce web application.

 Reseller sales processed by sales representatives, who use a specific application. Sales employee
details are stored in a separate human resources system.

 Reseller payments are processed by an accounting application.

 Products are managed in a product catalog and inventory system.

This distribution of data has made it difficult for users to answer key questions about the overall
performance of the business.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-16 Introduction to Data Warehousing

In this exercise, you will examine some of the Adventure Works data sources that will be used in the data
warehousing solution.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View the Solution Architecture

3. View the Internet Sales Data Source

4. View the Reseller Sales Data Source

5. View the Products Data Source

6. View the Human Resources Data Source

7. View the Accounts Data Source

8. View the Staging Database

 Task 1: Prepare the Lab Environment

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to
20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab01\Starter folder as Administrator.

 Task 2: View the Solution Architecture
1. Use Paint to view the Adventure Works DW Solution.jpg JPEG image in the D:\Labfiles\Lab01\Starter

folder.

2. Note the data sources in the solution architecture.

Note: In addition to the data sources that you will examine in this lab, the diagram includes a Microsoft®
SQL Server® Master Data Services model for product data and a SQL Server Data Quality Services task to
cleanse data as it is staged. These elements form part of the complete solution for the lab scenario in this
course, but they are not present in this lab.

 Task 3: View the Internet Sales Data Source
1. Use Microsoft® SQL Server® Management Studio to open the View Internet Sales.sql query file in

the D:\Labfiles\Lab01\Starter folder. Use Windows authentication to connect to the MIA-SQL
instance of SQL Server.

2. Execute the query and examine the results. Note that this data source contains data about customers
and the orders they have placed through the e-commerce web application.

 Task 4: View the Reseller Sales Data Source
1. Use SQL Server Management Studio to open the View Reseller Sales.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Execute the query and examine the results. Note that this data source contains data about resellers
and the orders they have placed through Adventure Works reseller account managers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-17

 Task 5: View the Products Data Source
1. Use SQL Server Management Studio to open the View Products.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Execute the query and examine the results. Note that this database contains data about products that
Adventure Works sells, organized into categories and subcategories.

 Task 6: View the Human Resources Data Source
1. Use SQL Server Management Studio to open the View Employees.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Execute the query and examine the results. Note that this database contains data about employees,
including sales representatives.

 Task 7: View the Accounts Data Source
1. Examine the comma-delimited text files in the D:\Accounts folder by opening them in Microsoft

Excel®. Note that they contain details of payments made by resellers.

2. Close all files when you have finished reviewing them, without saving any changes.

 Task 8: View the Staging Database
1. In SQL Server Management Studio, in the Object Explorer pane, examine the tables in the Staging

database in the MIA-SQL instance of SQL Server. Ensure you examine the Staging database, not the
DQS_STAGING_DATA database.

2. Note that all tables other than dbo.ExtractLog in this database are empty.

Results: After this exercise, you should have viewed data in the InternetSales, ResellerSales, Human
Resources, and Products SQL Server databases, viewed payments data in comma-delimited files, and
viewed an empty staging database.

Exercise 2: Exploring an ETL Process

Scenario
Now that you are familiar with the data sources in the Adventure Works data warehousing solution, you
will examine the ETL process used to stage the data, and then load it into the data warehouse.

Adventure Works uses a solution based on SQL Server Integration Services to perform this ETL process.

The main tasks for this exercise are as follows:

1. View the Solution Architecture

2. Run the ETL Staging Process

3. View the Staged Data

4. Run the ETL Data Warehouse Load Process

 Task 1: View the Solution Architecture
1. Use Paint to view Adventure Works DW Solution.jpg in the D:\Labfiles\Lab01\Starter folder.

2. Note that the ETL solution consists of two main phases: a process to extract data from the various
data sources and load it into a staging database, and another to load the data in the staging database
into the data warehouse. In this exercise, you will observe these ETL processes as they run.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-18 Introduction to Data Warehousing

 Task 2: Run the ETL Staging Process
1. Use Visual Studio to open the AdventureWorksETL.sln solution file in the D:\Labfiles\Lab01\Starter

folder.

2. In Solution Explorer, view the SSIS packages that this solution contains, and then double-click Stage
Data.dtsx to open it in the designer.

3. View the control flow of the Stage Data.dtsx package, and then run the package by clicking Start
Debugging on the Debug menu. The package will run other packages to perform the tasks in the
control flow. This may take several minutes.

4. When the package has finished running, a message box will be displayed, although this may be
hidden by the Visual Studio window. Look for a new icon on the taskbar, and then click it to bring the
message box to the front. After viewing this message box, stop the package by clicking Stop
Debugging on the Debug menu.

 Task 3: View the Staged Data
1. Use SQL Server Management Studio to view the Staging database in the MIA-SQL instance of SQL

Server. Take care to view the Staging database, not the DQS_STAGING_DATA database.

2. Note the following tables now contain data:

o dbo.Customers

o dbo.EmployeeInserts

o dbo.InternetSales

o dbo.Payments

o dbo.Resellers

o dbo.ResellerSales

 Task 4: Run the ETL Data Warehouse Load Process
1. In Visual Studio, in Solution Explorer, view the SSIS packages that the AdventureWorksETL.sln solution

contains, and then double-click Load DW.dtsx to open it in the designer.

2. View the control flow of the Load DW.dtsx package, and then run the package by clicking Start
Debugging on the Debug menu. The package will run other packages to perform the tasks in the
control flow. This may take several minutes.

3. When the package has finished running, a message box will be displayed, although it may be hidden
by the Visual Studio window. Look for a new icon on the taskbar, and then click it to bring the
message box to the front. After viewing this message box, stop the package by clicking Stop
Debugging on the Debug menu.

4. Close Visual Studio when you have finished.

Results: After this exercise, you should have viewed and run the SQL Server Integration Services packages
that perform the ETL process for the Adventure Works data warehousing solution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 1-19

Exercise 3: Exploring a Data Warehouse

Scenario
Now that you have explored the ETL process that is used to populate the Adventure Works data
warehouse, you can explore the data warehouse to see how it enables business users to view key
information.

The main tasks for this exercise are as follows:

1. View the Solution Architecture

2. Query the Data Warehouse

 Task 1: View the Solution Architecture
1. Use Paint to view Adventure Works DW Solution.jpg in the D:\Labfiles\Lab01\Starter folder.

2. Note that the data warehouse provides a central data source for business reporting and analysis. Then
close Paint.

 Task 2: Query the Data Warehouse
1. Use SQL Server Management Studio to open the Query DW.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Execute the query and examine the results. Note that the data warehouse contains the data necessary
to view key metrics across multiple aspects of the business.

Results: After this exercise, you should have successfully retrieved business information from the data
warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-20 Introduction to Data Warehousing

Module Review and Takeaways
In this module, you have learned about the key elements in a data warehousing solution.

Review Question(s)
Question: Why might you consider including a staging area in your ETL solution?

Question: What options might you consider for performing data transformations in an ETL
solution?

Question: Why would you assign the data steward role to a business user rather than a
database technology specialist?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-1

Module 2
Planning Data Warehouse Infrastructure

Contents:
Module Overview 2-1

Lesson 1: Considerations for Data Warehouse Infrastructure 2-2

Lesson 2: Planning Data Warehouse Hardware 2-10

Lab: Planning Data Warehouse Infrastructure 2-19

Module Review and Takeaways 2-21

Module Overview
The server and hardware infrastructure for a Business Intelligence (BI) solution is a key consideration in
any BI project. You must balance the performance and scalability gains you can achieve by maximizing
hardware specifications and distributing the elements of your BI solution across multiple servers against
hardware and software licensing costs, and implementation complexity.

This module discusses considerations for selecting hardware and distributing SQL Server facilities across
servers.

Objectives
After completing this module, you will be able to:

 Describe key considerations for BI infrastructure.

 Plan data warehouse infrastructure.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-2 Planning Data Warehouse Infrastructure

Lesson 1
Considerations for Data Warehouse Infrastructure

Planning the infrastructure for a SQL Server-based data warehousing solution requires an understanding
of how the various SQL Server components work together, and how their typical workloads use hardware
resources. This lesson considers all the components in a BI solution, including the data warehouse, and
servers for Extract, Transform and Load (ETL) workloads, Analysis Services, and Reporting Services.

Lesson Objectives
After completing this lesson, you will be able to describe:

 Considerations for characterizing the size of a BI solution.

 Key features of the workloads associated with SQL Server components.

 High-level topology designs for BI solutions.

 Scale-out options for services in a BI solution.

 High-availability options for services in a BI solution.

System Sizing Considerations

Each data warehouse solution has unique
characteristics that depend on the business
requirements it is designed to address. There is no
such thing as a “standard” data warehouse
solution. However, when planning the
infrastructure for a data warehouse, it can be
useful to start by classifying the type of solution to
be implemented into one of three generic sizes –
small, medium, or large. The factors that
determine the size of a BI solution are:

 Data volume. This is the amount of data that
the data warehouse must store, and the size
and frequency of incremental loads of new data. The primary consideration is the number of rows in
fact tables, but you must also allow for dimension data, indexes, and data models that are stored on
disk.

 Analysis and Reporting Complexity. This includes the number, complexity, and predictability of the
queries that will be used to analyze the data or produce reports. Typically, BI solutions must support a
mix of the following query types:

o Simple. Relatively straightforward SELECT statements.

o Medium. Repeatedly executed queries that include aggregations or many joins.

o Complex. Unpredictable queries with complex aggregations, joins, and calculations.

 Number of Users. This is the total number of information workers who will access the system, and
how many of them will do so concurrently.

 Availability Requirements. These include when the system will need to be used, and what planned
or unplanned downtime the business can tolerate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-3

Although it is difficult to be precise when categorizing a solution, the following table suggests some
typical examples of the characteristics of small, medium, and large BI systems.

 Small Medium Large

Data Volume 100s of GBs to 1 TB 1 to 10 TB 10 TB to 100s of
TBs

Analysis and
Reporting
Complexity

 Over 50% simple

 30% medium

 Less than 10%
complex

 50% simple

 30-35% medium

 10-15% complex

 30-35% simple

 40% medium

 20-25% complex

Number of Users 100 total
10 to 20
concurrent

1,000 total
100 to 200
concurrent

1,000s of
concurrent users

Availability
Requirements

Business hours 1 hour of
downtime per
night

24/7 operations

Data Warehouse Workloads

In addition to the size categorization of the
solution your infrastructure needs to support, it is
useful to understand the workload types of that
might occur in a BI solution. It is important to
assess the total impact of all workloads on
hardware resource utilization and identify any
potential for contention between workloads with
similar requirements.

Extract, Transform, and Load (ETL)
Workloads
The ETL subsystem of the BI solution performs the
following workloads:

 Control flow tasks. SQL Server Integration Services (SSIS) packages often include control flow tasks
that require CPU processing time, memory, disk I/O, and network I/O. The specific resource
requirements for control flow tasks can vary significantly so, if your ETL solution includes a substantial
number of them, you should monitor resource utilization on a test system to better understand the
workload profile.

 Data query and insert. Fundamentally, ETL involves querying data sources and inserting and
updating data into staging and data warehouse tables. This incurs I/O and query processing on data
sources, the staging databases, and the data warehouse, especially if data loads require rebuilding
indexes or partition management.

 Network data transfer. Typically, ETL processes transfer large volumes of data from one server to
another. This incurs network I/O and can require significant network bandwidth.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-4 Planning Data Warehouse Infrastructure

 In-memory data pipeline. Data flow tasks in an SSIS package use an in-memory pipeline
architecture to process transformations, and that places a demand on system memory resources. On
systems where there is contention between the SQL Server database engine and SSIS for memory
resources, data flow buffers might need to spill to disk, which reduces data flow performance and
incurs disk I/O.

 SSIS catalog or MSDB database activity. SSIS packages deployed in project mode are stored in an
SSIS Catalog database. Alternatively, packages deployed in package mode are stored either in the
MSDB database or on the file system. Whichever deployment model is used, the ETL process must
access the package storage to load packages and their configuration. If the SSIS catalog or MSDB
database is used, and it is located on a SQL Server instance hosting other databases used in the BI
solution (such as the data warehouse, staging database, or Report Server catalog), there may be
contention for database server resources.

Data Model Workloads
The SQL Server Analysis Services (SSAS) data models in a BI system require the following workloads:

 Processing. Data models contain aggregated values for the measures in the data warehouse. They
must be processed to load the required data from the data warehouse tables into the model and
perform the necessary aggregation calculations. When data in the data warehouse is refreshed, the
data models must be partially or fully processed again to reflect the new and updated data.

 Aggregation storage. Data models must store the aggregated data in a structure that is optimized
for analytical queries. Typically, multidimensional models are stored on disk with some data cached in
memory for performance reasons. Tabular models are usually stored completely in memory, so
sufficient resources must be available.

 Query execution. When users perform analytical queries against a data model, it must process the
query and generate results. This requires CPU processing time, memory, and potentially disk I/O.

Reporting Workloads
Although reporting is often performed by client applications directly against the data warehouse or data
models, many BI solutions include SQL Server Reporting Services (SSRS). An SSRS reporting solution
typically involves the following workloads:

 Handling client requests. The report server must listen for client requests submitted to Reporting
Services over HTTP and process them.

 Data source queries. Reports are based on datasets that must be retrieved by querying data sources.
Typically, data sources for the reports in a BI solution are SSAS data models or the data warehouse, so
report execution incurs query processing overheads.

 Report rendering. After the report data has been retrieved, SSRS must render it into the required
format using the report definition language (RDL) and the specific rendering extension. Depending
on the report’s size, format, and complexity, rendering can incur substantial CPU and memory
resources.

 Caching. To reduce query processing and rendering overheads, SSRS can cache datasets and reports
in the report server temporary database. Datasets and reports can be cached on first use or you can
use scheduled jobs to pre-cache objects at a regular interval.

 Snapshot execution. In addition to caching reports, you can create persisted report snapshots at a
scheduled interval and store them in the report server database.

 Subscription processing. You can configure SSRS to execute and deliver reports to file shares or
email addresses on a scheduled basis.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-5

 Report Server catalog I/O. Report definitions and resources, such as images, are stored in the report
server catalog, and database I/O tasks are required to retrieve these when needed. Database I/O is
required to retrieve cached reports and datasets from the temporary database, and to recover report
snapshots from the catalog database. This database access may compete for resources with other
databases hosted in the same SQL Server instance.

Operations and Maintenance
In addition to the fundamental BI activity, a BI solution must support ongoing system operations and
maintenance activity, such as:

 Operating system activity.

 Logging activity.

 SQL Server Agent jobs, including:

o Execution of SSIS packages for ETL processes.

o Index and statistics maintenance in databases, including the data warehouse.

o Database backup tasks.

Typical Server Topologies for a BI Solution

SQL Server provides a versatile service architecture
enabling you to choose a topology that best fits
your needs. Selecting the right topology for your
solution usually involves balancing cost and
complexity against the need for high scalability
and flexibility.

Single Server BI Architecture
The simplest architecture for a SQL Server-based
BI solution is to install all its elements on a single
server. Depending on the business requirements of
the BI solution, the components on the server
typically include:

 SQL Server Database Engine. Used to store the data warehouse, staging database, Reporting
Services databases, and SSIS Catalog database. Additionally, the SQL Server Agent may be used to
automate SSIS package execution and other operations by creating jobs, and schedules stored in the
MSDB.

 SQL Server Integration Services. Used to execute packages that encapsulate ETL tasks and data
flows to extract data from source systems into the staging database, and then load it into the data
warehouse.

 SQL Server Analysis Services. Used to provide analytical data models and data mining functionality.
Depending on business requirements, two instances on Analysis Services may be required – one for
multidimensional models and data mining, the other for tabular models.

 SQL Server Reporting Services. Used to provide report publishing and execution services. Reporting
Services in native mode consists of a web service application, a web-based management user
interface, and two SQL Server databases.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-6 Planning Data Warehouse Infrastructure

Depending on business requirements, you may also choose to install SQL Server Data Quality Services on
the server to support data cleansing and matching capabilities for staged data before it is loaded into the
data warehouse.

 Note: If SharePoint Server is required, you can deploy the SharePoint farm and SQL Server
integration components for Reporting Services and PowerPivot on the BI server. This architecture
is not recommended for BI solutions that require significant scalability or performance.

A single server architecture is suitable for test and development environments, and can be used in
production locations with minimal data volumes and scalability requirements.

Distributed BI Architecture
If your BI solution requires even moderate levels of scalability, it will benefit from expanding beyond a
single server architecture and distributing the BI workload across multiple servers. Typical approaches to
distributing SQL Server components in a BI solution include:

 Creating a dedicated report server. In many BI solutions, Analysis Services provides a data model
that contains most (or even all) the data in the data warehouse, and all reporting is performed against
the data model. In these scenarios, there is little database activity in the data warehouse other than
during ETL loading and data model processing (loading data from the data warehouse tables into the
model and aggregating it). The server workloads that compete for resources most of the time are
Analysis Services and Reporting Services, so you can increase scalability and performance by moving
the reporting workload to a separate server. You can install the Reporting Services database on either
server. Leaving it on the data warehouse server keeps all the data engine elements on a single server
but can result in I/O workloads competing for disk resources. To install the reporting services
database on the report server, the database engine must be installed on both servers but the result
means a cleaner separation of workloads. In extremely large enterprise solutions, with intensive
reporting requirements, you can add a third server as a dedicated host for the Reporting Services
database.

 Separating data warehouse and ETL workloads from analytical and reporting workloads. If the
data warehouse will be refreshed with new data frequently, or if it must support direct query access in
addition to processing data models, the database I/O activity might compete with Analysis Services
for disk, CPU, and memory resources. To prevent this, you can deploy Analysis Services on a separate
server. Depending on analytical and reporting workloads, you might choose to co-locate Analysis
Services and Reporting Services on the same server, or use a dedicated one for each. If you need to
support tabular and multidimensional or data mining models, and a single Analysis Services server is
not adequate to support both workloads, you could consider using separate servers for the different
types of Analysis Services model.

 Using a dedicated ETL server. If your ETL process requires frequent data extractions and loads, or
involves particularly resource-intensive transformations, overall performance might benefit from
moving Integration Services and the SSIS Catalog database to a dedicated server. Depending on the
specific transformation and load operations that your ETL process requires, you can choose to locate
the staging database on the ETL server or the data warehouse server. Alternatively, you could use a
two-phase staging approach where extracted data is staged on the ETL server for transformation and
cleansing, and then loaded into staging tables on the data warehouse server before being inserted
into the data warehouse tables.

When designing a distributed architecture, the key goal is to eliminate contention for hardware resources.
You then gain the greatest benefits by identifying workloads with similar hardware utilization profiles and
separating them.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-7

Scaling-out a BI Solution

A distributed architecture increases scalability by
separating the discrete workloads in a BI solution
across multiple servers. To support the highest
level of scalability, you can use a scale-out
architecture to share the same workload across
multiple servers.

You can use a scale-out architecture for the
following components:

 SQL Server Reporting Services. Install the
Reporting Services database on a single
database server, and then install the Reporting
Services report server service on multiple servers that all connect to the same Reporting Services
database. This approach separates the report execution and rendering workloads from the database
workloads required to store and retrieve report definitions, cached datasets and reports, and
snapshots.

 SQL Server Analysis Services. Create a read-only copy of a multidimensional database and connect
to it from multiple Analysis Services query servers. To accomplish this, an SSAS server processes the
cubes in the database. The database is then detached, copied to a standby location, and reattached
so it can be used by applications requiring write-back capabilities. The copied database is then
attached in read-only mode to multiple SSAS instances, providing query services to clients. Client
requests can be distributed across query servers using a load-balancing middle tier, or you can assign
specific subsets of the client population to dedicated query servers.

 The data warehouse. You can scale out an extremely large data warehouse in several ways. Typically,
this is done by partitioning the data across multiple database servers and using middle-tier logic to
direct queries to the appropriate server instance. SQL Server Parallel Data Warehouse edition, which is
provided in pre-configured enterprise data warehouse appliances, uses a massively parallel processing
(MPP) shared-nothing architecture to scale out data warehouse queries across multiple independent
compute and storage nodes.

 SQL Server Integration Services. Although it is not a pure scale-out technique, you can use multiple
SSIS servers to perform a subset of the ETL processes in parallel. This approach requires extensive
custom logic to ensure that all tasks are completed, and should be considered only if your ETL
requirements cannot be met through a scale-up approach in which you add hardware resources to a
single SSIS server.

 Additional Reading: For more information about designing a scale-out solution for
Reporting Services, review the content and links in the SQLCAT Reporting Services Scale-Out
Architecture technical notes at
http://sqlcat.com/sqlcat/b/technicalnotes/archive/2008/06/05/reporting-services-scale-out-
architecture.aspx. For more information about using read-only databases to implement a scale-
out solution for Analysis Services, go to Scale-Out Querying for Analysis Services with Read-Only
Databases at http://msdn.microsoft.com/en-us/library/ff795582(v=SQL.100).aspx.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-8 Planning Data Warehouse Infrastructure

Planning for High Availability

If one or more aspects of the BI solution requires
high availability, you can design a solution that
uses redundant servers with failover capabilities.
SQL Server 2014 includes a number of high
availability technologies that you can use to
protect critical services. These include:

 AlwaysOn Failover Clustering. Server-level
protection that uses Windows Server cluster
services to create a virtual server with multiple
redundant failover nodes.

 AlwaysOn Availability Groups. Database-
level protection that combines Windows
Server cluster services with synchronization of database transactions across multiple SQL Server
instances.

 Log Shipping. Database-level protection that copies transaction logs from a primary server to a
secondary server, where they can be applied to a secondary copy of the database.

Planning High Availability for the Data Warehouse
The data warehouse is fundamentally a SQL Server database and, theoretically, it can be protected by
using any of the high-availability technologies provided by SQL Server. However, considering the large
volume of data typical of data warehouses and the fact that most activity consists of data reads or non-
logged bulk load operations, AlwaysOn Failover Clustering is the most appropriate technology to
consider.

Additionally, considering the importance of the data warehouse data, the database files should be stored
on a Redundant Array of Independent Disks (RAID) that provides protection in the case of a disk failure.

Planning High Availability for Analysis Services
Analysis Services supports AlwaysOn Failover Clustering, so you should use this technology if you require
high availability for an Analysis Services instance. If Analysis Services is to be installed on the same server
as the database engine instance for the data warehouse, both components can be installed in a single
cluster operation.

Planning High Availability for Integration Services
Integration Services is not cluster-aware, and does not support failover from one cluster node to another.
When SSIS packages are deployed in project mode, you can use an AlwaysOn Availability Group to
protect the SSIS Catalog database. However, there are some additional considerations for using AlwaysOn
Availability groups with the SSIS catalog:

 On failover, you must re-encrypt the master database key in the new primary server before any
packages that include encrypted sensitive data can be executed.

 Your SSIS packages must be able to recover the ETL process as a whole to a consistent state if
unplanned failover occurs. This means that you must include cleanup and failover logic in your
packages.

 If you need to apply an update that modifies the SSIS catalog schema, you should remove the SSIS
Catalog database from the availability group, update it, and then re-establish the availability group.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-9

 Additional Reading: For more information about using AlwaysOn Availability Groups with
the SSIS catalog, go to SSIS with AlwaysOn at
http://blogs.msdn.com/b/mattm/archive/2012/09/19/ssis-with-alwayson.aspx.

Planning High Availability for Reporting Services
As described earlier in this lesson, Reporting Services can be distributed across a multi-tier architecture in
which a report server processes requests and executes reports. A separate database tier hosts the report
server catalog and temporary database. In this configuration, you can use Network Load Balancing (NLB)
to distribute requests across report servers, and remove failed report servers from the NLB cluster to
maintain a highly available solution for managing report requests. To protect the database tier, you can
use either AlwaysOn Failover Clustering or an AlwaysOn Availability Group.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-10 Planning Data Warehouse Infrastructure

Lesson 2
Planning Data Warehouse Hardware

The data warehouse is the foundation for a BI solution. You should consider a number of
recommendations from Microsoft and its hardware partners when planning a data warehouse system.
Data warehousing is substantially different from other database workloads, and the conventional database
design approach for optimizing hardware to support the highest possible number of I/O Operations Per
Second (IOPS) is not always appropriate.

This lesson introduces Microsoft SQL Server Fast Track Data Warehouse reference architectures, and
explains how some of the Fast Track design principles can be applied when planning data warehouse
hardware.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the key features of SQL Server Fast Track Data Warehouse reference architectures.

 Explain how a core-balanced system architecture supports data warehousing workloads.

 Determine processor and memory requirements for a data warehouse.

 Determine storage requirements for a data warehouse.

 Describe considerations for choosing a storage solution.

SQL Server Fast Track Reference Architectures

Data warehouse design is a specialist skill that
many organizations may not have in-house, so the
BI team must work with consultants and hardware
vendors to determine the required hardware and
its configuration. This adds cost and time to the
project, and does not always guarantee that the
resulting infrastructure is appropriate for the data
warehousing workload.

To help organizations overcome these challenges,
Microsoft has partnered with multiple hardware
vendors to create Fast Track Data Warehouse
reference architectures that reduce the time and
effort it takes to specify a data warehouse system. These reference architectures, together with hardware
appliances that can be purchased as out-of-the-box solutions, make it easier and quicker to implement an
effective data warehousing solution.

Pre-Tested Specifications and Guidance
Fast Track Data Warehouse reference architectures are designed by Microsoft SQL Server specialists and
consultants from hardware partners. The reference architectures include specific hardware components
that can be combined in a prescribed configuration to create a SQL Server-based data warehouse system.
The architectures have been extensively tested with real-world data warehouse workloads based on
thousands of customer case studies. They are certified to deliver specific performance levels based on the
size of your data warehouse solution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-11

Multi-Vendor Support
Microsoft has partnered with multiple vendors to create pre-tested system designs that use commodity
hardware. If your organization has an existing supplier relationship with one of the Fast Track hardware
vendors, you can easily specify a system based on components from that supplier. You can use the
support and consulting services offered by the hardware vendor to create a data warehouse system based
on a proven design.

Support for a Range of Data Warehouse Sizes
The Fast Track program is not a “one size fits all” solution. It includes multiple reference architectures for
small to large data warehouse solutions, with flexibility within each design to support your specific
requirements. You can evaluate the size of your required solution by using the principles described in the
previous lesson, and then identify the reference architecture that best suits your needs.

System Specification Tools
Microsoft provides a generic Excel workbook that you can use to determine the Fast Track configuration
you require. Additionally, many Fast Track hardware vendors offer tools that make it easy to create a
system specification that meets your needs and includes the right mix of components for your solution.

 Additional Reading: For more information about Fast Track Data Warehouse reference
architectures, go to An Introduction to Fast Track Data Warehouse Architectures at
http://msdn.microsoft.com/en-us/library/dd459146(v=SQL.100).aspx and Fast Track Data
Warehouse Reference Guide for SQL Server 2012 at http://msdn.microsoft.com/en-
us/library/hh918452.aspx.

Core-Balanced System Architecture

SQL Server Fast Track Data Warehouse reference
architectures are based on a core-balanced system
design that reflects the performance
characteristics of a typical data warehouse
workload. Even if you don’t plan on using one of
the published Fast Track Data Warehouse
reference architectures, you will benefit from
understanding the principles on which they are
designed and applying them to your own system
specification.

The core-balanced system architecture is based on
the fact that most data warehouse workloads need
to transfer large amounts of data, usually accessed by sequential read operations, across multiple system
components, from where it is stored to the applications that request it. Each component through which
the data is transferred is a potential bottleneck that will limit the overall performance of the system. The
data can only flow to the requesting application at the rate of the slowest component. Any components
that can operate at a higher rate are underutilized, which unbalances the system and can represent
significant wasted cost.

The diagram on the slide shows a balanced system in which the I/O rates of each component are
reasonably similar. This diagram represents a large-scale data warehousing system in which data is kept in
a storage area network with fiber channel connectivity and multiple storage enclosures, each containing
multiple disk arrays. The same principles apply to a smaller architecture.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-12 Planning Data Warehouse Infrastructure

The I/O rate of hardware components, such as hard disks, array storage processors, and fiber channel host
bus adapters (HBAs) can be established through careful testing and monitoring by using tools like SQLIO.
Many manufacturers, particularly those that participate in the Fast Track program, publish the maximum
rates. However, the initial figure that you need to start designing a data warehouse system is the
maximum consumption rate (MCR) of a single processor core, combined with the SQL Server database
engine. After the MCR for the CPU core architecture you intend to use has been established, you can
determine the number of processors required to support your workload and the storage architecture
needed to balance the system.

Note that MCR is specific to a combination of a CPU and motherboard, and SQL Server. It is not a
measure of pure processing speed or an indication of the performance you can expect for all solution
queries. Instead, MCR is a system-specific benchmark measure of maximum throughput per core for a
data warehouse query workload. Calculating MCR requires executing a query that can be satisfied from
cache while limiting execution to a single core, and reviewing the execution statistics to determine the
number of megabytes of data processed per second.

Demonstration: Calculating Maximum Consumption Rate

This demonstration shows how to use a benchmark query to retrieve I/O statistics that can be used to
calculate a system’s MCR.

Demonstration Steps
Create tables for benchmark queries

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod02 folder, run Setup.cmd as Administrator.

3. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows
authentication.

4. In SQL Server Management Studio, open the Create BenchmarkDB.sql query file from the
D:\Demofiles\Mod02 folder.

5. Click Execute, and wait for query execution to complete. This query creates a database containing
two tables, one with a clustered index and one without. Both tables contain a substantial number of
rows.

Execute a query to retrieve I/O statistics

1. In SQL Server Management Studio, open the Measure MCR.sql query file from the
D:\Demofiles\Mod02 folder.

2. Click Execute, and wait for query execution to complete. The queries retrieve an aggregated value
from each table, and are performed twice. This ensures that on the second execution (for which
statistics are shown), the data is in cache so the I/O statistics do not include disk reads. Note that the
MAXDOP=1 clause ensures that only a single core is used to process the query.

Calculate MCR from the I/O statistics

1. In the results pane, click the Messages tab. This shows the statistics for the queries.

2. Add the logical reads value for the two queries together, and then divide the result by two to find
the average.

3. Add the CPU time value for the two queries together, and then divide the result by two to find the
average. Divide the result by 100 to convert it to seconds.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-13

4. Calculate MCR by using the following formula:

(average logical reads / average CPU time) * 8 / 1024

Determining Processor and Memory Requirements

After determining the MCR for the CPU cores you
intend to use, you can start to estimate the
number of cores that will be required to support
your anticipated query workload. You can also
make an initial assessment of memory
requirements.

Estimating CPU Requirements
MCR indicates the amount of data that can be
processed by a single core in a second. To
determine the number of cores required, you must
apply this rate to the following factors:

 The amount of data returned by an average query.

 The number of concurrent users you need to support.

 The target response time for a query.

The specific formula to apply is:

((Average query size in MB ÷ MCR) x Concurrent users) ÷ Target response time

For example, suppose the MCR of the CPU core you intend to use is 200 MBps. If an average query is
expected to return 18,000 MB, the anticipated number of concurrent users is 10, and each query must
respond within 60 seconds, the calculation to find the number of cores required is:

((18000 ÷ 200) x 10) ÷ 60

This results in a requirement for 15 cores, which should be rounded up to 16 because no CPU architecture
includes exactly 15 cores.

Now you know the number of cores required, you can make an initial determination of the number of
processors. For example, to provide 16 cores using quad-core processors, you would need four processors.
Alternatively, if dual-core processors are used, eight CPUs would be required. Remember that you need to
balance the number of CPUs to closely match the number of storage arrays that will be used, which in
turn may depend on the volume of data your data warehouse must support.

Estimating RAM Requirements
Calculating the amount of RAM required is difficult because memory can be utilized by many workloads
to increase overall performance. You should generally consider a minimum figure for a small to medium
sized data warehouse system to be 4 GB per core, or 64 to 128 GB per CPU socket. If you intend to use
column store indexes or support tabular data models on the data warehouse server, you should favor the
higher end of these estimates.

Another way to estimate memory requirements is to consider that, in an average data warehouse
workload, users regularly need to access approximately 20 percent of the data stored. For example, in a
data warehouse that stores five years of sales records, users most frequently query the data for the most

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-14 Planning Data Warehouse Infrastructure

recent year. Having enough memory to maintain approximately 20 percent of the data in cache will
significantly enhance performance.

Determining Storage Requirements

Before you can fully determine CPU, memory, and
storage hardware requirements, you must assess
the volume of data that the system must support.

Estimating Data Volumes for the Data
Warehouse
Most data warehouses consist predominantly of
fact data. Determining the volume of fact data the
data warehouse must store is the most significant
factor in assessing overall storage requirements.

1. Estimate Initial Fact Data
To start estimating data warehouse data volumes,
determine the number of fact rows that will be initially loaded into the data warehouse and multiply that
by the average size of a fact row. If you don’t know the average fact row size at this stage, use a
conservative estimate such as 100 bytes per row. For example, a data warehouse that will contain
200,000,000 fact rows, each 100 bytes in length, will have an initial fact data volume of approximately 20
GB.

2. Allow for Indexes and Dimensions
After estimating the initial fact data, add approximately 30 to 40 percent to allow for indexes and
dimensions. So, to continue the example with 20 GB of fact data, you would add approximately 8 GB (40
percent of 20 GB), giving an initial data volume of approximately 28 GB.

3. Project Fact Data Growth
Most data warehouses are refreshed with new data on a regular basis. To be sure that your storage
solution will support the data warehouse in the future (say, three years from now), you must factor in the
anticipated incremental data that will be loaded. For example, suppose the fact data in our data
warehouse represents individual items that have been ordered in sales transactions, and the company
typically sells 5,000,000 items a month, you can expect to load 5,000,000 rows (each containing 100 bytes
of data), or approximately 500 MB each month. That equates to a data growth rate of 6 GB per year, so in
three years, the example data warehouse would need to support the initial 28 GB of data plus another 18
GB (6 GB per year multiplied by three years), giving a total of 46 GB.

4. Factor In Compression
Finally, you should plan to compress the data in your data warehouse. Typically, SQL Server provides a
compression factor of approximately 3:1, so the 46 GB of data should compress to approximately 15.5 GB
on disk.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-15

Other Storage Requirements
In addition to the data warehouse, you must include other data in your storage estimation. Additional
storage is required for:

 Configuration databases. If databases used by other BI services, including the SSIS Catalog and
Reporting Services databases, are to be installed on the data warehouse server, you should include
them in your storage estimate. Additionally, the SQL Server instance includes system databases,
though in practice, these are usually stored separately from the data warehouse data files.

 Transaction log files. Each database requires a transaction log. Typically, data warehouses are
configured to use the simple recovery model and few transactions are actually logged.

 TempDB. Many data warehouse queries require temporary storage space. It is generally
recommended to locate TempDB on a suitable storage column and assign an appropriate initial size
to avoid the system having it grow automatically as needed.

 Staging tables. Whether or not data is staged in a dedicated staging database, in tables within the
data warehouse database itself, or in a combination of both, you must allocate enough space to allow
for data staging during ETL processes.

 Backups. If you intend to back up the data warehouse and other databases to disk, you must ensure
that the storage design provides space for backup files.

 Analysis Services models. If you intend to host multidimensional Analysis Services data models on
the data warehouse server, you must allocate sufficient disk space for them.

Considerations for Storage Hardware

The optimal storage hardware solution for a data
warehouse depends on several factors, including
the volume of data and the system MCR that data
throughput from the storage system must support.
When planning a storage solution, consider the
following guidelines:

 Use extra smaller disks instead of fewer
larger disks. Although it’s possible to create a
data warehouse that stores all its data on a
single, large hard disk, a better balance of
throughput (and therefore overall system
performance) can usually be achieved by
distributing the data across multiple small disks. This enables multiple disk reads to be performed in
parallel and reduces wait times for I/O operations.

 Use the fastest disks you can afford. Disk technologies have advanced dramatically in recent years,
with the speed of mechanical disks increasing and the advent of solid state disks with no moving
parts. Most data warehouse read operations are sequential scans instead of the random I/O patterns
of OLTP systems, so seek times are minimized. Regardless of this advantage, however, a faster disk
means greater throughput when reading data. Solid state disks are typically more expensive than
mechanical disks, but if disk performance is critical, you may decide that the additional cost is worth
paying. The lack of moving parts makes them particularly effective for random I/O data access, typical
of queries against multidimensional data models.

 Use RAID 10, or minimally RAID 5. RAID 10 (in which data is both mirrored and striped) provides
the best balance of read performance and protection from disk failure, and this should usually be the

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-16 Planning Data Warehouse Infrastructure

first choice for a data warehouse. However, the requirement for a complete set of redundant disks per
array can make this an expensive option. As an alternative, you can use RAID 5, which provides
striping for high read performance and parity-based data redundancy to protect against disk failure.

 Consider a dedicated storage area network. Although you can build a data warehouse with direct
attached storage (DAS), using a storage area network (SAN) generally makes it easier to manage disk
array configuration and to add future storage as the data warehouse grows. If you decide to use a
SAN, it is best to have one dedicated to the BI solution and not shared with other business
applications. Additionally, try to balance the number of enclosures, storage processors per enclosure,
and disk groups to achieve a consistent I/O rate that takes advantage of parallel core processing and
matches the MCR of the system.

SQL Server Data Warehouse Appliances

While Fast Track Data Warehouse reference
architectures can reduce the time and effort taken
to implement a data warehouse, organizations still
require technical expertise to assemble the
solution. To reduce the technical burden on
organizations, and reduce the time it takes to
implement a solution, Microsoft has partnered
with hardware vendors to create pre-configured
data warehouse appliances you can procure with a
single purchase.

The data warehouse appliances that are available
from Microsoft and its hardware partners are
based on tested configurations, including Fast Track reference architectures, and can significantly reduce
the time it takes to design, install, and optimize a data warehouse system.

Data warehouse appliances based on Fast Track Data Warehouse reference architectures are available for
organizations or departments that need to deploy a solution quickly and with minimal installation and
configuration effort. Additionally, large organizations requiring an enterprise data warehouse can
purchase an appliance based on SQL Server Parallel Data Warehouse for extreme scalability and
performance.

Data warehouse appliances form part of a range of SQL Server-based appliances that Microsoft and its
hardware partners have developed for common database workloads. Other types include business
decision appliances that provide self-service BI capabilities, and database server consolidation appliances
that use virtualization technologies to create a private cloud infrastructure for database servers. SQL
Server-based appliances are available from multiple hardware vendors, and include technical support for
the entire appliance, including software and hardware.

 Additional Reading: For more information about SQL Server 2008 R2 Data Warehouse
and Business Intelligence Appliances, go to http://go.microsoft.com/fwlink/?LinkID=246721.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-17

SQL Server Parallel Data Warehouse

Fast Track Data Warehouse systems and
appliances based on them use a symmetric
multiprocessing (SMP) architecture. With SMP, the
system bus is the limiting component that
prevents scaling up beyond a certain level. As the
number of processors and the data load increases,
the bus can become overloaded and a bottleneck
occurs. For data warehouses requiring greater
scalability than a SMP system can provide, you can
use an enterprise data warehouse appliance based
on Microsoft® SQL Server® Parallel Data
Warehouse.

Microsoft® SQL Server® Parallel Data Warehouse is an edition of SQL Server only available as a
preinstalled and configured solution in enterprise data warehouse appliances from Microsoft and its
hardware partners. Parallel Data Warehouse is designed specifically for extremely large-scale data
warehouses that need to store and query hundreds of terabytes of data.

Massively Parallel Processing
Parallel Data Warehouse uses a shared-nothing, massively parallel processing (MPP) architecture, which
delivers improved scalability and performance over SMP systems. MPP systems deliver much better
performance than SMP servers for large data loads. MPP systems use multiple servers, called nodes, which
process queries independently in parallel. Parallel processing involves distributing queries across the
nodes so that each processes only a part of the query. The results of the partial queries are combined after
processing completes to create a single result set.

Shared-nothing Architecture
Systems that use shared components, such as memory or disk storage, can suffer from performance issues
because of contention for those shared components. Contention occurs when multiple nodes attempt to
access a component at the same time, and usually results in degraded performance as nodes queue to
access resources. Shared-nothing architectures eliminate contention because each node has its own
dedicated set of hardware, which is not used by the others. Removing contention from a system results in
improved performance, and enables it to handle larger workloads.

Control Nodes, Compute Nodes, and Storage Nodes
A Parallel Data Warehouse appliance consists of a server acting as the control node, and multiple servers
representing compute and storage nodes. Each compute node has its own dedicated processors and
memory, and is associated with a dedicated storage node. A dual InfiniBand network connects the nodes,
and dual fiber channels link the compute nodes to the storage nodes. The control node intercepts
incoming queries, divides each query into multiple smaller operations, which it passes on to the compute
nodes to process. Each compute node returns the results of its processing back to the control node. The
control node integrates the data to create a result set, which it then returns to the client.

Control nodes are housed in a control rack. There are three other types of node that share this rack:

 Management nodes, through which administrators manage the appliance.

 Landing Zone nodes, which act as staging areas for data that you load into the data warehouse by
using an ETL tool.

 Backup nodes, which back up the data warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-18 Planning Data Warehouse Infrastructure

Compute nodes and storage nodes are housed separately in a data rack. To scale the application, you can
add more racks as required. Hardware components are duplicated, including control and compute nodes,
to provide redundancy.

You can use a Parallel Data Warehouse appliance as the hub in a hub-and-spoke configuration, and
populate data marts directly from the data warehouse. Using a hub-and-spoke configuration enables you
to integrate the appliance with existing data marts or create local data marts. If you use Fast Track Data
Warehouse systems to build the data marts, you can achieve very fast transfers of data between the hub
and the spokes.

 Additional Reading: For more information about the Parallel Data Warehouse for
Microsoft SQL Server 2008 R2, go to http://go.microsoft.com/fwlink/?LinkID=246722.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-19

Lab: Planning Data Warehouse Infrastructure
Scenario
You are planning a data warehouse solution for Adventure Works Cycles, and have been asked to specify
the hardware required. You must design a SQL Server-based solution that provides the right balance of
functionality, performance, and cost.

Objectives
After completing this lab, you will be able to:

 Plan data warehouse hardware for a SQL Server-based BI solution.

Estimated Time: 30 Minutes

Virtual Machine: 20463C-MIA-SQL

Use Name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Planning Data Warehouse Hardware

Scenario
Now you have planned the server infrastructure, you must create a hardware specification for the data
warehouse server. You will begin by calculating the MCR of the system you are currently using, then
complete a planning worksheet for a new system with a published MCR figure.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Measure Maximum Consumption Rate

3. Estimate Server Hardware Requirements

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab02\Starter folder as Administrator.

 Task 2: Measure Maximum Consumption Rate
1. Use the Create BenchmarkDB.sql script in the D:\Labfiles\Lab02\Starter folder to create a

benchmark database on the MIA-SQL instance of SQL Server.

2. Use the Measure MCR.sql script in the D:\Labfiles\Lab02\Starter folder to generate query
performance statistics.

3. Use the statistics to calculate MCR for the database server.

4. Use the calculated MCR figure to estimate the number of cores required to support the following
workload:

o Average data per query: 500 MB

o Concurrent users: 10

o Target response time: 20 sec

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-20 Planning Data Warehouse Infrastructure

 Task 3: Estimate Server Hardware Requirements
1. Use Microsoft Excel® to open the DW Hardware Spec.xlsx workbook in the

D:\Labfiles\Lab02\Starter folder.

2. Use the information in the workbook to:

o Calculate the number of cores required in the data warehouse server.

o Recommend the number and type (dual core or quad core) of processors to include in the data
warehouse server.

o Calculate the estimated volume of data in the data warehouse.

o Suggest a suitable amount of memory for the data warehouse server.

o Calculate the storage requirements for the data warehouse server, assuming a compression ratio
of 3:1.

3. Use Microsoft Word® to open the Storage options.docx document in the D:\Labfiles\Lab02\Starter
folder and review the available storage options.

4. Based on the storage requirements you have identified, select a suitable storage option and record
your selection in the DW Hardware Spec.xlsx workbook.

Results: After this exercise, you should have a completed worksheet that specifies the required hardware
for your data warehouse server.

Question: Review DW Hardware Spec.xlsx in the D:\Labfiles\Lab02\Solution folder. How
does the hardware specification in this workbook compare to the one you created in the lab?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 2-21

Module Review and Takeaways
This module has described some key considerations for planning the hardware infrastructure for a SQL
Server-based BI solution. You should use this as a starting point, and use the “more information”
references to learn more about the supported, distributed and scale-out architectures for SQL Server
components, and about the design principles used in Fast Track Data Warehouse reference architectures.

Review Question(s)
Question: In a growing number of organizations, virtualization has become a core platform
for infrastructure. Hyper-V in Windows Server® 2012, together with enterprise operations
and management software such as Microsoft® System Center® 2012, has enabled IT
departments to benefit from more simple provisioning, management, mobility, and
recoverability of services.

What components of a BI infrastructure would you consider virtualizing, and why?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-1

Module 3
Designing and Implementing a Data Warehouse

Contents:
Module Overview 3-1

Lesson 1: Data Warehouse Design Overview 3-2

Lesson 2: Designing Dimension Tables 3-8

Lesson 3: Designing Fact Tables 3-15

Lesson 4: Physical Design for a Data Warehouse 3-18

Lab: Implementing a Data Warehouse 3-30

Module Review and Takeaways 3-35

Module Overview
The data warehouse is at the heart of most business intelligence (BI) solutions. Designing the logical and
physical implementation of the data warehouse is crucial to the success of the BI project. Although a data
warehouse is fundamentally a database, there are some significant differences between the design process
and best practices for an online transaction processing (OLTP) database and a data warehouse that will
support online analytical processing (OLAP) and reporting workloads.

This module describes key considerations for the logical design of a data warehouse, and then discusses
best practices for its physical implementation.

Objectives
After completing this module, you will be able to:

 Describe a process for designing a dimensional model for a data warehouse.

 Design dimension tables for a data warehouse.

 Design fact tables for a data warehouse.

 Design and implement effective physical data structures for a data warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-2 Designing and Implementing a Data Warehouse

Lesson 1
Data Warehouse Design Overview

Before designing individual database tables and relationships, it is important to understand the key
concepts and design principles for a data warehouse. This lesson describes the dimensional model used in
most data warehouse designs and the process used to translate business requirements into a data
warehouse schema.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe where data warehouse design fits into an overall BI project.

 Describe the dimensional model used for most data warehouses.

 Apply an effective process for data warehouse design.

 Use a business process-based approach to dimensional modeling.

 Document dimensional model designs.

The Dimensional Model

Although data warehouses can be implemented as
normalized, relational database schemas, most
designs are based on the dimensional model
advocated by Ralph Kimball. In the dimensional
model, the numeric business measures that are
analyzed and reported are stored in fact tables,
which are related to multiple dimension tables, in
which the attributes by which the measures can be
aggregated are stored. For example, a fact table
might store sales order measures, such as revenue
and profit, and be related to dimension tables
representing business entities such as product and
customer. These relationships make it possible to aggregate the sales order measures by the attributes of
a product (for example, to find the total profit for a particular product model) or a customer (for example,
to find the total sales revenue for customers who live in a particular country).

Ideally, a dimensional model can be implemented in a database as a “star” schema, in which each fact
table is directly related to its relevant dimension tables. However, in some cases, one or more dimensions
may be normalized into a collection of related tables to form a “snowflake” schema. Generally, you should
avoid creating snowflake dimensions because, in a typical data warehouse workload, the performance
benefits of a single join between fact and dimension tables outweigh the data redundancy reduction
benefits of normalizing the dimension data.

The query optimizer in the Enterprise edition of SQL Server 2012 includes logic that detects star schema
joins in queries and optimizes the way these joins are processed accordingly. Based on the selectivity of
the query (that is, the proportion of rows from the fact table that the query is likely to return), the query
optimizer uses bitmap filters to quickly eliminate non-qualifying rows from the fact table (which generally
accounts for the largest cost in a data warehouse query).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-3

 Additional Reading: For more detailed information about star join query optimization, go
to Introduction to New Data Warehouse Scalability Features in SQL Server 2008 at
http://msdn.microsoft.com/en-us/library/cc278097(v=SQL.100).aspx and Data Warehouse Query
Performance at http://technet.microsoft.com/en-us/magazine/2008.04.dwperformance.aspx.

The Data Warehouse Design Process

Although every project has its unique
considerations, there is a commonly-used process
for designing a dimensional data warehouse that
many BI professionals have found effective. The
method is largely based on the data warehouse
design patterns identified and documented by
Ralph Kimball and the Kimball Group, though
some BI professionals may adopt a varied
approach to each task.

 Additional Reading: For a detailed
exploration of how to apply the Kimball
dimensional modeling methodology to a SQL Server-based data warehouse design, read The
Microsoft Data Warehouse Toolkit (Wiley, 2011).

1. Determine analytical and reporting requirements
After gathering the business requirements for the BI solution, you must interpret them regarding the
analytical and reporting capabilities that the solution must provide. Typically, analytical and reporting
requirements support business requirements, so you will probably need to spend time with the
stakeholders to understand the information that they need and to discuss how to achieve the best results.
For example, a sales executive might express a business requirement as: “We want to improve the
performance of sales representatives in the most poorly performing sales territories.” To meet this
requirement, you need to understand how “sales performance” is measured (for example, revenue,
profitability, number of orders, or a combination of all three) and against what aspects of the business it
should be aggregated.

Typically, asking questions such as: “How will you be able to tell if the business requirement is being met?”
leads the discussion toward the analytical and reporting requirements. For example, to determine if sales
performance is improving, the sales executive might need to be able to see “order volume by territory” or
“sales revenue by salesperson.” Requirements expressed like this make it easier to determine the measures
and dimensions the solution must include, because the requirement often takes the form “measure by
dimension”.

Additionally, most analytical and reporting requirements include a time-based aggregation. For example,
the sales executive might want to compare sales revenue by month or quarter.

2. Identify the business processes that generate the required data
Typically, the data required in the dimensional model is generated by an existing business process. After
determining the data you need to support analysis and reports, you must identify the business processes
that generate the source data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-4 Designing and Implementing a Data Warehouse

For example, a business might include the following processes:

 Order processing

 Stock management

 Order fulfillment

 Manufacturing

 Marketing and promotions

 Financial accounting

 Human Resources management

Each process generates data that includes numeric values and events that can be counted (these can be
sources for measures in a dimensional model) and information about key business entities (these can be
sources for dimension attributes).

3. Examine the source data for those business processes
In most organizations, each business process captures data in at least one system. For example, order
processing might store details of orders, customers, and products. A financial accounting process typically
stores details of accounts and balances.

A significant part of the data warehouse solution design process involves exploring the data in these
source systems and interviewing the users, system administrators, and application developers who
understand it best. Initial exploration might simply involve running Transact-SQL queries to determine
distinct value counts, average numerical values, and row counts. You can use the basic information
gathered from these initial queries and discussions with data specialists as a foundation for deeper data
profiling using tools such as the Data Profiling task in SQL Server Integration Services. This can determine
minimum and maximum field lengths, data sparseness and null counts, and the reliability of relational
dependencies.

At this stage, you do not need to perform a full data audit and start planning the extract, transform, and
load (ETL) solution. You do, however, need to identify if and where the measures and dimension attributes
you need to meet the reporting requirements are stored, what range of values exist for each required data
field, what data is missing or unknown, and at what granularity the data is available.

4. Conform dimensions across business processes
Identifying the business processes and exploring the data generated by each one will help you identify
some key business entities that are common across the various processes. For example, the order
processing, manufacturing, and stock management business processes might both deal with a “product”
entity. Similarly, the order processing and order fulfillment processes might both deal with a “customer”
entity. Identifying dimensions that can be shared across multiple business processes is an important part
of data warehouse design because it enables you to define “conformed” dimensions. These ensure that
the same definition of a business entity can be used to aggregate multiple facts and produce meaningful
comparisons. For example, by using a conformed product dimension, a data warehouse based on the
order processing, manufacturing, and stock management business processes will enable you to analyze a
specific product and compare the number ordered, the number manufactured, and the number held in
stock. If the product is perishable and has a limited shelf-life, this kind of comparison could provide
significant information for production planning and help reduce losses from spoiled, unsold products.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-5

5. Prioritize business processes and define a dimensional model for each
Based on the business value of the identified reporting and analytical requirements, prioritize the business
processes and create a dimensional model for each one that is required to provide the necessary
analytical and reporting data. To do this, you must perform the following steps:

1. Identify the grain.

2. Select the required dimensions.

3. Identify the facts.

The details are discussed in the next topic.

6. Document and refine the models to determine the database logical schema
After you create initial dimensional models for each required business process, you can document the
models to show:

 The measures in the fact tables.

 The related dimension tables.

 The attributes and hierarchies required in the dimension tables.

You can then iteratively refine the model to design the fact and dimension tables that will be required in
the data warehouse database. Considerations for fact and dimension tables are discussed later in this
module.

7. Design the physical data structures for the database
After you complete the logical database design, you can consider the physical implementation of the
database, including data file placement, indexes, table partitions, and data compression. These topics are
discussed in more depth later in this module.

Dimensional Modeling

After you identify the business processes and
conformed dimensions, you can document them
in a matrix, as shown on the slide. This approach is
based on the bus matrix design technique
promoted by the Kimball Group.

 Additional Reading: For more information
about using a bus matrix as part of a data
warehouse design project, read The Microsoft Data
Warehouse Toolkit (Wiley, 2011).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-6 Designing and Implementing a Data Warehouse

You can then use the matrix to select each business process based on priority, and design a dimensional
model by performing the following steps:

1. Identify the grain. The grain of a dimensional model is the lowest level of detail at which you can
aggregate the measures. It is important to choose the level of grain that will support the most
granular of reporting and analytical requirements, so typically the lowest level possible from the
source data is the best option. For example, an order processing system might record data at two
levels. There may be order-level data, such as the order date, salesperson, customer, and shipping
cost, as well as line item-level data like the products included in the order and their individual
quantities, unit costs, and selling prices. To support the most granular analysis and reporting, the
grain should be declared at the line item level, so the fact table will contain one row per line item.

2. Select the required dimensions. Next, determine which of the dimensions related to the business
process should be included in the model. The selection of dimensions depends on the reporting and
analytical requirements, specifically on the business entities by which users need to aggregate the
measures. Almost all dimensional models include a time-based dimension, and the others generally
become obvious as you review the requirements. At this stage, you might also begin to identify
specific attributes of the dimensions that will be needed, such as the country, state, and city of a
customer or the color and size of a product.

In the example on the slide, the Time, Customer, Product, and Salesperson dimensions are selected.

 Note: In this example, the Time dimension is used for both order and ship date. Although
it would be possible to define an individual dimension for each date type, it is more common to
create a single time dimension and use it for multiple roles. In an analytical model, these multiple
usages of the same dimension table are known as “role-playing dimensions”. This technique is
most commonly used for timetables, but it can be applied to any dimension that is used in
multiple ways. For example, a dimensional model for an airline flight-scheduling business process
might use a single Airport dimension to support Origin and Destination role-playing
dimensions.

3. Identify the facts. Finally, identify the facts that you want to include as measures. These are numeric
values that can be expressed at the level of the grain chosen earlier and aggregated across the
selected dimensions. Some facts will be taken directly from source systems, and others might be
derived from the base facts. For example, you might choose Quantity and Unit Price facts from an
order processing source system, and then calculate a total Sales Amount. Additionally, depending on
the grain you choose for the dimensional model and the grain of the source data, you might need to
allocate measures from a higher level of grain across multiple fact rows. For example, if the source
system for the order processing business process includes a Tax measure at the order level, but the
facts are to be stored at the line item level, you must decide how to allocate the tax amount across
the line items. Typically, tax is calculated as a percentage of selling price, so it should be
straightforward to apply the appropriate tax rate to each line item based on the sales amount.

In the example on the slide, the Item Quantity, Unit Cost, and Unit Price measures are taken from the
source system at the line item level. From these, the Total Cost and Sales Amount measures for each line
item can be calculated. Additionally, the Shipping Cost measure is defined at the order level in the source
system, so it must be allocated across the line items. You do this by dividing it equally across each row or
applying a calculation that distributes the shared cost based on the quantity of each item ordered, total
line item weight, or some other appropriate formula.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-7

Documenting Dimensional Models

After you design the initial dimensional models for
each business process, you can document them in
a simple diagram. A common format for this
documentation is a sun diagram, in which a fact
table is shown at the center of the dimensions to
which it is related.

As you refine the dimensional model, you can add
more detail to the sun diagram, including the
measures in the fact table and the attributes in the
dimension tables. In most cases, some or all of the
dimension attributes can be used to form a
hierarchy for drill-down analysis, for example,
enabling users to view aggregations of sales amount by year, month, and date or by country, state, and
city. You can add these hierarchies to the sun diagram to help you communicate and validate model
design with business stakeholders.

Eventually, the simple diagram will be refined to the point where it can be easily translated into a schema
design for database tables. At this stage, you can use a diagramming tool such as Microsoft Visio® or a
specialist database modeling tool to start designing the logical schema of your data warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-8 Designing and Implementing a Data Warehouse

Lesson 2
Designing Dimension Tables

After designing the dimensional models for the data warehouse, you can translate the design into a
logical schema for the database. However, before you design dimension tables, it is important to consider
some common design patterns and apply them to your table specifications.

This lesson discusses some of the key considerations for designing dimension tables.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe considerations for dimension keys.

 Describe considerations for dimension attributes and hierarchies.

 Design dimensions that support values for “none” or “unknown”.

 Design appropriate slowly-changing dimensions for your business requirements.

 Design time dimension tables.

 Design self-referencing dimension tables.

 Include junk dimensions in a data warehouse design where appropriate.

Considerations for Dimension Keys

Each row in a dimension table represents an
instance of a business entity by which the
measures in the fact table can be aggregated. Like
other tables in a database, a key column uniquely
identifies each row in the dimension table. In
many scenarios, the dimension data is obtained
from a source system in which a key is already
assigned (sometimes referred to as the “business”
key). When designing a data warehouse, however,
it is standard practice to define a new “surrogate”
key that uses an integer value to identify each row.
A surrogate key is recommended for the following
reasons:

 The data warehouse might use dimension data from multiple source systems, so it is possible that
business keys are not unique.

 Some source systems use non-numeric keys, such as a globally unique identifier (GUID), or natural
keys, such as an email address, to uniquely identify data entities. Integer keys are smaller and more
efficient to use in joins from fact tables.

 Each row in a dimension table represents a specific version of a business entity instance. If the
dimension table supports “Type 2” slowly-changing dimensions, the table might need to contain
multiple rows that represent different versions of the same entity. These rows will have the same
business key and won’t be uniquely identifiable without a surrogate key.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-9

Typically, the business key is retained in the dimension table as an “alternate” key. Business keys that are
based on natural keys can be familiar to users analyzing the data. For example, a ProductCode business
key that users will recognize might be used as an alternate key in the Product dimension table. However,
the main reason for retaining a business key is to make it easier to manage slowly-changing dimensions
when loading new data into the dimension table. The ETL process can use the alternate key as a lookup
column to determine whether an instance of a business entity already exists in the dimension table.

Dimension Attributes and Hierarchies

In addition to the surrogate and alternate key
columns, a dimension table includes a column for
each attribute of the business entity that is needed
to support reporting and analytical requirements.
When designing a dimension table, you need to
identify and include attributes that will be used in
reports and analysis. Typically, dimension
attributes are used in one of the following three
ways:

 Hierarchies. Multiple attributes can be
combined to form hierarchies that enable
users to drill down into deeper levels of detail.
For example, the Customer table in the slide includes Country, State, and City attributes that can be
combined to form a natural geographical hierarchy. Business users can view aggregated fact data at
each level, for example, to see sales order revenue by country. They can then access a specific country
to see a breakdown by state, before drilling further into a specific state to see sales revenue by city.

 Slicers. Attributes do not need to form hierarchies to be useful in analysis and reporting. Business
users can group or filter data based on single-level hierarchies to create analytical sub-groupings of
data. For example, the Gender attribute in the Customer table can be used to compare sales revenue
for male and female customers.

 Drill-through detail. Some attributes have little value as slicers or members of a hierarchy. For
example, it may be unlikely that a business user will need to analyze sales revenue by customer phone
number. However, it can be useful to include entity-specific attributes to facilitate drill-through
functionality in reports or analytical applications. For example, in a sales order report that enables
users to drill down to the individual order level, users might want to double-click an order and drill
through to see the name and phone number of the customer who placed it.

 Note: Terminology for interacting with report data can be confusing, and is sometimes
used inconsistently. For clarity in this course, the term “drill down” means expanding a hierarchy
to see the next level of aggregation, and “drill through” means viewing details outside the
current hierarchy for a selected row. For example, while considering sales revenue by customer
geography, you might view total revenue for a specific country in the hierarchy. You might then
“drill down” to see a subtotal for each state within that country (the next level in the hierarchy),
or “drill through” to see the country’s demographic details.

In the example on the slide, note that the Name column contains the full name of the customer. In a data
warehouse table schema, it is not usually necessary to normalize the data to its most atomic level as is
common in OLTP systems. In this example, it is unlikely that users will want to group or filter data by the
customer’s first or last name, and the data only has drill-through value at the full name level of detail.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-10 Designing and Implementing a Data Warehouse

Therefore, the FirstName, MiddleName, and LastName columns in the source system have been
combined into a single Name field in the data warehouse.

Unknown and None

As a general rule, try to design your data
warehouse in a way that eliminates, or at least
minimizes, NULL values, particularly in fact table
key columns that reference dimension tables.
NULL values make it easy to accidentally eliminate
rows from reports and produce misleading totals.

Identifying the semantic meaning
of NULL
When you explore the source data for your BI
solution, pay particular attention to how NULL
values are used. The semantic meaning of NULL
might be “None” or “Unknown,” depending on the
context, and only by examining the data and consulting the users, administrators, and developers who are
familiar with the source system, will you be able to confidently determine which is relevant. In the
example on the slide, the source data includes a column named DiscountType, in which two rows have a
missing, or NULL, value. The fact that these rows include a non-zero Discount value indicates that NULL
does not necessarily always mean “None”, and is more likely to denote “Unknown.” Additionally, on the
rows where the Discount value is zero, the DiscountType value is consistently “N/A,” implying that “N/A”
is used in this system to mean “None.”

To support these two cases, a row for each is added to the dimension table with appropriate surrogate
keys, such as -1 for “Unknown” and 0 for “None”. If the source systems were more ambiguous, you could
add a single row to the dimension table to represent “None or Unknown.”

NULL equality
Depending on the settings in a SQL Server database, you might not be able to compare NULL values for
equality. In its strictest definition, NULL means unknown, so a “NULL = NULL” comparison is actually
asking if one unknown value is the same as another, and because both values are unknown, the answer is
also unknown (and therefore NULL). You should not use NULL as the alternate key for the “Unknown”
dimension row, because lookup queries during the ETL load process must compare this key to the data
being loaded to determine whether a dimension row already exists. Instead, use an appropriate key value
that is unlikely to be the same as an existing business key, and use the Transact-SQL ISNULL function to
compare source rows with dimension rows, as shown in the following code sample:

SELECT d.DiscKey, s.DiscountType
FROM DimDiscount AS d
JOIN SourceData AS s ON ISNULL(s.DiscountType, 'Unknown') = d.DiscAltKey

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-11

Designing Slowly Changing Dimensions

Slowly changing dimensions (SCDs) are a
significant consideration in the design of
dimension tables. You should try to identify
requirements for maintaining historic dimension
attribute values as early as possible in the design
process.

There are three common techniques used to
handle attribute value changes in SCDs:

 Type 1. These changes are the simplest type
of SCD to implement. Attribute values are
updated directly in the existing dimension
table row and no history is maintained. This
makes Type 1 changes suitable for attributes that are used to provide drill-through details, but
unsuitable for analytical slicers or hierarchy members where historic comparisons must reflect the
attribute values as they were at the time of the fact event.

 Type 2. These changes involve the creation of a fresh version of the dimension entity in the form of a
new row. Typically, a bit column in the dimension table is used as a flag to indicate which version of
the dimension row is the current one. Additionally, datetime columns are often used to indicate the
start and end of the period for which a version of the row was (or is) current. Maintaining start and
end dates makes it easier to assign the appropriate foreign key value to fact rows as they are loaded
so they are related to the version of the dimension entity that was current at the time the fact
occurred.

 Type 3. These changes are rarely used. In a Type 3 change, the previous value (or sometimes a
complete history of previous values) is maintained in the dimension table row. This requires
modifying the dimension table schema to accommodate new values for each tracked attribute, and
can result in a complex dimension table that is difficult to manage.

After you define the dimensional model for the data warehouse and are evolving your design from a sun
diagram to a database schema, it can be useful to annotate dimension attributes to indicate what kind of
SCD changes they must support. This will help you plan the metadata columns required for each
dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-12 Designing and Implementing a Data Warehouse

Time Dimension Tables

Most analysis and reporting requirements include
a need to aggregate values over time periods, so
almost every data warehouse includes a time
dimension table. When you design a time
dimension table, you must take into account the
following considerations:

 Surrogate key. Although best practice for
surrogate keys in dimension tables is normally
to use a simple integer value with no semantic
meaning, time dimension tables can benefit
from an integer representation of the date or
time that the row represents. Ideally, the
values should be in ascending order relative to the dates they represent, so the best approach is to
concatenate the integer values for each date part in descending order of scope. For example, using
the YYYYMMDD pattern to represent dates, the value for January 31, 2013, would be 20130131. This
ensures that the value used for the next sequential date of February 1, 2013, is a higher value of
20130201. Ascending values are recommended because data warehouse queries typically filter on a
range of date or time values. The ascending numeric key enables you to use indexes and partitions
that store the fact data in chronological order, and enables the query optimizer to use sequential
scans to read the data. Additionally, the actual datetime value for the row is generally used as the
alternate key to support datetime functions or client applications that can apply datetime-specific
logic.

 Granularity. The level of granularity used for a time dimension table depends on business
requirements. For many reporting and analysis scenarios, such as viewing details about sales orders,
the lowest level of granularity likely to be required is a day. However, in some scenarios, users might
need to aggregate facts by hours, minutes, or seconds, or even smaller increments. The lower the
level of granularity used, the more rows will exist in the dimension table, and storing a row for
increments of less than a day can result in extremely large tables. An alternative approach is to create
a “date” dimension table that contains a row for each day, and a “time” dimension table that stores a
row for each required time increment in a 24-hour period. Fact tables that are used for analysis of
measures at the day level or higher can only be related to the date dimension table. Facts measured
at smaller time increments can be related to both date and time dimension tables.

 Range. Typically, a time dimension table stores a row for each increment between a start point and
an end point with no gaps. For example, a data warehouse time dimension used to analyze sales
orders might have a row for each day between the first ever and most recent orders, even if no orders
were placed during the intervening days. In reality, the start and end dates are typically based on key
calendar dates. For example, the start date might be January 1 of the year the company started
trading, or when its first fiscal year began. The end date is usually some future point, such as the end
of the current year. To maintain a buffer of future dates, more rows are added automatically as the
end date gets closer. If the data warehouse will be used to create and store projections or budget
figures for future operations, you will need to choose an end date that is far enough into the future.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-13

 Attributes and hierarchies. You need to include attributes for each time period by which data will
be aggregated, for example, year, quarter, month, week, and day. These attributes tend to form
natural hierarchies. You can also add attributes to be used as slicers, such as “weekday” which, for
example, would enable users to compare typical sales volumes for each day of the week. In addition
to numeric values, you might want to include attributes for date element names, such as “month” and
“day”. This enables more accessible reports where, for example, users could compare sales in March
and April instead of month 3 and 4. You should also include the numeric equivalents so that client
applications can use them to sort data into the correct chronological order, such as sorting months by
month number instead of by month name.

 Multiple calendars. Many organizations need to support multiple calendars, for example a normal
year that runs from January to December, and a fiscal calendar, which might run from April to March.
If this is the case in your data warehouse, you can either create a separate time dimension table for
each calendar or, more preferably, include attributes for all alternative calendar values in a single time
dimension table. For example, a time dimension table might include a Calendar Year and a Fiscal
Year attribute.

 Unknown values. In common with other dimension tables, you might need to support facts for
which a date or time value is unknown. Instead of requiring a NULL value in the fact table, consider
creating a row for unknown values in the time dimension table. You can use an obvious surrogate key
value, such as 00000000, for this row. However, because the alternate key must be a valid date, you
should choose one outside the normal range of business operations, such as January 1, 1753, or
December 31, 9999. These are the minimum and maximum values supported by the datetime data
type.

Populating a Time Dimension Table
Unlike most other tables in a data warehouse, time dimension tables are not usually populated with data
that has been extracted from a source system. Generally, the data warehouse developer populates the
time dimension table with rows at the appropriate granularity. These rows usually consist of a numeric
primary key that is derived from the temporal value (such as 20110101 for January 1, 2011) and a column
for each dimension attribute (such as the date, day of year, day name, month of year, month name, year,
and so on). To generate the rows for the time dimension table, you can use one of the following
techniques:

 Create a Transact-SQL script. Transact-SQL includes many date and time functions that you can use
in a loop construct to generate the required attribute values for a sequence of time intervals. The
following Transact-SQL functions are commonly used to calculate date and time values:

o DATEPART (datepart, date) returns the numerical part of a date, such as the weekday number,
day of month, month of year, and so on.

o DATENAME (datepart, date) returns the string name of a part of the date, such as the weekday
name or month name.

o MONTH (date) returns the month number of the year for a given date.

o YEAR (date) returns the year for a given date.

 Use Microsoft® Excel®. Excel includes several functions that you can use to create formulas for date
and time values. You can then use the auto-fill functionality in Excel to quickly create a large table of
values for a sequence of time intervals.

 Use a BI tool to autogenerate a time dimension table. Some BI tools include time dimension
generation functionality that you can use to quickly create a time dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-14 Designing and Implementing a Data Warehouse

Self-Referencing Dimension Tables

A common requirement in a data warehouse is to
support dimensions with parent-child hierarchies.
For example, an employee dimension might
consist of managers, each of whom has employees
reporting to him or her, who in turn might have
reports of their own.

Typically, parent-child hierarchies are
implemented as self-referencing tables, in which a
column in each row is used as a foreign-key
reference to a primary-key value in the same table.
Some client applications, including SQL Server
Analysis Services, are aware of self-joins and can
automatically handle parent-child hierarchies in a dimension. For other applications, you might need to
implement some custom, recursive logic to enable analysis and reporting of these hierarchies.

When you implement a self-referencing dimension table in a data warehouse, you should think about the
following considerations:

 Like all dimension load operations, when records are to be added to the dimension table, the ETL
process must look up the alternate key to determine if a record already exists for the entity. However,
the alternate key of the parent record must also be looked up to determine the correct surrogate key
to use in the foreign key column.

 You may have to deal with a situation where you need to add a record for which the parent record
has not yet been loaded.

 Supporting Type 2 SCDs in a self-referencing dimension table can be complex. In a worst case
scenario, you might perform a Type 2 change that results in a new row and, therefore, a new
surrogate key. You may then need to cascade that Type 2 change to create new rows for all
descendants of the entity if the change has not altered the parent-child relationships.

Junk Dimensions

In some reporting and analytical requirements,
there are useful attributes for grouping or filtering
facts which do not belong in any of the
dimensions defined in the dimensional model. If
these attributes have low cardinality, when there
are only a few discrete values, you can group them
into a single dimension table containing
miscellaneous analytical values. This kind of
dimension table is generally referred to as a “junk
dimension” and is used to avoid creating multiple,
very small dimension tables.

For example, a sales order dimensional model
might include “true or false” indicators for orders where goods were out of stock or where free shipping
was provided. There may be a column that stores “credit” or “debit” to indicate the payment method.
Instead of creating a dimension table for each of these attributes, you could merge them in every possible
combination in a junk dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-15

Lesson 3
Designing Fact Tables

Fact tables contain the numeric measures that can be aggregated across the dimensions in your
dimensional model, and can become extremely large. It is important to design them carefully with
reporting and analytical requirements, performance, and manageability in mind.

This lesson discusses common considerations for fact table design.

Lesson Objectives
After completing this lesson, you will be able to:

 Determine appropriate columns for a fact table.

 Design a fact table at an appropriate level of grain.

 Describe the types of measure that are stored in a fact table.

 Describe common types of fact table.

Fact Table Columns

A fact table usually consists of the following kinds
of columns:

 Dimension keys. Fact tables reference
dimension tables by storing the surrogate key
for each related dimension. In this way, a row
in a fact table is conceptually an intersection
between the dimension tables to which it
relates. For example, recording a sales order
placed on a specific date, for a specific
product, by a specific customer. You can add
foreign key constraints to these columns,
which will help the SQL Server query
optimizer detect star joins. However, constraints can slow down data load operations, and because
the surrogate keys are generated during a controlled ETL process, they do little to enforce referential
integrity.

 Measures. In most cases, a fact table is primarily used to store numeric measures that can be
aggregated by the related dimensions. For example, a row in a fact table recording sales orders might
include a column for the sales amount, which can then be aggregated by the dimensions to show
sales amount by date, product, or customer. In some cases, a fact table contains no measures and is
simply used to indicate that an intersection occurred between the related dimensions. For example, a
fact table in a manufacturing dimensional model might record a single row each time a product
assembly is completed, indicating the product and date dimension keys. The fact table can then be
used to calculate the number of times an assembly of each product was completed per time period
by simply counting the distinct rows. A fact table with no numeric measure columns is sometimes
referred to as a “factless fact table”.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-16 Designing and Implementing a Data Warehouse

 Degenerate dimensions. Sometimes, a fact has associated attributes that are neither keys nor
measures, but which can be useful to group or filter facts in a report or analysis. You might include
this column in the fact table where client applications can use it as a “degenerate dimension” by
which the fact data can be aggregated. In effect, including degenerate dimension columns in a fact
table enables it to also be used as a dimension table. Using degenerate dimensions can be a good
alternative to using a junk dimension if the analytical attributes are specific to a single fact table.

 Note: Unlike most database tables, a fact table does not necessarily require a primary key.
Unless you have a business requirement to uniquely identify each row in the fact table, you
should avoid creating a unique key column for the fact table and defining a primary key
constraint. Facts are generally aggregated, and queries rarely need to individually identify a fact
row. In some cases, the combination of dimension keys can uniquely identify a fact row, but this
is not guaranteed. For example, a customer could purchase the same product twice in one day.

Types of Measure

Fact tables can contain the following three kinds
of measure:

 Additive measures. These can be summed
across all dimensions. For example, you could
use a SalesAmount measure in a fact table
with OrderDateKey, ProductKey, and
CustomerKey dimension keys to calculate
total sales amount by time period (such as
month), product, or customer.

 Semi-additive measures. These can be
summed by some dimensions, but not others.
Commonly, semi-additive measures cannot be
summed by time dimensions. For example, the number of items in stock at the end of each day might
be recorded as a StockCount measure in a fact table with DateKey and ProductKey dimension keys
that can be used to calculate a total stock count for all products. However, summing the stock count
across all the days in a month does not result in a total stock count value for that period. To find out
how products are in stock at the end of the month, you must use only the StockCount value for the
final day.

 Non-additive measures. These cannot be summed by any dimension. For example, a fact table for
sales orders might include a ProfitMargin measure that records the profit margin for each order.
However, you cannot calculate the overall margin for any dimension by summing the individual profit
margins.

Generally, semi-additive and non-additive measures can be aggregated by using other functions. For
example, you could find the minimum stock count for a month or the average profit margin for a product.
Understanding the ways in which the measures can be meaningfully aggregated is useful when testing
and troubleshooting data warehouse queries and reports.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-17

Types of Fact Table

Generally, data warehouses include fact tables that
are one of the following three types:

 Transaction fact tables. The most common
kind of fact table is a “transaction” fact table,
in which each row records a transaction or
event at an appropriate grain. For example, a
fact table might record sales orders at the line
item grain, in which each row records the
purchase of a specific item. Transaction fact
table measures are usually additive.

 Periodic snapshot tables. These record
measure values at a specific point in time. For
example, a fact table might record the stock movement for each day, including the opening and
closing stock count figures. Measures in a periodic snapshot fact table are often semi-additive.

 Accumulating snapshot fact tables. These can be used in scenarios where you might want to use a
fact table to track the progress of a business process through multiple stages. For example, a fact
table might track an order from initial purchase through to delivery by including a date dimension-
key field for the order date, shipping date, and delivery date. The ShipDate and DeliveryDate
columns for orders that have been placed but not yet shipped will contain the dimension key for an
“Unknown” or ”None” row in the time dimension table. These will be updated to reflect the
appropriate dimension key as the order is shipped and delivered.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-18 Designing and Implementing a Data Warehouse

Lesson 4
Physical Design for a Data Warehouse

After designing the logical schema for the data warehouse, you need to implement it as a physical
database. This requires careful planning for file placement, data structures such as partitions and indexes,
and compression. This lesson discusses considerations for all these aspects of the physical database
design.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe typical data warehouse I/O activity.

 Plan file placement for a data warehouse.

 Plan partitioning for data warehouse tables.

 Design effective indexes for data warehouse queries.

 Plan data compression for a data warehouse.

 Design views in a data warehouse.

Data Warehouses I/O Activity

Before designing the physical database for the
data warehouse, it is useful to consider the types
of workload it must support and the data it must
store. The database must store potentially very
large fact tables with millions of rows, and
dimension tables that are often related to fact
tables by a single join. Typically, the I/O activity in
the database is generated by one of the workloads
described in this section or caused by maintenance
operations, such as backups.

ETL
ETL processes affect the data warehouse when
they load new or updated data into the data warehouse tables. In most cases, the inserts are performed as
bulk load operations to minimize logging and constraint checking. The load process may involve some
lookup operations to find alternate keys for slowly-changing dimensions, and some update operations for
Type 1 dimension changes or data modifications in fact tables where appropriate. Depending on the
design of the data structures, ETL load operations might also involve dropping and rebuilding indexes and
splitting partitions.

Data models
After each new load, any data models based on the data warehouse must be processed. This involves
reading data from the data warehouse tables into the data model and pre-aggregating measures to
optimize analysis queries. Depending on the size of the data warehouse and the time window for the
processing operation, the entire data model may be completely processed after each load, or an
incremental approach may be used, in which only new or modified data is handled.

Because of the volume of data being loaded into the model, the I/O activity typically involves sequential
table scans to read entire tables, particularly when performing a full process of the data model.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-19

Reports
In some scenarios, all reporting is performed against the data models, so it does not affect the data
warehouse tables. However, it is common for some reports to query the data warehouse directly. In
scenarios where IT-provided reports are supported, the queries are generally predictable and retrieve
many rows with range-based query filters, often on a date field.

User queries
If self-service reporting is supported, users may be able to execute queries in the data warehouse or use
tools that generate queries on their behalf. Depending on the query expertise of the users, this can result
in complex, unpredictable queries.

Consideration for Database Files

In Module 2: Planning BI Infrastructure, some key
considerations for data warehouse storage
hardware were discussed and it was recommended
that storage be provided by multiple disks
configured as RAID 10 or RAID 5 arrays. This
storage is presented to the data warehouse server
as multiple logical disks that are sometimes
referred to as logical unit numbers (LUNs), though
technically a LUN is used to identify a unit of SCSI-
based storage. When designing the file placement
for your data warehouse, you must decide how
best to use these logical disks.

Data files and filegroups
Data files are used to pre-allocate disk storage for database objects. When planning files for a data
warehouse, consider the following guidelines:

 Create files with an initial size, based on the eventual size of the objects that will be stored on them.
This pre-allocates sequential disk blocks and helps avoid fragmentation.

 Disable autogrowth. If you begin to run out of space in a data file, it is more efficient to explicitly
increase the file size by a large amount rather than rely on incremental autogrowth.

Because the logical disks for the database files are typically already configured as RAID 10 or RAID 5
arrays, you do not need to use filegroups to distribute tables across physical disk platters to improve I/O
performance. However, you should consider the following guidance for using filegroups in a data
warehouse:

 Create at least one filegroup in addition to the primary one, and then set it as the default filegroup so
you can separate data tables from system tables.

 Consider creating dedicated filegroups for extremely large fact tables and using them to place those
fact tables on their own logical disks.

 If some tables in the data warehouse are loaded on a different schedule from others, consider using
filegroups to separate the tables into groups that can be backed up independently.

 If you intend to partition a large fact table, create a filegroup for each one so that older, stable rows
can be backed up, and then set as read-only.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-20 Designing and Implementing a Data Warehouse

Staging tables
Most data warehouses require staging tables to support incremental data loads from the ETL process. In
some cases, you might use a separate staging database as well as staging tables in the data warehouse
itself. Consider the following recommendations for staging tables:

 If a separate staging database is to be used, create it on a logical disk distinct from the data
warehouse files.

 If the data warehouse will include staging tables, create a file and filegroup for them on a logical disk,
separate from the fact and dimension tables.

 An exception to the previous guideline is made for staging tables that will be switched with partitions
to perform fast loads. These must be created on the same filegroup as the partition with which they
will be switched.

TempDB
TempDB is used for temporary objects required for query processing. To avoid fragmentation of data files,
place it on a dedicated logical disk and set its initial size based on how much it is likely to be used. You
can leave autogrowth enabled, but set the growth increment to be quite large to ensure that performance
is not interrupted by frequent growth of TempDB. Additionally, consider creating multiple files for
TempDB to help minimize contention during page free space (PFS) scans as temporary objects are created
and dropped.

Transaction logs
Generally, the transaction mode of the data warehouse, staging database, and TempDB should be set to
Simple to avoid having to truncate transaction logs. Additionally, most of the inserts in a data warehouse
are typically performed as bulk load operations which are not logged. To avoid disk resource conflicts
between data warehouse I/O and logging, place the transaction log files for all databases on a dedicated
logical disk.

Backup files
You will need to implement a backup routine for the data warehouse, and potentially for a staging
database. In most cases, you will back up these databases to disk, so allocate a logical disk for this
purpose. You could allocate multiple logical disks and perform a mirrored backup, but because the disks
are already configured as RAID 5 or RAID 10 arrays, this would be of little benefit from a performance
perspective. Note that the backup files should be copied to offsite storage to provide protection in the
case of a complete storage hardware failure or natural disaster.

Table Partitioning

Partitioning a table distributes data based on a
function that defines a range of values for each
partition. A partition scheme maps partitions to
filegroups, and the table is partitioned by applying
the partition scheme to the values in a specified
column.

 Note: For information about how to
implement partitioning, see Partitioned Tables and
Indexes in SQL Server Books Online.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-21

Why use partitioning?
Partitioning a large table can produce the following benefits:

 Improved query performance. By partitioning a table across filegroups, you can place specific
ranges of data on different disk spindles, which can improve I/O performance. In most data
warehouses, the disk storage is already configured as a RAID 10 or RAID 5 array, so this usually has
little benefit. However, when using a mix of fast solid state storage for recent, frequently- accessed
data, and mechanical disks for older, less queried rows, you can use partitioning to balance disk
performance against storage costs. The biggest performance gain from partitioning in a data
warehouse is realized when queries return a range of rows that are filtered on the partitioning key. In
this case, the query optimizer can eliminate partitions that are not within the filter range, and
dramatically reduce the number of rows that need to be read.

 More granular manageability. When you partition a large table, you can perform some
maintenance operations at the partition level instead of on the whole table. For example, indexes can
be created and rebuilt on a per-partition basis, and compression can be applied to individual
partitions. It is also possible to back up and restore partitions independently by mapping them to
filegroups. This enables you to back up older data once, and then configure the backed-up partitions
as read-only. Future backups can be limited to the partitions that contain new or updated data.

 Improved data load performance. The biggest benefit of using partitioning in a data warehouse is
that it enables you to load many rows quickly by switching a staging table with a partition. This
technique dramatically reduces the time taken by ETL data loads, and with the right planning, it can
be achieved with minimal requirements to drop or rebuild indexes.

Best practices for partitioning in a data warehouse
When planning a data warehouse, consider the following best practices for partitioning:

 Partition large fact tables. Fact tables of around 50 GB or more should usually be partitioned for the
reasons described earlier. In general, fact tables benefit from partitioning more than dimension tables.

 Partition on an incrementing date key. When defining a partition scheme for a fact table, use a
date key that reflects the age of the data as it is incrementally loaded by the ETL process. For
example, if a fact table contains sales order data, partitioning on the order date ensures that the most
recent orders are in the last partition and the earliest ones are in the first.

 Design the partition scheme for ETL and manageability. In a data warehouse, the query
performance gains realized by partitioning are small compared to the manageability and data load
performance benefits. Ideally, your partitions should reflect the ETL load frequency (for example,
monthly, weekly, daily) because this simplifies the load process. However, you may want to merge
partitions periodically to reduce their overall number. For example, at the start of each year, you
could merge the monthly partitions for the previous year into a single partition for the whole year.

 Maintain an empty partition at the start and end of the table. You can use an empty partition at
the end of the table to simplify the loading of new rows. When a new set of fact table rows must be
loaded, you can place them in a staging table, split the empty partition (to create two empty
partitions), and then switch the staged data with the first empty partition. This loads the data into the
table and leaves the second empty partition you created at the end of the table ready for the next
load. You can use a similar technique to archive or delete obsolete data at the beginning of the table.

 Note: Partitioning is only available in SQL Server Enterprise edition. In previous releases of
SQL Server Enterprise edition, the number of partitions per table was limited to 1,000. In SQL
Server 2012, this limit has been extended to 15,000. On 32-bit systems, you can create a table or
index with more than 1,000 partitions, but this is not supported.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-22 Designing and Implementing a Data Warehouse

Demonstration: Partitioning a Fact Table

This demonstration shows how to create and use a partitioned table.

Demonstration Steps
Create a Partitioned Table

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Start SQL Server Management Studio and connect to the MIA-SQL instance of the database engine
by using Windows authentication.

3. Open Partitions.sql from the D:\Demofiles\Mod03 folder.

4. Select the code under the comment Create a database, and then click Execute. This creates a
database for the demonstration.

5. Select the code under the comment Create filegroups, and then click Execute. This creates four
filegroups in the demo database.

6. Select the code under the comment Create partition function and scheme, and then click Execute.
This creates a partition function that defines four ranges of values (less than 20000101, 20000101 to
20010100, 20010101 to 20020100, and 20020101 and higher), and a partition scheme that maps
these ranges to the FG0000, FG2000, FG2001, and FG2002 filegroups.

7. Select the code under the comment Create a partitioned table, and then click Execute. This creates
a partitioned table on the partition scheme you created previously.

8. Select the code under the comment Insert data into the partitioned table, and then click Execute.
This inserts four records into the table.

View Partition Metadata

1. Select the code under the comment Query the table, and then click Execute. This retrieves rows
from the table and uses the $PARTITION function to show which partition the datekey value in each
row is assigned to. This function is useful for determining which partition of a partition function a
specific value belongs in.

2. Select the code under the comment View filegroups, partitions, and rows, and then click Execute.
This code uses system tables to show the partitioned storage and the number of rows in each
partition. Note that there are two empty partitions, one at the beginning of the table, and one at the
end.

Split a Partition

1. Select the code under the comment Add a new filegroup and make it the next used, and then
click Execute. This creates a new filegroup named FG2003 and adds it to the partition scheme as the
next used partition.

2. Select the code under the comment Split the empty partition at the end, and then click Execute.
This creates a new partition for values of 20030101 and higher and assigns it to the next used
filegroup (FG2003), leaving an empty partition for values between 20020101 and 20030100.

3. Select the code under the comment Insert new data, and then click Execute. This inserts two new
rows into the partitioned table.

4. Select the code under the comment View partition metadata, and then click Execute. This shows
that the two rows inserted in the previous step are in partition 4, and that partition 5 (on FG2003) is
empty.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-23

Merge Partitions

1. Select the code under the comment Merge the 2000 and 2001 partitions, and then click Execute.
This merges the partition that contains the value 20010101 into the previous partition.

2. Select the code under the comment View partition metadata, and then click Execute. This shows
that partition 2 (on FG2000) now contains four rows, and that the partition previously on FG2001 has
been removed.

3. Close Partitions.sql but keep SQL Server Management Studio open for the next demonstration.

Considerations for Indexes

Most databases use indexes to maximize query
performance, and planning them is an important
part of the database design process. Before
deciding which indexes to create, you need to
understand the workloads the database must
support, and balance the need for improved query
performance against the effect that indexes will
have on data inserts and updates, as well as the
overhead of maintaining indexes.

At first glance, a data warehouse seems to support
mostly read operations, so some inexperienced BI
professionals are tempted to create many indexes
on all tables to support queries. However, another significant workload in most data warehouses is the
regular ETL data load, which can often involve many inserts and updates. Too many indexes can slow
down the ETL load process, and the need to periodically reorganize or rebuild indexes can create a
significant maintenance overhead.

The first consideration is to determine whether any indexes are required in your data warehouse. It may
seem unconventional to consider not creating indexes, but if the volume of fact data is relatively small,
and all user access to the data is through a data model that is fully processed after each data load, there
may be little performance benefit in maintaining indexes in the data warehouse. However, if your data
warehouse does not match this restrictive description, you will probably need to consider creating some
indexes. As with any database, the indexes you create depend on the specific queries your data warehouse
must support and the need to balance the performance of those queries against data inserts and updates,
and index maintenance. However, in most data warehouse scenarios, you should consider the guidelines
in this topic as a starting point for index design.

Dimension table indexes
When designing indexes for dimension tables, consider the following guidelines:

 Create a clustered index on the surrogate key column. This column is used to join the dimension table
to fact tables, and a clustered index will help the query optimizer minimize the number of reads
required to filter fact rows.

 Create a non-clustered index on the alternate key column and include the SCD current flag, start
date, and end date columns. This index will improve the performance of lookup operations during
ETL data loads that need to handle slowly-changing dimensions.

 Create non-clustered indexes on frequently searched attributes, and consider including all members
of a hierarchy in a single index.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-24 Designing and Implementing a Data Warehouse

Fact table indexes
When designing indexes for a fact table, consider the following guidelines:

 Create a clustered index on the most commonly-searched date key. Date ranges are the most
common filtering criteria in most data warehouse workloads, so a clustered index on this key should
be particularly effective in improving overall query performance.

 Create non-clustered indexes on other, frequently-searched dimension keys.

Columnstore indexes
SQL Server 2014 supports columnstore indexes, an in-memory solution that uses xVelocity compression
technology to organize index data in a column-based format instead of the row-based format used by
traditional indexes. Columnstore indexes are specifically designed to enhance the performance of queries
against large fact tables joined to smaller dimension tables in a star schema, and can improve the speed
of most data warehouse queries significantly. In many cases, you can achieve the same performance
improvements or better by replacing the recommended fact table indexes described previously with a
single columnstore index that includes all the fact table columns. Some queries do not benefit from
columnstore indexes. For example, queries that return an individual row from a dimension table will
generally perform better by using a conventional clustered or non-clustered index. However, for most
typical data warehouse queries that aggregate many fact rows by one or more dimension attributes,
columnstore indexes can be very effective.

 Note: For more information about columnstore indexes, go to Columnstore Indexes in SQL
Server Books Online.

Columnstore indexes can be clustered or non-clustered.

Clustered columnstore indexes
A clustered columnstore index has the following characteristics:

 It can only be created in the Enterprise, Developer, and Evaluation editions of SQL Server 2014.

 It includes all the columns in the table.

 It is the only index on the table.

 It does not store the columns in a sorted order, but rather optimizes storage for compression and
performance.

 It can be updated.

 Note: Clustered columnstore indexes are new in SQL Server 2014. In SQL Server 2012, only
non-clustered columnstore indexes can be created.

Clustered columnstore indexes can be updated, and you can bulk load, insert, update, and delete data in a
clustered columnstore indexed table using standard Transact-SQL statements.

Clustered columnstore indexes store the data in compressed columnstore segments, but some data is
stored in a rowstore table referred to as the “deltastore” as an intermediary location until it can be
compressed and moved into a columnstore segment. The following rules are used to manage data
modifications:

 When you use an INSERT statement to insert a new row, it remains in the deltastore until there are
enough rows to meet the minimum size for a “rowgroup”, which is then compressed and moved into
the columnstore segments.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-25

 When you execute a DELETE statement, affected rows in the deltastore are physically deleted, while
affected data in the columnstore segments are marked as deleted and the physical storage is only
reclaimed when the index is rebuilt.

 When you execute an UPDATE statement, affected rows in the deltastore are updated, while affected
rows in the columnstore are marked as deleted and a new row is inserted into the deltastore.

Non-clustered columnstore indexes
A non-clustered columnstore index has the following characteristics:

 It can include some or all the columns in the table.

 It can be combined with other indexes on the same table.

 It cannot be updated. Tables containing a non-clustered columnstore index are read-only.

Non-clustered columnstore indexes are read-only, but given that a typical data warehouse is a static
database that is updated periodically through an ETL process, this is less of a limitation than might at first
appear. However, administrators do need to plan how to handle updates to data in tables that have non-
clustered columnstore indexes.

There are two ways to update non-clustered columnstore indexes:

 Periodically drop the index, perform updates to the table, and then recreate the index. This approach
is the simplest way of handling updates, and fits in with the way that many organizations already
perform loads into their data warehouses. The disadvantage of this approach is that creating a
columnstore index can be time consuming when the base table is very large, and this can be
problematic when the window for performing a data load is relatively small.

 Use table partitioning. When you create an index on a partitioned table, SQL Server automatically
aligns the index with the table, meaning both are divided up in the same way. When you switch a
partition out of the table, the aligned index partition follows. You can use partition switching to
perform inserts, updates, merges, and deletes:

o To perform a bulk insert, partition the table, load new data into a staging table, build a
columnstore index on the staging table, and then use partition switching to load the data into
the partitioned data warehouse table.

o For other types of updates, you can switch a partition out of the data warehouse table into a
staging table, drop or disable the columnstore index on the staging table, perform the updates,
recreate or rebuild the columnstore index on the staging table, and then switch the staging table
back into the data warehouse table.

Demonstration: Creating Indexes

This demonstration shows how to create indexes and assess their performance benefits.

Demonstration Steps
Create Indexes on Dimension Tables

1. Ensure that you have completed the previous demonstration in this module.

2. In SQL Server Management Studio, open Indexes.sql from the D:\Demofiles\Mod03 folder.

3. Select the code under the comment Create the data warehouse, and then click Execute. This
creates a database for the demonstration.

4. Select the code under the comment Create the DimDate dimension table, and then click Execute.
This creates a time dimension table named DimDate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-26 Designing and Implementing a Data Warehouse

5. Select the code under the comment Populate DimDate with values from 2 years ago until the
end of this month, and then click Execute. This adds rows to the DimDate table.

6. Select the code under the comment Create indexes on the DimDate table, and then click Execute.
This creates a clustered index on the surrogate key column, and non-clustered indexes on commonly-
queried attribute columns.

7. Select the code under the comment Create the DimCustomer table, and then click Execute. This
creates a dimension table named DimCustomer and inserts some customer data.

8. Select the code under the comment Create indexes on the DimCustomer table, and then click
Execute. This creates a clustered index on the surrogate key column, and non-clustered indexes on
commonly-queried attribute columns.

9. Select the code under the comment Create the DimProduct table, and then click Execute. This
creates a dimension table named DimProduct and inserts some product data.

10. Select the code under the comment Create indexes on the DimProduct table, and then click
Execute. This creates a clustered index on the surrogate key column, and non-clustered indexes on a
commonly-queried attribute column.

View Index Usage and Execution Statistics

1. Select the code under the comment Create a fact table, and then click Execute. This creates a fact
table named FactOrder that contains more than 7.5 million rows from the existing data in the
dimension tables.

2. On the toolbar, click the Include Actual Execution Plan button.

3. Select the code under the comment View index usage and execution statistics, and then click
Execute. This enables statistics messages and queries the tables in the data warehouse to view orders
for the previous six months.

4. After query execution completes, in the results pane, click the Messages tab. Note the logical reads
from each table. The number from the FactOrder table should be considerably higher than the
dimension tables. Note the CPU time and elapsed time for the query.

5. Click the Execution Plan tab, which shows a visualization of the steps the query optimizer used to
execute the query. Scroll to the right and to the bottom, and note that a table scan was used to read
data from the FactOrder table. Then hold the mouse pointer over each of the Index Scan icons for
the dimension tables to see which indexes were used.

6. Execute the selected code again and compare the results when the data is cached.

Create Indexes on a Fact Table

1. Select the code under the comment Create traditional indexes on the fact table, and then click
Execute. This creates a clustered index on the date dimension key, and non-clustered indexes on the
other dimension keys (the operation can take a long time).

2. Select the code under the comment Empty the cache, and then click Execute. This clears any cached
data.

3. Select the code under the comment Test the traditional indexes, and then click Execute. This
executes the same query as earlier.

4. Click the Messages tab and compare the number of logical reads for the FactOrders table and the
CPU and elapsed time values with the previous execution. They should all be lower.

5. Click the Execution Plan tab and note that the clustered index on the date key in the fact table was
used.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-27

6. Execute the selected code again and compare the results when the data is cached.

Create a Columnstore Index

1. Select the code under the comment Create a copy of the fact table with no indexes, and then click
Execute. This creates an un-indexed copy of the FactOrder table named FactOrderCS.

2. Select the code under the comment Create a columnstore index on the copied table, and then
click Execute. This creates a columnstore index on all columns in the FactOrderCS table.

3. Select the code under the comment Empty the cache again, and then click Execute. This clears any
cached data.

4. Select the code under the comment Test the columnstore index, and then click Execute. This
executes the same query as earlier.

5. Click the Messages tab and compare the number of logical reads for the FactOrdersCS table and the
CPU and elapsed time values with the previous execution. They should all be lower.

6. Click the Execution Plan tab and note that the columnstore index on the fact table was used.

7. Execute the selected code again and compare the results when the data is cached.

8. Close Indexes.sql but keep SQL Server Management Studio open for the next demonstration.

Data Compression

SQL Server 2014 Enterprise edition supports data
compression at both page and row level. Row
compression stores all fields in a variable width
format and, if possible, reduces the number of
bytes used to store each field. Page compression
applies the same technique to rows on a page and
also identifies redundant values and stores them
only once per page. You can apply compression to
a table, an index, or a partition.

Data compression in a data warehouse brings the
following benefits:

 Reduced storage requirements. Although
results vary, on average, most data warehouses can be compressed at a ratio of 3.5:1, reducing the
amount of disk space required to host the data files by more than two thirds.

 Improved query performance. Compression can improve query performance in two ways: Fewer
pages must be read from disk, so I/O is reduced, and more data can be stored on a page and cached.

When page or row compression is used, data must be compressed and decompressed by the CPU.
Performance gains resulting from compression must be balanced by the increase in CPU workload.
However, in most adequately-specified data warehouse servers, the additional workload on CPU is
minimal compared to the benefits gained by compressing the data.

Best practices for data compression in a data warehouse
When planning tables, partitions, and indexes in a data warehouse, consider the following best practices
for data compression:

 Use page compression on all dimension tables and fact table partitions.

 If performance is CPU-bound, revert to row compression on frequently-accessed partitions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-28 Designing and Implementing a Data Warehouse

Demonstration: Implementing Data Compression

This demonstration shows a comparison between an uncompressed data warehouse and an identical
compressed one.

Demonstration Steps
Create Uncompressed Tables and Indexes

1. Ensure that you have completed the previous demonstrations in this module.

2. Use Windows Explorer to view the contents of the D:\Demofiles\Mod03 folder, and set the folder
window to Details view and resize it if necessary so that you can see the Size column.

3. In SQL Server Management Studio, open Compression.sql from the D:\Demofiles\Mod03 folder.

4. Select the code under the comment Create the data warehouse (from line2 to line 113 in the script),
and then click Execute. This creates a database with uncompressed tables.

5. While the script is still executing, view the contents of the D:\Demofiles\Mod03 folder and note the
increasing size of DemoDW.mdf. This is the data file for the database.

Note: The log file (DemoDW.ldf) will also be growing, but you can ignore this.

6. When execution is complete (after approximately three minutes), view the final size of DemoDW.mdf
and return to SQL Server Management Studio.

Estimate Compression Savings

1. Select the code under the comment Estimate size saving (line 119 in the script), and then click
Execute. This uses the sp_estimate_data_compression_savings system stored procedure to
compress a sample of the FactOrder table (which consists of one clustered and two non-clustered
indexes).

2. View the results returned by the stored procedure, noting the current size and estimated compressed
size of each index.

Create Compressed Tables and Indexes

1. Select the code under the comment Create a compressed version of the data warehouse (from
line 125 to line 250 in the script), and then click Execute. This creates a database with compressed
tables and indexes.

2. While the script is still executing, view the contents of the D:\Demofiles\Mod03 folder and note the
increasing size of CompressedDemoDW.mdf. This is the data file for the database.

Note: The log file (CompressedDemoDW.ldf) will also be growing, but you can ignore this.

3. When execution is complete (after approximately three minutes), compare the final size of
CompressedDemoDW.mdf with DemoDW.mdf (the file for the compressed database should be
smaller) and return to SQL Server Management Studio.

Compare Query Performance

1. Select the code under the comment Compare query performance (from line 255 to line 277 in the
script), and then click Execute. This executes an identical query in the compressed and uncompressed
databases and displays execution statistics.

2. When execution is complete, click the Messages tab and compare the statistics for the two queries.
The execution time statistics (the second and third set of figures labeled “SQL Server Execution Time”)
should be similar, and the second query (in the compressed database) should have used considerably
less logical reads for each table than the first.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-29

3. Close SQL Server Management Studio.

Using Views to Abstract Base Tables

You can create views in a data warehouse to
abstract the underlying fact and dimension tables.
Although views are not always necessary, you
should consider the following guidelines when
planning a data warehouse:

 Create a view for each dimension and fact
table, and use the NOLOCK query hint in
the view definition. You can then use these
views instead of the base tables for all data
access from clients, which will eliminate
locking overhead and optimize concurrency.

 Create views with user-friendly view and
column names. Often, a naming convention (such as prefixing dimension tables with “dim” and fact
tables with “fact”) is used when creating the tables in a data warehouse. Such naming conventions are
useful for database designers and administrators, but they can confuse business users. Creating a
layer of views with accessible names makes it easier for users to create their own data models and
reports from the data warehouse.

 Do not include metadata columns in views. Some columns are used for ETL operations or other
administrative tasks, and can be omitted from views that will be consumed by business users. For
example, SCD current flag, start date, and end date columns may not be required for end user
reporting or data models, so you can create views that do not include them.

 Create views to combine snowflake dimension tables. If you have included snowflake dimensions
in your dimensional model, create a view for each set of related dimension tables to produce a single
logical dimension table.

 Partition-align indexed views. SQL Server supports indexed views, which can be partitioned using
the same partition scheme as the underlying table. If you use indexed views, you should partition-
align them to support partition switching that does not require indexes on the views to be dropped
and recreated.

 Use the SCHEMABINDING option. This ensures that the underlying tables cannot be dropped or
modified in such a way as to invalidate the view unless the view itself is dropped first. The
SCHEMABINDING option is a requirement for index views.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-30 Designing and Implementing a Data Warehouse

Lab: Implementing a Data Warehouse
Scenario
You have gathered analytical and reporting requirements from stakeholders at Adventure Works Cycles.
Now you must implement a data warehouse schema to support them.

Objectives
After completing this lab, you will be able to:

 Implement a dimensional star schema.

 Implement a snowflake schema.

 Implement a time dimension.

Estimated Time: 45 Minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Implement a Star Schema

Scenario
Adventure Works Cycles requires a data warehouse to enable information workers and executives to
create reports and perform analysis of key business measures. The company has identified two sets of
related measures that it wants to include in fact tables. These are separate sales order measures relating to
sales to resellers, and Internet sales. The measures will be aggregated by product, reseller (in the case of
reseller sales), and customer (for Internet sales) dimensions.

The data warehouse has been partially completed, and you must now add the necessary dimension and
fact tables to complete a star schema.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View a Data Warehouse Schema

3. Create a Dimension Table

4. Create a Fact Table

5. View the Revised Data Warehouse Schema

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab03\Starter folder as Administrator.

 Task 2: View a Data Warehouse Schema
1. Start SQL Server Management Studio and connect to the MIA-SQL instance of the SQL Server

database engine by using Windows authentication.

2. Create a new database diagram in the AWDataWarehouse database (creating the required objects
to support database diagrams if prompted). The diagram should include all the tables in the
database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-31

3. In the database diagram, modify the tables so they are shown in standard view, and arrange them so
you can view the partially complete data warehouse schema.

4. Save the database diagram as AWDataWarehouse Schema.

 Task 3: Create a Dimension Table
1. Review the Transact-SQL code in the DimCustomer.sql query file in the D:\Labfiles\Lab03\Starter

folder. Note that it creates a table named DimCustomer in the AWDataWarehouse database.

2. Execute the query to create the DimCustomers dimension table.

 Task 4: Create a Fact Table
1. Review the Transact-SQL code in the FactInternetSales.sql query file in the D:\Labfiles\Lab03\Starter

folder. Note that it creates a table named FactInternetSales in the AWDataWarehouse database,
and that this table is related to the DimCustomer and DimProduct tables.

2. Execute the query to create the FactInternetSales dimension table.

 Task 5: View the Revised Data Warehouse Schema
1. Add the tables that you have created in this exercise to the database diagram that you created.

Note: When adding tables to a diagram, you need to click Refresh in the Add Table dialog box to see
tables you have created or modified since the diagram was initially created.

2. Save the database diagram.

3. Keep SQL Server Management Studio open for the next exercise.

Results: After this exercise, you should have a database diagram in the AWDataWarehouse database
that shows a star schema consisting of two fact tables (FactResellerSales and FactInternetSales) and
four dimension tables (DimReseller, DimEmployee, DimProduct, and DimCustomer).

Exercise 2: Implementing a Snowflake Schema

Scenario
Having created a star schema, you have identified two dimensions that would benefit from being
normalized to create a snowflake schema. Specifically, you want to create a hierarchy of related tables for
product category, product subcategory, and product. You also want to create a separate geography
dimension table that can be shared between the reseller and customer dimensions.

The main tasks for this exercise are as follows:

1. Create Dimension Tables That Form a Hierarchy

2. Create a Shared Dimension table

3. View the Data Warehouse Schema

 Task 1: Create Dimension Tables That Form a Hierarchy
1. Review the Transact-SQL code in the DimProductCategory.sql query file in the

D:\Labfiles\Lab03\Starter folder. Note that it:

o Creates a table named DimProductCategory.

o Creates a table named DimProductSubcategory that has a foreign-key relationship to the
DimProductCategory table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-32 Designing and Implementing a Data Warehouse

o Drops the ProductSubcategoryName and ProductCategoryName columns from the
DimProduct table.

o Adds a ProductSubcategoryKey column to the DimProduct table that has a foreign-key
relationship to the DimProductSubcategory table.

2. Execute the query to create the dimension tables.

 Task 2: Create a Shared Dimension table
1. Review the Transact-SQL code in the DimGeography.sql query file in the D:\Labfiles\Lab03\Starter

folder. Note that it:

o Creates a table named DimGeography.

o Drops the City, StateProvinceName, CountryRegionCode, CountryRegionName, and
PostalCode columns from the DimReseller table.

o Adds a GeographyKey column to the DimReseller table that has a foreign-key relationship to
the DimGeography table.

o Drops the City, StateProvinceName, CountryRegionCode, CountryRegionName, and
PostalCode columns from the DimCustomer table.

o Adds a GeographyKey column to the DimCustomer table that has a foreign-key relationship to
the DimGeography table.

2. Execute the query to create the dimension table.

 Task 3: View the Data Warehouse Schema
1. Delete the tables that you modified in the previous two tasks from the AWDataWarehouse Schema

diagram (DimProduct, DimReseller, and DimCustomer).

2. Add the new and modified tables that you created in this exercise to the AWDataWarehouse
Schema diagram and view the revised data warehouse schema, which now includes some snowflake
dimensions. You will need to refresh the list of tables when adding tables and you may be prompted
to update the diagram to reflect foreign-key relationships.

3. Save the database diagram.

Results: After this exercise, you should have a database diagram in the AWDataWarehouse database
showing a snowflake schema that contains a dimension consisting of a DimProduct,
DimProductSubcategory, and DimProductCategory hierarchy of tables, as well as a DimGeography
dimension table that is referenced by the DimCustomer and DimReseller dimension tables.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-33

Exercise 3: Implementing a Time Dimension Table

Scenario
The schema for the Adventure Works data warehouse now contains two fact tables and several dimension
tables. However, users need to be able to analyze the fact table measures across consistent time periods.
To enable this, you must create a time dimension table.

Users will need to be able to aggregate measures across calendar years (which run from January to
December) and fiscal years (which run from July to June). Your time dimension must include the following
attributes:

 Date (this should be the business key).

 Day number of week (for example 1 for Sunday, 2 for Monday, and so on).

 Day name of week (for example Sunday, Monday, Tuesday, and so on).

 Day number of month.

 Day number of year.

 Week number of year.

 Month name (for example, January, February, and so on).

 Month number of year (for example, 1 for January, 2 for February, and so on).

 Calendar quarter (for example, 1 for dates in January, February, and March).

 Calendar year.

 Calendar semester (for example, 1 for dates between January and June).

 Fiscal quarter (for example, 1 for dates in July, August, and September).

 Fiscal year.

 Fiscal semester (for example, 1 for dates between July and December).

The main tasks for this exercise are as follows:

1. Create a Time Dimension Table

2. View the Database Schema

3. Populate the Time Dimension Table

 Task 1: Create a Time Dimension Table
1. Review the Transact-SQL code in the DimDate.sql query file in the D:\Labfiles\Lab03\Starter folder.

Note that it:

o Creates a table named DimDate.

o Adds OrderDateKey and ShipDateKey columns to the FactInternetSales and FactResellerSales
tables that have foreign-key relationships to the DimDate table.

o Creates indexes on the OrderDateKey and ShipDateKey foreign-key fields in the
FactInternetSales and FactResellerSales tables.

2. Execute the query to create the dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-34 Designing and Implementing a Data Warehouse

 Task 2: View the Database Schema
1. Delete the tables that you modified in the previous two tasks from the AWDataWarehouse Schema

diagram (FactResellerSales and FactInternetSales).

2. Add the new and modified tables that you created in this exercise to the AWDataWarehouse
Schema diagram and view the revised data warehouse schema, which now includes a time dimension
table named DimDate. You will need to refresh the list of tables when adding tables and you may be
prompted to update the diagram to reflect foreign-key relationships.

3. Save the database diagram.

 Task 3: Populate the Time Dimension Table
1. Review the Transact-SQL code in the GenerateDates.sql query file in the D:\Labfiles\Lab03\Starter

folder. Note that it:

o Declares a variable named @StartDate with the value 1/1/2000, and a variable named
@EndDate with the value of the current date.

o Performs a loop to insert appropriate values for each date between @StartDate and @EndDate
into the DimDate table.

2. Execute the script to create the dimension table.

3. When the query has completed, query the DimDate table to verify that it now contains time values.

4. Close Visual Studio, saving your work if prompted.

Results: After this exercise, you should have a database that contains a DimDate dimension table that is
populated with date values from January 1, 2000, to the current date.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 3-35

Module Review and Takeaways
This module has described considerations for translating business requirements and information about
business processes into a dimensional model, and then implementing that model as a data warehouse.
Every business is different, and each has its unique challenges and processes. You should use the
techniques and guidance in this module as a starting point, but be prepared to adapt typical data
warehouse schema elements to match particular business requirements.

Review Question(s)
Question: When designing a data warehouse, is it better or worse to have a strong
background in transactional database design?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-1

Module 4
Creating an ETL Solution with SSIS

Contents:
Module Overview 4-1

Lesson 1: Introduction to ETL with SSIS 4-2

Lesson 2: Exploring Source Data 4-7

Lesson 3: Implementing Data Flow 4-14

Lab: Implementing Data Flow in an SSIS Package 4-25

Module Review and Takeaways 4-30

Module Overview
Successful data warehousing solutions rely on the efficient and accurate transfer of data from the various
data sources in the business. This is referred to as an extract, transform, and load (ETL) process, a core skill
that is required in any data warehousing project.

This module discusses considerations for implementing an ETL process, and then focuses on Microsoft®
SQL Server® Integration Services (SSIS) as a platform for building ETL solutions.

Objectives
After completing this module, you will be able to:

 Describe the key features of SSIS.

 Explore source data for an ETL solution.

 Implement a data flow by using SSIS.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-2 Creating an ETL Solution with SSIS

Lesson 1
Introduction to ETL with SSIS

There are several ways to implement an ETL solution, but SSIS is the primary ETL tool for SQL Server.
Before using it to implement an ETL solution, it is important to understand some of the key features and
components.

This lesson describes possible ETL solution options, and then introduces SSIS.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the options for ETL.

 Describe the key features of SSIS.

 Describe the high-level architecture of an SSIS project.

 Identify key elements of the SSIS design environment.

 Describe strategies for upgrading SSIS solutions from previous versions of SQL Server.

Options for ETL

An ETL solution generally involves the transfer of
data from one or more data sources to a
destination, often transforming the data structure
and values in the process. There are several tools
and technologies you can use to accomplish this
task, each having specific strengths and
weaknesses that you should take into account
when choosing the approach for your ETL
solution.

The following list describes some common
techniques:

 SQL Server Integration Services. This is the
primary platform for ETL solutions that are provided with SQL Server, and generally offers the most
flexible way to implement an enterprise ETL solution.

 The Import and Export Data Wizard. This wizard is included with the SQL Server management
tools, and provides a simple way to create an SSIS-based data transfer solution. You should consider
using the Import and Export Data Wizard when your ETL solution requires only a few, simple data
transfers that do not include any complex transformations in the data flow.

 Transact-SQL. Transact-SQL is a powerful language that can enable you to implement complex data
transformations while extracting, inserting, or modifying data. Most ETL solutions include some
Transact-SQL logic combined with other technologies. In some scenarios, such as when data sources
and destinations are co-located, you can implement a complete ETL solution by using only Transact-
SQL queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-3

 The bulk copy program (bcp) utility. This utility provides an interface based on the command line
for extracting data from, and inserting data into, SQL Server. The bcp utility provides a versatile tool
to create scheduled data extractions and insertions, but its relatively complex syntax and console-
based operation make it difficult to create a manageable, enterprise-scale ETL solution on its own.

 Replication. SQL Server includes built-in replication functionality that you can use to synchronize
data across SQL Server instances. You can also include other relational data sources such as Oracle
databases in a replication solution. Replication is a suitable technology for ETL when all data sources
are supported in a replication topology, and the data requires minimal transformations.

What Is SSIS?

SSIS is an extensible platform for building complex
ETL solutions. It is included with SQL Server and
consists of a Microsoft Windows® service that
manages the execution of ETL workflows, and
several tools and components for developing
them. The SSIS service is installed when you select
Integration Services on the Feature Selection
page of the SQL Server setup wizard.

 Note: After you have installed SSIS, you can
use the DCOM Configuration tool (Dcomcnfg.exe)
to grant specific permission to use the SSIS 11.0
service.

The SSIS Windows service is primarily a control flow engine that manages the execution of task
workflows, that are defined in packages, and can be performed on demand or at scheduled
times. When you are developing an SSIS package, the task workflow is referred to as the control
flow.

This can include a special type of task to perform data flow operations. SSIS executes these tasks
using a data flow engine that encapsulates the data flow in a pipeline architecture. Each step in
the Data Flow task operates in sequence on a rowset of data as it passes through the pipeline.
The data flow engine uses buffers to optimize the data flow rate, resulting in a high-performance
ETL solution.

In addition to the SSIS Windows service, SSIS includes:

 SSIS Designer. A graphical design interface for developing SSIS solutions in the Microsoft Visual
Studio® development environment. Typically, you start the SQL Server Data Tools application to
access this.

 Wizards. Graphical utilities you can use to quickly create, configure, and deploy SSIS solutions.

 Command-line tools. Utilities you can use to manage and execute SSIS packages.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-4 Creating an ETL Solution with SSIS

SSIS Projects and Packages

An SSIS solution usually consists of one or more
SSIS projects, each containing at least one SSIS
package.

SSIS Projects
In SQL Server 2012, a project is the unit of
deployment for SSIS solutions. You can define
project-level parameters to enable users to specify
run-time settings, and project-level connection
managers that reference data sources and
destinations used in package data flows. You can
then deploy projects to a SSIS catalog in an SQL
Server instance, and configure project-level
parameter values and connections as appropriate for execution environments. You can use SQL Server
Data Tools to create, debug, and deploy SSIS projects.

SSIS Packages
A project contains one or more packages, each defining a workflow of tasks to be executed. The workflow
of tasks is referred to as its control flow. A package control flow can include one or more Data Flow tasks,
each of which encapsulates its own pipeline. Package-level parameters can be included so that dynamic
values are passed to the package at run time.

In previous SSIS releases, deployment was managed at the package level. In SQL Server 2012, you can still
deploy individual packages in a package deployment model.

 Note: Deployment of SSIS solutions is discussed in more detail in Module 12: Deploying
and Configuring SSIS Packages.

The SSIS Design Environment

You can use Visual Studio SQL Server Data Tools
for business intelligence (BI) to develop SSIS
projects and packages. SQL Server Data Tools for
BI is an add-in for Microsoft® Visual Studio® and
provides a graphical development environment for
BI solutions. When you create an Integration
Services project, the design environment includes
the following elements:

 Solution Explorer. A pane in the Visual
Studio user interface where you can create
and view project-level resources, including
parameters, packages, data connection
managers, and other shared objects. A solution can contain multiple projects, in which case each
project is shown in Solution Explorer.

 The Properties pane. A pane in the Visual Studio user interface that you can use to view and edit the
properties of the currently-selected object.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-5

 The Control Flow design surface. A graphical design surface in SSIS Designer where you can define
the workflow of tasks for a package.

 The Data Flow design surface. A graphical design surface in SSIS Designer where you can define the
pipeline for a Data Flow task within a package.

 The Event Handlers design surface. A graphical design surface in SSIS Designer where you can
define the workflow for an event handler within a package.

 Package Explorer. A tree view of the components within a package.

 The Connection Managers pane. A list of the connection managers used in a package.

 The Variables pane. A list of variables used in a package. You can display this pane by clicking the
Variables button at the upper right of the design surface.

 The SSIS Toolbox. A collection of components you can add to a package control flow or data flow.
You can display this pane by clicking the SSIS Toolbox button at the upper right of the design
surface or by clicking SSIS Toolbox on the SSIS menu. Note that this pane is distinct from the
standard Visual Studio Toolbox pane.

Upgrading from Previous Versions

If you have developed ETL solutions by using SSIS
in SQL Server 2005, 2008, or 2012, or by using
Data Transformation Services (DTS) solutions in
SQL Server 2000, you should consider how you will
include them in an SQL Server 2014 SSIS solution.

SQL Server 2000 DTS Packages
There is no direct upgrade path for DTS packages
to SQL Server 2014 SSIS packages, and you cannot
run a DTS package in the SQL Server 2014 SSIS
run-time engine. To upgrade a DTS-based solution
to work with SQL Server 2014, you must re-create
the solution by using the latest SSIS tools and
components. Alternatively, you can use the SSIS Package Migration Wizard in SQL Server 2005 or 2008 to
perform an interim upgrade of the DTS package to SQL Server 2005 or 2008 format, and then upgrade to
the SQL Server 2014 format.

SQL Server 2005, 2008, and 2012 SSIS Packages
You can run SSIS packages that were built by using SQL Server 2005, 2008, or 2012 in the SQL Server 2014
SSIS run-time engine by using the DTSEXEC tool. However, you will not be able to take advantage of
project-level deployment for packages created in SQL Server 2005 or 2008. To upgrade SSIS packages
that were built using SQL Server 2005, SQL Server 2008, or SQL Server 2012 to the SQL Server 2014
format, use the SSIS Package Migration Wizard in SQL Server 2014.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-6 Creating an ETL Solution with SSIS

Scripts
SSIS packages can include script tasks to perform custom actions. In previous releases of SSIS, you could
implement scripted actions by including a Microsoft® ActiveX® Script task, written in Microsoft® Visual
Basic® Scripting Edition (VBScript). You could also employ a Script task written for the .NET Visual Studio
for Applications, or VSA runtime, in a control flow. In SQL Server 2014, the ActiveX Script task is no longer
supported, and any VBScript-based custom logic must be replaced. In addition, the SQL Server 2014 Script
task uses the Visual Studio Tools for Applications (VSTA) runtime, which differs in some details from the
VSA runtime used in previous releases. When you use the SSIS Package Migration Wizard to upgrade a
package that includes a Script component, the script is automatically updated for the VSTA runtime.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-7

Lesson 2
Exploring Source Data

Now that you understand the basic architecture of SSIS, you can start planning the data flows in your ETL
solution. However, before you start implementing an ETL process, you should explore the existing data in
the sources that your solution will use. By gaining a thorough knowledge of the source data on which
your ETL solution will be based, you can design the most effective SSIS data flows for transferring the data
and anticipate any quality issues you may need to resolve in your SSIS packages.

This lesson discusses the value of exploring source data, as well as describing techniques for examining
and profiling it.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the value of exploring source data.

 Examine an extract of data from a data source.

 Profile source data by using the Data Profiling SSIS task.

Why Explore Source Data?

The design and integrity of your data warehouse
ultimately rely on the data it contains. Before you
can design an appropriate ETL process to populate
the data warehouse, you must have a thorough
knowledge of the source data that your solution
will consume.

Specifically, you need to understand:

 The business entities that are represented by
the source data, and their attributes. For
example, the specific attributes that fully
describe a product or a customer entity may
be stored in multiple columns, tables, or even
databases across the organization.

 How to interpret data values and codes. For example, does a value of 1 in an InStock column in a
Products table mean that the company has a single unit in stock, or does 1 simply indicate the value
“true,” meaning that there is an unspecified quantity of units in stock?

 The relationships between business entities, and how those relationships are modeled in the data
sources.

In addition to understanding the data modeling of the business entities, you also need to examine source
data to help identify:

 Column data types and lengths for specific attributes that will be included in data flows. For example,
what maximum lengths exist for string values? What formats are used to indicate date, time, and
numeric values?

 Data volume and sparseness. For example, how many rows of sales transactions are typically recorded
in a single trading day? Are there any attributes that frequently contain null values?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-8 Creating an ETL Solution with SSIS

 Data quality issues. For example, are there any obvious data entry errors? Are there commonly-used
values that are synonyms for one another?

Finding the answers to questions like these before you implement the ETL solution, can help you
anticipate data flow problems and proactively design effective solutions for them.

Examining Source Data

You can explore source data by using several tools
and techniques. The following list describes some
of the approaches you can use to extract data to
examine:

 Running queries against data sources in
Microsoft® SQL Server® Management Studio
and copying the results to the clipboard.

 Creating an SSIS package with a data flow that
extracts a sampling of data or a row count for
a specific data source.

 Using the Import and Export Data Wizard to
extract a data sample.

After extracting the sample data, you need to examine it. One of the most effective ways to do this is to
extract the data in a format you can open in Microsoft Excel®, such as comma-delimited text. Using Excel,
you can:

 Sort the data by columns.

 Apply column filters to help identify the range of values used in a particular column.

 Use formulas to calculate minimum, maximum, and average values for numerical columns.

 Search the data for specific string values.

Demonstration: Exploring Source Data

In this demonstration, you will see how to:

 Extract Data with the Import and Export Data Wizard.

 Explore Data in Microsoft Excel®.

Demonstration Steps
Extract Data with the Import and Export Data Wizard

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod04 folder, right-click Setup.cmd, and then click Run as administrator.

3. When you are prompted to confirm, click Yes, and then wait for the batch file to complete.

4. On the Start screen, type Import and Export, and then start the SQL Server 2014 Import and
Export Data (64-bit) app.

5. On the Welcome to SQL Server Import and Export Wizard page, click Next.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-9

6. On the Choose a Data Source page, set the following options, and then click Next:

o Data source: SQL Server Native Client 11.0

o Server name: localhost

o Authentication: Use Windows Authentication

o Database: ResellerSales

7. On the Choose a Destination page, select the following options, and then click Next:

o Destination: Flat File Destination

o File name: D:\Demofiles\Mod04\Top 500 Resellers.csv

o Locale: English (United States)

o Unicode: Unselected

o Code page: 1252 (ANSI – Latin 1)

o Format: Delimited

o Text qualifier: " (this is used to enclose exported text values in quotation marks. This is required
because some European address formats include a comma, and these must be distinguished from
the commas that are used to separate each column value in the exported text file)

o Column names in the first data row: Selected

8. On the Specify Table Copy or Query page, select Write a query to specify the data to transfer,
and then click Next.

9. On the Provide a Source Query page, enter the following Transact-SQL code, and then click Next:

SELECT TOP 500 * FROM Resellers

10. On the Configure Flat File Destination page, select the following options, and then click Next:

o Source query: [Query]

o Row delimiter: {CR}{LF}

o Column delimiter: Comma {,}

11. On the Save and Run Package page, select only Run immediately, and then click Next.

12. On the Complete the Wizard page, click Finish.

13. When the data extraction has completed successfully, click Close.

Explore Source Data in Microsoft Excel®

1. Start Excel and open Top 500 Resellers.csv from the D:\Demofiles\Mod04 folder.

2. On the Home tab of the ribbon, click any cell that contains data, click Format as Table, and then
select a table style for the data.

3. In the Format As Table dialog box, ensure that the range of cells containing the data is selected and
the My table has headers check box is selected, and then click OK.

4. Adjust the column widths so that you can see all the data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-10 Creating an ETL Solution with SSIS

5. View the drop-down filter list for the CountryRegionCode column, and note the range of values.
Then select only FR, and then click OK. Note that the table is filtered to show only the resellers in
France. Note also that many of the addresses include a comma. If no text qualifier had been selected
in the Import and Export Data Wizard, these commas would have created additional columns in these
rows, making the data difficult to examine as a table.

6. Clear the filter for the CountryRegionCode column.

7. In a blank cell in column O, enter the following formula:

=Min(Table1[YearOpened])

8. Note that this formula shows the earliest year that a store in this sample data was opened.

9. Close Excel without saving any changes.

Profiling Source Data

In addition to examining samples of source data,
you can use the Data Profiling task in an SSIS
package to obtain statistics about the data. This
can help you understand the structure of the data
that you will extract and identify columns where
null or missing values are likely. Profiling your
source data can help you plan effective data flows
for your ETL process.

You can specify multiple profile requests in a
single instance of the Data Profiling task. The
following kinds of profile request are available:

 Candidate Key determines whether you can
use a column as a key for the selected table.

 Column Length Distribution reports the range of lengths for string values in a column.

 Column Null Ratio reports the percentage of null values in a column.

 Column Pattern identifies regular expressions that are applicable to the values in a column.

 Column Statistics reports statistics such as minimum, maximum, and average values for a column.

 Column Value Distribution reports the groupings of distinct values in a column.

 Functional Dependency determines if the value of a column is dependent on the value of other
columns in the same table.

 Value Inclusion reports the percentage of time that a column value in one table matches a column
in another.

The Data Profiling task gathers the requested profile statistics and writes them to an XML document. This
can be saved as a file for later analysis, or written to a variable for programmatic analysis within the
control flow.

To view the profile statistics, you can use the Data Profile Viewer. This is available as a stand-alone tool in
which you can open the XML file that the Data Profiling task generates. Alternatively, you can open the
Data Profile Viewer window in SQL Server Data Tools, from the Properties dialog box of the Data
Profiling task, while the package is running in the development environment.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-11

Use the following procedure to collect and view data profile statistics:

1. Create an SSIS project that includes a package.

2. Add an ADO.NET connection manager for each data source that you want to profile.

3. Add the Data Profiling task to the control flow of the package.

4. Configure the Data Profiling task to specify:

a. The file or variable to which the resulting profile statistic should be written.

b. The individual profile requests that should be included in the report.

5. Run the package.

6. View the resulting profile statistics in the Data Profile Viewer.

Demonstration: Using the Data Profiling Task

In this demonstration, you will see how to:

 Use the Data Profiling Task.

 View a Data Profiling Report.

Demonstration Steps
Use the Data Profiling Task

1. Ensure you have completed the previous demonstration in this module.

2. Start Visual Studio, and then create a new Integration Services project named ProfilingDemo in the
D:\Demofiles\Mod04 folder.

3. If the Getting Started (SSIS) window is displayed, close it.

4. In Solution Explorer, right-click Connection Managers and click New Connection Manager. Then
add a new ADO.NET connection manager with the following settings:

o Server name: localhost

o Log on to the server: Use Windows Authentication

o Select or enter a database name: ResellerSales

5. If the SSIS Toolbox pane is not visible, on the SSIS menu, click SSIS Toolbox. Then, in the SSIS
Toolbox pane, in the Common section, double-click Data Profiling Task to add it to the Control
Flow surface. (Alternatively, you can drag the task icon to the Control Flow surface.)

6. Double-click the Data Profiling Task icon on the Control Flow surface.

7. In the Data Profiling Task Editor dialog box, on the General tab, in the Destination property value
drop-down list, click <New File connection…>.

8. In the File Connection Manager Editor dialog box, in the Usage type drop-down list, click Create
file. In the File box, type D:\Demofiles\Mod04\Reseller Sales Data Profile.xml, and then click OK.

9. In the Data Profiling Task Editor dialog box, on the General tab, set OverwriteDestination to
True.

10. In the Data Profiling Task Editor dialog box, on the Profile Requests tab, in the Profile Type drop-
down list, select Column Statistics Profile Request, and then click the RequestID column.

11. In the Request Properties pane, set the following property values. Do not click OK when finished:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-12 Creating an ETL Solution with SSIS

o ConnectionManager: localhost.ResellerSales

o TableOrView: [dbo].[SalesOrderHeader]

o Column: OrderDate

12. In the row under the Column Statistics Profile Request, add a Column Length Distribution
Profile Request profile type with the following settings:

o ConnectionManager: localhost.ResellerSales

o TableOrView: [dbo].[Resellers]

o Column: AddressLine1

13. Add a Column Null Ratio Profile Request profile type with the following settings:

o ConnectionManager: localhost.ResellerSales

o TableOrView: [dbo].[Resellers]

o Column: AddressLine2

14. Add a Value Inclusion Profile Request profile type with the following settings:

o ConnectionManager: localhost.ResellerSales

o SubsetTableOrView: [dbo].[SalesOrderHeader]

o SupersetTableOrView: [dbo].[PaymentTypes]

o InclusionColumns:

 Subset side Columns: PaymentType

 Superset side Columns: PaymentTypeKey

o InclusionThresholdSetting: None

o SupersetColumnsKeyThresholdSetting: None

o MaxNumberOfViolations: 100

15. In the Data Profiling Task Editor dialog box, click OK.

16. On the Debug menu, click Start Debugging.

View a Data Profiling Report

1. When the Data Profiling task has completed, with the package still running, double-click Data
Profiling Task, and then click Open Profile Viewer.

2. Maximize the Data Profile Viewer window and under the [dbo].[SalesOrderHeader] table, click
Column Statistics Profiles. Then review the minimum and maximum values for the OrderDate
column.

3. Under the [dbo].[Resellers] table, click Column Length Distribution Profiles and select the
AddressLine1 column to view the statistics. Click the bar chart for any of the column lengths, and
then click the Drill Down button (at the right-edge of the title area for the middle pane) to view the
source data that matches the selected column length.

4. Close the Data Profile Viewer window, and then in the Data Profiling Task Editor dialog box, click
Cancel.

5. On the Debug menu, click Stop Debugging, and then close Visual Studio, saving your changes if you
are prompted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-13

6. On the Start screen, type Data Profile, and then start the SQL Server 2014 Data Profile Viewer app.
When the app starts, maximize it.

7. Click Open, and open Reseller Sales Data Profile.xml in the D:\Demofiles\Mod04 folder.

8. Under the [dbo].[Resellers] table, click Column Null Ratio Profiles and view the null statistics for
the AddressLine2 column. Select the AddressLine2 column, and then click the Drill Down button to
view the source data.

9. Under the [dbo].[SalesOrderHeader] table, click Inclusion Profiles and review the inclusion
statistics for the PaymentType column. Select the inclusion violation for the payment type value of 0,
and then click the Drill Down button to view the source data.

Note: The PaymentTypes table includes two payment types, using the value 1 for invoice-based
payments and 2 for credit account payments. The Data Profiling task has revealed that for some sales, the
value 0 is used, which may indicate an invalid data entry or may be used to indicate some other kind of
payment that does not exist in the PaymentTypes table.

10. Close the Data Profile Viewer window.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-14 Creating an ETL Solution with SSIS

Lesson 3
Implementing Data Flow

After you have thoroughly explored the data sources for your data warehousing solution, you can start to
implement an ETL process by using SSIS. This process will consist of one or more SSIS packages, with each
containing one or more Data Flow tasks. Data flow is at the core of any SSIS-based ETL solution, so it’s
important to understand how you can use the components of an SSIS data flow pipeline to extract,
transform, and load data.

This lesson describes the various components that are used to implement a data flow, and provides some
guidance for optimizing data flow performance.

Lesson Objectives
After completing this lesson, you will be able to:

 Create a connection manager.

 Add a Data Flow task to a package control flow.

 Add a Source component to a data flow.

 Add a destination to a data flow.

 Add transformations to a data flow.

 Optimize data flow performance.

Connection Managers

To extract or load data, an SSIS package must be
able to connect to the data source or destination.
In an SSIS solution, you define data connections by
creating a connection manager for each data
source or destination used in the workflow. A
connection manager encapsulates the following
information, which is used to make a connection
to the data source or destination:

 The data provider to be used. For example,
you can create a connection manager for a
relational database by using an OLE DB or
ADO.NET provider. Alternatively, you can
create a connection manager for a text file by using a flat file provider.

 The connection string used to locate the data source. For a relational database, the connection string
includes the network name of the database server and the name of the database. For a file, the file
name and path must be specified.

 The credentials used to access the data source.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-15

You can create a connection manager at the project level or at the package level:

 Project-level connection managers are listed in Solution Explorer and can be shared across multiple
packages in the same project. Use project-level connection managers when multiple packages need
to access the same data source. To create a project-level connection manager, right-click the
Connection Managers folder in Solution Explorer or click the Project menu, and then click New
Connection Manager.

 Package-level connection managers exist only within the package in which they are defined. Both
project-level and package-level connection managers used by a package are shown in its Connection
Managers pane in the SSIS Designer.

To create a package-level connection manager, right-click in the Connection Managers pane and choose
the type you want to create. Alternatively, create a new connection manager in the Properties dialog box
of a task, source, destination, or transformation.

 Note: When you create a new connection manager, Visual Studio enables you to select
connection details that you have created previously, even if they relate to connection managers
that do not exist in the current project or have been deleted.

The Data Flow Task

A package defines a control flow for actions that
the SSIS run-time engine is to perform. A package
control flow can contain several different tasks,
and include complex branching and iteration, but
the core of any ETL control flow is the Data Flow
task.

To include a data flow in a package control flow,
drag the Data Flow task from the SSIS Toolbox
pane into the Control Flow surface. Alternatively,
you can double-click the Data Flow task icon in
the SSIS Toolbox pane and the task will be added
to the design surface. After you have added a Data
Flow task to the control flow, you can rename it and set its properties in the Properties pane.

 Note: This module focuses on the Data Flow task. Other control flow tasks will be discussed
in detail in Module 5: Implementing Control Flow in an SSIS Package.

To define the pipeline for the Data Flow task, double-click the task. SSIS Designer will display a design
surface where you can add data flow components. Alternatively, click the Data Flow tab in SSIS Designer,
and then select the Data Flow task that you want to edit in the drop-down list displayed at the top of the
design surface.

A typical data flow pipeline includes one or more data sources, transformations that operate on the data
as it flows through the pipeline, and one or more destinations for the data. The pipeline flow is defined by
connecting the output from one component to the input of the next.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-16 Creating an ETL Solution with SSIS

Data Sources

The starting point for a data flow is a data source,
a definition for which includes:

 The connection manager used to connect to
the data source.

 The table, view, or query used to extract the
data.

 The columns that are included in the output
from the data source and passed to the next
component in the data flow pipeline.

The following table describes the kinds of data
source that SSIS supports:

Databases

 ADO.NET Any database to which an ADO.NET data provider is installed.

OLE DB Any database for which an OLE DB provider is installed.

CDC Source An SQL Server or Oracle database in which change data capture (CDC) has been
enabled. CDC is discussed in Module 7: Implementing an Incremental ETL Process.

Files

Excel A Microsoft Excel® workbook.

Flat file Data in a text file, such as comma-delimited text.

XML A file that contains data in XML format.

Raw file An SSIS-specific binary format file.

Other sources

Script
component

A custom source that is implemented as a script.

Custom A custom data source that is implemented as a .NET assembly.

In addition to those listed in the table, you can download the following sources from the Microsoft
website:

 Oracle

 SAP BI

 Teradata

To add a data source for SQL Server, Excel, a flat file, or Oracle to a data flow, drag the Source Assistant
icon from the Favorites section of the SSIS Toolbox pane to the design surface and use the wizard to
select or create a connection manager for the source. For other data sources, drag the appropriate icon
from the Other Sources section of the SSIS Toolbox pane to the design surface, and then double-click the
data source on the design surface to define the connection, data, and output columns.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-17

By default, the output from a data source is represented as an arrow at the bottom of the data source
icon on the design surface. To create a data flow, you simply drag this arrow and connect it to the next
component in the data flow pipeline, which could be a destination or a transformation.

Data Destinations

A destination is an endpoint for a data flow. It has
input columns, which are determined by the
connection from the previous component in the
data flow pipeline, but no output.

A destination definition includes:

 A connection manager for the data store
where the data is to be inserted.

 The table or view into which the data must be
inserted (where supported).

The following table describes the kinds of destination that SSIS supports:

Databases

 ADO.NET Any database for which an ADO.NET data provider is installed.

OLE DB Any database for which an OLE DB provider is installed.

SQL Server An SQL Server database.

SQL Server Compact An instance of SQL Server Compact.

Files

Excel A Microsoft Excel® workbook.

Flat file A text file.

Raw file An SSIS-specific binary format file.

SQL Server Analysis Services

Data mining model
training

Used to build data mining models for data analysis.

Dimension processing Used to populate a dimension in an online analytical processing (OLAP)
cube.

Partition processing Used to populate a partition in an OLAP cube.

Rowsets

DataReader An ADO.NET DataReader interface that can be read by another
application.

Recordset An ADO Recordset interface that can be read by another application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-18 Creating an ETL Solution with SSIS

Other sources

Script component A custom destination that is implemented as a script.

Custom A custom destination that is implemented as a .NET assembly.

To add an SQL Server, Excel, or Oracle destination to a data flow, drag the Destination Assistant icon from
the Favorites section of the SSIS Toolbox pane to the design surface, and then use the wizard to select or
create a connection manager. For other kinds of destination, drag the appropriate icon from the Other
Destinations section of the SSIS Toolbox pane to the design surface.

After you have added a destination to the data flow, connect the output from the previous component in
the data flow to the destination, double-click it, and then edit it to define:

 The connection manager and destination table (if relevant) to be used when loading the data.

 The column mappings between the input columns and the columns in the destination.

Data Transformations

Data transformations enable you to perform
operations on rows of data as they pass through
the data flow pipeline. Transformations have both
inputs and outputs.

The following table lists the transformations that SSIS includes:

Row transformations – update column values or create new columns for each row in the data flow

Character Map Applies string functions to column values, such as conversion from lowercase to
uppercase.

Copy Column Creates a copy of a column and adds it to the data flow.

Data
Conversion

Converts data of one type to another, for example, numerical values to strings.

Derived
Column

Adds a new column based on an expression. For example, you could use an
expression to multiply a Quantity column by a UnitPrice column to create a new
TotalPrice column.

Export
Column

Saves the contents of a column as a file.

Import
Column

Reads data from a file and adds it as a column in the data flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-19

OLE DB
Command

Runs an SQL command for each row in the data flow.

Rowset transformations – create new rowsets

Aggregate Creates a new rowset by applying aggregate functions such as SUM.

Sort Creates a new sorted rowset.

Percentage
Sampling

Creates a rowset by randomly selecting a specified percentage of rows.

Row
Sampling

Creates a rowset by randomly selecting a specified number of rows.

Pivot Creates a rowset by condensing multiple records with a single column into a single
record with multiple columns.

Unpivot Creates a rowset by expanding a single record with multiple columns into multiple
records with a single column.

Split and Join transformations – merge or branch data flows

Conditional
Split

Splits a single-input rowset into multiple-output rowsets based on conditional logic.

Multicast Distributes all input rows to multiple outputs.

Union All Adds multiple inputs into a single output.

Merge Merges two sorted inputs into a single output.

Merge Join Joins two sorted inputs to create a single output based on a FULL, LEFT, or INNER
join operation.

Lookup Looks up columns in a data source by matching key values in the input. It creates an
output for matched rows and a second output for rows with no matching value in
the lookup data source.

Cache Caches data from a data source to be used by a Lookup transformation.

CDC Splitter Splits inserts, updates, and deletes from a CDC source into separate data flows. CDC
is discussed in Module 7: Implementing an Incremental ETL Process.

Auditing transformations – add audit information or count rows

Audit Provides execution environment information that can be added to the data flow.

RowCount Counts the rows in the data flow and writes the result to a variable.

BI transformations – perform BI tasks

Slowly
Changing
Dimension

Redirects rows when loading a data warehouse to preserve historical dimension
values.

Fuzzy Uses fuzzy logic to deduplicate rows in the data flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-20 Creating an ETL Solution with SSIS

Grouping

Fuzzy Lookup Looks up columns in a data source by finding approximate matches for values in the
input.

Term
Extraction

Extracts nouns or noun phrases from text for statistical analysis.

Term Lookup Matches terms extracted from text with terms in a reference table.

Data Mining
Query

Runs a data mining prediction query against the input to predict unknown column
values.

Data
Cleansing

Applies a Data Quality Services knowledge base to data as it flows through the
pipeline.

Custom transformations – perform custom operations

Script
Component

Runs custom script code for each row in the input.

Custom
Component

A custom .NET assembly.

To add a transformation to a workflow, drag it from the Common or Other Transforms section of the
SSIS Toolbox pane to the design surface, and then connect the required inputs to the transformation.
Double-click the transformation to configure the specific operation that it will perform, and then define
the columns to be included in the outputs from the transformation.

 Additional Reading: For more formation about Integration Services Transformations, go to
http://go.microsoft.com/fwlink/?LinkID=246724.

Optimizing Data Flow Performance

There are several techniques that you can apply to
optimize the performance of a data flow. When
you are implementing a data flow, consider the
following guidelines:

 Optimize queries. Select only the rows and
columns you need to reduce the overall
volume of data in the data flow.

 Avoid unnecessary sorting. If you require
sorted data from a single data source, sort it
during the extraction by using a query with an
ORDER BY clause if possible. If subsequent
transformations in your data flow rely on
sorted data, use the IsSorted property of the output to indicate that the data is already sorted.

 Optimize performance. Configure Data Flow task properties using the following properties:

o DefaultBufferSize and DefaultBufferMaxRows. Configuring the size of the buffers used by the
data flow can significantly improve performance. When there is sufficient memory available, you

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-21

should try to achieve a small number of large buffers without incurring any disk paging. The
default values for these properties are 10 MB and 10,000 rows respectively.

o BufferTempStoragePath and BLOBTempStoragePath. Using these properties to locate
temporary objects created by the data flow to a fast disk, or spreading them across multiple
storage devices, can improve performance.

o EngineThreads. Setting the number of threads available to the Data Flow task can improve
execution performance, particularly in packages where the MaxConcurrentExecutables
property has been set to enable parallel execution of the package’s tasks across multiple
processors.

o RunInOptimizedMode. Setting a Data Flow task to run in optimized mode increases
performance by removing any columns or components that are not required further downstream
in the data flow.

Demonstration: Implementing a Data Flow

In this demonstration, you will see how to:

 Configure a Data Source.

 Use a Derived Column Transformation.

 Use a Lookup Transformation.

 Configure a Destination.

Demonstration Steps
Configure a Data Source

1. Ensure you have completed the previous demonstrations in this module.

2. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

3. In Object Explorer, expand Databases, expand Products, and expand Tables. Then right-click each of
the following tables and click Select Top 1000 Rows and view the data they contain.

o dbo.Product

o dbo.ProductCategory

o dbo.ProductSubcategory

4. In Object Explorer, under Databases, expand DemoDW, and expand Tables. Then right-click
dbo.DimProduct and click Select Top 1000 Rows to verify that this table is empty.

5. Start Visual Studio and create a new Integration Services project named DataFlowDemo in the
D:\Demofiles\Mod04 folder.

6. If the Getting Started (SSIS) window is displayed, close it.

7. In Solution Explorer, expand SSIS Packages, right-click Package.dtsx, and click Rename. Then
change the package name to ExtractProducts.dtsx.

8. In Solution Explorer, right-click Connection Managers and click New Connection Manager. Then
add a new OLEDB connection manager with the following settings:

o Server name: localhost

o Log on to the server: Use Windows Authentication

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-22 Creating an ETL Solution with SSIS

o Select or enter a database name: Products

9. In the SSIS Toolbox pane, in the Favorites section, double-click Data Flow Task to add it to the
Control Flow surface. Alternatively, you can drag the task icon to the Control Flow surface.

10. Right-click Data Flow Task and click Rename. Then change its name to Extract Products.

11. Double-click Extract Products to switch to the Data Flow tab.

12. In the SSIS Toolbox pane, in the Favorites section, double-click Source Assistant to add a source to
the Data Flow surface. Alternatively, you can drag the Source Assistant icon to the Data Flow surface.

13. In the Source Assistant - Add New Source dialog box, in the list of types, click SQL Server. In the
list of connection managers, click localhost.Products, and then click OK.

14. Rename the OLE DB Source to Products, and then double-click it to edit its settings.

15. In the OLE DB Source Editor dialog box, on the Connection Manager tab, view the list of available
tables and views in the drop-down list.

16. Change the data access mode to SQL Command, and then enter the following Transact-SQL code:

SELECT ProductKey, ProductName FROM Product

17. Click Build Query to open the Query Builder dialog box.

18. In the Product table, select the ProductSubcategoryKey, StandardCost, and ListPrice columns, and
then click OK.

19. In the OLE DB Source Editor dialog box, click Preview to see a data preview, and then click Close to
close the preview.

20. In the OLE DB Source Editor dialog box, click the Columns tab, view the list of external columns that
the query has returned and the output columns generated by the data source, and then click OK.

Use a Derived Column Transformation

1. In the SSIS Toolbox pane, in the Common section, double-click Derived Column to add a Derived
Column transformation to the Data Flow surface, and then position it under the Products source.
Alternatively, you can drag the Derived Transformation icon to the Data Flow surface.

2. Rename the Derived Column transformation to Calculate Profit.

3. Select the Products source, and then drag the blue output arrow to the Derived Column
transformation.

4. Double-click the Derived Column transformation to edit its settings, and then in the Derived
Column Name box, type Profit.

5. Ensure that <add as new column> is selected in the Derived Column box.

6. Expand the Column folder, and then drag the ListPrice column to the Expression box.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-23

7. In the Expression box, after [ListPrice], type a minus sign (–), and then drag the StandardCost column
to the Expression box to create the following expression:

[ListPrice]-[StandardCost]

8. Click the Data Type box, ensure that it is set to Currency [DT_CY], and then click OK.

Use a Lookup Transformation

1. In the SSIS Toolbox pane, in the Common section, double-click Lookup to add a Lookup
transformation to the Data Flow surface, and then position it under the Calculate Profit
transformation. Alternatively, you can drag the Lookup icon to the Data Flow surface.

2. Rename the Lookup transformation to Lookup Category.

3. Select the Calculate Profit transformation, and then drag the blue output arrow to the Lookup
Category transformation.

4. Double-click the Lookup Category transformation to edit its settings.

5. In the Lookup Transformation Editor dialog box, on the General tab, in the Specify how to
handle rows with no matching entries list, select Redirect rows to no match output.

6. In the Lookup Transformation Editor dialog box, on the Connection tab, ensure that the
localhost.Products connection manager is selected, and then click Use results of an SQL query.

7. Click Browse, and then in the D:\Demofiles\Mod04 folder, open the LookupProductCategories.sql
query.

8. Click Preview to view the product category data, note that it includes a ProductSubcategoryKey
column, and then click Close to close the preview.

9. In the Lookup Transformation Editor dialog box, on the Columns tab, in the Available Input
Columns list, drag ProductSubcategoryKey to ProductSubCategoryKey in the Available Lookup
Columns list.

10. Select the ProductSubcategoryName and ProductCategoryName columns to add them as new
columns to the data flow, and then click OK.

Configure a Destination

1. In Solution Explorer, create a new OLE DB connection manager with the following settings:

o Server name: localhost

o Log on to the server: Use Windows Authentication

o Select or enter a database name: DemoDW

2. In the SSIS Toolbox pane, in the Favorites section, double-click Destination Assistant to add a
destination transformation to the Data Flow surface. Alternatively, you can drag the Destination
Assistant icon to the Data Flow surface.

3. In the Destination Assistant - Add New Destination dialog box, in the list of types, click SQL
Server. In the list of connection managers, click localhost.DemoDW, and then click OK.

4. Rename the OLE DB destination to DemoDW and position it under the Lookup Category
transformation.

5. Select the Lookup Category transformation, and then drag the blue output arrow to the DemoDW
destination.

6. In the Input Output Selection dialog box, in the Output list, click Lookup Match Output, and then
click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-24 Creating an ETL Solution with SSIS

7. Double-click the DemoDW destination to edit its settings, and then in the Name of the table or the
view list, click [dbo].[DimProduct].

8. In the OLE DB Destination Editor dialog box, on the Mappings tab, note that input columns are
automatically mapped to destination columns with the same name.

9. In the Available Input Columns list, drag the ProductKey column to the ProductID column in the
Available Destination Columns list, and then click OK.

10. In the SSIS Toolbox pane, in the Other Destinations section, double-click Flat File Destination to
add a destination transformation to the Data Flow surface, and then position it to the right of the
Lookup Category transformation. Alternatively, you can drag the Flat File Destination icon to the
Data Flow surface.

11. Rename the flat file destination Uncategorized Products.

12. Select the Lookup Category transformation, and then drag the blue output arrow to the
Uncategorized Products destination. The Lookup No Match Output output is automatically
selected.

13. Double-click the Uncategorized Products destination to edit its settings, and then click New. Then
select Delimited Values and click OK.

14. In the Flat File Connection Manager Editor dialog box, name the new connection manager
Unmatched Products and specify the file name D:\Demofiles\Mod04\UnmatchedProducts.csv.
Then click OK.

15. In the Flat File Destination Editor dialog box, click the Mappings tab and note that the input
columns are mapped to destination columns with the same names, and then click OK.

16. On the Debug menu, click Start Debugging, and observe the data flow as it runs, noting the number
of files transferred along each path.

17. When the data flow has completed, on the Debug menu, click Stop Debugging.

18. Close Visual Studio, saving your changes if you are prompted.

19. Start Excel, and open the Unmatched Products.csv flat file in the D:\Demofiles\Mod04 folder. Note
that there were no unmatched products.

20. Use SQL Server Management Studio to view the contents of the DimProduct table in the DemoDW
database, and note that the product data has been transferred.

21. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-25

Lab: Implementing Data Flow in an SSIS Package
Scenario
In this lab, you will focus on the extraction of customer and sales order data from the InternetSales
database used by the company’s e-commerce site, which you must load into the Staging database. This
database contains customer data (in a table named Customers), and sales order data (in tables named
SalesOrderHeader and SalesOrderDetail). You will extract sales order data at the line item level of
granularity. The total sales amount for each sales order line item is then calculated by multiplying the unit
price of the product purchased by the quantity ordered. Additionally, the sales order data includes only
the ID of the product purchased, so your data flow must look up the details of each product in a separate
Products database.

Objectives
After completing this lab, you will be able to:

 Extract and profile source data.

 Implement a data flow.

 Use transformations in a data flow.

Estimated Time: 60 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Exploring Source Data

Scenario
You have designed a data warehouse schema for Adventure Works Cycles, and now you must design an
ETL process to populate it with data from various source systems. Before creating the ETL solution, you
have decided to examine the source data so you can understand it better.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Extract and View Sample Source Data

3. Profile Source Data

 Task 1: Prepare the Lab Environment

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the 20463C-MIA-SQL virtual machine, run Setup.cmd in the D:\Labfiles\Lab04\Starter folder as
Administrator.

 Task 2: Extract and View Sample Source Data
1. Use the SQL Server 2014 Import and Export Data Wizard to extract a sample of customer data from

the InternetSales database on the localhost instance of SQL Server to a comma-delimited flat file.

o Your sample should consist of the first 1,000 records in the Customers table.

o You should use a text qualifier because some string values in the table may contain commas.

2. After you have extracted the sample data, use Excel to view it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-26 Creating an ETL Solution with SSIS

Note: You may observe some anomalies in the data, such as invalid gender codes and multiple values for
the same country or region. The purpose of examining the source data is to identify as many of these
problems as possible, so that you can resolve them in the development of the ETL solution. You will
address the problems in this data in later labs.

 Task 3: Profile Source Data
1. Create an Integration Services project named Explore Internet Sales in the D:\Labfiles\Lab04\Starter

folder.

2. Add an ADO.NET connection manager that uses Windows authentication to connect to the
InternetSales database on the localhost instance of SQL Server.

3. Use a Data Profiling task to generate the following profile requests for data in the InternetSales
database:

o Column statistics for the OrderDate column in the SalesOrderHeader table. You will use this
data to find the earliest and latest dates on which orders have been placed.

o Column length distribution for the AddressLine1 column in the Customers table. You will use
this data to determine the appropriate column length to allow for address data.

o Column null ratio for the AddressLine2 column in the Customers table. You will use this data to
determine how often the second line of an address is null.

o Value inclusion for matches between the PaymentType column in the SalesOrderHeader table
and the PaymentTypeKey column in the PaymentTypes table. Do not apply an inclusion
threshold and set a maximum limit of 100 violations. You will use this data to find out if any
orders have payment types that are not present in the table of known payment types.

4. Run the SSIS package and view the report that the Data Profiling task generates in the Data Profile
Viewer.

Results: After this exercise, you should have a comma-separated text file that contains a sample of
customer data, and a data profile report that shows statistics for data in the InternetSales database.

Exercise 2: Transferring Data by Using a Data Flow Task

Scenario
Now that you have explored the source data in the InternetSales database, you are ready to start
implementing data flows for the ETL process. A colleague has already implemented data flows for reseller
sales data, and you plan to model your Internet sales data flows on those.

The main tasks for this exercise are as follows:

1. Examine an Existing Data Flow

2. Create a Data Flow task

3. Add a Data Source to a Data Flow

4. Add a Data Destination to a Data flow

5. Test the Data Flow Task

 Task 1: Examine an Existing Data Flow
1. Open the D:\Labfiles\Lab04\Starter\Ex2\ AdventureWorksETL.sln solution in Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-27

2. Open the Extract Reseller Data.dtsx package and examine its control flow. Note that it contains two
Data Flow tasks.

3. On the Data Flow tab, view the Extract Resellers task and note that it contains a source named
Resellers and a destination named Staging DB.

4. Examine the Resellers source, noting the connection manager that it uses, the source of the data, and
the columns that its output contains.

5. Examine the Staging DB destination, noting the connection manager that it uses, the destination
table for the data, and the mapping of input columns to destination columns.

6. Right-click anywhere on the Data Flow design surface, click Execute Task, and then observe the data
flow as it runs, noting the number of rows transferred.

7. When the data flow has completed, stop the debugging session.

 Task 2: Create a Data Flow task
1. Add a new package to the project and name it Extract Internet Sales Data.dtsx.

2. Add a Data Flow task named Extract Customers to the new package’s control flow.

 Task 3: Add a Data Source to a Data Flow
1. Create a new project-level OLE DB connection manager that uses Windows authentication to connect

to the InternetSales database on the localhost instance of SQL Server.

2. In the Extract Customers data flow, add a source that uses the connection manager that you created
for the InternetSales database, and name it Customers.

3. Configure the Customers source to extract all columns from the Customers table in the
InternetSales database.

 Task 4: Add a Data Destination to a Data Flow
1. Add a destination that uses the existing localhost.Staging connection manager to the Extract

Customers data flow, and then name it Staging DB.

2. Connect the output from the Customers source to the input of the Staging DB destination.

3. Configure the Staging DB destination to load data into the Customers table in the Staging
database.

4. Ensure that all columns are mapped, and in particular that the CustomerKey input column is mapped
to the CustomerBusinessKey destination column.

 Task 5: Test the Data Flow Task
1. Right-click anywhere on the Data Flow design surface, click Execute Task, and then observe the data

flow as it runs, noting the number of rows transferred.

2. When the data flow has completed, stop the debugging session.

Results: After this exercise, you should have an SSIS package that contains a single Data Flow task, which
extracts customer records from the InternetSales database and inserts them into the Staging database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-28 Creating an ETL Solution with SSIS

Exercise 3: Using Transformations in a Data Flow

Scenario
You have implemented a simple data flow to transfer customer data to the staging database. Now you
must implement a data flow for Internet sales records. The new data flow must add a new column that
contains the total sales amount for each line item (which is derived by multiplying the list price by the
quantity of units purchased), and use a product key value to find additional data in a separate Products
database. Once again, you will model your solution on a data flow that a colleague has already
implemented for reseller sales data.

The main tasks for this exercise are as follows:

1. Examine an Existing Data Flow

2. Create a Data Flow Task

3. Add a Data Source to a Data Flow

4. Add a Derived Column transformation to a data flow

5. Add a Lookup Transformation to a Data Flow

6. Add a Data Destination to a Data Flow

7. Test the Data Flow task

 Task 1: Examine an Existing Data Flow
1. Open the D:\Labfiles\Lab04\Starter\Ex3\AdventureWorksETL.sln solution in Visual Studio.

2. Open the Extract Reseller Data.dtsx package and examine its control flow. Note that it contains two
Data Flow tasks.

3. On the Data Flow tab, view the Extract Reseller Sales task.

4. Examine the Reseller Sales source, noting the connection manager that it uses, the source of the
data, and the columns that its output contains.

5. Examine the Calculate Sales Amount transformation, noting the expression that it uses to create a
new derived column.

6. Examine the Lookup Product Details transformation, noting the connection manager and query that
it uses to look up product data, and the column mappings used to match data and add rows to the
data flow.

7. Examine the Staging DB destination, noting the connection manager that it uses, the destination
table for the data, and the mapping of input columns to destination columns.

8. Right-click anywhere on the Data Flow design surface, click Execute Task, and then observe the data
flow as it runs, noting the number of rows transferred.

9. When the data flow has completed, stop the debugging session.

 Task 2: Create a Data Flow Task
1. Open the Extract Internet Sales Data.dtsx package, and then add a new Data Flow task named

Extract Internet Sales to its control flow.

2. Connect the pre-existing Extract Customers Data Flow task to the new Extract Internet Sales task.

 Task 3: Add a Data Source to a Data Flow
1. Add a source that uses the existing localhost.InternetSales connection manager to the Extract

Internet Sales data flow, and then name it Internet Sales.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 4-29

2. Configure the Internet Sales source to use the Transact-SQL code in the
D:\Labfiles\Lab04\Starter\Ex3\InternetSales.sql query file query to extract Internet sales records.

 Task 4: Add a Derived Column transformation to a data flow
1. Add a Derived Column transformation named Calculate Sales Amount to the Extract Internet Sales

data flow.

2. Connect the output from the InternetSales source to the input of the Calculate Sales Amount
transformation.

3. Configure the Calculate Sales Amount transformation to create a new column named SalesAmount
containing the UnitPrice column value multiplied by the OrderQuantity column value.

 Task 5: Add a Lookup Transformation to a Data Flow
1. Add a Lookup transformation named Lookup Product Details to the Extract Internet Sales data

flow.

2. Connect the output from the Calculate Sales Amount transformation to the input of the Lookup
Product Details transformation.

3. Configure the Lookup Product Details transformation to:

o Redirect unmatched rows to the no match output.

o Use the localhost.Products connection manager and the Products.sql query in the
D:\Labfiles\Lab04\Starter\Ex3 folder to retrieve product data.

o Match the ProductKey input column to the ProductKey lookup column.

o Add all lookup columns other than ProductKey to the data flow.

4. Add a flat file destination named Orphaned Sales to the Extract Internet Sales data flow. Then
redirect non-matching rows from the Lookup Product Details transformation to the Orphaned
Sales destination, which should save any orphaned records in a comma-delimited file named
Orphaned Internet Sales.csv in the D:\ETL folder.

 Task 6: Add a Data Destination to a Data Flow
1. Add a destination that uses the localhost.Staging connection manager to the Extract Customers

data flow, and name it Staging DB.

2. Connect the match output from the Lookup Product Details transformation to the input of the
Staging DB destination.

3. Configure the Staging DB destination to load data into the InternetSales table in the Staging
database. Ensure that all columns are mapped. In particular, ensure that the *Key input columns are
mapped to the *BusinessKey destination columns.

 Task 7: Test the Data Flow task
1. Right-click anywhere on the Data Flow design surface, click Execute Task, and then observe the data

flow as it runs, noting the number of rows.

2. When the data flow has completed, stop the debugging session.

Results: After this exercise, you should have a package that contains a Data Flow task including Derived
Column and Lookup transformations.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-30 Creating an ETL Solution with SSIS

Module Review and Takeaways
In this module, you have learned how to explore source data and use SQL Server Integration Services to
implement a data flow.

Review Question(s)
Question: How could you determine the range of OrderDate values in a data source to plan
a time dimension table in a data warehouse?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-1

Module 5
Implementing Control Flow in an SSIS Package

Contents:
Module Overview 5-1

Lesson 1: Introduction to Control Flow 5-2

Lesson 2: Creating Dynamic Packages 5-9

Lesson 3: Using Containers 5-14

Lab A: Implementing Control Flow in an SSIS Package 5-19

Lesson 4: Managing Consistency 5-24

Lab B: Using Transactions and Checkpoints 5-29

Module Review and Takeaways 5-33

Module Overview
Control flow in SQL Server Integration Services (SSIS) packages enables you to implement complex extract,
transform, and load (ETL) solutions that combine multiple tasks and workflow logic. By learning how to
implement control flow, you can design robust ETL processes for a data warehousing solution that
coordinate data flow operations with other automated tasks.

Objectives
After completing this module, you will be able to:

 Implement control flow with tasks and precedence constraints.

 Create dynamic packages that include variables and parameters.

 Use containers in a package control flow.

 Enforce consistency with transactions and checkpoints.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-2 Implementing Control Flow in an SSIS Package

Lesson 1
Introduction to Control Flow

Control flow in an SSIS package consists of one or more tasks, usually executed as a sequence based on
precedence constraints that define a workflow. Before you can implement a control flow, you need to
know what tasks are available and how to define a workflow sequence using precedence constraints. You
also need to understand how you can use multiple packages to create complex ETL solutions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the control flow tasks provided by SSIS.

 Define a workflow for tasks by using precedence constraints.

 Use design time features of SSIS to help you develop control flow efficiently.

 Use multiple packages in an SSIS solution.

 Create reusable package templates.

Control Flow Tasks

A control flow consists of one or more tasks. SSIS
includes the following control flow tasks that you
can use in a package:

Data Flow Tasks

Data Flow Encapsulates a data flow that transfers data from a source to a
destination.

Database Tasks

Data Profiling Generates statistical reports based on a data source.

Bulk Insert Inserts data into a data destination in a bulk load operation.

Execute SQL Runs a structured query language (SQL) query in a database.

Execute T-SQL Runs a Transact-SQL query in a Microsoft® SQL Server® database.

CDC Control Performs a change data capture (CDC) status management operation.
CDC is discussed in Module 7: Implementing an Incremental ETL Process.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-3

File and Internet Tasks

File System Performs file system operations, such as creating folders or deleting files.

FTP Performs file transfer protocol (FTP) operations, such as copying files.

XML Performs XML processing operations, such as applying a style sheet.

Web Service Calls a method on a specific web service.

Send Mail Sends an email message.

Process Execution Tasks

Execute Package Runs a specified SSIS package.

Execute Process Runs a specified program.

WMI Tasks

WMI Data Reader Runs a Windows Management Instrumentation (WMI) query.

WMI Event Watcher Monitors a specific WMI event.

Custom Logic Tasks

Script A Microsoft® Visual Studio® Tools for Applications (VSTA) script.

Custom Task A custom task implemented as a .NET assembly.

Database Transfer Tasks

Transfer Database Transfers a database from one SQL Server instance to another.

Transfer Error
Messages

Transfers custom error messages from one SQL Server instance to another.

Transfer Jobs Transfers SQL Agent jobs from one SQL Server instance to another.

Transfer Logins Transfers logins from one SQL Server instance to another.

Transfer Master
Stored Procedures

Transfers stored procedures in the master database from one SQL Server
instance to another.

Transfer SQL Server
Objects

Transfers database objects such as tables and views from one SQL Server
instance to another.

Analysis Services Tasks

Analysis Services
Execute DDL

Runs a data definition language (DDL) statement in an Analysis Services
instance – for example to create a cube.

Analysis Services
Processing

Processes an Analysis Services object, such as a cube or data mining
model.

Data Mining Query Runs a prediction query using a data mining model.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-4 Implementing Control Flow in an SSIS Package

SQL Server Maintenance Tasks

Backup Database Backs up an SQL Server database.

Check Database
Integrity

Checks the integrity of an SQL Server database.

History Cleanup Deletes out-of-date history data for SQL Server maintenance operations.

Maintenance
Cleanup

Deletes files left by maintenance operations.

Notify Operator Sends a notification by email message, pager message, or network alert to
an SQL Agent operator.

Rebuild Index Rebuilds a specified index on an SQL Server table or view.

Reorganize Index Reorganizes a specified index on an SQL Server table or view.

Shrink Database Reduces the size of the specified SQL Server database.

Update Statistics Updates value distribution statistics for tables and views in an SQL Server
database.

To add a task to a control flow, drag it from the SSIS Toolbox to the control flow design surface. Then
double-click the task on the design surface to configure its settings.

Precedence Constraints

A control flow usually defines a sequence of tasks
to be executed. You define the sequence by
connecting tasks with precedence constraints.
These constraints evaluate the outcome of a task
to determine the flow of execution.

Control Flow Conditions
You can define precedence constraints for one of
the following three conditions:

 Success – The execution flow to be followed
when a task completes successfully. In the
control flow designer, success constraints are
shown as green arrows.

 Failure – The execution flow to be followed when a task fails. In the control flow designer, failure
constraints are shown as red arrows.

 Completion – The execution flow to be followed when a task completes, regardless of whether it
succeeds or fails. In the control flow designer, complete constraints are shown as black arrows.

By using these conditional precedence constraints, you can define a control flow that executes tasks based
on conditional logic. For example, you could create a control flow with the following steps:

1. An FTP task downloads a file of sales data to a local folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-5

2. If the FTP download succeeds, a data flow task imports the downloaded data into an SQL Server
database. However, if the FTP download fails, a Send Mail task notifies an administrator that there’s
been a problem.

3. When the data flow task completes, regardless of whether it fails or succeeds, a File System task
deletes the folder where the customer data file was downloaded.

Using Multiple Constraints
You can connect multiple precedence constraints to a single task. For example, a control flow might
include two data flow tasks, and a Send Mail task that you want to use to notify an administrator if
something goes wrong. To accomplish this, you could connect a failure precedence constraint from each
of the data flow tasks to the Send Mail task. However, you need to determine whether the notification
should be sent if either one of the data flow tasks fails, or only if both fail.

By default, when multiple precedence constraints are connected to a single task, a logical AND operation
is applied to the precedence condition, meaning that all the precedence constraints must evaluate to True
to execute the connected task. In the example above, this means that the Send Mail task would only be
executed if both data flow tasks failed. In the control flow designer, logical AND constraints are shown as
solid arrows.

You can double-click a precedence constraint to edit and configure it to use a logical OR operation, in
which case the connected task is executed if any of the connections evaluates to True. Setting the
constraints in the example above to use a logical OR operation would result in the Send Mail task being
executed if either (or both) of the data flow tasks failed. In the control flow designer, logical AND
constraints are shown as dotted arrows.

Grouping and Annotations

As your control flows become more complex, it
can be difficult to interpret the control flow
surface. The SSIS Designer includes two features to
help SSIS developers work more efficiently.

Grouping Tasks

You can group multiple tasks on the design
surface to manage them as a single unit. A task
grouping is a design time only feature and has no
effect on run-time behavior. With a grouped set of
tasks, you can:

 Move the tasks around the design surface as a
single unit.

 Show or hide the individual tasks to make the best use of space on the screen.

To create a group of tasks, select which ones you want by dragging around or clicking them while holding
the CTRL key. Right-click any of the selected tasks and click Group.

Adding Annotations

You can add annotations to the design surface to document your workflow. An annotation is a text-based
note that you can use to describe important features of your package design. To add an annotation, right-
click the design surface, click Add Annotation, and then type the annotation text.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-6 Implementing Control Flow in an SSIS Package

 Note: You can add annotations to the Control Flow design surface, the Data Flow design
surface, and the Event Handler design surface.

Demonstration: Implementing Control Flow

In this demonstration, you will see how to:

 Add Tasks to a Control Flow.

 Use Precedence Constraints to Define a Control Flow.

Demonstration Steps
Add Tasks to a Control Flow

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then
log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod05 folder, run Setup.cmd as Administrator.

3. Start Visual Studio and open ControlFlowDemo.sln from the D:\Demofiles\Mod05 folder.

4. In Solution Explorer, double-click Control Flow.dtsx.

5. If the SSIS Toolbox is not visible, on the SSIS menu, click SSIS Toolbox. Then, from the SSIS Toolbox,
drag a File System Task to the control flow surface.

6. Double-click the File System Task and configure the following settings:

o Name: Delete Files

o Operation: Delete directory content

o SourceConnection: A new connection with a Usage type of Create folder, and a Folder value
of D:\Demofiles\Mod05\Demo.

7. From the SSIS Toolbox, drag a second File System Task to the control flow surface. Then double-click
the File System Task and configure the following settings:

o Name: Delete Folder

o Operation: Delete directory

o SourceConnection: Demo

8. From the SSIS Toolbox, drag a third File System Task to the control flow surface. Then double-click
the File System Task and configure the following settings:

o Name: Create Folder

o Operation: Create directory

o UseDirectoryIfExists: True

o SourceConnection: Demo

9. From the SSIS Toolbox, drag a fourth File System Task to the control flow surface. Then double-click
the File System Task and configure the following settings:

o Name: Copy File

o Operation: Copy file

o DestinationConnection: Demo

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-7

o OverwriteDestination: True

o SourceConnection: A new connection with a Usage type of Existing file, and a File value of
D:\Demofiles\Mod05\Demo.txt

10. From the SSIS Toolbox, drag a Send Mail task to the control flow surface. Then double-click the Send
Mail task and configure the following settings:

o Name (on the General tab): Send Failure Notification

o SmtpConnection (on the Mail tab): Create a new SMTP connection manager with a Name
property of Local SMTP Server and an SMTP Server property of localhost. Use the default
values for all other settings

o From (on the Mail tab): demo@adventureworks.msft

o To (on the Mail tab): student@adventureworks.msft

o Subject (on the Mail tab): Control Flow Failure

o MessageSource (on the Mail tab): A task failed

Use Precedence Constraints to Define a Control Flow

1. Select the Delete Files task and drag its green arrow to the Delete Folder task. Then connect the
Delete Folder task to the Create Folder task and the Create Folder task to the Copy File task.

2. Connect each of the file system tasks to the Send Failure Notification task.

3. Right-click the connection between Delete Files and Delete Folder, and then click Completion.

4. Right-click the connection between Delete Folder and Create Folder and click Completion.

5. Click the connection between the Delete Files task and the Send Failure Notification task to select
it. Then hold the Ctrl key and click each connection between the remaining file system tasks and the
Send Failure Notification task while holding the Ctrl key to select them all.

6. Press F4 and in the Properties pane, set the Value property to Failure.

7. Click anywhere on the control flow surface to clear the current selection, and then double-click any of
the red constraints connected to the Send Failure Notification task. Then in the Precedence
Constraint Editor dialog box, in the Multiple constraints section, select Logical OR. One
constraint must evaluate to True, and click OK. Note that all connections to the Send Failure
Notification task are now dotted to indicate that a logical OR operation is applied.

8. Right-click the control flow surface next to the Send Failure Notification task and click Add
Annotation. Then type Send an email message if a task fails.

9. Select the Delete Files and Delete Folder tasks, then right-click either of them and click Group. Drag
the group to rearrange the control flow so you can see that the Delete Folder task is still connected
to the Create Folder task.

10. On the Debug menu, click Start Debugging to run the package, and note that the Delete Files and
Delete Folder tasks failed because the specified folder did not previously exist. This caused the Send
Failure Notification task to be executed.

11. You can view the email message that was sent by the Send Failure Notification task in the
C:\inetpub\mailroot\Drop folder. Double-click it to open with Outlook.

12. In Visual Studio, on the Debug menu, click Stop Debugging, and then run the package again. This
time all the file system tasks should succeed because the folder was created during the previous
execution. Consequently, the Send Failure Notification task is not executed.

13. Stop debugging and close Visual Studio. Save the solution files if prompted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-8 Implementing Control Flow in an SSIS Package

Using Multiple Packages

While you can implement an SSIS solution that
includes only one package, most enterprise
solutions include multiple packages. By dividing
your solution into multiple packages, you can:

 Create reusable units of workflow that can be
used multiple times in a single ETL process.

 Run multiple control flows in parallel, taking
advantage of multi-processing computers and
improving the overall throughput of your ETL
processes.

 Separate data extraction workflows to suit
data acquisition windows.

You can execute each package independently, as well as using the Execute Package task to run one
package from another.

Creating a Package Template

SSIS developers often need to create multiple
similar packages. To make the development
process more efficient, you can adopt the
following procedure to create a package template
that you can reuse to create multiple packages
with pre-defined objects and settings.

1. Create a package that includes the elements
you want to reuse. These elements can
include:

o Connection Managers

o Tasks

o Event Handlers

o Parameters and Variables

2. Save the package to the DataTransformationItems folder on your development workstation.

3. By default, this folder is located at C:\Program Files (x86)\Microsoft Visual Studio
<version>\Common7\IDE\PrivateAssemblies\ProjectItems\DataTransformationProject.

4. When you want to reuse the package, add a new item to the project and select the package in the
Add New Item dialog box.

5. Change the Name and ID properties of the new package to avoid naming conflicts.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-9

Lesson 2
Creating Dynamic Packages

You can use variables, parameters, and expressions to make your SSIS packages more dynamic. For
example, rather than hard-coding a database connection string or file path in a data source, you can
create a package that sets the value dynamically at run time. This produces a more flexible and reusable
solution and helps mitigate differences between the development and production environments.

This lesson describes how you can create variables and parameters, and use them in expressions.

Lesson Objectives
After completing this lesson, you will be able to:

 Create variables in an SSIS solution.

 Create parameters in an SSIS solution.

 Use expressions in an SSIS solution.

Variables
You can use variables to store values that a control
flow uses at run time. Variable values can change
as the package is executed to reflect run-time
conditions. For example, a variable used to store a
file path might change depending on the specific
server on which the package is running. You can
use variables to:

 Set property values for tasks and other
objects.

 Store an iterator or enumerator value for a
loop.

 Set input and output parameters for an SQL query.

 Store results from an SQL query.

 Implement conditional logic in an expression.

SSIS packages can contain user and system variables.

User Variables
You can define user variables to store dynamic values that your control flow uses. To create a variable,
view the Variables pane in SSIS Designer and click the Add Variable button. For each user variable, you
can specify the following properties:

 Name – A name for the variable. The combination of name and namespace must be unique within
the package. Note that variable names are case-sensitive.

 Scope – The scope of the variable. Variables can be accessible throughout the whole package, or
scoped to a particular container or task. You cannot set the scope in the Variable pane, it is
determined by the object selected when you create the variable.

 Data Type. – The type of data the variable will hold, for example string, datetime, or decimal.

 Value – The initial value of the variable.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-10 Implementing Control Flow in an SSIS Package

 Namespace – The namespace within which the variable name is unique. By default, user variables are
defined in the User namespace, but you can create additional namespaces as required.

 Raise Change Event – Causes an event to be raised when the variable value changes. You can then
implement an event handler to perform some custom logic.

 IncludeInDebugDump – Causes the variable value to be included in debug dump files.

System Variables
System variables store information about the running package and its objects, and are defined in the
System namespace. Some useful system variables include:

 MachineName – The computer on which the package is running.

 PackageName – The name of the package that is running.

 StartTime – The time that the package started running.

 UserName – The user who started the package.

 Note: For a full list of system variables, refer to the SQL Server Integration Services
documentation in SQL Server Books Online.

Parameters

You can use parameters to pass values to a project
or package at run time. When you define a
parameter, you can set a default value, which can
be overridden when the package is executed in a
production environment. For example, you could
use a parameter to specify a database connection
string for a data source, using one value during
development, and a different value when the
project is deployed to a production environment.

Parameters have three kinds of value:

 Design default value – A default value
assigned to the parameter in the design
environment.

 Server default value – A default value assigned to the parameter during deployment. This value
overrides the design default value.

 Execution value – A value for a specific execution of a package. This value overrides both the server
and design default values.

When the project is deployed to an SSIS Catalog, administrators can define multiple environments and
specify server default parameter values for each environment.

SSIS supports two kinds of parameter:

 Project parameters, which are defined at the project level and can be used in any packages within the
project.

 Package parameters, which are scoped at the package level and are only available within the package
for which they are defined.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-11

 Note: Parameters are only supported in the project deployment model. When the legacy
deployment model is used, you can set dynamic package properties by using package
configurations. Deployment is discussed in Module 12: Deploying and Configuring SSIS Packages.

Expressions

SSIS provides a rich expression language that you
can use to set values for numerous elements in an
SSIS package, including:

 Properties.

 Conditional Split transformation criteria.

 Derived Column transformation values.

 Precedence constraint conditions.

Expressions are based on Integration Services
expression syntax, which uses similar functions and
keywords to common programming languages
like Microsoft® C#. Expressions can include variables and parameters, enabling you to set values
dynamically based on specific run-time conditions.

For example, you could use an expression in a data flow task to specify the location of a file to be used as
a data source.

The following sample code shows an expression that concatenates a parameter containing a folder path
and a variable containing a file name to produce a full file path:

An SSIS Expression

@[$Project::folderPath]+[@User::fName]

Note that variable names are prefixed with an @ symbol, and that square brackets are used to enclose
identifier names in order to support identifiers with names containing spaces. Also, note that the fully-
qualified parameter and variable names are used, including the namespace, and the parameter name is
prefixed with a $ symbol.

You can type expressions, or in many cases you can create them by using the Expression Builder. This is a
graphical tool that enables you to create expressions by dragging in variables, parameters, constants, and
functions. The Expression Builder automatically adds prefixes and text qualifiers for variables and
parameters, simplifying the task of creating complex expressions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-12 Implementing Control Flow in an SSIS Package

Demonstration: Using Variables and Parameters

In this demonstration, you will see how to:

 Create a Variable.

 Create a Parameter.

 Use Variables and Parameters in an Expression.

Demonstration Steps
Create a Variable

1. Ensure you have completed the previous demonstration in this module.

2. Start Visual Studio and open the VariablesAndParameters.sln solution in the D:\Demofiles\Mod05
folder.

3. In Solution Explorer, double-click Control Flow.dtsx.

4. On the View menu, click Other Windows, and click Variables.

5. In the Variables pane, click the Add Variable button and add a variable with the following
properties:

o Name: fName

o Scope: Control Flow

o Data type: String

o Value: Demo1.txt

Create a Parameter

1. In Solution Explorer, double-click Project.parameters.

2. In the Project.params [Design] window, click the Add Parameter button and add a parameter with
the following properties:

o Name: folderPath

o Data type: String

o Value: D:\Demofiles\Mod05\Files\

o Sensitive: False

o Required: True

o Description: Folder containing text files

Note: Be sure to include the trailing “\” in the Value property.

3. Save all files and close the Project.params [Design] window.

Use a Variable and a Parameter in an Expression

1. On the Control Flow.dtsx package design surface, in the Connection Managers pane, click the
Demo.txt connection manager and press F4.

2. In the Properties pane, in the Expressions property box, click the ellipsis (…) button. Then in the
Property Expressions Editor dialog box, in the Property box, select ConnectionString and in the
Expression box, click the ellipsis (…) button.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-13

3. In the Expression Builder dialog box, expand the Variables and Parameters folder, and drag the
$Project::folderPath parameters to the Expression box. Then in the Expression box, type a plus (+)
symbol. Then drag the User::fName variable to the Expression box to create the following
expression:

@[$Project::folderPath]+[@User::fName]

4. In the Expression Builder dialog box, click Evaluate Expression and verify that the expression
produces the result D:\Demofiles\Mod05\Files\Demo1.txt. Then click OK to close the Expression
Builder dialog box, and in the Property Expressions Editor dialog box, click OK.

5. Run the project, and when it has completed, stop debugging and close Visual Studio.

6. View the contents of the D:\Demofiles\Mod05\Demo folder and verify that Demo1.txt has been
copied.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-14 Implementing Control Flow in an SSIS Package

Lesson 3
Using Containers

You can create containers in SSIS packages to group related tasks together or define iterative processes.
Using containers in packages helps you create complex workflows and a hierarchy of execution scopes
that you can use to manage package behavior.

This lesson describes the kinds of containers that are available and how to use them in an SSIS package
control flow.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the types of container available in an SSIS package.

 Use a Sequence container to group related tasks.

 Use a For Loop container to repeat a process until a specific condition is met.

 Use a Foreach Loop container to process items in an enumerated collection.

Introduction to Containers

SSIS packages can contain the following kinds of
containers:

 Task containers – Each control flow task has
its own implicit container.

 Sequence containers – You can group tasks
and other containers into a sequence
container. This creates an execution hierarchy
and enables you to set properties at the
container level that apply to all elements
within the container.

 For Loop containers – You can use a For
Loop container to perform an iterative process until a specified condition is met. For example, you
could use a For Loop container to execute the same task a specific number of times.

 Foreach Loop containers – You can use a Foreach Loop container to perform an iterative task that
processes each element in an enumerated collection. For example, you could use a Foreach Loop
container to execute a data flow task that imports data from each file in a specified folder into a
database.

Containers can be start or endpoints for precedence constraints and you can nest containers within other
containers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-15

Sequence Containers

You can use a sequence container to group tasks
and other containers together, and define a subset
of the package control flow. By using a sequence
container, you can:

 Manage properties for multiple tasks as a unit.

 Disable a logical subset of the package for
debugging purposes.

 Create a scope for variables.

 Manage transactions at a granular level.

To create a sequence container, drag the
Sequence Container icon from the SSIS Toolbox pane to the design surface. Then drag the tasks and other
containers you want to include into the sequence container.

 Note: In the design environment, the sequence container behaves similarly to a grouped
set of tasks. However, unlike a group, a sequence container exists at run time and its properties
can affect the behavior of the control flow.

Demonstration: Using a Sequence Container

In this demonstration, you will be see how to use a sequence container.

Demonstration Steps
Use a Sequence Container

1. Ensure you have completed the previous demonstrations in this module.

2. Start Visual Studio and open the SequenceContainer.sln solution in the D:\Demofiles\Mod05 folder.

3. In Solution Explorer, double-click Control Flow.dtsx.

4. Right-click the Group indicator around the Delete Files and Delete Folder tasks and click Ungroup
to remove it.

5. Drag a Sequence Container from the SSIS Toolbox to the control flow design surface.

6. Right-click the precedence constraint that connects Delete Files to Send Failure Notification, and
click Delete. Then delete the precedence constraints connecting the Delete Folder to Send Failure
Notification and Create Folder.

7. Click and drag around the Delete Files and Delete Folder tasks to select them both, and then drag
into the sequence container.

8. Drag a precedence constraint from the sequence container into Create Folder. Then right-click the
precedence constraint and click Completion.

9. Drag a precedence constraint from the sequence container to Send Failure Notification. Then right-
click the precedence constraint and click Failure.

10. Run the package and view the results, then stop debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-16 Implementing Control Flow in an SSIS Package

11. Click the sequence container and press F4. Then in the Properties pane, set the Disable property to
True.

12. Run the package again and note that neither of the tasks in the sequence container is executed. Then
stop debugging and close Visual Studio.

For Loop Containers

You can use a For Loop container to repeat a
portion of the control flow until a specific
condition is met. For example, you could run a
task a specified number of times.

Conceptually, a For Loop container behaves
similarly to a For Loop construct in common
programming languages such as Microsoft® C#. A
For Loop container uses the following expression-
based properties to determine the number of
iterations it performs:

 An optional initialization expression, which
sets a counter variable to an initial value.

 An evaluation expression that typically evaluates a counter variable in order to exit the loop when it
matches a specific value.

 An iteration expression that typically modifies the value of a counter variable.

To use a For Loop container in a control flow, drag the For Loop Container icon from the SSIS Toolbox to
the control flow surface, and then double-click it to set the expression properties required to control the
number of loop iterations. Then drag the tasks and containers you want to repeat into the For Loop
container on the control flow surface.

Demonstration: Using a For Loop Container

In this demonstration, you will be see how to use a For Loop container.

Demonstration Steps
Use a For Loop Container

1. Ensure you have completed the previous demonstrations in this module.

2. Start Visual Studio and open the ForLoopContainer.sln solution in the D:\Demofiles\Mod05 folder.

3. In Solution Explorer, double-click Control Flow.dtsx.

4. If the Variables window is not open, on the View menu, click Other Windows, and click Variables.
Then add a variable with the following properties:

o Name: counter

o Scope: Control Flow

o Data type: int32

o Value: 0

5. From the SSIS Toolbox, drag a For Loop Container to the control flow design surface.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-17

6. Double-click the For Loop container and set the following properties. Then click OK:

o InitExpression: @counter = 1

o EvalExpression: @counter < 4

o AssignExpression: @counter = @counter + 1

7. From the SSIS Toolbox, drag an Execute Process Task into the For Loop container.

8. Double-click the Execute Process Task and set the following properties, then click OK:

o Name (on the General tab): Open File

o Executable (on the Process tab): Notepad.exe

o Expressions (on the Expressions tab): Use the Property Expressions Editor to set the following
expression for the Arguments property:

@[$Project::folderPath] + "Demo" + (DT_WSTR,1)@[User::counter] + ".txt"

9. Drag a precedence constraint from the For Loop Container to the Sequence Container and
rearrange the control flow if necessary.

10. Run the package, and note that the For Loop starts Notepad three times, opening the text file with
the counter variable value in its name (Demo1.txt, Demo2.txt, and Demo3.txt). Close Notepad each
time it opens, and when the execution is complete, stop debugging.

11. Close Visual Studio, saving the solution files if prompted.

Foreach Loop Containers

You can use a Foreach Loop container to perform
an iterative process on each item in an
enumerated collection. SSIS supports the following
enumerators in a Foreach Loop container:

 ADO – You can use this enumerator to loop
through elements of an ADO object, for
example records in a Recordset.

 ADO.NET Schema Rowset – You can use this
enumerator to iterate through objects in an
ADO.NET schema, for example tables in a
dataset or rows in a table.

 File – You can use this enumerator to iterate through files in a folder.

 Variable – You can use this enumerator to iterate through elements in a variable that contains an
array.

 Item – You can use this enumerator to iterate through a property collection for an SSIS object.

 Nodelist – You can use this enumerator to iterate through elements and attributes in an XML
document.

 SMO – You can use this enumerator to iterate through a collection of SQL Server Management
Objects.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-18 Implementing Control Flow in an SSIS Package

To use a Foreach Loop container in a control flow:

1. Drag the Foreach Loop Container icon from the SSIS Toolbox to the control flow surface.

2. Double-click the Foreach Loop container and select the enumerator you want to use. Each
enumerator has specific properties you need to set, for example the File enumerator requires the path
to the folder containing the files you want to iterate through.

3. Specify the variable in which you want to store the enumerated collection value during each iteration.

4. Drag the tasks you want to perform during each iteration into the Foreach Loop container and
configure their properties appropriately to reference the collection value variable.

Demonstration: Using a Foreach Loop Container

In this demonstration, you will see how to use a Foreach Loop Container.

Demonstration Steps
Use a Foreach Loop Container

1. Ensure you have completed the previous demonstrations in this module.

2. Start Visual Studio and open the ForeachLoopContainer.sln solution in the D:\Demofiles\Mod05
folder.

3. In Solution Explorer, double-click Control Flow.dtsx.

4. From the SSIS Toolbox, drag a Foreach Loop Container to the control flow design surface. Then
double-click the Foreach loop container to view the Foreach Loop Editor dialog box.

5. On the Collection tab, in the Enumerator list, select Foreach File Enumerator, and in the
Expressions box, click the ellipsis (…) button. Then in the Property Expressions Editor dialog box, in
the Property list, select Directory and in the Expression box click the ellipsis (…) button.

6. In the Expression Builder dialog box, expand the Variables and Parameters folder and drag the
$Project::folderPath parameter to the Expression box to specify that the loop should iterate
through files in the folder referenced by the folderPath project parameter. Then click OK to close the
Expression Builder, and click OK again to close the Property Expression Editor.

7. In the Foreach Loop Editor dialog box, on the Collection tab, in the Retrieve file name section,
select Name and extension to return the file name and extension for each file the loop finds in the
folder.

8. In the Foreach Loop Editor dialog box, on the Variable Mappings tab, in the Variable list, select
User::fName and in the Index column select 0 to assign the file name of each file found in the folder
to the fName variable. Then click OK.

9. Remove the precedence constraints that are connected to and from the Copy File task, and then
drag the Copy File task into the Foreach Loop Container.

10. Create a precedence constraint from the Create Folder task to the Foreach Loop Container, and a
precedence constraint from the Foreach Loop Container to the Send Failure Notification task.
Then right-click the constraint between the Foreach Loop Container and the Send Failure
Notification task and click Failure.

11. Run the package, closing each instance of Notepad as it opens. When the package execution has
completed, stop debugging and close Visual Studio, saving the solution files if prompted.

12. Verify that the D:\Demofiles\Mod05\Demo folder contains each of the files in the
D:\Demofiles\Mod05\Files folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-19

Lab A: Implementing Control Flow in an SSIS Package
Scenario
You are implementing an ETL solution for Adventure Works Cycles and must ensure that the data flows
you have already defined are executed as a workflow that notifies operators of success or failure by
sending an email message. You must also implement an ETL solution that transfers data from text files
generated by the company’s financial accounting package to the data warehouse.

Objectives
After completing this lab, you will be able to:

 Use tasks and precedence constraints.

 Use variables and parameters.

 Use containers.

Estimated Time: 60 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Using Tasks and Precedence in a Control Flow

Scenario
You have implemented data flows to extract data and load it into a staging database as part of the ETL
process for your data warehousing solution. Now you want to coordinate these data flows by
implementing a control flow that notifies an operator of the outcome of the process.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View a Control Flow

3. Add Tasks to a Control Flow

4. Test the Control Flow

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-20463C-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab05A\Starter folder as Administrator.

 Task 2: View a Control Flow
1. Use Visual Studio to open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05A\Starter\Ex1 folder.

2. Open the Extract Reseller Data.dtsx package and examine its control flow. Note that it contains two
Send Mail tasks – one that runs when either the Extract Resellers or Extract Reseller Sales tasks fail,
and one that runs when the Extract Reseller Sales task succeeds.

3. Examine the settings for the precedence constraint connecting the Extract Resellers task to the Send
Failure Notification task to determine the conditions under which this task will be executed.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-20 Implementing Control Flow in an SSIS Package

4. Examine the settings for the Send Mail tasks, noting that they both use the Local SMTP Server
connection manager.

5. Examine the settings of the Local SMTP Server connection manager.

6. On the Debug menu, click Start Debugging to run the package, and observe the control flow as the
task executes. Then, when the task has completed, on the Debug menu, click Stop Debugging.

7. In the C:\inetpub\mailroot\Drop folder, double-click the most recent file to open it in Outlook. Then
read the email message and close Outlook.

 Task 3: Add Tasks to a Control Flow
1. Open the Extract Internet Sales Data.dtsx package and examine its control flow.

2. Add a Send Mail task to the control flow, configure it with the following settings, and create a
precedence constraint that runs this task if the Extract Internet Sales task succeeds:

o Name: Send Success Notification

o SmtpConnection: A new SMTP Connection Manager named Local SMTP Server that connects
to the localhost SMTP server

o From: ETL@adventureworks.msft

o To: Student@adventureworks.msft

o Subject: Data Extraction Notification

o MessageSourceType: Direct Input

o MessageSource: The Internet Sales data was successfully extracted

o Priority: Normal

3. Add a second Send Mail task to the control flow, configure it with the following settings, and create
a precedence constraint that runs this task if either the Extract Customers or Extract Internet Sales
task fails:

o Name: Send Failure Notification

o SmtpConnection: The Local SMTP Server connection manager you created previously

o From: ETL@adventureworks.msft

o To: Student@adventureworks.msft

o Subject: Data Extraction Notification

o MessageSourceType: Direct Input

o MessageSource: The Internet Sales data extraction process failed

o Priority: High

 Task 4: Test the Control Flow
1. Set the ForceExecutionResult property of the Extract Customers task to Failure. Then run the

package and observe the control flow.

2. When package execution is complete, stop debugging and verify that the failure notification email
message has been delivered to the C:\inetpub\mailroot\Drop folder. You can double-click the email
message to open it in Outlook.

3. Set the ForceExecutionResult property of the Extract Customers task to None. Then run the
package and observe the control flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-21

4. When package execution is complete, stop debugging and verify that the success notification email
message has been delivered to the C:\inetpub\mailroot\Drop folder.

5. Close Visual Studio when you have completed the exercise.

Results: After this exercise, you should have a control flow that sends an email message if the Extract
Internet Sales task succeeds, or sends an email message if either the Extract Customers or Extract
Internet Sales tasks fail.

Exercise 2: Using Variables and Parameters

Scenario
You need to enhance your ETL solution to include the staging of payments data that is generated in
comma-separated value (CSV) format from a financial accounts system. You have implemented a simple
data flow that reads data from a CSV file and loads it into the staging database. You must now modify the
package to construct the folder path and file name for the CSV file dynamically at run time instead of
relying on a hard-coded name in the data flow task settings.

The main tasks for this exercise are as follows:

1. View a Control Flow

2. Create a Variable

3. Create a Parameter

4. Use a Variable and a Parameter in an Expression

 Task 1: View a Control Flow
1. View the contents of the D:\Accounts folder and note the files it contains. In this exercise, you will

modify an existing package to create a dynamic reference to one of these files.

2. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab05A\Starter\Ex2 folder.

3. Open the Extract Payment Data.dtsx package and examine its control flow. Note that it contains a
single data flow task named Extract Payments.

4. View the Extract Payments data flow and note that it contains a flat file source named Payments
File, and an OLE DB destination named Staging DB.

5. View the settings of the Payments File source and note that it uses a connection manager named
Payments File.

6. In the Connection Managers pane, double-click Payments File, and note that it references the
Payments.csv file in the D:\Labfiles\Lab05A\Starter\Ex2 folder. This file has the same data structure as
the payments file in the D:\Accounts folder.

7. Run the package, and stop debugging when it has completed.

8. On the Execution Results tab, find the following line in the package execution log:

[Payments File [2]] Information: The processing of the file
“D:\Labfiles\Lab05A\Starter\Ex2\Payments.csv” has started

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-22 Implementing Control Flow in an SSIS Package

 Task 2: Create a Variable
1. Add a variable with the following properties to the package:

o Name: fName

o Scope: Extract Payments Data

o Data type: String

o Value: Payments - US.csv

Note that the value includes a space on either side of the “-“ character.

 Task 3: Create a Parameter
1. Add a project parameter with the following settings:

o Name: AccountsFolderPath

o Data type: String

o Value: D:\Accounts\

o Sensitive: False

o Required: True

o Description: Path to accounts files

Note: Be sure to include the trailing “\” in the Value property.

 Task 4: Use a Variable and a Parameter in an Expression
1. Set the Expressions property of the Payments File connection manager in the Extract Payment

Data package so that the ConnectionString property uses the following expression:

@[$Project::AccountsFolderPath]+ @[User::fName]

2. Run the package and view the execution results to verify that the data in the D:\Accounts\Payments -
US.csv file was loaded.

3. Close Visual Studio when you have completed the exercise.

Results: After this exercise, you should have a package that loads data from a text file based on a
parameter that specifies the folder path where the file is stored, and a variable that specifies the file name.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-23

Exercise 3: Using Containers

Scenario
You have created a control flow that loads Internet sales data and sends a notification email message to
indicate whether the process succeeded or failed. You now want to encapsulate the data flow tasks for
this control flow in a sequence container so you can manage them as a single unit.

You have also successfully created a package that loads payments data from a single CSV file based on a
dynamically-derived folder path and file name. Now you must extend this solution to iterate through all
the files in the folder and import data from each one.

The main tasks for this exercise are as follows:

1. Add a Sequence Container to a Control Flow

2. Add a Foreach Loop Container to a Control Flow

 Task 1: Add a Sequence Container to a Control Flow
1. Open the AdventureWorksETL solution in the D:\Labfiles\Lab05A\Starter\Ex3 folder.

2. Open the Extract Internet Sales Data.dtsx package and modify its control flow so that:

o The Extract Customers and Extract Internet Sales tasks are contained in a Sequence container
named Extract Customer Sales Data.

o The Send Failure Notification task is executed if the Extract Customer Sales Data container
fails.

o The Send Success Notification task is executed if the Extract Customer Sales Data container
succeeds.

3. Run the package to verify that it successfully completes both data flow tasks in the sequence and
then executes the Send Success Notification task.

 Task 2: Add a Foreach Loop Container to a Control Flow
1. In the AdventureWorksETL solution, open the Extract Payment Data.dtsx package.

2. Move the existing Extract Payments Data Flow task into a new Foreach Loop Container.

3. Configure the Foreach Loop Container so that it loops through the files in the folder referenced by
the AccountsFolderPath parameter, adding each file to the fName variable.

4. Run the package and count the number of times the Foreach Loop is executed.

5. When execution has completed, stop debugging and view the results to verify that all files in the
D:\Accounts folder were processed.

6. Close Visual Studio when you have completed the exercise.

Results: After this exercise, you should have one package that encapsulates two data flow tasks in a
sequence container, and another that uses a Foreach Loop to iterate through the files in a folder specified
in a parameter and uses a data flow task to load their contents into a database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-24 Implementing Control Flow in an SSIS Package

Lesson 4
Managing Consistency

SSIS solutions are generally used to transfer data from one location to another. Often, the overall SSIS
solution can include multiple data flows and operations, and it may be important to ensure that the
process always results in data that is in a consistent state, even if some parts of the process fail.

This lesson discusses techniques for ensuring data consistency when packages fail.

Lesson Objectives
After completing this lesson, you will be able to:

 Configure failure behavior.

 Use transactions.

 Use checkpoints.

Configuring Failure Behavior

An SSIS package control flow can contain nested
hierarchies of containers and tasks. You can use
the following properties to control how a failure in
one element of the control flow determines the
overall package outcome:

 FailPackageOnFailure – When set to True,
the failure of the task or container results in
the failure of the package in which it is
defined. The default value for this property is
False.

 FailParentOnFailure – When set to True, the
failure of the task or container results in the
failure of its container. If the item with this property is not in a container, then its parent is the
package, in which case this property has the same effect as the FailPackageOnFailure property.
When setting this property on a package executed by an Execute Package task in another package,
a value of True causes the calling package to fail if this package fails. The default value for this
property is False.

 MaximumErrorCount – This property specifies the maximum number of errors that can occur before
the item fails. The default value for this property is 1.

You can use these properties to achieve fine-grained control of package behavior in the event of an error
that causes a task to fail.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-25

Using Transactions

Transactions ensure that all data changes in a
control flow either succeed or fail as a single,
atomic unit of work. When tasks are enlisted in a
transaction, a failure of any single task causes all
tasks to fail, ensuring that the data affected by the
control flow remains in a consistent state with no
partial data modifications.

A task, container, or package’s participation in a
transaction is determined by its
TransactionOption property, which you can set
to one of three possible values:

 Required – this executable requires a
transaction, and will create a new one if none exists.

 Supported – this executable will enlist in a transaction if its parent is participating in one.

 NotSupported – this executable does not support transactions and will not enlist in an existing
transaction.

SSIS Transactions rely on the Microsoft Distributed Transaction Coordinator (MSDTC), a system
component that coordinates transactions across multiple data sources. An error will occur if an SSIS
package attempts to start a transaction when the MSDTC service is not running.

SSIS supports multiple concurrent transactions within a single hierarchy of packages, containers, and tasks,
but does not support nested transactions. To understand how multiple transactions behave in a hierarchy,
consider the following facts:

 If a container with a TransactionOption value of Required includes a container with a
TransactionOption of NotSupported, the child container will not participate in the parent
transaction.

 If the child container includes a task with a TransactionOption value of Supported, the task will not
participate in the existing transaction.

 If the child container contains a task with a TransactionOption value of Required, the task will start
a new transaction. However, the new transaction is unrelated to the existing transaction, and the
outcome of one transaction will have no effect on the other.

Demonstration: Using a Transaction

In this demonstration, you will see how to use a transaction.

Demonstration Steps
Use a Transaction

1. If you did not complete the previous demonstrations in this module, ensure that the 20463C-MIA-DC
and 20463C-MIA-SQL virtual machines are both running, and log on to
20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd. Then, in the
D:\Demofiles\Mod05 folder, run Setup.cmd as administrator.

2. Start SQL Server Management Studio and connect to the localhost database engine instance using
Windows authentication.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-26 Implementing Control Flow in an SSIS Package

3. In Object Explorer, expand Databases, DemoDW, and Tables.

4. Right-click dbo.StagingTable and click Select Top 1000 Rows to verify that it contains product
data.

5. Right-click dbo.ProductionTable and click Select Top 1000 Rows to verify that it is empty.

6. Start Visual Studio and open the Transactions.sln solution in the D:\Demofiles\Mod05 folder.

7. In Solution Explorer, double-click Move Products.dtsx. Note that the control flow consists of a data
flow task named Copy Products that moves products from a staging table to a production table, and
an SQL Command task named Update Prices that sets the product price.

8. On the Debug menu, click Start Debugging to run the package and note that the Update Prices
task fails. Then on the Debug menu click Stop Debugging.

9. In SQL Server Management Studio, select the top 1,000 rows from the dbo.ProductionTable tables,
noting that it now contains product data but the prices are all set to 0.00. You want to avoid having
products with invalid prices in the production table, so you need to modify the SSIS package to
ensure that, when the price update task fails, the production table remains empty.

10. Click New Query, enter the following Transact-SQL code, and then click Execute. This deletes all rows
in the dbo.ProductionTable table:

TRUNCATE TABLE DemoDW.dbo.ProductionTable;

11. In Visual Studio, click anywhere on the control flow surface and press F4. Then in the Properties
pane, set the TransactionOption property to Required.

12. Click the Copy Products task, and in the Properties pane, set the FailPackageOnFailure property to
True and ensure the TransactionOption property is set to Supported.

13. Repeat the previous step for the Update Prices task.

14. Run the package and note that the Update Prices task fails again. Then stop debugging.

15. In SQL Server Management Studio, select the top 1,000 rows from the dbo.ProductionTable table,
noting that it is empty, even though the Copy Products task succeeded. The transaction has rolled
back the changes to the production table because the Update Prices task failed.

16. In Visual Studio, double-click the Update Prices task and change the SQLStatement property to
UPDATE ProductionTable SET Price = 100. Then click OK.

17. Run the package and note that all tasks succeed. Then stop debugging and close Visual Studio.

18. In SQL Server Management Studio, select the top 1,000 rows from the dbo.ProductionTable table,
noting that it now contains products with valid prices.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-27

Using Checkpoints

Another way you can manage data consistency is
to use checkpoints. Checkpoints enable you to
restart a failed package after the issue that caused
it to fail has been resolved. Any tasks that were
previously completed successfully are ignored, and
the execution resumes at the point in the control
flow where the package failed. While checkpoints
do not offer the same level of atomic consistency
as a transaction, they can provide a useful solution
when a control flow includes a long-running or
resource-intensive task that you do not wish to
repeat unnecessarily, such as downloading a large
file from an FTP server.

Checkpoints work by saving information about work in progress to a checkpoint file. When a failed
package is restarted, the checkpoint file is used to identify where to resume execution in the control flow.
To enable a package to use checkpoints, you must set the following properties:

 CheckpointFileName –The full file path where you want to save the checkpoint file.

 SaveCheckpoints – A Boolean value used to specify whether or not the package should save
checkpoint information to the checkpoint file.

 CheckpointUsage – An enumeration with one of the following values:

o Always: The package will always look for a checkpoint file when starting. If none exists, the
package will fail with an error.

o Never: The package will never use a checkpoint file to resume execution and will always begin
execution with the first task in the control flow.

o IfExists: If a checkpoint file exists, the package will use it to resume where it failed previously. If
no checkpoint file exists, the package will begin execution with the first task in the control flow.

Demonstration: Using a Checkpoint

In this demonstration, you will see how to use a checkpoint.

Demonstration Steps
Use a Checkpoint

1. If you did not complete the previous demonstrations in this module, ensure that the 20463C-MIA-DC
and 20463C-MIA-SQL virtual machines are both running, and log on to 20463C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd. Then, in the D:\Demofiles\Mod05
folder, run Setup.cmd as administrator.

2. Start SQL Server Management Studio and connect to the localhost database engine instance using
Windows authentication.

3. In Object Explorer, expand Databases, expand DemoDW, and expand Tables.

4. Right-click dbo.StagingTable and click Select Top 1000 Rows to verify that it contains product
data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-28 Implementing Control Flow in an SSIS Package

5. Start Excel and open Products.csv in the D:\Demofiles\Mod05 folder. Note that it contains details for
three more products. Then close Excel.

6. Start Visual Studio and open the Checkpoints.sln solution in the D:\Demofiles\Mod05 folder.

7. In Solution Explorer, double-click Load Data.dtsx. Note that the control flow consists of a file system
task to create a folder, a second file system task to copy the products file to the new folder, and a
data flow task that loads the data in the products file into the staging table.

8. Click anywhere on the control flow surface to select the package, and press F4. Then in the
Properties pane, set the following properties:

o CheckpointFileName: D:\Demofiles\Mod05\Checkpoint.chk

o CheckpointUsage: IfExists

o SaveCheckpoints: True

9. Set the FailPackageOnFailure property for all three tasks in the control flow to True.

10. On the Debug menu, click Start Debugging to run the package and note that the Load to Staging
Table task fails. Then on the Debug menu click Stop Debugging.

11. In the D:\Demofiles\Mod05 folder, note that a file named Checkpoint.chk has been created, and that
the file system tasks that succeeded have created a folder named Data and copied the Products.csv
file into it.

12. In Visual Studio, view the Data Flow tab for the Load to Staging Table task, and double-click the
Derive Columns transformation. Then change the expression for the NewPrice column to 100 and
click OK.

13. View the Control Flow tab, and then run the package. Note that the Create Folder and Copy File
tasks, which succeeded previously, are not re-executed. Only the Load to Staging Table task is
executed.

14. Stop debugging, and verify that the Checkpoint.chk file has been deleted now that the package has
been executed successfully.

15. In SQL Server Management Studio, select the top 1,000 rows from the dbo.StagingTable, and note
that it now contains data about six products.

16. Close SQL Server Management Studio and Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-29

Lab B: Using Transactions and Checkpoints
Scenario
You are concerned that the Adventure Works ETL data flow might fail, leaving you with a partially-loaded
staging database. To avoid this, you intend to use transactions and checkpoints to ensure data integrity.

Objectives
After completing this lab, you will be able to:

 Use transactions.

 Use checkpoints.

Estimated Time: 30 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Using Transactions

Scenario
You have created an SSIS package that uses two data flows to extract, transform, and load Internet sales
data. You now want to ensure that package execution always results in a consistent data state, so that if
any of the data flows fail, no data is loaded.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View the Data in the Database

3. Run a Package to Extract Data

4. Implement a Transaction

5. Observe Transaction Behavior

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then log

on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab05B\Starter folder as Administrator.

 Task 2: View the Data in the Database
1. Start SQL Server Management Studio and connect to the localhost database engine instance by

using Windows authentication.

2. In the Staging database, view the contents of the dbo.Customers and dbo.InternetSales tables to
verify that they are both empty.

 Task 3: Run a Package to Extract Data
1. Use Visual Studio to open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05B\Starter\Ex1 folder.

2. Open the Extract Internet Sales Data.dtsx package and examine its control flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-30 Implementing Control Flow in an SSIS Package

3. Run the package, noting that the Extract Customers task succeeds, but the Extract Internet Sales
task fails. When execution is complete, stop debugging.

4. In SQL Server Management Studio, verify that the dbo.InternetSales table is still empty, but the
dbo.Customers table now contains customer records.

5. In SQL Server Management Studio, execute the following Transact-SQL query to reset the staging
tables:

TRUNCATE TABLE Staging.dbo.Customers;

 Task 4: Implement a Transaction
1. Configure the Extract Customer Sales Data sequence container in the Extract Internet Sales

Data.dtsx package so that it requires a transaction.

2. Ensure that the Extract Customers and Extract Internet Sales tasks both support transactions, and
configure them so that if they fail, their parent also fails.

 Task 5: Observe Transaction Behavior
1. Run the Extract Internet Sales Data.dtsx package, noting once again that the Extract Customers

task succeeds, but the Extract Internet Sales task fails. Note also that the Extract Customer Sales
Data sequence container fails. When execution is complete, stop debugging.

2. In SQL Server Management Studio, verify that both the dbo.InternetSales and dbo.Customers
tables are empty.

3. View the data flow for the Extract Internet Sales task, and modify the expression in the Calculate
Sales Amount derived column transformation to remove the text “/ (OrderQuantity %
OrderQuantity)”. The completed expression should match the following code sample:

UnitPrice * OrderQuantity

4. Run the Extract Internet Sales Data.dtsx package, noting that the Extract Customers and Extract
Internet Sales tasks both succeed. When execution is complete, stop debugging.

5. In SQL Server Management Studio, verify that both the dbo.InternetSales and dbo.Customers
tables contain data.

6. Close Visual Studio when you have completed the exercise.

Results: After this exercise, you should have a package that uses a transaction to ensure that all data flow
tasks succeed or fail as an atomic unit of work.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-31

Exercise 2: Using Checkpoints

Scenario
You have created an SSIS package that uses two data flows to extract, transform, and load reseller sales
data. You now want to ensure that if any task in the package fails, it can be restarted without re-executing
the tasks that had previously succeeded.

The main tasks for this exercise are as follows:

1. View the Data in the Database

2. Run a Package to Extract Data

3. Implement Checkpoints

4. Observe Checkpoint Behavior

 Task 1: View the Data in the Database
1. Use SQL Server Management Studio to view the contents of the dbo.Resellers and

dbo.ResellerSales tables in the Staging database on the localhost database engine instance.

2. Verify that both of these tables are empty.

 Task 2: Run a Package to Extract Data
1. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab05B\Starter\Ex2 folder.

2. Open the Extract Reseller Data.dtsx package and examine its control flow.

3. Run the package, noting that the Extract Resellers task succeeds, but the Extract Reseller Sales task
fails. When execution is complete, stop debugging.

4. In SQL Server Management Studio, verify that the dbo.ResellerSales table is still empty, but the
dbo.Resellers table now contains reseller records.

5. In SQL Server Management Studio, execute the following Transact-SQL query to reset the staging
tables:

TRUNCATE TABLE Staging.dbo.Resellers;

 Task 3: Implement Checkpoints
1. Set the following properties of the Extract Reseller Data package:

o CheckpointFileName: D:\ETL\CheckPoint.chk

o CheckpointUsage: IfExists

o SaveCheckpoints: True

2. Configure the properties of the Extract Resellers and Extract Reseller Sales tasks so that if they fail,
the package also fails.

 Task 4: Observe Checkpoint Behavior
1. View the contents of the D:\ETL folder and verify that no file named CheckPoint.chk exists.

2. Run the Extract Reseller Sales Data.dtsx package, noting once again that the Extract Resellers task
succeeds, but the Extract Reseller Sales task fails. When execution is complete, stop debugging.

3. View the contents of the D:\ETL folder and verify that a file named CheckPoint.chk has been created.

4. In SQL Server Management Studio, verify that the dbo.ResellerSales table is still empty, but the
dbo.Resellers table now contains reseller records.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-32 Implementing Control Flow in an SSIS Package

5. View the data flow for the Extract Reseller Sales task, and modify the expression in the Calculate
Sales Amount derived column transformation to remove the text “/ (OrderQuantity %
OrderQuantity)”. The completed expression should match the following code sample:

UnitPrice * OrderQuantity

6. Run the Extract Reseller Sales Data.dtsx package, noting the Extract Resellers task is not
re-executed, and package execution starts with the Extract Reseller Sales task, which failed on the last
attempt. When execution is complete, stop debugging.

7. In SQL Server Management Studio, verify that the dbo.ResellerSales table now contains data.

8. Close Visual Studio when you have completed the exercise.

Results: After this exercise, you should have a package that uses checkpoints to enable execution to be
restarted at the point of failure on the previous execution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 5-33

Module Review and Takeaways
In this module, you have learned how to implement control flow in an SSIS package, and how to use
transactions and checkpoints to ensure data integrity when a package fails.

Review Question(s)
Question: You want Task 3 to run if Task 1 or Task 2 fails. How can you accomplish this?

Question: Which container should you use to perform the same task once for each file in a
folder?

Question: Your package includes an FTP task that downloads a large file from an FTP folder,
and a data flow task that inserts data from the file into a database. The data flow task may
fail because the database is unavailable, in which case you plan to run the package again
after bringing the database online. How can you avoid downloading the file again when the
package is re-executed?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-1

Module 6
Debugging and Troubleshooting SSIS Packages

Contents:
Module Overview 6-1

Lesson 1: Debugging an SSIS Package 6-2

Lesson 2: Logging SSIS Package Events 6-8

Lesson 3: Handling Errors in an SSIS Package 6-13

Lab: Debugging and Troubleshooting an SSIS Package 6-17

Module Review and Takeaways 6-22

Module Overview
As you develop more complex SQL Server Integration Services (SSIS) packages, it is important to be
familiar with the tools and techniques you can use to debug package execution and handle any errors.
This module describes how you can debug packages to find the cause of errors that occur during
execution. It then discusses the logging functionality, built into SSIS that you can use to log events for
troubleshooting purposes. Finally, the module describes common approaches for handling errors in
control flow and data flow.

Objectives
After completing this module, you will be able to:

 Debug an SSIS package.

 Implement logging for an SSIS package.

 Handle errors in an SSIS package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-2 Debugging and Troubleshooting SSIS Packages

Lesson 1
Debugging an SSIS Package

When you are developing an application, misconfiguration of tasks or data flow components, or errors in
variable definitions or expressions, can lead to unexpected behavior. Even if you develop your package
perfectly, there are many potential problems that might arise during execution, such as a missing or
misnamed file, or an invalid data value. It is therefore important to be able to use debugging techniques
to find the cause of these problems, and formulate a solution.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the tools and techniques for debugging SSIS packages.

 View package execution events.

 Use breakpoints to pause package execution.

 View variable values and status while debugging.

 Use data viewers to view data flow values while debugging.

Overview of SSIS Debugging

Debugging is the process of finding the source of
problems that occur during package execution,
either during development or in a package that
has been deployed to a production environment.

Debugging During Development
At design time, SSIS developers can use a variety
of Visual Studio debugging techniques to find
problems in control flow and data flow processes.
These techniques include:

 Observing row counts and task outcome
indicators when running packages in the
debugging environment.

 Viewing events that are recorded during package execution. These events are shown in the Progress
tab during execution, and in the Execution Results tab after execution. Events are also shown in the
Output window during and after each execution.

 Stepping through package execution by setting breakpoints that pause execution at specific points in
the control flow.

 Viewing variable values while debugging.

 Viewing the rows that pass through the data flow pipeline by attaching data viewers to data flow
paths.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-3

 Note: Microsoft® Visual Studio® includes a number of debugging windows and tools that
are primarily designed for debugging software solutions with programming languages such as
Microsoft® Visual C#®. This lesson focuses on the debugging tools in the Visual Studio
environment that is provided with the SQL Server Data Tools for BI add-in and designed for
debugging SSIS packages.

Debugging in the Production Environment
It is common for problems to occur during execution after a package has been deployed to the
production environment. In this scenario, if the package source project is available, you can use the
techniques previously described. However, you can also debug the package by examining any log files it is
configured to generate, or by using the dtexec or dtutil utilities to generate a dump file. These files
contain information about system variable values and settings that you can use to diagnose a problem
with a package.

Viewing Package Execution Events

You can think of a package execution as a
sequence of events generated by the tasks and
containers in the package control flow. When you
run a package in debug mode in the development
environment, these events are recorded and
displayed in two locations. To run a package in
debug mode, you can use any of the following
techniques:

 On the Debug menu, click Start Debugging.

 Click the Start Debugging button on the
toolbar.

 Press F5.

The Progress / Execution Results Tab
During execution, the Progress tab of the SSIS package designer shows a hierarchical view of the package
and its containers and tasks, displaying information about events that occur during execution. When
execution is complete, the tab is renamed Execution Results and shows the entire event tree for the
completed execution.

You can enable or disable the display of messages on the Progress tab by toggling Debug Progress
Reporting on the SSIS menu. Disabling progress reporting can help improve performance when
debugging complex packages.

The Output Window
The Output window shows the list of events that occur during execution. After execution is complete, you
can review the Output window to find details of the events that occurred.

The Output window and the Progress / Execution Results tab are useful resources for troubleshooting
errors during package execution. As an SSIS developer, you should habitually review the events in these
windows when debugging packages.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-4 Debugging and Troubleshooting SSIS Packages

Breakpoints

To troubleshoot a problem with an event in a
package, you can use breakpoints to pause
execution at the stage in the control flow where
the error occurs.

You can create a breakpoint for events raised by
any container or task in a control flow. The
simplest way to create a breakpoint is to select the
task or container where you want to pause
execution, and on the Debug menu, click Toggle
Breakpoint. This adds a breakpoint at the
OnPreExecute event of the selected task or
container, which is the first event a task or
container raises during package execution.

For greater control of when a breakpoint pauses execution, you can right-click any task or container and
click Edit Breakpoints to display the Set Breakpoints dialog box for the task or container. In this dialog
box you can:

 Enable breakpoints for any event supported by the task or container.

 Specify a Hit Count Type and Hit Count Value to control how often the event is ignored before the
breakpoint pauses execution. You can set the Hit Count Type to one of the following settings:

o Always – The Hit Count Value is ignored and execution is always paused at this event.

o Hit count equals – Execution is paused when the event has been raised the number of times
specified in the Hit Count property.

o Hit greater or equal – Execution is paused when the event has been raised the number of times
specified in the Hit Count property or more.

o Hit count multiple – Execution is paused when the event has been raised a number of times that
is a multiple of the Hit Count property or more.

You can view and manage all the breakpoints that are set in a package in the Breakpoints window. You
can display this window by clicking the Debug menu, clicking Windows, and clicking Breakpoints.

Variable and Status Windows

When you have used a breakpoint to pause
package execution, it can be useful to view the
current values assigned to variables, parameters,
and other system settings. SQL Server Data Tools
provides two windows you can use to observe
these values while debugging.

The Locals Window
The Locals window is a pane in the SQL Server
Data Tools environment that lists all the system
settings, variables, and parameters that are
currently in scope. You can use this window to find
current values for these settings, variables, and
parameters in the execution context.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-5

To view the Locals window when package execution is paused by a breakpoint, click Windows on the
Debug menu, and then click Locals.

Watch Windows
If you want to track specific variable or parameter values while debugging, you can add a watch for each
value you want to track. Watched values are shown in watch windows named Watch 1, Watch 2, Watch 3,
and Watch 4. However, in most SSIS debugging scenarios, only Watch 1 is used.

To display a watch window while debugging, on the Debug menu, click Windows, click Watch, and then
click the watch window you want to display.

To add a value to the Watch 1 window, right-click the variable or parameter you want to track in the
Locals window, and click Add Watch.

To add a variable or parameter to another watch window, drag it from the Locals window to the watch
window in which you want it to be displayed.

Data Viewers

Most SSIS packages are designed primarily to
transfer data. When debugging a package, it can
be useful to examine the data as it passes through
the data flow. Data viewers provide a way to view
the data rows as they pass along data flow paths
between sources, transformations, and
destinations.

Enabling a Data Viewer
To enable a data viewer, right-click a data flow
path on the Data Flow tab and click Enable Data
Viewer. Alternatively, you can double-click a data
flow path on the Data Viewer tab of the Data Flow
Path Editor dialog box. Using the dialog box also enables you to select specific columns to be included in
the data viewer.

Viewing Data in the Data Flow
A data viewer behaves like a breakpoint, and pauses execution at the data flow path on which it is
defined. When a data viewer pauses execution, a window containing the data in the data flow path is
displayed, enabling you to examine the data at various stages. After examining the data, you can resume
execution by clicking the green Continue arrow button in the data viewer window. If you no longer
require the data viewer, you can remove it by clicking the Detach button in the data viewer window.

Copying Data from a Data Viewer
The data viewer window includes a Copy button, which you can use to copy the contents of the data
viewer to the Microsoft® Windows® clipboard. When a data flow contains a large number of rows, it can
be useful to copy the contents of a data viewer and paste the data into a tool such as Microsoft® Excel®
for further examination.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-6 Debugging and Troubleshooting SSIS Packages

Demonstration: Debugging a Package

In this demonstration, you will see how to:

 Add a Breakpoint.

 View Variables while Debugging.

 Enable a Data Viewer.

Demonstration Steps
Add a Breakpoint

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are started, and log onto
20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod06 folder, run Setup.cmd as Administrator.

3. Start Visual Studio and open the Debugging.sln solution in the D:\Demofiles\Mod06 folder.

4. In Solution Explorer, double-click Debugging Demo.dtsx. This package includes a control flow that
performs the following tasks:

o Copies a text file using a variable named User::sourceFile to determine the source path and a
variable named User::copiedFile to determine the destination path.

o Uses a data flow to extract the data from the text file, convert columns to appropriate data types,
and load the resulting data into a database table.

o Deletes the copied file.

5. On the Debug menu, click Start Debugging, note that the first task fails, and on the Debug menu,
click Stop Debugging.

6. Click the Copy Source File task and on the Debug menu, click Toggle Breakpoint. Right-click the
Copy Source File task and click Edit Breakpoints. Note that you can use this dialog box to control
the events and conditions for breakpoints in your package. When you toggle a breakpoint, by default
it is enabled for the onPreExecute event with a Hit Count Type value of Always. Then click OK.

7. Start debugging and note that execution stops at the breakpoint.

View Variables while Debugging

1. With execution stopped at the breakpoint, on the Debug menu, click Windows, and click Locals.

2. In the Locals pane, expand Variables and find the user:copiedFile variable, then right-click it and
click Add Watch. The Watch 1 pane is then shown with the user::copiedFile variable displayed.

3. Click the Locals pane and find the user:sourceFile variable, then right- click it and click Add Watch.
The Watch 1 pane is then shown with the user::copiedFile and user:sourceFile variables displayed.

4. Note that the value of the user:sourceFile variable is D:\\Demofiles\\Mod06\\Products.txt (“\” is used
as an escape character, so “\\” is used to indicate a literal “\” string), and in the D:\Demofiles\Mod06
folder, note that the file is actually named Products.csv.

5. Stop debugging, and on the SSIS menu, click Variables. Then in the Variables pane, change the
value for the sourceFile variable to D:\Demofiles\Mod06\Products.csv.

6. Start debugging and observe the variable values in the Watch 1 pane. Note that the sourceFile
variable now refers to the correct file.

7. On the Debug menu, click Continue and note that the Load Data task fails. Then stop debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-7

Enable a Data Viewer

1. Double-click the Load Data task to view the data flow design surface.

2. Right-click the data flow path between Products File and Data Conversion, and click Enable Data
Viewer.

3. Double-click the data flow path between Products File and Data Conversion, and in the Data Flow
Path Editor dialog box, click the Data Viewer tab. Note that you can use this tab to enable the data
viewer and specify which columns should be included, and that by default, all columns are included.
Then click OK.

4. Click the Control Flow tab and verify that a breakpoint is still enabled on the Copy Source File task.
Then on the Debug menu, click Start Debugging.

5. When execution stops at the breakpoint, on the Debug menu, click Continue.

6. When the data viewer window is displayed, resize it so you can see the data it contains, and note that
the Price column for the second row contains a “-” character instead of a number.

7. In the data viewer window, click Copy Data. Then click the green continue button in the data viewer
window.

8. When execution stops because the data flow task has failed, on the Debug menu, click Stop
Debugging.

9. Start Excel, and create a new blank workbook.

10. With cell A1 selected, on the Home tab of the ribbon, click Paste. Then view the data you have
pasted from the data viewer.

11. Close Excel without saving the workbook, and close Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-8 Debugging and Troubleshooting SSIS Packages

Lesson 2
Logging SSIS Package Events

Visual Studio debugging tools can be extremely useful when developing a package. However, after a
package is in production, it can be easier to diagnose a problem if the package provides details in a log of
the events that occurred during execution. In addition to using a log for troubleshooting, you might want
to record details of package execution for auditing or performance benchmarking purposes. Planning and
implementing a suitable logging solution is an important part of developing a package, and SSIS includes
built-in functionality to help you accomplish this.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the log providers available in SSIS.

 Describe the events that can be logged and the schema for logging information.

 Implement logging in an SSIS package.

 View logged events.

SSIS Log Providers

The SSIS logging architecture supports the
recording of event information to one or more
logs. Each log is accessed through a log provider
that determines its type and the connection details
used to access it.

SSIS includes the following log providers:

 Windows Event Log – Logs event
information in the Application Windows
event log. No connection manager is required
for this log provider.

 Text File – Logs event information to a text
file specified in a file connection manager.

 XML File – Logs event information to an XML file specified in a file connection manager.

 SQL Server – Logs event information in the sysssislog system table in a Microsoft® SQL Server®
database, which is specified in an OLE DB connection manager.

 SQL Server Profiler – Logs event information in a .trc file that can be examined in SQL Server
profiler. The location of the .trc file is specified in a file connection manager. This log provider is only
available in 32-bit execution environments.

Additionally, software developers can use the Microsoft .NET Framework to develop custom log providers.

When deciding which log providers to include in your logging solution, you should generally try to
comply with standard logging procedures in the existing IT infrastructure environment. For example, if
administrators in the organization typically use the Windows Event Log as the primary source of
troubleshooting information, you should consider using it for your SSIS packages. When using files or SQL
Server tables for logging, you should also consider the security of the log, which may contain sensitive
information.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-9

Log Events and Schema

Having determined the log providers you want to
use, you can select the events for which you want
to create log entries and the details you want to
include in them.

Log Events
SSIS logging supports the following events:

 OnError – This event is raised when an error
occurs.

 OnExecStatusChanged – This event is raised
when a task is paused or resumed.

 OnInformation – This event is raised during validation and execution to report information.

 OnPostExecute – This event is raised when execution of an executable has completed.

 OnPreExecute – This event is raised before an executable starts running.

 OnPreValidate – This event is raised when validation of an executable begins.

 OnProgress – This event is raised to indicate execution progress for an executable.

 OnQueryCancelled – This event is raised when execution is cancelled.

 OnTaskFailed – This event is raised when a task fails.

 OnVariableChangedValue – This event is raised when a variable has its value changed.

 OnWarning – This event is raised when a warning occurs.

 PipelineComponentTime – This event is raised to indicate the processing time for each phase of a
data flow component.

 Diagnostic – This event is raised to provide diagnostic information.

 Executable-specific events – Some containers and tasks provide events that are specific to the
executable. For example, a Foreach Loop container provides an event that is raised at the start of each
loop iteration.

While it may be tempting to log every event, you should consider the performance overhead incurred by
the logging process. The choice of events to log depends on the purposes of the logging solution. For
example, if your goal is primarily to provide troubleshooting information when exceptions occur, you
should consider logging the OnError, OnWarning, and OnTaskFailed events. If your log will be used for
auditing purposes, you might want to log the OnInformation event, and if you want to use your log to
measure package performance, you may consider logging the OnProgress and
PipelineComponentTime events.

Log Schema
The specific details that can be logged for each event are defined in the SSIS log schema. This schema
includes the following values:

 StartTime – When the executable started running.

 EndTime – When the executable finished.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-10 Debugging and Troubleshooting SSIS Packages

 DataCode – An integer value indicating the execution result:

o 0: Success

o 1: Failure

o 2: Completed

o 3: Cancelled

 Computer – The name of the computer on which the package was executed.

 Operator – The Windows account that initiated package execution.

 MessageText – A message associated with the event.

 DataBytes – A byte array specific to the log entry.

 SourceName – The name of the executable.

 SourceID – The unique identifier for the executable.

 ExecutionID – A unique identifier for the running instance of the package.

You can choose to include all elements of the schema in your log, or select individual values to reduce log
size and performance overhead. However, the StartTime, EndTime, and DataCode values are always
included in the log.

Implementing SSIS Logging

Packages can be thought of as a hierarchy of
containers and tasks, with the package itself as the
root of the hierarchy. You can configure logging at
the package level in the hierarchy, and by default,
all child containers and tasks inherit the same
logging settings. If required, you can override
inherited logging settings for any container or task
in the hierarchy. For example, you might choose to
log only OnError events to the Windows Event
Log provider at the package level and inherit these
settings for most child containers and tasks, but
configure a data flow task within the package to
log OnInformation and Diagnostic events to the SQL Server log provider.

To implement logging for an SSIS package, in SQL Server Data Tools, with the package open in the
designer, on the SSIS menu, click Logging to display the Configure SSIS Logs dialog box. Then perform the
following steps:

1. Add and configure log providers. On the Providers and Logs tab of the dialog box, add the log
providers you want to use. For providers other than the one for Windows Event Log, you must also
specify a connection manager that defines the file or SQL Server instance where you want to write the
log information.

2. Select containers and tasks to include. Select the package container, which by default selects all child
containers and tasks with inherited log settings. You can then de-select individual containers and
tasks that you do not want to include.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-11

3. Select events and details to log. On the Details tab of the dialog box, select the events you want to
include in the log. By default, all schema fields are logged for the selected events, but you can click
the Advanced button to choose individual fields.

4. Override log settings for child executables if required. If you want to specify individual logging
settings for a specific child executable, select the executable in the Containers tree and specify the
log provider, events, and details you want to use for that executable.

Viewing Logged Events

You can view logged events in Visual Studio by
displaying the Log Events window. When logging
is configured for a package, this window shows the
selected log event details, even when no log
provider is specified.

The Log Events window is a useful tool for
troubleshooting packages during development,
and also for testing and debugging logging
configuration.

To display the Log Events window, on the SSIS
menu, click Log Events.

Demonstration: Logging Package Execution

In this demonstration, you will see how to:

 Configure SSIS Logging.

 View Logged Events.

Demonstration Steps
Configure SSIS Logging

1. Ensure you have completed the previous demonstration in this module.

2. Start Visual Studio and open the Logging.sln solution in the D:\Demofiles\Mod06 folder.

3. In Solution Explorer, double-click Logging Demo.dtsx.

4. On the SSIS menu, click Logging. If an error message is displayed, click OK.

5. In the Configure SSIS Logs: Logging Demo dialog box, in the Provider type list, select SSIS log
provider for Windows Event Log and click Add. Then select SSIS log provider for SQL Server and
click Add.

6. In the Configuration column for the SSIS log provider for SQL Server, select the (local).DemoDW
connection manager. Note that the Windows Event Log provider requires no configuration.

7. In the Containers tree, check the checkbox for Logging Demo, and then with Logging Demo
selected, on the Providers and Logs tab, check the checkbox for the SSIS log provider for
Windows Event Log.

8. With Logging Demo selected, on the Details tab, select the OnError and OnInformation events.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-12 Debugging and Troubleshooting SSIS Packages

9. Click the Providers and Logs tab, and in the Containers tree, clear the checkbox for Load Data, and
then click the checkbox again to check it. This enables you to override the inherited logging settings
for the Load Data task.

10. With Load Data selected, on the Providers and Logs tab, check the checkbox for the SSIS log
provider for SQL Server.

11. With Load Data selected, on the Details tab, select the OnError and OnInformation events, and
then click Advanced and clear the Operator column for the two selected events. Then click OK.

View Logged Events

1. On the Debug menu, click Start Debugging. Then, when the Load Data task fails, on the Debug
menu click Stop Debugging.

2. On the SSIS menu, click Log Events. This shows the events that have been logged during the
debugging session (if the log is empty, re-run the package and then view the Log Events window
again).

3. On the Start screen, type Event and run the Event Viewer app. Then expand Windows Logs, and
click Application. Note the log entries with a source of SQLISPackage120. These are the logged
events for the package.

4. Start SQL Server Management Studio and connect to the localhost instance of the database engine
by using Windows authentication.

5. In Object Explorer, expand Databases, expand DemoDW, expand Tables, and expand System
Tables. Then right-click dbo.sysssislog and click Select Top 1000 Rows.

6. View the contents of the table, noting that the Operator column is empty.

7. Close SQL Server Management Studio without saving any files, then close Event Viewer and Visual
Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-13

Lesson 3
Handling Errors in an SSIS Package

No matter how much debugging you perform, or how much information you log during package
execution, exceptions that cause errors can occur in any ETL process. For example, servers can become
unavailable, files can be renamed or deleted, and data sources can include invalid entries. A good SSIS
solution includes functionality to handle errors by performing compensating tasks and continuing with
execution wherever possible, or by ensuring that temporary resources are cleaned up and operators
notified where execution cannot be continued.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe approaches for handling errors in an SSIS package.

 Implement event handlers.

 Handle errors in data flows.

Introduction to Error Handling

Errors can occur at any stage in the execution of a
package, and SSIS provides several ways to handle
them and take corrective action if possible.

Handling Errors in Control Flow
You can use the following techniques to handle
errors in package control flow:

 Use Failure precedence constraints to redirect
control flow when a task fails. For example,
you can use a Failure precedence constraint
to execute another task that performs a
compensating alternative action to allow the
control flow to continue, or to delete any temporary files and send an email notification to an
operator.

 Implement event handlers to execute a specific set of tasks when an event occurs in the control flow.
For example, you could implement an event handler for the OnError event of the package, and
include tasks to delete files and send email notifications in the OnError event handler.

 Note: Precedence constraints are discussed in Module 5: Implementing Control Flow in an
SSIS Package. The remainder of this lesson focuses on using event handlers to handle errors in
control flow.

Handling Errors in Data Flow
Errors in data flow can often be caused by invalid or unexpected data values in rows being processed by
the data flow pipeline. SSIS data flow components provide the following configuration options for
handling rows that cause errors:

 Fail the task if any rows cause an error.

 Ignore errors and continue the data flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-14 Debugging and Troubleshooting SSIS Packages

 Redirect rows that cause an error to the error output of the data flow component.

Implementing Event Handlers

You can add an event handler for the events
supported by each executable in the package. To
add an event handler to a package, click the Event
Handlers tab, select the executable and event for
which you want to implement a handler, and click
the hyperlink on the design surface. Doing this
creates a new control flow surface on which you
can define the control flow for the event handler.
Event handlers can be used for all kinds of control
flow tasks, and are not specific to handling errors.
However, the OnError and OnTaskFailed events
are commonly used for handling error conditions.

The system variables and configuration values available to tasks in your event handler are specific to the
context of the event. For example, the System::ErrorDescription variable is populated with an error
message during the OnError event.

Because a package is a hierarchy of containers and tasks, each with their own events, you need to
consider where best to handle each possible error condition. For example, you can handle a task-specific
error in the task’s own OnError event or, depending on the MaxErrors property of containers and the
package itself, the error could trigger OnError events further up the package hierarchy, where you could
also handle the error condition. In general, if you anticipate specific errors that you can resolve or
compensate for and continue execution, you should implement the OnError event handler for the task or
container where the error is likely to occur. You should use the OnError event handler of the package to
catch errors that cannot be resolved, and use it to perform clean-up tasks and notify operators.

Handling Data Flow Errors

Data flow components participate in a data flow
pipeline through which rows of data are passed
along data flow paths. Errors can occur in data
flow for a number of reasons, including:

 Rows that contain data of data type that is
incompatible with a transformation or
destination, such as a decimal field in a text
file that is mapped to an integer column in a
destination.

 Rows that contain invalid data values, such as
a text file that contains a date field with an
invalid date value.

 Rows that contain data that will be truncated by a transformation or destination, such as a 50-
character text field that is loaded into a table where the mapped column has a maximum length of 40
characters.

 Rows that contain data values that will cause an exception during a transformation, such as a
numerical field with a value of zero that is used as a divisor in a derived column transformation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-15

By default, rows that cause an error result in the failure of the data flow component. However, you can
configure many data flow components to ignore rows that contain errors, or to redirect them to the error
output data flow path of the component. Ignoring or redirecting failed rows enables the data flow to
complete for all other rows, and if you have chosen to redirect failed rows, you can use transformations to
attempt to correct the invalid data values, or save the failed rows to a file or table for later analysis.

When configuring error output for a data flow component, you can specify different actions for
truncations and errors. For example, you could choose to ignore truncations, but redirect rows that
contain other errors. Additionally, some components enable you to specify different actions for each
column in the data flow. You could ignore errors in one column while redirecting rows that have an
invalid value in another.

Redirected rows include all the input columns for the data flow component, and two additional columns:

 ErrorCode – The numeric code for the error.

 ErrorColumn – The original number of the column that caused the error.

Demonstration: Handling Errors

In this demonstration, you will see how to:

 Implement an Event Handler.

 Redirect Failed Rows.

Demonstration Steps
Implement an Event Handler

1. Ensure you have completed the previous demonstration in this module.

2. Start Visual Studio and open the Error Handling.sln solution in the D:\Demofiles\Mod06 folder.

3. In Solution Explorer, double-click Error Handling Demo.dtsx, and then click the Event Handlers
tab.

4. On the Event Handlers tab, in the Executable list, ensure Error Handling Demo is selected, and in
the Event Handler list, ensure OnError is selected. Then click the hyperlink in the middle of the
design surface.

5. In the SSIS Toolbox, double-click Send Mail Task, and then on the design surface, right-click Send
Mail Task, click Rename, and change the name to Notify administrator.

6. Double-click Notify administrator, and on the Mail tab of the Send Mail Task Editor dialog box,
configure the following properties:

o SmtpConnection: A new connection to the localhost SMTP server with default settings

o From: etl@adventureworks.msft

o To: administrator@adventureworks.msft

o Subject: An error has occurred

7. In the Send Mail Task Editor dialog box, on the Expressions tab, click the ellipsis (…) button in the
Expressions box. Then in the Property Expressions Editor dialog box, in the Property list select
MessageSource, and in the Expression box, click the ellipsis (…) button.

8. In the Expression Builder dialog box, expand Variables and Parameters, expand System Variables,
and drag System:ErrorDescription to the Expression box. Then click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-16 Debugging and Troubleshooting SSIS Packages

9. In the Property Expressions Editor dialog box, in the row under the MessageSource property, in
the Property list select FileAttachments. Then in the Expression box, click the ellipsis (…) button.

10. In the Expression Builder dialog box, expand Variables and Parameters, and drag User::sourceFile
to the Expression box. Then click OK.

11. In the Property Expressions Editor dialog box, click OK. Then in the Send Mail Task Editor dialog
box, click OK.

12. Click the Control Flow tab, and then on the Debug menu, click Start Debugging. When the Load
Data task fails, click the Event Handlers tab to verify that the OnError event handler has been
executed, and then on the Debug menu, click Stop Debugging.

13. In the C:\inetpub\mailroot\Drop folder, double-click the most recent email message to open it in
Outlook and view its contents. Then close Outlook.

Redirect Failed Rows

1. In Visual Studio, click the Data Flow tab of the Error Handling Demo.dtsx package, and in the Data
Flow Task drop-down list, ensure Load Data is selected.

2. Double-click Data Conversion, and then in the Data Conversion Transformation Editor dialog
box, click Configure Error Output.

3. In the Configure Error Output dialog box, click the Error cell for the Numeric ProductID column,
and then hold the Ctrl key and click the Error cell for the Numeric Price column so that both cells
are selected. Then in the Set this value to the selected cells list, select Redirect row and click
Apply.

4. Click OK to close the Configure Error Output dialog box, and then click OK to close the Data
Conversion Transformation Editor dialog box.

5. In the SSIS Toolbox, in the Other Destinations section, double-click Flat File Destination. Then on
the design surface, right-click Flat File Destination, click Rename, and change the name to Invalid
Rows.

6. Move Invalid Rows to the right of Data Conversion, then click Data Conversion and drag the red
data path from Data Conversion to Invalid Rows. In the Configure Error Output dialog box, verify
that the Numeric ProductID and Numeric Price columns both have an Error value of Redirect row,
and click OK.

7. Double-click Invalid Rows, and next to the Flat File connection manager drop-down list, click New.

8. In the Flat File Format dialog box, ensure Delimited is selected and click OK. Then in the Flat File
Connection Manager Editor dialog box, in the Connection manager name box, type Invalid Rows
CSV File, in the File name box type D:\Demofiles\Mod06\InvalidRows.csv, and click OK.

9. In the Flat File Destination Editor dialog box, click the Mappings tab and note that the input
columns include the columns from the data flow, an ErrorCode column, and an ErrorColumn
column. Then click OK.

10. Click the Control Flow tab and on the Debug menu, click Start Debugging. Note that all tasks
succeed, and on the Data Flow tab note the row counts that pass through each data flow path. Then
on the Debug menu, click Stop Debugging and close Visual Studio.

11. Start Excel and open InvalidRows.csv in the D:\Demofiles\Mod06 folder. View the rows that were
redirected, and then close Excel without saving the workbook.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-17

Lab: Debugging and Troubleshooting an SSIS Package
Scenario
The ETL process for Adventure Works Cycles occasionally fails when extracting data from text files
generated by the company’s financial accounts system. You plan to debug the ETL process to identify the
source of the problem and implement a solution to handle any errors.

Objectives
After completing this lab, you will be able to:

 Debug an SSIS package.

 Log SSIS package execution.

 Implement an event handler in an SSIS package.

 Handle errors in a data flow.

Estimated Time: 60 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Debugging an SSIS Package

Scenario
You have developed an SSIS package to extract data from text files exported from a financial accounts
system, and load the data into a staging database. However, while developing the package you have
encountered some errors, and you need to debug it to identify the cause.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Run an SSIS Package

3. Add a Breakpoint

4. Add a Data Viewer

5. View Breakpoints

6. Observe Variables while Debugging

7. View Data Copied from a Data Viewer

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then log

on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab06\Starter folder as Administrator.

 Task 2: Run an SSIS Package
1. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab06\Starter\Ex1 folder.

2. Open the Extract Payment Data.dtsx package and examine its control flow.

3. Run the package, noting that it fails. When execution is complete, stop debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-18 Debugging and Troubleshooting SSIS Packages

 Task 3: Add a Breakpoint
1. Add a breakpoint to the Foreach Loop container in the Extract Payment Data.dtsx package.

2. Select the appropriate event to ensure that execution is always paused at the beginning of every
iteration of the loop.

 Task 4: Add a Data Viewer
1. In the data flow for the Extract Payments task, add a data viewer to the data flow path between the

Payments File source and the Staging DB destination.

 Task 5: View Breakpoints
1. View the Breakpoints window, and note that it contains the breakpoint you defined on the Foreach

Loop container and the data viewer you added to the data flow.

 Task 6: Observe Variables while Debugging
1. Start debugging the package, and note that execution pauses at the first breakpoint.

2. View the Locals window and view the configuration values and variables it contains.

3. Add the following variables to the Watch 1 window:

o User::fName

o $Project::AccountsFolderPath

4. Continue execution and note that it pauses at the next breakpoint, which is the data viewer you
defined in the data flow. Note also that the data viewer window contains the contents of the file
indicated by the User::fName variable in the Watch 1 window.

5. Continue execution, observing the value of the User::fName variable and the contents of the data
viewer window during each iteration of the loop.

6. When the Extract Payments task fails, note the value of the User::fName variable, and copy the
contents of the data viewer window to the clipboard. Then stop debugging and close Visual Studio.

 Task 7: View Data Copied from a Data Viewer
1. Start Excel and paste the data you copied from the data viewer window into a worksheet.

2. Examine the data and try to determine the errors it contains.

Results: After this exercise, you should have observed the variable values and data flows for each iteration
of the loop in the Extract Payment Data.dtsx package. You should also have identified the file that caused
the data flow to fail and examined its contents to find the data errors that triggered the failure.

Exercise 2: Logging SSIS Package Execution

Scenario
You have debugged the Extract Payments Data.dtsx package and found some errors in the source data.
Now you want to implement logging to assist in diagnosing future errors when the package is deployed
in a production environment.

The main tasks for this exercise are as follows:

1. Configure SSIS Logs

2. View Logged Events

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-19

 Task 1: Configure SSIS Logs
1. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab06\Starter\Ex2 folder.

2. Open the Extract Payment Data.dtsx package and configure logging with the following settings:

o Enable logging for the package, and inherit loggings settings for all child executables.

o Log package execution events to the Windows Event Log.

o Log all available details for the OnError and OnTaskFailed events.

 Task 2: View Logged Events
1. Run the package in Visual Studio, and note that it fails. When execution is complete, stop debugging.

2. View the Log Events window and note the logged events it contains. If no events are logged, re-run
the package and look again. Then close Visual Studio.

3. View the Application Windows event log in the Event Viewer administrative tool.

Results: After this exercise, you should have a package that logs event details to the Windows Event Log.

Exercise 3: Implementing an Event Handler

Scenario
You have debugged the Extract Payments Data.dtsx package and observed how errors in the source data
can cause it to fail. You now want to implement an error handler that copies the invalid source data file to
a folder for later examination, and notifies an administrator.

The main tasks for this exercise are as follows:

1. Create an Event Handler

2. Add a File System Task

3. Add a Send Mail Task

4. Test the Event Handler

 Task 1: Create an Event Handler
1. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab06\Starter\Ex3 folder.

2. In the Extract Payment Data.dtsx package, create an event handler for the OnError event of the
Extract Payment Data executable.

 Task 2: Add a File System Task
1. Add a file system task to the control flow for the OnError event handler, and name it Copy Failed

File.

2. Configure the Copy Failed File task as follows:

o The task should perform a Copy File operation.

o Use the Payments File connection manager as the source connection.

o Create a new connection manager to create a file named D:\ETL\FailedPayments.csv for the
destination.

o The task should overwrite the destination file if it already exists.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-20 Debugging and Troubleshooting SSIS Packages

3. Configure the connection manager you created for the destination file to use the following
expression for its ConnectionString property. Instead of the name configured in the connection
manager, the copied file is named using a combination of the unique package execution ID and the
name of the source file:

"D:\\ETL\\" + @[System::ExecutionInstanceGUID] + @[User::fName]

 Task 3: Add a Send Mail Task
1. Add a send mail task to the control flow for the OnError event handler, and name it Send

Notification.

2. Connect the Copy Failed File task to the Send Notification task with a Completion precedence
constraint.

3. Configure the Notification task as follows:

o Use the Local SMTP Server connection manager.

o Send a high-priority email message from etl@adventureworks.msft to
student@adventureworks.msft with the subject “An error occurred”.

o Use the following expression to set the MessageSource property:

@[User::fName] + " failed to load. " + @[System::ErrorDescription]

 Task 4: Test the Event Handler
1. Run the package in Visual Studio and verify that the event handler is executed. Then close Visual

Studio, saving your changes if prompted.

2. Verify that the source file containing invalid data is copied to the D:\ETL folder with a name similar to
{1234ABCD-1234-ABCD-1234-ABCD1234}Payments - EU.csv.

3. View the contents of the C:\inetpub\mailroot\Drop folder, and verify that an email was sent for each
error that occurred. You can view the messages by double-clicking them in Outlook.

Results: After this exercise, you should have a package that includes an event handler for the OnError
event. The event handler should create a copy of files that contain invalid data and send an email
message.

Exercise 4: Handling Errors in a Data Flow

Scenario
You have implemented an error handler that notifies an operator when a data flow fails. However, you
would like to handle errors in the data flow so that only rows containing invalid data are not loaded, and
the rest of the data flow succeeds.

The main tasks for this exercise are as follows:

1. Redirect Data Flow Errors

2. View Invalid Data Flow Rows

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 6-21

 Task 1: Redirect Data Flow Errors
1. Open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab06\Starter\Ex4 folder.

2. Open the Extract Payments Data.dtsx package and view the data flow for the Extract Payments
task.

3. Configure the error output of the Staging DB destination to redirect rows that contain an error.

4. Add a flat file destination to the data flow and name it Invalid Rows. Then configure the Invalid Rows
destination as follows:

o Create a new connection manager named Invalid Payment Records for a delimited file named
D:\ETL\InvalidPaymentsLog.csv.

o Do not overwrite data in the text file if it already exists.

o Map all columns, including ErrorCode and ErrorColumn to fields in the text file.

 Task 2: View Invalid Data Flow Rows
1. Run the package in debug mode and note that it succeeds. When execution is complete, stop

debugging and close Visual Studio.

2. Use Excel to view the contents of the InvalidPaymentsLog.csv file in the D:\ETL folder and note the
rows that contain invalid values.

Results: After this exercise, you should have a package that includes a data flow where rows containing
errors are redirected to a text file.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-22 Debugging and Troubleshooting SSIS Packages

Module Review and Takeaways
In this module, you have learned how to debug SSIS packages and how to use logging and error handling
to ensure the reliability of an ETL process.

Review Question(s)
Question: You have executed a package in Visual Studio, and a task failed unexpectedly.
Where can you review information about the package execution to help determine the cause
of the problem?

Question: You have configured logging with the SSIS log provider for SQL Server. Where can
you view the logged event information?

Question: You suspect a data flow is failing because some values in a source text file are too
long for the columns in the destination. How can you handle this problem?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-1

Module 7
Implementing a Data Extraction Solution

Contents:
Module Overview 7-1

Lesson 1: Planning Data Extraction 7-2

Lesson 2: Extracting Modified Data 7-10

Lab: Extracting Modified Data 7-22

Module Review and Takeaways 7-34

Module Overview
A data warehousing solution generally needs to refresh the data warehouse at regular intervals to reflect
new and modified data in the source systems on which it is based. It is important to implement a refresh
process that has a minimal impact on network and processing resources, and which enables you to retain
historical data in the data warehouse while reflecting changes and additions to business entities in
transactional systems.

This module describes the techniques you can use to implement an incremental data warehouse refresh
process.

Objectives
After completing this module, you will be able to:

 Plan data extraction.

 Extract modified data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-2 Implementing a Data Extraction Solution

Lesson 1
Planning Data Extraction

Most data warehousing solutions use an incremental ETL process to refresh the data warehouse with new
and modified data from source systems. Implementing an effective incremental ETL process presents a
number of challenges, for which common solution designs have been identified. By understanding some
of the key features of an incremental ETL process, you can design an effective data warehouse refresh
solution that meets your analytical and reporting needs while maximizing performance and resource
efficiency.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe a typical data warehouse refresh scenario.

 Describe considerations for implementing an incremental ETL process.

 Describe common ETL architectures.

 Plan data extraction windows.

 Plan transformations.

Overview of Data Warehouse Load Cycles

A typical data warehousing solution includes a
regular refresh of the data in the data warehouse
to reflect new and modified data in the source
systems on which it is based. For each load cycle,
data is extracted from the source systems, usually
to a staging area, and then loaded into the data
warehouse. The frequency of the refresh process
depends on how up to date the analytical and
reporting data in the data warehouse needs to be.
In some cases, you might choose to implement a
different refresh cycle for each group of related
data sources.

In rare cases, it can be appropriate to replace the data warehouse data with fresh data from the data
sources during each load cycle. However, a more common approach is to use an incremental ETL process
to extract only rows that have been inserted or modified in the source systems. Rows are then inserted or
updated in the data warehouse to reflect the extracted data. This reduces the volume of data being
transferred, minimizing the effect of the ETL process on network bandwidth and processing resources.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-3

Considerations for Incremental ETL

When planning an incremental ETL process, there
are a number of factors that you should consider:

Data Modifications to Be Tracked
One of the primary considerations for planning an
incremental ETL process is to identify the kinds of
data modifications you need to track in source
systems. Specifically, you should consider the
following kinds of modifications:

 Inserts – for example, new sales transactions
or new customer registrations.

 Updates – for example, a change of a
customer’s telephone number or address.

 Deletes – for example, the removal of a discontinued item from a product catalog.

Most data warehousing solutions include inserted and updated records in refresh cycles. However, you
must give special consideration to deleted records because propagating deletions to the data warehouse
results in the loss of historical reporting data.

Load Order
A data warehouse can include dependencies between tables. For example, rows in a fact table generally
include foreign key references to rows in dimension tables, and some dimension tables include foreign
key references to subdimension tables. For this reason, you should generally design your incremental ETL
process to load subdimension tables first, then dimension tables, and finally fact tables. If this is not
possible, you can load inferred members as minimal placeholder records for dimension members that are
referenced by other tables and which will be loaded later.

 Note: Inferred members are normally used to create a placeholder record for a missing
dimension member referenced by a fact record. For example, the data to be loaded into a fact
table for sales orders might include a reference to a product for which no dimension record has
yet been loaded. In this case, you can create an inferred member for the product that contains
the required key values but null columns for all other attributes. You can then update the inferred
member record on a subsequent load of product data.

Dimension Keys
The keys used to identify rows in dimension tables are usually independent from the business keys used in
source systems, and are referred to as surrogate keys. When loading data into a data warehouse, you
need to consider how you will identify the appropriate dimension key value to use in the following
scenarios:

 Determining whether or not a staged record represents a new dimension member or an update to an
existing one, and if it is an update, applying the update to the appropriate dimension record.

 Determining the appropriate foreign key values to use in a fact table that references a dimension
table, or in a dimension table that references a subdimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-4 Implementing a Data Extraction Solution

In many data warehouse designs, the source business key for each dimension member is retained as an
alternative key in the data warehouse, and can therefore be used to look up the corresponding dimension
key. In other cases, dimension members must be found by matching a unique combination of multiple
columns.

Updating Dimension Members
When refreshing dimension tables, you must consider whether changes to individual dimension attributes
will have a material effect on historical reporting and analysis. Dimension attributes can be categorized as
one of three kinds:

 Fixed – the attribute value cannot be changed. For example, you might enforce a rule that prevents
changes to a product name after it has been loaded into the dimension table.

 Changing – the attributes value can change without affecting historical reporting and analytics. For
example, a customer’s telephone number might change, but it is unlikely that any historical business
reporting or analytics will aggregate measures by telephone number. The change can therefore be
made without the need to retain the previous telephone number.

 Historical – the attribute value can change, but the previous value must be retained for historical
reporting and analysis. For example, a customer might move from Edinburgh to New York, but
reports and analysis must associate all sales that occurred to that customer before the move with
Edinburgh, and all sales after the move with New York.

Updating Fact Records
When refreshing the data warehouse, you must consider whether you will allow updates to fact records.
Often, your data warehouse design will only contain complete fact records, so no incomplete records will
be loaded. However in some cases, you might want to include an incomplete fact record in the data
warehouse that will be updated during a later refresh cycle.

For example, you might choose to include a fact record for a sales order where the sale has been
completed, but the item has not yet been delivered. If the record includes a column for the delivery date,
you might initially store a null value in this column, and then update the record during a later refresh after
the order has been delivered.

While some data warehousing professionals allow updates to the existing record in the fact table, other
practitioners prefer to support changes by deleting the existing fact record and inserting a new one. In
most cases, the delete operation is actually a logical deletion that is achieved by setting a bit value on a
column that indicates whether the record is active or not, rather than actually deleting the record from
the table.

Common ETL Data Flow Architectures

Fundamentally, ETL is concerned with data flow
from source systems to the data warehouse. The
data flow process can be performed directly from
source to target, or in stages. Factors that affect
the choice of data flow architecture include:

 The number of data sources.

 The volume of data to be transferred.

 The complexity of validation and
transformation operations to be applied to
the data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-5

 How frequently data is generated in source systems, and how long it is retained.

 Suitable times to extract source data while minimizing the impact on performance for users.

Single-stage ETL
In a very small business intelligence (BI) solution with few data sources and simple requirements, it may be
possible to copy data from data sources to the data warehouse in a single data flow. Basic data validations
(such as checking for NULL fields or specific value ranges) and transformations (such as concatenating
multiple fields into a single field, or looking up a value from a key) can either be performed during
extraction (for example, in the Transact-SQL statement used to retrieve data from a source database) or
in-flight (for example, by using transformation components in an SSIS data flow task).

Two-stage ETL
In many cases, a single-stage ETL solution is not suitable because of the complexity or volume of data
being transferred. Additionally, if multiple data sources are used, it is common to synchronize loads into
the data warehouse to ensure consistency and integrity across fact and dimension data from different
sources, and to minimize the performance impact of the load operations on data warehouse activity. If the
data is not ready to extract from all systems at the same time, or if some sources are only available at
specific times when others are not available, a common approach is to stage the data in an interim
location before loading into the data warehouse.

Typically, the structure of the data in the staging area is similar to the source tables, which minimizes the
extraction query complexity and duration in the source systems. When all source data is staged, it can
then be conformed to the data warehouse schema during the load operation, either as it is extracted from
the staging tables or during the data flow to the data warehouse.

Staging the data also provides a recovery point for data load failures and enables you to retain extracted
data for audit and verification purposes.

Three-stage ETL
A two-stage data flow architecture can reduce the extraction overhead and source systems, enabling a
coordinated load of data from multiple sources. However, performing validation and transformations
during the data flow into the data warehouse can affect load performance, and cause the load to
negatively affect data warehouse activity. When large volumes of data must be loaded into the data
warehouse, it is important to minimize load times by preparing the data as much as possible before
performing the operation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-6 Implementing a Data Extraction Solution

For BI solutions that involve loading large volumes of data, a three-stage ETL process is recommended. In
this data flow architecture, the data is initially extracted to tables that closely match the source system
schemas—often referred to as a “landing zone.” From here, the data is validated and transformed as it is
loaded into staging tables that more closely resemble the target data warehouse tables. Finally, the
conformed and validated data can be loaded into the data warehouse tables.

Planning Extraction Windows

To help you determine when to perform the data
extraction process, consider the following
questions:

How frequently is new data generated in
the source systems, and for how long is
it retained?
Some business applications generate only a few
transactions per day, and store the details
permanently. Others generate transient feeds of
data that must be captured in real time. The
volume of changes and storage interval of the
source data will determine the frequency of
extraction required to support the business requirements.

What latency between changes in source systems and reporting is tolerable?
Another factor in planning data extraction timings is the requirement for the data warehouse to be kept
up to date with changes in the source systems. If real-time (or near real-time) reporting must be
supported, data must be extracted and loaded into the data warehouse as soon as possible after each
change. Alternatively, if all reporting and analysis is historical, you may be able to leave a significant
period of time (for example, a month) between data warehouse loads. However, note that you do not
need to match data extractions one-to-one with data loads. If less overhead is created in the data source
by a nightly extraction of the day’s changes than a monthly extraction, you might choose to stage the
data nightly, and then load it into the data warehouse in one operation at the end of the month.

How long does data extraction take?
Perform a test extraction and note the time taken to extract a specific number of rows. Then, based on
how many new and modified rows are created in a particular period, estimate the time an extraction
would take if performed hourly, daily, weekly, or at any other interval that makes sense, based on your
answers to the first two questions.

During what time periods are source systems least heavily used?
Some data sources may be available only during specific periods, and others might be too heavily used
during business hours to support the additional overhead of an extraction process. You must work closely
with the administrators and users of the data sources to identify the ideal data extraction time periods for
each source.

After you consider these questions for all source systems, you can start to plan extraction windows for the
data. Note that it is common to have multiple sources with different extraction windows, so that the
elapsed time to stage all the data might be several hours or even days.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-7

Planning Transformations

When planning an ETL solution, you must consider
the transformations that need to be applied to the
data to validate it and make it conform to the
target table schemas.

Where to Perform Transformations
One consideration for transformations is where
they should be applied during the ETL process.

Performing transformations on
extraction
If the data sources support it, you can perform
transformations in the queries used to extract
data. For example, in an SQL Server data source, you can use joins, ISNULL expressions, CAST and
CONVERT expressions, and concatenation expressions in the SELECT query used to extract the data. In an
enterprise BI solution, this technique can be used during the following extractions:

 Extraction from the source system.

 Extraction from the landing zone.

 Extraction from the staging area.

Performing transformations in the data flow
You can use SSIS data flow transformations to transform data during the data flow. For example, you can
use lookups, derived column transformations, and custom scripts to validate and modify rows in a data
flow. You can also use merge and split transformations to combine or create multiple data flow paths. In
an enterprise BI solution, this technique can be used during the following data flows:

 Source to landing zone.

 Landing zone to staging.

 Staging to data warehouse.

Performing transformations in-place
In some cases, it might make sense to transfer data from sources into one or more database tables, and
then perform UPDATE operations to modify the data in-place before the next phase of the ETL data flow.
For example, you might extract data from one source and stage it, and then update coded values based
on data from another source that is extracted during a later extraction window. In an enterprise BI
solution, this technique can be used in the following locations:

 Landing zone tables.

 Staging tables.

Guidelines for choosing where to perform transformations
Although there is no single correct place in the data flow to perform transformations, consider the
following guidelines for designing your solutions:

 Minimize the extraction workload on source systems. This enables you to extract the data in the
shortest time possible with minimal adverse effect on business processes and applications using the
data source.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-8 Implementing a Data Extraction Solution

 Perform validations and transformations in the data flow as soon as possible. This enables you to
remove or redirect invalid rows and unnecessary columns early in the extraction process, reducing the
amount of data being transferred across the network.

 Minimize the time it takes to load the data warehouse tables. This enables you to get the new data
into production as soon as possible and perform the load with minimal adverse effect on data
warehouse users.

How to Perform Transformations
You can use Transact-SQL statements to transform or validate columns during extraction or in-place.
Alternatively, you can use SSIS data flow transformations to modify the data during the data flow. The
following table lists some typical validation and transformation scenarios, together with information about
how to use Transact-SQL or data flow transformations to implement a solution.

Scenario Transact-SQL Data flow transformations

Data type conversion Use the CAST or CONVERT
function.

Use the Data Conversion
transformation.

Concatenation Concatenate fields in the
SELECT clause of the query.

Use the Derived Column
transformation.

Replacing NULL values Use the ISNULL function. Use the Derived Column
transformation with an
expression containing the
ReplaceNull function.

Looking up related values
where referential integrity is
enforced

Use an INNER JOIN. Use the Lookup transformation.

Looking up related values
where referential integrity is not
enforced

Use an OUTER JOIN, and
optionally use ISNULL to
replace null values where no
matching rows exist.

Use the Lookup transformation
with the Ignore failure option,
and then add a transformation
later in the data flow to handle
null values (either by replacing
them with a Derived Column
or redirecting them with a
Condition Split).
Alternatively, use the Redirect
rows to no match output
option and handle the nulls
before using a Merge
transformation to return the
fixed rows to the main data
flow.

 Note: Some people who are unfamiliar with SSIS make the erroneous assumption that the
data flow processes rows sequentially, and that data flow transformations are inherently slower
than set-based transformations performed with Transact-SQL. However, the SSIS pipeline
performs set-based operations on buffered batches of rows, and is designed to provide high-
performance transformation in data flows.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-9

Documenting Data Flows

An important part of designing an ETL solution is
to document the data flows you need to
implement. The diagrams and notes that
document your data flows are commonly referred
to as “source-to-target” documentation, that
typically starts with a simple high-level diagram
for each table in the data warehouse. The diagram
shows the source tables from which the data
warehouse table fields originate and the validation
and transformations that must be applied during
the data flow.

As a general rule, use a consistent diagramming
approach for each table, and include as much detail about validation rules, transformations, and potential
issues as you can. It is common for these high-level diagrams to start simple and be refined as the ETL
design evolves.

As your ETL design is refined, you will start to develop a clear idea of what fields will be extracted,
generated, and validated at each stage of the data flow. To help document the lineage of the data as it
flows from the source to the data warehouse tables, you can create detailed source-to-target mappings
that show detailed information for the fields at each stage.

A common way to create a source-to-target mapping is to use a spreadsheet divided into a set of
columns for each stage in the data flow. Start with the fields in the target table, and then work backward
to determine the required staging, landing zone, and source fields, along with any validation rules and
transformations that must be applied. The goal is to create a single document in which the origins of a
field in the target table can be traced back across a row to its source.

Like high-level data flow diagrams, many BI professionals have adopted different variations of source-to-
target mapping. The organization in which you are working may not have a standard format for this kind
of documentation. It’s important, therefore, to use a consistent format that is helpful during ETL design
and easy to understand for anyone who needs to troubleshoot or maintain the ETL system in the future.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-10 Implementing a Data Extraction Solution

Lesson 2
Extracting Modified Data

An incremental ETL process starts by extracting data from source systems. To avoid including unnecessary
rows of data in the extraction, the solution must be able to identify records that have been inserted or
modified since the last refresh cycle, and limit the extraction to those records.

This lesson describes a number of techniques for identifying and extracting modified records.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the common options for extracting modified records.

 Implement an ETL solution that extracts modified rows based on a DateTime column.

 Configure the Change Data Capture feature in the SQL Server Enterprise Edition database engine.

 Implement an ETL solution that extracts modified rows by using the Change Data Capture feature.

 Use the CDC Control Task and data flow components to extract Change Data Capture records.

 Configure the Change Tracking feature in the Microsoft® SQL Server® database engine.

 Implement an ETL solution that extracts modified rows by using Change Tracking.

Options for Extracting Modified Data

There are a number of commonly-used techniques
employed to extract data as part of a data
warehouse refresh cycle.

Extract All Records
The simplest solution is to extract all source
records and load them to a staging area, before
using them to refresh the data warehouse. This
technique works with all data sources and ensures
that the refresh cycle includes all inserted,
updated, and deleted source records. However,
this technique can require the transfer and storage
of large volumes of data, making it inefficient and
impractical for many enterprise data warehousing solutions.

Store a Primary Key and Checksum
Another solution is to store the primary key of all previously-extracted rows in a staging table along with a
checksum value that is calculated from source columns in which you want to detect changes. For each
refresh cycle, your ETL process can extract source records for which the primary key is not recorded in the
table of previous extractions, as well as rows where the checksum value calculated from the columns in
the source record does not match the checksum recorded during the previous extraction. Additionally,
any primary keys recorded in the staging table that no longer exist in the source represent deleted
records.

This technique limits the extracted records to those that have been inserted or modified since the
previous refresh cycle. However, for large numbers of rows, the overhead of calculating a checksum to
compare with each row can significantly increase processing requirements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-11

Use a Datetime Column as a “High Water Mark”
Tables in data sources often include a column to record the date and time of the initial creation and last
modification to each record. If your data source includes such a column, you can log the date and time of
each refresh cycle and compare it with the last modified value in the source data records to identify
records that have been inserted or modified. This technique is commonly referred to as using the date
and time of each extraction as a “high water mark” because of its similarity to the way a tide or flood can
leave an indication of the highest water level.

Use Change Data Capture
Change Data Capture (CDC) is a feature of SQL Server Enterprise Edition that uses transaction log
sequence numbers (LSNs) to identify insert, update, and delete operations that have occurred within a
specified time period. To use CDC, your ETL process must store the date and time or LSN of the last
extraction as described for the high water mark technique. However, it is not necessary for tables in the
source database to include a column that indicates the date and time of the last modification.

CDC is an appropriate technique when:

 The data source is a database in the enterprise edition of an SQL Server 2008 or later.

 You need to extract a complete history that includes each version of a record that has been modified
multiple times.

Use Change Tracking
Change Tracking is another SQL Server technology you can use to record the primary key of records that
have been modified and extract records based on a version number that is incremented each time a row
is inserted, updated, or deleted. To use Change Tracking, you must log the version that is extracted, and
then compare the logged version number to the current version in order to identify modified records
during the next extraction.

Change Tracking is an appropriate technique when:

 The data source is an SQL Server 2008 or later database.

 You need to extract the latest version of a row that has been modified since the previous extraction,
but you do not need a full history of all interim versions of the record.

Considerations for Handling Deleted Records
If you need to propagate record deletions in source systems to the data warehouse, you should consider
the following guidelines

 You need to be able to identify which records have been deleted since the previous extraction. One
way to accomplish this is to store the keys of all previously-extracted records in the staging area and
compare them to the values in the source database as part of the extraction process. Alternatively,
Change Data Capture and Change Tracking both provide information about deletions, enabling you
to identify deleted records without maintaining the keys of previously extracted records.

 If the source database supports logical deletes by updating a Boolean column, to indicate that the
record is removed, then deletions are conceptually just a special form of update. You can implement
custom logic in the extraction process to treat data updates and logical deletions separately if
necessary.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-12 Implementing a Data Extraction Solution

Extracting Rows Based on a Datetime Column

If your data source includes a column to indicate
the date and time each record was inserted or
modified, you can use the high water mark
technique to extract modified records. The high-
level steps your ETL process must perform to use
the high water mark technique are:

1. Note the current time.

2. Retrieve the date and time of the previous
extraction from a log table.

3. Extract records where the modified date
column is later than the last extraction time,
but before or equal to the current time you noted in step 1. This disregards any insert or update
operations that have occurred since the start of the extraction process.

4. In the log, update the last extraction date and time with the time you noted in step 1.

Demonstration: Using a Datetime Column

In this demonstration, you will see how to use a datetime column to extract modified data.

Demonstration Steps
Use a Datetime Column to Extract Modified Data

1. Ensure 20463C-MIA-DC and 20463C-MIA-SQL are started, and log onto 20463C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod07 folder, run Setup.cmd as Administrator.

3. Start SQL Server Management Studio and connect to the localhost instance of the database engine
using Windows authentication.

4. In Object Explorer, expand Databases, DemoDW, and Tables. Note that the database includes tables
in three schemas (src, stg, and dw) to represent the data sources staging database, and data
warehouse in an ETL solution.

5. Right-click each of the following tables and click Select Top 1000 Rows:

o stg.Products – this table is used for staging product records during the ETL process, and is
currently empty.

o stg.ExtractLog – this table logs the last extraction date for each source system.

o src.Products – this table contains the source data for products, including a LastModified
column that records when each row was last modified.

6. Start Visual Studio and open the IncrementalETL.sln solution in the D:\Demofiles\Mod07 folder.
Then in Solution Explorer, double-click the Extract Products.dtsx SSIS package.

7. On the SSIS menu, click Variables, and note that the package contains two user variables named
CurrentTime and LastExtractTime.

8. On the control flow surface, double-click Get Current Time, and note that the expression in this task
sets the CurrentTime user variable to the current date and time. Then click Cancel.

9. Double-click Get Last Extract Time, and note the following configuration settings. Then click Cancel:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-13

o On the General tab, the ResultSet property is set to return a single row, and SQLStatement
property contains a query to retrieve the maximum LastExtractTime value for the products
source in the stg.ExtractLog table.

o On the Result Set tab, the LastExtractTime value in the query results row is mapped to the
LastExtractTime user variable.

10. Double-click Stage Products to view the data flow surface, and then double-click Products Source
and note that the SQL command used to extract products data includes a WHERE clause that filters
the query results. Then click Parameters, and note that the parameters in the Transact-SQL query are
mapped to the LastExtractTime and CurrentTime variables.

11. Click Cancel in all dialog boxes and then click the Control Flow tab.

12. On the control flow surface, double-click Update Last Extract Time, and note the following
configuration settings. Then click Cancel:

o On the General tab, the SQLStatement property contains a Transact-SQL UPDATE statement
that updates the LastExtractTime in the stg.ExtractLog table.

o On the Parameter Mapping tab, the CurrentTime user variable is mapped to the parameter in
the Transact-SQL statement.

13. In SQL Server Management Studio, open Modify Products.sql in the D:\Demofiles\Mod07 folder.
Then execute the script to modify some rows in the src.Products table.

14. In Visual Studio, on the Debug menu, click Start Debugging. Then, when package execution is
complete, on the Debug menu, click Stop Debugging.

15. In SQL Server Management Studio, right-click each of the following tables and click Select Top 1000
Rows:

o stg.ExtractLog – Note that the LastExtractTime for the Products data source has been
updated.

o stg.Products – Note the rows that have been extracted from the src.Products table.

16. Minimize SQL Server Management Studio and Visual Studio.

Change Data Capture

The CDC feature in SQL Server Enterprise Edition
provides a number of functions and stored
procedures that you can use to identify modified
rows. To use CDC, perform the following high-
level steps:

1. Enable CDC in the data source. You must
enable CDC for the database, and for each
table in the database where you want to
monitor changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-14 Implementing a Data Extraction Solution

The following Transact-SQL code sample shows how to use the sp_cdc_enable_db and
sp_cdc_enable_table system stored procedures to enable CDC in a database and monitor data
modifications in the dbo.Customers table:

EXEC sys.sp_cdc_enable_db
EXEC sys.sp_cdc_enable_table @source_schema = N'dbo', @source_name = N'Customers',
@role_name = NULL, @supports_net_changes = 1

2. In the ETL process used to extract the data, map start and end times (based on the logged date and
time of the previous extraction and the current date and time) to log sequence numbers.

The following Transact-SQL code sample shows how to use the fn_cdc_map_time_to_lsn system
function to map Transact-SQL variables named @StartDate and @EndDate to log sequence
numbers:

DECLARE @from_lsn binary(10), @to_lsn binary(10);
SET @from_lsn = sys.fn_cdc_map_time_to_lsn('smallest greater than', @StartDate)
SET @to_lsn = sys.fn_cdc_map_time_to_lsn('largest less than or equal', @EndDate)

3. Include logic to handle errors if either of the log sequence numbers is null. This can happen if no
changes have occurred in the database during the specified time period.

The following Transact-SQL code sample shows how to check for null log sequence numbers:

IF (@from_lsn IS NULL) OR (@to_lsn IS NULL)
There may have been no transactions in the timeframe

4. Extract records that have been modified between the log sequence numbers. When you enable CDC
for a table, SQL Server generates table-specific system functions that you can use to extract data
modifications to that table. The following Transact-SQL code sample shows how to use the
fn_cdc_get_net_changes_dbo_Customers system function to retrieve rows that have been modified in
the dbo.Customers table:

SELECT * FROM cdc.fn_cdc_get_net_changes_dbo_Customers(@from_lsn, @to_lsn, 'all')

 Note: For detailed information about the syntax of the CDC system functions and stored
procedures used in these code samples, go to SQL Server Books Online.

Demonstration: Using Change Data Capture

In this demonstration, you will see how to:

 Enable Change Data Capture.

 Use Change Data Capture to Extract Modified Data.

Demonstration Steps
Enable Change Data Capture

1. Ensure you have completed the previous demonstration in this module.

2. Maximize SQL Server Management Studio, and in Object Explorer, in the DemoDW database, right-
click the src.Customers table and click Select Top 1000 Rows. This table contains source data for
customers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-15

3. Open Using CDC.sql in the D:\Demofiles\Mod07 folder, and in the code window, select the Transact-
SQL code under the comment Enable CDC, and then click Execute. This enables CDC in the
DemoDW database, and starts logging modifications to data in the src.Customers table.

4. Select the Transact-SQL code under the comment Select all changed customer records since the
last extraction, and then click Execute. This code uses CDC functions to map dates to log sequence
numbers, and retrieve records in the src.Customers table that have been modified between the last
logged extraction in the stg.ExtractLog table, and the current time. There are no changed records
because no modifications have been made since CDC was enabled.

Use Change Data Capture to Extract Modified Data

1. Select the Transact-SQL code under the comment Insert a new customer, and then click Execute.
This code inserts a new customer record.

2. Select the Transact-SQL code under the comment Make a change to a customer, and then click
Execute. This code updates a customer record.

3. Select the Transact-SQL code under the comment Now see the net changes, and then click Execute.
This code uses CDC functions to map dates to log sequence numbers, and retrieve records in the
src.Customers table that have been modified between the last logged extraction in the
stg.ExtractLog table, and the current time. Two records are returned.

4. Wait ten seconds. Then select the Transact-SQL code under the comment Check for changes in an
interval with no database activity, and then click Execute. Because there has been no activity in the
database during the specified time interval, one of the log sequence numbers is null. This
demonstrates the importance of checking for a null log sequence number value when using CDC.

5. Minimize SQL Server Management Studio.

Extracting Data with Change Data Capture

To extract data from a CDC-enabled table in an
SSIS-based ETL solution, you can create a custom
control flow that uses the same principles as the
high water mark technique described earlier. The
general approach is to establish the range of
records to be extracted based on a minimum and
maximum log sequence number (LSN), extract
those records, and log the endpoint of the
extracted range to be used as the starting point
for the next extraction.

You can choose to log the high water mark as an
LSN or a datetime value that can be mapped to an
LSN by using the fn_cdc_map_time_to_lsn system function.

The following procedure describes one way to create an SSIS control flow for extracting CDC data:

1. Use an Expression task to assign the current time to a datetime variable.

2. Use an SQL Command task to retrieve the logged datetime value that was recorded after the previous
extraction.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-16 Implementing a Data Extraction Solution

3. Use a Data Flow task in which a source employs the fn_cdc_map_time_to_lsn system function to map
the current time and previously-extracted time to the corresponding LSNs, and then uses the
cdc.fn_cdc_get_net_changes_capture_instance function to extract the data that was modified
between those LSNs. You can use the _$operation column in the resulting dataset to split the records
into different data flow paths for inserts, updates, and deletes.

4. Use an SQL Command task to update the logged datetime value to be used as the starting point for
the next extraction.

The CDC Control Task and Data Flow Components

To make it easier to implement packages that
extract data from CDC-enabled sources, SSIS
includes CDC components that abstract the
underlying CDC functionality. The CDC
components included in SSIS are:

 CDC Control Task – A control flow task that
you can use to manage CDC state, providing a
straightforward way to track CDC data
extraction status.

 CDC Source – A data flow source that uses
the CDC state logged by the CDC Control task
to extract a range of modified records from a
CDC-enabled data source.

 CDC Splitter – A data flow transformation that splits output rows from a CDC Source into separate
data flow paths for inserts, updates, and deletes.

All the CDC components in SSIS require the use of ADO.NET connection managers to the CDC-enabled
data source and the database where CDC state is to be stored.

Performing an Initial Extraction with the CDC Control Task
When using the CDC Control Task to manage extractions from a CDC-enabled data source, it is
recommended practice to create a package that will be executed once to perform the initial extraction.
This package should contain the following control flow:

1. A CDC Control Task configured to perform the Mark initial load start operation. This writes an
encoded value, including the starting LSN to a package variable, and optionally persists it to a state
tracking table in a database.

2. A data flow that extracts all rows from the source and loads them into a destination—typically a
staging table. This data flow does not require CDC-specific components.

3. A second CDC Control Task configured to perform the Mark initial load end operation. This writes
an encoded value, including the ending LSN to a package variable, and optionally persists it to a state
tracking table in a database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-17

Performing Incremental Extractions with the CDC Control Task
After the initial extraction has been performed, subsequent extractions should use an SSIS package with
the following control flow:

1. A CDC Control Task configured to perform the Get processing range operation. This establishes the
range of records to be extracted and writes an encoded representation to a package variable, which
can also be persisted to a state tracking table in a database.

2. A data flow that uses a CDC Source, using the encoded value in the CDC state package variable to
extract modified rows from the data source.

3. Optionally, the data flow can include a CDC Splitter task, which uses the _$operation column in the
extracted rowset to redirect inserts, updates, and deletes to separate data flow paths. These can then
be connected to appropriate destinations for staging tables.

4. A second CDC Control Task configured to perform the Mark processed range operation. This writes
an encoded value, including the ending LSN to a package variable, and optionally persists it to a state
tracking table in a database. This value is then used to establish the starting point for the next
extraction.

Demonstration: Using CDC Components

In this demonstration, you will see how to use the CDC Control Task to:

 Perform an Initial Extraction.

 Extract Changes.

Demonstration Steps
Perform an Initial Extraction

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize SQL Server Management Studio and open the CDC Components.sql script file in the
D:\Demofiles\Mod07 folder.

3. Note that the script enables CDC for the src.Shippers table. Then click Execute.

4. In Object Explorer, right-click each of the following tables in the DemoDW database, and click Select
Top 1000 Rows to view their contents:

o src.Shippers – This table should contain four records.

o stg.ShipperDeletes – This table should be empty.

o stg.ShipperInserts – This table should be empty.

o stg.ShipperUpdates – This table should be empty.

5. Maximize Visual Studio, in which the IncrementalETL.sln solution should be open, and in Solution
Explorer, double-click the Extract Initial Shippers.dtsx SSIS package. Note that the CDC Control
tasks in the control flow contain errors, which you will resolve.

6. Double-click the Mark Initial Load Start CDC Control task, and in its editor, set the following
properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost DemoDW ADO NET.

o CDC control operation: Mark initial load start.

o Variable containing the CDC state: Click New and create a new variable named CDC_State.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-18 Implementing a Data Extraction Solution

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost DemoDW ADO
NET.

o Table to use for storing state: Click New, and then click Run to create the cdc_states table.

o State name: CDC_State.

7. Double-click the Extract All Shippers data flow task, and on the Data Flow surface, note that an
ADO.NET source named Shippers is used to extract all rows from the src.Shippers table, and an
ADO.NET destination named Shipper Inserts is used to load the extracted rows into the
stg.ShipperInserts table.

8. On the Control Flow tab, double-click the Mark Initial Load End CDC Control task and set the
following properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost DemoDW ADO NET.

o CDC control operation: Mark initial load end (make sure you do not select Mark initial load
start).

o Variable containing the CDC state: User::CDC_State (the variable you created earlier).

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost DemoDW ADO
NET.

o Table to use for storing state: [dbo].[cdc_states] (the table you created earlier).

o State name: CDC_State.

9. On the Debug menu, click Start Debugging and wait for the package execution to complete. Then
on the Debug menu, click Stop Debugging.

10. In SQL Server Management Studio, right-click the Tables folder for the DemoDW database and click
Refresh. Note that a table named dbo.cdc_states has been created.

11. Right-click dbo.cdc_states and click Select Top 1000 Rows to view the logged CDC_State value
(which should begin “ILEND…”).

12. Right-click stg.ShipperInserts and click Select Top 1000 Rows to verify that the initial set of
shippers has been extracted.

Extract Changes

1. In SQL Server Management Studio, open Update Shippers.sql in the D:\Demofiles\Mod07 folder.

2. Select the code under the comment Cleanup previous extraction, noting that it truncates the
stg.ShipperInserts table, and click Execute.

3. In Visual Studio, in Solution Explorer, double-click Extract Changed Shippers.dtsx.

4. On the Control Flow tab, double-click the Get Processing Range CDC Control task. Note it gets the
processing range, storing it in the CDC_State variable and the cdc_states table. Then click Cancel.

5. Double-click the Extract Modified Shippers data flow task and on the Data Flow tab, view the
properties of the Shipper CDC Records CDC Source component, noting that it extracts modified
records based on the range stored in the CDC_State variable.

6. Note that CDC Splitter transformation has three outputs, one each for inserts, updates, and deletes.
Each of these is connected to an ADO.NET destination that loads the records into the
stg.ShipperInserts, stg.ShipperUpdates, and stg.ShipperDeletes tables respectively.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-19

7. On the Control Flow tab, double-click the Mark Processed Range CDC Control task and note it
updates the CDC_State variable and the cdc_states table when the extraction is complete. Then click
Cancel.

8. On the Debug menu, click Start Debugging. When execution is complete, stop debugging and then
double-click the Extract Modified Shippers data flow task and note that no rows are transferred,
because the source data is unchanged since the initial extraction.

9. In SQL Server Management Studio, in the Update Shippers.sql script file, select the code under the
comment Modify source data, noting that it performs an INSERT, an UPDATE, and a DELETE
operation on the src.Shippers table, and click Execute.

10. In Visual Studio, on the Debug menu, click Start Debugging. When execution is complete, stop
debugging and view the Extract Modified Shippers data flow task and note the number of rows
transferred (if no rows were transferred, stop debugging and re-run the package). When three rows
have been transferred (one to each output of the CDC Splitter transformation), stop debugging and
close Visual Studio.

11. In SQL Server Management Studio, right-click each of the following tables and click Select Top 1000
Rows to view their contents. Each table should contain a single row:

o stg.ShipperDeletes

o stg.ShipperInserts

o stg.ShipperUpdates

12. Minimize SQL Server Management Studio.

Change Tracking

The Change Tracking feature in SQL Server
provides a number of functions and stored
procedures that you can use to identify modified
rows. To use Change Tracking, perform the
following high-level steps:

1. Enable Change Tracking in the data source.
You must enable Change Tracking for the
database, and for each table in the database
for which you want to monitor changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-20 Implementing a Data Extraction Solution

The following Transact-SQL code sample shows how to enable Change Tracking in a database named
Sales and monitor data modifications in the Salespeople table. Note that you can choose to track
which columns were modified, but the change table only contains the primary key of each modified
row—not the modified column values:

ALTER DATABASE Sales
SET CHANGE_TRACKING = ON (CHANGE_RETENTION = 7 DAYS, AUTO_CLEANUP = ON)
ALTER TABLE Salespeople
ENABLE CHANGE_TRACKING WITH (TRACK_COLUMNS_UPDATED = OFF)

2. For the initial data extraction, record the current version (which by default is 0), and extract all rows in
the source table. Then log the current version as the last extracted version.

The following Transact-SQL code sample shows how to use the Change_Tracking_Current_Version
system function to retrieve the current version, extract the initial data, and assign the current version
to a variable so it can be stored as the last extracted version:

SET @CurrentVersion = CHANGE_TRACKING_CURRENT_VERSION();
SELECT * FROM Salespeople
SET @LastExtractedVersion = @CurrentVersion

3. For subsequent refresh cycles, extract changes that have occurred between the last extracted version
and the current one. The following Transact-SQL code sample shows how to determine the current
version, use the Changetable system function in a query that joins the primary key of records in the
change table to records in the source table, and update the last extracted version:

SET @CurrentVersion = CHANGE_TRACKING_CURRENT_VERSION();
SELECT * FROM CHANGETABLE(CHANGES Salespeople, @LastExtractedVersion) CT
 INNER JOIN Salespeople s ON CT.SalespersonID = s.SalespersonID
SET @LastExtractedVersion = @CurrentVersion

When using Change Tracking, a best practice is to enable snapshot isolation in the source database
and use it to ensure that any modifications occurring during the extraction do not affect records that
were modified between the version numbers that define the lower and upper bounds of your
extraction range.

 Note: For detailed information about the syntax of the Change Tracking system functions
used in these code samples, go to SQL Server Books Online.

Demonstration: Using Change Tracking

In this demonstration, you will see how to:

 Enable Change Tracking.

 Use Change Tracking.

Demonstration Steps
Enable Change Tracking

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize SQL Server Management Studio, and in Object Explorer, in the DemoDW database, right-
click the src.Salespeople table and click Select Top 1000 Rows. This table contains source data for
sales employees.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-21

3. Open Using CT.sql in the D:\Demofiles\Mod07 folder. Then select the Transact-SQL code under the
comment Enable Change Tracking, and click Execute. This enables Change Tracking in the
DemoDW database, and starts logging changes to data in the src.Salespeople table.

4. Select the Transact-SQL code under the comment Obtain the initial data and log the current
version number, and then click Execute. This code uses the
CHANGE_TRACKING_CURRENT_VERSION function to determine the current version, and retrieves all
records in the src.Salespeople table.

Use Change Tracking

1. Select the Transact-SQL code under the comment Insert a new salesperson, and then click Execute.
This code inserts a new customer record.

2. Select the Transact-SQL code under the comment Update a salesperson, and then click Execute.
This code updates the customer record.

3. Select the Transact-SQL code under the comment Retrieve the changes between the last
extracted and current versions, and then click Execute. This code retrieves the previously-extracted
version from the stg.ExtractLog table, determines the current version, uses the CHANGETABLE
function to find records in the src.Salespeople table that have been modified since the last extracted
version, and then updates the last extracted version in the stg.ExtractLog table.

4. Close SQL Server Management Studio without saving any changes.

Extracting Data with Change Tracking

You can create an SSIS package that uses the
Change Tracking feature in SQL Server in a similar
way to the high water mark technique described
earlier in this lesson. The key difference is that,
rather than storing the date and time of the
previous extraction, you must store the Change
Tracking version number that was extracted, and
update this with the current version during each
extract operation.

A typical control flow for extracting data from a
Change Tracking-enabled data source includes the
following elements:

1. An SQL Command that retrieves the previously extracted version from a log table and assigns it to a
variable.

2. A data flow that contains a source to extract records that have been modified since the previously
extracted version and return the current version.

3. An SQL Command that updates the logged version number with the current version.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-22 Implementing a Data Extraction Solution

Lab: Extracting Modified Data
Scenario
You have developed SSIS packages that extract data from various data sources and load it into a staging
database. However, the current solution extracts all source records each time the ETL process is run. This
results in unnecessary processing of records that have already been extracted and consumes a sizeable
amount of network bandwidth to transfer a large volume of data. To resolve this problem, you must
modify the SSIS packages to extract only data that has been added or modified since the previous
extraction.

Objectives
After completing this lab, you will be able to:

 Use a datetime column to extract modified rows.

 Use Change Data Capture to extract modified rows.

 Use the CDC Control Task to extract modified rows.

 Use Change Tracking to extract modified rows.

Estimated Time: 60 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Using a Datetime Column to Incrementally Extract Data

Scenario
The InternetSales and ResellerSales databases contain source data for your data warehouse. The sales
order records in these databases include a LastModified date column that is updated with the current
date and time when a row is inserted or updated. You have decided to use this column to implement an
incremental extraction solution that compares record modification times to a logged extraction date and
time in the staging database. This restricts data extractions to rows that have been modified since the
previous refresh cycle.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View Extraction Data

3. Examine an Incremental Data Extraction

4. Define Variables for Extraction Times

5. Modify a Data Source to Filter Data

6. Add a Task to Update the Extraction Log

7. Test the Package

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab07\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-23

 Task 2: View Extraction Data
1. Start SQL Server Management Studio and connect to the MIA-SQL database instance by using

Windows authentication.

2. In the Staging database, view the contents of the dbo.ExtractLog table, noting that it contains the
date and time of previous extractions from the InternetSales and ResellerSales databases. This is
initially set to January 1st 1900.

3. In the InternetSales database, view the contents of the dbo.SalesOrderHeader table and note that
the LastModified column contains the date and time that each record was inserted or modified.

 Task 3: Examine an Incremental Data Extraction
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab07\Starter\Ex1 folder. Then open the Extract Reseller Data.dtsx SSIS package.

2. View the variables defined in the package, and note that they include two DateTime variables named
CurrentTime and ResellerSalesLastExtract.

3. Examine the tasks in the package and note the following:

o The Get Current Time task uses the GETDATE() function to assign the current date and time to
the CurrentTime variable.

o The Get Last Extract Time task uses a Transact-SQL command to return a single row containing
the LastExtract value for the ResellerSales data source from the dbo.ExtractLog table in the
Staging database, and assigns the LastExtract value to the ResellerSalesLastExtract variable.

o The Extract Reseller Sales data flow task includes a data source named Reseller Sales that uses
a WHERE clause to extract records with a LastModified value between two parameterized values.
The parameters are mapped to the ResellerSalesLastExtract and CurrentTime variables.

o The Update Last Extract Time task updates the LastExtract column for the ResellerSales data
source in the dbo.ExtractLog table with the CurrentTime variable.

4. Run the Extract Reseller Data.dtsx package. When it has completed, stop debugging, and in SQL
Server Management Studio, verify that the ExtractLog table in the Staging database has been
updated to reflect the most recent extraction from the ResellerSales source.

 Task 4: Define Variables for Extraction Times
1. In Visual Studio, open the Extract Internet Sales Data.dtsx SSIS package, and add DateTime

variables named CurrentTime and InternetSalesLastExtract.

2. Add an Expression task named Get Current Time to the Extract Customer Sales Data sequence in
the control flow of the package, and configure it to apply the following expression:

@[User::CurrentTime] = GETDATE()

3. Add an Execute SQL task named Get Last Extract Time to the Extract Customer Sales Data
sequence in the control flow of the package, and set the following configuration properties:

o On the General tab, set the Connection property to localhost.Staging.

o On the General tab, set the SQLStatement to the following Transact-SQL query:

SELECT MAX(LastExtract) LastExtract
FROM ExtractLog
WHERE DataSource = 'InternetSales'

o On the General tab, set the ResultSet property to Single row.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-24 Implementing a Data Extraction Solution

o On the Result Set tab, add a result that maps the LastExtract column in the result set to the
User::InternetSalesLastExtract variable.

4. Connect the precedence constraints of the new tasks so that the Get Current Time task runs first and
is followed by the Get Last Extract Time task, and then the Extract Customers task.

 Task 5: Modify a Data Source to Filter Data
1. On the data flow tab for the Extract Internet Sales data flow task, make the following changes to the

Internet Sales source:

o Add the following WHERE clause to the query in the SQL Command property:

WHERE LastModified > ?
AND LastModified <= ?

o Specify the following input parameter mappings:

 Parameter0: User::InternetSalesLastExtract

 Parameter1: User:CurrentTime

 Task 6: Add a Task to Update the Extraction Log
1. On the control flow tab, add an Execute SQL task named Update Last Extract Time to the Extract

Customer Sales Data sequence in the control flow of the Extract Internet Sales Data.dtsx package,
and set the following configuration properties:

o On the General tab, set the Connection property to localhost.Staging.

o On the General tab set the SQLStatement property to the following Transact-SQL query:

UPDATE ExtractLog
SET LastExtract = ?
WHERE DataSource = 'InternetSales'

o On the Parameter Mapping tab, add the following parameter mapping:

 Variable Name: User::CurrentTime

 Direction: Input

 Data Type: DATE

 Parameter Name: 0

 Parameter Size: -1

2. Connect the precedence constraint of the Extract Internet Sales task to the Update Last Extract
Time task.

 Task 7: Test the Package
1. View the Extract Internet Sales data flow and then start debugging the package and note the

number of rows transferred. When package execution is complete, stop debugging.

2. In SQL Server Management Studio, view the contents of the dbo.ExtractLog table in the Staging
database and verify that the LastExtract column for the InternetSales data source has been
updated.

3. View the contents of the dbo.InternetSales table and note the rows that have been extracted.

4. In Visual Studio, debug the package again and verify that this time no rows are transferred in the
Extract Internet Sales data flow (because no data has been modified since the previous extraction).
When package execution is complete, stop debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-25

5. Close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses the high water mark technique to
extract only records that have been modified since the previous extraction.

Exercise 2: Using Change Data Capture

Scenario
The Internet Sales database contains a Customers table that does not include a column to indicate when
records were inserted or modified. You plan to use the Change Data Capture feature of SQL Server
Enterprise Edition to identify records that have changed between data warehouse refresh cycles, and
restrict data extractions to include only modified rows.

The main tasks for this exercise are as follows:

1. Enable Change Data Capture

2. Create a Stored Procedure to Retrieve Modified Rows

3. Use the Stored Procedure in a Data Flow

4. Test the Package

 Task 1: Enable Change Data Capture
1. In SQL Server Management Studio, execute Transact-SQL statements to enable Change Data Capture

in the InternetSales database, and monitor net changes in the Customers table. You can use the
Enable CDC.sql file in the D:\Labfiles\Lab07\Starter\Ex2 folder to accomplish this.

2. Open the Test CDC.sql file in the D:\Labfiles\Lab07\Starter\Ex2 folder and examine it.

3. Execute the code under the comment Select all changed customer records between 1/1/1900
and today and note that no rows are returned because no changes have occurred since Change Data
Capture was enabled.

4. Execute the code under the comment Make a change to all customers (to create CDC records) to
modify data in the Customers table.

5. Execute the code under the comment Now see the net changes and note that all customer records
are returned because they have all been modified within the specified time period while Change Data
Capture was enabled.

 Task 2: Create a Stored Procedure to Retrieve Modified Rows
1. In SQL Server Management Studio, execute a Transact-SQL statement that creates a stored procedure

named GetChangedCustomers in the InternetSales database. The stored procedure should perform
the following tasks. You can execute the Create SP.sql file in the D:\Labfiles\Lab07\Starter\Ex2 folder
to accomplish this:

o Retrieve the log sequence numbers for the dates specified in StartDate and EndDate
parameters.

o If neither of the log sequence numbers is null, return all records that have changed in the
Customers table.

o If either of the log sequence numbers is null, return an empty rowset.

2. Test the stored procedure by running the following query:

USE InternetSales

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-26 Implementing a Data Extraction Solution

GO
EXEC GetChangedCustomers '1/1/1900', '1/1/2099';
GO

 Task 3: Use the Stored Procedure in a Data Flow
1. Reset the staging database by running the Transact-SQL code in the Reset Staging.sql file in the

D:\Labfiles\Lab07\Starter\Ex2 folder.

2. Start Visual Studio and open the AdventureWorksETL.sln solution in the
D:\Labfiles\Lab07\Starter\Ex2 folder. Then open the Extract Internet Sales Data.dtsx SSIS package.

3. On the Data Flow tab for the Extract Customers task, modify the Customers source to execute the
following Transact-SQL command, and map the @StartDate and @EndDate input parameters to the
User::InternetSalesLastExtract and User::CurrentTime variables:

EXEC GetChangedCustomers ?, ?

 Task 4: Test the Package
1. View the Extract Customers data flow, and then start debugging the package and note the number

of rows transferred. When package execution is complete, stop debugging.

2. In SQL Server Management Studio, view the contents of the dbo.ExtractLog table in the Staging
database and verify that the LastExtract column for the InternetSales data source has been
updated.

3. View the contents of the dbo.Customers table in the Staging database and note the rows that have
been extracted.

4. Debug the package again and verify that no rows are transferred in the Extract Customers data flow
this time. When package execution is complete, stop debugging and close Visual Studio.

Results: After this exercise, you should have a database in which Change Data Capture has been enabled,
and an SSIS package that uses a stored procedure to extract modified rows based on changes monitored
by Change Data Capture.

Exercise 3: Using the CDC Control Task

Scenario
The HumanResources database contains an Employee table in which employee data is stored. You plan
to use the Change Data Capture feature of SQL Server Enterprise Edition to identify modified rows in this
table. You also plan to use the CDC Control Task in SSIS to manage the extractions from this table by
creating a package to perform the initial extraction of all rows, and a second package that uses the CDC
data flow components to extract rows that have been modified since the previous extraction.

The main tasks for this exercise are as follows:

1. Enable Change Data Capture

2. View Staging Tables

3. Create Connection Managers for CDC Components

4. Create a Package for Initial Data Extraction

5. Test Initial Extraction

6. Create a Package for Incremental Data Extraction

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-27

7. Test Incremental Extraction

 Task 1: Enable Change Data Capture
1. Enable Change Data Capture in the HumanResources database, and monitor net changes in the

Employee table. You can use the Enable CDC.sql file in the D:\Labfiles\Lab07\Starter\Ex3 folder to
accomplish this.

 Task 2: View Staging Tables
1. Verify that the following tables in the Staging database are empty:

o dbo.EmployeeDeletes

o dbo.EmployeeInserts

o dbo.EmployeeUpdates

 Task 3: Create Connection Managers for CDC Components
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab07\Starter\Ex3 folder.

2. Note that the project already contains an OLE DB connection manager for the Staging database, but
the CDC components in SSIS require an ADO.NET connection manager. You will therefore need to
create ADO.NET connection managers for the HumanResources and Staging databases.

3. Create a new, project-level connection manager that produces an ADO.NET connection to the
HumanResources database on the localhost server by using Windows authentication. After the
connection manager has been created, rename it to localhost.HumanResources.ADO.NET.conmgr.

4. Create another new, project-level connection manager that creates an ADO.NET connection to the
Staging database on the localhost server by using Windows authentication. After the connection
manager has been created, rename it to localhost.Staging.ADO.NET.conmgr.

 Task 4: Create a Package for Initial Data Extraction
1. Add a new SSIS package named Extract Initial Employee Data.dtsx to the project.

2. Add a CDC Control Task to the control flow, and rename the task to Mark Initial Load Start. Then
configure the Mark Initial Load Start task as follows:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark initial load start.

o Variable containing the CDC state: A new variable named CDC_State in the Extract Initial
Employee Data container.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: A new table named [dbo].[cdc_states] in the Staging database.

o State name: CDC_State.

3. Add a Data Flow Task named Extract Initial Employee Data to the control flow, connecting the
success precedence constraint from the Mark Initial Load Start task to the Extract Initial Employee
Data task.

4. In the Extract Initial Employee Data data flow, create an ADO.NET Source named Employees, with
the following settings:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-28 Implementing a Data Extraction Solution

o ADO.NET connection manager: localhost HumanResources ADO NET.

o Data access mode: Table or view.

o Name of the table or view: dbo"."Employee".

5. Connect the data flow from the Employees source to a new ADO.NET Destination named Employee
Inserts with the following settings:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeInserts".

o Mappings: Map all available input columns to destination columns of the same name.

6. On the control flow, add a second CDC Control Task named Mark Initial Load End and connect the
success precedence constraint from the Extract Initial Employee Data task to the Mark Initial Load
End task. Then configure the Mark Initial Load End task as follows:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark initial load end*.

o Variable containing the CDC state: User:: CDC_State.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states].

o State name: CDC_State.

*Be careful not to select “Mark initial control start”.

7. When you have completed the control flow, save the package.

 Task 5: Test Initial Extraction
1. Start debugging the Extract Initial Employee Data.dtsx package. When package execution is

complete, stop debugging.

2. In SQL Server Management Studio, view the contents of the dbo.EmployeeInserts table in the
Staging database to verify that the employee records have been transferred.

3. Refresh the view of the tables in the Staging database, and verify that a new table named
dbo.cdc_states has been created. This table should contain an encoded string that indicates the CDC
state.

 Task 6: Create a Package for Incremental Data Extraction
1. In Visual Studio, add a new SSIS package named Extract Changed Employee Data.dtsx to the

AdventureWorksETL project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-29

2. Add a CDC Control Task to the control flow of the new package, and rename the task to Get
Processing Range. Configure the Get Processing Range task as follows:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Get processing range.

o Variable containing the CDC state: A new variable named CDC_State in the Extract Changed
Employee Data container.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states].

o State name: CDC_State.

3. Add a Data Flow Task named Extract Changed Employee Data to the control flow, connecting the
success precedence constraint from the Get Processing Range task to the Extract Changed
Employee Data task.

4. In the Extract Changed Employee Data data flow, add a CDC Source (in the Other Sources section
of the SSIS Toolbox) named Employee Changes, with the following settings:

o ADO.NET connection manager: localhost HumanResources ADO NET.

o CDC enabled table: [dbo].[Employee].

o Capture instance: dbo_Employee.

o CDC processing mode: Net.

o Variable containing the CDC state: User::CDC_State.

5. Connect the data flow from the Employee Changes source to a CDC Splitter transformation (in the
Other Transforms section of the SSIS Toolbox).

6. Add an ADO.NET Destination named Employee Inserts below and to the left of the CDC Splitter
transformation. Connect the InsertOutput data flow output from the CDC Splitter transformation to
the Employee Inserts destination. Then configure the Employee Inserts destination as follows:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeInserts".

o Mappings: Map all available input columns other than _$start_lsn, _$operation, and
_$update_mask to destination columns of the same name.

7. Add an ADO.NET Destination named Employee Updates directly below the CDC Splitter
transformation, and connect the UpdateOutput data flow output from the CDC Splitter
transformation to the Employee Updates destination. Then configure the Employee Updates
destination as follows:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeUpdates".

o Mappings: Map all available input columns other than _$start_lsn, _$operation, and
_$update_mask to destination columns of the same name.

8. Add an ADO.NET Destination named Employee Deletes below and to the right of the CDC Splitter
transformation. Connect the DeleteOutput data flow output from the CDC Splitter transformation to
the Employee Deletes destination. Then configure the Employee Deletes destination as follows:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-30 Implementing a Data Extraction Solution

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeDeletes".

o Mappings: Map all available input columns other than _$start_lsn, _$operation, and
_$update_mask to destination columns of the same name.

9. On the control flow, add a second CDC Control Task named Mark Processed Range, and connect
the success precedence constraint from the Extract Changed Employee Data task to the Mark
Processed Range task. Then, configure the Mark Processed Range task as follows:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark processed range.

o Variable containing the CDC state: User:: CDC_State.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states].

o State name: CDC_State.

10. When you have completed the control flow, save the package.

 Task 7: Test Incremental Extraction
1. In Visual Studio, view the control flow for the Extract Changed Employee Data.dtsx package and

start debugging.

2. When execution has completed, view the Extract Changed Employee Data data flow to verify that
no rows were extracted (because the data is unchanged since the initial extraction).

3. Maximize SQL Server Management Studio, open the Change Employees.sql Transact-SQL script file
in the D:\Labfiles\Lab07\Starter\Ex3 folder, and execute the script to:

o Truncate the dbo.EmployeeInserts, dbo.EmployeeUpdates, and dbo.EmployeeDeletes tables
in the Staging database.

o Insert a new record in the Employee table in the HumanResources database.

o Update employee 281 to change the Title column value.

o Delete employee 273.

4. In Visual Studio, start debugging again.

5. When execution has completed, view the Extract Changed Employee Data data flow to verify that
three rows were extracted and split into one insert, one update, and one delete. Then stop
debugging.

Note: If no rows were transferred, wait for a few seconds, and then run the package again.

6. In SQL Server Management Studio, view the contents of the dbo.EmployeeDeletes,
dbo.EmployeeInserts, and dbo.EmployeeUpdates tables in the Staging database to verify that
they contain the inserted, updated, and deleted rows respectively.

7. Close Visual Studio and minimize SQL Server Management Studio when you are finished.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-31

Results: After this exercise, you should have a HumanResources database in which Change Data Capture
has been enabled, and an SSIS package that uses the CDC Control to extract the initial set of employee
records. You should also have an SSIS package that uses the CDC Control and CDC data flow components
to extract modified employee records based on changes recorded by Change Data Capture.

Exercise 4: Using Change Tracking

Scenario
The ResellerSales database contains a Resellers table that does not include a column to indicate when
records were inserted or modified. You plan to use the Change Tracking feature of SQL Server to identify
records that have changed between data warehouse refresh cycles, and restrict data extractions to include
only modified rows.

The main tasks for this exercise are as follows:

1. Enable Change Tracking

2. Create a Stored Procedure to Retrieve Modified Rows

3. Modify a Data Flow to use the Stored Procedure

4. Test the Package

 Task 1: Enable Change Tracking
1. Enable Change Tracking in the ResellerSales database, and track changes in the Resellers table. You

do not need to track which columns were modified. You can use the Enable CT.sql file in the
D:\Labfiles\Lab07\Starter\Ex4 folder to accomplish this.

2. Use the Test CT.sql file in the D:\Labfiles\Lab07\Starter\Ex4 folder to perform the following tasks:

o Get the current change tracking version number.

o Retrieve all data from the Resellers table.

o Store the current version number as the previously- retrieved version.

o Update Resellers table.

o Get the new current version number.

o Get all changes between the previous and current versions.

o Store the current version number as the previously- retrieved version.

o Update the Resellers table again.

o Get the new current version number.

o Get all changes between the previous and current versions.

3. View the results returned by the script and verify that:

o The first resultset shows all reseller records.

o The second resultset indicates that the previously-retrieved version was numbered 0, and the
current version is numbered 1.

o The third resultset indicates that the previously-retrieved version was numbered 1, and the
current version is numbered 2.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-32 Implementing a Data Extraction Solution

 Task 2: Create a Stored Procedure to Retrieve Modified Rows
1. In SQL Server Management Studio, execute a Transact-SQL statement that enables snapshot isolation

and creates a stored procedure named GetChangedResellers in the ResellerSales database. The
stored procedure should perform the following tasks (you can use the Create SP.sql file in the
D:\Labfiles\Lab07\Starter\Ex4 folder to accomplish this):

o Set the isolation level to snapshot.

o Retrieve the current change tracking version number.

o If the LastVersion parameter is -1, assume that no previous versions have been retrieved, and
return all records from the Resellers table.

o If the LastVersion parameter is not -1, retrieve all changes between LastVersion and the current
version.

o Update the LastVersion parameter to the current version, so the calling application can store the
last version retrieved for next time.

o Set the isolation level back to read “committed”.

2. Test the stored procedure by running the following query:

USE ResellerSales
GO
DECLARE @p BigInt = -1;
EXEC GetChangedResellers @p OUTPUT;
SELECT @p LastVersionRetrieved;
EXEC GetChangedResellers @p OUTPUT;

 Task 3: Modify a Data Flow to use the Stored Procedure
1. In SQL Server Management Studio open the Reset Staging.sql file in the

D:\Labfiles\Lab07\Starter\Ex4 folder and execute it.

2. Start Visual Studio and open the AdventureWorksETL.sln solution in the
D:\Labfiles\Lab07\Starter\Ex4 folder. Then open the Extract Reseller Data.dtsx SSIS package.

3. Add a decimal variable named PreviousVersion to the package.

4. Add an Execute SQL task named Get Previously Extracted Version to the control flow, and
configure it to return a single row resultset by executing the following Transact-SQL statement in the
Staging database, mapping the LastVersion column in the result set to the User::PreviousVersion
variable:

SELECT MAX(LastVersion) LastVersion
FROM ExtractLog
WHERE DataSource = 'ResellerSales'

5. Add an Execute SQL task named Update Previous Version to the control flow, and configure it to
execute the following Transact-SQL statement in the Staging database, mapping the
User:PreviousVersion variable to parameter 0 in the query:

UPDATE ExtractLog
SET LastVersion = ?
WHERE DataSource = 'ResellerSales'

6. Make the necessary changes to the precedence constraint connections in the control flow so that:

o The Get Previously Extracted Version task is executed after the Get Last Extract Time task and
before the Extract Resellers task.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 7-33

o The Update Previous Version task is executed after the Update Last Extract Time task and
before the Send Success Notification task.

7. Modify the Resellers source in the Extract Resellers data flow to retrieve reseller data by executing
the following Transact-SQL statement, mapping the @LastVersion input/output parameter to the
User::PreviousVersion variable:

EXEC GetChangedResellers ? OUTPUT

 Task 4: Test the Package
1. View the Extract Resellers data flow, and then start debugging the package and note the number of

rows transferred. When package execution is complete, stop debugging.

2. In SQL Server Management Studio, view the contents of the dbo.ExtractLog table in the Staging
database and verify that the LastVersion column for the ResellerSales data source has been
updated.

3. View the contents of the dbo.Resellers table and note the rows that have been extracted. Then close
SQL Server Management Studio without saving any files.

4. In Visual Studio, debug the package again and verify that no rows are transferred in the Extract
Resellers data flow. When package execution is complete, stop debugging.

5. Close Visual Studio.

Results: After this exercise, you should have a database in which Change Tracking has been enabled, and
an SSIS package that uses a stored procedure to extract modified rows based on changes recorded by
Change Tracking.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-34 Implementing a Data Extraction Solution

Module Review and Takeaways
In this module, you have learned how to plan and implement an ETL solution that extracts data
incrementally from data sources.

Review Question(s)
Question: What should you consider when choosing between Change Data Capture and
Change Tracking?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-1

Module 8
Loading Data into a Data Warehouse

Contents:
Module Overview 8-1

Lesson 1: Planning Data Loads 8-2

Lesson 2: Using SSIS for Incremental Loads 8-7

Lesson 3: Using Transact-SQL Loading Techniques 8-16

Lab: Loading a Data Warehouse 8-22

Module Review and Takeaways 8-31

Module Overview
A data warehousing solution loads data into the data warehouse at periodic intervals. Loading data into
data warehouse tables presents some challenges, because of the need to maintain historic versions of
some data and a requirement to minimize the performance impact on reporting workloads as the data
warehouse is loaded.

This module describes the techniques you can use to implement a data warehouse load process.

Objectives
After completing this module, you will be able to:

 Describe the considerations for planning data loads.

 Use SQL Server Integration Services (SSIS) to load new and modified data into a data warehouse.

 Use Transact-SQL techniques to load data into a data warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-2 Loading Data into a Data Warehouse

Lesson 1
Planning Data Loads

A key challenge in loading a data warehouse is minimizing the time it takes to load a large volume of
data. Data warehouse loads often involve tens or even hundreds of thousands of rows, and although
many organizations can support loading during periods of low use or inactivity, the operation must still be
optimized to complete within the available load window.

This lesson describes considerations to help you plan an efficient data load process.

Lesson Objectives
After completing this lesson, you will be able to:

 Use minimal logging to improve data load performance.

 Describe considerations for loading indexed tables.

 Describe key features of slowly changing dimensions.

Minimizing Logging

One way in which load times can be reduced is to
minimize database transaction logging during the
load operations. SQL Server uses a write-ahead
transaction log to log transactional activity in the
database, and this logging overhead can affect
load performance. However, you can use
“minimally logged” operations, in which only
extent allocations and metadata changes are
logged, to reduce the adverse impact of logging.
In most cases, using the TABLOCK query hint
causes the database engine to use minimal
logging if it is supported by the operation being
performed and the destination table.

Set the data warehouse recovery mode to simple or bulk-logged
The first step in ensuring that logging is minimized is to set the recovery mode of the data warehouse
database to simple or bulk-logged. This ensures that minimal logging can be used for operations that
support it. Note that setting the recovery mode affects your ability to perform a transaction log backup,
so by making this configuration change, you are creating a constraint for your data warehouse backup
strategy. However, transactional activity is rare in a data warehouse, and in most cases, a regime that
includes full and differential backups is likely to be the most appropriate solution.

Consider enabling trace flag 610
Trace flag 610 was introduced in SQL Server 2008 and controls logging behavior for indexed tables. When
this trace flag is enabled, tables that contain data and have a clustered index can support minimal logging
for inserts, which can significantly improve load performance for high volumes. Additionally, minimal
logging is used for indexed tables wherever possible, even if the TABLOCK hint is not specified. However,
you should test performance and behavior with this trace flag before using it in a production data
warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-3

Use a bulk load operation to insert data
To take advantage of minimal logging, you must use a bulk load operation to insert data.

SSIS data flow destinations and the fast load option
If you are loading data into the data warehouse table from an SSIS data flow, select the Fast Load option
in the data flow destination. This configures the INSERT statement used by the destination to include the
TABLOCK hint and causes the operation to be minimally logged if possible. When choosing a data flow
destination for a bulk load operation into an SQL Server database, consider the following guidelines:

 Use an SQL Server Destination component when both the source data and the SSIS service are
hosted on the same server as the destination tables. This destination provides the fastest bulk load
performance for SQL Server and supports bulk load options to fine-tune load behavior. You can use
this destination only if the SSIS service is running on the same server as the data warehouse into
which the data is being loaded.

 If SSIS is hosted on a different computer from the data warehouse, use an OLE DB Destination
component. This destination supports bulk load, though some additional configuration may be
required to support bulk loading of ordered data into a clustered index. Ordered loads into clustered
indexes are discussed in the next topic.

The bulk copy program (BCP)
The bulk copy program (BCP) uses the SQL Server bulk application programming interface (API) and
supports bulk load operations. Additionally, using SQL Server native format files can improve load
performance.

The BULK INSERT statement
You can use the Transact-SQL BULK INSERT statement to load data from a text file. The statement runs
within the SQL Server database engine process and uses a bulk load operation to insert the data.

The INSERT … SELECT Statement
You can use a Transact-SQL INSERT statement with a SELECT clause to insert data into a target table from
a staging table.

For example, the following code inserts data from a staging table named StagedOrders into a fact table
named FactOrders, looking up surrogate keys in dimensions tables named DimDate and DimProduct:

Using an INSERT statement with a SELECT clause

INSERT INTO FactOrders WITH (TABLOCK)
 (OrderDateKey, ProductKey, Quantity, SalesPrice)
SELECT d.DateKey, p.ProductKey, s.Quantity, s.SalesPrice
FROM StagedOrders AS s
JOIN DimDate AS d
ON s.DateAltKey = d.DateAltKey
JOIN DimProduct AS p
ON s.ProductAltKey = p.ProductAltKey;

The SELECT INTO Statement
The SELECT INTO statement creates a new table from data retrieved by a query. Although this technique
can occasionally be useful for staging, it is not generally used to load data into a data warehouse because
it creates a new table instead of using an existing one.

The MERGE Statement
The MERGE statement combines insert and update operations to merge changes from one table into
another. In a data warehouse loading scenario, it can be used to load new rows and perform type 1
updates to a dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-4 Loading Data into a Data Warehouse

The following code example shows the MERGE statement being used to load a data warehouse table:

Using the MERGE statement

MERGE INTO DimProduct WITH (TABLOCK) AS tgt
USING
-- Query to return staged data
 (SELECT ProductAltKey, ProductName, Color
 FROM StagedProducts) AS src (ProductAltKey, ProductName, Color)
 -- Match staged records to existing dimension records
ON (src.ProductAltKey = tgt.ProductAltKey)
-- If a record for this product already exists, update it
WHEN MATCHED THEN
 UPDATE
 SET ProductName = src.ProductName,
 Color = src.Color
-- If not, insert a new record
WHEN NOT MATCHED THEN
 INSERT (ProductAltKey, ProductName, Color)
 VALUES (src.ProductAltKey, src.ProductName, src.Color);

The MERGE statement is discussed in greater depth later in this module.

 Additional Reading: For more information about non-logged and minimally-logged
operations, go to The Data Loading Performance Guide at http://msdn.microsoft.com/en-
us/library/dd425070(v=sql.100).

Considerations for Indexed Tables

When loading tables on which indexes have been
defined, there are some additional considerations
that your ETL process must take into account.

Consider dropping and recreating
indexes for large volumes of new data
If you must load a large volume of data into an
indexed table, you might find that dropping and
recreating the indexes incurs less overhead than
inserting data into the table with the indexes in
place. Use the table on the next page as a
guideline for deciding whether to consider
dropping indexes before a bulk insert. If the
volume of new data relative to the existing data in the table exceeds the threshold for the provided index
scenario, consider dropping the indexes before loading the data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-5

Indexes New data relative to existing table size

Clustered index only 30%

Clustered index plus one non-clustered index 25%

Clustered index plus two non-clustered indexes 25%

Single non-clustered index only 100%

Two non-clustered indexes 60%

 Additional Reading: For more information about when to drop an index to optimize a
data load, go to Guidelines for Optimizing Bulk Import at http://msdn.microsoft.com/en-
us/library/ms177445.aspx. This article is the source of the information in the preceding table.

Sort data by the clustering key and specify the ORDER hint
When using the BULK INSERT statement, if the table you are loading has a clustered index that you do not
intend to drop, and the data to be loaded is already sorted by the clustering column, specify the ORDER
hint. This eliminates the internal sort operation that usually occurs when inserting data into a clustered
index.

The following code example shows how to use the ORDER hint:

Using the ORDER hint

BULK INSERT Accounts FROM 'D:\Data\Accounts.csv'
WITH (
 FIELDTERMINATOR = ','
 , ROWTERMINATOR = '\n'
 , TABLOCK
 , ORDER(TransactionDate)
)

If you are using the INSERT … SELECT statement, you cannot specify the ORDER hint, but the database
engine detects that the data is ordered by the clustering key and optimizes the insert operation
accordingly. If you are using an SSIS SQL Server destination, you can specify bulk load options, including
order columns, on the Advanced tab of the SQL Destination Editor dialog box. For OLE DB destinations,
you must view the Component Properties tab of the Advanced Editor for the destination, and add the
ORDER(ColumnName) hint to the FastLoadOptions property.

Nonclustered Columnstore indexes make the table read-only
If you have designed tables with nonclustered columnstore indexes, you should bear in mind that a table
with a columnstore index cannot be modified. To load data into a table with a columnstore index, you
must either drop the index before loading the new data, or load the data into a new table with the same
schema as the indexed table and use a UNION clause to present the indexed historical rows and non-
indexed updateable rows as a single logical table to client applications. If you decide to use two tables,
you should periodically drop the columnstore index and merge the updateable data into the historical
table. Alternatively, consider partitioning the table and using the partition switch technique described
later in this module.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-6 Loading Data into a Data Warehouse

Slowly Changing Dimensions

When updating dimension tables, you need to
apply the appropriate logic, depending on the
kind of dimension attributes being modified.
Changes to fixed attributes are not supported, so
any updates to columns containing them must
either be discarded or cause an error. However,
modifications to changing and historical attributes
must be supported, and a widely used set of
techniques for handling these changes has been
identified.

Slowly changing dimensions change over time,
while retaining historical attributes for reporting
and analysis. Changes to dimension members are usually categorized as the following types:

 Type 1 – Changing attributes are updated in the existing record and the previous value is lost.

 Type 2 – Historical attribute changes result in a new record in the dimension table, representing a
new version of the dimension member. A column is used to indicate which version of the dimension
member is the current one, either with a flag value to indicate the current record, or by storing the
date and time when each version becomes effective. This technique enables you to store a complete
history of all versions of the dimension member.

 Type 3 – Historical attribute changes are stored in the existing record, in which the original value is
also retained and a column indicates the date on which the new value becomes effective. This
technique enables you to store the original and latest versions of the dimension member.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-7

Lesson 2
Using SSIS for Incremental Loads

After your incremental ETL process has transferred source data to the staging location, it must load the
data into the data warehouse. One of the main challenges when refreshing data in a data warehouse is
identifying which staged records are new dimension members or facts that need to be inserted, and which
records represent modifications that require rows to be updated.

Lesson Objectives
This lesson describes a number of common techniques for performing an incremental load of a data
warehouse. After completing this lesson, you will be able to:

 Describe the common options for incrementally loading a data warehouse.

 Load data from staging tables created by using the CDC source and CDC Splitter data flow
components.

 Use a Lookup transform to differentiate between new records and updates of existing ones.

 Use the Slowly Changing Dimension transformation to apply type 1 and type 2 changes to a
dimension.

 Use the Transact-SQL MERGE statement to insert and update data in a single query.

Options for Incrementally Loading Data

There are a number of commonly-used techniques
for loading incremental changes to a data
warehouse. The specific technique you should use
to load a particular dimension or fact table
depends on a number of factors. These include
performance, the need to update existing records
as well as insert new ones, the need to retain
historical dimension attributes, and the location of
the staging and data warehouse tables.

Insert, Update, or Delete Data Based on
CDC Output Tables
If you use the CDC Splitter to stage modified
source data into operation-specific tables, you can create an SSIS package that uses the business keys or
unique column combinations in the staging tables to apply the appropriate changes to associated tables
in the data warehouse. In most cases, delete operations in the source are applied as logical delete
operations in the data warehouse, in which a deleted flag is set instead of actually deleting the matching
record.

Use a Lookup Transformation
You can use a Lookup transformation to determine whether a matching record exists in the data
warehouse for a record that has been extracted from the data sources. You can then use the no match
output of the Lookup transformation to create a data flow for new records that need to be inserted into
the data warehouse. Optionally, you can also use the match output of the Lookup transformation to
create a data flow that updates existing data warehouse records with new values from the extracted ones.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-8 Loading Data into a Data Warehouse

Use the Slowly Changing Dimension Transformation
The Slowly Changing Dimension transformation enables you to create a complex data flow that inserts
new dimension members. It applies type 1 or type 2 changes to existing dimension members, depending
on which attributes have been updated. In many data warehousing scenarios, the Slowly Changing
Dimension transformation provides an easy-to-implement solution for refreshing dimension tables.
However, its performance can be limited for ETL processes with extremely large numbers of rows, for
which you might need to create a custom solution for slowly changing dimensions.

Use the MERGE Statement
The MERGE statement is a Transact-SQL construct that you can use to perform insert, update, and delete
operations in the same statement. It works by matching rows in a source rowset with rows in a target
table, and taking appropriate action to merge the source with the target.

The MERGE statement is appropriate when the source or staging tables and the data warehouse tables are
implemented in SQL Server databases and the ETL process is able to execute the MERGE statement using
a connection through which all source and target tables can be accessed. In practical terms, this requires
that:

 The staging tables and data warehouse are co-located in the same SQL Server database.

 The staging and data warehouse tables are located in multiple databases in the same SQL Server
instance, and the credentials used to execute the MERGE statement have appropriate user rights in
both databases.

 The staging tables are located in a different SQL Server instance than the data warehouse, but a
linked server has been defined enabling the MERGE statement to access both databases. The
performance of the MERGE statement over the linked server connection is acceptable.

Use a Checksum
You can use the columns in the staged dimension records to generate a checksum value, and then
compare this with a checksum generated from the historic attributes in the corresponding dimension
table to identify rows that require a type 2 or type 3 change. When combined with a Lookup
transformation to identify new or modified rows, this technique can form the basis of a custom solution
for slowly changing dimensions.

Considerations for Deleting Data Warehouse Records
If you need to propagate record deletions in source systems to the data warehouse, you should consider
the following guidelines:

 In most cases, you should use a logical deletion technique in which you indicate that a record is no
longer valid, by setting a Boolean column value. It is not common practice to physically delete
records from a data warehouse unless you have a compelling business reason to discard all historical
information relating to them.

 The techniques you can use to delete records (or mark them as logically deleted) when loading data
depend on how you have staged deleted records.

o If the staging tables for a dimension or fact table contain all valid records (not just those that
have been modified since the previous refresh cycle), you can delete any existing records in the
data warehouse that do not exist in the staging tables.

o If the staged data indicates logical deletions in the form of a Boolean column value, and you
need to apply logical deletes in the data warehouse, you can treat these deletions as updates.

o If the keys of records to be deleted are stored separately from new and updated records in the
staging database, you may want to perform two distinct load operations for each dimension or
fact table—one to load new and updated records, and another for deletions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-9

Using CDC Output Tables

As described earlier in this module, you can use
the CDC Splitter or a custom data flow to stage
CDC insert, update, or delete records in separate
tables based on the _$operation value in the CDC
output. If your data extraction process has taken
this approach, you can apply the appropriate
changes to the corresponding data warehouse
tables. The specific control flow tasks you can use
to perform this type of data load depend on the
relative locations of the staging tables and the
data warehouse.

Loading a Data Warehouse from a Co-Located Staging Database
If the staging tables and the data warehouse are co-located in the same database or server instance, or
can be connected by using a linked server, you can use SQL Command control flow tasks to execute set-
based Transact-SQL statements that load the data warehouse tables.

For example, you could use the following Transact-SQL statements to load data from CDC output tables
into a co-located data warehouse table:

Inserting, updating, and deleting data based on co-located CDC output tables

-- Insert new records
INSERT INTO dw.DimProduct (ProductAltKey, ProductName, Description, Price)
SELECT ProductBizKey, ProductName, Description, Price
FROM stg.ProductInserts;

-- Update modifiedrecords
UPDATE dw.DimProduct
SET dw.DimProduct.ProductName = stg.ProductUpdates.ProductName,
 dw.DimProduct.Description = stg.ProductUpdates.Description,
 dw.DimProduct.Price = stg.ProductUpdates.Price
FROM dw.DimProduct JOIN stg.ProductUpdates
ON dw.DimProduct.ProductAltKey = stg.ProductUpdates.ProductBizKey;

-- Mark deleted records as deleted
UPDATE dw.DimProduct
SET dw.DimProduct.Deleted = 1
FROM dw.DimProduct JOIN stg.ProductDeletes
ON dw.DimProduct.ProductAltKey = stg.ProductDeletes.ProductBizKey;

You could use a DELETE statement to remove deleted records from the data warehouse table. However,
deleting records in this way can result in loss of historical analytical and reporting data. This can be further
complicated by the presence of foreign key constraints between fact and dimension tables. A more
common approach is to perform a logical delete by setting a column to a Boolean value to indicate that
the record has been deleted from the source system.

Loading a Remote Data Warehouse
If the data warehouse is stored on a different server from the staging database, and no linked server
connection is available, you can apply the necessary updates in the staging tables to the data warehouse
by creating a data flow for each operation.

To load records from an inserts staging table, create a data flow that includes a source component to
extract records from the staging table, and a destination that maps the extracted column to the
appropriate data warehouse table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-10 Loading Data into a Data Warehouse

To apply the changes recorded in an updates staging table to a data warehouse table, create a data flow
that includes a source component to extract records from the staging table and an OLE DB Command
transformation to execute an UPDATE statement that sets the changeable data warehouse table columns
to the corresponding staging table values. This is based on a join between the business key in the staging
table and the alternative key in the data warehouse table.

To apply deletes to data warehouse tables based on records in a deletes staging table, create a data flow
that includes a source component to extract records from the staging table and an OLE DB Command
transformation to execute a DELETE statement that matches the business key in the staging table to the
alternative key in the data warehouse table. Alternatively, use the OLE DB command to perform a logical
delete by executing an UPDATE statement that sets the deleted flag to 1 for records where the business
key in the staging table matches the alternative key in the data warehouse table.

Demonstration: Using CDC Output Tables

In this demonstration, you will see how to load data from CDC output tables.

Demonstration Steps
Load Data from CDC Output Tables

1. Ensure 20463C-MIA-DC and 20463C-MIA-SQL are started, and log onto 20463C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod08 folder, run Setup.cmd as Administrator.

3. Start SQL Server Management Studio and connect to the localhost instance of the SQL Server
database engine by using Windows authentication.

4. In Object Explorer, expand Databases, expand DemoDW, and expand Tables. Then right-click each
of the following tables and click Select Top 1000 Rows:

o dw.DimShipper. This is the dimension table in the data warehouse.

o stg.ShipperDeletes. This is the table of records that have been deleted in the source system.

o stg.ShipperInserts. This is the table of new records in the source system.

o stg.ShipperUpdates. This is the table of rows that have been updated in the source system.

5. Start Visual Studio and open the IncrementalETL.sln solution in the D:\Demofiles\Mod08 folder.
Then in Solution Explorer, double-click the Load Shippers.dtsx SSIS package.

6. On the control flow surface, double-click the Load Inserted Shippers Execute SQL task. Note that the
SQL Statement inserts data into dw.DimShippers from the stg.ShipperInserts table. Then click
Cancel.

7. On the control flow surface, double-click the Load Updated Shippers Execute SQL task. Note that
the SQL Statement updates data in dw.DimShippers with new values from the stg.ShipperUpdates
table. Then click Cancel.

8. On the control flow surface, double-click the Load Deleted Shippers data flow task. On the data flow
surface, note that the task extracts data from the stg.ShipperDeletes table, and then uses an OLE DB
Command transformation to update the Deleted column in dw.DimShippers for the extracted rows.

9. On the Debug menu, click Start Debugging, and observe the control flow as it executes. When
execution is complete, on the Debug menu, click Stop Debugging and minimize Visual Studio.

10. In SQL Server Management Studio, right-click the dw.DimShipper table and click Select Top 1000
Rows to review the changes that have been made.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-11

11. Minimize SQL Server Management Studio.

The Lookup Transformation

To use a Lookup transformation when loading a
data warehouse table, connect the source output
that extracts the staged data to the Lookup
transformation and apply the following
configuration settings:

 Redirect non-matched rows to the no match
output.

 Look up the primary key column or columns
in the dimension or fact table you want to
refresh by matching it to one or more input
columns from the staged data. If the staged
data includes a business key column and the
business key is stored as an alternative key in the data warehouse table, match one to the other.
Alternatively, you can match a combination of columns that uniquely identifies a fact or dimension
member.

 Connect the no match output from the Lookup transformation to a data flow that ultimately inserts
new records into the data warehouse.

 To update existing data warehouse records with modified values in the staged data, connect the
match output of the Lookup transformation to a data flow that uses an OLE DB Command
transformation. This is based on the primary key you retrieved in the Lookup transformation.

 Note: The Lookup transformation uses an in-memory cache to optimize performance. If
the same data set is to be used in multiple lookup operations, you can persist the cache to a file
and use a Cache Connection Manager to reference it. This further improves performance by
decreasing the time it takes to load the cache, but results in lookup operations against a data set
that might not be as up-to-date as the data in the database. For more information about
configuring caching for the Lookup transformation, go to Lookup Transformation in SQL Server
Books Online.

Demonstration: Using the Lookup Transformation

In this demonstration, you will see how to:

 Use a Lookup Transformation to Insert Rows.

 Use a Lookup Transformation to Insert and Update Rows.

Demonstration Steps
Use a Lookup Transformation to Insert Rows

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize Visual Studio, and in Solution Explorer, double-click the Load Geography.dtsx SSIS
package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-12 Loading Data into a Data Warehouse

3. On the control flow surface, double-click Load Geography Dimension to view the data flow surface.
Then, on the data flow surface, double-click Staged Geography Data. Note that the SQL command
used by the OLE DB source extracts geography data from the stg.Customers and stg.Salespeople
tables, and then click Cancel.

4. On the data flow surface, double-click Lookup Existing Geographies and note the following
configuration settings of the Lookup transformation. Then click Cancel:

o On the General tab, unmatched rows are redirected to the no-match output.

o On the Connection tab, the data to be matched is retrieved from the dw.DimGeography table.

o On the Columns tab, the GeographyKey column is retrieved for rows where the input columns
are matched.

5. On the data flow surface, note that the data flow arrow connecting Lookup Existing Geographies to
New Geographies represents the no match data flow.

6. Double-click New Geographies, and note that the rows in the no match data flow are inserted into
the dw.DimGeography table. Then click Cancel.

7. On the Debug menu, click Start Debugging, and observe the data flow as it executes. Note that
while four rows are extracted from the staging tables, only one does not match an existing record.
The new record is loaded into the data warehouse, and the rows that match existing records are
discarded. When execution is complete, on the Debug menu, click Stop Debugging.

Use a Lookup Transformation to Insert and Update Rows

1. In Visual Studio, in Solution Explorer, double-click the Load Products.dtsx SSIS package. Then on the
control flow surface, double-click Load Product Dimension to view the data flow surface.

2. On the data flow surface, double-click Staged Products, note that the SQL command used by the
OLE DB source extracts product data from the stg.Products table, and then click Cancel.

3. On the data flow surface, double-click Lookup Existing Products and note the following
configuration settings of the Lookup transformation. Then click Cancel:

o On the General tab, unmatched rows are redirected to the no-match output.

o On the Connection tab, the data to be matched is retrieved from the dw.DimProduct table.

o On the Columns tab, the ProductKey column is retrieved for rows where the
ProductBusinessKey column in the staging table matches the ProductAltKey column in the
data warehouse dimension table.

4. On the data flow surface, note that the data flow arrow connecting Lookup Existing Products to
Insert New Products represents the no match data flow. The data flow arrow connecting Lookup
Existing Products to Update Existing Products represents the match data flow.

5. Double-click Insert New Products, and note that the rows in the no match data flow are inserted
into the dw.DimProduct table. Then click Cancel.

6. Double-click Update Existing Products, and note the following configuration settings. Then click
Cancel:

o On the Connection Managers tab, the OLE DB Command transformation connects to the
DemoDW database.

o On the Component Properties tab, the SQLCommand property contains a parameterized
Transact-SQL statement that updates the ProductName, ProductDescription, and
ProductCategoryName columns for a given ProductKey.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-13

o On the Column Mapping tab, the ProductName, ProductDescription,
ProductCategoryName, and ProductKey input columns from the match data flow are mapped
to the parameters in the SQL command.

7. On the Debug menu, click Start Debugging, and observe the data flow as it executes. Note the
number of rows extracted from the staging tables, and how the Lookup transformation splits these
rows to insert new records and update existing ones.

8. When execution is complete, on the Debug menu, click Stop Debugging. Then minimize Visual
Studio.

The Slowly Changing Dimension Transformation

The Slowly Changing Dimension transformation
provides a wizard you can use to generate a
complex data flow to handle inserts and updates
for a dimension table. Using the Slowly Changing
Dimension wizard, you can specify:

 The columns containing keys that can be used
to look up existing dimension records in the
data warehouse.

 The non-key columns that are fixed, changing,
or historic attributes.

 Whether or not changes to a fixed column
should produce an error or be ignored.

 The column in the dimension table that should be used to indicate the current version of a dimension
member for which historic attributes have changed over time.

 Whether or not the staged data includes inferred members for which a minimal record should be
inserted. Inferred members are identified based on the value of a specified column in the source.

After completing the wizard, the Slowly Changing Dimension transformation generates a data flow that
includes the following:

 A path to insert new dimension records.

 A path to update dimension records where a changing attribute has been modified. This is an
implementation of a type 1 change.

 A path to update the current record indicator and insert a new record for dimension members where
a historic attribute has been modified. This is an implementation of a type 2 change.

 If specified, a path to insert minimal records for inferred members in the source data.

Demonstration: Implementing a Slowly Changing Dimension

In this demonstration, you will see how to:

 View an SCD Data Flow.

 Create an SCD Data Flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-14 Loading Data into a Data Warehouse

Demonstration Steps
View an SCD Data Flow

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize Visual Studio, and in Solution Explorer, double-click the Load Salespeople.dtsx SSIS
package.

3. On the control flow surface, double-click Load Salesperson Dimension to view the data flow surface.
Note the following details about the data flow:

o Staged salespeople records are extracted from the stg.Salesperson table.

o The Lookup Geography Key transformation retrieves the GeographyKey value for the
salesperson based on the PostalCode, City, Region, and Country column values.

o Salesperson SCD is a slowly changing dimension transformation that generates multiple data
flow paths for historical attribute updates requiring the insertion of a new record, new dimension
member records, and changing attribute updates.

4. On the Debug menu, click Start Debugging and observe the data flow as it executes. Note that the
staged data includes one new salesperson, and a salesperson record with a modified historical
attribute. This results in two new records in the data warehouse.

5. When execution is complete, on the Debug menu, click Stop Debugging.

Create an SCD Data Flow

1. Maximize SQL Server Management Studio and in Object Explorer, right- click the stg.Customers
table and click Select Top 1000 Rows. This table contains staged customer data.

2. Right-click the dw.DimCustomers table and click Select Top 1000 Rows. This table contains
customer dimension data. Note that the staged data includes two new customers, one with a
changed email address, and another who has moved from New York to Seattle.

3. In Visual Studio, in Solution Explorer, double-click the Load Customers.dtsx SSIS package. Then on
the control flow surface, double-click Load Customer Dimension and note the following details
about the data flow:

o Staged customer records are extracted from the stg.Customer table.

o The Lookup Geography Key transformation retrieves the GeographyKey value for the customer
based on the PostalCode, City, Region, and Country column values.

4. In the SSIS Toolbox, drag a Slowly Changing Dimension to the data flow surface, below the Lookup
Geography Key transformation. Then right-click Slowly Changing Dimension, click Rename, and
change the name to Customer SCD.

5. Click Lookup Geography Key, and then drag the blue data flow arrow to Customer SCD. In the
Input Output Selection dialog box, in the Output drop-down list, select Lookup Match Output,
and then click OK.

6. Double-click Customer SCD, and then complete the Slowly Changing Dimension Wizard, specifying
the following configuration settings:

o On the Select a Dimension Table and Keys page, in the Connection manager drop-down list,
select localhost.DemoDW, and in the Table or view drop-down list, select
[dw].[DimCustomer]. Then specify the following column mappings, leaving the input column
and key type for the CurrentRecord dimension column blank:

 CustomerID: CustomerAltKey (Business Key)

 CustomerEmail: CustomerEmail (Not a key column).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-15

 GeographyKey: CustomerGeographyKey (Not a key column).

 CustomerName: CustomerName (Not a key column).

o On the Slowly Changing Dimension Columns page, specify the following change types:

 CustomerEmail: Changing Attribute.

 CustomerName: Changing Attribute.

 CustomerGeographyKey: Historical Attribute.

o On the Fixed and Changing Attribute Options page, leave both options clear.

o On the Historical Attribute Options page, select Use a single column to show current and
expired records. Then, in the Column to indicate current record drop-down list, select
CurrentRecord. In the Value when current drop-down list, select True, and in the Expiration
value drop-down list, select False.

o On the Inferred Dimension Members page, uncheck the Enable inferred member support
option.

7. When you have completed the wizard, note the data flow it has created.

8. On the Debug menu, click Start Debugging and observe the data flow as it executes. Note that the
staged data includes two new customers. One customer record has a modified changing attribute
where their email address has been amended, the other has a modified historical attribute, having
moved to a new geographical location.

9. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio
and minimize SQL Server Management Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-16 Loading Data into a Data Warehouse

Lesson 3
Using Transact-SQL Loading Techniques

SSIS provides a range of techniques that you can use to load data into a data warehouse. They often
involve executing a Transact-SQL statement in the staging database or in the data warehouse itself.

SQL Server supports Transact-SQL statements such as MERGE, and the SWITCH statement for partitioned
tables that can often provide a high-performance solution for loading data warehouse tables.

Lesson Objectives
After completing this lesson, you will be able to:

 Use the MERGE statement to load a table with new and updated records in a single statement.

 Use the SWITCH statement to load a partitioned table.

The MERGE Statement

The MERGE statement combines insert and update
operations to merge changes from one table into
another. In a data warehouse loading scenario, it
can be used to load new and updated rows in
dimension and fact tables. When used to load a
data warehouse table, a MERGE statement
includes the following components:

 An INTO clause containing the name of the
target table being loaded.

 A USING clause containing a query that
defines the source data to be loaded into the
target table. This is usually executed against
tables in a staging database, often using JOIN clauses to look up dimension keys in the data
warehouse.

 An ON clause specifying the criteria used to match rows in the source rowset with rows in the target
table.

 A WHEN MATCHED clause specifying the action to be taken for rows in the target table that match
rows in the source rowset—often an UPDATE statement to apply a type 1 change.

 A WHEN NOT MATCHED clause specifying the action to be taken when no matches are found in the
target table for rows in the source rowset. This is usually an INSERT statement to add a new record to
the data warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-17

The following code example shows how the MERGE statement can be used to load new records and
perform type 1 updates in a dimension table:

Applying type 1 updates with MERGE

MERGE INTO DimProduct WITH (TABLOCK) AS tgt
USING
-- Query to return staged data
 (SELECT ProductAltKey, ProductName, Color
 FROM StagedProducts) AS src (ProductAltKey, ProductName, Color)
 -- Match staged records to existing dimension records
ON (src.ProductAltKey = tgt.ProductAltKey)
-- If a record for this product already exists, update it
WHEN MATCHED THEN
 UPDATE
 SET ProductName = src.ProductName,
 Color = src.Color
-- If not, insert a new record
WHEN NOT MATCHED THEN
 INSERT (ProductAltKey, ProductName, Color)
 VALUES (src.ProductAltKey, src.ProductName, src.Color);

Additionally, when combined with the OUTPUT clause, you can use the $action metadata column to
detect updates, and implement type 2 changes.

The following code example shows how to perform type 2 updates with the MERGE statement:

Applying type 2 updates with the MERGE statement

INSERT INTO DimCustomer WITH (TABLOCK)
 (CustomerAltKey, Name, City, CurrentFlag, StartDate, EndDate)
SELECT CustomerAltKey, Name, City, 1, getdate(), NULL
FROM
 (MERGE INTO DimCustomer AS tgt
 USING
 -- Query to return staged customer data
 (SELECT CustomerAltKey, Name, City
 FROM [StagedCustomer)
 AS src (CustomerAltKey, Name, City)
 -- Match staged customers to existing (current) dimension records
 ON (src.CustomerAltKey = tgt.CustomerAltKey AND tgt.CurrentFlag = 1)
 -- If a current record for this customer already exists, mark it as a type 2 change
 WHEN MATCHED THEN
 UPDATE
 SET tgt.CurrentFlag = 0, tgt.EndDate = getdate()
 -- If not, insert a new record
 WHEN NOT MATCHED THEN
 INSERT (CustomerAltKey, Name, City, CurrentFlag, StartDate, EndDate)
 VALUES (CustomerAltKey, Name, City, 1, getdate(), NULL)
 -- Now output the records you've inserted or updated
 OUTPUT $action, CustomerAltKey, Name, City)
 AS Type2Changes(MergeAction, CustomerAltKey, Name, City)
-- filter them so you insert new records for the type 2 updates.
WHERE MergeAction = 'UPDATE';

When you implement an incremental ETL process with SQL Server Integration Services, you can use an
SQL Command task in the control flow to execute a MERGE statement. However, you must ensure that the
connection manager assigned to the SQL Command task provides access to the source and target tables.

Demonstration: Using the MERGE Statement

In this demonstration, you will see how to use the MERGE statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-18 Loading Data into a Data Warehouse

Demonstration Steps
Use the MERGE Statement

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize SQL Server Management Studio and in Object Explorer. Right-click the stg.SalesOrders
table in the DemoDW database and click Select Top 1000 Rows. This table contains staged sales
order data.

3. Right-click the dw.FactSalesOrders table and click Select Top 1000 Rows. This table contains sales
order fact data. Note that the staged data includes three order records that do not exist in the data
warehouse fact table (with OrderNo and ItemNo values of 1005 and 1; 1006 and 1; and 1006 and 2
respectively), and one record that does exist but for which the Cost value has been modified
(OrderNo 1004, ItemNo 1).

4. Open the Merge Sales Orders.sql file in the D:\Demofiles\Mod08 folder and view the Transact-SQL
code it contains, noting the following details:

o The MERGE statement specified the DemoDW.dw.FactSalesOrders table as the target.

o A query that returns staged sales orders and uses joins to look up dimension keys in the data
warehouse is specified as the source.

o The target and source tables are matched on the OrderNo and ItemNo columns.

o Matched rows are updated in the target.

o Unmatched rows are inserted into the target.

5. Click Execute and note the number of rows affected.

6. Right click the dw.FactSalesOrders table and click Select Top 1000 Rows. Then compare the
contents of the table with the results of the previous query you performed in step 4.

7. Minimize SQL Server Management Studio.

Loading Partitioned Tables

Fact tables are commonly partitioned to simplify
management and data loads. When using
partitioned fact tables, you should consider the
following guidelines for your ETL data load
processes:

 Switch loaded tables into partitions.

 Partition-align indexed views.

Switch loaded tables into partitions
After you create partitioned fact tables, you can
optimize data load operations by switching a
loaded table into an empty partition. This
technique can be used to load a partition from a table that:

 Has the same schema as the partition, including column names and data types.

 Has the same indexes as the partition, including columnstore indexes.

 Has the same compression setting as the partition.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-19

 Has a check constraint that uses the same criteria as the partition function.

 Is stored on the same filegroup as the partition.

To use this technique to load new data into a partition, maintain an empty partition at the end of the
table. The lower bound of the partition range for the empty partition should be the date key value for the
next set of data to be loaded. The basic technique to load new data into a partition uses the following
procedure:

1. If each partition is stored on its own filegroup, add a filegroup to the database and set it as the next
used filegroup for the partition scheme.

2. Split the empty partition at the end of the table, specifying the key for the upper bound of the data to
be loaded. This creates one empty partition for the new data, and another to be maintained at the
end of the table for the next load cycle.

3. Create a table on the same filegroup as the second to last, empty partition, with the same columns
and data types as the partitioned table. For fastest load performance, create this table as a heap (a
table with no indexes).

4. Bulk insert the staged data into the load table you created in the previous step.

5. Add a constraint that checks that the partitioning key column values are within the range of the
target partition to the load table.

6. Add indexes to the load table that match those on the partitioned table.

7. Switch the partition and the load table.

8. Drop the load table.

This technique works best when the table is partitioned on a date key that reflects the data warehouse
load cycle, so each new load is performed into a new partition. However, it can also be used when
partitions do not match load intervals.

 When partitions are based on more frequent intervals than load cycles (for example, each partition
holds a week’s worth of data, but the data is loaded monthly), you can switch multiple load tables
into multiple partitions.

 When partitions are based on less frequent intervals than load cycles (for example, each partition
holds a month’s worth of data, but the data is loaded daily), you can:

o Create a new partition for the load, and then merge it with the previous partition.

o Switch out a partially-loaded partition, drop the indexes on the partially-populated load table,
insert the new rows, recreate the indexes, and switch the partition back in. This technique can
also be used for late arriving facts (rows that belong in partitions that have previously been
loaded) and updates.

 Additional Reading: For more information about loading partitioned fact tables, go to
Loading Bulk Data into a Partitioned Fact Table at http://technet.microsoft.com/en-
us/library/cc966380.aspx.

Partition-align indexed views
If you plan to use indexed views in the data warehouse, align the indexes to the partitions on the
underlying table. When indexed views are partition-aligned, you can switch partitions without having to
drop and recreate the indexes on the views.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-20 Loading Data into a Data Warehouse

Demonstration: Loading a Partitioned Table

In this demonstration, you will see how to:

 Split a Partition.

 Create a Load Table.

 Switch a Partition.

Demonstration Steps
Split a Partition

1. Ensure you have completed the previous demonstrations in this module.

2. Maximize SQL Server Management Studio and open the Load Partitions.sql file in the
D:\Demofiles\Mod08 folder.

3. Select the code under the comment Create a partitioned table, and then click Execute. This creates
a database with a partitioned fact table, on which a columnstore index has been created.

4. Select the code under the comment View partition metadata, and then click Execute. This shows
the partitions in the table with their starting and ending range values, and the number of rows they
contain. Note that the partitions are shown once for each index (or for the heap if no clustered index
exists). Note that the final partition (4) is for key values of 20020101 or higher and currently contains
no rows.

5. Select the code under the comment Add a new filegroup and make it the next used, and then
click Execute. This creates a filegroup, and configures the partition scheme to use it for the next
partition to be created.

6. Select the code under the comment Split the empty partition at the end, and then click Execute.
This splits the partition function to create a new partition for keys with the value 20030101 or higher.

7. Select the code under the comment View partition metadata again, and then click Execute. This
time the query is filtered to avoid including the same partition multiple times. Note that the table
now has two empty partitions (4 and 5).

Create a Load Table

1. Select the code under the comment Create a load table, and then click Execute. This creates a table
on the same filegroup as partition 4, with the same schema as the partitioned table.

2. Select the code under the comment Bulk load new data, and then click Execute. This inserts the
data to be loaded into the load table (in a real solution, this would typically be bulk loaded from
staging tables).

3. Select the code under the comment Add constraints and indexes, and then click Execute. This adds
a check constraint to the table that matches the partition function criteria, and a columnstore index
that matches the index on the partitioned table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-21

Switch a Partition

1. Select the code under the comment Switch the partition, and then click Execute. This switches the
load table with the partition on which the value 20020101 belongs. Note that the required partition
number is returned by the $PARTITION function.

2. Select the code under the comment Clean up and view partition metadata, and then click Execute.
This drops the load table and returns the metadata for the partitions. Note that partition 4 now
contains two rows that were inserted into the load table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-22 Loading Data into a Data Warehouse

Lab: Loading a Data Warehouse
Scenario
You are ready to start developing the SSIS packages that load data from the staging database into the
data warehouse.

Objectives
After completing this lab, you will be able to:

 Load data from CDC output tables.

 Use a Lookup transformation to load data.

 Use the Slowly Changing Dimension transformation.

 Use the MERGE statement.

Estimated Time: 60 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Loading Data from CDC Output Tables

Scenario
The staging database in your ETL solution includes tables named EmployeeInserts, containing employee
records that have been inserted in the employee source system, EmployeeUpdates, containing records
modified in the employee source system, and EmployeeDeletes containing records that have been
deleted in the employee source system. You must use these tables to load and update the DimEmployee
dimension table, which uses a Deleted flag to indicate records that have been deleted in the source
system.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Create a Data flow for Inserts

3. Create a Data Flow for Updates

4. Create a Data Flow for Deletes

5. Test the Package

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab08\Starter folder as Administrator.

 Task 2: Create a Data flow for Inserts
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex1 folder.

2. In Solution Explorer, note that a connection manager for the AWDataWarehouse database has been
created.

3. Add a new SSIS package named Load Employee Data.dtsx to the project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-23

4. Add a Data Flow Task named Insert Employees to the control flow.

5. In the Insert Employees data flow, create an OLE DB source named Staged Employee Inserts that
extracts data from the [dbo].[EmployeeInserts] table in the Staging database.

6. Connect the Staged Employees source to a new OLE DB destination named New Employees that
uses fast load option to load data into the DimEmployee table in the AWDataWarehouse database.

 Task 3: Create a Data Flow for Updates
1. On the control flow surface of the Load Employee Data.dtsx package, connect the success

precedence constraint of the Insert Employees data flow task to a new Data Flow Task named
Update Employees.

2. In the Update Employees data flow, create an OLE DB source named Staged Employee Updates
that extracts data from the [dbo].[EmployeeUpdates] table in the Staging database.

3. Connect the data flow from the Staged Employee Updates source to a new OLE DB Command
transformation named Update Existing Employees that executes the following Transact-SQL
statement in the AWDataWarehouse database:

UPDATE dbo.DimEmployee
SET FirstName = ?, LastName = ?, EmailAddress = ?, Title = ?, HireDate = ?
WHERE EmployeeAlternateKey = ?

Use the following column mappings:

o FirstName: Param_0

o LastName: Param_1

o EmailAddress: Param_2

o Title: Param_3

o HireDate: Param_4

o EmployeeID: Param_5

 Task 4: Create a Data Flow for Deletes
1. On the control flow surface of the Load Employee Data.dtsx package, connect the success

precedence constraint of the Update Employees data flow task to a new one named Delete
Employees.

2. In the Delete Employees data flow, create an OLE DB source named Staged Employee Updates
that extracts data from the [dbo].[EmployeeDeletes] in the Staging database.

3. Connect the data flow from the Staged Employee Deletes source to a new OLE DB Command
transformation named Delete Existing Employees that executes the following Transact-SQL
statement in the AWDataWarehouse database, mapping the EmployeeID column to Param_0:

UPDATE dbo.DimEmployee
SET Deleted = 1
WHERE EmployeeAlternateKey = ?

 Task 5: Test the Package
1. In Visual Studio, start debugging the Load Employee Data.dtsx package, and when execution is

complete, view the data flow surface for each of the data flow tasks, noting the numbers of rows
processed in each task.

2. When you have finished, stop debugging and close Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-24 Loading Data into a Data Warehouse

Results: After this exercise, you should have an SSIS package that uses data flows to apply inserts,
updates, and logical deletes in the data warehouse, based on staging tables extracted by the CDC Control
task and data flow components.

Exercise 2: Using a Lookup Transformation to Insert or Update
Dimension Data

Scenario
Another BI developer has partially implemented an SSIS package to load product data into a hierarchy of
dimension tables. You must complete this package by creating a data flow that uses a lookup
transformation to determine whether a product dimension record already exists, and then insert or
update a record in the dimension table accordingly.

The main tasks for this exercise are as follows:

1. View Data Flows

2. Create a Data Flow

3. Add a Lookup Transformation for Parent Keys

4. Add a Lookup Transformation for Product Records

5. Add a Destination for New Products

6. Add an OLE DB Command for Updated Product Records

7. Test the Package

 Task 1: View Data Flows
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex2 folder. Then open the Load Products Data.dtsx SSIS package.

2. View the data flow for the Load Product Category Dimension task, and note the following:

o The Staged Product Category Data source extracts product category data from the
InternetSales and ResellerSales tables in the Staging database.

o The Lookup Existing Product Categories task retrieves the ProductCategoryKey value for
product categories that exist in the DimProductCategory table in the AWDataWarehouse
database by matching the product category business key in the staging database to the product
category alternative key in the data warehouse.

o The Lookup No Match Output data flow path from the Lookup Existing Product Categories
task connects to the New Product Categories destination, and the Lookup Match Output data
flow path connects to the Update Existing Product Categories task.

o The New Product Categories destination loads new product category records into the
DimProductCategory table.

o The Update Existing Product Categories task executes a Transact-SQL statement to update the
ProductCategoryName column in the DimProductCategory table for an existing row based on
the ProductCategoryKey.

3. View the data flow for the Load Product Subcategory Dimension task, and note that this data flow
inserts or updates product category dimension data using a similar approach to the Load Product
Category Dimension data flow. Additionally, it has a lookup task to retrieve the

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-25

ProductCategoryKey in AWDataWarehouse for the parent category, which should have already
been loaded.

 Task 2: Create a Data Flow
1. Add a Data Flow task named Load Product Dimension to the control flow of the Load Products

Data.dtsx package, and connect the success precedence constraint from the Load Product
Subcategory Dimension task to the Load Product Dimension task.

2. In the data flow for the Load Product Dimension data flow task, add an OLE DB source named
Staged Product Data that uses the following Transact-SQL command to retrieve data from the
Staging database:

SELECT DISTINCT ProductSubcategoryBusinessKey, ProductBusinessKey, ProductName,
StandardCost, Color, ListPrice, Size, Weight, Description
FROM dbo.InternetSales
UNION
SELECT DISTINCT ProductSubcategoryBusinessKey, ProductBusinessKey, ProductName,
StandardCost, Color, ListPrice, Size, Weight, Description
FROM dbo.ResellerSales

 Task 3: Add a Lookup Transformation for Parent Keys
1. In the Load Product Dimension data flow, add a Lookup transformation named Lookup Parent

Subcategory, connect the output data flow path from the Staged Product Data source to it, and
configure it as follows:

o The component should fail if there are rows with no matching entries.

o The components should look up rows in the [dbo].[DimProductSubcategory] table in the
AWDataWarehouse database by matching the ProductSubcategoryBusinessKey column to
the ProductSubcategoryAlternateKey lookup column.

o Each matching lookup should return the ProductSubCategoryKey lookup column and add it to
the data flow.

 Task 4: Add a Lookup Transformation for Product Records
1. In the Load Product Dimension data flow, add a Lookup transformation named Lookup Existing

Products, connect the Lookup Match Output data flow path from the Lookup Parent Subcategory
transformation to it, and configure as follows:

o Rows with no matching entries should be redirected to the no match output.

o The components should look up rows in the [dbo].[DimProduct] table in the
AWDataWarehouse database by matching the ProductBusinessKey column to the
ProductAlternateKey lookup column.

o Each matching lookup should return the ProductKey lookup column and add it to the data flow.

 Task 5: Add a Destination for New Products
1. In the Load Product Dimension data flow, connect the Lookup No Match output from the Lookup

Existing Products transformation to a new OLE DB destination named New Products that loads
unmatched product records into the DimProduct table in the AWDataWarehouse database.

2. Use the following column mappings when loading the data:

o <ignore>: ProductKey

o ProductBusinessKey: ProductAlternateKey

o ProductName: ProductName

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-26 Loading Data into a Data Warehouse

o StandardCost: StandardCost

o Color: Color

o ListPrice: ListPrice

o Size: Size

o Weight: Weight

o Description: Description

o ProductSubcategoryKey: ProductSubcategoryKey

 Task 6: Add an OLE DB Command for Updated Product Records
1. In the Load Product Dimension data flow, connect the Lookup Match Output data flow path from

the Lookup Existing Products transformation to a new OLE DB Command transformation named
Update Existing Products.

2. Configure the Update Existing Products transformation to use the following Transact-SQL command
to update the DimProduct table in the AWDataWarehouse database:

UPDATE dbo.DimProduct
SET ProductName = ?, StandardCost = ?, Color = ?, ListPrice = ?, Size = ?,
Weight = ?, Description = ?, ProductSubcategoryKey = ?
WHERE ProductKey = ?

3. Use the following column mappings for the query:

o ProductName: Param_0

o StandardCost: Param_1

o Color: Param_2

o ListPrice: Param_3

o Size: Param_4

o Weight: Param_5

o Description: Param_6

o ProductSubcategoryKey: Param_7

o ProductKey: Param_8

 Task 7: Test the Package
1. With the Load Product Dimension data flow visible, start debugging the package and verify that all

rows flow to the New Products destination (because the data warehouse contained no existing
product records). When package execution is complete, stop debugging.

2. Debug the package again and verify that all rows flow to the Update Existing Products
transformation this time (because all staged product records were loaded to the data warehouse
during the previous execution, so they all match existing records). When package execution is
complete, stop debugging and close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses a Lookup transformation to
determine whether product records already exist, and updates them or inserts them as required.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-27

Exercise 3: Implementing a Slowly Changing Dimension

Scenario
You have an existing SSIS package that uses a Slowly Changing Dimension transformation to load reseller
dimension records into a data warehouse. You want to examine this package and then create a new one
that uses a Slowly Changing Dimension transformation to load customer dimension records into the data
warehouse.

The main tasks for this exercise are as follows:

1. Execute a Package to Load a Non-Changing Dimension

2. Observe a Data Flow for a Slowly Changing Dimension

3. Implement a Slowly Changing Dimension Transformation

4. Test the Package

 Task 1: Execute a Package to Load a Non-Changing Dimension
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex3 folder.

2. Open the Load Geography Data.dtsx package and review the control flow and data flow defined in
it. This package includes a simple data flow to load staged geography data into the data warehouse.
Only new rows are loaded, and rows that match existing data are discarded.

3. Start debugging and observe the package execution as it loads geography data into the data
warehouse. When package execution has completed, stop debugging.

 Task 2: Observe a Data Flow for a Slowly Changing Dimension
1. Open the Load Reseller Data.dtsx SSIS package.

2. Examine the data flow for the Load Reseller Dimension task, and note the following features:

o The Staged Reseller Data source extracts data from the Resellers table in the Staging database.

o The Lookup Geography Key transformation looks up the geography key for the reseller in the
DimGeography table in the AWDataWarehouse database.

o The Reseller SCD is a slowly changing dimension transformation that has generated the
remaining transformations and destinations. You can double-click the Reseller SCD
transformation to view the wizard used to configure the slowly changing dimension, and then
click Cancel to avoid making any unintentional changes.

o The Reseller SCD transformation maps the ResellerBusinessKey input column to the
ResellerAlternateKey dimension column and uses it as a business key to identify existing
records.

o The Reseller SCD transformation treats AddressLine1, AddressLine2, BusinessType,
GeographyKey, and NumberEmployees as historical attributes, Phone and ResellerName as
changing attributes, and YearOpened as a fixed attribute.

3. Start debugging and observe the data flow as the dimension is loaded. When package execution is
complete, stop debugging.

 Task 3: Implement a Slowly Changing Dimension Transformation
1. Open the Load Customer Data.dtsx SSIS package and view the data flow for the Load Customer

Dimension task. Note that the data flow already contains a source named Staged Customer Data,
which extracts customer data from the Staging database, and a Lookup transformation named

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-28 Loading Data into a Data Warehouse

Lookup Geography Key, which retrieves a GeographyKey value from the AWDataWarehouse
database.

2. Add a Slowly Changing Dimension transformation named Customer SCD to the data flow and
connect the Lookup Match Output data flow path from the Lookup Geography Key
transformation to the Customer SCD transformation.

3. Use the Slowly Changing Dimension wizard to configure the data flow to load the DimCustomer
table in the AWDataWarehouse database.

o Map input columns to dimension columns with the same name.

o Map the CustomerBusinessKey input column to the CustomerAlternateKey dimension
column, and use this column as the business key.

o Do not map the CurrentRecord dimension column to any input column.

o Specify the following slowly changing dimension columns:

Dimension Columns Change Type

AddressLine1 Historical attribute

AddressLine2 Historical attribute

BirthDate Changing attribute

CommuteDistance Historical attribute

EmailAddress Changing attribute

FirstName Changing attribute

Gender Historical attribute

GeographyKey Historical attribute

HouseOwnerFlag Historical attribute

LastName Changing attribute

MaritalStatus Historical attribute

MiddleName Changing attribute

NumberCarsOwned Historical attribute

Occupation Historical attribute

Phone Changing attribute

Suffix Changing attribute

Title Changing attribute

o Use the CurrentRecord column to show current and expired records, using the value True for
current records and False for expired records.

o Do not enable inferred member support.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-29

 Task 4: Test the Package
1. Debug the package and verify that all rows pass through the New Output data flow path. When

package execution is complete, stop debugging.

2. Debug the package again and verify that no rows pass through the New Output data flow path,
because they already exist and no changes have been made. When package execution is complete,
stop debugging.

3. Use SQL Server Management Studio to execute the Update Customers.sql script in the localhost
instance of the database engine. This script updates two records in the staging database, changing
one customer’s phone number and another’s marital status.

4. In Visual Studio, debug the package again and verify that one row passes through the Historical
Attribute Inserts Output data flow path, and another passes through the Changing Attributes
Updates Output. When package execution is complete, stop debugging.

5. Close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses a Slowly Changing Dimension
transformation to load data into a dimension table.

Exercise 4: Using the MERGE Statement

Scenario
Your staging database is located on the same server as the data warehouse and you want to take
advantage of this colocation of data and use the MERGE statement to insert and update staged data into
the Internet sales fact table. An existing package already uses this technique to load data into the reseller
sales fact table.

The main tasks for this exercise are as follows:

1. Examine a Control Flow that uses the MERGE Statement

2. Create a Package that Uses the MERGE Statement

3. Test the Package

 Task 1: Examine a Control Flow that uses the MERGE Statement
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex4 folder. Then open the Load Reseller Sales Data.dtsx SSIS package.

2. Examine the configuration of the Merge Reseller Sales task and note the following details:

o The task uses the localhost.Staging connection manager to connect to the Staging database.

o The task executes a Transact-SQL MERGE statement that retrieves reseller sales and related
dimension keys from the Staging and AWDataWarehouse databases. It then matches these
records with the FactResellerSales table based on the SalesOrderNumber and
SalesOrderLineNumber columns, updates rows that match, and inserts new records for rows
that do not.

3. Start debugging to run the package and load the reseller data. When package execution is complete,
stop debugging.

 Task 2: Create a Package that Uses the MERGE Statement
1. Add a new SSIS package named Load Internet Sales Data.dtsx.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-30 Loading Data into a Data Warehouse

2. Add an Execute SQL Task named Merge Internet Sales Data to the control flow of the Load
Internet Sales Data.dtsx package.

3. Configure the Merge Internet Sales Data task using the localhost.Staging connection manager and
execute a MERGE statement that retrieves Internet sales and related dimension keys from the Staging
and AWDataWarehouse databases. It also matches these records with the FactInternetSales table
based on the SalesOrderNumber and SalesOrderLineNumber columns, updates rows that match,
and inserts new records for rows that do not. To accomplish this, you can use the code in the Merge
Internet Sales.sql script file in the D:\Labfiles\Lab08\Starter\Ex4 folder.

 Task 3: Test the Package
1. View the control flow tab and start debugging the package, observing the execution of the Merge

Internet Sales Data task. When execution is complete, stop debugging.

2. Close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses an Execute SQL task to execute a
MERGE statement that inserts or updates data in a fact table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 8-31

Module Review and Takeaways
In this module, you have learned how to plan and implement a solution for loading data into a data
warehouse.

Review Question(s)
Question: What should you consider when deciding whether or not to use the MERGE
statement to load staging data into a data warehouse?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-1

Module 9
Enforcing Data Quality

Contents:
Module Overview 9-1

Lesson 1: Introduction to Data Quality 9-2

Lesson 2: Using Data Quality Services to Cleanse Data 9-8

Lab A: Cleansing Data 9-11

Lesson 3: Using Data Quality Services to Match Data 9-16

Lab B: Deduplicating Data 9-21

Module Review and Takeaways 9-25

Module Overview
Ensuring the high quality of data is essential if the results of data analysis are to be trusted. SQL Server
2014 includes Data Quality Services (DQS) to provide a computer-assisted process for cleansing data
values, as well as identifying and removing duplicate data entities. This process reduces the workload of
the data steward to a minimum while maintaining human interaction to ensure accurate results.

Objectives
After completing this module, you will be able to:

 Describe how DQS can help you manage data quality.

 Use DQS to cleanse your data.

 Use DQS to match data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-2 Enforcing Data Quality

Lesson 1
Introduction to Data Quality

Data quality is a major concern for anyone building a data warehousing solution. In this lesson, you will
learn about the kinds of data quality issue that must be addressed in a data warehousing solution, and
how SQL Server Data Quality Services can help.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the need for data quality management.

 Describe the features and components of DQS.

 Describe the features of a knowledge base.

 Describe the features of a domain.

 Explain how reference data can be used in a knowledge base.

 Create a DQS knowledge base.

What Is Data Quality, and Why Do You Need It?

As organizations consume more data from more
sources, the need for data quality management
has become increasingly common. Data quality is
especially important in a Business Intelligence (BI)
solution, because the reports and analysis
generated from data in the data warehouse can
form the basis of important decisions. Business
users must be able to trust the data they use to
make these decisions.

Data Quality Issues
Common data quality issues include:

 Invalid data values – for example, an organization might categorize its stores as “wholesale” or
“retail”. However, a user might have an application that allows free-form data entry to create a store
with a category of “reseller” instead of “retail”, or they might accidentally type “whalesale” instead of
“wholesale”. Any analysis or reporting that aggregates data by store type will then produce inaccurate
results because of the additional, invalid categories.

 Inconsistencies – for example, an organization might have one application for managing customer
accounts in which US states are stored using two-letter codes (such as “WA” for Washington), and a
second application that stores supplier addresses with a full state name (such as “California”). When
data from both these systems is loaded, your data warehouse will contain inconsistent values for
states.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-3

 Duplicate business entities – for example, a customer relationship management system might
contain records for Jim Corbin, Jimmy Corbin, James Corbin, and J Corbin. If the address and
telephone number for these customers are all the same, it might be reasonable to assume that all the
records relate to the same customer. Of course, it’s also possible that Jim Corbin has a wife named
Jennifer and a son called James, so you must be confident that you have matched the records
appropriately before deduplicating the data.

Data Quality Services Overview

DQS is a knowledge-based solution for managing
data quality. With DQS, you can perform the
following kinds of data quality management:

 Data Cleansing – identifying invalid or
inconsistent data values and correcting them.

 Data Matching – finding duplicate data
entities.

DQS is installed from the SQL Server 2014
installation media, and consists of the following
components:

 Data Quality Services Server – a service that
uses a knowledge base to apply data quality rules to data. The server must be installed on the same
instance as the data that you wish to analyze. Two SQL Server catalogs are installed, allowing you to
monitor, maintain, back up, and perform other administrative tasks from within SQL Server
Management Studio. DQS_MAIN includes stored procedures, the DQS engine, and published
knowledge bases. DQS_ PROJECT includes data required for knowledge base management and data
quality project activities.

 Data Quality Client – a wizard-based application that data stewards (typically business users) can use
to create and manage data quality services knowledge bases and perform data quality services tasks.
The client can either be installed on the same computer as the DQS server or used remotely.

 Data Cleansing SSIS Transformation – a data flow transformation for SQL Server Integration
Services (SSIS) that you can use to cleanse data as it passes through a data flow pipeline.

What Is a Knowledge Base?

DQS enables you to improve data quality by
creating a knowledge base about the data, and
then applying the rules it contains to perform data
cleansing and matching. A knowledge base stores
all the knowledge related to a specific aspect of
the business. For example, you could maintain one
knowledge base for a customer database and
another for a product database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-4 Enforcing Data Quality

Each knowledge base contains:

 Domains that define valid values and correction rules for data fields.

 Matching policies that define rules for identifying duplicate data entities.

Knowledge bases are usually created and maintained by data stewards, who are often business users with
particular expertise in a specific area.

DQS provides a basic knowledge base that includes domains for US address data, such as states and cities.
You can use it to learn about data quality services and as a starting point for your own knowledge bases.

What Is a Domain?

Domains are central to a DQS knowledge base.
Each domain identifies the possible values and
rules for a data field (that is, a column in a
dataset). The values for each domain are
categorized as:

 Valid – for example, valid values for a US
State domain might include “California” or
“CA”.

 Invalid – for example, invalid values for a US
State domain might include “8”.

 Error – for example, a common error for a US
State domain might be “Calfornia” (with a missing “i”).

Values can be grouped as synonyms. For example, you might group “California”, “CA”, and “Calfornia” as
synonyms for California. You can specify a leading value to which all synonyms should be corrected. For
example, you could configure the domain so that instances of “CA” and “Calfornia” are automatically
corrected to “California”.

In addition to defining the values for a domain, you can create domain rules that validate new data
values. For example, you could create a rule to ensure that all values in an Age domain are numbers or
that all values in an Email Address domain include a “@” character. You can also specify standardization
settings for a text-based domain to enforce correct capitalization. This enables you to ensure that
cleansed text values have consistent formats.

Often, you can create domains to represent the most granular level of your data, for example First Name,
but the actual unit of storage comprises multiple domains, for example Full Name. In this example, you
can combine the First Name and Last Name domains to form a Full Name composite domain. Composite
domains are also used for address fields comprising of a combination of address, city, state, postal code,
and country data. Another use of composite domains is a rule that combines data from multiple domains.
For example, you can verify that the string “98007” in a Postal Code domain corresponds to the string
“Bellevue” in a city domain.

Matching can be performed on the individual domains that comprise the composite domain, but not on
the composite domain itself.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-5

What Is a Reference Data Service?

Many data quality problems are outside the core
specialization of the organization in which they
are being used. For example, your organization
might be an Internet retailer that is shipping
goods based on incorrect address data, a core
data problem that produces high unnecessary
costs. You may have made your website as user-
friendly as possible, but there might still be an
unacceptably high number of incorrectly-
addressed orders.

To cleanse data that is outside the knowledge of
your organization, you can subscribe to third-
party Reference Data Service (RDS) providers. Using the Windows Azure Data Market, it is straightforward
to subscribe to an RDS service and use it to validate and cleanse your data.

To continue the example, using the Windows Azure Data Market, you could purchase a subscription to an
address verification service. You can then send data there for it to be verified and cleansed, reducing
incorrect address information and, therefore, cutting down your postage costs.

To use RDS to cleanse your data, you must follow these steps:

1. Create a free account key at the Windows Azure Marketplace.

2. Subscribe to a free or paid-for RDS provider’s service at the Marketplace.

3. Configure the reference data service details in DQS.

4. Map your domain to the RDS service.

5. Finally, you can use the knowledge base containing the domain that maps to the RDS service to
cleanse the data.

One of the key advantages of using the Azure Data Market to provide DQS services is that the cost of the
data service is typically based on the number of times you use it per month. This allows you to scale up at
busy times and reduce costs when the business is quieter.

Creating a Knowledge Base

Building a DQS knowledge base is an iterative
process that involves the following steps:

1. Knowledge Discovery – using existing data to
identify domain values.

2. Domain Management – categorizing
discovered values as valid, invalid, or errors,
specifying synonyms and leading values,
defining correction rules, and other domain
configuration tasks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-6 Enforcing Data Quality

The data steward can create the initial knowledge base from scratch, base it on an existing one, or import
one from a data file. The knowledge discovery process is then used to identify data fields that need to be
managed, map these fields to domains in the knowledge base (which can be created during knowledge
discovery if required), and identify values for these fields.

After the knowledge base has been populated by the knowledge discovery process, the data steward
manages the domains to control how DQS validates and corrects data values. Additionally, domain
management may include configuring reference data services, or setting up term-based or cross-field
relationships.

Creating a knowledge base is not a one-time activity. A data steward will continually use the knowledge
discovery and domain management processes to enhance the knowledge base and manage the quality of
new data values and domains.

Demonstration: Creating a Knowledge Base

In this demonstration, you will see how to create a DQS knowledge base.

Demonstration Steps
Create a Knowledge Base

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and log
into the 20463C-MIA-SQL virtual machine as ADVENTUREWORKS\Student with the password
Pa$$w0rd. Then, in the D:\Demofiles\Mod09 folder, right-click Setup.cmd and click Run as
administrator. When prompted, click Yes.

2. On the task bar, click SQL Server 2014 Data Quality Client. When prompted, enter the server name
MIA-SQL, and click Connect.

3. In SQL Server Data Quality Services, in the Knowledge Base Management section, click New
Knowledge Base and create a knowledge base named Demo KB from the existing DQS Data one.
Select the Domain Management activity, and click Next.

4. Select the US - State domain. Then, on the Domain Properties tab, change the domain name to
State.

5. On the Domain Values tab, note the existing values. The leading value for each state is the full state
name. Other possible values that should be corrected to the leading value are indented beneath each
leading value.

6. Click Finish, and then when prompted to publish the knowledge base, click No.

Perform Knowledge Discovery

1. In SQL Server Data Quality Services, under Recent Knowledge Base, click Demo KB and then click
Knowledge Discovery.

2. On the Map page, in the Data Source drop-down list, select Excel File, in the Excel File box, browse
to D:\Demofiles\Mod09\Stores.xls. In the Worksheet drop-down list, ensure Sheet1$ is selected,
and ensure Use first row as header is selected. This worksheet contains a sample of store data that
needs to be cleansed.

3. In the Mappings table, in the Source Column list, select State (String), and in the Domain list,
select State.

4. In the Mappings table, in the Source Column list, select City (String), and then click the Create a
domain button and create a domain named City with the default properties.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-7

5. Repeat the previous step to map the StoreType (String) source column to a new domain named
StoreType.

6. Click Next, and then on the Discover page, click Start and wait for the knowledge discovery process
to complete. When the process has finished, note that 11 new City and StoreType records were
found and that there were three unique City values, five unique State values, and four unique
StoreType values. Then click Next.

7. On the Manage Domain Values page, with the City domain selected, note the new values that were
discovered.

8. Select the State domain and note that no new values were discovered. Then clear the Show Only
New checkbox and note that all possible values for the State domain are shown, and the Frequency
column indicates that the data included California, CA, Washington, and WA.

9. Select the StoreType domain and note the values discovered.

10. In the list of values, click Retail, hold the Ctrl key and click Resale, and click the Set selected domain
values as synonyms button. Then right-click Retail and click Set as Leading.

11. In the list of values, note that Whalesale has a red spelling checker line. Then right-click Whalesale,
and click Wholesale in the list of suggested spelling corrections. Note that the Type for the
Whalesale value changes to Error and the Correct to value is automatically set to Wholesale.

12. Click Finish. If prompted to review more values, click No. When prompted to publish the knowledge
base, click No.

Perform Domain Management

1. In SQL Server Data Quality Services, under Recent Knowledge Base, click Demo KB, and then click
Domain Management.

2. In the Domain list, select StoreType. Then view the Domain Values tab and note that the values
discovered in the previous task are listed with appropriate leading values and correction behavior.

3. Click the Add new domain value button, and then enter the value Reseller.

4. Click the Retail leading value, hold the Ctrl key and click the new Reseller value. Click the Set
selected domain values as synonyms button (which, depending on the screen resolution, may be in
a drop-down list at the end of the toolbar above the table). Note that Reseller becomes a valid value
that is corrected to the Retail leading value.

5. Click Finish, and when prompted to publish the knowledge base, click Publish. Then, when
publishing is complete, click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-8 Enforcing Data Quality

Lesson 2
Using Data Quality Services to Cleanse Data

One of the major tasks for a data quality management solution is to cleanse data by validating and
correcting domain values. This lesson describes how you can use DQS to cleanse data and review the
results.

Lesson Objectives
After completing this lesson, you will be able to:

 Create a data cleansing project.

 View cleansed data.

 Use the Data Cleansing transformation in an SSIS data flow.

Creating a Data Cleansing Project

Data stewards can use the Data Quality Client
application to create a data cleansing project that
applies the knowledge in a knowledge base to
data in an SQL Server database or an Excel
workbook.

When creating a data cleansing project, the data
steward must:

1. Select the knowledge base to use and specify
that the action to be performed is cleansing.

2. Select the source containing the data to be
cleansed and map the columns in it to the
domains in the knowledge base.

3. Run the data cleansing process, and then review the suggestions and corrections generated by DQS.
The data steward can then approve or reject the suggestions and corrections.

4. Export the cleansed data to a database table, comma-delimited file, or Excel workbook.

Viewing Cleansed Data

The output from a data cleansing project includes
the cleansed data as well as additional information
about the corrections made by DQS. The output
columns are named by combining the name of the
domain and the type of data. For example, the
cleansed output for a domain named State is
stored in a column named State_Output.

Cleansed data output includes the following
column types:

 Output – the values for all fields after data
cleansing. All fields in the original data source

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-9

generate output columns, even those not mapped to domains in the knowledge base (in which case
they contain the original data values).

 Source – the original value for fields that were mapped to domains and cleansed.

 Reason – the reason the output value was selected by the cleansing operation. For example, a valid
value might be corrected to a leading value defined for the domain, or DQS might have applied a
cleansing algorithm and suggested a corrected value.

 Confidence – an indication of the confidence DQS estimates for corrected values. For values
corrected to leading values defined in the knowledge base, this is usually 1 (or 100%). When DQS
uses a cleansing algorithm to suggest a correction, the confidence is a value between 0 and 1.

 Status – the status of the output column. A value of “correct” indicates that the original value was
already correct, and a value of “corrected” indicates that DQS changed the value.

Demonstration: Cleansing Data

In this demonstration, you will see how to use DQS to cleanse data.

Demonstration Steps
Create a Data Cleansing Project

1. Ensure you have completed the previous demonstration in this module.

2. If it is not already running, start the SQL Server 2014 Data Quality Client application, and connect to
MIA-SQL.

3. In SQL Server Data Quality Services, in the Data Quality Projects section, click New Data Quality
Project, and create a new project named Cleansing Demo based on the Demo KB knowledge base.
Ensure the Cleansing activity is selected, and then click Next.

4. On the Map page, in the Data Source list, ensure SQL Server is selected. Then in the Database list,
click DemoDQS, and in the Table/View list, click Stores.

5. In the Mappings table, map the City (varchar), State (varchar), and StoreType (varchar) source
columns to the City, State, and StoreType domains. Then click Next.

6. On the Cleanse page, click Start. Then, when the cleansing process has completed, view the data in
the Profiler tab, noting the number of corrected and suggested values for each domain, and click
Next.

7. On the Manage and View Results page, ensure that the City domain is selected, and on the
Suggested tab, note that DQS has suggested correcting the value New Yrk to New York. Click the
Approve option to accept this suggestion, and then click the Corrected tab to verify that the value
has been corrected.

8. Click the State and StoreType domains in turn, and on the Corrected tab, note the corrections that
have been applied, based on the values defined in the knowledge base. Then click Next.

9. On the Export page, view the output data preview. Then under Export cleansing results, in the
Destination Type list, select Excel File. In the Excel file name box type
D:\Demofiles\Mod09\CleansedStores.xls, ensure that Standardize Output is selected, ensure that
the Data and Cleansing Info option is selected, and click Export.

10. When the file download has completed, click Close. Then click Finish, and close SQL Server Data
Quality Services.

View Cleansed Data

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-10 Enforcing Data Quality

1. Open D:\Demofiles\Mod09\CleansedStores.xls in Excel.

2. Note that the output includes the following types of column:

o Output – the values for all fields after data cleansing.

o Source – the original value for fields that were mapped to domains and cleansed.

o Reason – the reason the output value was selected by the cleansing operation.

o Confidence – an indication of the confidence DQS estimates for corrected values.

o Status – the status of the output column (correct or corrected).

3. Close Excel without saving any changes.

Using the Data Cleansing Data Flow Transformation

In addition to creating data cleansing projects to
operate interactively, you can use the Data
Cleansing transformation to work in an SSIS data
flow. Using the Data Cleansing transformation
enables you to automate data cleansing as a part
of the extract, transform, and load (ETL) processes
used to populate your data warehouse.

To add the Data Cleansing transformation to a
data flow in an SSIS package, perform the
following steps:

1. Add the Data Cleansing transformation to the
data flow and drag a data flow connection,
from a source or transformation containing the data you want to cleanse, to the input of the Data
Cleansing transformation.

2. Edit the settings of the Data Cleansing transformation to connect to the data quality server, specify
the knowledge base you want to use, and map the data flow input columns to domains in the
knowledge base.

3. Drag the output from the Data Cleansing transformation to the next transformation or destination in
the data flow, and map the output columns from the Data Cleansing transformation to the
appropriate input columns. The output columns from the Data Cleansing transformation are the same
as those generated by an interactive data cleansing project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-11

Lab A: Cleansing Data
Scenario
You have created an ETL solution for the Adventure Works data warehouse, and invited some data
stewards to validate the process before putting it into production. The data stewards have noticed some
data quality issues in the staged customer data, and requested that you provide a way for them to cleanse
data so that the data warehouse is based on consistent and reliable data. The data stewards have
provided you with an Excel workbook containing some examples of the issues found in the data.

Objectives
After completing this lab, you will be able to:

 Create a DQS knowledge base.

 Use DQS to cleanse data.

 Incorporate data cleansing into an SSIS data flow.

Lab Setup
Estimated Time: 30 Minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

The setup script for this lab does not delete any existing DQS knowledge bases or projects. It is
recommended that students create snapshots for the 20463C-MIA-DC and 20463C-MIA-SQL virtual
machines before starting so that the lab environment can be returned to the starting point if necessary.

Exercise 1: Creating a DQS Knowledge Base

Scenario
You have integrated data from many sources into your data warehouse, and this has provided several
benefits. However, users have observed some quality issues with the data, which you must correct.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View Existing Data

3. Create a Knowledge Base

4. Perform Knowledge Discovery

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab09\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-12 Enforcing Data Quality

 Task 2: View Existing Data
1. Open D:\Labfiles\Lab09\Starter\Sample Customer Data.xls in Excel and examine the worksheets in the

workbook.

o Note that there are multiple names for the same country on the CountryRegion and
StateProvince worksheets.

o Note that there are multiple names for the same state on the StateProvince worksheets.

o Note that some customers do not have a gender code of F or M on the Gender worksheet.

2. On the Sample Customer Data worksheet, apply column filters to explore the data further and view
the source records for the anomalous data.

3. Close Excel without saving any changes to the workbook.

 Task 3: Create a Knowledge Base
1. Start the Data Quality Client application and connect to MIA-SQL.

2. Create a new knowledge base with the following properties:

o Name: Customer KB.

o Description: Customer data knowledge base.

o Create Knowledge Base From: Existing Knowledge Base (DQS Data).

o Select Activity: Domain Management.

3. View the domain values for the Country/Region, Country/Region (two-letter leading), and US -
State domains.

4. Change the name of the US – State domain to State.

5. Create a domain with the following properties:

o Domain Name: Gender

o Description: Male or female

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: Upper Case

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

6. View the domain values for the Gender domain, and notice that null is allowed.

7. Add new domain values for F, M, Female, and Male to the Gender domain.

8. Set F and Female as synonyms, with F as the leading value.

9. Set M and Male as synonyms, with M as the leading value.

10. Finish editing the knowledge base, but do not publish it.

 Task 4: Perform Knowledge Discovery
1. Open the Customer KB Knowledge base for knowledge discovery.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-13

2. Use the Sample Customer Data$ worksheet in the Sample Customer Data.xls Excel workbook in
D:\Labfiles\Lab09\Starter as the source data for mapping. Use the first row as the header.

3. In the Mappings table, select the following:

Source Column Domain

CountryRegionCode (String) Country/Region (two-letter leading)

CountryRegionName (String) Country/Region

StateProvinceName (String) State

Gender (String) Gender

4. Start the discovery process, and when it is complete, view the new values that have been discovered
for the State domain, and set New South Wales and NSW as synonyms with New South Wales as
the leading value. In the alphabetically ordered list of values, click New South Wales first, press Ctrl
key, click NSW to select them both, and then click Set selected domain values as synonyms.

5. View the new values that have been discovered for the Country/Region (two-letter leading)
domain, and mark the value UK as an error that should be corrected to GB.

6. View the new values that have been discovered for the Gender domain, and mark the value W as
invalid and correct it to F.

7. View the new values that have been discovered for the Country/Region domain, and remove the
filter that causes the list to show only new values.

8. Set United States and America as synonyms with United States as the leading value. In the
alphabetically ordered list of values, click United States first, press Ctrl and click America to select
them both, and then click Set selected domain values as synonyms.

9. Set United Kingdom and Great Britain as synonyms with United Kingdom as the leading value. In
the alphabetically ordered list of values, click United Kingdom first, press Ctrl, click Great Britain to
select them both, and then click Set selected domain values as synonyms.

10. Finish and publish the knowledge base.

Results: After this exercise, you should have created a knowledge base and performed knowledge
discovery.

Exercise 2: Using a DQS Project to Cleanse Data

Scenario
Now you have a published knowledge base, you can use it to perform data cleansing in a data quality
project.

The main tasks for this exercise are as follows:

1. Create a Data Quality Project

 Task 1: Create a Data Quality Project
1. Create a new data quality project with the following properties:

o Name: Cleanse Customer Data

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-14 Enforcing Data Quality

o Description: Apply Customer KB to customer data

o Use knowledge base: Customer KB

o Select Activity: Cleansing

2. On the Map page select the InternetSales SQL Server database, then select the Customers table.
Then in the Mappings table, select the following mappings:

Source Column Domain

CountryRegionCode (nvarchar) Country/Region (two-letter leading)

CountryRegionName (nvarchar) Country/Region

StateProvinceName (nvarchar) State

Gender (nvarchar) Gender

3. Start the cleansing process, review the source statistics in the Profiler pane, and then on the Manage
and View Results page, note that DQS has found the value Astralia, which is likely to be a
typographical error, and suggested it be corrected to Australia on the Suggested tab of the
Country domain.

4. Approve the suggested correction, and note that it is now listed on the Corrected tab. Then view the
corrected values for the Country/Region, Country/Region (two-letter leading), Gender, and State
domains.

5. On the Export page, view the output data, and then export the data and cleansing info to an Excel
file named D:\Labfiles\Lab09\Starter\CleansedCustomers.xls.

6. When the export is complete, finish the project and view the results of the cleansing process in Excel.

Results: After this exercise, you should have used a DQS project to cleanse data and export it as an Excel
workbook.

Exercise 3: Using DQS in an SSIS Package

Scenario
You are happy with the data cleansing capabilities of DQS and the results are accurate enough to be
automated. You will edit an SSIS package to include a data cleansing component as part of a dataflow.

The main tasks for this exercise are as follows:

1. Add a DQS Cleansing Transformation to a Data Flow

2. Test the Package

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-15

 Task 1: Add a DQS Cleansing Transformation to a Data Flow
1. Open the D:\Labfiles\Lab09\Starter\AdventureWorksETL.sln solution in Visual Studio.

2. Open the Extract Internet Sales Data.dtsx SSIS package and, if it is not already visible, display the
SSIS Toolbox (which is available on the SSIS menu).

3. Open the Extract Customers data flow task, add a DQS Cleansing transformation, and rename it to
Cleanse Customer Data.

4. Remove the data flow between Customers and Staging DB and add a data flow from Customers to
Cleanse Customers.

5. Configure the following settings for Cleanse Customer Data:

o Create a new Data Quality connection manager for the MIA-SQL server and the Customer KB
knowledge base.

o Specify the following mapping with the default source, output, and status alias values:

Input Column Domain

Gender Gender

StateProvinceName State

CountryRegionCode Country/Region (two-letter leading)

CountryRegionName Country/Region

6. Standardize the output.

7. Connect the output data flow from Cleanse Customer Data to Staging DB and change the
following column mappings in the Staging DB destination (leaving the remaining existing mappings
as they are):

Input Column Destination Column

Gender_Output Gender

StateProvinceName_Output StateProvinceName

CountryRegionCode_Output CountryRegionCode

CountryRegionName_Output CountryRegionName

 Task 2: Test the Package
1. Debug the package and observe the Extract Customers data flow as it executes, noting the number

of rows processed by the Cleanse Customer Data transformation.

2. When package execution has completed, stop debugging and close Visual Studio (note that the
entire package may take some time to complete after the Extract Customers data flow has finished).

Results: After this exercise, you should have created and tested an SSIS package that cleanses data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-16 Enforcing Data Quality

Lesson 3
Using Data Quality Services to Match Data

As well as cleansing data, you can use DQS to identify duplicate data entities. The ability to match data
entities is useful when you need to deduplicate data to eliminate errors in reports and analysis caused by
the same entity being counted more than once.

This lesson explains how to create a matching policy, and then use it to find duplicate data entities in a
data matching project.

Lesson Objectives
After completing this lesson, you will be able to:

 Create a matching policy.

 Create a data matching project.

 View data matching results.

Creating a Matching Policy

A data warehouse is almost always composed of
data from multiple sources and at least some of
this is often provided by third parties. Also, there
are likely to be many transactions relating to the
same customer or product, but unless you have a
system which only allows existing customers to
buy existing products, duplication is likely.

For example, suppose you sell books on the
Internet. To buy a book, a customer must first
register with their name, address, username, and
password. Customers often forget their details
and, although there is a Forgotten
Username/Password link, many choose to register again. You can implement a constraint to stop anyone
having the same username, but there may still be many instances when a single customer registers two or
more times. This duplication can cause problems for data analysis because you will have more customers
in your system than in reality. There might be more of a particular gender, more between certain age
brackets, or more in a particular geographic area, than occur in reality. The duplicate entries will also
affect sales per customer analysis, which will return lower-than-accurate results.

By providing a constraint to prevent duplicate usernames, you have gone some way to preventing
duplication, but as you can see from the example, this will only slightly reduce the problem. You could
enforce unique names, but that would prevent customers with common names. You could enforce unique
names at the same address, but that would block someone with the same name as a partner or child.

Matching Policies
DQS can use a matching policy to assess the likelihood of records being duplicates. In cases with a high
likelihood of duplication, the potential duplicates are assessed by a data steward before any changes are
made. A data steward can add a matching policy to a knowledge base and create rules that help
determine whether multiple data records represent the same business entity. A data matching rule
compares one or more domains across records and applies weighted comparisons to identify matches. For
each domain in the matching rule, the data steward defines the following settings:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-17

 Similarity – you can specify that the rule should look for similar values based on fuzzy logic
comparison, or an exact match.

 Weight – a percentage score to apply if a domain match succeeds.

 Prerequisite – indicates that this particular domain must match for the records to be considered
duplicates.

For each rule, the data steward specifies a minimum matching score. When the matching process occurs,
the individual weightings for each successful domain match comparison are added together. If the total is
equal to or greater than the minimum matching score, and all prerequisite domains match, the records
are considered to be duplicates.

Creating a Data Matching Project

Data stewards can use the Data Quality Client
application to create a data matching project that
applies the knowledge in a knowledge base to
data in an SQL Server database or an Excel
workbook.

When creating a data matching project, the data
steward must:

1. Select the knowledge base to use and specify
that the action to be performed is matching.

2. Select the data source containing the data to
be matched and map the columns in it to the
knowledge base domains.

3. Run the data matching process then review the clusters of matched records that DQS identifies, based
on the knowledge base matching policies.

4. Export the matched data to a database table, comma-delimited file, or Excel workbook. Additionally,
you can specify a survivorship rule that eliminates duplicate records and exports the surviving records.
You can specify the following rules for survivorship:

o Pivot record – a record chosen arbitrarily by DQS in each cluster of matched records.

o Most complete and longest record – the record that has fewest missing data values and the
longest values in each field.

o Most complete record – the record that has fewest missing data values.

o Longest record – the record containing the longest values in each field.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-18 Enforcing Data Quality

Viewing Data Matching Results

After the data matching process is complete, you
can view and export the following results:

 Matches – the original dataset plus additional
columns that indicate clusters of matched
records.

 Survivors – the resulting dataset, with
duplicate records eliminated, based on the
selected survivorship rule.

When you export matches, the results include the
original data and the following columns:

 Cluster ID – a unique identifier for a cluster of
matched records.

 Record ID – a unique identifier for each matched record.

 Matching Rule – the rule that produced the match.

 Score – the combined weighting of the matched domains as defined in the matching rule.

 Pivot Mark – a matched record chosen arbitrarily by DQS as the pivot record for a cluster.

Demonstration: Matching Data

In this demonstration, you will see how to use DQS to match data.

Demonstration Steps
Create a Matching Policy

1. Ensure you have completed the previous demonstrations in this module.

2. Start the SQL Server 2014 Data Quality Client application, and connect to MIA-SQL.

3. In SQL Server Data Quality Services, under Recent Knowledge Base, click Demo KB, and then click
Matching Policy.

4. On the Map page, in the Data Source drop-down list, select Excel File, in the Excel File box, browse
to D:\Demofiles\Mod09\Stores.xls. In the Worksheet drop-down list, ensure Sheet1$ is selected,
and ensure Use first row as header is selected. This worksheet contains a sample of store data that
needs to be matched.

5. In the Mappings table, map the City (String), State (String), and StoreType (String) source
columns to the City, State, and StoreType domains.

6. In the Mappings table, in the Source Column list, select PhoneNumber (String), and then click the
Create a domain button and create a domain named PhoneNumber with the default properties.

7. Repeat the previous step to map the StreetAddress (String) source column to a new domain named
StreetAddress.

8. Click the Add a column mapping button to create a new row in the mapping table, and then repeat
the previous step to map the StoreName(String) source column to a new domain named
StoreName. Then click Next.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-19

9. On the Matching Policy page, click the Create a matching rule button. Then in the Rule Details
section, change the rule name to Is Same Store.

10. In the Rule Editor table, click the Add a new domain element button. Then in the Domain column,
ensure that StoreName is selected. In the Similarity column, ensure that Similar is selected, in the
Weight column, enter 20, and leave the Prerequisite column unselected.

11. Repeat the previous steps to add the following rules:

o StreetAddress: Similar: 20%: Not a prerequisite

o City: Exact: 20%: Not a prerequisite

o PhoneNumber: Exact: 30%: Not a prerequisite

o StoreType: Similar: 10%: Not a prerequisite

o State: Exact: 0%: Prerequisite selected

12. Click Start, wait for the matching process to complete, and note that one match is detected in the
sample data (Store 1 is the same as Store One). Then click Next.

13. On the Matching Results page, view the details in the Profiler tab, and then click Finish. When
prompted to publish the knowledge base, click Publish, and when publishing is complete, click OK.

Create a Data Matching Project

1. In SQL Server Data Quality Services, in the Data Quality Projects section, click New Data Quality
Project, and create a new project named Matching Demo based on the Demo KB knowledge base.
Ensure the Matching activity is selected, and then click Next.

2. On the Map page, in the Data Source list, ensure SQL Server is selected. Then in the Database list,
click DemoDQS, and in the Table/View list, click Stores.

3. In the Mappings table, map the City (varchar), PhoneNumber (varchar), State (varchar),
StoreName (varchar), StoreType (varchar), and StreetAddress (varchar) source columns to the
City, PhoneNumber, State, StoreName, StoreType, and StreetAddress domains. Then click Next.

Note: When the Mappings table is full, click Add a column mapping to add an additional row.

4. On the Matching page, click Start, and when matching is complete, note that two matches were
detected (Store 1 is the same as Store One and Store 16 is the same as Store Sixteen). Then click
Next.

5. On the Export page, in the Destination Type drop-down list, select Excel File. Then select the
following content to export:

o Matching Results: D:\Demofiles\Mod09\MatchedStores.xls

o Survivorship Results: D:\Demofiles\Mod09\SurvivingStores.xls

6. Select the Most complete record survivorship rule, and click Export. Then when the export has
completed successfully, click Close.

7. Click Finish and close SQL Server Data Quality Services.

View Data Matching Results

1. Open D:\Demofiles\Mod09\MatchedStores.xls in Excel. Note this file contains all the records in the
dataset with additional columns to indicate clusters of matched records. In this case, there are two
clusters, each containing two matches.

2. Open D:\Demofiles\Mod09\SurvivingStores.xls in Excel. Note this file contains the records that were
selected to survive the matching process. The data has been deduplicated by eliminating duplicates
and retaining only the most complete record.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-20 Enforcing Data Quality

3. Close Excel without saving any changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-21

Lab B: Deduplicating Data
Scenario
You have created a DQS knowledge base and used it to cleanse customer data. However, data stewards
are concerned that the staged customer data may include duplicate entries. For records to be considered
a match, the following criteria must be true:

 The Country/Region column must be an exact match.

 A total matching score of 80 or higher based on the following weightings must be achieved:

o An exact match of the Gender column has a weighting of 10.

o An exact match of the City column has a weighting of 20.

o An exact match of the EmailAddress column has a weighting of 30.

o A similar FirstName column value has a weighting of 10.

o A similar LastName column value has a weighting of 10.

o A similar AddressLine1 column value has a weighting of 20.

Objectives
After completing this lab, you will be able to:

 Add a matching policy to a DQS knowledge base.

 Use DQS to match data.

Estimated Time: 30 Minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Creating a Matching Policy

Scenario
You have implemented a data cleansing solution for data being staged. However, you have identified that
the staged data contains multiple records for the same business entity. You want to use a data matching
solution to deduplicate the data.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Create a Matching Policy

 Task 1: Prepare the Lab Environment
1. Complete the previous lab in this module.

2. Run LabB.cmd in the D:\Labfiles\Lab09\Starter folder as Administrator.

 Task 2: Create a Matching Policy
1. Start the Data Quality Client application and connect to the MIA-SQL server.

2. Open the Customer KB knowledge base for the Matching Policy activity.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-22 Enforcing Data Quality

3. Use the Sheet1$ worksheet in the D:\Labfiles\Lab09\Starter\Sample Staged Data.xls Excel file as
the data source for the matching policy.

4. On the Map page, map the columns in the Excel worksheet to the following new domains:

Source Column Domain

FirstName (String) A new domain named FirstName with a String data type.

LastName (String) A new domain named LastName with a String data type.

AddressLine1(String) A new domain named AddressLine1 with a String data type.

City (String) A new domain named City with a String data type.

EmailAddress (String) A new domain named EmailAddress with a String data type.

5. Add more column mappings and map the following fields to existing domains:

Source Column Domain

Gender (String) Gender

StateProvinceName (String) State

CountryRegionCode (String) Country/Region (two-letter heading)

CountryRegionName (String) Country/Region

6. On the Matching Policy page, create a matching rule with the following details:

o Rule name: Is Same Customer

o Description: Checks for duplicate customer records

o Min. matching score: 80

Domain Similarity Weight Prerequisite

Country/Region Exact Selected

Gender Exact 10 Unselected

City Exact 20 Unselected

EmailAddress Exact 30 Unselected

FirstName Similar 10 Unselected

LastName Similar 10 Unselected

AddressLine1 Similar 20 Unselected

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-23

7. Start the matching process and, when it has finished, review the matches found by DQS, noting that
there are duplicate records for three customers.

8. When you have finished, publish the knowledge base.

Results: After this exercise, you should have created a matching policy and published the knowledge
base.

Exercise 2: Using a DQS Project to Match Data

Scenario
You will now create a data quality project to apply the matching rules from the previous exercise. After
this process is complete, you will have exported a deduplicated set of data. You will finally apply the
deduplication results in the staging database by executing Transact-SQL statements.

The main tasks for this exercise are as follows:

1. Create a Data Quality Project for Matching Data

2. Review and Apply Matching Results

 Task 1: Create a Data Quality Project for Matching Data
1. In SQL Server Data Quality Services, create a new data quality project with the following details:

o Name: Deduplicate Customers

o Description: Identify customer matches

o Use knowledge base: Customer KB

o Select Activity: Matching

2. Using the Customers table in the Staging SQL Server database as the data source, map the following
columns to domains in the knowledge base:

Source Column Domain

FirstName (nvarchar) FirstName

LastName (nvarchar) LastName

Gender (nvarchar) Gender

AddressLine1 (nvarchar) AddressLine1

City (nvarchar) City

CountryRegionName (nvarchar) Country/Region

EmailAddress (nvarchar) EmailAddress

3. Start the matching process and review the results when it is finished.

4. Export the results to the following Excel workbooks, specifying the Most complete record
survivorship rule:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-24 Enforcing Data Quality

o Matching Results: D:\Labfiles\Lab09\Starter\Matches.xls

o Survivorship Results: D:\Labfiles\Lab09\Starter\Survivors.xls

 Task 2: Review and Apply Matching Results
1. Open D:\Labfiles\Lab09\Starter\Matches.xls in Excel.

2. Note that the matching process found a match with a score of 90 for the following customer records:

o CustomerBusinessKey: 29261 (Robert Turner)

o CustomerBusinessKey: 29484 (Rob Turner)

3. Open D:\Labfiles\Lab09\Starter\Survivors.xls in Excel.

4. Note that the survivors file contains all the records that should survive de-duplication based on the
matches that were found. It contains the record for customer 29261 (Robert Turner), but not for
29484 (Rob Turner).

5. Open D:\Labfiles\Lab09\Starter\Fix Duplicates.sql in SQL Server Management Studio, connecting
to the MIA-SQL instance of the database engine by using Windows authentication.

6. Review the Transact-SQL code and note that it performs the following tasks:

o Updates the InternetSales table so that all sales currently associated with the duplicate customer
record become associated with the surviving customer record.

o Deletes the duplicate customer record.

7. Execute the SQL statement, and then close SQL Server Management Studio.

Results: After this exercise, you should have deduplicated data using a matching project and updated
data in your database to reflect these changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 9-25

Module Review and Takeaways
In this module, you have learned how Data Quality Service provides a knowledge-based solution for
cleansing and matching data.

Review Question(s)
Question: Who is responsible for ensuring the consistency and accuracy of data in solutions
you have implemented or managed?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-1

Module 10
Master Data Services

Contents:
Module Overview 10-1

Lesson 1: Introduction to Master Data Services 10-2

Lesson 2: Implementing a Master Data Services Model 10-6

Lesson 3: Managing Master Data 10-15

Lesson 4: Creating a Master Data Hub 10-23

Lab: Implementing Master Data Services 10-29

Module Review and Takeaways 10-38

Module Overview
Organizations typically use different platforms to store different types of data. For example, sales data
might be stored in an online transactional processing (OLTP) database, customer data in a dedicated
customer relations management (CRM) system, and so on. Storing data across multiple, heterogeneous
platforms can make it difficult to ensure that the data representing a single instance of a specific business
entity is consistent and accurate across the enterprise.

Master Data Services provides a way for organizations to standardize and improve the quality,
consistency, and reliability of the data that guides key business decisions. This module introduces Master
Data Services and explains the benefits of using it.

Objectives
After completing this module, you will be able to:

 Describe the key concepts of Master Data Services.

 Implement a Master Data Services model.

 Use Master Data Services tools to manage master data.

 Use Master Data Services tools to create a master data hub.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-2 Master Data Services

Lesson 1
Introduction to Master Data Services

Master data management can represent a major challenge for organizations. Data representations of a
single business entity, such as a specific individual customer, might be recorded in multiple locations in
multiple formats. When you consider the number of different types of data a company might own, the
potential scale of this problem can be huge. Master Data Services enables organizations to standardize
data, which improves the consistency of their key business data, and ultimately, the quality of the
decisions that they make.

Lesson Objectives
After completing this lesson, you will be able to:

 Explain the need for master data management.

 Explain how Master Data Services helps you meet the challenges of master data management.

 Compare Master Data Services with Data Quality Services.

 Describe the components of Master Data Services.

The Need for Master Data Management

Data owned by an organization is one of its most
valuable assets, and businesses rely on it for a
variety of different reasons. For example,
individuals in a company might use data to
develop marketing strategies, plan new product
lines, or identify areas where they can make
efficiency savings. Report writers and data analysts
interact directly with this data and decision-
makers use the data to guide them when they
make key choices about future business strategy.
However, companies often struggle to maintain
the quality, consistency, and accuracy of their data
across the enterprise for a number of reasons, including:

 Decentralized data storage. In modern, complex information ecosystems, data may be stored in
multiple systems and formats, perhaps because of departmental differences or as a result of company
mergers or acquisitions. This approach makes it difficult to identify where duplicate data exists, and if
it does, how to identify a ‘master’ version.

 Different methods of handling data changes. Different applications might handle data changes,
such as additions, updates, and deletions, by using different rules, and this can result in
inconsistencies. For example, if one application records addresses without requiring a postal code but
others do, the formats of stored addresses will be inconsistent.

 Human error. Errors in the insertion and updating of data can lead to inaccuracies. For example, if a
user misspells a customer name, applications will accept the input as long as the format is correct,
and the error will not be identified.

 Latency and non-propagation of changes. Changes to data in one system may not propagate to
others where the same data is held, or it may do so with a time delay. Running reports against these
diverse systems will yield different results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-3

Poorly managed data directly affects the quality of reporting and data analysis, and can ultimately result
in inefficient procedures, missed opportunities, revenue loss, customer dissatisfaction, and increased time
spent managing the data to try to solve these problems. It also makes it more difficult for organizations to
comply with data regulation requirements. For these reasons, companies can realize major benefits from
implementing a master data management system.

What Is Master Data Services?

Master Data Services is a master data
management technology that enables
organizations to handle the challenges of data
management. Master Data Services can serve both
as a system of entry for creating and updating
master data, and a system of record for making
authoritative data available to other applications.
With Master Data Services, you can create a
master data hub to consolidate and ensure
consistency of key business entity data
representations across the enterprise.

Master Data Services enables you to enforce data
validation rules and track changes to master data through an audit trail that shows the time, date, and
author of each change. This promotes accountability and helps organizations to comply with data
regulation requirements.

Data Stewards
A data steward is an individual charged with managing master data. Usually a data steward is a business
user with a detailed knowledge of the entities used in a particular area, and who is responsible for
ensuring the integrity of data relating to those entities. Data stewards must ensure that each item of data
is unambiguous, has a clear definition, and is used consistently across all systems. A data steward will
typically use a master data management system, such as Master Data Services, to perform these tasks.

 Note: Implementing a successful master data management initiative involves establishing
extensive cooperation among the various stakeholders and the owners of the data, and this may
not always be straightforward. For example, stakeholders may be reluctant to commit to the
scheme because they see it as surrendering stewardship of their data, or there may be political
issues that need to be overcome in an organization. It is therefore important that all parties fully
understand the benefits of master data management and how these can be delivered by Master
Data Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-4 Master Data Services

Master Data Services and Data Quality Services

On initial inspection, Master Data Services appears
to address many of the same problems as Data
Quality Services. Both technologies are designed
to help users manage the quality and integrity of
business data but there are some key differences.
While Data Quality Services is focused on
managing the integrity and consistency of
individual domains or columns in a dataset, Master
Data Services is designed to manage the integrity
and consistency of specific entity instances.

For example, an organization might use Data
Quality Services to ensure that all records that
include address data use a consistent, approved set of valid values for City, State, and Country fields. This
domain-based validation can apply to any record that contains address data, including customer,
employee, and supplier records, and so on.

In contrast, the same organization might use Master Data Services to ensure the integrity of a specific
customer named Ben Smith. Address data relating to that individual might be entered and maintained in
multiple systems across the organization. Master Data Services ensures that there is definitive information
about Ben Smith, enabling business users to be sure which of the multiple addresses for him that the
organization has spread across various systems is the correct one. Note that, from a Data Quality Services
perspective, all the addresses the organization has for Ben Smith might be valid, but with Master Data
Services, users can be sure which one is correct.

In many scenarios, Master Data Services and Data Quality Services are used together. Examples of this
include:

 Using Data Quality Services to cleanse data before loading into Master Data Services.

 Applying Master Data Services matching policies to identify duplicate master data records for
business entities.

Components of Master Data Services

Master Data Services includes the following
components:

 Master Data Services database. This
database stores all the database objects that
support Master Data Services. This database
contains staging tables for processing
imported data, views that enable client access
to master data, and tables that store the
master data itself. The database also supports
additional functionality, including versioning,
business rule validation, and email
notification.

 Master Data Manager Web application. You use this application to perform the tasks associated

with managing Master Data Services, such as creating models, entities, hierarchies, subscription views,

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-5

and business rules. You configure the Master Data Manager Web application by using the Explorer,
Version Management, Integration Management, System Administration, and User and Group
Permissions functional areas. Apart from the Explorer, all functional areas are restricted to Master
Data Services administrators. Data stewards can use the Explorer functional area to manage the
master data for which they have responsibility.

 Master Data Services Configuration Manager. You use this tool to create and manage the Master
Data Services database and Web application, and to enable the Web service. You can also use it to
create a Database Mail profile for Master Data Services to use.

 Master Data Services Add-In for Microsoft Excel. Business users and administrators can use this
add-in to manage Master Data Services objects, and to work with master data in a Microsoft® Excel®
workbook.

Considerations for Installing Master Data Services
Master Data Services is available only with the following editions of SQL Server 2014:

 SQL Server 2014 Business Intelligence.

 SQL Server 2014 Enterprise.

 SQL Server 2014 Developer.

You can install Master Data Services by using SQL Server Setup, and adding it as a shared feature. You
should use Master Data Services Configuration Manager to complete the installation and create the
Master Data Services database and Web application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-6 Master Data Services

Lesson 2
Implementing a Master Data Services Model

At the center of every Master Data Services solution is a Master Data Services model. To create a master
data management solution with Master Data Services, you must know how to create and manage a
model. This lesson explains the key concepts you need to understand about Master Data Services models,
and describes how to create and manage a model and the master data it contains.

Lesson Objectives
After completing this lesson, you will be able to:

1. Describe the key features of a Master Data Services model.

2. Create a Master Data Services model.

3. Create entities and attributes in a Master Data Services model.

4. Add and edit entity members in a Master Data Services model.

5. Edit a Master Data Services model in Microsoft® Excel®.

What Is a Master Data Services Model?

A model is the highest level of organization in
Master Data Services. It is a container for a related
set of business entity definitions. You can create a
model for each area of the business for which you
want to manage data. For example, to create a
definitive set of customer data, you might create a
model named Customers that contains all
customer-related data. The Customers model
would include data and metadata about the
customers themselves, and might also include
related information such as customer account
types and sales territory data. You might then
create a second model named Products that contains all product data, and other models as required.

Versions
Master Data Services models are versioned, enabling you to maintain multiple versions of master data at
the same time. This can be useful in scenarios where many business applications require a newer
definition of a specific business entity, but some older applications cannot be upgraded to use the new
model.

Entities and Attributes
An entity is a data definition for a specific type of item used in the business. For example, a Customers
model might contain a Customer entity and an Account Type entity. An entity is analogous to a table in
a relational database. In many cases, a model is created to primarily manage a single business entity, so an
entity is created with the same name as the model. This scenario is so common that an option to create an
identically-named entity when creating a model is available in Master Data Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-7

Each entity has attributes that describe it. These attributes are analogous to columns in a database table.
When you create an entity, Master Data Services automatically adds two attributes to that entity:

 Code. The Code attribute can contain only unique values. When you populate the entity, you must
provide a Code value for each member. The value of a Code attribute will frequently be derived from
the primary key column in a relational database table.

 Name. The Name attribute does not require a unique value, and you can leave this field blank for
members if appropriate.

You cannot delete the Code and Name attributes.

In addition to the system generated attributes, you can also create one of three types of attribute that
describe your data, using Master Data Services:

 Free-form. This type of attribute enables you to enter free-form values as text, numbers, dates, or
links. You use free-form attributes for the text-based, numerical, and date and time data in your
databases.

 Domain-based. This type of attribute accepts values only from other entities. You cannot directly
enter values into domain-based attributes. You use domain-based attributes to ensure that the values
for a particular attribute match Code values in an existing entity. For example, suppose you have an
entity called Product Category that lists product categories by name and another entity called
Product Subcategory. In the Product Subcategory entity, you can create a domain-based attribute
called Category that references the Product Category entity.

 File. This type of attribute accepts files, such as documents or images. You can use file attributes to
ensure that all files in an attribute have the same file extension.

Attribute Groups
An attribute group is a named grouping of the attributes in an entity. Attribute groups are useful if an
entity has a large number of attributes, which makes them difficult to view, or in scenarios where multiple
applications will consume entity data from Master Data Services. However, some attributes are only
relevant to particular applications. For example, a Customer entity might include attributes that are only
used in a CRM application, and other attributes that are only used by an order processing system. By
creating application-specific attribute groups, you can simplify the creation of data flows between the
master data hub and the applications requiring master data.

Members
Members are individual instances of entities, and are analogous to records in a database table. Each
instance of an entity is a member that represents a specific business object, such as an individual customer
or product.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-8 Master Data Services

Creating a Model

To create a model, open the Master Data Manager
Web application, and perform the following
procedure:

1. Click System Administration.

2. On the Model View page, on Manage menu,
click Models.

3. On the Model Maintenance page, click Add
model.

4. In the Model name box, type a unique name
for the model.

5. Optionally:

o Select Create entity with same name as model to create an entity with the same name as the
model.

o Select Create explicit hierarchy with same name as model to create an explicit hierarchy with
the same name as the model. This option also enables the entity for collections.

o Select Mandatory hierarchy (all leaf members are included) to make the explicit hierarchy
mandatory.

6. Click Save model.

 Note: Hierarchies and collections are discussed later in this module.

Creating Entities and Attributes

After you have created a model, you must add
entities to represent the business objects for which
you want to manage master data.

Creating an Entity
Use the following procedure to create an entity:

1. In Master Data Manager, click System
Administration.

2. On the Model View page, on the Manage
menu, click Entities.

3. On the Entity Maintenance page, in the
Model list, select the model in which you want to create the entity and click Add entity.

4. In the Entity name box, type a name that is unique within the model.

5. Optionally, in the Name for staging tables box, type a name for the staging table (if you don’t enter
a name, the entity name is used by default).

6. Optionally, select the Create Code values automatically check box so that Code attribute values are
generated automatically for members as they are added.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-9

7. In the Enable explicit hierarchies and collections list, select Yes if you want to enable explicit
hierarchies and collections for this entity, or No if you do not. If you select Yes, you can optionally
select Mandatory hierarchy (all leaf members are included) to make the explicit hierarchy a
mandatory one.

8. Click Save entity.

Adding Attributes to an Entity
After you have created an entity, it will contain the mandatory Code and Name attributes. You can then
edit the entity to add more attributes by following this procedure:

1. In Master Data Manager, click System Administration.

2. On the Model View page, on the Manage menu, click Entities.

3. On the Entity Maintenance page, in the Model list, select the model that contains the entity to
which you want to add attributes.

4. Select the entity to which you want to add attributes, and click Edit selected entity.

5. On the Edit Entity page, in the Leaf member attributes pane, click Add leaf attribute.

6. On the Add Attribute page, select one of the following options:

o Free-form. Use this option to enable users to enter attribute values.

o Domain-based. Use this option to create an attribute that is used as a key to look up members
in another, related entity.

o File. Use this option to create an attribute that is represented by file, such as an image.

7. In the Name box, type a name for the attribute that is unique within the entity.

8. Depending on the option you chose previously, you can set additional display and data type settings
for the attribute. For example, when adding a free-form attribute, you can specify a data type such as
Text, Number, or Date. You can then set data type-specific constraints, such as a maximum length
for a text attribute or a number of decimal places, for a numeric attribute.

9. Optionally, select Enable change tracking to track changes to groups of attributes.

10. Click Save attribute.

11. On the Entity Maintenance page, click Save entity.

Adding and Editing Members

After you have created entities and defined their
attributes, you can add members to the model.

To use Master Data Manager to add a member:

1. On the Master Data Manager home page, in
the Model list, select the model to which you
want to add a member.

2. In the Version list, select the version of the
model you want to work with.

3. Click Explorer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-10 Master Data Services

4. On the Entities menu, click the name of the entity to which you want to add a member.

5. Click Add member.

6. In the Details pane, enter a value for each attribute.

7. Optionally, in the Annotations box, type a comment to document the addition of the member.

8. Click OK.

After you have added a member, you can edit its attributes by selecting it and modifying the attribute
values in the Details pane.

Adding annotations helps document each change made to the data. You can view a history of all edits,
and associated annotations by clicking the View Transactions button.

Demonstration: Creating a Master Data Services Model

In this demonstration, you will see how to create a Master Data Services model.

Demonstration Steps
Create a Model

1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and log
into the 20463C-MIA-SQL virtual machine as ADVENTUREWORKS\Student with the password
Pa$$w0rd. Then, in the D:\Demofiles\Mod10 folder, right-click Setup.cmd and click Run as
administrator. When prompted, click Yes.

2. Start Internet Explorer and browse to http://localhost:81/MDS.

3. On the Master Data Services home page, click System Administration.

4. On the Model View page, on the Manage menu, click Models.

5. On the Model Maintenance page, click Add model.

6. On the Add Model page, in the Model name box, type Customers, clear the Create entity with
same name as model check box, and then click Save model.

Create an Entity

1. On the Model Maintenance page, on the Manage menu, click Entities.

2. On the Entity Maintenance page, in the Model list, select Customers, and then click Add entity.

3. On the Add Entity page, in the Entity name box, type Customer.

4. In the Enable explicit hierarchies and collections list, click No, and then click Save entity.

Create Attributes

1. On the Entity Maintenance page, in the Entity table, click Customer, and then click Edit selected
entity.

2. On the Edit Entity: Customer page, in the Leaf member attributes area, click Add leaf attribute.

3. On the Entity: Customer Add Attribute page, ensure that the Free-form option is selected.

4. In the Name box, type Address, in the Data type list, select Text, in the Length box, type 400, and
then click Save attribute.

5. On the Edit Entity: Customer page, in the Leaf member attributes area, click Add leaf attribute.

6. On the Entity: Customer Add Attribute page, ensure that the Free-form option is selected.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-11

7. In the Name box, type Phone, in the Data type list, select Text, in the Length box, type 20, and then
click Save attribute.

8. On the Edit Entity: Customer page, click Save Entity, and then click the Microsoft SQL Server 2014
logo to return to the home page.

Add and Edit Members

1. On the Master Data Services home page, click Explorer.

2. In the Entities menu, click Customer. If the Entities menu does not appear, click any other menu and
then click the Entities menu again.

3. Click Add Member, and in the Details pane, enter the following data:

o Name: Ben Smith

o Code: 1235

o Address: 1 High St, Seattle

o Phone: 555 12345

o Annotations: Initial data entry

4. Click OK, then click the entity row you have added. Then in the Details pane, edit the following fields:

o Phone: 555 54321

o Annotations: Changed phone number

5. Click OK, and then click View Transactions noting the list of transactions for this entity. Click each
transaction and view the text in the Annotations tab before clicking Close.

6. Close Internet Explorer.

Editing a Model in Microsoft® Excel®

SQL Server 2014 Master Data Services supports the
Master Data Services Add-in for Excel, which you
can use to read and manage lists of Master Data
Services data. The add-in is a free download for
Excel 2007 or later that you can distribute to data
stewards and Master Data Services administrators,
enabling them to work with a familiar and easy-
to-use interface. You can download the Master
Data Services Add-In for Excel from the Microsoft
download site, or users can install it directly from
Master Data Manager.

The Master Data Services Add-in for Excel adds the
Master Data tab to the Excel ribbon. You can use options on this tab to perform tasks, such as connecting
to a Master Data Services server, applying business rules, creating new entities, and publishing changes
back to the server. The add-in is security context aware, and will only allow users to view and change data
for which they have the appropriate permissions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-12 Master Data Services

To view Master Data Services data in Excel, you must first connect to a Master Data Services server. On the
Master Data tab in Excel, the Connect option enables you to create a connection to Master Data
Services. After connecting, you can use the Master Data Explorer to select a model and version to work
with from those available on the server. You can then load data into an Excel worksheet from the entities
listed in the Master Data Explorer, and filter that data so you only see the actual data you want to work
with. After you have loaded the required data, you can browse and edit it just as you would any other
data in Excel. You can create new entities, add columns to existing entities to define new attributes, and
edit member data.

Most data editing operations are performed locally in the Excel worksheet, and changes are only
propagated to the Master Data Services database when you explicitly publish the changes made in Excel.
When you publish an entity, you can enter annotations to document the changes made.

Demonstration: Editing a Model in Excel

In this demonstration, you will see how to edit a master data model in Microsoft® Excel®.

Demonstration Steps
Connect to a Master Data Services Model in Excel

1. Ensure you have completed the previous demonstration in this module.

2. Start Microsoft® Excel® and create a new blank document.

3. On the File tab, click Options. Then in the Excel Options dialog box, on the Add-Ins tab, select
COM Add-ins and click Go.

4. In the COM Add-Ins dialog box, if Master Data Services Add-In for Excel is not selected, select it.
Then click OK.

5. On the Master Data tab of the ribbon, in the Connect and Load section, click the drop-down arrow
under Connect and click Manage Connections.

6. In the Manage Connections dialog box, click New, and in the Add New Connection dialog box,
enter the description Demo MDS Server and the MDS server address http://localhost:81/mds, and
click OK. Then click Close.

7. On the Master Data tab of the ribbon, in the Connect and Load section, click the drop-down arrow
under Connect and click Demo MDS Server.

8. In the Master Data Explorer pane, in the Model list, select Customers.

9. In the Master Data Explorer pane, click the Customer entity. Then on the ribbon, in the Connect
and Load section, click Refresh. Note that the Customer entity, including the member you created
in the previous demonstration, is downloaded into a new worksheet.

Add a Member

1. On the Customer worksheet, click cell D4 (which should be an empty cell under Ben Smith).

2. Enter the following details in row 4:

o D4: Andrew Sinclair

o E4: 2600

o F4: 2 Main St, Ontario

o G4: 555 11111

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-13

3. Note that the row for the new member you have created has an orange background to indicate that
the data has not been published to Master Data Services.

4. On the ribbon, in the Publish and Validate section, click Publish. Then in the Publish and Annotate
dialog box, enter the annotation Added new member, and click Publish. Note that the data is
published and the orange background is removed.

Add a Free-Form Attribute to an Entity

1. On the Customer worksheet, click cell H2 (which should be an empty cell to the right of the Phone
attribute header).

2. Type CreditLimit and press Enter. This adds a new attribute named CreditLimit (which is shown with
a green background because it is not yet saved to the model).

3. Click cell H2 to re-select it, and on the Master Data tab of the ribbon, in the Build Model section,
click Attribute Properties. Then in the Attribute Properties dialog box, in the Attribute type drop-
down list, click Number, note the default Decimal places value (2), and click OK. Note that the
changes are uploaded to the data model and the cell background changes to blue.

4. In cell H3, enter 1000 as the CreditLimit value for the Ben Smith member, and in cell H4 enter 500 as
the CreditLimit value for the Andrew Sinclair member. Note that the cell background is orange to
indicate that the data has not been published to Master Data Services.

5. On the ribbon, in the Publish and Validate section, click Publish. Then in the Publish and Annotate
dialog box, enter the annotation Set credit limit, and click Publish. Note that the data is published
and the orange background is removed.

Add a Domain-Based Attribute and Related Entity

1. On the Customer worksheet, click cell I2 (which should be an empty cell to the right of the
CreditLimit attribute header).

2. Type AccountType and press Enter. This adds a new attribute named AccountType (which is shown
with a green background because it is not yet saved to the model).

3. In cell I3, enter 1 as the AccountType value for Ben Smith. Then in cell I4, enter 2 as the
AccountType value for Andrew Sinclair.

4. Click cell I2 to re-select it, and on the ribbon, in the Build Model section, click Attribute Properties.
Then in the Attribute Properties dialog box, in the Attribute type drop-down list, click
Constrained list (Domain-based), in the Populate the attribute with values from list, ensure the
selected column is selected, in the New entity name box, type Account Type, and click OK. Note
that the AccountType column now contains the values 1{1} and 2{2}.

5. On the Master Data tab of the ribbon, in the Connect and Load section, click the drop-down arrow
under Connect and click Demo MDS Server.

6. In the Master Data Explorer pane, in the Model list, select Customers.

7. In the Master Data Explorer pane, click the Account Type entity, which was created when you
added a domain-based attribute to the Customer entity. Then on the ribbon, in the Connect and
Load section, click Refresh. Note that the Account Type entity is downloaded into a new worksheet
with two members.

8. Change the Name attribute for the existing members as follows:

Name Code
Standard 1
Premier 2

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-14 Master Data Services

9. On the ribbon, in the Publish and Validate section, click Publish. Then in the Publish and Annotate
dialog box, enter the annotation Changed account type names, and click Publish.

10. Click the Customer worksheet tab, and on the ribbon, in the Connect and Load section, click
Refresh. Note that the AccountType attribute values are updated to show the new Name values you
specified for the members in the Account Type entity.

11. Click cell I3, and note that you can select the AccountType value for each member from a list that
looks up the related name and code in the Account Type entity. Leave the selected AccountType for
Ben Smith as 1 {Standard}.

12. Close Excel without saving the workbook.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-15

Lesson 3
Managing Master Data

After you have defined a Master Data Services model and the entities you want to manage, you can use
Master Data Services to organize, manage, and maintain entity members. This enables you to create
master data solutions that meet the requirements of your organization’s business applications and ensure
the enterprise-wide integrity and consistency of your data.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how hierarchies and collections can be used to organize master data.

 Create derived hierarchies.

 Create explicit hierarchies.

 Create collections.

 Find duplicate members.

 Use business rules to validate members.

Hierarchies and Collections

Hierarchies and collections are two ways to group
related data in a Master Data Services model.

Hierarchies enable you to group members to
provide users with a structured view of data that is
easier to browse. A hierarchy contains all the
members from the entity or entities that you add
to it, and each member can appear only once.
Collections are flat groupings of members within
an entity that have no hierarchical structure, but
make it easier to find and manage members that
are related in some way.

Derived Hierarchies
Derived hierarchies are based on the relationships that exist between entities. They use domain-based
attributes that you create to infer parent-child relationships. For example, suppose that you have two
entities, Customer and Account Type. The Customer entity contains a domain-based attribute named
AccountType that references the Code attribute of the Account Type entity. You can use these
attributes to create a derived hierarchy that groups customers by account type.

Explicit Hierarchies
Explicit hierarchies can contain members from a single entity, and do not use domain-based attributes to
determine their structure. Instead, you must create consolidated members to define levels within the
hierarchy, and then move the leaf members (members that represent instances of the entity) into the
appropriate level. For example, you could create a consolidated member named US Customers, and
group leaf members for customers with a US address under it. Unlike derived hierarchies, explicit
hierarchies can be ragged, and so do not need a consistent number of levels. An explicit hierarchy
contains all the members in an entity. If you make the hierarchy mandatory, then all entity leaf members

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-16 Master Data Services

must be assigned to a consolidated member. In a non-mandatory hierarchy, any members that you do
not group under a consolidated member are grouped together in the hierarchy as ‘unused’.

Collections
Collections enable you to combine leaf members and consolidated members from any existing explicit
hierarchies into a group of related members. Collections provide flexibility and are efficient because they
enable you to re-use existing hierarchies, removing the need to create a new one. For example, you could
create a collection named Special Delivery Customers that contains consolidated members from an
explicit hierarchy based on geographic locations, as well as some individual leaf members that don’t
belong to the consolidated members, but which also qualify for special delivery status.

 Note: You can only create explicit hierarchies and collections for entities that have the
Enable explicit hierarchies and collections option enabled.

Creating Derived Hierarchies

Use the following procedure to create a derived
hierarchy:

1. In Master Data Manager, click System
Administration.

2. On the Model View page, in the Manage
menu, click Derived Hierarchies.

3. On the Derived Hierarchy Maintenance
page, from the Model list, select the model in
which you want to create a derived hierarchy.

4. Click Add derived hierarchy.

5. On the Add Derived Hierarchy page, in the Derived hierarchy name box, type a name for the
hierarchy. Try to make the name meaningful, for example, Customers by Account Type.

6. Click Save derived hierarchy.

7. On the Edit Derived Hierarchy page, in the Available Entities and Hierarchies pane, click the
entity that represents the top level of your hierarchy (for example, Account Type) and drag it to the
Current Levels pane.

8. Drag the entity that represents the next level (for example, Customer) onto the level you created in
the previous step. Note that there must be a relationship between a domain-based attribute in the
entity you are dragging and the Code attribute in the parent entity.

9. Continue dragging entities until your hierarchy includes all the levels it requires.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-17

Creating Explicit Hierarchies

To create an explicit hierarchy, you must enable
explicit hierarchies and collections for the entity,
and edit it to create any required consolidated
member attributes. You can then define the
consolidated members for the hierarchy levels and
assign leaf members to them.

Enabling Explicit Hierarchies and
Collections
Use the following procedure to enable explicit
hierarchies and collections for an entity:

1. In Master Data Manager, click System
Administration.

2. On the Model View page, in the Manage menu, click Entities.

3. On the Entity Maintenance page, in the Model list, select the model that contains the entity for
which you want to create an explicit hierarchy.

4. Select the entity that you want to update, and then click Edit selected entity.

5. In the Enable explicit hierarchies and collections list, select Yes.

6. In the Explicit hierarchy name box, type a name for the explicit hierarchy you want to create. Try to
make the name meaningful, for example, Customers by Geographic Location.

7. Optionally, clear the Mandatory hierarchy check box to create the hierarchy as non-mandatory.

8. Click Save entity.

Editing Entities
After you have enabled explicit hierarchies and collections, and created an explicit hierarchy, you can start
defining consolidated members. However, by default, consolidated members only have Code and Name
attributes, so you may want to edit the entity to add consolidated member attributes. Additionally, if you
need to add another explicit hierarchy to the entity, you can edit it and click Add explicit hierarchy.

Defining Hierarchies
After you have created an explicit hierarchy, you must define the consolidated members that form the
hierarchy levels and assign leaf members to them. Use the following procedure to define an explicit
hierarchy:

1. On the Master Data Manager home page, in the Model list, select the model that contains the entity
with the explicit hierarchy you want to edit.

2. In the Version list, select the version you want to work with.

3. Click Explorer.

4. In the Hierarchies menu, click the name of the hierarchy you want to define.

5. Above the grid, select either Consolidated members or All consolidated members in hierarchy.

6. Click Add.

7. In the Details pane, enter values for the consolidated member attributes. Optionally, in the
Annotations box, type a comment to document the creation of the consolidated member.

8. Click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-18 Master Data Services

9. After creating the consolidated members that define the hierarchy levels, you can move members to
create the hierarchy structure. To place members under a consolidated member:

a. In the hierarchy tree view, select the check box for each leaf or consolidated member you
want to move.

b. Click Cut.

c. Select the consolidated member to which you want to assign the selected members.

d. Click Paste.

Creating Collections

To create a collection, you must enable explicit
hierarchies and collections for the entity as
described in the previous topic. You can then use
the following procedure to create a collection:

1. On the Master Data Manager home page, in
the Model list, select the model that contains
the entity for which you want to create a
collection.

2. In the Version list, select the version you want
to work with.

3. Click Explorer.

4. In the Collections area, click the entity for which you want to create a collection.

5. Click Add collection.

6. On the Details tab, in the Name box, type a name for the collection.

7. In the Code box, type a unique code for the collection.

8. Optionally, in the Description box, type a description for the collection.

9. Click OK.

10. On the Collection Members tab, click Edit Members.

11. To filter the list of available members, select from the list on the left.

12. Click each member you want to add and click Add.

13. Optionally, rearrange collection members by clicking Up or Down.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-19

Finding Duplicate Members

When you create a model, the entities may have
some initial members to help you structure the
hierarchies and collections the model must
support. However, as the model moves into
production, you will start to load large volumes of
member data, and it is important that data
stewards can easily manage the integrity of this
data.

One common problem is the creation of duplicate
members for the same business entity. To help
avoid this problem, the Master Data Services Add-
in for Excel includes a data matching feature that
uses Data Quality Services matching policies to identify possible duplicate members.

To use the Master Data Services add-in for Excel to find duplicate members:

1. Create a Data Quality Services knowledge base that includes domains for the attributes on which you
want to compare members.

2. Create a Data Quality Services matching policy that identifies potential duplicates based on domain
value matches.

3. Open the entity in the Master Data Services Add-in for Excel, and click Match Data. Then specify the
Data Quality Services server and knowledge base, and map the knowledge base domains to entity
attributes.

Validating Members with Business Rules

You can use business rules to ensure that the
members you add to your models are accurate
and meet the criteria that you define. Business
rules help to improve data quality, which increases
the accuracy and reliability of the reports and data
analyses that information workers produce. A
business rule is an IF/THEN statement you create
by using the Business Rule Maintenance page in
the Master Data Manager Web application. To
define the terms of a business rule, you use a
drag-and-drop interface on the Edit Business
Rule page.

 Note: You must be a model administrator to create and publish business rules.

When you create a rule, you define a condition that gives a true or false result. For example, you can
create conditions such as ‘If a customer's credit limit is greater than 1,000.’ You can use a range of value
comparison operators to build conditions, including ‘is equal to’, ‘starts with’, ‘is between’, and ‘contains’.
When you validate data, Master Data Services compares the data values against these conditions. Any that
match a condition are tested against the actions you define. For example, for the condition ‘If a
customer's credit limit is greater than 1,000’, the action could be ‘The account type must be Premier’.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-20 Master Data Services

After creating a business rule, you must publish it to make it active. You can then use the rule to validate
new members when they are added to Master Data Services. Business rules do not prevent users who
have update permission from making changes that violate the rules. Instead, the validation process reveals
any data values that violate business rules, so that a data steward can identify problematic data and make
the required changes. When validating data against business rules, you can choose to validate the whole
version or just a subset of the data in a version, such as a single entity.

 Note: You can use the AND operator and the OR operator to create rules with multiple
conditions.

Business Rule Priority
You can set a value for each business rule that defines its priority. This enables you to control the order in
which Master Data Services applies business rules. Rules with a low priority value run before rules that
have higher priority values. For example, if a rule that checks the credit limit for customers has a priority
of 10, it will run before rules with a priority greater than 10. By default, when you create a new rule, its
priority value is higher than the previous rule by a value of 10, so the new rule has a lower priority than
the previous rule and runs after it.

Priority is important when business rules depend on the outcome of other business rules. For example,
suppose you create a rule that updates the value of the CreditLimit attribute of a Customer entity
member. When you import a new customer, the rule sets the value to -1. A second rule checks the
CreditLimit attribute for the value -1, changes the status of the member to ‘is not valid,’ and notifies the
data steward that there is a new customer for which they need to specify a credit limit. By setting the
priority of the second rule to a higher value than the first, you ensure that the rules run in a coordinated
and logical order and the data steward can update credit limits for new customers sooner.

Demonstration: Creating and Applying Business Rules

In this demonstration, you will see how to create and apply business rules.

Demonstration Steps
Create Business Rules

1. Ensure you have completed the previous demonstrations in this module.

2. Start Internet Explorer and browse to http://localhost:81/mds.

3. On the Master Data Services home page, click System Administration, and then on the Manage
menu, click Business Rules.

4. On the Business Rule Maintenance page, in the Model list, ensure that Customers is selected, in
the Entity list, ensure that Customer is selected. In the Member Type list, select Leaf, and then in
the Attribute list, ensure that All is selected.

5. Click Add business rule to create a new business rule.

6. Double-click in the Name column for the new rule, and then type Check Credit and press Enter.

7. Double-click in the Description column, type Check that credit limit is valid, and then press Enter.
You will use this rule to ensure that all customer credit limits are greater than or equal to zero.

8. Click Edit selected business rule, and then in the Version list, ensure that VERSION_1 is selected.

9. Under Components, expand Actions, and then in the Validation list, drag must be greater than or
equal to onto the Actions node in the THEN section of the expression editor.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-21

10. In the Attributes list, drag CreditLimit onto Select attribute directly under Edit Action.

11. In the Attribute value box, ensure 0 is displayed, and then click the Save item button. Note that the
text under Actions in the THEN section of the expression editor changes to read ‘CreditLimit must be
greater than or equal to 0.00’.

12. Click the green Back arrow button, and note that the rule’s Status is listed as Activation pending.

13. Click Add business rule, double-click in the Name column, type Check Premier Status and then
press Enter.

14. Double-click in the Description column, type Check account type for high credit limits and then
press Enter. You will use this rule to check that customers with a credit limit value greater than 1,000
have a premier account type.

15. Click Edit selected business rule, and then in the Version list, ensure that VERSION_1 is selected.

16. Under Components, expand Conditions, and then drag is greater than onto the Conditions node
in the IF section of the expression editor.

17. In the Attributes list, drag CreditLimit onto Select attribute directly under Edit Action, and then, in
the Attribute value box, type 1000. Then click the Save item button. Note that the text under
Conditions in the IF section of the expression editor changes to read “CreditLimit is greater than
1000.00”.

18. Under Components, expand Actions, and then in the Validation list, drag must be equal to onto
the Actions node in the THEN section of the expression editor.

19. In the Attributes list, drag AccountType onto Select attribute directly under Edit Action, and then,
in the Attribute value drop-down list, select 2. Then click the Save item button. Note that the text
under Actions in the THEN section of the expression editor changes to read “AccountType must be
equal to 2”.

20. Click the green Back arrow button, and note that the Status for both rules is listed as Activation
pending.

Publish Business Rules

1. On the Business Rule Maintenance page, click Publish business rules, and then in the Message
from webpage dialog box, click OK.

2. In the Status column, check that the value displayed for both rules is Active.

3. On the Business Rule Maintenance page, click the Microsoft SQL Server 2014 logo to return to
the home page.

Apply Business Rules in Explorer

1. On the Master Data Services home page, click Explorer.

2. In the Entities menu, click Customer. If the Entities menu does not appear, click any other menu and
then click the Entities menu again.

3. Click Apply Rules, and note that a green tick is displayed next to all valid records.

4. Click the row for the Andrew Sinclair member, and then in the Details tab, change the CreditLimit
value to -200 and click OK. Note that a validation error message is displayed and that the green tick
for this member record changes to a red exclamation mark.

5. Change the CreditLimit value for Andrew Sinclair back to 500, noting that the validation message
disappears and the red exclamation mark changes back to a green tick.

6. Close Internet Explorer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-22 Master Data Services

Apply Business Rules in Excel

1. Start Microsoft® Excel® and create a new blank workbook.

2. On the Master Data tab of the ribbon, in the Connect and Load section, click the drop-down arrow
under Connect and click Demo MDS Server.

3. In the Master Data Explorer pane, in the Model list, select Customers.

4. In the Master Data Explorer pane, click the Customer entity. Then on the ribbon, in the Connect
and Load section, click Refresh. The Customer entity members are downloaded into a new
worksheet.

5. In the ribbon, in the Publish and Validate section, click Show Status. This reveals columns that show
the validation and input status for all records.

6. In the ribbon, in the Publish and Validate section, click Apply Rules. This refreshes the validation
status for all rows. Currently validation is successful for all records.

7. In cell H3, change the CreditLimit value for Ben Smith to 1200. Note that the AccountType value
for this record is currently 1 {Standard}.

8. In the ribbon, in the Publish and Validate section, click Publish. Then in the Publish and Annotate
dialog box, enter the annotation Increased credit limit, and click Publish.

9. Note that the validation status in cell B3 is Validation failed, and that the cell is highlighted in red.
Hold the mouse pointer over cell B3 and note that a comment is displayed showing the validation
error message.

10. Click cell I3, and then in the drop-down list, select 2 {Premier} to change the AccountType value for
Ben Smith.

11. In the ribbon, in the Publish and Validate section, click Publish. Then in the Publish and Annotate
dialog box, enter the annotation Upgraded account type, and click Publish.

12. Note that validation has now succeeded for the Ben Smith member. Then close Excel without saving
the workbook.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-23

Lesson 4
Creating a Master Data Hub

Master data management provides a way to ensure data consistency for key business entities across the
enterprise. In many cases, a master data hub is created in which data stewards can centrally manage data
definitions for business entities used by multiple applications. This lesson describes the key features of a
master data hub and teaches you how to create a solution in which data can flow into and out of a master
data hub implemented in Master Data Services.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe master data hub architecture.

 Describe the structure of Master Data Services staging tables.

 Import data into Master Data Services.

 Create subscription views so that applications can consume master data.

Master Data Hub Architecture

In some scenarios, data stewards can use Master
Data Services as the sole data entry point for
records that represent key data entities. This
approach ensures that a single, consistent
definition of the business entities exists and is used
across the organization. However, in many
organizations, data relating to the same business
entity is entered and updated in multiple
applications, and a solution that consolidates and
harmonizes this data must be developed. In cases
like this, you can use a master data hub as a
central point where new and updated records
from multiple applications are imported, managed, and then flow back out to the applications that use
them.

For example, an organization might use the following applications to manage customer data:

 A CRM system.

 An order processing system.

 A marketing system.

As customer records are entered or updated in each of these systems, an SSIS-based solution takes the
modified records and imports them into the master data hub, where a data steward can validate and
consolidate the data relating to customer entities. An SSIS-based solution can then extract the
consolidated customer data from the master data hub and replicate it back to the source systems,
ensuring that all systems have consistent definitions for customers. Each SSIS data flow may only transfer
the attributes that are required by the individual application being synchronized. The complete set of
customer attributes is managed centrally in the master data hub.

Additionally, other applications that require accurate customer data but do not need to modify it, can
consume the data directly from the master data hub. For example, an ETL process for a data warehouse

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-24 Master Data Services

might take customer data from the master data hub to ensure that the data warehouse is populated with
consistent, accurate records for customers.

Master Data Services Staging Tables

To facilitate the import of new and updated data
from business applications, Master Data Services
generates staging tables for each entity defined in
a model. You can load data into these staging
tables by using an SSIS data flow, the Import and
Export Data Wizard, Transact-SQL statements, the
bulk copy program, or any other technique that
can be used to insert data into an SQL Server
database table.

Staging Tables for Leaf Members
Master Data Services creates a leaf member
staging table for each entity you create. The table
is created in the stg schema and by default is named in the format EntityName_Leaf. For example, a
staging table for leaf members in a Customer entity would be named stg.Customer_Leaf. You can
override the name of the staging table when you create an entity.

A leaf member staging table contains the following columns:

 ID. An automatically assigned identifier.

 ImportType. A numeric code that determines what to do when imported data matches an existing
member in the model. For example, a value of 1 creates new members, but does not update existing
members, and a value of 2 replaces existing members with matching staged members.

 ImportStatus_ID. The status of the import process. You initially set this to 0 to indicate that the data
is staged and ready for import. During the import process, the value is automatically updated to 1 if
the import succeeds or 2 if it fails.

 Batch_ID. A unique identifier for a batch of imported records. This value is automatically set when
importing data through the Master Data Services Web service. Otherwise it is not required.

 BatchTag. A unique name that identifies a batch of imported records. This is used to group staged
records instead of the Batch_ID column when not using the Master Data Services Web service.

 ErrorCode. Set by the import process if the import fails.

 Code. The unique code attribute for the member.

 Name. The name attribute for the member.

 NewCode. Used to change the Code attribute of a member.

 <AttributeName>. A column is created for each leaf attribute defined in the entity.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-25

Staging Tables for Consolidated Members
Staging tables for consolidated members by default take the name format
stg.EntityName_Consolidated (for example stg.Customer_Consolidated). Consolidated member
staging tables contain the same columns as leaf member staging tables with an additional
HierarchyName column you can use to indicate the explicit hierarchy to which the consolidated member
should be imported. Additionally, the <AttributeName> columns are created to reflect the consolidated
attributes defined in the entity instead of the leaf attributes.

Staging Tables for Relationships
Relationship staging tables are used to change the location of members in an explicit hierarchy. By
default, they take the name format stg.EntityName_Relationship, and they contain the following
columns:

 ID. An automatically assigned identifier.

 RelationshipType. A numeric code that indicates the kind of relationship. Valid values for this
column are 1 (parent) and 2 (sibling).

 ImportStatus_ID. The status of the import process. You initially set this to 0 to indicate that the data
is staged and ready for import. During the import process, the value is automatically updated to 1 if
the import succeeds or 2 if it fails.

 Batch_ID. A unique identifier for a batch of imported records. This value is automatically set when
importing data through the Master Data Services Web service. Otherwise it is not required.

 BatchTag. A unique name that identifies a batch of imported records. This is used to group staged
records instead of the Batch_ID column when not using the Master Data Services Web service.

 HierarchyName. The explicit hierarchy in which the relationship should be defined.

 ParentCode. The Code attribute of the member that will be the parent (for RelationshipType 1
imports) or sibling (for RelationshipType 2 imports) in the relationship.

 ChildCode. The Code attribute of the member that will be the child (for RelationshipType 1 imports)
or sibling (for RelationshipType 2 imports) in the relationship.

 SortOrder. An optional integer that determines the sort order for sibling members under a parent.

 ErrorCode. Set by the import process if the import fails.

Staging and Importing Data

The process for importing data into Master Data
Services consists of the following steps:

1. Load new or updated member records into
staging tables. You can use any technique that
inserts data into a table in a SQL Server
database.

2. Run the appropriate staging stored
procedures to process the staged records.
Master Data Services generates a stored
procedure for each staging table, with names
in the following formats:

o stg.udp.EntityName_Leaf

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-26 Master Data Services

o stg.udp.EntityName_Consolidated

o stg.udp.EntityName_Relationship

When you execute the stored procedures, you must specify values for the VersionName, LogFlag, and
BatchTag parameters to indicate the version of the model to be updated, whether or not to log
transactions (1) or not (0), and the unique batch tag that identifies the staged records to be processed.
Note that when called by the Master Data Services Web service, the Batch_ID parameter is used instead
of the BatchTag parameter.

3. View the import status in Master Data Manager. The import process is asynchronous, so you can use
the Integration Management area in Master Data Manager to view the start time, end time, and
results of each batch that has been processed.

4. To identify and consolidate any duplicate records, data stewards should use the Match Data
functionality in the Master Data Services Add-In for Excel after importing data.

5. Finally, a data steward should apply the business rules defined in the model for the imported
members, to ensure that they are valid, before making them available to applications.

Demonstration: Importing Master Data

In this demonstration, you will see how to import data into a master data model.

Demonstration Steps
Use an SSIS Package to Import Master Data

1. Ensure you have completed the previous demonstrations in this module.

2. Start Visual Studio and open the MDS Import.sln solution in the D:\Demofiles\Mod10 folder.

3. In Solution Explorer, in the SSIS Packages folder, double-click the Import Customers.dtsx SSIS
package to view its control flow.

4. On the control flow surface, double-click Load Staging Tables to view the data flow.

5. On the data flow surface, double-click Customers Source, and in the Flat File Source Editor dialog
box, on the Columns tab, note the columns that will be imported from the source system. Then click
Cancel.

6. On the data flow surface, double-click Add MDS Columns, and in the Derived Column
Transformation Editor dialog box, note that the transformation generates additional columns
named ImportType (with a value of 0), ImportStatus_ID (with a value of 0), and BatchTag (with a
unique string value derived from the ExecutionInstanceGUID system variable). Then click Cancel.

7. On the data flow surface, double-click Staging Table, and in the OLE DB Destination Editor dialog
box, on the Connection Manager tab, note that the data is loaded into the [stg].[Customer_Leaf]
table in the MDS database, and on the Mappings tab, note the column mappings. Then click Cancel.

8. Click the Control Flow tab and on the control flow surface, double-click Load Staged Members. On
the General tab, note that the SqlStatement property is set to execute the stg.udp_Customer_Leaf
stored procedure with the values ‘VERSION_1’, 0, and a parameter, and on the Parameter Mapping
tab, note that the ExecutionInstanceGUID system variable is mapped to the @BatchTag parameter.
Then click Cancel.

9. On the Debug menu, click Start Debugging. Then when execution is complete, on the Debug menu,
click Stop Debugging and close Visual Studio without saving any changes.

View Import Status

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-27

1. Start Internet Explorer and browse to http://localhost:81/mds.

2. On the Master Data Services home page, click Integration Management.

3. On the Import Data page, ensure that the Customers model is selected and note the batches listed.
There should be a single batch for the data import you performed in the previous exercise. Note the
Started, Completed, Records, Status and Errors values for this batch.

4. On the Import Data page, click the Microsoft SQL Server 2014 logo to return to the home page.

Validate Imported Data

1. On the Master Data Services home page, click Explorer.

2. In the Entities menu, click Customer. Note that nine new member records have been imported, and
that their validation status is indicated by a yellow question mark.

3. Click Apply Rules, note that the business rules in the model are applied to all records, and that the
validation status for the new records changes to a green tick for records that have passed validation
and an exclamation mark for records that have failed validation.

4. Close Internet Explorer.

Consuming Master Data with Subscription Views

A subscription view is a standard SQL Server view
that enables applications to consume master data.
Subscribing applications can use Transact-SQL
SELECT statements to access data by using a view,
just as they can for tables and views in a typical
SQL Server database.

You can create views by using the Export page in
the Master Data Manager Web application. You
can use the standard Master Data Services view
formats to create views displaying different types
of data, including:

 Leaf attributes.

 Consolidated attributes.

 Collection attributes.

 Collections.

 Parent-Child members in an explicit hierarchy.

 Levels in an explicit hierarchy

 Parent-Child members in a derived hierarchy.

 Levels in a derived hierarchy.

If you modify a data model after creating views that are based on it, you must regenerate the view so that
it remains synchronized with the data. You can identify views to be updated by looking at the Changed
column for each one on the Subscription Views page in the Master Data Manager Web application. The
column shows a value of True for any views that are no longer synchronized with the associated model.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-28 Master Data Services

Demonstration: Using Subscription Views

In this demonstration, you will see how to use subscription views to consume master data.

Demonstration Steps
Create a Subscription View

1. Ensure you have completed the previous demonstrations in this module.

2. In Internet Explorer, browse to http://localhost:81/MDS. Then, on the Master Data Services home
page, click Integration Management.

3. Click Create Views, and on the Subscription Views page, click the Add subscription view button to
add a subscription view.

4. On the Subscription Views page, in the Create Subscription View section, in the Subscription
view name box, type MasterCustomers. In the Model list, select Customers, in the Version list,
select VERSION_1, in the Entity list, select Customer, in the Format list select Leaf members, and
then click Save.

5. Close Internet Explorer.

Query a Subscription View

1. Start SQL Server Management Studio. When prompted, connect to the MIA-SQL instance of SQL
Server by using Windows authentication.

2. Click New Query, and then in the query editor enter the following Transact-SQL:

USE MDS
GO
SELECT * FROM mdm.MasterCustomers

3. Click Execute to run the query, and review the results, and then close SQL Server Management Studio
without saving any items.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-29

Lab: Implementing Master Data Services
Scenario
The data warehousing solution you are building for Adventure Works Cycles includes product data from
various systems throughout the enterprise. You need to ensure that there is a single, consistent definition
for each product.

Objectives
After completing this lab, you will be able to:

 Create a master data model in Master Data Services.

 Use the Master Data Services Add-in for Excel.

 Create and enforce business rules.

 Load data into a master data model.

 Consume master data.

Estimated Time: 60 Minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Creating a Master Data Services Model

Scenario
The ETL solution you are building for Adventure Works Cycles consumes product data from an application
database. However, product data is created and updated in various systems throughout the enterprise,
and you need to ensure that there is a single, consistent definition for each product.

To accomplish this, you plan to create a master data hub that includes complete definitions for Product,
Product Subcategory, and Product Category entities.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Create a Model

3. Create Entities

4. Create Attributes

5. Add Members

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab10\Starter folder as Administrator.

 Task 2: Create a Model
1. In the Master Data Manager Web application at http://localhost:81/mds, in the System

Administration area, create a model named Product Catalog. Do not create an entity with the same
name.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-30 Master Data Services

 Task 3: Create Entities
1. In the Product Catalog model, create the following entities. Do not enable explicit hierarchies and

collections for these entities:

o Product

o Product Subcategory

 Task 4: Create Attributes
1. In the Product entity, create the following leaf attributes:

o A domain-based attribute named ProductSubcategoryKey that references the Product
Subcategory entity.

o A free-form attribute named Description that can store a text value with a maximum length of
400.

o A free-form attribute named ListPrice that can store a number with four decimal places and has
the input mask (####).

 Task 5: Add Members
1. In the Explorer area of Master Data Manager, view the Product Subcategory entity and add the

following members:

Name Code

Mountain Bikes 1

Chains 7

Gloves 20

Helmets 31

2. View the Product entity and add the following members:

Name Code ProductSubcategoryKey Description ListPrice

Mountain-100
Silver, 42

345 1 Top of the line
competition
mountain bike.

3399.99

Chain 559 7 Superior chain 20.24

Full-Finger
Gloves, S

468 20 Synthetic gloves 37.99

Sport-100
Helmet, Red

214 31 Universal fit
helmet

34.99

Results: After this exercise, you should have a Master Data Services model named Product Catalog that
contains Product and ProductSubcategory entities. Each of these entities should contain four members.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-31

Exercise 2: Using the Master Data Services Add-in for Excel

Scenario
To make it easier for data stewards to continue developing the master data model, you plan to use the
Master Data Services Add-in for Excel.

The main tasks for this exercise are as follows:

1. Add Free-Form Attributes to an Entity

2. Create an Entity for a Domain-Based Attribute

 Task 1: Add Free-Form Attributes to an Entity
1. Start Microsoft® Excel®, create a new blank workbook, and enable the Master Data Services add-in.

2. Create a Master Data Services connection named Local MDS Server for the MDS server at
http://localhost:81/mds.

3. Connect to the existing Local MDS Server and load the Product entity from the Product Catalog
model.

4. Add the following attributes to the Product entity by entering the attribute name in the column
heading cell (starting with the cell to the right of the existing ListPrice attribute heading), and then
selecting the new heading cell, clicking Attribute Properties in the ribbon, and editing the
properties of the attribute:

Attribute Name Attribute Properties

StandardCost Number (4 decimal places)

Color Text (maximum length: 15)

SafetyStockLevel Number (0 decimal places)

ReorderPoint Number (0 decimal places)

Size Text (maximum length: 50)

Weight Number (4 decimal places)

DaysToManufacture Number (0 decimal places)

ModelName Text (maximum length: 500)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-32 Master Data Services

5. After you have added and configured the attribute headings, enter the following attribute values:

 Sport-100 Helmet, Red

o StandardCost: 13.0863

o Color: Red

o SafetyStockLevel: 3

o ReorderPoint: 4

o Size: U

o Weight: 0.2000

o DaysToManufacture: 5

o ModelName: Sport-100

 Mountain-100 Silver, 42

o StandardCost: 1912.1544

o Color: Silver

o SafetyStockLevel: 100

o ReorderPoint: 75

o Size: L

o Weight: 20.77

o DaysToManufacture: 4

o ModelName: Mountain-100

 Full-Finger Gloves, S

o StandardCost: 15.6709

o Color: Black

o SafetyStockLevel: 4

o ReorderPoint: 3

o Size: S

o Weight: 0.2000

o DaysToManufacture: 0

o ModelName: Full-Finger Gloves

 Chain

o StandardCost: 8.9866

o Color: Silver

o SafetyStockLevel: 500

o ReorderPoint: 375

o Size: (leave blank)

o Weight: (leave blank)

o DaysToManufacture: 1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-33

o ModelName: Chain

6. Publish the changes you have made to Master Data Services, entering an appropriate annotation
when prompted.

 Task 2: Create an Entity for a Domain-Based Attribute
1. Connect to the Local MDS Server and load data from the Product Subcategory entity in the

Product Catalog model.

2. Add a new attribute named ProductCategoryKey to the right of the attribute heading for the Code
attribute. Do not configure the attribute properties yet.

3. Enter the following ProductCategoryKey values for the Product Subcategory members:

o Mountain Bikes: 1

o Gloves: 3

o Helmets: 4

o Chains: 2

4. Edit the attribute properties for the ProductCategoryKey attribute, and configure it as follows:

o Attribute type: Constrained list (Domain-based).

o Populate the attribute with values from the selected column.

o Create a new entity named Product Category.

5. Connect to the Local MDS Server connection and load data from the newly-created Product
Category entity in the Product Catalog model. The Name and Code values for the entities in this
entity have been copied from the distinct ProductCategoryKey attribute values in the Product
Subcategory entity.

6. Change the Name value for the Product Category members as follows, and publish the changes:

Name Code

Bikes 1

Components 2

Clothing 3

Accessories 4

7. On the Product Subcategory worksheet tab, refresh the entity data and verify that the product
category names are now listed in the ProductCategoryKey attribute column.

Results: After this exercise, you should have a master data model that contains Product,
ProductSubcategory, and ProductCategory entities that contain data entered in Excel.

Exercise 3: Enforcing Business Rules

Scenario
Users noticed inconsistencies in the product data, including missing list prices and invalid safety stock
levels. You intend to create business rules that enable data stewards to identify inconsistent data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-34 Master Data Services

The main tasks for this exercise are as follows:

1. Create a Rule for the ListPrice Attribute

2. Create a Rule for the SafetyStockLevel Attribute

3. Publish Business Rules and Validate Data

 Task 1: Create a Rule for the ListPrice Attribute
1. In the Master Data Manager Web application at http://localhost:81/mds, in the System

Administration area, manage business rules and create a rule called Validate Price for the Product
entity that checks values in the ListPrice column are greater than 0.

o The business rule does not require an IF clause, only a THEN clause.

o Use a must be greater than validation action that compares the ListPrice attribute to the
value 0.

 Task 2: Create a Rule for the SafetyStockLevel Attribute
1. Create a rule called Validate SafetyStockLevel for the Product entity that checks the safety stock

level is greater than reorder point for products taking a day or more to manufacture.

o Create an IF condition with an is greater than value comparison that checks that the
DaysToManufacture attribute is greater than 0.

o After creating the IF condition, save the item and add a THEN clause with a must be greater
than validation action that checks that the SafetyStockLevel attribute is greater than the
ReorderPoint attribute.

o The completed rule should be based on the following expression:

IF DaysToManufacture is greater than 0
THEN SafetyStockLevel must be greater than ReorderPoint

 Task 3: Publish Business Rules and Validate Data
1. Publish the business rules.

2. In Master Data Manager, in the Explorer area, view the Product entity members and click Apply
Rules to validate the members.

o Note that the Sport-100 Helmet, Red member is invalid.

o Fix the invalid product member by changing the SafetyStockLevel attribute value to 5.

3. In Excel, connect to the Local MDS Server connection and load the Product entity from the Product
Catalog model.

4. Display the $ValidationStatus$ and $InputStatus$ columns by clicking Show Status on the Master
Data tab of the ribbon, and then click Apply Rules to verify that all members are valid.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-35

5. Change the value in the ListPrice column for the Chain product to 0.00, and then publish the
changes.

o Note that Excel highlights the invalid member.

o Fix the member by changing the price back to 20.24 and publishing the changes.

Results: After this exercise, you should have a master data model that includes business rules to validate
product data.

Exercise 4: Loading Data into a Model

Scenario
Now that the model is complete, you will populate it by using Transact-SQL scripts.

The main tasks for this exercise are as follows:

1. Load Data into the Model

2. Check the Status of the Data Load

3. Validate Imported Members

 Task 1: Load Data into the Model
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. Open the Import Products into MDS.sql file in D:\Labfiles\Lab10\Starter and examine the Transact-
SQL code it contains. The code performs the following tasks:

o Generates a unique batch ID.

o Inserts data into the stg.Product_Category_Leaf staging table from the ProductCategory table
in the Products database, specifying an ImportType value of 2, an ImportStatus_ID value of 0,
and a BatchTag value that is based on the batch ID generated previously.

o Inserts data into the stg.Product_Subcategory_Leaf staging table from the
ProductSubcategory table in the Products database, specifying an ImportType value of 2, an
ImportStatus_ID value of 0, and a BatchTag value based on the batch ID generated previously.

o Inserts data into the stg.Product_Leaf staging table from the Product table in the Products
database, specifying an ImportType value of 2, an ImportStatus_ID value of 0, and a BatchTag
value based on the batch ID generated previously.

o Executes the stg.udp_Product_Category_Leaf stored procedure to start processing the staged
Product Category members with the batch tag specified previously.

o Executes the stg.udp_Product_Subcategory_Leaf stored procedure to start processing the
staged Product Subcategory members with the batch tag specified previously.

o Executes the stg.udp_Product_Leaf stored procedure to start processing the staged Product
members with the batch tag specified previously.

3. Execute the script to stage the data and start the import process.

 Task 2: Check the Status of the Data Load
1. In the Master Data Manager Web application, in the Integration Management area, verify that the

data load process is complete for all entities with no errors.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-36 Master Data Services

 Task 3: Validate Imported Members
1. In the Master Data Manager Web application, in the Explorer area, view the Product entity members

and apply rules to validate the data.

2. After you have applied the business rules, filter the list of members on the following criteria so that
only invalid records are shown:

Attribute Operator Criteria

[Validation Status] Is equal to Validation Failed

3. Review the invalid records (which have an invalid ListPrice attribute), and resolve them by changing
the ListPrice attribute value to 1431.50.

4. When you have resolved all the invalid members, clear the filter.

Results: After this exercise, you should have loaded members into the Master Data Services model.

Exercise 5: Consuming Master Data Services Data

Scenario
You need to make Master Data Services available to other applications. You will create subscription views
and then modify an Integration Services package to use Master Data Services data.

The main tasks for this exercise are as follows:

1. Create Subscription Views

2. Query a Subscription View by Using Transact-SQL

 Task 1: Create Subscription Views
1. In the Master Data Manager Web application at http://localhost:81/mds, view the Integration

Management area.

2. Use the values in the following table to create views:

Subscription View Name Model Version Entity Format

Products Product
Catalog

VERSION_1 Product Leaf members

ProductCategories Product
Catalog

VERSION_1 Product
Category

Leaf members

ProductSubcategories Product
Catalog

VERSION_1 Product
Subcategory

Leaf members

 Task 2: Query a Subscription View by Using Transact-SQL
1. Use the Transact-SQL script in the Query Subscription Views.sql file in the D:\Labfiles\Lab10\Starter

folder to query the subscription views, and verify that they return product data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 10-37

Results: After this exercise, you should have three subscription views that you can use to query product
data from Master Data Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-38 Master Data Services

Module Review and Takeaways
In this module, you have learned how to use Master Data Services to create and manage a master data
model for business entity definitions.

Review Question(s)
Question: In your experience, do you think that business users in a data steward capacity will
be mostly comfortable using the web-based interface, the Excel add-in, or a combination of
both tools to manage master data?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-1

Module 11
Extending SQL Server Integration Services

Contents:
Module Overview 11-1

Lesson 1: Using Scripts in SSIS 11-2

Lesson 2: Using Custom Components in SSIS 11-9

Lab: Using Custom Scripts 11-13

Module Review and Takeaways 11-15

Module Overview
Microsoft® SQL Server® Integration Services (SSIS) provides a comprehensive collection of tasks,
connection managers, data flow components, and other items you can use to build an extract, transform,
and load (ETL) process for a data warehousing solution. However, there may be some cases where the
specific requirements of your organization mean that you must extend SSIS to include some custom
functionality.

This module describes the techniques you can use to extend SSIS. The module is not designed to be a
comprehensive guide to developing custom SSIS solutions, but to provide an awareness of the
fundamental steps required to use custom components and scripts in an ETL process, based on SSIS.

Objectives
After completing this module, you will be able to:

 Include custom scripts in an SSIS package.

 Describe how custom components can be used to extend SSIS.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-2 Extending SQL Server Integration Services

Lesson 1
Using Scripts in SSIS

If the built-in SSIS components do not meet your requirements, you might be able to implement the
functionality you need using a script.

This lesson describes the kinds of functionality you can implement with a script, and how you can use the
control flow script task and data flow script component in a package.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the kinds of functionality you can implement with a script.

 Implement a script task in a package control flow.

 Implement a script component in a data flow.

Introduction to Scripting in SSIS

SSIS includes support for adding custom
functionality to a package by creating scripts in
Microsoft Visual Basic® or Microsoft Visual C#®
code. You can add a script to a package and then
configure its properties in the SSIS Designer before
opening it in the Microsoft Visual Studio Tools for
Applications (VSTA) development environment to
edit it. When you include a script in a package, it is
precompiled to optimize execution performance.

SSIS supports the following two scripting scenarios
in a package:

 Use the Script Task to implement a custom
control flow task.

 Use the Script Component to implement a custom data flow source, transformation, or destination.

Using the Control Flow Script Task

The script task provides a scriptable wrapper for
the Microsoft.SqlServer.Dts.Runtime.Task base
class, and enables you to create a custom control
flow task without having to create a custom
assembly. To use the script task, you must perform
the following steps:

1. Add the script task to the control flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-3

To create a scripted custom control flow task, add the script task to a control flow and configure its
standard properties, such as Name, in the Properties pane. If you want to use the script task to write
information to a log file, you must also enable logging for the task and specify the events to be
logged. The script task supports the same events as other control flow tasks as well as a
ScriptTaskLogEntry event, which must be enabled if you want to use the script to write log entries
programmatically.

2. Configure the task.

Use the Script Task Editor dialog box to configure the following settings for the task:

o ScriptLanguage – the programming language in which you want to write the script. This can be
Microsoft Visual Basic® 2010 or Microsoft Visual C#® 2010.

o EntryPoint – the method in the script that should be called when the script is executed. By
default, this is a method named Main.

o ReadOnlyVariables and ReadWriteVariables – the package variables and parameters that you
want to make accessible to the script. By default, the script task cannot access any package
variables, so you must explicitly grant access to any variables you want to use in the script.

3. Implement the code.

After you have configured the script task, you can click Edit Script to open the VSTA environment
and implement the code for your script. You can use standard .NET programming structures and
syntax in your code, adding references to additional assemblies if required. You can also make use of
the Dts object, which provides a number of static properties and methods to help you access package
and SSIS runtime functionality. For example, the following code uses the Dts.Variables property to
access package variables, the Dts.Log method to write a custom log entry, and the Dts.TaskResult
property to specify the control flow result for the script task:

Public void Main()
{
 Dts.Variables["User::MyVar"].Value = Dts.Variables["System::StartTime"].Value.ToString();
 Dts.Log("Package started:" + (string)Dts.Variables["User::MyVar"].Value, 999, null);
 Dts.TaskResult = (int)ScriptResults.Success;
}

 Additional Reading: For more information about Using the Script Task to Extend a
Package, go to http://go.microsoft.com/fwlink/?LinkID=246743.

Demonstration: Implementing a Script Task

In this demonstration, you will see how to:

 Configure a Script Task.

 Implement a Script Task.

Demonstration Steps
Configure a Script Task

1. Ensure 20463C-MIA-DC and 20463C-MIA-SQL are started, and log onto 20463C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Start Visual Studio and open the ScriptDemo.sln solution in the D:\Demofiles\Mod11 folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-4 Extending SQL Server Integration Services

3. In Solution Explorer, double-click the Package.dtsx SSIS package to open it in the SSIS designer.
Then view the control flow, and notice that it includes a script task.

4. On the SSIS menu, click Logging, then on the Providers and Logs tab, in the Provider type list,
select SSIS log provider for Windows Event Log and click Add.

5. In the Containers tree, select the Script Task checkbox, and in the Providers and Logs tab select
the SSIS log provider for Windows Event Log checkbox. Then on the Details tab, select the
ScriptTaskLogEntry checkbox, and click OK.

6. On the control flow surface, double-click Script Task. Then, in the Script Task Editor dialog box,
verify that the following settings are selected:

o ScriptLanguage: Microsoft Visual C# 2012

o EntryPoint: Main

o ReadOnlyVariables: User::Results and System::StartTime

o ReadWriteVariables: User::MyVar

Implement a Script Task

1. In the Script Task Editor dialog box, click Edit Script, and wait for the Visual Studio VstaProjects
editor to open. If a message that the Visual C++ Language Manager Package did not load correctly is
displayed, prompting you to continue to show this error, click No.

2. In the VstaProjects – Microsoft Visual Studio window, scroll through the ScriptMain.cs code until
you can see the whole of the public void Main() method. Note that the code performs the following
tasks:

o Assigns the value of the System::StartTime variable to the User::MyVar variable.

o Writes the value of the User::MyVar variable to the log.

o Creates a string that contains the values in the User::Results variable (which is an array of
strings), and displays it in a message box.

3. Close the VstaProjects – Microsoft Visual Studio window. Then in the Script Task Editor dialog
box, click Cancel.

4. On the Debug menu, click Start Debugging, and observe the package as it executes. When the
Results message box is displayed, click OK.

5. When package execution has completed, on the Debug menu, click Stop Debugging. Then minimize
Visual Studio.

6. Right-click the Start button and click Event Viewer. Then in Event Viewer, expand the Windows
Logs folder, click Application, select the first Information event with the source SQLISPackage120,
and in the General tab, note that it contains the start time of the package, which was written by the
script component.

7. Close Event Viewer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-5

Using the Data Flow Script Component

The script component uses classes in the
Microsoft.SqlServer.Dts.Pipeline,
Microsoft.SqlServer.Dts.Pipeline.Wrapper, and
Microsoft.SqlServer.Dts.Runtime.Wrapper
namespaces to enable you to implement a data
flow component without the need to create a
custom assembly.

Using the Script Component to Create a
Source
To create a custom source, add the script
component to a data flow and when prompted,
select Source. Then, as a minimum, you must
perform the following actions:

 Configure the output columns – a source must provide at least one output, and each output must
contain at least one column. You must specify the name and data type for each column that your
source will pass to the next component in the data flow.

 Implement the CreateNewOutputRows method – each output provides a buffer object that you can
use to generate a new row and assign column values.

Using the Script Component to Create a Transformation
To create a custom transformation, add the script component to a data flow, and when prompted, select
Transformation. Then, as a minimum, you must perform the following actions:

 Configure inputs and outputs – a transformation can have multiple inputs and outputs, and you must
define the columns for each one as required.

 Implement the ProcessInputRow method for each input – the script component generates a
ProcessInputRow method for each input you define. The name of the method is derived from the
input name. For example, an input named Input0 will result in a method named
Input0_ProcessInputRow. The method is called for each row in the input, and you must add code to
process the columns in the row. If your component has multiple outputs, direct them to the
appropriate output.

Using the Script Component to Create a Destination
To create a custom destination, add the script component to a data flow, and when prompted, select
Destination. Then, as a minimum, you must perform the following actions:

 Configure input columns – a destination must have at least one input, and each input must contain at
least one column. You must specify the name and data type for each column that your destination
will accept from the preceding component in the data flow.

 Implement the ProcessInputRow method for each input – just as for transformations, the script
component generates a ProcessInputRow method for each input you define in a destination. The
method is called for each row in the input, and you must add code to process a row, usually by
adding it to a data store.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-6 Extending SQL Server Integration Services

Additional Configuration Settings and Methods
In addition to the tasks described above, you can use the following configuration settings and methods to
enhance the functionality of your scripted data flow component:

 Add variables – you can enable access to variables in a script component by setting the
ReadOnlyVariables and ReadWriteVariables properties.

 Add a connection manager – you can add one or more connection managers to a script component,
and use the connection manager in your code to access a database or other data store. For example,
you could add a connection manager to a custom source, enabling you to retrieve the data for the
output from a database.

 Override the AcquireConnections method – this method enables you to open a connection from a
connection manager in preparation for execution.

 Override the PreExecute method – this method enables you to perform any preparation tasks for the
component. For example, you could use this method in a custom source to retrieve a SqlDataReader
object from a connection you opened in the AcquireConnections method.

 Override the PostExecute method – this method enables you to perform any clean-up tasks when
execution is complete. For example, you could use this method to dispose of a SqlDataReader object
you opened during the PreExecute method.

 Override the ReleaseConnections method – this method enables you to close any connections you
opened in the AcquireConnections method.

 Additional Reading: For more information about Extending the Data Flow with the Script
Component, go http://go.microsoft.com/fwlink/?LinkID=246744.

Demonstration: Using a Script Component in a Data Flow

In this demonstration, you will see how to:

 Implement a Source.

 Implement a Transformation.

 Implement a Destination.

Demonstration Steps
Implement a Source

1. Ensure you have completed the previous demonstration in this module.

2. Maximize Visual Studio, and view the control flow of the Package.dtsx SSIS package.

3. On the control flow surface, double-click Data Flow Task to view the data flow.

4. On the data flow surface, double-click Script Source.

5. In the Script Transformation Editor dialog box, on the Inputs and Outputs page, expand
MyOutput and the Output Columns folder. Then, select Column1 and Column2 in turn and note
the DataType property of each column.

6. In the Script Transformation Editor dialog box, on the Script page, click Edit Script, and wait for
the Visual Studio VstaProjects editor to open. If a message that the Visual C++ Language Manager
Package did not load correctly is displayed, prompting you to continue to show this error, click No.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-7

7. In the VstaProjects – Microsoft Visual Studio window, view the script. Note that the
CreateNewOutputRows method uses a loop to create six rows of data. Then close the VstaProjects
– Microsoft Visual Studio window, and in the Script Transformation Editor dialog box, click
Cancel.

Implement a Transformation

1. On the data flow surface, double-click Script Transformation.

2. In the Script Transformation Editor dialog box, on the Inputs and Outputs page, note that the
component has a single input named Input 0, which consists of two columns named Column1 and
Column2. There is no output defined for the component, which means that it will pass the columns in
the input buffer to the output buffer without adding any new columns.

3. In the Script Transformation Editor dialog box, on the Input Columns page, note that both
Column1 and Column2 are selected and that the Usage Type for Column1 is ReadOnly, while the
Usage Type for Column2 is ReadWrite. This configuration enables the script to make changes to
Column2 as it flows through the pipeline.

4. In the Script Transformation Editor dialog box, on the Script page, click Edit Script, and wait for
the Visual Studio VstaProjects editor to open. If a message that the Visual C++ Language Manager
Package did not load correctly is displayed, prompting you to continue to show this error, click No.

5. In the VstaProjects – Microsoft Visual Studio window, view the script. Note that the
Input0_ProcessInoutRow method modifies Column2 by making its value upper case. Then close the
VstaProjects – Microsoft Visual Studio window, and in the Script Transformation Editor dialog
box, click Cancel.

Implement a Destination

1. On the data flow surface, double-click Script Destination.

2. In the Script Transformation Editor dialog box, on the Inputs and Outputs page, note that the
component has a single input named Input 0, which consists of two columns named Column1 and
Column2.

3. In the Script Transformation Editor dialog box, on the Input Columns page, note that both
Column1 and Column2 are selected and that the Usage Type for both columns is ReadOnly. Since
the component represents a destination, there is no need to modify the rows in the buffers.

4. In the Script Transformation Editor dialog box, on the Script page, note that the
ReadWriteVariables property allows access to the User::Results variable, and then click Edit Script
and wait for the Visual Studio VstaProjects editor to open. If a message that the Visual C++ Language
Manager Package did not load correctly is displayed, prompting you to continue to show this error,
click No.

5. In the VstaProjects – Microsoft Visual Studio window, view the script, and note the following
details:

o The PreExecute method initializes an array variable for six string elements.

o The Input0_ProcessInputRow method adds the value of Column2 to the next available empty
element in the array.

o The PostExecute method assigns the array variable in the script to the User::Results package
variable.

6. Close the VstaProjects – Microsoft Visual Studio window, and in the Script Transformation Editor
dialog box, click Cancel.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-8 Extending SQL Server Integration Services

7. On the data flow surface, right-click the data flow path between Script Source and Script
Transformation, and click Enable Data Viewer. Then repeat this step for the data flow path
between Script Transformation and Script Destination.

8. On the Debug menu, click Start Debugging.

9. When the first data viewer window is displayed, view the rows in the pipeline and click the green
Continue button. These rows were generated by the Script Source component.

10. When the second data viewer window is displayed, view the rows in the pipeline and click the green
Continue button. Note that Column2 was formatted as upper case by the Script Transformation
component.

11. When the Results message box is displayed, note that it contains the Column2 values that were
passed to the Script Destination component. You may need to click the program icon on the task
bar to bring the message box to the front of the open windows.

12. When package execution has completed, on the Debug menu, click Stop Debugging. Then close
Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-9

Lesson 2
Using Custom Components in SSIS

When the built-in functionality in SSIS does not fully meet your requirements, and you cannot achieve
your goal by using a script component, you can obtain or create custom components, add them to the
SSIS package designer, and use them in your packages. This lesson describes the types of functionality
that you can implement with custom components, and how to create, install, and use them.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how custom components can be used to extend SSIS.

 Describe how to implement a custom component.

 Install and use a custom component.

Introduction to Custom Components

The control flow tasks, connection managers, data
flow transformations, and other items in an SSIS
package are all managed components. In other
words, each item you can use when creating an
SSIS package is implemented as a Microsoft .NET
assembly.

SSIS has been designed as an extensible platform,
enabling you to supplement the built-in
components with custom assemblies that perform
tasks that cannot otherwise be achieved. You can
extend SSIS with the following kinds of custom
components:

 Control flow tasks

 Connection managers

 Log providers

 Enumerators

 Data flow components, including sources, transformations, and destinations

You can develop your own custom SSIS components in a programming tool that targets the .NET
Framework, such as Microsoft Visual Studio®. Alternatively, you can commission a professional software
developer to create custom components for you, or obtain them from third-party vendors.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-10 Extending SQL Server Integration Services

Implementing a Custom Component

Software developers can use the following process
to implement a custom component for SSIS:

1. Create a class library project and add
references to the relevant SSIS assemblies.

The SSIS assemblies provide access to SSIS task
flow and pipeline runtime functionality, and are
provided with the SQL Server Client SDK. This
enables you to add a reference to them in your
custom component project. The specific
assemblies you need to reference depend on the
type of custom component you are implementing,
as described in the following list:

o Microsoft.SqlServer.ManagedDTS.dll – the managed runtime engine, used by managed
control flow tasks, enumerators, log providers, and connection managers.

o Microsoft.SqlServer.PipelineHost.dll – the managed data flow engine, used by managed data
flow sources, transformations, and destinations.

o Microsoft.SqlServer.RuntimeWrapper.dll – the primary interop assembly (PIA) for the native
SSIS runtime engine.

o Microsoft.SqlServer.PipelineWrapper.dll – the PIA for the native SSIS data flow engine.

The base class assemblies include namespaces that contain the base classes your custom components
must implement. For example, the Microsoft.SqlServer.ManagedDTS.dll includes the
Microsoft.SqlServer.Dts.Runtime namespace, which contains the Task base class for control flow tasks.

2. Create a class that inherits from the appropriate SSIS base class, as described in the following table:

Component Type Base Class

Task Microsoft.SqlServer.Dts.Runtime.Task

Connection manager Microsoft.SqlServer.Dts.Runtime.ConnectionManagerBase

Log provider Microsoft.SqlServer.Dts.Runtime.LogProviderBase

Enumerator Microsoft.SqlServer.Dts.Runtime.ForEachEnumerator

Data flow component Microsoft.SqlServer.Dts.Pipeline.PipelineComponent

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-11

3. Add attributes to the class declaration to provide design-time information about the component that
can be displayed in SQL Server Data Tools when using the component in an SSIS package.

The class-specific attributes are listed in the following table:

Base Class Attribute

Microsoft.SqlServer.Dts.Runtime.Task DtsTaskAttribute

Microsoft.SqlServer.Dts.Runtime.ConnectionManagerBase DtsConnectionAttribute

Microsoft.SqlServer.Dts.Runtime.LogProviderBase DtsLogProviderAttribute

Microsoft.SqlServer.Dts.Runtime.ForEachEnumerator DtsForEachEnumeratorAttribute

Microsoft.SqlServer.Dts.Pipeline.PipelineComponent DtsPipelineComponentAttribute

4. Override the base class methods to implement the required custom functionality.

Each base class includes methods that are called by the runtime engine when the component is used
in an SSIS package. Some of the most important methods for each base class are listed in the
following table:

Base Class Methods

Microsoft.SqlServer.Dts.Runtime.Task Validate, Execute

Microsoft.SqlServer.Dts.Runtime.ConnectionManagerBase AcquireConnection,
ReleaseConnection

Microsoft.SqlServer.Dts.Runtime.LogProviderBase OpenLog, Log, CloseLog

Microsoft.SqlServer.Dts.Runtime.ForEachEnumerator GetEnumerator

Microsoft.SqlServer.Dts.Pipeline.PipelineComponent PipeLineComponentProperties,
PrimeOutput, ProcessInput

5. Sign the assembly to generate a strong name.

Custom SSIS component assemblies are added to the global assembly cache (GAC), which requires
that each assembly has a strong name to uniquely identify it. A strong name for an assembly is
generated by signing the assembly with a cryptographic key when it is compiled.
You can easily generate a key and sign an assembly on the Signing tab of the Project Properties
dialog box in Visual Studio.

 Reference Links: For more information about Extending Packages with Custom Objects, go
to http://go.microsoft.com/fwlink/?LinkID=246742.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-12 Extending SQL Server Integration Services

Installing and Using a Custom Component

Most commercially-available custom SSIS
components provide a setup program that installs
the assemblies and enables you to use them in
SQL Server Data Tools. However, as a business
intelligence (BI) professional, you should be able
to perform the necessary manual steps to install a
custom component you have developed or had
created for you by a software developer.

You can use the following procedure to install and
use a custom SSIS component:

1. Copy the assembly file to the appropriate
Data Transformation Services (DTS) subfolder.

The SSIS Designer looks for components in a specific subfolder of the DTS folder for the SQL Server
installation. By default, the DTS folder is located in C:\Program Files\Microsoft SQL
Server\<version>\DTS. For 64-bit installations, this folder is used for 64-bit components, and 32-bit
components are stored in subfolders of C:\Program Files (x86)\Microsoft SQL Server\<version>\DTS.
The component type-specific subfolders are listed in the following table:

Component Type Folder

Task Tasks

Connection manager Connections

Log provider LogProviders

Enumerator ForEachEnumerators

Data flow component PipelineComponents

2. Install the assembly in the GAC.

You can do this by using the gacutil.exe command line tool. The gacutil.exe tool is provided with
Visual Studio and Windows® SDK. You can use the following syntax to install an assembly in the GAC:

gacutil /i assembly_name.dll

3. Use the custom component in an SSIS package.

After you have deployed a custom component to the correct folder and installed it in the GAC, it will
be available in SSIS Designer for use in a package. For example, if you have successfully deployed an
assembly for a custom control flow task component, the task will be listed in the SSIS Toolbox pane
and can be dragged to the control flow surface of a package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-13

Lab: Using Custom Scripts
Scenario
The senior database administrator has requested that the data warehouse ETL process logs the number of
rows extracted from the staging database and loaded into the data warehouse in the Windows event log.
You have decided to use a custom script to accomplish this.

Objectives
After completing this lab, you will be able to:

 Use a Script task.

Estimated Time: 30 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Using a Script Task

Scenario
You have created an SSIS package that loads data from the staging database into the data warehouse,
and writes the number of rows processed in each staging table to a package variable before truncating
the staging tables. You want to add a script task that writes the row count variables to the Windows event
log when the data warehouse load operation is complete.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Add a Script Task to a Control Flow

3. Enable Logging for the Script Task

4. Configure the Script Task

5. Test the Script

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab11\Starter folder as Administrator.

 Task 2: Add a Script Task to a Control Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab11\Starter

folder.

2. Open the Load DW.dtsx package and review the control flow.

3. View the variables defined in the package. These are used by the Get record counts and truncate
Staging tables SQL Command task to store the row counts for each staging table that was processed
during the data warehouse load operation.

4. Add a Script Task to the control flow and name it Log Rowcounts. Then connect the success
precedence arrow from the Get record counts and truncate Staging tables task to the Log
Rowcounts task.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-14 Extending SQL Server Integration Services

 Task 3: Enable Logging for the Script Task
1. Configure logging for the package as follows:

o Add the SSIS Log Provider for Windows Event Log provider.

o Enable logging for the Log Rowcounts script task and select the SSIS Log Provider for
Windows Event Log provider.

o Enable logging for the ScriptTaskLogEntry event of the Log Rowcounts task.

 Task 4: Configure the Script Task
1. Configure the Log Rowcounts script task with the following settings:

o ScriptLanguage: Microsoft Visual C# 2012

o EntryPoint: Main

o ReadOnlyVariables: User::CustomerCount, User::EmployeeCount, User:InternetSalesCount,
User::PaymentCount, User::ResellerCount, and User::ResellerSalesCount

o ReadWriteVariables: None

2. Edit the script, and replace the comment //TODO: Add your code here with the following code
(above the existing Dts.TaskResult = (int)ScriptResults.Success statement). You can copy and paste
this code from Script.txt in the D:\Labfiles\Lab11\Starter folder:

String logEntry = "Data Warehouse records loaded (";
logEntry += Dts.Variables["User::CustomerCount"].Value.ToString() + " customers, ";
logEntry += Dts.Variables["User::ResellerCount"].Value.ToString() + " resellers, ";
logEntry += Dts.Variables["User::EmployeeCount"].Value.ToString() + " employees, ";
logEntry += Dts.Variables["User::PaymentCount"].Value.ToString() + " payments, ";
logEntry += Dts.Variables["User::InternetSalesCount"].Value.ToString() + " Internet sales, and ";
logEntry += Dts.Variables["User::ResellerSalesCount"].Value.ToString() + " reseller sales) ";
Dts.Log(logEntry, 999, null);

 Task 5: Test the Script
1. Start debugging the Load DW package and observe the control flow tab as it executes, noting that

each package executed opens in a new window. The entire load process can take a few minutes.

2. When execution is complete, stop debugging and close Visual Studio.

3. View the Windows Application log in the Event Viewer administrative tool and verify that the most
recent information event with a source of SQLISPackage120 contains the row counts for each staged
table.

Results: After this exercise, you should have an SSIS package that uses a script task to log row counts.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 11-15

Module Review and Takeaways
In this module, you have learned how to extend SSIS with custom script tasks and custom components.

Review Question(s)
Question: What might you consider when deciding whether to implement a custom process
as a script or a custom component?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-1

Module 12
Deploying and Configuring SSIS Packages

Contents:
Module Overview 12-1

Lesson 1: Overview of SSIS Deployment 12-2

Lesson 2: Deploying SSIS Projects 12-6

Lesson 3: Planning SSIS Package Execution 12-14

Lab: Deploying and Configuring SSIS Packages 12-19

Module Review and Takeaways 12-23

Module Overview
Microsoft® SQL Server® Integration Services (SSIS) provides tools that make it easy to deploy packages
to another computer. The deployment tools also manage any dependencies, such as configurations and
files that the package needs. In this module, you will learn how to use these tools to install packages and
their dependencies on a target computer.

Objectives
After completing this module, you will be able to:

 Describe considerations for SSIS deployment.

 Deploy SSIS projects.

 Plan SSIS package execution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-2 Deploying and Configuring SSIS Packages

Lesson 1
Overview of SSIS Deployment

SQL Server 2014 supports two deployment models for SSIS packages, and choosing the right one can
greatly simplify the maintenance and operation of your ETL solution. This lesson discusses the two
deployment models and compares their key features.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the SSIS deployment model infrastructure.

 Explain the package deployment model.

 Describe the project deployment model.

 Compare the two deployment models.

SSIS Deployment Models

In Microsoft® SQL Server® 2014 Integration
Services there are two deployment models, one for
packages another for projects.

The Package Deployment Model
The package deployment model is used in
previous releases of SSIS. When using the package
deployment, SSIS packages in a solution are
deployed and managed individually. You can
deploy packages to the msdb database on an
instance of SQL Server, or to the file system. The
package deployment model provides support and
continued development of existing SSIS packages
from previous versions of SQL Server.

The Project Deployment Model
The project deployment model was first introduced in SQL Server 2012 and enables you to deploy a
project that contains multiple packages as a single unit. You can then manage connection managers and
parameters that are shared by all packages in the project. When you use the project deployment model,
you must create an SSIS catalog on an instance of SQL Server 2012 or later and deploy your project to
there.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-3

Package Deployment Model

The package deployment model is available to
provide backwards compatibility. Other than this
topic, this module focuses on the project
deployment model.

By default, new SSIS projects are configured to use
the project deployment model. To use the
package deployment instead, you must click
Convert to Package Deployment Model on the
Project menu.

Storage
With the package deployment model, packages
can be deployed to an instance of SQL Server or to the file system.

When you deploy packages to an instance of Integrations Services, you must decide if you will store the
packages in SQL Server or in the file system.

You can deploy packages to SQL Server. SQL Server stores Integration Services packages in the msdb
system database, and package dependencies in a file folder. When you deploy a package to SQL Server,
you must specify the SQL Server instance and type of authentication.

When you deploy a package to the file system (as a .dtsx file), Integration Services accesses the package
files and their dependencies from the folder where you deployed the packages. Alternatively, you can
deploy packages to the SSIS package store. The SSIS package stores are directories related to the SSIS
installation.

Package Configurations
A package configuration is a set of property/value pairs that is added to a completed package, enabling it
to dynamically access property values at run time.

A package can retrieve property settings from a number of different source types, such as an XML file or
Microsoft® SQL Server® database. You can update settings on any executable (including the package
object), connection manager, log provider, or variable within a package.

When Integration Services runs the package, it extracts the property value from a source that is based on
the configuration type. By using package configurations in projects you intend to deploy by using the
package deployment model, you can define values at run time. Package configurations make it easier to
move packages from development to the production environment.

To create a package configuration, open the package, and on the SSIS menu, click Package
Configurations. You can then select where you want to save the configuration settings (for example, an
XML file) and choose the properties to be included in the configuration.

Package Deployment Utilities
You can simplify package deployment and any configuration files or other resources used by creating a
package deployment utility. To do this, first configure the package as required, including any package
configurations, and then in the properties dialog box for the project, on the Deployment page, set the
CreateDeploymentUtility property to True. When you build the project, a folder containing the
packages, all the required files, and a manifest is generated.

 Additional Reading: For more information about Managing and Deploying SQL Server
Integration Services, go to http://go.microsoft.com/fwlink/?LinkID=246746.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-4 Deploying and Configuring SSIS Packages

Project Deployment Model

The project deployment model is the preferred
model for SSIS projects in SQL Server 2014. There
are many features only available with the project
deployment model, making deployment, security,
and execution more straightforward.

The SSIS catalog is a storage repository for SSIS
projects. The catalog contains all folders, projects,
packages, environments, and parameters for
projects using the project deployment model.

The SSIS Catalog
The catalog must be created before first use.
Initially you must enable CLR integration on the server, and then you can right-click Integration Services
in SQL Server Management Studio and create the catalog. You can edit the properties in SQL Server
Management Studio to define how data is encrypted. You can also define whether logs are cleared
periodically, and if so how often. The maximum time allowed to perform project validation can be
defined, too.

The catalog is stored as the SSISDB database in SQL Server. Although it is possible to perform some
administration on this database, and it is useful for listing catalog-specific views and stored procedures,
most administration is performed on the SSISDB node inside the Integration Services node.

When you deploy a project with the same name as an existing one, it will be stored as a new version. You
can set catalog properties to allow old versions to be cleaned up and define how many versions should be
kept.

Folders
Folders are used to both organize and secure projects. Putting projects in folders makes it more
straightforward to navigate to a specific project. However, folders are also securable objects so you can
assign someone administrator rights to projects in specific folders without giving them any rights to
projects situated outside.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-5

Deployment Model Comparison

The following table lists the key differences
between the package deployment and project
deployment models:

Feature Package Deployment Model Project Deployment Model

Unit of deployment Individual packages Project

Storage Packages and all associated files
can be copied to the file system
of a local or remote computer.
They can also be deployed to
the MSDB database of an
instance of SQL Server.

A project is deployed to the SSIS
catalog, or a folder within the catalog,
of an instance of SQL Server.

Dynamic
configuration

Property values are stored in
individual package
configurations and assigned at
run time.

Environment variables in the SSIS
catalog are mapped to project-level
parameters and connection managers.

Compiled format Packages and associated
resources are each stored as
single files in the file system. The
entire project might comprise of
many files.

The entire project is compiled as a
single file (with an .ispac extension).

Troubleshooting To log events, you must add a
log provider to the package and
configure logging for each one
individually.

Events are automatically logged and
saved to the catalog. These events can
then be displayed with views such as
catalog.executions and
catalog.event_messages.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-6 Deploying and Configuring SSIS Packages

Lesson 2
Deploying SSIS Projects

In this lesson you will learn how to deploy and manage an SSIS project.

Lesson Objectives
After completing this lesson, you will be able to:

 Create an SSIS catalog.

 Use environments and variables to set dynamic values at run time.

 Deploy an SSIS project.

 View package execution information.

Creating an SSIS Catalog

The first step in deploying an SSIS project is to
create an SSIS catalog. However, an SSIS catalog
can only be created on an SQL Server instance in
which the SQL CLR feature is enabled, so if you
have not enabled the SQL CLR, this will be done
automatically when you create the SSIS catalog.

Creating an SSIS Catalog
To create an SSIS catalog, use SQL Server
Management Studio to connect to the SQL Server
instance on which you want to deploy SSIS
projects, and in Object Explorer, right-click
Integration Services Catalogs, and click Create
Catalog. You must then provide a secure password that is used to create the database master key for the
new catalog.

Catalog Security
Only members of the ssis_admin or sysadmin roles can manage the catalog. All security in the catalog
uses Windows authentication and SQL Server authentication is not supported.

To avoid having to give all SSIS administrators full administration rights, you can grant individuals or roles
the MANAGE_OBJECT_PERMISSIONS permission on any folders that you wish them to administer.

If you right-click a folder, project, or environment, and click Properties, you can access the permissions
on that object. This will allow you to grant or deny permissions on actions such as Read or Modify,
depending on the object type.

You can also use Transact-SQL to manage object permissions using stored procedures such as
catalog.grant_permission and views like catalog.effective_object_permisions.

 Additional Reading: For more information about Stored Procedures in the Integration
Services Catalog, go to http://go.microsoft.com/fwlink/?LinkID=246747.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-7

When you create a catalog, a database master key is automatically created. Using the catalog properties,
you can define the encryption type from DES, TRIPLE_DES, TRIPLE_DES_3KEY, DESX, AES_128, AES_192, or
AES_256 (the default).

Parameters have a sensitive property. If a parameter stores sensitive data, you should set the sensitive
property to TRUE. This causes the parameter value to be encrypted and, if the parameter value is queried
directly with Transact-SQL, NULL is returned.

 Additional Reading: For more information about SSIS security, go to
http://go.microsoft.com/fwlink/?LinkID=246748.

Environments and Variables

Often, you need to change specific properties or
values used in a package dynamically at run time.
To accomplish this, SSIS catalog supports multiple
environments for each project, and the creation of
variables within those environments that can be
mapped to project parameters and connection
managers.

Environments
An environment is an execution context for an
SSIS project. You can create multiple
environments, and then reference them from a
project you have deployed in the SSIS catalog. A
project can have multiple environment references, but each time a package is executed, it can use only
one. This enables you to switch very quickly from one environment to another and change all associated
environment settings from a single property. For example, you could create Test and Production
environments and add references to them both in a deployed project.

Variables
Environments are used to organize and group environment variables that you can map to project-level
parameters or properties of project-level connection managers. For example, in the Test and Production
environments, you could create a variable named DBServer with the value TEST_SERVER in the Test
environment and PROD_SERVER in the Production environment. You can then map this variable to a
project-level parameter or to the ServerName property of a connection manager in a deployed project.
When you execute a package in the project, the value used for the parameter or ServerName property is
determined by the selected environment.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-8 Deploying and Configuring SSIS Packages

Deploying an SSIS Project

After you have built your SSIS project, there are
two methods that you can use to deploy it to your
catalog. You can deploy it from Visual Studio, or
you can deploy it from SQL Server Management
Studio.

If you deploy your project to the same location
with the same name, it will overwrite the original.
Based on the properties of your catalog it might
create an additional version of the project and
keep a copy of the original.

Deploying an SSIS Project in Visual Studio
After building your project in Visual Studio, you can deploy it by using the Integration Services
Deployment Wizard. This wizard will guide you through the process of deployment.

The deployment source is the project that you are currently deploying. The deployment destination is the
location where you want to deploy the package, including the server and folder.

Deploying an SSIS Project in SQL Server Management Studio
In SQL Server Management Studio, you can navigate to the folder where you wish to deploy the package.
Then right-click the Projects folder within the folder you wish to deploy to and click Deploy Project. This
will also run the Integration Services Deployment Wizard. The only difference with this method is that you
have to find the project deployment file. This will be in the folder created for the Visual Studio project in
the bin folder, and then in the Development folder. It will have an .ispac extension.

You can also deploy an existing package within the catalog, or a catalog on another server, to make a
copy of a package. Simply choose the existing package as the source in the Integration Services
Deployment Wizard.

Viewing Project Execution Information

SSIS includes a number of tools to troubleshoot
packages after they have been deployed. During
deployment you can use various techniques, such
as breakpoints and data viewers, which are not
available once you have deployed the package.
However, there are other tools that allow you to
perform troubleshooting. The Integration Services
Dashboard should be the starting point for most
debugging as it provides every level of detail for
all packages, but there are other tools that can
perform specific tasks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-9

Integration Services Dashboard
The Integration Services Dashboard provides details for each package that has run on the server. If you
right-click the SSISDB database in the Integration Services node in SQL Server Management Studio and
point to Reports, you can click Integration Services Dashboard. From here, you can get an overview of
activity in the last 24 hours and open reports for All Executions, All Validations, All Operations, and
Connections. Each of these reports allows you to drill down further to get specific details for events and
view performance data for the package executions.

 Additional Reading: For more information about Troubleshooting Reports for Package
Execution, go to http://go.microsoft.com/fwlink/?LinkID=246749.

Event Handlers
You can create an event handler for the OnError event. This can be used for many tasks, including
sending an email message to an administrator, or logging system information to a file. Event handlers
have control flow and data flows which are identical to those in a typical package, so you can perform
almost unlimited tasks when an error has occurred.

 Additional Reading: For more information about Creating Package Event Handlers, go to
http://go.microsoft.com/fwlink/?LinkID=246750.

Error Outputs
Most data flow components have outputs for success and failure. The error output can be used to direct
rows that contain errors to a different destination. Initially the error output adds columns containing the
error code. While you could manually look up the error code, you can add additional information, such as
the error description, using the Script component.

Error outputs are for a specific component whereas event handlers are for the whole package.

 Additional Reading: For more information about Enhancing an Error Output with the
Script Component, go to http://go.microsoft.com/fwlink/?LinkID=246751.

Logging
You can enable logging and view package execution information in an SQL Server table or a file.

Log providers implement logging in packages, containers, and tasks. You can also specify which
information you require in the log. To enable logging in the package, open it in Visual Studio, and on the
SSIS menu, click Logging. You can now define how the log information is stored, as well as which events
and information are logged.

 Additional Reading: For more information about How to Enable Logging in a Package, go
to http://go.microsoft.com/fwlink/?LinkID=246752.

Debug Dump Files
If you execute a package with dtexec, you can specify that a debug dump file is created. This creates a
.tmp file that contains items such as environment information and recent messages. The file is located in
<drive>:\Program Files\Microsoft SQL Server\110\Shared\ErrorDumps. You can specify whether to create
the debug dump files on an error, a warning, or on information.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-10 Deploying and Configuring SSIS Packages

 Additional Reading: For more information consult The dtexec Utility Reference, at
http://go.microsoft.com/fwlink/?LinkID=246753.

Demonstration: Deploying an SSIS Project

In this demonstration you will see how to:

 Configure the SSIS Environment.

 Deploy an SSIS Project.

 Create Environments and Variables.

 Run an SSIS Package.

 View Execution Information.

Demonstration Steps
Configure the SSIS Environment

1. Ensure 20463C-MIA-DC and 20463C-MIA-SQL are started, and log onto 20463C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod12 folder, run Setup.cmd as Administrator.

3. Start SQL Server Management Studio and connect to the localhost database engine using Windows
authentication.

4. In Object Explorer, right-click Integration Services Catalogs, and click Create Catalog.

5. In the Create Catalog dialog box, note that you must enable CLR integration when creating an SSIS
catalog, and that you can also choose to enable automatic execution of the stored procedures used
by the catalog when SQL Server starts. Then enter and confirm the password Pa$$w0rd, and click
OK.

6. In Object Explorer, expand Integration Services Catalogs, and then right-click the SSISDB node that
has been created, and click Create Folder. Then in the Create Folder dialog box, enter the folder
name Demo, and click OK.

7. Expand the SSIDB node to see the folder, and then minimize SQL Server Management Studio.

Deploy an SSIS Project

1. Start Visual Studio, and open the DeploymentDemo.sln solution in the D:\Demofiles\Mod12 folder.
This project contains the following two packages:

o Extract Login List.dtsx – a package that uses a data flow to extract a list of logons from the
master database and save them in a text file.

o Extract DB List.dtsx – a package that extracts a list of databases from the master database and
saves them in a text file.

Both packages use a project-level connection manager to connect to the master database, and a project-
level parameter to determine the folder where the text files containing the extracted data should be
saved.

2. On the Build menu, click Build Solution.

3. When the build has succeeded, on the Project menu, click Deploy.

4. In the Introduction page of the Integration Services Deployment Wizard dialog box, click Next.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-11

5. In the Select Destination page, enter localhost in the Server name box and in the Path box, browse
to the SSIDB\Demo folder you created earlier. Then click Next.

6. On the Review page, click Deploy. Then, when deployment has completed, click Close and close
Visual Studio.

Create Environments and Variables

1. In SQL Server Management Studio, expand the Demo folder you created earlier, and expand its
Projects folder. Note that the DeploymentDemo project has been deployed.

2. Right-click the Environments folder, and click Create Environment. Then in the Create
Environment dialog box, enter the environment name Test, and click OK.

3. Repeat the previous step to create a second environment named Production.

4. Expand the Environments folder to see the environments you have created, and then right-click the
Production environment, and click Properties.

5. In the Environment Properties dialog box, on the Variables tab, add a variable with the following
settings:

o Name: DBServer

o Type: String

o Description: Server

o Value: MIA-SQL

o Sensitive: No

6. Add a second variable with the following settings (making sure to include the trailing “\” in the value),
and then click OK:

o Name: FolderPath

o Type: String

o Description: Folder

o Value: D:\Demofiles\Mod12\Production\

o Sensitive: No

7. Right-click the Test environment and click Properties.

8. In the Environment Properties dialog box, on the Variables tab, add a variable with the following
settings:

o Name: DBServer

o Type: String

o Description: Server

o Value: localhost

o Sensitive: No

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-12 Deploying and Configuring SSIS Packages

9. Add a second variable with the following settings (making sure to include the trailing “\” in the value),
and then click OK:

o Name: FolderPath

o Type: String

o Description: Folder

o Value: D:\Demofiles\Mod12\Test\

o Sensitive: No

10. In the Projects folder, right-click DeploymentDemo and click Configure.

11. In the Configure – DeploymentDemo dialog box, on the References page, click Add and add the
Production environment. Then click Add again and add the Test environment.

12. In the Configure – DeploymentDemo dialog box, on the Parameters page, in the Scope list, select
DeploymentDemo.

13. On the Parameters tab, click the ellipses (…) button for the OutputFolder parameter, and in the Set
Parameter Value dialog box, select Use environment variable and click FolderPath in the list of
variables, and click OK.

14. In the Configure – DeploymentDemo dialog box, on the Connection Managers tab, click the
ellipses button (…) for the ServerName property, and in the Set Parameter Value dialog box, select
Use environment variable, click DBServer in the list of variables, and click OK.

15. In the Configure – DeploymentDemo dialog box, click OK.

Run an SSIS Package

1. Expand the DeploymentDemo package and its Packages folder, and then right-click Extract DB
List.dtsx and click Execute.

2. In the Execute Package dialog box, select the Environment checkbox, and in the drop-down list,
select .\Test. Then view the Parameters and Connection Managers tabs and note that the
FolderPath and DBServer environment variables are used for the OutputFolder parameter and
ServerName property.

3. Click OK to run the package. Click No when prompted to open the Overview Report.

4. Right-click Extract Login List.dtsx and click Execute.

5. In the Execute Package dialog box, select the Environment checkbox and in the drop-down list,
select .\Production. Then view the Parameters and Connection Managers tabs and note that the
FolderPath and DBServer environment variables are used for the OutputFolder parameter and
ServerName property.

6. Click OK to run the package. Click No when prompted to open the Overview Report.

7. View the contents of the D:\Demofiles\Mod12\Test folder and note that it contains a file named
DBs.csv that was produced by the Extract DB List.dtsx package when it was executed in the Test
environment.

8. View the contents of the D:\Demofiles\Mod12\Production folder and note that it contains a file
named Logins.csv that was produced by the Extract Login List.dtsx package when it was executed
in the Production environment.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-13

View Execution Information

1. In SQL Server, in Object Explorer, under Integration Services Catalogs, right-click SSISDB, point to
Reports, point to Standard Reports, and click Integration Services Dashboard.

2. In the Packages Detailed Information (Past 24 Hours) list, notice that the two most recent package
executions succeeded, and then click the Overview link for the first package in the list.

3. In the Overview report, in the Execution Information table, note the environment that was used,
and in the Parameters Used table, note the values you configured with environment variables.

4. At the top of the report, click the Navigate Backward button to return to the Integration Services
Dashboard report.

5. In the Packages Detailed Information (Past 24 Hours) list, click the Overview link for the second
package in the list.

6. In the Overview report, in the Execution Information table, note the environment that was used,
and in the Parameters Used table, note the values you configured with environment variables.

7. Close SQL Server Management Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-14 Deploying and Configuring SSIS Packages

Lesson 3
Planning SSIS Package Execution

There are a number of factors you should consider before performing an SSIS deployment. Along with the
deployment model, security and variables, all mentioned in previous lessons, you should also consider
factors such as scheduling, dependencies, notifications, and which actions take place in SSIS packages and
which ones occur in SQL Server Agent jobs.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the methods for running SSIS packages.

 Describe considerations for package scheduling.

 Explain the security context options when running a package.

 Describe the choices when deciding where notifications are handled.

 Explain the options when handling SSIS logging.

 Describe the options for combining SSIS tasks with SQL Server Agent job tasks.

 Explain how to implement an SQL Server Agent job.

Options for Running SSIS packages

After deploying your package, there are several
methods you can employ to execute it.

SQL Server Management Studio
After the package is deployed to SQL Server, you
can run it from the context menu. You can supply
values for the environment and any parameter,
modify settings for the connection managers, and
specify logging options.

Dtexec and Dtexecui
Dtexec provides a command line interface to run
SSIS packages. You can supply all necessary values
for the environment, parameters, connection strings and logging. Dtexecui provides a graphical interface
to run dtexec and has the same functionality.

 Additional Reading: For more information consult the dtexec Utility Reference, at
http://go.microsoft.com/fwlink/?LinkID=246753.

Windows PowerShell
SQL Server 2012 introduces Windows PowerShell® cmdlets, enabling you to manage, monitor and
execute SSIS packages. This is a very powerful environment for managing most aspects of your server and
this functionality enables you to integrate SSIS with other Windows PowerShell tasks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-15

 Additional Reading: For more information about SSIS and PowerShell in SQL Server, go to
http://go.microsoft.com/fwlink/?LinkID=246754.

SQL Server Agent
SQL Server Agent automates tasks in SQL Server. This is particularly useful for SSIS packages as they are
often run on a repeating schedule to periodically load data. You can specify the schedule for the job, the
environment, parameters, connection strings and logging.

 Additional Reading: For more information about SQL Server Agent Jobs for Packages, go
to http://go.microsoft.com/fwlink/?LinkID=246755.

Scheduling the ETL Process

When scheduling package execution with SQL
Server Agent or another automation tool, there
are some considerations you should take to plan
an ETL strategy.

Data Acquisition Windows
In a data warehouse scenario, data sources that
are periodically used to extract data for your data
warehouse are typically live transactional systems.
These are often some of the most business critical
systems in your organization. For example, the
orders system for an Internet-based bicycle shop
holds the most important data for the data
warehouse, but is also the most critical one to keep running at optimum performance levels. If the orders
system is down, the business cannot operate.

It is crucial, therefore, to ascertain the best time to extract data from the live systems. For a weekly data
load it might be at the weekend, for a daily load it may be at night, but it is important to check the
systems for real-world statistics. Even truly international systems have quiet and busy periods, caused
either by customer distribution, or because the population of the world is not uniformly distributed.

If data acquisition is problematic at any time, it might be possible to run queries against mirrored systems
that are used to provide high availability. Mirrored systems can provide access to live data at any time
with no effect on the live transactional systems.

Package Execution Order
Ensure that packages execute in the correct order and that one step is completed before the next is
started. This is typically the case when data is loaded to a staging database. The data load to staging must
complete, followed by data transformation and cleansing, and then a data load to the data warehouse.
You must either create a system where one step in the ETL process triggers the next one, or create
schedules with enough time delay for the previous step to complete.

Package execution order sounds very straightforward. However, a completely linear system, with one
package starting the next and so on, might be very slow, as no packages are run in parallel. Running
packages in parallel either requires careful scheduling or more complex logic to test whether all
prerequisite packages have run before the next stage starts.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-16 Deploying and Configuring SSIS Packages

Execution Dependencies
Some packages require others to already have run due to data dependencies. For example, a Salesperson
table has a foreign key relationship with a Store table. You have recently opened a new store with new
employees. If the employees are loaded before the store, they will break the foreign key constraint and
the data load will fail. However, if the store is loaded before the employees, then the data load is
successful.

Configuring Execution Context

Using SQL Server Agent, you can run a job with a
different security context to your own. For
example, a user has read-only access to the
production databases, staging databases, and data
warehouse, but also needs to be able to
periodically load data from production to data
warehouse via staging. In the SQL Server Agent
job, this can be performed by setting the Run as
property on the job step to an account that has
the required permissions on all three systems. The
user does not require the special privileges on the
system, just permission to run the SQL Server
Agent job.

There are three fixed database roles that apply to the SQL Server Agent – SQLAgentUserRole,
SQLAgentReaderRole, and SQLAgentOperatorRole. SQLAgentUserRole and SQLAgentReaderRole
members can only execute jobs that they have created, but SQLAgentOperatorRole members can
execute, but not edit, a job created by another user. You can add users to these roles in the MSDB
database.

To use the Run as property of a job step, you must first create a credential in the Security node of SQL
Server Management Studio that maps to an account with the permissions required for the job step. You
can then create a proxy in SQL Server Agent that uses this credential. The job step can be configured to
use this proxy and the user who needs to execute the job is put in the appropriate database role.

Where to Handle Notifications

You can send notifications from SSIS packages
using the SendMail task and other notifications
from SQL Server Agent jobs using operators. Be
careful not to send too many notifications as the
operator can become overloaded and not notice
an important email message amongst many
duplicates.

You should consider how the SSIS package is used
and the steps that the SQL Server Agent job
performs. If the SSIS package is executed as an
SQL Server Agent job, manually from SQL Server
Management Studio, and from a Windows
PowerShell® script, you should consider putting notifications in the SSIS package to ensure that
notifications are sent regardless of the execution method. If the SSIS package is always executed as part of

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-17

an SQL Server Agent job that has additional steps apart from the SSIS package, then you should consider
putting notifications in the SQL Server Agent job.

In many situations, the decision is not clear cut and you should balance the advantages and disadvantages
of putting notifications either in SQL Server Agent jobs or in SSIS packages.

Where to Handle Logging

Logging is less intrusive than email notifications
and, therefore, is less of a problem to implement
logging in both SQL Server Agent and SSIS
packages. For SSIS, you should consider using the
Integration Services Dashboard if that provides
sufficient detail. The Integration Services
Dashboard is automatic and displays an overview
of packages that have executed, allowing you to
drill down into particular items to display the
detail.

In SQL Server Agent, logging is enabled by default
and will log any errors or warnings. You can
specify the size and maximum age of the job history log in the properties of SQL Server Agent.

 Additional Reading: For more information about the SQL Server Agent Error Log, go to
http://go.microsoft.com/fwlink/?LinkID=246756.

In a typical scenario, you would examine the SQL Server Agent log and, if you find there was an error in
an SSIS package execution, you would investigate the Integration Services Dashboard.

Combining SSIS Tasks with Other Tasks

SSIS is a powerful tool and you could perform
every task you need from a single SSIS package
and schedule this as a single step in a SQL Server
Agent job. Typically, however, this is not the best
approach.

If you take the policy that SSIS packages perform
one defined task, you can make modular packages
that run multiple smaller ones. In this way, the
work that you have done to create one, perhaps
complex, SSIS package, can easily be reused.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-18 Deploying and Configuring SSIS Packages

Using this approach, you could continue to use SQL Server Agent to execute a single SSIS package, albeit
one that runs several child packages. In this scenario, you might want to add another minor step to a
package, perhaps executing a Transact-SQL query—you could add this as a new task in your SSIS package.
To avoid changing any existing ones, you could create a new package to perform this task, and then
create a new parent package to run the existing ones, along with your new package, containing the
Transact-SQL task. In this scenario, it would be simpler to add a step to the SQL Server Agent job to run
the Transact-SQL query.

One factor to consider if you have actions performed in both SQL Server Agent jobs and SSIS packages is
documentation. You must ensure that everyone involved in developing the ETL solution is aware of where
the actions are performed and, therefore, where they need to be monitored and maintained.

Implementing SSIS Agent Jobs and Schedules

To use SQL Server Agent to execute jobs, you
should perform a number of steps:

1. Select or create a Windows account that the
SQL Server Agent will use and ensure that it
has sufficient permissions to perform the
assigned job steps. The Windows domain
account you specify must have the following:

 Permission to log on as a service
(SeServiceLogonRight).

 The following permissions to support SQL
Server Agent proxies:

o Permission to bypass traverse checking (SeChangeNotifyPrivilege).

o Permission to replace a process-level token (SeAssignPrimaryTokenPrivilege).

o Permission to adjust memory quotas for a process (SeIncreaseQuotaPrivilege).

o Permission to log on using the batch logon type (SeBatchLogonRight).

2. If necessary, create Windows accounts for SQL Server Agent proxies, add credentials for them to the
SQL Server instance, and create proxies for the appropriate job subsystems.

3. Set SQL Server Agent service to start automatically. By default, the SQL Server Agent is configured to
start manually and, if there is a server restart, jobs will cease to run.

4. Create jobs for each package execution you want to automate, and specify a schedule on which the
job should run.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-19

Lab: Deploying and Configuring SSIS Packages
Scenario
You have completed the SSIS project containing the packages required for the data warehouse ETL
process. Now you must deploy the project to an SSIS catalog, configure environments for dynamic
configuration, and schedule automatic execution of packages.

Objectives
After completing this lab, you will be able to:

 Create an SSIS catalog.

 Deploy an SSIS project.

 Create environments.

 Run an SSIS package.

 Schedule SSIS package execution.

Estimated Time: 45 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Creating an SSIS Catalog

Scenario
You want to deploy your SSIS packages as an SSIS project. Initially, you will configure the SSIS
environment.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Create the SSIS Catalog and a Folder

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab12\Starter folder as Administrator.

 Task 2: Create the SSIS Catalog and a Folder
1. Use SQL Server Management Studio to create an SSIS catalog with a password of Pa$$w0rd in the

localhost instance of SQL Server.

2. In the catalog, create a folder named DW ETL with the description Folder for the Adventure Works
ETL SSIS Project.

Results: After this exercise, you should have enabled CLR, creating the SSIS catalog, and a folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-20 Deploying and Configuring SSIS Packages

Exercise 2: Deploying an SSIS Project

Scenario
You now want to deploy an existing SSIS project, created in Visual Studio, to the new folder from the
previous exercise.

The main tasks for this exercise are as follows:

1. Deploy an SSIS Project

 Task 1: Deploy an SSIS Project
1. Start Visual Studio, and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab12\Starter

folder.

2. Build the solution.

3. Deploy the AdventureWorksETL project to the DW ETL folder in the localhost server.

4. Close Visual Studio.

Results: After this exercise, you should have deployed an SSIS project to a folder in your SSIS database.

Exercise 3: Creating Environments for an SSIS Solution

Scenario
You have parameters and connection managers in an SSIS package. You would like to create test and
production environments enabling you to quickly pass the correct values to these parameters when
switching from test to production.

The main tasks for this exercise are as follows:

1. Create Environments

2. Create Variables

3. Map Environment Variables

 Task 1: Create Environments
1. In SQL Server Management Studio, create an SSIS environment named Test in the DW ETL folder.

2. Create a second environment named Production.

 Task 2: Create Variables
1. Add the following variables to the Production environment:

o A string variable named StgServer with the value MIA-SQL.

o A string variable named FolderPath with the value D:\Accounts\.

2. Add the following variables to the Test environment:

o A string variable named StgServer with the value localhost.

o A string variable named FolderPath with the value D:\TestAccts\.

 Task 3: Map Environment Variables
1. Configure the AdventureWorksETL package in the SSIS Catalog to use the Production and Test

environments.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-21

2. Map the AccountsFolder project-level parameter to the FolderPath environment variable.

3. Map the ServerName property for the localhost Staging ADO NET and localhost.Staging
connection managers to the StgServer environment variable.

Results: After this exercise, you should have configured your project to use environments to pass values
to package parameters.

Exercise 4: Running an SSIS Package in SQL Server Management Studio

Scenario
Now you have deployed the SSIS project and defined execution environments, you can run the packages
in SQL Server Management Studio.

The main tasks for this exercise are as follows:

1. Run a Package

 Task 1: Run a Package
1. Use SQL Server Management Studio to run the Extract Payment Data.dtsx package using the Test

environment.

2. When the package has been executed, consider the overview report and verify that it used the
environment variable values you specified for the Test environment.

Results: After this exercise, you should have performed tests to verify that a value was passed from the
environment to the package.

Exercise 5: Scheduling SSIS Packages with SQL Server Agent

Scenario
You’ve tested the packages by running them interactively. Now you must schedule them to be executed
automatically.

The main tasks for this exercise are as follows:

1. Create a SQL Server Agent job

2. View the Integration Services Dashboard

 Task 1: Create a SQL Server Agent job
1. In SQL Server Management Studio, create a new SQL Server Agent job named Extract Reseller Data.

2. Add a step named Run Extract Reseller Data Package to the job, and configure it to run the Extract
Reseller Data.dtsx SQL Server Integration Services package in the AdventureWorksETL project you
deployed earlier.

3. Configure the job step to use the Production environment.

4. Create a schedule for the job to run once, two minutes from the current time.

5. Wait for two minutes, and then in the SQL Server Agent Job Activity Monitor, view job activity and
verify that the Extract Reseller Data job has completed successfully.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
12-22 Deploying and Configuring SSIS Packages

 Task 2: View the Integration Services Dashboard
1. View the Integration Services Dashboard and verify that the Extract Reseller Data.dtsx package was

successfully executed.

2. View the overview report for the Extract Reseller Data.dtsx package execution and verify the
parameter values that were used.

3. View the messages for the Extract Reseller Data.dtsx package execution, and note the diagnostic
information that was logged.

4. When you have finished, close SQL Server Management Studio.

Results: After this exercise, you should have created an SQL Server Agent job that automatically runs your
SSIS package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 12-23

Module Review and Takeaways
In this module, you have learned how to deploy and run SSIS packages.

Review Question(s)
Question: What are some of the advantages of the project deployment model?

Question: What are the advantages of environments?

Question: Where would you handle notifications?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-1

Module 13
Consuming Data in a Data Warehouse

Contents:
Module Overview 13-1

Lesson 1: Introduction to Business Intelligence 13-2

Lesson 2: Enterprise Business Intelligence 13-5

Lesson 3: Self-Service BI and Big Data 13-8

Lab: Using a Data Warehouse 13-15

Module Review and Takeaways 13-19

Module Overview
A data warehouse is the foundation for a business intelligence (BI) solution, enabling business users,
information workers, and data analysts to make faster, better decisions.

This module introduces BI, describing the components of Microsoft® SQL Server® that you can use to
create a BI solution, and the client tools with which users can create reports and analyze data.

Objectives
After completing this module, you will be able to:

 Describe BI and common BI scenarios.

 Describe how a data warehouse can be used in enterprise BI scenarios.

 Describe how a data warehouse can be used in self-service BI scenarios.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-2 Consuming Data in a Data Warehouse

Lesson 1
Introduction to Business Intelligence

BI technologies enable you to create decision support systems that enable the individual in an
organization to work more effectively. However, a BI solution is only as good as the data that it processes.
Therefore, using a data warehouse as the platform for your BI solution makes a lot of sense.

This lesson explains the benefits of using a data warehouse as a platform for BI, and introduces common
reporting and data analysis scenarios.

Lesson Objectives
After completing this lesson, you will be able to:

 Explain the benefits of using a data warehouse as a platform for BI.

 Describe data analysis scenarios and technologies.

 Describe reporting scenarios and technologies.

The Data Warehouse as a Platform for Business Intelligence

The primary purpose of creating a data warehouse
is to provide a platform enabling BI workers to
access historical data so that they can perform
reporting and data analysis. A well-designed data
warehouse will include mechanisms that ensure
the quality and accuracy of data, as described in
previous modules, and will be optimized to
provide the best performance for BI applications.
Using a data warehouse as a data source for BI
provides many benefits, including:

 Data quality and accuracy. Effective
reporting and data analysis rely on the
availability of data that is complete, accurate, consistent, and which does not contain duplicate data,
or any other data that might compromise the accuracy of the reports and data analyses that
information workers create. Using Master Data Services and Data Quality Services ensures that the
data in the data warehouse meets the requirements of BI applications, enabling executives, managers,
and other information workers to make better strategic and operational business decisions.

 Data availability. The data used by information workers must also be easily available, so that
individuals do not have to search for information. Centralizing data in a data warehouse makes it
much easier for them to find the data they require.

 Complete and up-to-date data. To support reporting and data analysis, the data in the data
warehouse needs to be complete and up to date. SQL Server Integration Services provides
comprehensive extract, transform, and load (ETL) capabilities, enabling you to populate your data
warehouse and maintain it by using periodic or incremental updates.

 Query performance. BI queries can be highly demanding, requiring a significant amount of
processing power. A dedicated data warehouse that is optimized for BI queries, such as a Fast Track
Data Warehouse system or Parallel Data Warehouse system, can handle the processing load that BI
queries even when many users are simultaneously accessing the database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-3

SQL Server provides a complete platform for data warehousing, and supports reporting tools such as SQL
Server Reporting Services, Report Builder, and Power View, and data analysis tools like SQL Server Analysis
Services, Microsoft® Excel®, and PerformancePoint Services in SharePoint Server.

Data Analysis

Data analysis involves exploring data to find
interesting and useful information that can help
companies to identify patterns, opportunities,
inefficiencies, and so on. Data in the data
warehouse can be used to perform different types
of analysis, such as identifying sales patterns over
the previous quarter, or predicting future
performance based on past data.

Key data analysis scenarios include:

 Exploring data to identify patterns. Data
analysts use various tools to explore data to
try and identify useful information, such as the
best performing sales regions or correlations between sales figures and other factors. Business
decision-makers can use this information to guide strategic planning decisions.

 Self-service analysis and data mash-ups. Business users might perform self-service analysis when
they need to combine data from the data warehouse and other sources without support from the IT
department.

 Data mining. Analysts use data mining to discover difficult-to-identify patterns and correlations
between data. This information is useful because it can help to predict the success of future activities
such as targeted advertising campaigns.

Data analysis tools combine the data and metadata from data warehouses or other stores to create
models that make this data available as useable information. For example, your data warehouse might
include a table that contains millions of rows of sales data, a second one for product information, and
other tables with details about dates and geographical location. You could create an analysis solution that
loads data into a data model, such as a multidimensional cube or a tabular data model. This then
calculates and stores aggregations of key data to improve query response times, making all this available
to a range of client tools.

SQL Server Analysis Services is the SQL Server component that BI developers can use to create data
models, enabling users to access data to perform analysis. Excel can help analysts and business users to
create PivotTables and other data visualizations from enterprise data models. They can also create
personal data models that combine data from the data warehouse with information from other sources.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-4 Consuming Data in a Data Warehouse

Reporting

Reporting involves producing documents that
summarize specific data. Reports typically include
graphical elements such as charts and tables that
help to make the information easy to understand.
There are several common scenarios that report
developers and administrators are likely to
encounter, such as:

 Scheduled delivery of standard reports. BI
developers create a set of standard reports
that business users receive by email message
or delivery to a file share or Microsoft®
SharePoint® site on a regular basis.

 On-demand access to standard reports. Business users consume reports on-demand by browsing
to an online report repository.

 Embedded reports and dashboards. Reports are integrated into an application or portal to provide
contextualized business information at a glance.

 Request to IT for custom reports. Business users request specific reports from the IT department,
and a BI developer creates these reports to order.

 Self-service reporting. Business users can use authoring tools to create their own reports from data
models that have been published by the IT department.

SQL Server Reporting Services is a component of SQL Server that provides a platform for building and
managing reports in an enterprise. Reporting Services provides comprehensive functionality that supports
all these scenarios.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-5

Lesson 2
Enterprise Business Intelligence

Business executives, departmental managers, team leaders, and many other individuals in an organization,
rely on reports and analytical dashboards to provide clear and easy-to-interpret summaries of data to
help them make decisions that directly affect the business and its employees.

In many organizations, an enterprise BI solution is designed, implemented, and managed by the IT
department to support reporting and analytical requirements. This BI solution is often based on the
foundation provided by an enterprise data warehouse.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the key features of an enterprise BI solution.

 Describe how SQL Server Analysis Services can support enterprise data models.

 Describe how Reporting Services can support enterprise reporting.

 Describe how Microsoft® SharePoint® Server can be used to support enterprise BI.

Introduction to Enterprise BI

Many organizations seek to use BI to inform
business decision-making and communicate key
information to executives, managers, information
workers, customers, and other stakeholders. Often,
the BI solution used to meet these requirements is
managed by IT department technical specialists,
who create and maintain the data models and
reports necessary to support the organization’s
specific needs.

Data warehouses and marts are at the core of an
IT-managed enterprise BI solution, providing a
central source of validated business data for
reports, dashboards, and analyses. BI specialists create analytical data models that aggregate the data in
the data warehouse, defining hierarchies and key performance indicators (KPIs) to support well-defined
business requirements. These hierarchies and KPIs can be viewed in dashboards (for example, in
SharePoint Server) or browsed interactively (for example, in Microsoft® Excel®). Additionally, business
reports are created from the data models, and often directly from the data warehouse. These reports can
be viewed interactively in a web browser, and are sometimes distributed automatically by email at
regularly scheduled intervals.

 Additional Reading: To learn about implementing an enterprise BI solution, you should
attend course 20466C, Implementing Data Models and Reports with Microsoft SQL Server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-6 Consuming Data in a Data Warehouse

SQL Server Analysis Services

You create a data model to enable users to
analyze business data, without having to
understand the complexities of the underlying
database, and to enable optimal performance for
BI queries. Data models expose data in a format
that users can interact with more easily. SQL Server
Analysis Services enables you to create enterprise-
scale data models to support BI applications
including Reporting Services, Microsoft® Excel®,
PerformancePoint Services in SharePoint Server,
and other third-party tools. Analysis Services in
SQL Server 2014 enables you to create two
different kinds of data model, each with its own features and performance characteristics:

 Multidimensional data models. These have been used in all versions of SQL Server Analysis Services,
up to and including SQL Server 2014 Analysis Services, and are familiar to experienced BI specialists.
Multidimensional data models expose data through dimensions and cubes. They use the
Multidimensional Expressions (MDX) language to implement business logic, and can provide access to
data through relational online analytical processing (ROLAP) storage or multidimensional online
analytical processing (MOLAP) storage.

 Tabular. Tabular data models were first introduced in SQL Server 2012 Analysis Services. They are
constructed from tables and relationships, making them easier to work with for database
professionals with no multidimensional data modeling experience. Tabular data models use the Data
Analysis Expressions (DAX) language to implement business logic, and can provide access to data by
using the in-memory xVelocity engine. They also use DirectQuery mode to access data in the
underlying data source, which is often a data warehouse.

SQL Server Analysis Services supports a concept known as the BI semantic model (BISM), which abstracts
the specific implementation details of the data model, enabling client tools to use standard protocols and
interfaces to access it, regardless of the specific model type.

SQL Server Reporting Services

SQL Server Reporting Services is a development
environment for professional report developers
and information workers who need to occasionally
create reports. You can use Reporting Services to
create interactive, visually-interesting reports that
can include charts, maps, data bars, and spark
lines, and which support parameters, enabling
users to set the context for a report.

SQL Server Reporting Services is available in most
editions of SQL Server, including SQL Server
Express with Advanced Services, though not all
features are supported in every edition.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-7

When you install SQL Server Reporting Services, you must choose between two possible deployment
modes:

 SharePoint integrated mode. In this mode, the report server is installed as a service application in a
SharePoint Server farm, and users manage and view reports in a SharePoint site.

 Native mode. In this mode, Reporting Services provides a management and report viewing user
interface (UI) called Report Manager, which is implemented as a stand-alone web application.

In addition to enabling users to create reports, Reporting Services provides a management environment
that enables you to control the complete report life cycle. Users can publish and subscribe to reports,
which can be delivered in a variety of ways. Administrators can define email alerts that inform users of
changes to the reports they are interested in, and define permissions to ensure that reports can only be
viewed and edited by selected individuals.

SharePoint Server

Microsoft® SharePoint® Server provides
enterprise information sharing services through
collaborative websites, and is often the platform
by which enterprise BI is delivered to business
users.

SharePoint Server provides the following BI
capabilities:

 Excel Services. Users can view and interact
with Excel workbooks that are shared in a
SharePoint document library through a web
browser. This includes workbooks that use
data connections to query data in a data
warehouse or Analysis Services data model.

 PowerPivot Services. Users can share and interact with Excel workbooks that contain a PowerPivot
tabular data model. This enables business users to create and share their own analytical data models.

 Integration with SSRS. You can deliver and manage reports and data alerts through SharePoint
document libraries instead of the native Report Manager interface provided with SSRS.

 Power View. Power View is an interactive data visualization technology through which users can
graphically explore a data model in a web browser.

 PerformancePoint Services. This enables BI developers to create dashboards and scorecards that
deliver KPIs and reports through a SharePoint site.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-8 Consuming Data in a Data Warehouse

Lesson 3
Self-Service BI and Big Data

One of the emerging trends in corporate business intelligence is a move towards empowerment of users
to perform self-service analysis and reporting, often combining corporate data with external data.
Additionally, the growth in volume and sources of data has led to a new generation of “Big Data” tools.
These enable organizations to extend their enterprise BI solution to include massive amounts of data that
previously would have been difficult and expensive to process and analyze.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe key features of self-service BI and Big Data.

 Describe how Microsoft® Excel® empowers users to perform self-service BI.

 Describe how Report Builder and Power View enable self-service reporting.

 Describe services that help organizations extend an enterprise BI solution to include Big Data.

Introduction to Self-Service BI and Big Data

As business users have become more
technologically proficient, and computer systems
have evolved to support fast, ubiquitous access to
large volumes of data, a trend towards self-service
BI has emerged. Self-service BI enables users to
create their own data models, reports, and mash-
ups that combine data from managed corporate
data sources (such as an enterprise data
warehouse) with data from elsewhere, often
external. By empowering users to build their own
BI visualizations, IT professionals free themselves
to focus on maintaining business-critical systems
and implementing new solutions. Business users are not forced to wait for IT to have available resources
to support fast-moving BI requirements.

Some of the external data sources that business users want to include in mash-up analyses can contain
massive volumes of data in a variety of formats. To make analysis of these sources possible, organizations
are increasingly using specialist Big Data technologies to process data and generate the datasets that
users need for their analysis. In some cases, technically sophisticated business users and specialist data
analysts might use these Big Data tools directly. In other situations, the IT department might implement a
Big Data processing solution, from which business users can obtain the resulting datasets.

 Additional Reading: To learn how to support self-service BI and Big Data solutions, you
should attend course 20467C, Designing Self-Service BI and Big Data Solutions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-9

Using Excel as a Self-Service BI Tool

Excel is a well-established BI tool that data analysts
and information workers use to create workbook-
based applications to support business activities.
You can use Excel to connect to Analysis Services
data models, and explore the data that they
contain, by creating PivotTable tables and
PivotChart charts. PivotTable tables enable you to
display data as a table, a matrix, or as a
combination of the two. In a PivotTable table, you
can expand and collapse data, color code values to
highlight them, and use a range of formatting
options to render the data as you require. You can
use PivotChart charts to add graphical elements to a data analysis report, such as a column or pie chart.

PowerPivot
The PowerPivot for Excel add-in extends the capabilities of Excel as a data analysis tool by enabling you to
create a tabular data model that stores data in the workbook. This approach enables you to perform
complex calculations offline, and with excellent performance, even for very large data sets. PowerPivot for
Excel adds the PowerPivot ribbon to the Excel interface, from which you can launch the PowerPivot
window to create database connections, manage tables, and create DAX measures and calculated
columns. In addition to creating PivotTable tables and PivotChart charts, you can add slicers, which enable
you to group and sort data with just a few clicks. The key features of PowerPivot for Excel include:

 Fast response times when performing complex analyses, even for very large datasets.

 Minimal memory footprint due to the VertiPaq storage engine.

 Advanced features such as hierarchies, perspectives, and relationship management.

 The ability to create custom measures and calculated columns by using DAX.

 The ability to scale up the workbook to a departmental solution by using it as a template for a new
SQL Server Analysis Services Tabular project.

SharePoint Server provides a central, managed portal through which analysts can securely share and
collaborate on their PowerPivot for Excel workbooks. Sharing PowerPivot workbooks in SharePoint sites
enables users to locate the workbooks they need, and reduces the effort wasted in creating duplicates
because they did not realize that a similar workbook already existed. PowerPivot for SharePoint helps
administrators to establish governance over workbooks, which might be stored on the computers of many
different users throughout an organization. It also makes it easier to provision appropriate resources to
optimize application performance.

Power Query
Power Query is an add-in for Excel that enables users to find and query data in a wide range of sources.
Power Query is can be used as a stand-alone add-in in Microsoft® Excel®, and adds the ability to share
queries and manage corporate data sources when used with a Power BI for Microsoft® Office 365™
subscription. With Power Query, business users can:

 Find and import data from external sources.

 Search public data.

 Combine and shape data from multiple sources.

 Filter, sort, and group data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-10 Consuming Data in a Data Warehouse

The results of a query can be displayed in an Excel worksheet or loaded into a workbook data model, and
refined using PowerPivot.

Power View
Power View is a data visualization application that enables you to interactively explore data and create
reports with a strong visual impact. You can create Power View reports by choosing from a range of charts
and tables, which are called visualizations. These include bar charts, column charts, line charts, scatter
charts, cards, tiles, tables, and matrices, which you can use to display data in many ways. You can include
images and animations to enhance the appearance of a report and make it easier to understand, adding
interactive elements that enable you to update a report with a single click. For example, you can create
tiled images that represent different categories of products. When you click on one of these images, the
report updates to display the data for that category.

Power View reports are very easy to create, and the UI is simple and intuitive. When you select a field or
measure to add to a visualization, the application automatically uses it in the chart in the most
appropriate way. For example, when you select a field, Power View might add it to the X axis, use it as a
measure value, or use it as a chart series. This behavior speeds up the time it takes to build meaningful
reports, and makes it easier for inexperienced users to get started with data exploration. Modifying
reports is also very easy, as you can drag visualizations to move and resize them, and replace fields and
measures in existing visualizations with just two or three clicks. Power View will automatically display the
recalculated values based on the modifications that you make.

Power Map
Power Map is a Microsoft® Excel® add-in that enables users to render data values with a geographical
dimension on a map and use animation techniques to explore the data visually. For example, you could
use Power Map to compare data aggregations such as sales volume by country, average property value
by postal code, or population by city. Additionally, you can display the geographical data aggregations
over time, enabling you to see how values changed or grew during a specific period. Users can view the
Power Map visualizations directly in the Excel workbook, or they can be exported as a video.

Report Builder and Power View in SharePoint Server

In addition to creating personal or shared data
models that support data analysis in Excel,
business users often want to create reports and
data visualizations that they can print or distribute.
To support this requirement, SQL Server Reporting
Services provides Report Builder, a report creation
tool specifically designed for business users, and
Power View in SharePoint server, an interactive
data visualization tool.

Report Builder
While the Report Designer interface in the SQL
Server Data Tools for Business Intelligence
Microsoft® Visual Studio® add-in provides a comprehensive report authoring environment for BI
specialists, it includes many features that are relevant only to professional developers. Business users who
are more familiar with productivity software packages, such as Microsoft® Office® applications, can find
the Visual Studio interface distracting or even intimidating.

Report Builder is a report authoring tool that combines many Report Designer features with the familiar
ribbon-based interface of Microsoft® Office®. It is designed specifically for business users, and is the

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-11

primary report authoring tool for self-service reporting scenarios. With Report Builder, business users can
create and edit reports as easily as they can work with other kinds of business document, publishing their
reports to Report Manager or Microsoft® SharePoint® document libraries.

Report Builder supports the same report features as Report Designer, including:

 Rich formatting.

 Tablix data regions for table, matrix, and list reports.

 Groups, aggregations, and drill-down interactions.

 Charts and images.

 Parameters.

To help users create their own reports, BI professionals can define shared data sources, shared datasets,
and report parts that business users can use as building blocks when creating their own reports.

Power View in SharePoint Server
When SQL Server Reporting Services is installed in SharePoint integrated mode, you can enable the Power
View SharePoint application so users can create dynamic data visualizations directly in the web browser.
Power View reports are very easy to create, and the UI is simple and intuitive, making it easier for
inexperienced users to get started with data exploration. Data sources for Power View in SharePoint Server
include PowerPivot workbooks, tabular Analysis Services databases, and multidimensional Analysis
Services cubes. These enable business users to create self-service data visualizations from their own mash-
up data models and managed enterprise data models. Power View visualizations can be saved in
SharePoint server as reports that other users can view and extend, or as PowerPoint presentations that can
be used to bring live data visualizations to a meeting.

Big Data

Organizations, individuals, services, and devices
generate an ever-increasing volume of data at an
ever- increasing rate. The growth of trends like
social media, the use of digital devices for
photography and video capture, and the use of
profile data to personalize user experiences and
content, has led to a massive expansion of data
processing requirements for business
organizations and Internet services.

What is Big Data?
The term “Big Data” is used to describe data too
large or complex to manage and process in a
traditional relational database or data warehouse. While database systems such as Microsoft® SQL
Server® 2014 are designed to handle terabytes of data that can be normalized into a relational schema,
many organizations find themselves needing to process petabytes of data in multiple, non-relational
formats.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-12 Consuming Data in a Data Warehouse

Big Data is typified by the so-called “three Vs” definition, in which a data processing problem is defined as
a Big Data scenario if the data meets one or more of the following classifications:

 Volume. A huge volume of data must be processed, typically hundreds of terabytes or more.

 Variety. The data is unstructured, or consists of a mix of structured and unstructured data in many
formats.

 Velocity. New data is generated at frequent intervals, often as a constant stream of data values.
These values can be captured in real time using a technology such as Microsoft® SQL Server®
StreamInsight, and then analyzed.

Some examples of typical Big Data problems include:

 Analyzing web server logs for high-traffic web sites.

 Extracting data from social media streams to enable sentiment analysis.

 Processing high volumes of data generated by sensors or devices to detect anomalies.

Microsoft Technologies for Big Data
Microsoft has responded to the demand for Big Data solutions by creating two products that support the
storage and analysis of large volumes of data. These products are SQL Server Parallel Data Warehouse,
and Windows Azure™ HDInsight.

SQL Server Parallel Data Warehouse
Microsoft® SQL Server® Parallel Data Warehouse is an edition of SQL Server that is only available as a
preinstalled and configured solution in enterprise data warehouse appliances from Microsoft and its
hardware partners. Parallel Data Warehouse is designed specifically for extremely large-scale data
warehouses needing to store and query hundreds of terabytes of data.

A Parallel Data Warehouse appliance consists of a server that acts as the control node, and multiple
servers that operate as compute and storage nodes. Each compute node has its own dedicated processors
and memory, and is associated with a dedicated storage node. A high-performance network connects the
nodes, and dual fiber channels link up the compute and storage nodes. The control node intercepts
incoming queries, divides each query into multiple smaller operations, and then passes these on to the
compute nodes to process. Each compute node returns the results back to the control node. The control
node integrates the data to create a result set, which it then returns to the client.

Control nodes are housed in a control rack. There are three other types of nodes that share this rack with
the control node:

 Management nodes, through which administrators manage the appliance.

 Landing Zone nodes, which act as staging areas for data that you load into the data warehouse by
using an ETL tool.

 Backup nodes, which back up the data warehouse.

Compute and storage nodes are housed in a separate data rack. To scale the application, you can add
more racks as required. Hardware components are duplicated, including control and compute nodes, to
provide redundancy.

SQL Server Parallel Data Warehouse is a suitable Big Data solution for large organizations that need to
create on-premises enterprise data warehouses for ongoing data analysis and reporting.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-13

Windows Azure™ HDInsight

HDInsight is a cloud-based distribution of Hadoop, and an open source platform for processing Big Data
by using a Map/Reduce technique in which the data processing is distributed across multiple nodes in a
cluster. The HDFS storage for HDInsight is based on Windows Azure™ blob storage. You can provision and
decommission multi-node HDInsight clusters on an as-needed basis to perform Map/Reduce processing
of data files in the associated Windows Azure™ Storage containers.

HDInsight supports the core HDFS and Map/Reduce capabilities of Hadoop, as well as related
technologies including Hive, Pig, HCatalog, and Oozie. Additionally, an HDInsight SDK for Microsoft®
.NET is available that enables developers to create Big Data processing applications that leverage
HDInsight and other Windows Azure™ services.

HDInsight is a suitable Big Data solution for organizations needing to process large volumes of data as
part of a specific, time-limited initiative or on an occasional basis, paying only for the processing services
actually used.

PolyBase
When an organization needs to use both SQL Server Parallel Data Warehouse and Windows Azure™
HDInsight, they can use the PolyBase capabilities of Parallel Data Warehouse to create an integrated Big
Data processing solution. PolyBase enables you to define tables in SQL Server Parallel Data Warehouse
that reference data in HDInsight, so you can query both SQL Server tables and data in HDFS using
Transact-SQL syntax. Additionally, PolyBase supports a hybrid storage technique in which frequently
accessed (or “hot”) data can be stored in SQL Server tables, while less used (or “cold”) data can reside in
HDFS. PolyBase intelligently uses the appropriate query engine (SQL Server or HDInsight Map/Reduce) to
service client queries, so that client applications do not need to be aware of the actual storage location of
the data.

Microsoft® Office 365® Power BI

Power BI for Office 365 builds on the self-service
features provided by PowerPivot, Power Query,
Power View, and Power Map to create a
collaborative environment where business users
can share data visualizations and queries. Shared
data can also be explored here using natural
language query semantics.

Key elements of Power BI for Office 365 include:

 Power BI Sites. SharePoint Online sites where
users can share workbooks and Power View
visualizations.

 Power BI Q&A. A SharePoint site where users can create visualizations from PowerPivot workbooks
using natural language queries.

 Data Management Gateway. A service application that enables organizations to make on-premises
data sources available to Power BI cloud services.

 Shared Queries. Power Query is used to define queries that individuals can then share with other
Office 365 Power BI users in their organization.

 The Power BI Windows Store app. An app for Windows that enables users to view reports on
mobile devices.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-14 Consuming Data in a Data Warehouse

Power BI for Office 365 provides the following two web-based portals for managing the service:

 The Power BI Admin Center. Administrators can use this portal to define data sources, register data
management gateways, manage user roles, and monitor service health statistics.

 The Manage Data Portal. Business users can use this portal to manage their own shared queries and
data sources, and view usage analytics for the queries they have shared.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-15

Lab: Using a Data Warehouse
Scenario
In this course, you have created a complete data warehousing solution for the Adventure Works Cycles
company. Now you can explore the kinds of BI applications that can be built on the data warehouse.

This lab provides a high-level introduction to some of the ways in which the data warehouse you have
built can provide business users with the information they need to perform effectively. You will explore an
enterprise BI solution that consists of an SSAS data model and SSRS reports, and use Excel to perform self-
service BI analysis. The underlying data for all these BI activities is provided by the data warehouse you
have built in this course.

Objectives
After completing this lab, you will be able to:

 View data from a data warehouse in an enterprise BI solution.

 Use a data warehouse in a self-service BI solution.

Estimated Time: 45 minutes

Virtual machine: 20463C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Exploring an Enterprise BI Solution

Scenario
You have created a data warehouse, and now want to deploy a proof of concept for an enterprise BI
solution.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View an Enterprise Data Model

3. View Enterprise Reports

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab13\Starter folder as Administrator.

 Task 2: View an Enterprise Data Model
1. Start Visual Studio and open the AW Enterprise BI.sln solution in the D:\Labfiles\Lab13\Starter

folder. If you are prompted to specify a workspace database, specify localhost\SQL2.

2. View the Model.bim data model in the AWDataModel project, noting that it contains tables of data
from the data warehouse.

3. View the diagram view for the model, noting the relationships that are defined between the tables.

4. View the measures in the Reseller Sales table, noting that a KPI is defined on the Reseller Margin
measure. The KPI compares the Reseller Margin measure to a target of 0.5, indicating that
Adventure Works Cycles seeks to achieve a 50 percent margin on reseller sales.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-16 Consuming Data in a Data Warehouse

5. View the project properties for the AWDataModel project, noting that the data model is configured
to be deployed as a cube named AdventureWorks in a database called AWOLAP.

6. Deploy the AWDataModel project, specifying the impersonation credentials
ADVENTUREWORKS\ServiceAcct with the password Pa$$w0rd if prompted.

7. Start Excel and create a blank workbook, and on the Data tab, get external data from the
AdventureWorks in a database named AWOLAP and import it into a PivotTable report.

8. In the PivotTable report, view the Internet Sales and Reseller Sales measures and KPIs.

9. Add the Calendar Date hierarchy from the Order Date table and the Location hierarchy from the
Geography table. Then expand the years and locations to drill down into the detailed results for
specific time periods and locations.

10. When you have finished exploring the data, close Excel without saving the workbook.

 Task 3: View Enterprise Reports
1. In Visual Studio, in the AW Enterprise BI.sln solution, note the following shared data sources in the

AWReports project:

o AWDataWarehouse.rds: This data source connects to the AWDataWarehouse SQL Server
database.

o AWOLAP.rds: This data source connects to the AWOLAP Analysis Services database.

2. View the Dashboard.rdl report, and note that it contains visualizations for various business metrics.
The report uses a hidden parameter named Year to filter the data so that only the data for the latest
year is shown.

3. View the Monthly Sales Report.rdl report, and note that this report provides details of sales
performance for a specific month, which is determined by two parameters named Year and Month.

4. Deploy the AWReports project and close Visual Studio.

5. Use Internet Explorer® to browse to the Adventure Works Portal SharePoint Server site at
http://mia-sql/sites/adventureworks. Then view the Dashboard report in the Reports document
library.

6. View the Monthly Sales Report in the Reports document library, and export it to Microsoft®
Word®.

Results: After this exercise, you should have deployed an Analysis Services database and some Reporting
Services reports in SharePoint Server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-17

Exercise 2: Exploring a Self-Service BI Solution

Scenario
You have seen how the data warehouse can be used in an enterprise BI solution, and you now want to
explore how the data warehouse can support a self-service BI solution. Initially you need to create a report
showing the top 10 products sold through the Internet. Then you want to combine some gasoline price
data from the Internet with data in the data warehouse to create a custom data model that will enable
you to visually compare sales in different regions based on prices.

The main tasks for this exercise are as follows:

1. Use Report Builder to Create a Report

2. Use Excel to Create a Data Model

3. Use Excel to Visualize Data

 Task 1: Use Report Builder to Create a Report
1. In Internet Explorer®, in the Reports page of the Adventure Works Portal SharePoint Server site, click

the Files tab on the ribbon, and in the New Document drop-down list, click Report Builder Report.
Then download and run the application.

2. In Report Builder, use the Table or Matrix Wizard to create a new report.

o The report should include a new dataset based on the existing AWDataWarehouse.rsds shared
data source, which is in the Reports\Data Sources folder in the SharePoint Server site.

o The dataset should show the top 10 selling products based on the sum of the OrderQuantity
column in the FactInternetSales table grouped by the ProductName column from the
DimProduct table. You can use the following Transact-SQL code for the query:

SELECT TOP 10 DimProduct.ProductName, SUM(FactInternetSales.OrderQuantity) AS SalesCount
FROM DimProduct INNER JOIN FactInternetSales
ON DimProduct.ProductKey = FactInternetSales.ProductKey
GROUP BY DimProduct.ProductName
ORDER BY SalesCount DESC;

o Both fields in the dataset should be displayed in the Values area of the report.

3. When the report has been created, add the title Top 10 Internet Sellers, and format the report to
your satisfaction. You can preview it by clicking Run.

4. Save the report as Top 10 Sellers.rdl in the Reports folder in the SharePoint Server site.

5. Close Report Builder and use Internet Explorer to view the Top 10 Sellers report.

 Task 2: Use Excel to Create a Data Model
1. Create a new, blank Excel workbook and save it as Analysis.xslx in the D:\Labfiles\Lab13\Start folder.

2. Enable the following COM add-ins:

o Microsoft Office PowerPivot for Excel 2013

o Microsoft Power Query for Excel

3. Use PowerPivot to manage the workbook data model and import the following tables from the
AWDataWarehouse database on the MIA-SQL instance of SQL Server, specifying the friendly names
indicated:

o DimCustomer (Customer)

o DimGeography (Geography)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-18 Consuming Data in a Data Warehouse

o FactInternetSales (Internet Sales)

4. View the design of the data model and verify that the relationships between the tables have been
automatically detected.

5. In Excel, use Power Query to import the data from Sheet1 in the GasPrices.xlsx workbook in the
D:\Labfiles\Lab13\Starter folder.

6. Edit the query created by Power Query to shape the data as follows:

o Filter the Country/Region column so that only rows for Australia, France, Germany, United
Kingdom, and United States are included.

o Rename the US$/US gallon (95 RON) column to Price per Gallon.

o Change the data type of the Price per Gallon column to Number.

o Name the query Gas Prices.

o Do not load the query results to the worksheet, but instead load them to the data model.

7. Use PowerPivot to modify the data model and create a relationship that joins the Gas Prices table to
the Geography table based on the Country/Region and CountryRegionName columns.

8. Create a PivotTable that shows the Country/Territory and Price per Gallon fields from the Gas
Prices table with the SalesAmount field from the Internet Sales table. Then save the workbook.

 Task 3: Use Excel to Visualize Data
1. In Excel, in the Analysis.xlsx workbook, enable the Power View COM add-in.

2. Insert a Power View report with the title Sale By Geography.

3. In the top half of the Power View report, create a stacked column chart that shows the sum of the
SalesAmount field in the Internet Sales table by the CountryRegionName field in the Geography
table.

4. In the bottom half of the Power View report, create a clustered bar chart that shows the Price per
Gallon and average SalesAmount for each Country/Region in the Gas Prices table.

5. Click bars in the bar chart and note that the relationship between the tables causes the rest of the
chart to be filtered based on the country/region that you clicked.

6. Save the workbook and close Excel.

Results: After this exercise, you should have a report named Top Sellers and an Excel workbook called
Analysis.xslx.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Implementing a Data Warehouse with Microsoft® SQL Server® 13-19

Module Review and Takeaways
In this module, you have learned how enterprise and self-service BI solutions can use a data warehouse.

Review Question(s)
Question: What are some of the issues you need to consider when designing a data
warehouse that must support self-service BI?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
13-20 Consuming Data in a Data Warehouse

Course Evaluation

Your evaluation of this course will help Microsoft understand the quality of your learning experience.

Please work with your training provider to access the course evaluation form.

Microsoft will keep your answers to this survey private and confidential and will use your responses to
improve your future learning experience. Your open and honest feedback is valuable and appreciated.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-1

Module 1: Introduction to Data Warehousing

Lab: Exploring a Data Warehousing Solution
Exercise 1: Exploring Data Sources

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab01\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: View the Solution Architecture
1. In the D:\Labfiles\Lab01\Starter folder, double-click Adventure Works DW Solution.jpg to open it

in Paint.

2. Examine the diagram, and note that it shows several data sources on the left, which provide the
source data for the data warehouse. You will examine these data sources in the remainder of this
exercise.

Note: In addition to the data sources that you will examine in this lab, the diagram includes a Microsoft®
SQL Server® Master Data Services model for product data and a SQL Server Data Quality Services task to
cleanse data as it is staged. These elements form part of the complete solution for the lab scenario in this
course, but they are not present in this lab.

3. Minimize Paint. You will return to it in the next exercise.

 Task 3: View the Internet Sales Data Source
1. Start SQL Server Management Studio, and when prompted, connect to the MIA-SQL database engine

instance using Windows authentication.

2. Open the View Internet Sales.sql query file in the D:\Labfiles\Lab01\Starter folder.

3. Click Execute to run the query. When the query completes, review the results and note that this data
source contains data about customers and the orders they have placed through the Adventure Works
e-commerce website.

4. Keep SQL Server Management Studio open for the next task.

 Task 4: View the Reseller Sales Data Source
1. In SQL Server Management Studio, open the View Reseller Sales.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Click Execute to run the query. When the query completes, review the results and note that this data
source contains data about resellers and the orders they have placed through Adventure Works
reseller account managers.

3. Keep SQL Server Management Studio open for the next task.

 Task 5: View the Products Data Source
1. In SQL Server Management Studio, open the View Products.sql query file in the

D:\Labfiles\Lab01\Starter folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-2 Implementing a Data Warehouse with Microsoft® SQL Server®

2. Click Execute to run the query. When the query completes, review the results and note that this
source contains data about products that Adventure Works sells, organized into categories and
subcategories.

3. Keep SQL Server Management Studio open for the next task.

 Task 6: View the Human Resources Data Source
1. In SQL Server Management Studio, open the View Employees.sql query file the

D:\Labfiles\Lab01\Starter folder.

2. Click Execute to run the query. When the query completes, review the results and note that this
source contains data about employees, including the sales representatives associated with reseller
sales.

3. Minimize SQL Server Management Studio. You will return to it later in this exercise.

 Task 7: View the Accounts Data Source
1. View the contents of the D:\Accounts folder that contains several comma-delimited text files.

2. Start Excel, and use it to open the Payments – AU.csv file in the D:\Accounts folder.

3. Review the file contents and note that it contains data about reseller payments processed by the
Adventure Works accounting system. Each file in the Accounts folder relates to payments made by
resellers in a specific country.

4. Close Excel without saving any changes.

 Task 8: View the Staging Database
1. Restore SQL Server Management Studio.

2. In Object Explorer, expand Databases, expand Staging, and then expand Tables.

3. Right-click the dbo.Customers table, and then click Select Top 1000 Rows. When the query
completes, note that this table is empty.

4. Repeat the previous step to verify that the dbo.EmployeeDeletes, dbo.EmployeeInserts,
dbo.EmployeeUpdates, dbo.InternetSales, dbo.Payments, dbo.Resellers, and dbo.ResellerSales
tables are also empty.

Note: The dbo.ExtractLog table contains data that is used to track data extractions from the Internet
Sales and Reseller Sales data sources.

5. Minimize SQL Server Management Studio. You will return to it in the next exercise.

Results: After this exercise, you should have viewed data in the InternetSales, ResellerSales, Human
Resources, and Products SQL Server databases, viewed payments data in comma-delimited files, and
viewed an empty staging database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-3

Exercise 2: Exploring an ETL Process

 Task 1: View the Solution Architecture
1. Maximize Paint and view the solution architecture diagram.

2. Note that the ETL solution consists of two main phases: a process to extract data from the various
data sources and load it into a staging database, and another to load the data in the staging database
into the data warehouse. In this exercise, you will observe these ETL processes as they run.

3. Minimize Paint. You will return to it in the next exercise.

 Task 2: Run the ETL Staging Process
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab01\Starter

folder.

2. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer. If necessary,
click the pin icon to freeze it in position.

3. In Solution Explorer, in the SSIS Packages folder, double-click Stage Data.dtsx to open it. Note that
the staging process consists of five tasks:

o Stage Internet Sales

o Stage Reseller Sales

o Stage Payments

o Stage Employees

o Notify Completion

4. On the Debug menu, click Start Debugging, and then observe that the staging process runs a SQL
Server Integration Services package for each task.

5. When the message Staging process complete is displayed, click OK, and then on the Debug menu,
click Stop Debugging. Note that the message box may be hidden by the Visual Studio window. Look
for a new icon on the taskbar, and then click it to bring the message box to the front.

6. Minimize Visual Studio. You will return to it later in this exercise.

 Task 3: View the Staged Data
1. Restore SQL Server Management Studio.

2. If necessary, in Object Explorer, expand Databases, expand Staging, and then expand Tables.

3. Right-click the dbo.Customers table, and then click Select Top 1000 Rows. When the query
completes, note that this table now contains data that the ETL process has extracted from the data
source.

4. Repeat the previous step to verify that the dbo.EmployeeInserts, dbo.InternetSales,
dbo.Payments, dbo.Resellers, and dbo.ResellerSales tables also contain staged data.

5. Minimize SQL Server Management Studio. You will return to it later in this exercise.

 Task 4: Run the ETL Data Warehouse Load Process
1. Restore Visual Studio.

2. In Solution Explorer, in the SSIS Packages folder, double-click Load DW.dtsx to open it. Note that the
data warehouse loading process consists of a sequence of tasks to load various dimensions and facts,
followed by a task to determine the number of records loaded from each staging table before
truncating the staging tables, and a task to log the row counts.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-4 Implementing a Data Warehouse with Microsoft® SQL Server®

3. On the Debug menu, click Start Debugging, and then observe that the data warehouse loading
process runs an SSIS package for the dimension or fact table to be loaded. The process may take
several minutes to complete.

4. When the message Data warehouse load complete is displayed, click OK, and then on the Debug
menu, click Stop Debugging. Note that the message box may be hidden by the Visual Studio
window. Look for a new icon on the taskbar, and then click it to bring the message box to the front.

5. Close Visual Studio.

Results: After this exercise, you should have viewed and run the SQL Server Integration Services packages
that perform the ETL process for the Adventure Works data warehousing solution.

Exercise 3: Exploring a Data Warehouse

 Task 1: View the Solution Architecture
1. Maximize Paint and view the solution architecture diagram.

2. Note that the data warehouse provides a central data source for business reporting and analysis.

3. Close Paint without saving any changes.

 Task 2: Query the Data Warehouse
1. Restore SQL Server Management Studio, and open the Query DW.sql query file in the

D:\Labfiles\Lab01\Starter folder.

2. Click Execute to run the query. When the query completes, review the results and note that the query
uses the data warehouse to retrieve:

o Total sales for each country by fiscal year.

o Total units sold for each product category by calendar year.

3. Close SQL Server Management Studio without saving any changes.

Results: After this exercise, you should have successfully retrieved business information from the data
warehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-1

Module 2: Planning Data Warehouse Infrastructure

Lab: Planning Data Warehouse
Infrastructure
Exercise 1: Planning Data Warehouse Hardware

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab02\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: Measure Maximum Consumption Rate
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. In SQL Server Management Studio, open the Create BenchmarkDB.sql query file in the
D:\Labfiles\Lab02\Starter folder.

3. Click Execute, and wait for query execution to complete.

4. In SQL Server Management Studio, open the Measure MCR.sql query file in the
D:\Labfiles\Lab02\Starter folder.

5. Click Execute, and wait for query execution to complete.

6. In the results pane, click the Messages tab.

7. Add the logical reads value for the two queries together, and then divide the result by two to find
the average.

8. Add the CPU time value for the two queries together, and then divide the result by two to find the
average. Divide the result by 100 to convert it to seconds.

9. Calculate MCR by using the following formula:

(average logical reads / average CPU time) * 8 / 1024

10. Calculate the number of cores required to support a workload with an average query size of 500 MB,
10 concurrent users, and a target response time of 20 seconds:

((500 / MCR) * 10) / 20

11. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-2 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 3: Estimate Server Hardware Requirements
1. In the D:\Labfiles\Lab02\Starter folder, double-click DW Hardware Spec.xlsx to open it in Microsoft

Excel®.

2. In cell F1, use the following formula to calculate the number of cores required for the given workload
figures:

=((B6/C3)*B7)/B8

3. Based on the results of the preceding formula, recommend the number and type of processors to
include in the data warehouse server.

4. Calculate the volume of fact data in gigabytes (estimated fact rows multiplied by bytes per row,
divided by 100,000), and add 50 GB for indexes and dimensions. Then divide the result by three to
allow for a 3:1 compression ratio. The resulting figure is the required data storage.

5. Add 50 GB each for log space, TempDB storage, and staging data to calculate the total data volume.

6. Assuming an annual data growth of 150 GB, calculate the required storage capacity in three years.

7. Based on the data volume and CPU requirements, suggest a suitable amount of memory for the
server.

8. In the D:\Labfiles\Lab02\Starter folder, double-click Storage Options.docx and review the available
options for storage hardware. Then, based on the storage requirements you have calculated, select a
suitable option for the data warehouse.

9. Record your recommendations in DW Hardware Spec.xlsx, and then close Excel and Word, saving
your changes.

Results: After this exercise, you should have a completed worksheet that specifies the required hardware
for your data warehouse server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-1

Module 3: Designing and Implementing a Data Warehouse

Lab: Implementing a Data Warehouse
Exercise 1: Implement a Star Schema

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab03\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: View a Data Warehouse Schema
1. Start SQL Server Management Studio and connect to the MIA-SQL instance of the SQL Server

database engine using Windows authentication.

2. In Object Explorer, expand Databases, expand AWDataWarehouse, and then expand Tables. Note
that the database contains four tables.

3. Right-click the Database Diagrams folder, and then click New Database Diagram. If you are
prompted to create the required support objects, click Yes.

4. In the Add Table dialog box, click each table while holding down the Ctrl key to select them all, click
Add, and then click Close.

5. In the database diagram, click each table while holding down the Ctrl key to select them all.

6. On the toolbar, in the Table View drop-down list, click Standard.

7. Arrange the tables and adjust the zoom level so you can see the entire database schema, and then
examine the tables, noting the columns that they contain.

8. Note that the FactResellerSales table contains foreign key columns that relate it to the DimReseller,
DimEmployee, and DimProduct tables. It also contains some numerical measures that can be
aggregated to provide useful business information, such as the total sales amount per reseller or the
total quantity of units sold per product.

9. On the File menu, click Save Diagram_0, enter the name AWDataWarehouse Schema, and then
click OK.

 Task 3: Create a Dimension Table
1. In Microsoft SQL Server Management Studio, open the DimCustomer.sql query file in the

D:\Labfiles\Lab03\Starter folder.

2. Review the Transact-SQL code, noting that it creates a table named DimCustomer in the
AWDataWarehouse database.

3. Click Execute to create the table.

 Task 4: Create a Fact Table
1. In Microsoft SQL Server Management Studio, open the FactInternetSales.sql query file in the

D:\Labfiles\Lab03\Starter folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-2 Implementing a Data Warehouse with Microsoft® SQL Server®

2. Review the Transact-SQL code, noting that it creates a table named FactInternetSales in the
AWDataWarehouse database, and that this table is related to the DimCustomer and DimProduct
tables.

3. Click Execute to create the table.

 Task 5: View the Revised Data Warehouse Schema
1. In SQL Server Management Studio, view the database diagram window that you opened previously.

2. On the Database Diagram menu, click Add Table.

3. In the Add Table dialog box, click Refresh, select the DimCustomer and FactInternetSales tables,
click Add, and then click Close.

4. Select each of the new tables and then on the toolbar, in the Table View drop-down list, click
Standard.

5. Arrange the tables and adjust the zoom level so that you can see the entire database schema.

6. On the File menu, click Save AWDataWarehouse Schema.

7. Keep SQL Server Management Studio open. You will return to it in the next exercise.

Results: After this exercise, you should have a database diagram in the AWDataWarehouse database
that shows a star schema consisting of two fact tables (FactResellerSales and FactInternetSales) and
four dimension tables (DimReseller, DimEmployee, DimProduct, and DimCustomer).

Exercise 2: Implementing a Snowflake Schema

 Task 1: Create Dimension Tables That Form a Hierarchy
1. In Microsoft SQL Server Management Studio, open the DimProductCategory.sql query file in the

D:\Labfiles\Lab03\Starter folder.

2. Review the Transact-SQL code, noting that it:

o Creates a table named DimProductCategory.

o Creates a table named DimProductSubcategory that has a foreign-key relationship to the
DimProductCategory table.

o Drops the ProductSubcategoryName and ProductCategoryName columns from the
DimProduct table.

o Adds a ProductSubcategoryKey column to the DimProduct table that has a foreign-key
relationship to the DimProductSubcategory table.

3. Click Execute to create the tables.

 Task 2: Create a Shared Dimension table
1. In Microsoft SQL Server Management Studio, open the DimGeography.sql query file in the

D:\Labfiles\Lab03\Starter folder.

2. Review the Transact-SQL code, noting that it:

o Creates a table named DimGeography.

o Drops the City, StateProvinceName, CountryRegionCode, CountryRegionName, and
PostalCode columns from the DimReseller table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-3

o Adds a GeographyKey column to the DimReseller table that has a foreign-key relationship to
the DimGeography table.

o Drops the City, StateProvinceName, CountryRegionCode, CountryRegionName, and
PostalCode columns from the DimCustomer table.

o Adds a GeographyKey column to the DimCustomer table that has a foreign-key relationship to
the DimGeography table.

3. Click Execute to create the table.

 Task 3: View the Data Warehouse Schema
1. In SQL Server Management Studio, view the database diagram window that you opened previously.

2. Select the DimProduct, DimReseller, and DimCustomer tables, and then press Delete to remove
them from the diagram (this does not drop the tables from the database).

3. On the Database Diagram menu, click Add Table.

4. In the Add Table dialog box, click Refresh, select the DimCustomer, DimGeography, DimProduct,
DimProductCategory, DimProductSubcategory, and DimReseller tables, click Add, and then click
Close.

5. Select each of the new tables and then on the toolbar, in the Table View drop-down list, click
Standard.

6. Arrange the tables and adjust the zoom level so that you can see the entire database schema.

7. On the File menu, click Save AWDataWarehouse Schema.

8. Keep SQL Server Management Studio open. You will return to it in the next exercise.

Results: After this exercise, you should have a database diagram in the AWDataWarehouse database
showing a snowflake schema that contains a dimension consisting of a DimProduct,
DimProductSubcategory, and DimProductCategory hierarchy of tables, as well as a DimGeography
dimension table that is referenced by the DimCustomer and DimReseller dimension tables.

Exercise 3: Implementing a Time Dimension Table

 Task 1: Create a Time Dimension Table
1. In Microsoft® SQL Server® Management Studio, open the DimDate.sql query file in the

D:\Labfiles\Lab03\Starter folder.

2. Review the Transact-SQL code, noting that it:

o Creates a table named DimDate.

o Adds OrderDateKey and ShipDateKey columns to the FactInternetSales and FactResellerSales
tables that have foreign-key relationships to the DimDate table.

o Creates indexes on the OrderDateKey and ShipDateKey foreign-key fields in the
FactInternetSales and FactResellerSales tables.

3. Click Execute to create the table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-4 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 2: View the Database Schema
1. In SQL Server Management Studio, view the database diagram window that you opened previously.

2. Select the FactResellerSales and FactInternetSales tables, and then press Delete to remove them
from the diagram (this does not drop the tables from the database).

3. On the Database Diagram menu, click Add Table.

4. In the Add Table dialog box, click Refresh, select the DimDate, FactInternetSales, and
FactResellerSales tables, click Add, and then click Close.

5. Select each of the new tables and then on the toolbar, in the Table View drop-down list, click
Standard.

6. Arrange the tables and adjust the zoom level so you can see the entire database schema.

7. On the File menu, click Save AWDataWarehouse Schema.

 Task 3: Populate the Time Dimension Table
1. In Microsoft SQL Server Management Studio, open the GenerateDates.sql query file in the

D:\Labfiles\Lab03\Starter folder.

2. Review the Transact-SQL code, noting that it:

o Declares a variable named @StartDate with the value 1/1/2000, and a variable named
@EndDate with the value of the current date.

o Performs a loop to insert appropriate values for each date between @StartDate and @EndDate
into the DimDate table.

3. Click Execute to populate the table.

4. When the script has completed, in Object Explorer, right-click the Tables folder for the
AWDataWarehouse database, and then click Refresh.

5. Right-click the DimDate table, and then click Select Top 1000 Rows.

6. View the data in the table, noting that it contains appropriate values for each date.

7. Close SQL Server Management Studio, saving changes if you are prompted.

Results: After this exercise, you should have a database that contains a DimDate dimension table that is
populated with date values from January 1, 2000, to the current date.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-1

Module 4: Creating an ETL Solution with SSIS

Lab: Implementing Data Flow in an SSIS
Package
Exercise 1: Exploring Source Data

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab04\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: Extract and View Sample Source Data
1. On the Start screen, type Import and Export and then start the SQL Server 2014 Import and

Export Data (64-bit) app.

2. On the Welcome to SQL Server Import and Export Wizard page, click Next.

3. On the Choose a Data Source page, specify the following options, and then click Next:

o Data source: SQL Server Native Client 11.0

o Server name: localhost

o Authentication: Use Windows Authentication

o Database: InternetSales

4. On the Choose a Destination page, set the following options, and then click Next:

o Destination: Flat File Destination

o File name: D:\Labfiles\Lab04\Starter\Top 1000 Customers.csv

o Locale: English (United States)

o Unicode: Unselected

o Code page: 1252 (ANSI – Latin 1)

o Format: Delimited

o Text qualifier: " (a quotation mark)

o Column names in the first data row: Selected

5. On the Specify Table Copy or Query page, select Write a query to specify the data to transfer,
and then click Next.

6. On the Provide a Source Query page, enter the following Transact-SQL code, and then click Next:

SELECT TOP 1000 * FROM Customers

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-2 Implementing a Data Warehouse with Microsoft® SQL Server®

7. On the Configure Flat File Destination page, select the following options, and then click Next:

o Source query: [Query]

o Row delimiter: {CR}{LF}

o Column delimiter: Comma {,}

8. On the Save and Run Package page, select only Run immediately, and then click Next.

9. On the Complete the Wizard page, click Finish.

10. When the data extraction has completed successfully, click Close.

11. Double click to open file Top 1000 Customers.csv in the D:\Labfiles\Lab04\Starter folder.

12. Examine the data, noting the columns that exist in the Customers table and the range of data values
they contain, and then close Excel without saving any changes.

 Task 3: Profile Source Data
1. Start Visual Studio, and on the File menu, point to New, and then click Project.

2. In the New Project dialog box, select the following values, and then click OK:

o Project Template: Integration Services Project

o Name: Explore Internet Sales

o Location: D:\Labfiles\Lab04\Starter

o Create directory for solution: Selected

o Solution name: Explore Internet Sales

3. If the Getting Started (SSIS) window is displayed, close it.

4. In the Solution Explorer pane, right-click Connection Managers, and then click New Connection
Manager.

5. In the Add SSIS Connection Manager dialog box, click ADO.NET, and then click Add.

6. In the Configure ADO.NET Connection Manager dialog box, click New.

7. In the Connection Manager dialog box, enter the following values, and then click OK:

o Server name: localhost

o Log on to the server: Use Windows Authentication

o Select or enter a database name: InternetSales

8. In the Configure ADO.NET Connection Manager dialog box, verify that a data connection named
localhost.InternetSales is listed, and then click OK.

9. If the SSIS Toolbox pane is not visible, on the SSIS menu, click SSIS Toolbox. Then, in the SSIS
Toolbox pane, in the Common section, double-click Data Profiling Task to add it to the Control
Flow surface. Alternatively, you can drag the task icon to the Control Flow surface.

10. Double-click the Data Profiling Task icon on the Control Flow surface to open its editor.

11. In the Data Profiling Task Editor dialog box, on the General tab, in the Destination property value
drop-down list, click <New File connection…>.

12. In the File Connection Manager Editor dialog box, in the Usage type drop-down list, click Create
file.

13. In the File box, type D: \ETL\Internet Sales Data Profile.xml, and then click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-3

14. In the Data Profiling Task Editor dialog box, on the Profile Requests tab, in the Profile Type drop-
down list, select Column Statistics Profile Request, and then click the RequestID column.

15. In the Request Properties pane, set the following property values. Do not click OK when finished:

o ConnectionManager: localhost.InternetSales

o TableOrView: [dbo].[SalesOrderHeader]

o Column: OrderDate

16. In the Data Profiling Task Editor dialog box, on the Profile Requests tab, in the Profile Type drop-
down list for the empty row under the profile you just added, select Column Length Distribution
Profile Request, and then click the RequestID column.

17. In the Request Properties pane, set the following property values. Do not click OK when finished:

o ConnectionManager: localhost.InternetSales

o TableOrView: [dbo].[Customers]

o Column: AddressLine1

o IgnoreLeadingSpaces: False

o IgnoreTrailingSpaces: True

18. In the Data Profiling Task Editor dialog box, on the Profile Requests tab, in the Profile Type drop-
down list for the empty row under the profile you just added, select Column Null Ratio Profile
Request, and then click the RequestID column.

19. In the Request Properties pane, set the following property values. Do not click OK when finished:

o ConnectionManager: localhost.InternetSales

o TableOrView: [dbo].[Customers]

o Column: AddressLine2

20. In the Data Profiling Task Editor dialog box, on the Profile Requests tab, in the Profile Type drop-
down list for the empty row under the profile you just added, select Value Inclusion Profile
Request, and then click the RequestID column.

21. In the Request Properties pane, set the following property values:

o ConnectionManager: localhost.InternetSales

o SubsetTableOrView: [dbo].[SalesOrderHeader]

o SupersetTableOrView: [dbo].[PaymentTypes]

o InclusionColumns:

 Subset side Columns: PaymentType

 Superset side Columns: PaymentTypeKey

o InclusionThresholdSetting: None

o SupersetColumnsKeyThresholdSetting: None

o MaxNumberOfViolations: 100

22. In the Data Profiling Task Editor dialog box, click OK.

23. On the Debug menu, click Start Debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-4 Implementing a Data Warehouse with Microsoft® SQL Server®

24. When the Data Profiling task has completed, with the package still running, double-click the Data
Profiling task, and then click Open Profile Viewer.

25. Maximize the Data Profile Viewer window, and under the [dbo].[SalesOrderHeader] table, click
Column Statistics Profiles. Then review the minimum and maximum values for the OrderDate
column.

26. Under the [dbo].[Customers] table, click Column Length Distribution Profiles and click the
AddressLine1 column to view the statistics. Click the bar chart for any of the column lengths, and
then click the Drill Down button to view the source data that matches the selected column length.

27. Under the [dbo].[Customers] table, click Column Null Ratio Profiles and view the null statistics for
the AddressLine2 column. Select the AddressLine2 column, and then click the Drill Down button to
view the source data.

28. Under the [dbo].[SalesOrderHeader] table, click Inclusion Profiles and review the inclusion
statistics for the PaymentType column. Select the inclusion violation for the payment type value of 0,
and then click the Drill Down button to view the source data.

29. Close the Data Profile Viewer window, and then in the Data Profiling Task Editor dialog box, click
Cancel.

30. On the Debug menu, click Stop Debugging.

31. Close Visual Studio, saving your changes if you are prompted.

Results: After this exercise, you should have a comma-separated text file that contains a sample of
customer data, and a data profile report that shows statistics for data in the InternetSales database.

Exercise 2: Transferring Data by Using a Data Flow Task

 Task 1: Examine an Existing Data Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab04\Starter\Ex2

folder.

2. In the Solution Explorer pane, expand SSIS Packages and double-click Extract Reseller Data.dtsx to
open it in the designer.

3. On the Control Flow surface, note that the package contains two Data Flow tasks.

4. Double-click the Extract Resellers Data Flow task to view it on the Data Flow tab and note that it
contains a data source named Resellers and a data destination named Staging DB.

5. Double-click the Resellers data source, note the following details, and then click Cancel:

o On the Connection Manager page, the data source is configured to use an OLE DB connection
manager named localhost.ResellerSales and extracts data from the [dbo].[Resellers] table.

o On the Columns tab, the data source is configured to retrieve every column from the Resellers
table, and the output columns that the task generates have the same names as the source
columns.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-5

6. Double-click the Staging DB data destination, note the following details, and then click Cancel:

o On the Connection Manager page, the data destination is configured to use an OLE DB
connection manager named localhost.Staging and to use a Table or view - fast load mode to
insert data into the [dbo].[Resellers] table.

o On the Mappings tab, the data destination is configured to map the input columns (which are
the output columns from the Resellers data source) to columns in the destination table. The
order of the columns in the destination is different from the column order in the source, and the
source ResellerKey column is mapped to the ResellerBusinessKey destination column.

7. Right-click anywhere on the Data Flow surface, click Execute Task, and then observe the task as it
runs, noting how many rows are transferred.

8. On the Debug menu, click Stop Debugging.

 Task 2: Create a Data Flow task
1. In Solution Explorer, right-click SSIS Packages, and then click New SSIS Package.

2. Right-click Package1.dtsx, click Rename, and then change the name of the package to Extract
Internet Sales Data.dtsx.

3. With the Extract Internet Sales Data.dtsx package open, and the Control Flow surface visible, in the
SSIS Toolbox pane, double-click Data Flow Task, and then drag the new Data Flow task to the center
of the Control Flow surface.

4. Right-click Data Flow Task on the Control Flow surface, click Rename, and then change the name of
the task to Extract Customers.

5. Double-click the Extract Customers Data Flow task to view the Data Flow surface.

 Task 3: Add a Data Source to a Data Flow
1. In Solution Explorer, right-click Connection Managers, and then click New Connection Manager.

2. In the Add SSIS Connection Manager dialog box, click OLEDB, and then click Add.

3. In the Configure OLE DB Connection Manager dialog box, click New.

4. In the Connection Manager dialog box, enter the following values, and then click OK:

o Server name: localhost

o Log on to the server: Use Windows Authentication

o Select or enter a database name: InternetSales

Note: When you create a connection manager, it is named automatically based on the server and
database name, for example, localhost.InternetSales. If you have previously created a connection
manager for the same database, a name such as localhost.InternetSales1 may be generated.

5. In the Configure OLE DB Connection Manager dialog box, verify that a new data connection is
listed, and then click OK.

6. In the SSIS Toolbox pane, in the Favorites section, double-click Source Assistant.

7. In the Source Assistant - Add New Source dialog box, in the Select source type list, select
SQL Server, in the Select connection manager list, select the connection manager for the
localhost.InternetSales1 database that you created previously, and then click OK.

8. Drag the new OLE DB Source data source to the center of the Data Flow surface, right-click it, click
Rename, and then change the name of the data source to Customers.

9. Double-click the Customers source, set the following configuration values, and then click OK:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-6 Implementing a Data Warehouse with Microsoft® SQL Server®

o On the Connection Manager page, ensure that the OLE DB connection manager for the
localhost.InternetSales database is selected, ensure that the Table or view data access mode is
selected, and then in the Name of the table or the view drop-down list, click
[dbo].[Customers].

o On the Columns tab, ensure that every column from the Customers table is selected, and that
the output columns have the same names as the source columns.

 Task 4: Add a Data Destination to a Data Flow
1. In the SSIS Toolbox pane, in the Favorites section, double-click Destination Assistant.

2. In the Destination Assistant - Add New Destination dialog box, in the Select destination type list,
click SQL Server. In the Select connection manager list, click localhost.Staging, and then click OK.

3. Drag the new OLE DB Destination data destination below the Customers data source, right-click it,
click Rename, and then change the name of the data destination to Staging DB.

4. On the Data Flow surface, click the Customers source, and then drag the blue arrow from the
Customers data source to the Staging DB destination.

5. Double-click the Staging DB destination, set the following configuration values, and then click OK:

o On the Connection Manager page, ensure that the localhost.Staging OLE DB connection
manager is selected, ensure that the Table or view – fast load data access mode is selected. In
the Name of the table or the view drop-down list, click [dbo].[Customers], and then click
Keep nulls.

o On the Mappings tab, drag the CustomerKey column from the list of available input columns to
the CustomerBusinessKey column in the list of available destination columns. Then verify that
all other input columns are mapped to destination columns of the same name.

 Task 5: Test the Data Flow Task
1. Right-click anywhere on the Data Flow surface, click Execute Task, and then observe the task as it

runs, noting how many rows are transferred.

2. On the Debug menu, click Stop Debugging.

3. Close Visual Studio.

Results: After this exercise, you should have an SSIS package that contains a single Data Flow task, which
extracts customer records from the InternetSales database and inserts them into the Staging database.

Exercise 3: Using Transformations in a Data Flow

 Task 1: Examine an Existing Data Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab04\Starter\Ex3

folder.

2. In Solution Explorer, expand SSIS Packages and double-click Extract Reseller Data.dtsx.

3. On the Data Flow tab, in the Data Flow Task drop-down list, click Extract Reseller Sales. Note that
this data flow includes a data source, two transformations, and two destinations.

4. Double-click the Reseller Sales data source, and in the OLE DB Source Editor dialog box, note the
following details, and then click Cancel:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-7

o On the Connection Manager page, the data source is configured to use an OLE DB connection
manager named localhost.ResellerSales and to extract data using a Transact-SQL command
that queries the SalesOrderHeader, SalesOrderDetail, and PaymentTypes tables. The query
includes an ISNULL function to check for a payment type. If none is specified, the value “other” is
used.

o On the Columns tab, the data source is configured to retrieve several columns including
ProductKey, OrderQuantity, and UnitPrice.

5. Double-click the Calculate Sales Amount transformation, and in the Derived Column
Transformation Editor dialog box, note the following details, and then click Cancel:

o The transformation creates a derived column named SalesAmount.

o The derived column is added as a new column to the data flow.

o The column value is calculated by multiplying the UnitPrice column value by the OrderQuantity
column value.

6. Double-click the Lookup Product Details transformation, and in the Lookup Transformation
Editor dialog box, note the following details, and then click Cancel:

o On the General tab, the Lookup transformation is configured to use full cache mode and an OLE
DB connection manager, and to redirect rows with no matching entries.

o On the Connection tab, the Lookup transformation is configured to return the results of a
Transact-SQL query using the localhost.Products OLE DB connection manager. The query
returns a table that contains product data from the Products database.

o On the Columns tab, the Lookup transformation is configured to match rows in the data flow
with products data based on the ProductKey column value, and add all the other columns in the
products data as new columns in the data flow.

7. Right-click the arrow between the Lookup Product Details transformation and the Staging DB
destination, and then click Properties. Note that this arrow represents the lookup match output, so
rows where a matching product record was found will follow this data flow path.

8. Right-click the arrow between the Lookup Product Details transformation and the Orphaned Sales
destination, and then click Properties. Note that this arrow represents the lookup no match output,
so rows where no matching product record was found will follow this data flow path.

9. Double-click the Staging DB data destination, note the following details, and then click Cancel:

o On the Connection Manager page, the data destination is configured to use an OLE DB
connection manager named localhost.Staging and to use a Table or view - fast load access
mode to insert data into the [dbo].[ResellersSales] table.

o On the Mappings tab, the order of the columns in the destination is different from the column
order in the source, and the ProductKey and ResellerKey source columns are mapped to the
ProductBusinessKey and ResellerBusinessKey destination columns.

10. Double-click the Orphaned Sales destination, note that it uses a flat file connection manager named
Orphaned Reseller Sales, and then click Cancel.

11. In the Connection Managers pane at the bottom of the design surface, double-click the Orphaned
Reseller Sales connection manager, note that the rows for sales with no matching product record are
redirected to the Orphaned Reseller Sales.csv text file in the D:\ETL folder, and then click Cancel.

12. Right-click anywhere on the Data Flow surface, click Execute Task, and then observe the task as it
runs, noting how many rows are transferred. There should be no orphaned sales records.

13. On the Debug menu, click Stop Debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-8 Implementing a Data Warehouse with Microsoft® SQL Server®

14. Keep Visual Studio open for the next task.

 Task 2: Create a Data Flow Task
1. In the Solution Explorer pane, double-click Extract Internet Sales Data.dtsx.

2. View the Control Flow tab, and then in the SSIS Toolbox pane, in the Favorites section, double-click
Data Flow Task.

3. Drag the new Data Flow task under the existing Extract Customers task.

4. Right-click the new Data Flow task, click Rename, and then change the name to Extract Internet
Sales.

5. Click the Extract Customers Data Flow task, and then drag the arrow from the Extract Customers
task to the Extract Internet Sales task.

6. Double-click the Extract Internet Sales task to view the Data Flow surface.

 Task 3: Add a Data Source to a Data Flow
1. In the SSIS Toolbox pane, in the Favorites section, double-click Source Assistant.

2. In the Source Assistant - Add New Source dialog box, in the Select source type list, select SQL
Server. In the Select connection manager list, select localhost.InternetSales, and then click OK.

3. Drag the new OLE DB Source data source to the center of the Data Flow surface, right-click it, click
Rename, and then change the name of the data source to Internet Sales.

4. Double-click the Internet Sales source, set the following configuration values, and then click OK:

o On the Connection Manager page, ensure that the localhost.InternetSales OLE DB connection
manager is selected, in the Data access mode list, click SQL command, click Browse, and then
import the InternetSales.sql query file from the D:\Labfiles\Lab04\Starter\Ex3 folder.

o On the Columns tab, ensure that every column from the query is selected, and that the output
columns have the same names as the source columns.

 Task 4: Add a Derived Column transformation to a data flow
1. In the SSIS Toolbox pane, in the Common section, double-click Derived Column.

2. Drag the new Derived Column transformation below the existing Internet Sales data source, right-
click it, click Rename, and then change the name of the transformation to Calculate Sales Amount.

3. On the Data Flow surface, click the Internet Sales source, and then drag the blue arrow from the
Internet Sales data source to the Calculate Sales Amount transformation.

4. Double-click the Calculate Sales Amount transformation, in the Derived Column Transformation
Editor dialog box, perform the following steps, and then click OK:

o In the Derived Column Name column, type SalesAmount.

o In the Derived Column column, ensure that <add as new column> is selected.

o Expand the Columns folder, and then drag the UnitPrice column to the Expression box.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-9

o Type *, and then drag the OrderQuantity column to the Expression box so that the expression
looks like the following example:

[UnitPrice] * [OrderQuantity]

o Ensure that the Data Type column contains the value numeric [DT_NUMERIC], the Precision
column contains the value 25, and the Scale column contains the value 4.

 Task 5: Add a Lookup Transformation to a Data Flow
1. In the SSIS Toolbox pane, in the Common section, double-click Lookup.

2. Drag the new Lookup transformation below the existing Calculate Sales Amount transformation,
right-click it, click Rename, and then change the name of the transformation to Lookup Product
Details.

3. On the Data Flow surface, click the Calculate Sales Amount transformation, and then drag the blue
arrow from the Calculate Sales Amount transformation to the Lookup Product Details
transformation.

4. Double-click the Lookup Product Details transformation, and in the Lookup Transformation
Editor dialog box, perform the following steps and then click OK:

o In the General column, under Cache mode, ensure that Full cache is selected, and under
Connection type, ensure that OLE DB connection manager is selected. In the Specify how to
handle rows with no matching entries list, click Redirect rows to no match output.

o On the Connection tab, in the OLE DB connection manager list, select localhost.Products and
click OK. Then select Use results of an SQL query, click Browse, and import the Products.sql
query file from the D:\Labfiles\Lab04\Starter\Ex3 folder.

o On the Columns tab, drag ProductKey from the Available Input Columns list to ProductKey
in the Available Lookup Columns list.

o In the Available Lookup Columns list, select the check box next to the Name column heading
to select all columns, and then clear the check box for the ProductKey column.

5. In the SSIS Toolbox pane, in the Other Destinations section, double-click Flat File Destination.

6. Drag the new flat file transformation to the right of the existing Lookup Product Details
transformation, right-click it, click Rename, and then change the name of the transformation to
Orphaned Sales.

7. On the Data Flow surface, click the Lookup Product Details transformation, and then drag the blue
arrow from the Lookup Product Details transformation to the Orphaned Sales destination.

8. In the Input Output Selection dialog box, in the Output list, click Lookup No Match Output, and
then click OK.

9. Double-click the Orphaned Sales destination, and then in the Flat File Destination Editor dialog
box, next to the Flat File connection manager drop-down list, click New.

10. In the Flat File Format dialog box, click Delimited, and then click OK.

11. In the Flat File Connection Manager Editor dialog box, change the text in the Connection
manager name box to Orphaned Internet Sales.

12. On the General tab, set the File name value to D:\ETL\Orphaned Internet Sales.csv, select Column
names in the first data row, and then click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-10 Implementing a Data Warehouse with Microsoft® SQL Server®

13. In the Flat File Destination Editor dialog box, ensure that Overwrite data in the file is selected, and
then click the Mappings tab. Verify that all input columns are mapped to destination columns with
the same name, and then click OK.

 Task 6: Add a Data Destination to a Data Flow
1. In the SSIS Toolbox pane, in the Favorites section, double-click Destination Assistant.

2. In the Destination Assistant - Add New Destination dialog box, in the Select destination type list,
click SQL Server. In the Select connection manager list, click localhost.Staging, and then click OK.

3. Drag the new OLE DB Destination data destination below the Lookup Product Details
transformation, right-click it, click Rename, and then change the name of the data destination to
Staging DB.

4. On the Data Flow surface, click the Lookup Product Details transformation, and then drag the blue
arrow from the Lookup Product Details transformation to the Staging DB destination. Note that
the Lookup Match Output is automatically selected.

5. Double-click the Staging DB destination, set the following configuration values, and then click OK:

o On the Connection Manager page, ensure that the localhost.Staging OLE DB connection
manager is selected, and ensure that the Table or view – fast load data access mode is selected.
In the Name of the table or the view drop-down list, click [dbo].[InternetSales], and select
Keep nulls.

o On the Mappings tab, drag the following ProductKey columns from the list of available input
columns to the ProductBusinessKey corresponding columns in the list of available destination
columns:

Available Input Columns Available Destination Columns

ProductKey ProductBusinessKey

CustomerKey CustomerBusinessKey

ProductSubcategoryKey ProductSubcategoryBusinessKey

ProductCategoryKey ProductCategoryBusinessKey

o Verify that all other input columns are mapped to destination columns of the same name.

 Task 7: Test the Data Flow task
1. Right-click anywhere on the Data Flow surface, click Execute Task, and then observe the task as it

runs, noting how many rows are transferred. There should be no orphaned sales records.

2. On the Debug menu, click Stop Debugging.

3. Close Visual Studio.

Results: After this exercise, you should have a package that contains a Data Flow task including Derived
Column and Lookup transformations.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-1

Module 5: Implementing Control Flow in an SSIS Package

Lab A: Implementing Control Flow in an
SSIS Package
Exercise 1: Using Tasks and Precedence in a Control Flow

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then log

on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab05A\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: View a Control Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05A\Starter\Ex1 folder.

2. In Solution Explorer, in the SSIS Packages folder, double-click Extract Reseller Data.dtsx. Then view
the control flow for the Extract Reseller Data package and note that it includes two Send Mail tasks
– one that runs when either the Extract Resellers or Extract Reseller Sales tasks fail, and one that
runs when the Extract Reseller Sales task succeeds.

3. Double-click the red dotted arrow connecting the Extract Resellers task to the Send Failure
Notification task. In the Precedence Constraint Editor, in the Multiple Constraints section, note
that Logical OR. One constraint must evaluate to True is selected so that the Send Failure
Notification task runs if either of the data flow tasks connected should fail. Then click Cancel.

4. Double-click the Send Failure Notification task to view its settings. On the Mail tab, note that the
task uses an SMTP connection manager named Local SMTP Server to send a high-priority email
message with the subject Data Extraction Notification and the message “The reseller data
extraction process failed” to Student@adventureworks.msft. Then click Cancel.

5. Double-click the Send Success Notification task to view its settings. On the Mail tab, note that the
task uses an SMTP connection manager named Local SMTP Server to send a high-priority email
message with the subject Data Extraction Notification and the message “The reseller data was
successfully extracted” to Student@adventureworks.msft. Then click Cancel.

6. In the Connection Managers pane, double-click Local SMTP Server to view its settings, and note
that it connects to the localhost SMTP server. Then click Cancel.

7. On the Debug menu, click Start Debugging, and observe the control flow as the task executes. Then,
when the task has completed, on the Debug menu, click Stop Debugging.

8. View the contents of the C:\inetpub\mailroot\Drop folder and note the email messages that have
been received by the local SMTP server.

9. Double-click the most recent message to open it with Outlook, read the email message, and then
close Outlook.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-2 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 3: Add Tasks to a Control Flow
1. In Visual Studio, in Solution Explorer, in the SSIS Packages folder, double-click Extract Internet

Sales Data.dtsx. Then view the control flow for the Extract Internet Sales Data package.

2. In the SSIS Toolbox, in the Common section, double-click Send Mail Task. Then position the new
Send Mail task below and to the right of the Extract Internet Sales task.

3. Double-click the Send Mail task on the control flow surface, to view its settings, and in the Send Mail
Task Editor dialog box, on the General tab, set the Name property to Send Success Notification.

4. In the Send Mail Task Editor dialog box, on the Mail tab, in the SmtpConnection drop-down list,
click <New connection>. Then in the SMTP Connection Manager Editor dialog box, enter the
following settings and click OK:

o Name: Local SMTP Server

o SMTP Server: localhost

5. In the Send Mail Task Editor dialog box, on the Mail tab, enter the following settings, and then
click OK:

a. From: ETL@adventureworks.msft

b. To: Student@adventureworks.msft

c. Subject: Data Extraction Notification

d. MessageSourceType: Direct Input

e. MessageSource: The Internet Sales data was successfully extracted

f. Priority: Normal

6. On the Control Flow surface, click the Extract Internet Sales task, and then drag the green arrow
from the Extract Internet Sales task to the Send Success Notification task.

7. In the SSIS Toolbox, in the Common section, double-click Send Mail Task. Then position the new
Send Mail task below and to the left of the Extract Internet Sales task.

8. Double-click the Send Mail task on the control flow surface, to view its settings, and in the Send Mail
Task Editor dialog box, on the General tab, set the Name property to Send Failure Notification.

9. In the Send Mail Task Editor dialog box, on the Mail tab, enter the following settings, and then
click OK:

o SmtpConnection: Local SMTP Server

o From: ETL@adventureworks.msft

o To: Student@adventureworks.msft

o Subject: Data Extraction Notification

o MessageSourceType: Direct Input

o MessageSource: The Internet Sales data extraction process failed

o Priority: High

10. On the Control Flow surface, click the Extract Customers task, and then drag the green arrow from
the Extract Customers task to the Send Failure Notification task. Then right-click the arrow and
click Failure.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-3

11. On the Control Flow surface, click the Extract Internet Sales task, and then drag the green arrow
from the Extract Internet Sales task to the Send Failure Notification task. Then right-click the
arrow and click Failure.

12. Double-click the red arrow connecting the Extract Customers task to the Send Failure Notification
task. In the Precedence Constraint Editor, in the Multiple Constraints section, select Logical OR.
One constraint must evaluate to True. Then click OK.

 Task 4: Test the Control Flow
1. In Visual Studio, on the Control Flow surface for the Extract Internet Sales Data package, click the

Extract Customers task, and press F4. Then in the Properties pane, set the ForceExecutionResult
property to Failure.

2. On the Debug menu, click Start Debugging, and observe the control flow as the task executes,
noting that the Extract Customer task fails. Then, when the task has completed, on the Debug
menu, click Stop Debugging.

3. View the contents of the C:\inetpub\mailroot\Drop folder and note the email messages that have
been received by the local SMTP server.

4. Double-click the most recent message to open it with Outlook, and read the email message, noting
that it contains a failure message. Then close the email message.

5. In Visual Studio, on the Control Flow surface for the Extract Internet Sales Data package, click the
Extract Customers task. Then in the Properties pane, set the ForceExecutionResult property to
None.

6. On the Debug menu, click Start Debugging, and observe the control flow as the task executes,
noting that the Extract Customer task succeeds. Then, when the task has completed, on the Debug
menu, click Stop Debugging.

7. View the contents of the C:\inetpub\mailroot\Drop folder and note the email messages that have
been received by the local SMTP server.

8. Double-click the most recent message to open it with Outlook, and read the email message, noting
that it contains a success message. Then close the email message.

9. Close Visual Studio, saving your changes if you are prompted.

Results: After this exercise, you should have a control flow that sends an email message if the Extract
Internet Sales task succeeds, or sends an email message if either the Extract Customers or Extract
Internet Sales tasks fail.

Exercise 2: Using Variables and Parameters

 Task 1: View a Control Flow
1. View the contents of the D:\Accounts folder and note the files it contains. In this exercise, you will

modify an existing package to create a dynamic reference to one of these files.

2. Start Visual Studio and open the AdventureWorksETL.sln solution in the
D:\Labfiles\Lab05A\Starter\Ex2 folder.

3. In Solution Explorer, in the SSIS Packages folder, double-click Extract Payment Data.dtsx. Then
view the control flow for the Extract Payment Data package, and note that it contains a single data
flow task named Extract Payments.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-4 Implementing a Data Warehouse with Microsoft® SQL Server®

4. Double-click the Extract Payments task to view it in the Data Flow tab, and note that it contains a
flat file source named Payments File, and an OLE DB destination named Staging DB.

5. Double-click the Payments File source and note that it uses a connection manager named
Payments File. Then click Cancel.

6. In the Connection Managers pane, double-click Payments File, and note that it references the
Payments.csv file in the D:\Labfiles\Lab05A\Starter\Ex2 folder. Then click Cancel.

7. On the Debug menu, click Start Debugging and observe the data flow while the package runs.
When the package has completed, on the Debug menu, click Stop Debugging.

8. On the Execution Results tab, find the following line in the package execution log:

[Payments File [2]] Information: The processing of the file
“D:\Labfiles\Lab05A\Starter\Ex2\Payments.csv” has started

9. Click the Data Flow tab to return to the data flow design surface.

 Task 2: Create a Variable
1. In Visual Studio, with Extract Payments Data.dtsx package open, on the View menu, click Other

Windows, and then click Variables.

2. In the Variables pane, click the Add Variable button, and create a variable with the following
properties:

o Name: fName

o Scope: Extract Payments Data

o Data type: String

o Value: Payments - US.csv

Note that the value includes a space on either side of the “-“ character.

 Task 3: Create a Parameter
1. In Visual Studio, in Solution Explorer, double-click Project.params.

2. In the Project.params [Design] window, click the Add Parameter button, and add a parameter with
the following properties:

o Name: AccountsFolderPath

o Data type: String

o Value: D:\Accounts\

o Sensitive: False

o Required: True

o Description: Path to accounts files

Note: Be sure to include the trailing “\” in the Value property.

3. On the File menu, click Save All, and then close the Project.params [Design] window.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-5

 Task 4: Use a Variable and a Parameter in an Expression
1. On the Data Flow design surface for the Extract Payments Data.dtsx package, in the Connection

Managers pane, click Payments File. Then press F4 to view the Properties pane.

2. In the Properties pane, in the Expressions property box, click the ellipsis (…) button. Then in the
Property Expressions Editor dialog box, in the Property box, select ConnectionString and in the
Expression box, click the ellipsis (…) button.

3. In the Expression Builder dialog box, expand the Variables and Parameters folder, and drag the
$Project::AccountsFolderPath parameter to the Expression box.

4. In the Expression box, type a plus (+) symbol after the $Project::AccountsFolderPath parameter.

5. Drag the User::fName variable to the Expression box to create the following expression:

@[$Project::AccountsFolderPath]+ @[User::fName]

6. In the Expression Builder dialog box, click Evaluate Expression and verify that the expression
produces the result D:\Accounts\Payments - US.csv. Then click OK to close the Expression Builder
dialog box, and in the Property Expressions Editor dialog box, click OK.

7. On the Debug menu, click Start Debugging and observe the data flow while the package runs.
When the package has completed, on the Debug menu, click Stop Debugging.

8. On the Execution Results tab, find the following line in the package execution log, noting that the
default values for the fName variable and AccountsFolderPath parameter were used:

[Payments File [2]] Information: The processing of the file “D:\Accounts\Payments – US.csv” has started

9. Close the Visual Studio, saving the changes if you are prompted.

Results: After this exercise, you should have a package that loads data from a text file based on a
parameter that specifies the folder path where the file is stored, and a variable that specifies the file name.

Exercise 3: Using Containers

 Task 1: Add a Sequence Container to a Control Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05A\Starter\Ex3 folder.

2. In Solution Explorer, in the SSIS Packages folder, double-click Extract Internet Sales Data.dtsx.
Then view the control flow for the Extract Internet Sales Data package. You created the control flow
for this package in Exercise 1.

3. Right-click the red dotted arrow connecting the Extract Customers task to the Send Failure
Notification task, and click Delete. Repeat this step to delete the red dotted line connecting the
Extract Internet Sales task to the Send Failure Notification task, and the green arrow connecting
the Extract Internet Sales task to the Send Success notification task.

4. Drag a Sequence Container from the Containers section of the SSIS Toolbox to the control flow
surface. Right-click the new sequence container, click Rename, and change the container name to
Extract Customer Sales Data.

5. Click the Extract Customers task, hold the Ctrl key, and click the Extract Internet Sales task, then
drag both tasks into the Extract Customer Sales Data sequence container.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-6 Implementing a Data Warehouse with Microsoft® SQL Server®

6. Click the Extract Customer Sales Data sequence container, and then drag the green arrow from the
Extract Customer Sales Data sequence container to the Send Success Notification task.

7. Click the Extract Customer Sales Data sequence container, and then drag the green arrow from the
Extract Customer Sales Data sequence container to the Send Failure Notification task. Right-click
the green arrow connecting the Extract Customer Sales Data sequence container to the Send
Failure Notification task, and click Failure.

8. On the Debug menu, click Start Debugging, and observe the control flow as the package executes.
Then, when package execution is complete, on the Debug menu, click Stop Debugging.

 Task 2: Add a Foreach Loop Container to a Control Flow
1. In Visual Studio, in Solution Explorer, in the SSIS Packages folder, double-click Extract Payment

Data.dtsx. Then view the control flow for the Extract Payment Data package, and note that it
contains a single data flow task named Extract Payments. This is the same data flow task you
updated in the previous exercise.

2. In the SSIS Toolbox, in the Containers section, double-click Foreach Loop Container. Then on the
control flow surface, click the Extract Payments task and drag it into the Foreach Loop Container.

3. Double-click the title area at the top of the Foreach Loop Container to view the Foreach Loop
Editor dialog box.

4. In the Foreach Loop Editor dialog box, on the Collection tab, in the Enumerator list, select the
Foreach File Enumerator. In the Expressions box, click the ellipsis (…) button.

5. In the Property Expressions Editor dialog box, in the Property list, select Directory and in the
Expression box click the ellipsis (…) button.

6. In the Expression Builder dialog box, expand the Variables and Parameters folder and drag the
$Project::AccountsFolderPath parameter to the Expression box. Click OK to close the Expression
Builder, and click OK again to close the Property Expression Editor.

7. In the Foreach Loop Editor dialog box, on the Collection tab, in the Retrieve file name section,
select Name and extension.

8. In the Foreach Loop Editor dialog box, on the Variable Mappings tab, in the Variable list, select
User::fName and in the Index column ensure that 0 is specified. Then click OK.

9. On the Debug menu, click Start Debugging and observe the data flow while the package runs.
When the package has completed, on the Debug menu, click Stop Debugging.

10. On the Execution Results tab, scroll through the package execution log, noting that the data flow
was executed once for each file in the D:\Accounts folder. The following files should have been
processed:

o Payments – AU.csv

o Payments – CA.csv

o Payments – DE.csv

o Payments – FR.csv

o Payments – GB.csv

o Payments – US.csv

11. Close Visual Studio, saving your changes if prompted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-7

Results: After this exercise, you should have one package that encapsulates two data flow tasks in a
sequence container, and another that uses a Foreach Loop to iterate through the files in a folder specified
in a parameter and uses a data flow task to load their contents into a database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-8 Implementing a Data Warehouse with Microsoft® SQL Server®

Lab B: Using Transactions and Checkpoints
Exercise 1: Using Transactions

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then log

on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab05B\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: View the Data in the Database
1. Start SQL Server Management Studio, and when prompted, connect to the localhost database

engine using Windows authentication.

2. In Object Explorer, expand Databases, Staging, and Tables.

3. Right-click dbo.Customers and click Select Top 1000 Rows. Note that the table is empty.

4. Right-click dbo.InternetSales and click Select Top 1000 Rows. Note that the table is also empty.

5. Minimize SQL Server Management Studio.

 Task 3: Run a Package to Extract Data
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05B\Starter\Ex1 folder.

2. In Solution Explorer, in the SSIS Packages folder, double-click Extract Internet Sales Data.dtsx.
Then view the control flow for the Extract Internet Sales Data package.

3. On the Debug menu, click Start Debugging, and observe the control flow as the package is
executed, noting that the Extract Customers task succeeds, but the Extract Internet Sales task fails.
Then, when package execution has completed, on the Debug menu, click Stop Debugging.

4. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Customers and dbo.InternetSales tables. Verify that the
dbo.InternetSales table is still empty but the dbo.Customers table now contains customer records.

5. In SQL Server Management Studio, click New Query. Then in the new query window, enter the
following Transact-SQL and click Execute:

TRUNCATE TABLE Staging.dbo.Customers;

6. Close the query tab containing the TRUNCATE TABLE statement without saving it, and minimize SQL
Server Management Studio.

 Task 4: Implement a Transaction
1. In SQL Server Data Tools, on the control flow surface for the Extract Internet Sales Data.dtsx

package, click the Extract Customer Sales Data sequence container and press F4 to view the
Properties pane.

2. In the Properties pane, set the TransactionOption property of the Extract Customer Sales Data
sequence container to Required.

3. Click the Extract Customers task, and in the Properties pane, ensure that the TransactionOption
property value is set to Supported, and set the FailParentOnFailure property to True.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-9

4. Repeat the previous step for the Extract Internet Sales task.

 Task 5: Observe Transaction Behavior
1. In Visual Studio, on the Debug menu, click Start Debugging, and observe the control flow as the

package is executed, noting that once again the Extract Customers task succeeds, but the Extract
Internet Sales task fails. Then, when package execution has completed, on the Debug menu, click
Stop Debugging.

2. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Customers and dbo.InternetSales tables, and verify that both tables are
empty. Then minimize SQL Server Management Studio.

3. In Visual Studio, on the control flow surface for the Extract Internet Sales Data.dtsx package,
double-click the Extract Internet Sales task to view it in the Data Flow tab.

4. Double-click the Calculate Sales Amount transformation and modify the Expression value to
remove the text “/ (OrderQuantity % OrderQuantity)”. When the expression matches the following
code, click OK:

UnitPrice * OrderQuantity

5. Click the Control Flow tab, and on the Debug menu, click Start Debugging. Observe the control
flow as the package is executed, noting that both the Extract Customers and Extract Internet Sales
tasks succeed. Then, when package execution has completed, on the Debug menu, click Stop
Debugging.

6. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Customers and dbo.InternetSales tables, and verify that both tables now
contain data. Minimize SQL Server Management Studio as you will use it again in the next exercise.

7. Close Visual Studio, saving changes if prompted.

Results: After this exercise, you should have a package that uses a transaction to ensure that all data flow
tasks succeed or fail as an atomic unit of work.

Exercise 2: Using Checkpoints

 Task 1: View the Data in the Database
1. Maximize SQL Server Management Studio, and in Object Explorer, ensure that Databases, Staging,

and Tables are expanded for the localhost database engine instance.

2. Right-click dbo.Resellers and click Select Top 1000 Rows. Note that the table is empty.

3. Right-click dbo.ResellerSales and click Select Top 1000 Rows. Note that this table is also empty.

4. Minimize SQL Server Management Studio.

 Task 2: Run a Package to Extract Data
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab05B\Starter\Ex2 folder.

2. In Solution Explorer, in the SSIS Packages folder, double-click Extract Reseller Data.dtsx. Then view
the control flow for the Extract Internet Sales Data package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-10 Implementing a Data Warehouse with Microsoft® SQL Server®

3. On the Debug menu, click Start Debugging, and observe the control flow as the package is
executed, noting that the Extract Resellers task succeeds, but the Extract Reseller Sales task fails.
Then, when package execution has completed, on the Debug menu, click Stop Debugging.

4. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Resellers and dbo.ResellerSales tables. Verify that the dbo.ResellerSales
table is still empty but the dbo.Resellers table now contains records.

5. In SQL Server Management Studio, click New Query. In the new query window, enter the following
Transact-SQL code and click Execute:

TRUNCATE TABLE Staging.dbo.Resellers;

6. Close the query tab containing the TRUNCATE TABLE statement without saving it, and minimize SQL
Server Management Studio.

 Task 3: Implement Checkpoints
1. In Visual Studio, click any empty area on the control flow surface for the Extract Reseller Data.dtsx

package, and press F4 to view the Properties pane.

2. In the Properties pane, set the following properties of the Extract Reseller Data package:

o CheckpointFileName: D:\ETL\CheckPoint.chk

o CheckpointUsage: IfExists

o SaveCheckpoints: True

3. Click the Extract Resellers task, and in the Properties pane, set the FailPackageOnFailure property
to True.

4. Repeat the previous step for the Extract Reseller Sales task.

 Task 4: Observe Checkpoint Behavior
1. View the contents of the D:\ETL folder and verify that no file named CheckPoint.chk exists.

2. In Visual Studio, on the Debug menu, click Start Debugging. Observe the control flow as the Extract
Reseller Sales Data.dtsx package is executed, noting that once again the Extract Resellers task
succeeds, but the Extract Reseller Sales task fails. Then, when package execution has completed, on
the Debug menu, click Stop Debugging.

3. View the contents of the D:\ETL folder and verify that a file named CheckPoint.chk has been created.

4. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Resellers and dbo.ResellerSales tables, and verify that the
dbo.ResellerSales table is still empty, but the dbo.Resellers table now contains reseller records.

5. In Visual Studio, on the control flow surface for the Extract Reseller Data.dtsx package, double-click
the Extract Reseller Sales task to view it in the Data Flow tab.

6. Double-click the Calculate Sales Amount transformation and modify the Expression value to
remove the text “/ (OrderQuantity % OrderQuantity)”. When the expression matches the following
code, click OK:

UnitPrice * OrderQuantity

7. Click the Control Flow tab, and on the Debug menu, click Start Debugging. Observe the control
flow as the package is executed, noting that the Extract Resellers task is not re-executed, and
package execution starts with the Extract Reseller Sales task, which failed on the last attempt. When
package execution has completed, on the Debug menu, click Stop Debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-11

8. View the contents of the D:\ETL folder and verify that the CheckPoint.chk file has been deleted.

9. Maximize SQL Server Management Studio and re-execute the queries you created earlier to view the
top 1,000 rows in the dbo.Resellers and dbo.ResellerSales tables. Verify that both now contain data,
then close SQL Server Management Studio.

10. Close Visual Studio, saving changes if prompted.

Results: After this exercise, you should have a package that uses checkpoints to enable execution to be
restarted at the point of failure on the previous execution.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-1

Module 6: Debugging and Troubleshooting SSIS Packages

Lab: Debugging and Troubleshooting an
SSIS Package
Exercise 1: Debugging an SSIS Package

 Task 1: Prepare the Lab Environment
1. Ensure the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then log

on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab06\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: Run an SSIS Package
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab06\Starter\Ex1 folder.

2. In Solution Explorer, double-click the Extract Payment Data.dtsx SSIS package to open it in the
designer. Note that this package includes a control flow that iterates through files in a folder, and
loads payments data from each file into a staging database.

3. On the Debug menu, click Start Debugging and observe the package as it executes, noting that it
fails. When execution has completed, on the Debug menu, click Stop Debugging.

 Task 3: Add a Breakpoint
1. On the control flow surface for the Extract Payment Data.dtsx package, right-click Foreach Loop

Container and click Edit Breakpoints.

2. In the Set Breakpoints – Foreach Loop Container dialog box, select Enabled for the Break at the
beginning of every iteration of the loop break condition. Then click OK.

 Task 4: Add a Data Viewer
1. On the control flow surface for the Extract Payment Data.dtsx package, double-click the Extract

Payments data flow task to view the data flow design surface.

2. Double-click the data flow path between the Payments File source and the Staging DB destination
to open its editor.

3. In the Data Flow Path Editor dialog box, on the Data Viewer tab, select Enable data viewer and
note that all available columns are included in the Displayed columns list. Then click OK.

 Task 5: View Breakpoints
1. Click the Control Flow tab to view the control flow design surface for the Extract Payment

Data.dtsx package.

2. On the Debug menu, click Windows, and then click Breakpoints to open the Breakpoints pane.

3. View the breakpoints, noting that they include the one you added to the Foreach Loop container, and
the data viewer you defined in the data flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-2 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 6: Observe Variables while Debugging
1. On the Debug menu, click Start Debugging and note that execution stops at the first breakpoint.

2. On the Debug menu, click Windows, and then click Locals to view the Locals pane.

3. In the Locals pane, expand Variables, find the User::fName variable, and note its value (which
should be Payments – AU.csv). Then right-click the User::fName variable and click Add Watch.

4. Note that the User::fName variable has been added to the Watch 1 pane, which is now shown. Then,
click the Locals tab to view the Locals pane again, and add a watch for the
$Project::AccountsFolderPath parameter.

5. Ensure that the Watch 1 pane is visible and that you can see the values for the User::fName variable
and the $Project::AccountsFolderPath parameter, and then on the Debug menu, click Continue.

6. Note that execution stops at the next breakpoint, which is the data viewer you added to the
data flow. View the data in the data viewer pane, noting that this represents the contents of the
Payments – AU.csv file. Then drag the data viewer pane and position it so you can see all the
following user interface elements:

o The Foreach Loop Container on the control flow surface.

o The variables in the Watch 1 pane.

o The data viewer pane.

7. In the data viewer pane, click the Continue button (a green arrow). Note that execution continues
until the next breakpoint, and that the Extract Payments task completed successfully for the first
loop iteration. In the Watch 1 window, note that the value of the User::fName variable has changed
to Payments – CA.csv, but that the contents of the data viewer pane still reflect the Payments –
AU.csv file because the data flow for the current loop iteration has not yet started.

8. On the Debug menu, click Continue, and note that execution continues to the next breakpoint. The
data viewer pane now shows the contents of the Payments – CA.csv file.

9. In the data viewer pane, click the Continue button. Note that execution continues until the next
breakpoint, and that the Extract Payments task completed successfully for the second loop
iteration. In the Watch 1 window, note that the value of the User::fName variable has changed to
Payments – DE.csv, indicating that it is the next file to be processed by the Extract Payments task.

10. On the Debug menu, click Continue, and note that execution continues to the next breakpoint. The
data viewer pane now shows the contents of the Payments – DE.csv file.

11. In the data viewer pane, click the Continue button. Note that execution continues until the next
breakpoint, and that the Extract Payments task completed successfully for the Payments – DE.csv
file. In the Watch 1 window, note that the value of the User::fName variable has changed to
Payments – EU.csv, indicating that it is the next file to be processed by the Extract Payments task.

12. On the Debug menu, click Continue, and note that execution continues to the next breakpoint. The
data viewer pane now shows the contents of the Payments – EU.csv file (which contains a mixture of
country codes including DE, FR, and GB).

13. In the data viewer pane, click the Continue button. Note that execution continues until the next
breakpoint, and that the Extract Payments task failed for the Payments – EU.csv file.

14. In the data viewer pane, note that the contents of the Payments – EU.csv file are still shown. Then
click Copy Data to copy the data to the clipboard.

15. On the Debug menu, click Stop Debugging.

16. Close Visual Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-3

 Task 7: View Data Copied from a Data Viewer
1. Start Excel, and create a new blank workbook.

2. Ensure cell A1 is selected, and on the Home tab of the ribbon, click Paste.

3. Widen the columns as necessary to see the data from the Payments – EU.csv file that the SSIS package
failed to load to the staging database. Note that it contains the following issues:

o Payment 4074 has an invalid payment date.

o Payment 4102 has an invalid payment amount.

o Payment 4124 has an invalid payment date.

4. Close Excel without saving the workbook.

Results: After this exercise, you should have observed the variable values and data flows for each iteration
of the loop in the Extract Payment Data.dtsx package. You should also have identified the file that caused
the data flow to fail and examined its contents to find the data errors that triggered the failure.

Exercise 2: Logging SSIS Package Execution

 Task 1: Configure SSIS Logs
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab06\Starter\Ex2 folder.

2. In Solution Explorer, double-click the Extract Payment Data.dtsx SSIS package to open it in the
designer.

3. On the SSIS menu, click Logging. If an error message is displayed, click OK.

4. In the Configure SSIS Logs: Extract Payment Data dialog box, in the Containers tree, select
Extract Payment Data.

5. On the Providers and Logs tab, in the Provider type drop-down list, select SSIS log provider for
Windows Event Log. Then click Add.

6. In the Select the logs to use for the container list, select SSIS log provider for Windows Event
Log.

7. On the Details tab, select the OnError and OnTaskFailed events. Then click OK.

 Task 2: View Logged Events
1. On the Debug menu, click Start Debugging, and observe the execution of the package, noting that

it fails. When execution is complete, on the Debug menu, click Stop Debugging.

2. On the SSIS menu, click Log Events and view the events that were logged during the package
execution (if there are none, re-run the package). Then close the Log Events tab and close Visual
Studio.

3. On the Start screen, type Event and start the Event Viewer app. Then in Event Viewer, expand
Windows Logs and click Application.

4. In Event Viewer, click each event with the source SQLISPackage120 and view the event information
in the pane at the bottom of the Event Viewer window. Then close Event Viewer.

Results: After this exercise, you should have a package that logs event details to the Windows Event Log.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-4 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 3: Implementing an Event Handler

 Task 1: Create an Event Handler
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab06\Starter\Ex3 folder.

2. In Solution Explorer, double-click the Extract Payment Data.dtsx SSIS package to open it in the
designer.

3. Click the Event Handlers tab of the Extract Payment Data.dtsx package.

4. In the Executable list, ensure Extract Payment Data is selected, and in the Event handler list,
ensure OnError is selected. Then click the Click here to create an 'OnError' event handler for
executable 'Extract Payment Data' link.

 Task 2: Add a File System Task
1. In the SSIS Toolbox, double-click File System Task to add a file system task to the event handler

design surface for the OnError event handler. Then on the design surface, right-click File System
Task, click Rename, and change the name to Copy Failed File.

2. Double-click the Copy Failed File data flow task to view its task editor, and on the General tab,
ensure the Copy File operation is selected.

3. In the File System Task Editor dialog box, on the General tab, in the SourceConnection drop-down
list, select Payments File.

4. In the File System Task Editor dialog box, on the General tab, in the DestinationConnection drop-
down list, select <New connection>. Then in the File Connection Manager Editor dialog box, in
the Usage type drop-down list, select Create file. In the File box, type D:\ETL\FailedPayments.csv,
and click OK to close the File Connection Manager Editor dialog box.

5. In the File System Task Editor dialog box, on the General tab, in the OverwriteDestination drop-
down list, select True. Then click OK to close the File System Task Editor dialog box.

6. In the Connection Managers area at the bottom of the design surface, click FailedPayments.csv
and press F4, and in the Properties pane, in the Expressions property value, click the ellipsis (…)
button.

7. In the Property Expressions Editor dialog box, in the Property drop-down list, select
ConnectionString, and in the Expression box, click the ellipsis (…) button to open the Expression
Builder.

8. In the Expression Builder dialog box, in the Expression text area, enter the following expression.
Then click OK:

"D:\\ETL\\" + @[System::ExecutionInstanceGUID] + @[User::fName]

9. In the Property Expressions Editor dialog box, click OK.

 Task 3: Add a Send Mail Task
1. In the SSIS Toolbox, double-click Send Mail Task to add a send mail task to the event handler design

surface. Then on the design surface, right-click Send Mail Task, click Rename, and change the name
to Send Notification.

2. Move Send Notification below Copy Failed File, and then click Copy Failed File, and drag the
green precedence connection from Copy Failed File to Send Notification. Right-click the
precedence connection and click Completion.

3. Double-click Send Notification to open its task editor.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-5

4. In the Send Mail Task Editor dialog box, on the Mail tab, set the following properties:

o SmtpConnection: Local SMTP Server

o From: etl@adventureworks.msft

o To: student@adventureworks.msft

o Subject: An error occurred

o Priority: High

5. In the Send Mail Task Editor dialog box, on the Expressions tab, click the ellipsis (…) button. Then
in the Property Expressions Editor dialog box, in the Property drop-down list, select
MessageSource, and in the Expression box, click the ellipsis (…) button to open the Expression
Builder.

6. In the Expression Builder dialog box, in the Expression text area, enter the following expression.
Then click OK:

@[User::fName] + " failed to load. " + @[System::ErrorDescription]

7. In the Property Expressions Editor dialog box, click OK, and then in the Send Mail Task Editor,
click OK.

 Task 4: Test the Event Handler
1. Click the Control Flow tab.

2. On the Debug menu, click Start Debugging, and observe the execution of the package, noting that
the package fails. When execution is complete, click the Event Handlers tab to verify that the event
handler has been executed, and then on the Debug menu, click Stop Debugging and close Visual
Studio. Save your changes if you are prompted.

3. View the contents of the D:\ETL folder and note that a file with a name similar to {1234ABCD-1234-
ABCD-1234-ABCD1234}Payments - EU.csv has been created. Open this file in Excel, view the contents,
and then close Excel without saving any changes.

4. View the contents of the C:\inetpub\mailroot\Drop folder, and note that several email messages were
sent at the same time. Double-click the most recent file to open it in Outlook. Read the email
message, and then close Outlook.

Results: After this exercise, you should have a package that includes an event handler for the OnError
event. The event handler should create a copy of files that contain invalid data and send an email
message.

Exercise 4: Handling Errors in a Data Flow

 Task 1: Redirect Data Flow Errors
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab06\Starter\Ex4 folder.

2. In Solution Explorer, double-click the Extract Payment Data.dtsx SSIS package to open it in the
designer.

3. On the control flow surface, double-click the Extract Payments task to view its data flow.

4. Double-click the Staging DB destination to view its editor, and on the Error Output tab, in the Error
column for OLE DB Destination Input, select Redirect row. Then click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-6 Implementing a Data Warehouse with Microsoft® SQL Server®

5. In the SSIS Toolbox, in the Other Destinations section, double-click Flat File Destination. Then on
the design surface, right-click Flat File Destination, click Rename, and change the name to Invalid
Rows.

6. Drag Invalid Rows to the right of Staging DB, and then connect the red data flow path from
Staging DB to Invalid Rows. In the Configure Error Output dialog box, ensure that Redirect row is
selected in the Error column, and click OK.

7. Double-click Invalid Rows, and in the Flat File Destination Editor dialog box, next to the Flat File
connection manager drop-down list, click New.

8. In the Flat File Format dialog box, ensure Delimited is selected and click OK. Then in the Flat File
Connection Manager Editor dialog box, change the following properties and click OK:

o Connection manager name: Invalid Payment Records

o File name: D:\ETL\InvalidPaymentsLog.csv

9. In the Flat File Destination Editor dialog box, on the Connection Manager tab, clear the Overwrite
data in the file checkbox. Then on the Mappings tab, note that the input columns include the
columns from the payments file and two additional columns for the error code and error column, and
then click OK.

 Task 2: View Invalid Data Flow Rows
1. Click the Control Flow tab.

2. On the Debug menu, click Start Debugging, and observe the execution of the package, noting that
it succeeds. When execution is complete, on the Debug menu, click Stop Debugging and close
Visual Studio.

3. View the contents of the D:\ETL folder and note that a file named InvalidPaymentsLog.csv has been
created.

4. Start Excel and open InvalidPaymentsLog.csv to view its contents. Then close Excel without saving any
changes.

Results: After this exercise, you should have a package that includes a data flow where rows containing
errors are redirected to a text file.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-1

Module 7: Implementing a Data Extraction Solution

Lab: Extracting Modified Data
Exercise 1: Using a Datetime Column to Incrementally Extract Data

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab07\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: View Extraction Data
1. Start SQL Server Management Studio and connect to the MIA-SQL instance of the database engine

by using Windows authentication.

2. In Object Explorer, expand Databases, Staging, and Tables.

3. Right-click dbo.ExtractLog and click Select Top 1000 Rows.

4. View the data in the ExtractLog table, noting the values in the LastExtract column, which indicate
the date and time of the last extract operations for the InternetSales and ResellerSales databases.
This is initially set to January 1st 1900.

5. In Object Explorer, under Databases, expand InternetSales and Tables.

6. Right-click dbo.SalesOrderHeader and click Select Top 1000 Rows. Then note that the
LastModified column indicates the date and time that the sales record was last modified.

7. Minimize SQL Server Management Studio.

 Task 3: Examine an Incremental Data Extraction
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab07\Starter\Ex1 folder.

2. In Solution Explorer, under SSIS Packages, double-click Extract Reseller Data.dtsx.

3. On the SSIS menu, click Variables and then in the Variables pane, note that the following variables
have been defined with a data type of DateTime:

o CurrentTime

o ResellerSalesLastExtract

4. On the Control Flow tab of the design surface, double-click the Get Current Time task, and note
that it uses the GETDATE() function to assign the current data and time to the CurrentTime variable.
Then click Cancel to close the Expression Builder dialog box.

5. Double-click the Get Last Extract Time task to open the Execute SQL Task Editor dialog box, and
note the following configuration settings. Then click Cancel:

o On the General tab, the task is configured to return a single row from the Staging database by
executing the following Transact-SQL statement:

SELECT MAX(LastExtract) LastExtract
FROM ExtractLog
WHERE DataSource = 'ResellerSales'

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-3

5. Double-click the Get Current Time task, and in the Expression Builder dialog box, in the
Expression box, specify the following expression and then click OK:

@[User::CurrentTime] = GETDATE()

6. In the SSIS Toolbox, drag an Execute SQL task to the control flow surface and drop it inside the
Extract Customer Sales Data sequence container, immediately below the Get Current Time task.
Then right-click the Execute SQL task, click Rename, and change the name to Get Last Extract Time.

7. Double-click the Get Last Extract Time task and in the Execute SQL Task Editor dialog box,
configure the following settings. Then click OK:

o On the General tab, in the Connection drop-down list, select localhost.Staging.

o On the General tab, in the SQLStatement box, click the ellipsis (…) button and then in the Enter
SQL Query dialog box, enter the following Transact-SQL query and click OK:

SELECT MAX(LastExtract) LastExtract
FROM ExtractLog
WHERE DataSource = 'InternetSales'

o On the General tab, in the ResultSet drop-down list, select Single row.

o On the Result Set tab, click Add, and then in the Result Name column, change
NewResultName to LastExtract, and in the Variable Name drop-down list, select
User::InternetSalesLastExtract.

8. On the control flow surface, click the Get Current Time task and drag its green precedence
constraint to the Get Last Extract Time task. Then click the Get Last Extract Time task and drag its
green precedence constraint to the Extract Customers task.

 Task 5: Modify a Data Source to Filter Data
1. On the control flow surface, double-click the Extract Internet Sales task to display its data flow.

2. On the data flow surface, double-click the Internet Sales source, and in the OLE DB Source Editor
dialog box, review the existing SQL command text used to extract sales data. Then add the following
parameterized WHERE clause to the SQL Command text:

WHERE LastModified > ?
AND LastModified <= ?

3. Click the Parameters button, and in the Set Query Parameters dialog box, specify the following
parameter mappings with a Param Direction of Input, and click OK:

o Parameter0: User::InternetSalesLastExtract

o Parameter1: User:CurrentTime

4. In the OLE DB Source Editor dialog box, click OK.

 Task 6: Add a Task to Update the Extraction Log
1. Click the Control Flow tab, and then in the SSIS Toolbox, drag an Execute SQL Task to the Extract

Customer Sales Data sequence under the Extract Internet Sales task on the control flow surface.

2. Right-click Execute SQL Task and click Rename. Then change the name to Update Last Extract
Time.

3. Double-click Update Last Extract Time and configure the following settings. Then click OK:

o On the General tab, in the Connection drop-down list, select localhost.Staging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-4 Implementing a Data Warehouse with Microsoft® SQL Server®

o On the General tab, in the SQLStatement box, click the ellipsis (…) button and then in the Enter
SQL Query dialog box, enter the following Transact-SQL query and click OK:

UPDATE ExtractLog
SET LastExtract = ?
WHERE DataSource = 'InternetSales'

o On the Parameter Mapping tab, click Add and create the following parameter mapping:

 Variable Name: User::CurrentTime

 Direction: Input

 Data Type: DATE

 Parameter Name: 0

 Parameter Size: -1

4. On the control flow surface, click the Extract Internet Sales task and then drag its green precedence
constraint to the Update Last Extract Time task.

 Task 7: Test the Package
1. Click the Data Flow tab and view the Extract Internet Sales data flow.

2. On the Debug menu, click Start Debugging and observe the package as it executes, noting the
number of rows transferred.

3. When execution is complete, on the Debug menu, click Stop Debugging.

4. Maximize SQL Server Management Studio, and in Object Explorer, in the Staging database, right-
click the dbo.ExtractLog table and click Select Top 1000 Rows.

5. View the data in the ExtractLog table, noting the value in the LastExtract column for the
InternetSales database has been updated to the date and time when you ran the package.

6. Right-click the dbo.InternetSales table and click Select Top 1000 Rows. The sales records in this
table were extracted from the InternetSales database, where the SalesOrderHeader table had a
LastModified column value between the previous LastExtract value, and the date and time when
the package was executed.

7. Minimize SQL Server Management Studio.

8. In Visual Studio, with the Extract Internet Sales data flow displayed in the designer, on the Debug
menu, click Start Debugging to execute the package again, noting that no rows are transferred
during this execution

9. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses the high water mark technique to
extract only records that have been modified since the previous extraction.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-5

Exercise 2: Using Change Data Capture

 Task 1: Enable Change Data Capture
1. Maximize SQL Server Management Studio, and open the Enable CDC.sql file in the

D:\Labfiles\Lab07\Starter\Ex2 folder.

2. Examine the Transact-SQL code in this script, noting that it enables CDC in the InternetSales
database, and for the Customers table. Then click Execute to run the script. Two jobs should be
started.

3. Open the Test CDC.sql file in the D:\Labfiles\Lab07\Starter\Ex2 folder, and examine the query, noting
that it contains statements to perform the following tasks:

o Retrieve data changes between 1/1/1900 and the current date by using a CDC function.

o Modify the data in the Customers table.

o Retrieve data changes between 1/1/1900 and the current date again.

4. Select the code under the comment Select all changed customer records between 1/1/1900 and
today and click Execute. Note that no records are returned because there have been no changes in
the database since Change Data Capture was enabled.

5. Select the two UPDATE statements under the comment Make a change to all customers (to create
CDC records) and click Execute. This statement modifies the data in the Customers table by
reversing the FirstName value and then reversing it back to its original value.

6. Select the code under the comment Now see the net changes and click Execute. Note that the
query returns all records in the Customers table, because they have all been changed within the
specified time period.

 Task 2: Create a Stored Procedure to Retrieve Modified Rows
1. In SQL Server Management Studio, open the Create SP.sql file in the D:\Labfiles\Lab07\Starter\Ex2

folder.

2. Examine the Transact-SQL code in the query file, and note that it creates a stored procedure with
StartDate and EndDate parameters. The stored procedure performs the following tasks:

o Retrieves the log sequence numbers for the dates specified in the StartDate and EndDate
parameters.

o If neither of the log sequence numbers is null, then at least one transaction has occurred in the
database within the specified time period. The stored procedure uses a CDC function to return all
records that have changed in the Customers table.

o If no transactions have taken place in the specified time period, the stored procedure returns an
empty rowset.

3. Click Execute to run the Transact-SQL code and create the stored procedure.

4. Click New Query, and type the following Transact-SQL in the new query window. Then click Execute
to test the stored procedure:

USE InternetSales
GO
EXEC GetChangedCustomers '1/1/1900', '1/1/2099';
GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-6 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 3: Use the Stored Procedure in a Data Flow
1. In SQL Server Management Studio, open the Reset Staging.sql file in the

D:\Labfiles\Lab07\Starter\Ex2 folder.

2. Click Execute to reset the staging database.

3. Minimize SQL Server Management Studio.

4. Start Visual Studio and open the AdventureWorksETL.sln solution in the
D:\Labfiles\Lab07\Starter\Ex2 folder.

5. In Solution Explorer, under SSIS Packages, double-click Extract Internet Sales Data.dtsx.

6. On the control flow surface, double-click the Extract Customers task.

7. On the data flow surface, double-click the Customers source.

8. In the OLE DB Source Editor dialog box, make the following changes to the configuration of the
Customers source. Then click OK:

o In the Data access mode drop-down list, select SQL Command.

o In the SQL command text box, type the following Transact-SQL statement:

EXEC GetChangedCustomers ?, ?

o Click the Parameters button, and in the Set Query Parameters dialog box, create the following
parameter mappings with a Param direction of Input, and then click then OK.

 @StartDate: User::InternetSalesLastExtract

 @EndDate: User::CurrentTime

 Task 4: Test the Package
1. With the Extract Customers data flow displayed in the designer, on the Debug menu, click Start

Debugging and observe the package as it executes, noting the number of rows transferred.

2. When execution is complete, on the Debug menu, click Stop Debugging.

3. Maximize SQL Server Management Studio, and in Object Explorer, in the Staging database, right-
click the dbo.ExtractLog table and click Select Top 1000 Rows.

4. View the data in the ExtractLog table, noting the value in the LastExtract column for the
InternetSales database has been updated to the date and time when you ran the package.

5. Right-click the dbo.Customers table and click Select Top 1000 Rows. The customer records in this
table were extracted from the InternetSales database, where no row has been changed between the
previous LastExtract value, and the date and time when the package was executed.

6. Minimize SQL Server Management Studio.

7. In Visual Studio, with the Extract Customers data flow displayed in the designer, on the Debug
menu, click Start Debugging to execute the package again, noting that no rows are transferred
during this execution.

8. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio.

Results: After this exercise, you should have a database in which Change Data Capture has been enabled,
and an SSIS package that uses a stored procedure to extract modified rows based on changes monitored
by Change Data Capture.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-7

Exercise 3: Using the CDC Control Task

 Task 1: Enable Change Data Capture
1. Maximize SQL Server Management Studio, and open the Enable CDC.sql file in the

D:\Labfiles\Lab07\Starter\Ex3 folder.

2. Examine the query, noting that it enables CDC in the HumanResources database, and for the
Employee table. Then click Execute to run the query. Two jobs should be started.

 Task 2: View Staging Tables
1. In SQL Server Management Studio, in Object Explorer, under the Tables folder for the Staging

database, right-click the dbo.EmployeeDeletes table and click Select Top 1000 Rows. Note that the
table is empty.

2. Repeat the previous step for the dbo.EmployeeInserts and dbo.EmployeeUpdates tables.

3. Minimize SQL Server Management Studio.

 Task 3: Create Connection Managers for CDC Components
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab07\Starter\Ex3 folder.

2. In Solution Explorer, right-click the Connection Managers folder and click New Connection
Manager. Then in the Add SSIS Connection Manager dialog box, click the ADO.NET connection
manager type, and click Add.

3. In the Configure ADO.NET Connection Manager dialog box, click New. Then in the Connection
Manager dialog box, in the Server name box type localhost, ensure Use Windows authentication
is selected, and in the Select or enter a database name drop-down list, select HumanResources.

4. Click OK to close the Connection Manager dialog box, and click OK again to close the Configure
ADO.NET Connection Manager dialog box.

5. In Solution Explorer, right-click the localhost.HumanResources.conmgr connection manager and
click Rename. Then rename the connection manager to
localhost.HumanResources.ADO.NET.conmgr.

6. In Solution Explorer, right-click the Connection Managers folder and click New Connection
Manager. Then in the Add SSIS Connection Manager dialog box, click the ADO.NET connection
manager type and click Add.

7. In the Configure ADO.NET Connection Manager dialog box, click New. Then in the Connection
Manager dialog box, in the Server name box type localhost, ensure Use Windows authentication
is selected, and in the Select or enter a database name drop-down list, select Staging.

8. Click OK to close the Connection Manager dialog box, and click OK again to close the Configure
ADO.NET Connection Manager dialog box.

9. In Solution Explorer, right-click the localhost.Staging 1.conmgr connection manager and click
Rename. Then rename the connection manager to localhost.Staging.ADO.NET.conmgr.

 Task 4: Create a Package for Initial Data Extraction
1. In Solution Explorer, right-click the SSIS Packages folder and click New SSIS Package.

2. When the new package is created, in Solution Explorer, right-click Package1.dtsx and click Rename.
Then rename the package to Extract Initial Employee Data.dtsx.

3. In the SSIS Toolbox, in the Other Tasks section, drag a CDC Control Task to the control flow surface
of the Extract Initial Employee Data.dtsx package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-8 Implementing a Data Warehouse with Microsoft® SQL Server®

4. On the control flow surface, right-click CDC Control Task and click Rename. Then rename it to Mark
Initial Load Start.

5. Double-click the Mark Initial Load Start task, and in the CDC Control Task Editor dialog box, set
the following properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark initial load start.

o Variable containing the CDC state: Click New and then in the Add New Variable dialog box,
click OK to create a variable named CDC_State in the Extract Initial Employee Data container.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: Click New, and in the Create New State Table dialog box, click
Run to create a table named [dbo].[cdc_states] in the Staging database.

o State name: CDC_State.

6. In the SSIS Toolbox, in the Favorites section, drag a Data Flow Task to the control flow surface of
the Extract Initial Employee Data.dtsx package, under the Mark Initial Load Start task.

7. On the control flow surface, right-click Data Flow Task and click Rename. Then rename it to Extract
Initial Employee Data. Then drag a green precedence constraint from the Mark Initial Load Start
task to the Extract Initial Employee Data task.

8. Double-click the Extract Initial Employee Data task to view its data flow surface.

9. In the SSIS Toolbox, in the Other Sources section, drag an ADO NET Source to the data flow surface.
Then on the data flow surface, right-click ADO NET Source, click Rename, and rename it to
Employees.

10. Double-click Employees and in the ADO.NET Source Editor dialog box, set the following properties.
Then click OK:

o ADO.NET connection manager: localhost HumanResources ADO NET.

o Data access mode: Table or view.

o Name of the table or view: dbo"."Employee".

11. In the SSIS Toolbox, in the Other Destinations section, drag an ADO NET Destination to the data
flow surface, below the Employees data source. Then on the data flow surface, right-click ADO NET
Destination, click Rename, and rename it to Employee Inserts.

12. Click the Employees source and drag the blue data flow path connection to the Employee Inserts
destination.

13. Double-click Employee Inserts and in the ADO.NET Destination Editor dialog box, set the
following properties. Then click OK:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeInserts".

o Mappings: On the Mappings tab, ensure all available input columns are mapped to destination
columns of the same name.

14. Click the Control Flow tab, and in the SSIS Toolbox, in the Other Tasks section, drag a CDC Control
Task to the control flow surface, below the Extract Initial Employee Data task.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-9

15. On the control flow surface, right-click CDC Control Task and click Rename. Then rename it to Mark
Initial Load End. Drag a “success” precedence constraint from the Extract Initial Employee Data
task to the Mark Initial Load End task.

16. Double-click the Mark Initial Load End task, and in the CDC Control Task Editor dialog box, set the
following properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark initial load end.

o Variable containing the CDC state: User:: CDC_State.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states].

o State name: CDC_State.

17. On the File menu, click Save All.

 Task 5: Test Initial Extraction
1. In Visual Studio, ensure that the control flow for the Extract Initial Employee Data.dtsx package is

open, and on the Debug menu, click Start Debugging. Then, when package execution is complete,
on the Debug menu, click Stop Debugging.

2. Minimize Visual Studio and maximize SQL Server Management Studio.

3. In Object Explorer, right-click the dbo.EmployeeInserts table in the Staging database and click
Select Top 1000 Rows. Note that the table now contains employee records.

4. In Object Explorer, under the Staging database, right-click the Tables folder and click Refresh. Note
that a new table named dbo.cdc_states has been created in the staging database.

5. Right-click the dbo.cdc_states table and click Select Top 1000 Rows. Note that the table contains
an encoded string that indicates the CDC state.

6. Minimize SQL Server Management Studio.

 Task 6: Create a Package for Incremental Data Extraction
1. Maximize Visual Studio, and then in Solution Explorer, right-click the SSIS Packages folder and click

New SSIS Package.

2. When the new package is created, in Solution Explorer, right-click Package1.dtsx and click Rename.
Then rename the package to Extract Changed Employee Data.dtsx.

3. In the SSIS Toolbox, in the Other Tasks section, drag a CDC Control Task to the control flow surface
of the package.

4. On the control flow surface, right-click CDC Control Task and click Rename. Then rename it to Get
Processing Range.

5. Double-click the Get Processing Range task, and in the CDC Control Task Editor dialog box, set the
following properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Get processing range.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-10 Implementing a Data Warehouse with Microsoft® SQL Server®

o Variable containing the CDC state: Click New and then click OK to create a variable named
CDC_State in the Extract Changed Employee Data container.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states].

o State name: CDC_State.

6. In the SSIS Toolbox, drag a Data Flow Task to the control flow surface, and drop it under the Get
Processing Range task.

7. On the control flow surface, right-click Data Flow Task and click Rename. Then rename it to Extract
Changed Employee Data.

8. Click Get Processing Range and drag its green precedence constraint to the Extract Changed
Employee Data task.

9. Double-click the Extract Changed Employee Data task to view its data flow surface.

10. In the SSIS Toolbox, in the Other Sources section, drag a CDC Source to the data flow surface of the
Extract Changed Employee Data task. Then on the data flow surface, right-click CDC Source, click
Rename, and rename it to Employee Changes.

11. Double-click Employee Changes, and in the CDC Source dialog box, set the following properties.
Then click OK:

o ADO.NET connection manager: localhost HumanResources ADO NET.

o CDC enabled table: [dbo].[Employee].

o Capture instance: dbo_Employee.

o CDC processing mode: Net.

o Variable containing the CDC state: User::CDC_State.

12. In the SSIS Toolbox, in the Other Transforms section, drag a CDC Splitter to the data flow surface,
below the Employee Changes data source. Then click Employee Changes and drag the blue data
flow path connection to the CDC Splitter transformation.

13. In the SSIS Toolbox, in the Other Destinations section, drag an ADO NET Destination to the data
flow surface, below the CDC Splitter transformation. Then on the data flow surface, right-click ADO
NET Destination, click Rename, and rename it to Employee Inserts.

14. Click the CDC Splitter transformation and drag the blue data flow path connection to the Employee
Inserts destination. In the Input Output Selection dialog box, select the InsertOutput output and
click OK.

15. Double-click Employee Inserts and in the ADO.NET Destination Editor dialog box, set the
following properties. Then click OK:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeInserts".

o Mappings: On the Mappings tab, verify that all available input columns other than _$start_lsn,
_$operation, and _$update_mask are mapped to destination columns of the same name.

16. In the SSIS Toolbox, in the Other Destinations section, drag an ADO NET Destination to the data
flow surface, directly below and to the left of the CDC Splitter transformation. Then on the data flow
surface, right-click ADO NET Destination, click Rename, and rename it to Employee Updates.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-11

17. Click the CDC Splitter transformation and drag the blue data flow path connection to the Employee
Updates destination. In the Input Output Selection dialog box, select the UpdateOutput output
and click OK.

18. Double-click Employee Updates and in the ADO.NET Destination Editor dialog box, set the
following properties. Then click OK:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeUpdates"

o Mappings: On the Mappings tab, verify that all available input columns other than _$start_lsn,
_$operation, and _$update_mask are mapped to destination columns of the same name.

19. In the SSIS Toolbox, in the Other Destinations section, drag an ADO NET Destination to the data
flow surface, below and to the right of the CDC Splitter transformation. Then on the data flow
surface, right-click ADO NET Destination, click Rename, and rename it to Employee Deletes.

20. Click the CDC Splitter transformation and drag the blue data flow path connection to the Employee
Deletes destination. The DeleteOutput output should be selected automatically.

21. Double-click Employee Deletes and in the ADO.NET Destination Editor dialog box, set the
following properties. Then click OK:

o Connection manager: localhost Staging ADO NET.

o Use a table or view: "dbo"."EmployeeDeletes".

o Mappings: On the Mappings tab, verify that all available input columns other than _$start_lsn,
_$operation, and _$update_mask are mapped to destination columns of the same name.

22. Click the Control Flow tab, and in the SSIS Toolbox, in the Other Tasks section, drag a CDC Control
Task to the control flow surface, below the Extract Changed Employee Data task.

23. On the control flow surface, right-click CDC Control Task and click Rename. Then rename it to Mark
Processed Range.

24. Click Extract Changed Employee Data and drag its green precedence constraint to the Mark
Processed Range task.

25. Double-click the Mark Processed Range task, and in the CDC Control Task Editor dialog box, set
the following properties. Then click OK:

o SQL Server CDC database ADO.NET connection manager: localhost HumanResources ADO
NET.

o CDC control operation: Mark processed range.

o Variable containing the CDC state: User:: CDC_State.

o Automatically store state in a database table: Selected.

o Connection manager for the database where the state is stored: localhost Staging ADO NET.

o Table to use for storing state: [dbo].[cdc_states]

o State name: CDC_State.

26. On the File menu, click Save All.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-12 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 7: Test Incremental Extraction
1. In Visual Studio, ensure that the control flow for the Extract Changed Employee Data.dtsx package

is open, and on the Debug menu, click Start Debugging.

2. When package execution is complete, double-click the Extract Changed Employee Data task to
verify that no rows were extracted (because no changes have been made to the source data since the
initial extraction). Then, on the Debug menu, click Stop Debugging.

3. Maximize SQL Server Management Studio, and open the Change Employees.sql file in the
D:\Labfiles\Lab07\Starter\Ex3 folder.

4. Review the Transact-SQL code and note that it truncates the dbo.EmployeeInserts,
dbo.EmployeeUpdates, and dbo.EmployeeDeletes tables in the Staging database, and then makes
the following changes to the dbo.Employee table in the HumanResources database:

o Inserts a new employee record.

o Updates employee 281 to change the Title column value.

o Deletes employee 273.

5. Click Execute to run the Transact-SQL code, and then minimize SQL Server Management Studio and
maximize Visual Studio.

6. In Visual Studio, ensure that the data flow for the Extract Changed Employee Data task is open, and
on the Debug menu, click Start Debugging.

7. When package execution is complete, double-click the Extract Changed Employee Data task to
verify that three rows were extracted and split into one insert, one update, and one delete. Then, on
the Debug menu, click Stop Debugging.

Note: If no rows were transferred, stop debugging, wait for a few seconds, and then repeat the previous
two steps.

8. Close Visual Studio and maximize SQL Server Management Studio.

9. In Object Explorer, under the Tables folder for the Staging database, right-click the
dbo.EmployeeInserts table and click Select Top 1000 Rows. Note that the table contains the row
that was inserted.

10. Repeat the previous step for the dbo.EmployeeUpdates and dbo.EmployeeDeletes tables, and
verify that they contain the updated and deleted records respectively.

11. Minimize SQL Server Management Studio.

Results: After this exercise, you should have a HumanResources database in which Change Data Capture
has been enabled, and an SSIS package that uses the CDC Control to extract the initial set of employee
records. You should also have an SSIS package that uses the CDC Control and CDC data flow components
to extract modified employee records based on changes recorded by Change Data Capture.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-13

Exercise 4: Using Change Tracking

 Task 1: Enable Change Tracking
1. Maximize SQL Server Management Studio, and open the Enable CT.sql file in the

D:\Labfiles\Lab07\Starter\Ex4 folder.

2. Examine the query, noting that it enables Change Tracking in the ResellerSales database, and for the
Resellers table. Then click Execute to run the query.

3. Open the Test CT.sql file in the D:\Labfiles\Lab07\Starter\Ex4 folder, and note that it contains
statements to perform the following tasks:

o Get the current change tracking version number.

o Retrieve all data from the Resellers table.

o Store the current version number as the previously-retrieved version.

o Update the Resellers table.

o Get the new current version number.

o Get all changes between the previous and current versions.

o Store the current version number as the previously-retrieved version.

o Update the Resellers table again.

o Get the new current version number.

o Get all changes between the previous and current versions.

4. Click Execute and view the results. Note that:

o The first resultset shows all reseller records.

o The second resultset indicates that the previously-retrieved version was numbered 0, and the
current version is numbered 1.

o The third resultset indicates that the previously-retrieved version was numbered 1, and the
current version is numbered 2.

 Task 2: Create a Stored Procedure to Retrieve Modified Rows
1. In SQL Server Management Studio, open the Create SP.sql file in the D:\Labfiles\Lab07\Starter\Ex4

folder.

2. Examine the Transact-SQL code in the query file, and note that it enables snapshot isolation and
creates a stored procedure with a single parameter named LastVersion. The stored procedure
performs the following tasks:

o Sets the isolation level to snapshot.

o Retrieves the current change tracking version number.

o If the LastVersion parameter is -1, the stored procedure assumes that no previous versions have
been retrieved, and returns all records from the Resellers table.

o If the LastVersion parameter is not -1, the stored procedure retrieves all changes between
LastVersion and the current version.

o The stored procedure updates the LastVersion parameter to the current version, so the calling
application can store the last version retrieved for next time.

o Sets the isolation level back to read “committed”.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-14 Implementing a Data Warehouse with Microsoft® SQL Server®

3. Click Execute to run the Transact-SQL code and create the stored procedure.

4. Click New Query, and type the following Transact-SQL in the new query window. Then click Execute
to test the stored procedure:

USE ResellerSales
GO
DECLARE @p BigInt = -1;
EXEC GetChangedResellers @p OUTPUT;
SELECT @p LastVersionRetrieved;
EXEC GetChangedResellers @p OUTPUT;

 Task 3: Modify a Data Flow to use the Stored Procedure
1. In SQL Server Management Studio, open the Reset Staging.sql file in the

D:\Labfiles\Lab07\Starter\Ex4 folder.

2. Click Execute to reset the staging database.

3. Minimize SQL Server Management Studio.

4. Start Visual Studio and open the AdventureWorksETL.sln solution in the
D:\Labfiles\Lab07\Starter\Ex4 folder.

5. In Solution Explorer, under SSIS Packages, double-click Extract Reseller Data.dtsx.

6. If the Variables pane is not visible, on the SSIS menu, click Variables. Then, in the Variables pane,
click the Add Variable button and add a variable with the following settings:

o Name: PreviousVersion

o Data Type: Decimal

o Value: 0

7. In the SSIS Toolbox, drag an Execute SQL Task to the control flow surface, above the Extract
Resellers task. Then right-click the expression task, click Rename, and change the name to Get
Previously Extracted Version.

8. Double-click the Get Previously Extracted Version task and in the Execute SQL Task Editor dialog
box, configure the following settings. Then click OK:

o On the General tab, in the ResultSet drop-down list, select Single row.

o On the General tab, in the Connection drop-down list, select localhost.Staging.

o On the General tab, in the SQLStatement box, click the ellipsis (…) button and then in the Enter
SQL Query, dialog box, enter the following Transact-SQL query and click OK:

SELECT MAX(LastVersion) LastVersion
FROM ExtractLog
WHERE DataSource = 'ResellerSales'

o On the Result Set tab, click Add, and then in the Result Name column, change
NewResultName to LastVersion, and in the Variable Name drop-down list, select
User::PreviousVersion.

9. On the control flow surface, right-click the green precedence constraint between Get Last Extract
Time and Extract Resellers, and click Delete.

10. Click the Get Last Extract Time task and drag its green precedence constraint to the Get Previously
Extracted Version task. Then click the Get Previously Extracted Version task and drag its green
precedence constraint to the Extract Resellers task.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-15

11. In the SSIS Toolbox, drag an Execute SQL Task under the Update Last Extract Time task on the
control flow surface.

12. Right-click Execute SQL Task and click Rename. Then change the name to Update Previous
Version.

13. Double-click Update Previous Version and configure the following settings. Then click OK:

o On the General tab, in the Connection drop-down list, select localhost.Staging.

o On the General tab, in the SQLStatement box, click the ellipsis (…) button and then in the Enter
SQL Query, dialog box, enter the following Transact-SQL query and click OK:

UPDATE ExtractLog
SET LastVersion = ?
WHERE DataSource = 'ResellerSales'

o On the Parameter Mapping tab, click Add and create the following parameter mapping:

 Variable Name: User::PreviousVersion

 Direction: Input

 Data Type: LARGE_INTEGER

 Parameter Name: 0

 Parameter Size: -1

14. On the control flow surface, right-click the green precedence constraint between Update Last
Extract Time and Send Success Notification, and click Delete. Then click the Update Last Extract
Time task and drag its green precedence constraint to the Update Previous Version task. Click the
Update Previous Version task and drag its green precedence constraint to the Send Success
Notification task.

15. On the control flow surface, double-click the Extract Resellers task.

16. On the data flow surface, double-click the Resellers source.

17. In the OLE DB Source Editor dialog box, make the following changes to the configuration of the
Customers source. Then click OK.

o In the Data access mode drop-down list, select SQL Command.

o In the SQL command text box, type the following Transact-SQL statement:

EXEC GetChangedResellers ? OUTPUT

o Click the Parameters button, and in the Set Query Parameters dialog box, create the following
parameter mappings, and then click OK:

 Parameters: @LastVersion

 Variables: User::PreviousVersion

 Param direction: InputOutput

 Task 4: Test the Package
1. In Visual Studio, with the Extract Resellers data flow displayed in the designer, on the Debug menu,

click Start Debugging and observe the package as it executes, noting the number of rows
transferred.

2. When execution is complete, on the Debug menu, click Stop Debugging.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-16 Implementing a Data Warehouse with Microsoft® SQL Server®

3. Maximize SQL Server Management Studio, and in Object Explorer, in the Staging database, right-
click the dbo.ExtractLog table and click Select Top 1000 Rows.

4. View the data in the ExtractLog table, noting the value in the LastVersion column for the
ResellerSales database has been updated to the latest version retrieved from the source database.

5. Right-click the dbo.Resellers table and click Select Top 1000 Rows. The customer records in this
table were extracted from the ResellerSales database, where no row has been changed between the
previous LastVersion value, and the current version.

6. Close SQL Server Management Studio without saving any changes.

7. In Visual Studio, with the Extract Resellers data flow displayed in the designer, on the Debug menu,
click Start Debugging to execute the package again, noting that no rows are transferred during this
execution.

8. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio.

Results: After this exercise, you should have a database in which Change Tracking has been enabled, and
an SSIS package that uses a stored procedure to extract modified rows based on changes recorded by
Change Tracking.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-1

Module 8: Loading Data into a Data Warehouse

Lab: Loading a Data Warehouse
Exercise 1: Loading Data from CDC Output Tables

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab08\Starter folder, right-click Setup.cmd and click Run as administrator.

3. When prompted, click Yes to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: Create a Data flow for Inserts
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex1 folder.

2. In Solution Explorer, in the Connection Managers folder, note that a connection manager for the
AWDataWarehouse database has been created.

3. In Solution Explorer, right-click the SSIS Packages folder and click New SSIS Package.

4. When the new package is created, in Solution Explorer, right-click Package1.dtsx and click Rename.
Then rename the package to Load Employee Data.dtsx.

5. In the SSIS Toolbox, in the Favorites section, drag a Data Flow Task to the control flow surface of
the package.

6. On the control flow surface, right-click Data Flow Task and click Rename. Then rename it to Insert
Employees.

7. Double-click Insert Employees to view its data flow surface.

8. In the SSIS Toolbox, drag a Source Assistant to the data flow surface. Then in the Add New Source
dialog box, in the Select source type list, select SQL Server. In the Select connection managers list,
select localhost.Staging, and click OK.

9. Right-click OLE DB Source, click Rename, and change the name to Staged Employee Inserts.

10. Double-click the Staged Employee Inserts source, and in the OLE DB Source Editor dialog box,
configure the following settings. Then click OK:

o OLE DB connection manager: localhost.Staging.

o Data access mode: Table or view.

o Name of the table or view: [dbo].[EmployeeInserts].

11. In the SSIS Toolbox, drag a Destination Assistant to the data flow surface below the Staged
Employee Inserts source. Then in the Add New Destination dialog box, in the Select destination
type list, select SQL Server. In the Select connection managers list, select
localhost.AWDataWarehouse, and click OK.

12. Right-click OLE DB Destination, click Rename, and change the name to New Employees.

13. Click the Staged Employee Inserts source and drag the blue data flow arrow to the New Employees
destination.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-2 Implementing a Data Warehouse with Microsoft® SQL Server®

14. Double-click the New Employees destination, and in the OLE DB Source Editor dialog box,
configure the following settings. Then click OK:

o OLE DB connection manager: localhost.AWDataWarehouse.

o Data access mode: Table or view – fast load.

o Name of the table or view: [dbo].[DimEmployee].

o Mappings: On the Mappings tab, drag the EmployeeID input column to the
EmployeeAlternateKey destination column, and verify that all other input columns are mapped
to destination columns of the same name and that the EmployeeKey and Deleted destination
columns are not mapped.

15. On the File menu, click Save All.

 Task 3: Create a Data Flow for Updates
1. In Visual Studio, click the Control Flow tab of the Load Employee Data.dtsx package.

2. In the SSIS Toolbox, in the Favorites section, drag a Data Flow Task to the control flow surface,
directly below the Insert Employees data flow task.

3. On the control flow surface, right-click Data Flow Task and click Rename. Then rename it to Update
Employees.

4. Click the Insert Employees data flow task, and then drag its green precedence constraint to the
Update Employees data flow task.

5. Double-click Update Employees to view its data flow surface.

6. In the SSIS Toolbox, drag a Source Assistant to the data flow surface. Then in the Add New Source
dialog box, in the Select source types list, select SQL Server. In the Select connection managers
list, select localhost.Staging, and click OK.

7. Right-click OLE DB Source, click Rename, and change the name to Staged Employee Updates.

8. Double-click the Staged Employee Updates source, and in the OLE DB Source Editor dialog box,
configure the following settings. Then click OK:

o OLE DB connection manager: localhost.Staging.

o Data access mode: Table or view.

o Name of the table or view: [dbo].[EmployeeUpdates].

9. In the SSIS Toolbox, drag an OLE DB Command to the data flow surface below the Staged
Employee Updates source. Then right-click OLE DB Command, click Rename, and change the name
to Update Existing Employees.

10. Click the Staged Employee Updates data source, and then drag its blue data flow path to the
Update Existing Employees transformation.

11. Double-click the Update Existing Employees transformation. Then in the Advanced Editor for
Update Existing Employees dialog box, configure the following settings and click OK:

o On the Connection Managers tab, in the Connection Manager drop-down list, select
localhost.AWDataWarehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-3

o On the Component Properties tab, set the SqlCommand property to the following Transact-
SQL statement:

UPDATE dbo.DimEmployee
SET FirstName = ?, LastName = ?, EmailAddress = ?, Title = ?, HireDate = ?
WHERE EmployeeAlternateKey = ?

o On the Column Mappings tab, create the following mappings:

 FirstName: Param_0

 LastName: Param_1

 EmailAddress: Param_2

 Title: Param_3

 HireDate: Param_4

 EmployeeID: Param_5

12. On the File menu, click Save All.

 Task 4: Create a Data Flow for Deletes
1. In Visual Studio, click the Control Flow tab of the Load Employee Data.dtsx package.

2. In the SSIS Toolbox, in the Favorites section, drag a Data Flow Task to the control flow surface,
directly below the Update Employees data flow task.

3. On the control flow surface, right-click Data Flow Task and click Rename. Then rename it to Delete
Employees.

4. Click the Update Employees data flow task and then drag its green precedence constraint to the
Delete Employees data flow task.

5. Double-click Delete Employees to view its data flow surface.

6. In the SSIS Toolbox, drag a Source Assistant to the data flow surface. Then in the Add New Source
dialog box, in the Select source types list, select SQL Server. In the Select connection managers
list, select localhost.Staging, and click OK.

7. Right-click OLE DB Source, click Rename, and change the name to Staged Employee Deletes.

8. Double-click the Staged Employee Deletes source, and in the OLE DB Source Editor dialog box,
configure the following settings. Then click OK:

o OLE DB connection manager: localhost.Staging.

o Data access mode: Table or view.

o Name of the table or view: [dbo].[EmployeeDeletes].

9. In the SSIS Toolbox, drag an OLE DB Command to the data flow surface below the Staged
Employee Deletes source. Then right-click OLE DB Command, click Rename, and change the name
to Delete Existing Employees.

10. Click the Staged Employee Deletes data source, and then drag its blue data flow path to the Delete
Existing Employees transformation.

11. Double-click the Delete Existing Employees transformation. Then in the Advanced Editor for
Delete Existing Employees dialog box, configure the following settings and click OK:

o On the Connection Managers tab, in the Connection Manager drop-down list, select
localhost.AWDataWarehouse.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-4 Implementing a Data Warehouse with Microsoft® SQL Server®

o On the Component Properties tab, set the SqlCommand property to the following Transact-
SQL statement:

UPDATE dbo.DimEmployee
SET Deleted = 1
WHERE EmployeeAlternateKey = ?

o On the Column Mappings tab, map the EmployeeID column to Param_0.

12. On the File menu, click Save All.

 Task 5: Test the Package
1. In Visual Studio, click the Control Flow tab of the Load Employee Data.dtsx package.

2. On the Debug menu, click Start Debugging and observe the package as it executes.

3. When execution is complete, double-click the Insert Employees data flow task and review the
number of rows inserted. Then in the Data Flow Task drop-down list at the top of the data flow
surface designer, select Update Employees and Delete Employees in turn, noting the number of
rows processed by these tasks.

4. On the Debug menu, click Stop Debugging.

5. Close Visual Studio, saving the changes if prompted.

Results: After this exercise, you should have an SSIS package that uses data flows to apply inserts,
updates, and logical deletes in the data warehouse, based on staging tables extracted by the CDC Control
task and data flow components.

Exercise 2: Using a Lookup Transformation to Insert or Update
Dimension Data

 Task 1: View Data Flows
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex2 folder.

2. In Solution Explorer, under the SSIS Packages folder, double-click Load Products Data.dtsx.

3. On the control flow surface, in the Load Product Dimension Hierarchy sequence container, double-
click the Load Product Category Dimension task to view its data flow.

4. Examine the data flow for the Load Product Category Dimension task, and note the following
features:

o The Staged Product Category Data source extracts product category data from the
InternetSales and ResellerSales tables in the Staging database.

o The Lookup Existing Product Categories task retrieves the ProductCategoryKey value for
product categories that exist in the DimProductCategory table in the AWDataWarehouse
database by matching the product category business key in the staging database to the product
category alternative key in the data warehouse.

o The Lookup No Match Output data flow path from the Lookup Existing Product Categories
task connects to the New Product Categories destination, and the Lookup Match Output data
flow path connects to the Update Existing Product Categories task.

o The New Product Categories destination loads new product category records into the
DimProductCategory table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-5

o The Update Existing Product Categories task executes a Transact-SQL statement to update the
ProductCategoryName column in the DimProductCategory table for an existing row based on
the ProductCategoryKey.

5. In the Data Flow Task drop-down list, select Load Product Subcategory Dimension, and note that
this data flow inserts or updates product subcategory dimension data using a similar approach to the
Load Product Category Dimension data flow. Additionally, there is a lookup task to retrieve the
ProductCategoryKey in AWDataWarehouse for the parent category, which should have already
been loaded.

 Task 2: Create a Data Flow
1. In Visual Studio, in the Load Products Data.dtsx package designer, click the Control Flow tab. Then

in the SSIS Toolbox, drag a Data Flow Task to the control flow surface, under the Load Product
Subcategory Dimension task in the Load Product Dimension Hierarchy sequence container.

2. Right-click the data flow task you added, click Rename, and change the name to Load Product
Dimension. Then click the Load Product Subcategory Dimension task, and drag the green
precedence constraint to the Load Product Dimension task.

3. Double-click the Load Product Dimension task to view the data flow surface.

4. In the SSIS Toolbox, drag a Source Assistant to the data flow surface. Then in the Add New Source
dialog box, in the Select source type list, select SQL Server. In the Connection Managers list, select
localhost.Staging, and click OK.

5. Right-click OLE DB Source, click Rename, and change the name to Staged Product Data.

6. Double-click the Staged Product Data source, and in the OLE DB Source Editor dialog box, in the
Data access mode drop-down list, select SQL Command.

7. In the OLE DB Source Editor dialog box, in the SQL command text box, type the following Transact-
SQL statement. Then click OK:

SELECT DISTINCT ProductSubcategoryBusinessKey, ProductBusinessKey, ProductName,
StandardCost, Color, ListPrice, Size, Weight, Description
FROM dbo.InternetSales
UNION
SELECT DISTINCT ProductSubcategoryBusinessKey, ProductBusinessKey, ProductName,
StandardCost, Color, ListPrice, Size, Weight, Description
FROM dbo.ResellerSales

 Task 3: Add a Lookup Transformation for Parent Keys
1. In the SSIS Toolbox, drag a Lookup transformation to the data flow surface below the Staged

Product Data source. Then right-click Lookup, click Rename, and change the name to Lookup
Parent Subcategory.

2. Click the Staged Product Data source and drag the blue data flow arrow to the Lookup Parent
Subcategory transformation.

3. Double-click the Lookup Parent Subcategory transformation, and then in the Lookup
Transformation Editor dialog box, configure the following settings and click OK:

o On the General tab, in the Specify how to handle rows with no matching entries drop-down
list, ensure Fail component is selected.

o On the Connection tab, in the OLE DB connection manager drop-down list, select
localhost.AWDataWarehouse.

o On the Connection tab, in the Use a table or a view drop-down list, select
[dbo].[DimProductSubcategory].

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-6 Implementing a Data Warehouse with Microsoft® SQL Server®

o On the Columns tab, drag the ProductSubcategoryBusinessKey column in the Available
Input Columns list to the ProductSubcategoryAlternateKey column in the Available lookup
columns list. Then, in the Available lookups column list, select the check box for the
ProductSubcategoryKey column.

o On the Columns tab, ensure that the ProductSubcategoryKey column is added as a new
lookup column with the output alias ProductSubcategoryKey, and then click OK.

 Task 4: Add a Lookup Transformation for Product Records
1. In the SSIS Toolbox, drag a Lookup transformation to the data flow surface below the Lookup

Parent Subcategory transformation. Then right-click Lookup, click Rename, and change the name
to Lookup Existing Products.

2. Click the Lookup Parent Subcategory transformation and drag the blue data flow arrow to the
Lookup Existing Products transformation. Then, in the Input Output Selection dialog box, in the
Output drop-down list, select Lookup Match Output and click OK.

3. Double-click the Lookup Existing Products transformation, and then in the Lookup
Transformation Editor dialog box, configure the following settings and click OK:

o On the General tab, in the Specify how to handle rows with no matching entries drop-down
list, select Redirect rows to no match output.

o On the Connection tab, in the OLE DB connection manager drop-down list, select
localhost.AWDataWarehouse.

o On the Connection tab, in the Use a table or a view drop-down list, select
[dbo].[DimProduct].

o On the Columns tab, drag the ProductBusinessKey column in the Available Input Columns list
to the ProductAlternateKey column in the Available lookup columns list. Then in the
Available lookups column list, select the check box for the ProductKey column.

o On the Columns tab, ensure that the ProductKey column is added as a new column with the
output alias ProductKey, and then click OK.

 Task 5: Add a Destination for New Products
1. In the SSIS Toolbox, drag a Destination Assistant to the data flow surface below and to the right of

the Lookup Existing Products transformation. Then in the Add New Destination dialog box, in the
Types list, select SQL Server, in the Connection Managers list, select
localhost.AWDataWarehouse, and click OK.

2. Right-click OLE DB Destination, click Rename, and change the name to New Products.

3. Click the Lookup Existing Products transformation and drag the blue data flow arrow to the New
Products destination. Then in the Input Output Selection dialog box, in the Output drop-down list,
select Lookup No Match Output and click OK.

4. Double-click the New Products destination. Then in the OLE DB Destination Editor dialog box, in
the Name of the table or the view drop-down list, select [dbo].[DimProduct].

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-7

5. On the Mappings tab, create the following mappings. Then click OK.

o <ignore>: ProductKey

o ProductBusinessKey: ProductAlternateKey

o ProductName: ProductName

o StandardCost: StandardCost

o Color: Color

o ListPrice: ListPrice

o Size: Size

o Weight: Weight

o Description: Description

o ProductSubcategoryKey: ProductSubcategoryKey

 Task 6: Add an OLE DB Command for Updated Product Records
1. In the SSIS Toolbox, drag an OLE DB Command to the data flow surface below and to the left of the

Lookup Existing Products transformation.

2. Right-click OLE DB Command, click Rename, and change the name to Update Existing Products.

3. Click the Lookup Existing Products transformation and drag the blue data flow arrow to the
Update Existing Products transformation. The Lookup Match Output is automatically selected.

4. Double-click the Update Existing Products transformation. Then in the Advanced Editor for
Update Existing Products dialog box, configure the following settings and click OK:

o On the Connection Managers tab, in the Connection Manager drop-down list, select
localhost.AWDataWarehouse.

o On the Component Properties tab, set the SqlCommand property to the following Transact-
SQL statement:

UPDATE dbo.DimProduct
SET ProductName = ?, StandardCost = ?, Color = ?, ListPrice = ?, Size = ?,
Weight = ?, Description = ?, ProductSubcategoryKey = ?
WHERE ProductKey = ?

o On the Column Mappings tab, create the following mappings:

 ProductName: Param_0

 StandardCost: Param_1

 Color: Param_2

 ListPrice: Param_3

 Size: Param_4

 Weight: Param_5

 Description: Param_6

 ProductSubcategoryKey: Param_7

 ProductKey: Param_8

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-8 Implementing a Data Warehouse with Microsoft® SQL Server®

 Task 7: Test the Package
1. With the Load Product Dimension data flow displayed in the designer, on the Debug menu, click

Start Debugging and observe the package as it executes, noting that all rows flow to the New
Products destination (because the data warehouse contained no existing product records). When
execution is complete, on the Debug menu, click Stop Debugging.

2. On the Debug menu, click Start Debugging and observe the package as it executes again, noting
that this time, all rows flow to the Update Existing Products transformation. This is because all
staged product records were loaded to the data warehouse during the previous execution, so they all
match existing records. When execution is complete, on the Debug menu, click Stop Debugging.

3. Close Visual Studio, saving your changes if prompted.

Results: After this exercise, you should have an SSIS package that uses a Lookup transformation to
determine whether product records already exist, and updates them or inserts them as required.

Exercise 3: Implementing a Slowly Changing Dimension

 Task 1: Execute a Package to Load a Non-Changing Dimension
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex3 folder.

2. In Solution Explorer, under the SSIS Packages folder, double-click Load Geography Data.dtsx.

3. Review the control flow and data flow defined in the package. This package includes a simple data
flow to load staged geography data into the data warehouse. Only new rows are loaded, and rows
that match existing data are discarded.

4. On the Debug menu, click Start Debugging, and observe the package execution as it loads
geography data into the data warehouse.

5. When package execution has completed, on the Debug menu, click Stop Debugging.

 Task 2: Observe a Data Flow for a Slowly Changing Dimension
1. In Solution Explorer, under the SSIS Packages folder, double-click Load Reseller Data.dtsx.

2. On the control flow surface, double-click the Load Reseller Dimension task to view its data flow.

3. Examine the data flow for the Load Reseller Dimension task, and note the following features:

o The Staged Reseller Data source extracts data from the Resellers table in the Staging database.

o The Lookup Geography Key transformation looks up the geography key for the reseller in the
DimGeography table in the AWDataWarehouse database.

o The Reseller SCD is a slowly changing dimension transformation that has generated the
remaining transformations and destinations. You can double-click the Reseller SCD
transformation to view the wizard used to configure the slowly changing dimension, and then
click Cancel to avoid making any unintentional changes.

o The Reseller SCD transformation maps the ResellerBusinessKey input column to the
ResellerAlternateKey dimension column and uses it as a business key to identify existing
records.

o The Reseller SCD transformation treats AddressLine1, AddressLine2, BusinessType,
GeographyKey, and NumberEmployees as historical attributes, Phone and ResellerName as
changing attributes, and YearOpened as a fixed attribute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-9

4. On the Debug menu, click Start Debugging and observe the data flow as it executes.

5. When execution is complete, on the Debug menu, click Stop Debugging.

 Task 3: Implement a Slowly Changing Dimension Transformation
1. In Solution Explorer, under the SSIS Packages folder, double-click Load Customer Data.dtsx.

2. On the control flow surface, double-click the Load Customer Dimension task to view its data flow.
Note that a source to extract customer data from the Staging database and a Lookup transformation
that retrieves a GeographyKey value from the AWDataWarehouse database have already been
added to the data flow.

3. In the SSIS Toolbox pane, drag a Slowly Changing Dimension transformation to the data flow
surface, below the Lookup Geography Key transformation. Then right-click Slowly Changing
Dimension click Rename, and change the name to Customer SCD.

4. Click the Lookup Geography Key transformation and drag the blue data flow arrow to the
Customer SCD transformation. Then, in the Input Output Selection dialog box, in the Output drop-
down list, select Lookup Match Output and click OK.

5. Double-click the Customer SCD transformation to start the Slowly Changing Dimension wizard, and
on the Welcome to the Slowly Changing Dimension Wizard page, click Next.

6. On the Select a Dimension Table and Keys page, in the Connection manager drop-down list,
select localhost.AWDataWarehouse, and in the Table or view drop-down list, select
[dbo].[DimCustomer]. Then specify the following column mappings and click Next:

Input Columns Dimension Columns Key Type

AddressLine1 AddressLine1 Not a key column

AddressLine2 AddressLine2 Not a key column

BirthDate BirthDate Not a key column

CommuteDistance CommuteDistance Not a key column

 CurrentRecord

CustomerBusinessKey CustomerAlternateKey Business key

EmailAddress EmailAddress Not a key column

FirstName FirstName Not a key column

Gender Gender Not a key column

GeographyKey GeographyKey Not a key column

HouseOwnerFlag HouseOwnerFlag Not a key column

LastName LastName Not a key column

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-10 Implementing a Data Warehouse with Microsoft® SQL Server®

Input Columns Dimension Columns Key Type

MaritalStatus MaritalStatus Not a key column

MiddleName MiddleName Not a key column

NumberCarsOwned NumberCarsOwned Not a key column

Occupation Occupation Not a key column

Phone Phone Not a key column

Suffix Suffix Not a key column

Title Title Not a key column

7. On the Slowly Changing Dimension Columns page, specify the following change types and click
Next:

Dimension Columns Change Type

AddressLine1 Historical attribute

AddressLine2 Historical attribute

BirthDate Changing attribute

CommuteDistance Historical attribute

EmailAddress Changing attribute

FirstName Changing attribute

Gender Historical attribute

GeographyKey Historical attribute

HouseOwnerFlag Historical attribute

LastName Changing attribute

MaritalStatus Historical attribute

MiddleName Changing attribute

NumberCarsOwned Historical attribute

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-11

Dimension Columns Change Type

Occupation Historical attribute

Phone Changing attribute

Suffix Changing attribute

Title Changing attribute

8. On the Fixed and Changing Attribute Options page, leave both options clear and click Next.

9. On the Historical Attribute Options page, select Use a single column to show current and
expired records. Then, in the Column to indicate current record drop-down list, select
CurrentRecord. In the Value when current drop-down list, select True, and in the Expiration value
drop-down list, select False. Then click Next.

10. On the Inferred Dimension Members page, uncheck the Enable inferred member support option
and click Next.

11. On the Finish the Slowly Changing Dimension Wizard page, click Finish. Note that a number of
transformations and a destination are created.

 Task 4: Test the Package
1. With the Load Customer Dimension data flow displayed in the designer, on the Debug menu, click

Start Debugging and observe the package as it executes, noting that all rows pass through the New
Output data flow path.

2. When execution is complete, on the Debug menu, click Stop Debugging. Then on the Debug menu,
click Start Debugging and observe the package as it executes again, noting that no rows pass
through the New Output data flow path, because they already exist and no changes have been
made. When execution is complete, on the Debug menu, click Stop Debugging.

3. Start SQL Server Management Studio and connect to the localhost database engine instance by
using Windows authentication. Then open the Update Customers.sql file in the
D:\Labfiles\Lab08\Starter\Ex3 folder.

4. Examine the script and note that it updates two records in the staging database, changing one
customer’s phone number and another’s marital status. Then click Execute.

5. When the query has completed, close SQL Server Management Studio.

6. In Visual Studio, on the Debug menu, click Start Debugging and observe the package as it executes,
noting that one rows passes through the Historical Attribute Inserts Output data flow path, and
another passes through the Changing Attributes Updates Output.

7. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio,
saving your changes if prompted.

Results: After this exercise, you should have an SSIS package that uses a Slowly Changing Dimension
transformation to load data into a dimension table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-12 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 4: Using the MERGE Statement

 Task 1: Examine a Control Flow that uses the MERGE Statement
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the

D:\Labfiles\Lab08\Starter\Ex4 folder.

2. In Solution Explorer, under the SSIS Packages folder, double-click Load Reseller Sales Data.dtsx.

3. On the control flow surface, double-click the Merge Reseller Sales task, and in the Execute SQL
Task Editor dialog box, note the following configuration settings. Then click Cancel:

o The task uses the localhost.Staging connection manager to connect to the Staging database.

o The task executes a Transact-SQL MERGE statement that retrieves reseller sales and related
dimension keys from the Staging and AWDataWarehouse databases. It then matches these
records with the FactResellerSales table based on the SalesOrderNumber and
SalesOrderLineNumber columns, updates rows that match, and inserts new records for rows
that do not.

4. On the Debug menu, click Start Debugging and observe the package as it executes.

5. When execution is complete, on the Debug menu, click Stop Debugging.

 Task 2: Create a Package that Uses the MERGE Statement
1. In Solution Explorer, right-click the SSIS Packages folder and click New SSIS Package. Then right-

click Package1.dtsx, click Rename, and change the name to Load Internet Sales Data.dtsx.

2. In the SSIS Toolbox pane, drag an Execute SQL Task to the control flow surface. Then right-click
Execute SQL Task, click Rename, and change the name to Merge Internet Sales Data.

3. Double-click Merge Internet Sales Data. Then in the Execute SQL Task Editor dialog box, configure
the following settings and click OK:

o In the Connection drop-down list, select localhost.Staging.

o Click Browse, and then open D:\Labfiles\Lab08\Starter\Ex4\Merge Internet Sales.sql.

 Task 3: Test the Package
1. Save the project, and then on the Debug menu, click Start Debugging and observe the package as it

executes.

2. When execution is complete, on the Debug menu, click Stop Debugging. Then, close Visual Studio.

Results: After this exercise, you should have an SSIS package that uses an Execute SQL task to execute a
MERGE statement that inserts or updates data in a fact table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-1

Module 9: Enforcing Data Quality

Lab A: Cleansing Data
Exercise 1: Creating a DQS Knowledge Base

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab09\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: View Existing Data
1. In the D:\Labfiles\Lab09\Starter folder, double-click Sample Customer Data.xls to open it in Excel.

2. In Excel, on the CountryRegion worksheet, note that the data shows the number of customers by
country name and country code. Also note that the data contains the following quality issues:

o The list of country names includes both America and United States. For the purposes of
Adventure Works sales, these represent the same sales territory.

o The list of country names includes both Great Britain and United Kingdom. For the purposes of
Adventure Works sales, these represent the same sales territory.

o The list of country codes includes both GB and UK. For the purposes of Adventure Works sales,
these represent the same sales territory.

3. In Excel, on the StateProvince worksheet, note that the data shows the number of customers by
country and state. In addition to the concerns previously identified on the CountryRegion worksheet,
note that the data contains the following quality issues:

o The states Oregon and California exist in both America and United States.

o The states Wales and England exist in both Great Britain and United Kingdom.

o Australia includes a state named New South Wales and a state named NSW, which represent
the same one.

o United States includes Washington and WA, which represent the same state, as do California
and CA.

4. In Excel, on the Gender worksheet, note that two customers have a gender code of W. Valid values
for the gender code are F and M.

5. On the Sample Customer Data worksheet, apply column filters to explore the data further and view
the source records for the anomalous data.

6. Close Excel without saving any changes to the workbook.

 Task 3: Create a Knowledge Base
1. On the task bar, click SQL Server 2014 Data Quality Client.

2. When prompted, enter the server name MIA-SQL, and click Connect.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-2 Implementing a Data Warehouse with Microsoft® SQL Server®

3. In SQL Server Data Quality Services, in the Knowledge Base Management section, click New
Knowledge Base. Then enter the following details and click Next:

o Name: Customer KB.

o Description: Customer data knowledge base.

o Create Knowledge Base From: Existing Knowledge Base.

o Select Knowledge Base: DQS Data.

o Select Activity: Domain Management.

4. In the Domain list, click Country/Region. Then click the Domain Values tab and note the country
values that are defined in this knowledge base. Leading domain values are shown in bold, with
synonym values indented below.

5. In the Domain list, click Country/Region (two-letter leading), and on the Domain Values tab note
the country code values that are defined in this knowledge base. This defines the same values as the
Country/Region domain, but with the two-character country code designated as the leading value.

6. In the Domain list, click US - State, and on the Domain Values tab, note the state values that are
defined in this knowledge base. Note that state codes (such as CA and OR) are valid, but are shown as
synonyms for leading state name values (such as California and Oregon). State values that are
commonly entered in error are shown with a red cross and a valid value to which they are
automatically corrected.

7. With the US - State domain selected, on the Doman Properties tab, change Domain Name to
State. Later in this lab, you will use this domain for states and provinces in countries other than the
United States.

8. Click the Create a domain button, and in the Create Domain dialog box, enter the following details,
and then click OK:

o Domain Name: Gender

o Description: Male or female

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: Upper Case

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

9. In the Domain list, click Gender. Then click the Domain Values tab and note that the value
DQS_NULL (which represents a null value) has already been defined as a valid value for this domain.

10. On the Domain Values tab, click the Add new domain value button, and then enter the value F and
press Enter.

11. Repeat the previous step to add the values M, Female, and Male.

12. Click the value F, and then hold the Ctrl key and click the value Female. Then, with both values
selected, click the Set selected domain values as synonyms button. Depending on the screen
resolution, this may be in a drop-down list at the end of the toolbar above the table. Note that F
becomes the leading value, with Female indented below it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-3

13. Repeat the previous step to set M and Male as synonyms with M as the leading value.

14. Click Finish. When prompted to publish the knowledge base, click No.

 Task 4: Perform Knowledge Discovery
1. In SQL Server Data Quality Services, under Recent knowledge base, click Customer KB and then

click Knowledge Discovery.

2. On the Map page, in the Data Source drop-down list, select Excel File, and then click Browse and
open the Sample Customer Data.xls file in the D:\Labfiles\Lab09\Starter folder.

3. After the file has loaded, in the Worksheet drop-down list, select ‘Sample Customer Data$’ and
ensure that Use first row as header is selected. Then, in the Mappings table, select the following
mappings, then click Next.

Source Column Domain

CountryRegionCode (String) Country/Region (two-letter leading)

CountryRegionName (String) Country/Region

StateProvinceName (String) State

Gender (String) Gender

4. On the Discover page, click Start. Then wait for the discovery analysis process to finish.

5. When discovery analysis is complete, click Next.

6. On the Manage Domain Values page, in the Domain list, click State and view the new values that
have been discovered.

7. In the list of values, click New South Wales, press Ctrl, click NSW, and then click Set selected
domain values as synonyms. Note that NSW now has a Correct to value of New South Wales.

8. On the Manage Domain Values page, in the Domain list, click Country/Region (two-letter
leading) and view the new values that have been discovered.

9. In the Type column for the value UK, click the symbol for Error, and in the Correct To column, type
GB. Then clear the Show Only New checkbox and note that UK now appears as an error under the
GB leading value.

10. On the Manage Domain Values page, in the Domain list, click Gender and view the new values that
have been discovered.

11. In the Type column for the value W, click the symbol for Invalid, and in the Correct To column, type
F. Then clear the Show Only New checkbox and note that W now appears as an invalid value under
the F leading value.

12. On the Manage Domain Values page, in the Domain list, click Country/Region and view the new
values that have been discovered. Then clear the Show Only New checkbox to show all values for
this domain.

13. In the list of country values, find the United States leading value and click to select it. Find the new
America value, press Ctrl, and then click Set selected domain values as synonyms. Note that, under
the United States leading value, America is indented as a valid synonym value.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-4 Implementing a Data Warehouse with Microsoft® SQL Server®

14. Repeat the previous step to designate Great Britain as a valid synonym value for the United
Kingdom leading value.

15. Click Finish. When prompted to publish the knowledge base, click Publish, and when notified that
publication was successful, click OK.

16. Keep SQL Server Data Quality Services open for the next exercise.

Results: After this exercise, you should have created a knowledge base and performed knowledge
discovery.

Exercise 2: Using a DQS Project to Cleanse Data

 Task 1: Create a Data Quality Project
1. In SQL Server Data Quality Services, in the Data Quality Projects section, click New Data Quality

Project. Then enter the following details and click Next:

o Name: Cleanse Customer Data

o Description: Apply Customer KB to customer data

o Use knowledge base: Customer KB

o Select Activity: Cleansing

2. On the Map page, in the Data Source list select SQL Server, in the Database list select
InternetSales, and in the Table/View list select Customers. Then in the Mappings table, select the
following mappings, and click Next:

Source Column Domain

CountryRegionCode (nvarchar) Country/Region (two-letter leading)

CountryRegionName (nvarchar) Country/Region

StateProvinceName (nvarchar) State

Gender (nvarchar) Gender

3. On the Cleanse page, click Start. Then wait for the cleansing process to finish.

4. When cleansing is complete, review the source statistics in the Profiler pane, and click Next.

5. On the Manage and View Results page, select the Country/Region domain, and on the Suggested
tab, note that DQS has found the value Astralia, which is likely to be a typographical error, and
suggested it be corrected to Australia.

6. Click the Approve option to accept the suggested correction, and then click the Corrected tab to see
all the corrections that have been made for the Country/Region domain.

7. In the list of domains, click Country/Region (two-letter leading) and on the Corrected tab, note
the corrections that have been made for this domain.

8. In the list of domains, click Gender and on the Corrected tab, note the corrections that have been
made for this domain.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-5

9. In the list of domains, click State and on the New tab, note the new values that have been found for
this domain.

10. Click the Approve option for each new value, and then click the Corrected tab to see all the
corrections that have been made for the State domain.

11. Click Next.

12. On the Export page, view the output data, which contains:

o An Output column for each column in the source that was not mapped to a domain, containing
the original source value.

o A Source column for each domain in the knowledge base containing the original source value.

o An Output column for each domain containing the output value.

o A Reason column for each domain containing the reason for the output value.

o A Confidence column for each domain indicating the confidence level (0 to 1) for any
corrections to the original value.

o A Status column for each domain indicating the status of the output value.

13. In the Export Cleansing Results section, in the Destination Type list, select Excel File. Then in the
Excel file name box, enter D:\Labfiles\Lab09\Starter\CleansedCustomers.xls.

14. Ensure that Data and Cleansing Info is selected, and click Export.

15. When you are notified that the file download is complete, click Close, and then click Finish, and close
SQL Server Data Quality Services.

16. In the D:\Labfiles\Lab09\Starter folder, double-click CleansedCustomers.xls to open it with Excel.
Then view the output from the cleansing process, and close Excel.

Results: After this exercise, you should have used a DQS project to cleanse data and export it as an Excel
workbook.

Exercise 3: Using DQS in an SSIS Package

 Task 1: Add a DQS Cleansing Transformation to a Data Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab09\Starter

folder.

2. In Solution Explorer, in the SSIS Packages folder, double-click Extract Internet Sales Data.dtsx.
Then, on the SSIS menu, click SSIS Toolbox to display the toolbox.

3. On the control flow surface, double-click the Extract Customers task to view its data flow.

4. In the SSIS Toolbox pane, in the Other Transforms section, double-click DQS Cleansing. Then, on
the data flow surface, right-click DQS Cleansing, click Rename, and change the name to Cleanse
Customer Data.

5. Right-click the data flow path between Customers and Staging DB, and click Delete. Then
reposition Cleanse Customer Data below Customers, click Customers, and drag the data flow
arrow to Cleanse Customer Data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-6 Implementing a Data Warehouse with Microsoft® SQL Server®

6. Double-click Cleanse Customer Data, and in the DQS Cleansing Transformation Editor dialog box,
configure the following settings. Then click OK:

o On the Connection Manager tab, next to the Data quality connection manager drop-down
list, click New. Then in the DQS Cleansing Connection Manager dialog box, in the Server
Name box, type MIA-SQL, and click OK.

o On the Connection Manager tab, in the Data Quality Knowledge Base drop-down list, select
Customer KB.

o On the Mapping tab, check the checkboxes for the Gender, StateProvinceName,
CountryRegionCode, and CountryRegionName input columns. Then create the following
mappings with the default source, output, and status alias values:

Input Column Domain

Gender Gender

StateProvinceName State

CountryRegionCode Country/Region (two-letter leading)

CountryRegionName Country/Region

o On the Advanced tab, ensure that Standardize output is selected.

7. Click Cleanse Customer Data, and drag the data flow arrow to Staging DB.

8. Double-click Staging DB, and in the OLE DB Destination Editor dialog box, on the Mappings tab,
change the current column mappings for the following destination columns. Then click OK:

Input Column Destination Column

Gender_Output Gender

StateProvinceName_Output StateProvinceName

CountryRegionCode_Output CountryRegionCode

CountryRegionName_Output CountryRegionName

 Task 2: Test the Package
1. With the Extract Customers data flow displayed in the designer, on the Debug menu, click Start

Debugging and observe the package as it executes, noting the number of rows processed by the
Cleanse Customer Data transformation. Execution may take several minutes.

2. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio,
saving the solution files if prompted.

Results: After this exercise, you should have created and tested an SSIS package that cleanses data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-7

Lab B: Deduplicating Data
Exercise 1: Creating a Matching Policy

 Task 1: Prepare the Lab Environment
1. Complete the previous lab in this module.

2. In the D:\Labfiles\Lab09\Starter folder, right-click LabB.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: Create a Matching Policy
1. On the task bar, click SQL Server 2014 Data Quality Client.

2. When prompted, enter the server name MIA-SQL, and click Connect.

3. In the Knowledge Base Management section, under Recent knowledge base, click Customer KB,
and then click Matching Policy.

4. On the Map page, in the Data Source drop-down list, select Excel File. Then in the Excel File box,
click Browse and select Sample Staged Data.xls in the D:\Labfiles\Lab09\Starter folder.

5. In the Worksheet drop-down list, ensure that Sheet1$ and Use first row as header are selected.

6. In the Mappings table, in the first Source Column row, select FirstName (String). Click Create a
domain, and create a domain using the following properties, and click OK:

o Domain Name: FirstName

o Description: First Name

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: None

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

7. In the Mappings table, in the second Source Column row, select LastName (String). Then click the
Create a domain button, create a domain using the following properties, and click OK:

o Domain Name: LastName

o Description: Last Name

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: None

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-8 Implementing a Data Warehouse with Microsoft® SQL Server®

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

8. In the Mappings table, in the third Source Column row, select AddressLine1 (String). Then click the
Create a domain button, create a domain using the following properties, and click OK:

o Domain Name: AddressLine1

o Description: First line of address

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: None

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

9. In the Mappings table, in the fourth Source Column row, select City (String). Then click the Create
a domain button, create a domain using the following properties, and click OK:

o Domain Name: City

o Description: City

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: None

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

10. In the Mappings table, in the fifth Source Column row, select EmailAddress (String). Then click the
Create a domain button, create a domain using the following properties, and click OK:

o Domain Name: EmailAddress

o Description: Email address

o Data Type: String

o Use Leading Values: Selected

o Normalize String: Selected

o Format Output to: None

o Language: English

o Enable Speller: Selected

o Disable Syntax Error Algorithms: Not selected

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-9

11. Use the Add a column mapping button to create the following mappings for existing domains. Then
click Next:

Source Column Domain

Gender (String) Gender

StateProvinceName (String) State

CountryRegionCode (String) Country/Region (two-letter leading)

CountryRegionName (String) Country/Region

12. On the Matching Policy page, click the Create a matching rule button. Then create a matching rule
with the following details:

o Rule name: Is Same Customer

o Description: Checks for duplicate customer records

o Min. matching score: 80

Domain Similarity Weight Prerequisite

Country/Region Exact Selected

Gender Exact 10 Unselected

City Exact 20 Unselected

EmailAddress Exact 30 Unselected

FirstName Similar 10 Unselected

LastName Similar 10 Unselected

AddressLine1 Similar 20 Unselected

13. Click Next, and on the Matching Results page, click Start. Then wait for the matching process to
finish.

14. When the matching process has finished, review the matches found by DQS, noting that there are
duplicate records for three customers.

15. Click Finish, and when prompted to publish the knowledge base, click Publish. When notified that
the knowledge base has been published successfully, click OK.

Results: After this exercise, you should have created a matching policy and published the knowledge
base.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-10 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 2: Using a DQS Project to Match Data

 Task 1: Create a Data Quality Project for Matching Data
1. In SQL Server Data Quality Services, in the Data Quality Projects section, click New data quality

project. Then enter the following details and click Next.

o Name: Deduplicate Customers

o Description: Identify customer matches

o Use knowledge base: Customer KB

o Select Activity: Matching

2. On the Map page in the Data Source list select SQL Server, in the Database list select Staging, and
in the Table/View list, select Customers. Then in the Mappings table, add the following mappings,
and click Next:

Source Column Domain

FirstName (nvarchar) FirstName

LastName (nvarchar) LastName

Gender (nvarchar) Gender

AddressLine1 (nvarchar) AddressLine1

City (nvarchar) City

CountryRegionName (nvarchar) Country/Region

EmailAddress (nvarchar) EmailAddress

3. On the Matching page, click Start then wait for the matching process to finish.

4. When the matching process has completed, review the matches that have been found and then click
Next.

5. On the Export page, in the Destination Type drop-down list, select Excel File. Then specify the
following content to export settings:

o Matching Results: D:\Labfiles\Lab09\Starter\Matches.xls

o Survivorship Results: D:\Labfiles\Lab09\Starter\Survivors.xls

6. In the Survivorship Rule options, select Most complete record, and click Export.

7. When the file download is complete, in the Matching Export dialog box, click Close, and then click
Finish and close SQL Server Data Quality Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-11

 Task 2: Review and Apply Matching Results
1. In the D:\Labfiles\Lab09\Starter folder, double-click Matches.xls to open the file in Excel.

2. Note that the matching process found a match with a score of 90 for the following customer records:

o CustomerBusinessKey: 29484 (Rob Turner)

o CustomerBusinessKey: 29261 (Robert Turner)

3. In the D:\Labfiles\Lab09\Starter folder, double-click Survivors.xls to open the file in Excel.

4. Note that the survivors file contains all the records that should survive deduplication based on the
matches found. It contains the record for customer 29261 (Robert Turner), but not for 29484 (Rob
Turner).

5. Close all instances of Excel without saving any changes.

6. In the D:\Labfiles\Lab09\Starter folder, double-click Fix Duplicates.sql to open the file in SQL Server
Management Studio. When prompted, connect to the MIA-SQL instance of the database engine by
using Windows authentication.

7. Review the Transact-SQL code and note that it performs the following tasks:

o Updates the InternetSales table so that all sales currently associated with the duplicate customer
record become associated with the surviving customer record.

o Deletes the duplicate customer record.

8. Click Execute.

9. When the query has completed, close SQL Server Management Studio without saving any changes.

Results: After this exercise, you should have deduplicated data using a matching project and updated
data in your database to reflect these changes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-1

Module 10: Master Data Services

Lab: Implementing Master Data Services
Exercise 1: Creating a Master Data Services Model

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab10\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: Create a Model
1. Start Internet Explorer, and navigate to http://localhost:81/MDS.

2. On the Master Data Services home page, click System Administration.

3. On the Model View page, on the Manage menu, click Models.

4. On the Model Maintenance page, click Add model.

5. On the Add Model page, in the Model name box, type Product Catalog, clear the Create entity
with same name as model check box, and then click Save model.

 Task 3: Create Entities
1. On the Model Maintenance page, on the Manage menu, click Entities.

2. On the Entity Maintenance page, in the Model drop-down list, select Product Catalog, and then
click Add entity.

3. On the Add Entity page, in the Entity name box, type Product.

4. In the Enable explicit hierarchies and collections drop-down list, click No, and then click Save
entity.

5. On the Entity Maintenance page, in the Model drop-down list, ensure that Product Catalog is
selected, and then click Add entity.

6. On the Add Entity page, in the Entity name box, type Product Subcategory.

7. In the Enable explicit hierarchies and collections drop-down list, click No, and then click Save
entity.

 Task 4: Create Attributes
1. On the Entity Maintenance page, in the Entity table, click Product, and then click Edit selected

entity.

2. On the Edit Entity: Product page, in the Leaf member attributes area, click Add leaf attribute.

3. On the Entity: Product Add Attribute page, select the Domain-based option.

4. In the Name box, type ProductSubcategoryKey, in the Entity list, select Product Subcategory, and
then click Save attribute.

5. On the Edit Entity: Product page, in the Leaf member attributes area, click Add leaf attribute.

6. On the Entity: Product Add Attribute page, ensure that the Free-form option is selected.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-2 Implementing a Data Warehouse with Microsoft® SQL Server®

7. In the Name box, type Description, in the Length box, type 400, and then click Save attribute.

8. On the Edit Entity: Product page, in the Leaf member attributes area, click Add leaf attribute.

9. On the Entity: Product Add Attribute page, ensure that the Free-form option is selected.

10. In the Name box, type ListPrice, in the Data type list, select Number, in the Decimals box, type 4, in
the Input mask list, select (####), and then click Save attribute.

11. On the Edit Entity: Product page, click Save Entity.

 Task 5: Add Members
1. In Internet Explorer, click the Microsoft SQL Server 2014 logo to return to the Master Data Manager

home page.

2. Click Explorer.

3. On the Entities menu, click Product Subcategory. If the Entities menu does not appear, click any
other menu and then click the Entities menu again.

4. Click Add Member, and in the Details pane, enter the following attribute values:

 Name: Mountain Bikes

 Code: 1

5. In the Annotations box, type New subcategory. Then click OK.

6. Repeat the previous two steps to add the following Product Subcategory members:

Name Code

Chains 7

Gloves 20

Helmets 31

7. On the Entities menu, click Product. If the Entities menu does not appear, click any other menu and
then click the Entities menu again.

8. Click Add Member, and in the Details pane, enter the following attribute values:

o Name: Mountain-100 Silver, 42

o Code: 345

o ProductSubcategoryKey: 1

o Description: Top of the line competition mountain bike

o ListPrice: 3399.99

9. In the Annotations box, type New product. Then click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-3

10. Repeat the previous two steps to add the following Product members:

Name Code ProductSubcategoryKey Description ListPrice

Chain 559 7 Superior
chain

20.24

Full-Finger
Gloves, S

468 20 Synthetic
gloves

37.99

Sport-100
Helmet, Red

214 31 Universal fit
helmet

34.99

11. Click the Microsoft SQL Server 2014 logo to return to the Master Data Manager home page. Then
close Internet Explorer.

Results: After this exercise, you should have a Master Data Services model named Product Catalog that
contains Product and ProductSubcategory entities. Each of these entities should contain four members.

Exercise 2: Using the Master Data Services Add-in for Excel

 Task 1: Add Free-Form Attributes to an Entity
1. Start Microsoft® Excel® and create a new blank document.

2. On the File tab, click Options. Then in the Excel Options dialog box, on the Add-Ins tab, select
COM Add-ins and click Go.

3. In the COM Add-Ins dialog box, if Master Data Services Add-In for Excel is not selected, select it.
Then click OK.

4. In Excel, on the ribbon, click the Master Data tab.

5. On the ribbon Master Data tab, in the Connect and Load section, click the drop-down arrow under
Connect and click Manage Connections.

6. In the Manage Connections dialog box, click New, and in the Add New Connection dialog box,
enter the description Local MDS Server and the MDS server address http://localhost:81/mds, and
click OK. Then click Close.

7. On the ribbon, in the Connect and Load area, click Connect, and then click Local MDS Server.

8. In the Master Data Explorer pane, in the Model list, select Product Catalog, in the list of entities,
click Product, and then on the ribbon, in the Connect and Load area, click Refresh. The Product
members you created in the previous exercise are displayed in a worksheet named Product.

9. In cell I2 (to the right of the ListPrice attribute header), enter StandardCost. Then click cell I2 (in
which you just entered StandardCost), and on the ribbon, in the Build Model area, click Attribute
Properties.

10. In the Attribute Properties dialog box, in the Attribute type list, select Number, in the Decimal
places box, type 4, and then click OK. This creates a new free-form attribute named StandardCost
and publishes it to the model.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-4 Implementing a Data Warehouse with Microsoft® SQL Server®

11. Repeat the previous two steps to create the following free-form attributes:

Cell Attribute Name Attribute Properties

J2 Color Text (maximum length: 15)

K2 SafetyStockLevel Number (0 decimal places)

L2 ReorderPoint Number (0 decimal places)

M2 Size Text (maximum length: 50)

N2 Weight Number (4 decimal places)

O2 DaysToManufacture Number (0 decimal places)

P2 ModelName Text (maximum length: 500)

12. In cell I3 (the StandardCost value for the Sport-100 Helmet, Red product), enter 13.0863.

13. In cell J3 (the Color value for the Sport-100 Helmet, Red product), enter Red.

14. In cell K3 (the SafetyStockLevel value for the Sport-100 Helmet, Red product), enter 3.

15. In cell L3 (the ReorderPoint value for the Sport-100 Helmet, Red product), enter 4.

16. In cell M3 (the Size value for the Sport-100 Helmet, Red product), enter U.

17. In cell N3 (the Weight value for the Sport-100 Helmet, Red product), enter 0.2000.

18. In cell O3 (the DaysToManufacture value for the Sport-100 Helmet, Red product), enter 5.

19. In cell P3 (the ModelName value for the Sport-100 Helmet, Red product), enter Sport-100.

20. Enter the following attribute values for the remaining products:

 Mountain-100 Silver, 42

o StandardCost: 1912.1544

o Color: Silver

o SafetyStockLevel: 100

o ReorderPoint: 75

o Size: L

o Weight: 20.77

o DaysToManufacture: 4

o ModelName: Mountain-100

 Full-Finger Gloves, S

o StandardCost: 15.6709

o Color: Black

o SafetyStockLevel: 4

o ReorderPoint: 3

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-5

o Size: S

o Weight: 0.2000

o DaysToManufacture: 0

o ModelName: Full-Finger Gloves

 Chain

o StandardCost: 8.9866

o Color: Silver

o SafetyStockLevel: 500

o ReorderPoint: 375

o Size: (leave blank)

o Weight: (leave blank)

o DaysToManufacture: 1

o ModelName: Chain

21. On the ribbon, in the Publish and Validate area, click Publish. Then, in the Publish and Annotate
dialog box, enter the annotation Added product details, and click Publish.

 Task 2: Create an Entity for a Domain-Based Attribute
1. On the ribbon, in the Connect and Load area, click Connect, and then click Local MDS Server.

2. In the Master Data Explorer pane, in the Model list, select Product Catalog, in the list of entities,
click Product Subcategory, and then on the ribbon, in the Connect and Load area, click Refresh.
The Product Subcategory members you created in the previous exercise are displayed in a
worksheet named Product Subcategory.

3. In cell F2 (to the right of the Code attribute header), enter ProductCategoryKey.

4. In cell F3, enter the value 1 as the ProductCategoryKey for the Mountain Bikes subcategory.

5. Enter the following ProductCategoryKey values for the remaining subcategories:

o Gloves: 3

o Helmets: 4

o Chains: 2

6. Click cell F2 (the header for the ProductCategoryKey attribute), and on the ribbon, in the Build
Model area, click Attribute Properties.

7. In the Attribute Properties dialog box, in the Attribute type list, select Constrained list (Domain-
based). In the Populate the attribute with values from list, ensure that the selected column is
selected, in the New entity name box, type Product Category, and then click OK.

8. On the ribbon, in the Connect and Load area, click Connect, and then click Local MDS Server.

9. In the Master Data Explorer pane, in the Model list, select Product Catalog, in the list of entities,
click Product Category, and then on the ribbon, in the Connect and Load area, click Refresh. The
newly-created Product Category entity members are displayed in a worksheet named Product
Category.

10. In cell D3 (the Name value for the first member, which currently contains the value 1), enter Bikes.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-6 Implementing a Data Warehouse with Microsoft® SQL Server®

11. Enter the following Name values for the remaining categories:

o Components (2)

o Clothing (3)

o Accessories: 4

12. On the ribbon, in the Publish and Validate area, click Publish. Then, in the Publish and Annotate
dialog box, enter the annotation Added product categories, and click Publish.

13. Click the tab for the Product Subcategory worksheet, and on the ribbon, in the Connect and Load
area, click Refresh. Note that the Product Category member names are displayed in the
ProductCategoryKey column.

14. Minimize Excel. You will return to it in a later exercise.

Results: After this exercise, you should have a master data model that contains Product,
ProductSubcategory, and ProductCategory entities that contain data entered in Excel.

Exercise 3: Enforcing Business Rules

 Task 1: Create a Rule for the ListPrice Attribute
1. Start Explorer, and navigate to http://localhost:81/MDS.

2. On the Master Data Services home page, click System Administration. Then on the Manage menu
click Business Rules.

3. On the Business Rule Maintenance page, in the Model list, ensure that Product Catalog is selected,
in the Entity list, ensure that Product is selected, in the Member Type list, select Leaf, and then in
the Attribute list, ensure All is selected.

4. Click Add business rule, double-click the Name column, type Validate Price, and then press Enter.

5. Double-click in Description column, type Check that prices are non-zero, and then press Enter.

6. Click Edit selected business rule, and then in the Version list, ensure that VERSION_1 is selected.

7. Under Components, expand Actions, and then in the Validation list, drag must be greater than
onto the Actions node in the THEN section of the expression editor.

8. In the Attributes list, drag ListPrice onto Select attribute under Edit Action.

9. In the Attribute value box, ensure 0 is displayed, and then click Save item. In Actions, under THEN,
the entry should now read ‘ListPrice must be greater than 0.0000’.

10. On the Edit Business Rule: Validate Price page, click Back.

 Task 2: Create a Rule for the SafetyStockLevel Attribute
1. On the Business Rule Maintenance page, click Add business rule, double-click in the Name

column, type Validate SafetyStockLevel, and then press Enter.

2. Double-click in the Description column, type Check that safety stock level is greater than reorder
point for products that take a day or more to manufacture, and then press Enter.

3. Click Edit selected business rule, and then in the Version list, ensure that VERSION_1 is selected.

4. Under Components, expand Conditions, and then in the Value comparison list, drag is greater
than onto the Conditions node in the IF section of the expression editor.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-7

5. In the Attributes list, drag DaysToManufacture onto Select attribute under Edit Condition.

6. In the Attribute value box, ensure 0 is displayed, and then click Save item.

7. Under Components, expand Actions, and in the Validation list, drag must be greater than onto
the Actions node under THEN.

8. In the Attributes list, drag SafetyStockLevel onto Select attribute, directly under Edit Action. Then
in the Edit Action section, under must be greater than, select Attribute and drag the
ReorderPoint attribute from the Attributes list to Select attribute.

9. Click Save item. The IF section of the expression should read ‘DaysToManufacture is greater than 0’,
and the THEN section should read ‘SafetyStockLevel must be greater than ReorderPoint’.

10. On the Edit Business Rule: Validate SafetyStockLevel page, click Back.

 Task 3: Publish Business Rules and Validate Data
1. On the Business Rule Maintenance page, click Publish business rules, and then in the Message

from webpage dialog box, click OK.

2. In the Status column, check that the value displayed for both rules is Active.

3. Click the Microsoft® SQL Server® 2014 logo to return to the home page, and then click Explorer.

4. In the Entities menu, click Product to ensure that you are viewing the Product entity members. If
the Entities menu does not appear, click any other menu and then click the Entities menu again.

5. Click Apply Rules, and note that the Sport-100 Helmet, Red member has a red exclamation mark,
indicating that a business rule has been violated.

6. Click the Sport-100 Helmet, Red member, and at the bottom of the Details tab, note the validation
error.

7. In the details tab, change the SafetyStockLevel attribute for the Sport-100 Helmet, Red member to 5
and click OK. Note that the validation error and red exclamation mark disappear.

8. Close Internet Explorer.

9. Maximize Excel, and click the Product worksheet tab. Then on the Master Data tab of the ribbon, in
the Connect and Load area, click Refresh.

10. On the ribbon, on the Master Data tab, in the Publish and Validate area, click Show Status to
display the $ValidationStatus$ and $InputStatus$ columns.

11. In the Publish and Validate area, click Apply Rules. Note that validation succeeded for all members.

12. Change the value in the ListPrice column for the Chain product to 0.00.

13. On the ribbon, in the Publish and Validate section, click Publish and in the Publish and Annotate
dialog box, click Publish. Note that validation failed for this member.

14. Move the mouse pointer over the $ValidationStatus$ entry for the Chain member (which should
currently say Validation Failed), and note the comment that is displayed.

15. Change the value in the ListPrice column for the Chain product back to 20.24.

16. On the ribbon, in the Publish and Validate section, click Publish, and in the Publish and Annotate
dialog box, click Publish. Note that validation succeeds this time.

17. Close Excel without saving the workbook.

Results: After this exercise, you should have a master data model that includes business rules to validate
product data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-8 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 4: Loading Data into a Model

 Task 1: Load Data into the Model
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. Open the Import Products into MDS.sql file in the D:\Labfiles\Lab10\Starter folder.

3. Review the Transact-SQL code in this script, noting that it performs the following tasks:

o Generates a unique batch ID.

o Inserts data into the stg.Product_Category_Leaf staging table from the ProductCategory table
in the Products database, specifying an ImportType value of 2, an ImportStatus_ID value of 0,
and a BatchTag value based on the batch ID generated previously.

o Inserts data into the stg.Product_Subcategory_Leaf staging table from the
ProductSubcategory table in the Products database, specifying an ImportType value of 2, an
ImportStatus_ID value of 0, and a BatchTag value based on the batch ID generated previously.

o Inserts data into the stg.Product_Leaf staging table from the Product table in the Products
database, specifying an ImportType value of 2, an ImportStatus_ID value of 0, and a BatchTag
value based on the batch ID generated previously.

o Executes the stg.udp_Product_Category_Leaf stored procedure to start processing the staged
Product Category members with the batch tag specified previously.

o Executes the stg.udp_Product_Subcategory_Leaf stored procedure to start processing the
staged Product Subcategory members with the batch tag specified previously.

o Executes the stg.udp_Product_Leaf stored procedure to start processing the staged Product
members with the batch tag specified previously.

4. Click Execute and note the numbers of rows affected by the statements.

5. Close SQL Server Management Studio without saving any changes.

 Task 2: Check the Status of the Data Load
1. Start Internet Explorer, and navigate to http://localhost:81/MDS.

2. On the Master Data Services home page, click Integration Management, and then click Import
Data.

3. Review the information on the Import Data page. In Status column, check that the value displayed is
Completed, and in the Errors column, check that the value displayed is 0.

 Task 3: Validate Imported Members
1. Click the Microsoft SQL Server 2014 logo to return to the home page. Then click Explorer.

2. On the Entities menu, click Product to view the Product members. If the Entities menu does not
appear, click any other menu and then click the Entities menu again.

3. Click Apply Rules to apply business rules to the imported members.

4. Click Filter, and then click Add Criteria.

5. In the Attribute column, select [Validation Status], in the Operator column, ensure that Is equal to
is selected, and in the Criteria column, select Validation Failed. Then click Apply. The list is filtered
to show only invalid members.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-9

6. Click each member and review the validation errors at the bottom of the Details pane. Some
members have failed because they have no ListPrice value. Resolve this problem by setting the
ListPrice of each invalid member to 1431.50.

7. Click Filter, and then click Clear Filter.

8. Click the Microsoft SQL Server 2014 logo to return to the home page.

9. Keep Internet Explorer open. You will return to it in the next exercise.

Results: After this exercise, you should have loaded members into the Master Data Services model.

Exercise 5: Consuming Master Data Services Data

 Task 1: Create Subscription Views
1. In Internet Explorer, on the Master Data Manager home page, click Integration Management. Then

click Create Views.

2. On the Subscription Views page, click Add subscription view.

3. On the Subscription Views page, in the Create Subscription View section, in the Subscription
view name box, type Products.

4. In the Model list, select Product Catalog.

5. In the Version list, select VERSION_1.

6. In the Entity list, select Product.

7. In the Format list, select Leaf members.

8. Click Save.

9. Repeat steps 2 to 8 to create the subscription views named ProductSubcategories and
ProductCategories for the Product Subcategory and Product Category leaf members respectively.

10. Close internet Explorer.

 Task 2: Query a Subscription View by Using Transact-SQL
1. In the D:\Labfiles\Lab10\Starter folder, double-click Query Subscription Views.sql. When prompted,

connect to the localhost database instance by using Windows authentication.

2. Review the Transact-SQL Statement, click Execute, and then review the results. Then close SQL Server
Management Studio without saving any files.

Results: After this exercise, you should have three subscription views that you can use to query product
data from Master Data Services.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-1

Module 11: Extending SQL Server Integration Services

Lab: Using Custom Scripts
Exercise 1: Using a Script Task

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to 20463C-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab11\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: Add a Script Task to a Control Flow
1. Start Visual Studio and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab11\Starter

folder.

2. In Solution Explorer, double-click the Load DW.dtsx SSIS package to open it in the designer.

3. Review the control flow, noting that it runs multiple packages to load data from the staging database
into the data warehouse. Then it uses an Execute SQL task named Get record counts and truncate
Staging tables to determine the number of rows that were processed before truncating the staging
tables, ready for the next refresh cycle.

4. On the SSIS menu, click Variables, and note the variables in this package. The Get record counts
and truncate Staging tables task assigns the row counts in the staging tables to these variables.

5. In the SSIS Toolbox, drag a Script Task to the control flow and drop it under the Get record counts
and truncate Staging tables task. Then right-click Script Task, click Rename, and change the name
to Log Rowcounts.

6. Click the Get record counts and truncate Staging tables task, and drag the green precedence
constraint to the Log Rowcounts task.

 Task 3: Enable Logging for the Script Task
1. On the SSIS menu, click Logging, then on the Providers and Logs tab, in the Provider type list,

select SSIS log provider for Windows Event Log and click Add.

2. In the Containers tree, select the Log Rowcounts checkbox, and in the Providers and Logs tab
select the SSIS log provider for Windows Event Log checkbox. Then on the Details tab, select the
ScriptTaskLogEntry checkbox, and click OK.

 Task 4: Configure the Script Task
1. On the control flow surface, double-click the Log Rowcounts script task.

2. In the Script Task Editor dialog box, on the Script page, in the ReadOnlyVariables box, click
the ellipsis (…) button. Then in the Select Variables dialog box, select the following variables and
click OK:

o User::CustomerCount

o User::EmployeeCount

o User::InternetSalesCount

o User::PaymentCount

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-2 Implementing a Data Warehouse with Microsoft® SQL Server®

o User::ResellerCount

o User::ResellerSalesCount

3. Click Edit Script, and wait for the Visual Studio VstaProjects editor to open. If a message that the
Visual C++ Language Manager Package did not load correctly is displayed, prompting you to
continue to show this error, click No.

4. In the VstaProjects editor, in the Main() function, replace the comment //TODO: Add your code
here with the following code (above the existing Dts.TaskResult = (int)ScriptResults.Success
statement). You can copy and paste this code from Script.txt in the D:\Labfiles\Lab11\Starter folder.

String logEntry = "Data Warehouse records loaded (";
logEntry += Dts.Variables["User::CustomerCount"].Value.ToString() + " customers, ";
logEntry += Dts.Variables["User::ResellerCount"].Value.ToString() + " resellers, ";
logEntry += Dts.Variables["User::EmployeeCount"].Value.ToString() + " employees, ";
logEntry += Dts.Variables["User::PaymentCount"].Value.ToString() + " payments, ";
logEntry += Dts.Variables["User::InternetSalesCount"].Value.ToString() + " Internet
sales, and ";
logEntry += Dts.Variables["User::ResellerSalesCount"].Value.ToString() + " reseller
sales) ";
Dts.Log(logEntry, 999, null);

5. Save the script and close the VstaProjects – Microsoft Visual Studio window. Then in the Script
Task Editor dialog box, click OK.

 Task 5: Test the Script
1. On the Debug menu, click Start Debugging and observe the control flow tab as the package

executes, noting that each package executed opens in a new window. The entire load process can
take a few minutes.

2. When execution is complete, on the Debug menu, click Stop Debugging. Then close Visual Studio,
saving your work if prompted.

3. Right-click the Start button and click Event Viewer.

4. In Event Viewer, expand the Windows Logs folder and select the Application log. Then in the list of
application events, select the first information event with a source of SQLISPackage120 and read the
information in the General tab.

5. Close Event Viewer.

Results: After this exercise, you should have an SSIS package that uses a script task to log row counts.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-1

Module 12: Deploying and Configuring SSIS Packages

Lab: Deploying and Configuring SSIS
Packages
Exercise 1: Creating an SSIS Catalog

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab12\Starter folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

 Task 2: Create the SSIS Catalog and a Folder
1. Start SQL Server Management Studio and connect to the localhost instance of the database engine

using Windows authentication.

2. In Object Explorer, right-click Integration Services Catalogs and click Create Catalog.

3. In Password, type Pa$$w0rd and in Retype Password type Pa$$w0rd. Then click OK.

4. In Object Explorer, expand Integration Services Catalogs.

5. Right-click SSISDB and click Create Folder.

6. In the Folder name box, type DW ETL, in the Folder description box, type Folder for the
Adventure Works ETL SSIS Project, and then click OK.

Results: After this exercise, you should have enabled CLR, creating the SSIS catalog, and a folder.

Exercise 2: Deploying an SSIS Project

 Task 1: Deploy an SSIS Project
1. Start Visual Studio, and open the AdventureWorksETL.sln solution in the D:\Labfiles\Lab12\Starter

folder.

2. On the Build menu, click Build Solution.

3. When the build has succeeded, In the Project menu, click Deploy.

4. In the Introduction page of the Integration Services Deployment Wizard dialog box, click Next.

5. In the Select Destination page, enter localhost in the Server name box and in the Path box, browse
to the SSIDB\DW ETL folder you created earlier. Then click Next.

6. On the Review page, click Deploy. Then, when deployment has completed, click Close and close
Visual Studio.

Results: After this exercise, you should have deployed an SSIS project to a folder in your SSIS database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-2 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 3: Creating Environments for an SSIS Solution

 Task 1: Create Environments
1. In SQL Server Management Studio, expand the DW ETL folder you created earlier, and expand its

Projects folder. Note that the AdventureWorksETL project has been deployed.

2. Right-click the Environments folder, and click Create Environment. Then in the Create
Environment dialog box, enter the environment name Test, and click OK.

3. Repeat the previous step to create a second environment named Production.

 Task 2: Create Variables
1. Expand the Environments folder to see the environments you have created, and then right-click the

Production environment and click Properties.

2. In the Environment Properties dialog box, on the Variables tab, add a variable with the following
settings:

o Name: StgServer

o Type: String

o Description: Staging server

o Value: MIA-SQL

o Sensitive: No

3. Add a second variable with the following settings (making sure to include the trailing “\” in the value),
and then click OK:

o Name: FolderPath

o Type: String

o Description: Accounts folder

o Value: D:\Accounts\

o Sensitive: No

4. Right-click the Test environment and click Properties.

5. In the Environment Properties dialog box, on the Variables tab, add a variable with the following
settings:

o Name: StgServer

o Type: String

o Description: Staging server

o Value: localhost

o Sensitive: No

6. Add a second variable with the following settings (making sure to include the trailing “\” in the value),
and then click OK:

o Name: FolderPath

o Type: String

o Description: Accounts folder

o Value: D:\TestAccts\

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-3

o Sensitive: No

 Task 3: Map Environment Variables
1. In the Projects folder, right-click AdventureWorksETL and click Configure.

2. In the Configure – AdventureWorksETL dialog box, on the References page, click Add and add the
Production environment. Then click Add again and add the Test environment.

3. In the Configure – AdventureWorksETL dialog box, on the Parameters page, in the Scope list,
select AdventureWorksETL.

4. On the Parameters tab, click the ellipses (…) button for the AccountsFolder parameter. In the Set
Parameter Value dialog box, select Use environment variable, and click FolderPath in the list of
variables, and click OK.

5. In the Configure – AdventureWorksETL dialog box, on the Connection Managers tab, select the
localhost Staging ADO NET connection manager, and click the ellipses (…) button for the
ServerName property and in the Set Parameter Value dialog box, select Use environment variable
and click StgServer in the list of variables, and click OK.

6. In the Configure – AdventureWorksETL dialog box, on the Connection Managers tab, select the
localhost.Staging connection manager and click the ellipses (…) button for the ServerName
property, and in the Set Parameter Value dialog box, select Use environment variable, and click
StgServer in the list of variables, and click OK.

7. In the Configure – AdventureWorksETL dialog box, click OK.

Results: After this exercise, you should have configured your project to use environments to pass values
to package parameters.

Exercise 4: Running an SSIS Package in SQL Server Management Studio

 Task 1: Run a Package
1. In Object Explorer, expand the AdventureWorksETL project, and expand Packages.

2. Right-click Extract Payment Data.dtsx and click Execute.

3. Select Environment and select the .\Test environment.

4. Click OK.

5. When prompted to open overview report, wait 10 seconds to allow the package to run, and then click
Yes.

6. In the Overview report, in the Execution Information table, note the environment that was used. In
the Parameters Used table, note the values you configured with environment variables.

Results: After this exercise, you should have performed tests to verify that a value was passed from the
environment to the package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-4 Implementing a Data Warehouse with Microsoft® SQL Server®

Exercise 5: Scheduling SSIS Packages with SQL Server Agent

 Task 1: Create a SQL Server Agent job
1. In Object Explorer, right-click SQL Server Agent, point to New, and click Job.

2. In the New Job dialog box, in the Name box, type Extract Reseller Data.

3. In the New Job dialog box, on the Steps page, click New.

4. In the New Job Step dialog box, in the Step name box, type Run Extract Reseller Data Package.

5. In the Type list, select SQL Server Integration Services Package.

6. In the Package source list, select SSIS Catalog.

7. In the Server box, type MIA-SQL.

8. Click the ellipses (...) button for the Package box, and in the Select an SSIS Package dialog box,
expand SSISDB, expand DW ETL, expand AdventureWorksETL, select Extract Reseller Data.dtsx,
and then click OK.

9. In the New Job Step dialog box, on the Configuration tab, select Environment, and select the
.\Production environment.

10. In the New Job Step dialog box, on the Advanced page, in the On success action list, select Quit
the job reporting success. Then click OK.

11. In the New Job dialog box, on the Schedules page, click New.

12. In the Name box, type ETL Schedule.

13. In the Schedule type list, select One time.

14. Ensure Enabled is selected.

15. In the One-time occurrence section, select the current day and enter a time that is two minutes later
than the current time.

16. Click OK to close the New Job Schedule window, and then click OK to close the New Job window.

17. Wait for two minutes.

18. In Object Explorer, expand SQL Server Agent, right-click Job Activity Monitor, and click View Job
Activity.

19. In the Job Activity Monitor – localhost window, note the Status and Last Run Outcome values for
the Extract Reseller Data job. If the job has not yet completed, wait a minute and click Refresh until
the job has completed successfully, and then click Close.

 Task 2: View the Integration Services Dashboard
1. In SQL Server, in Object Explorer, under Integration Services Catalogs, right-click SSISDB, point to

Reports, point to Standard Reports, and click Integration Services Dashboard.

2. In the Packages Detailed Information (Past 24 Hours) list, notice that the most recent two package
executions succeeded, and then click the Overview link for the first package in the list (which should
be the Extract Reseller Data.dtsx package).

3. In the Overview report, in the Execution Information table, note the environment that was used,
and in the Parameters Used table, note the values you configured with environment variables.

4. Click View Messages to view the messages that were logged during package execution.

5. Close SQL Server Management Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L12-5

Results: After this exercise, you should have created an SQL Server Agent job that automatically runs your
SSIS package.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-1

Module 13: Consuming Data in a Data Warehouse

Lab: Using a Data Warehouse
Exercise 1: Exploring an Enterprise BI Solution

 Task 1: Prepare the Lab Environment
1. Ensure that the 20463C-MIA-DC and 20463C-MIA-SQL virtual machines are both running, and then

log on to MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab13\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. Click Yes when prompted to confirm that you want to run the command file, and then wait for the
script to finish.

 Task 2: View an Enterprise Data Model
1. Start Visual Studio and open the AW Enterprise BI.sln solution in the D:\Labfiles\Lab13\Starter

folder. If the Tabular model designer dialog box is displayed, in the Workspace server list, specify
localhost\SQL2 and then click OK.

2. In Solution Explorer, in the AWDataModel project, double-click Model.bim to open it in the
designer. If you are prompted to run a script on the Analysis Services server, click Yes.

3. Click each tab in the designer to view the tables in the data model. These are based on tables in the
data warehouse.

4. On the Model menu, point to Model View and click Diagram View. This shows the relationships
between the tables in the data model.

5. On the Model menu, point to Model View and click Data View. Then click the Reseller Sales tab
(you may need to click the drop-down list at the end of the tabs).

6. Note that in the measure grid area (under the data), some aggregations have been defined as
measures for the table.

7. Under the Profit column, right-click the Reseller Margin measure and click Edit KPI Setting. Then in
the Key Performance Indicator (KPI) dialog box, note that this KPI compares the Reseller Margin
measure to a target of 0.5, indicating that Adventure Works Cycles seeks to achieve a 50 percent
margin on reseller sales. Then click Cancel.

8. On the Project menu, click AWDataModel Properties, and on the Deployment page note that the
data model is configured to be deployed as a cube named AdventureWorks in a database named
AWOLAP. Then click Cancel.

9. On the Build menu, click Deploy AWDataModel. If you are prompted for impersonation credentials,
specify the user name ADVENTUREWORKS\ServiceAcct, the password Pa$$w0rd, and then click
OK. Then, when deployment is complete, click Close and minimize Visual Studio.

10. Start Excel and create a new blank workbook.

11. On the Data tab, in the Get External Data area (which may be condensed into a drop-down list,
depending on the screen resolution), in the From Other Sources list, click From Analysis Services.

12. In the Data Connection Wizard, on the Connect to Database Server page, enter the Server name
MIA-SQL\SQL2, select Use Windows Authentication, and click Next.

13. On the Select Database and Table page, select the AWOLAP database and the AdventureWorks
cube, and click Next.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-2 Implementing a Data Warehouse with Microsoft® SQL Server®

14. On the Save Data Connection File and Finish page, click Finish. Then, in the Import Data dialog
box, select PivotTable Report, ensure that Existing worksheet is selected, and click OK.

15. In the PivotTable Fields pane, under Reseller Sales, select Reseller Revenue, Reseller Profit, and
Reseller Margin. The total for each measure is displayed in the PivotTable.

16. In the PivotTable Fields pane, under Internet Sales, select Internet Revenue, Internet Profit, and
Internet Margin. The total for each measure is added to the PivotTable.

17. In the PivotTable Fields pane, expand KPIs, expand Internet Margin, and select Status. Then
expand Reseller Margin and click Status. A status indicator for each KPI is shown in the PivotTable.

18. In the PivotTable Fields pane, under Order Date, select Calendar Date. The measures are shown for
each year.

19. In the PivotTable Fields pane, under Geography, select Location. The measures under each year are
shown for each sales territory.

20. In the PivotTable, expand the years and locations to drill down into the detailed results for specific
time periods and locations.

21. When you have finished exploring the data, close Excel without saving the workbook.

 Task 3: View Enterprise Reports
1. Maximize Visual Studio, in which the AW Enterprise BI.sln solution should be open.

2. In Solution Explorer, in the AWReports project, in the Shared Data Sources folder, note that the
project contains two shared data sources, AWDataWarehouse.rds and AWOLAP.rds. These provide
connection details for the AWDataWarehouse SQL Server database and the AWOLAP Analysis
Services database.

3. In Solution Explorer, in the Reports folder, double-click Dashboard.rdl to open it in the designer.
Note that this report contains visualizations for various business metrics. The report uses a hidden
parameter named Year to filter the data so that only the data for the latest year is shown.

4. In Solution Explorer, in the Reports folder, double-click Monthly Sales Report.rdl to open it in the
designer. Note that this report provides details of sales performance for a specific month, which is
determined by two parameters named Year and Month.

5. On the Build menu, click Deploy AWReports. Wait for deployment to complete, and then close
Visual Studio.

6. Start Internet Explorer® and browse to http://mia-sql/sites/adventureworks. Note that the first
time you browse to this site, it may take a few minutes to open.

7. In the Adventure Works Portal page, in the quick launch area on the left side of the page, click
Reports.

8. In the Reports page, click Dashboard. Then wait for the report to load.

9. View the dashboard report, and expand the product categories to view KPIs for each subcategory.
Note that you can hold the mouse over the KPI indicators to see the actual margin as a tooltip.

10. At the top of the page, click Reports to return to the Reports page.

11. In the Reports page, click Monthly Sales Report. Then wait for the report to load.

12. View the report, noting that you can change the Year and Month parameters to view the sales results
for a different month.

13. In the Actions drop-down list, point to Export and click Word. Then, when prompted to open or
save the report, click Open.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-3

14. In Microsoft® Word®, click Enable Editing. Then view the report which has been exported as a
Word document. When you have finished, close Word without saving the document.

15. In Internet Explorer, click Reports to return to the Reports page. Keep Internet Explorer open for the
next exercise.

Results: After this exercise, you should have deployed an Analysis Services database and some Reporting
Services reports in SharePoint Server.

Exercise 2: Exploring a Self-Service BI Solution

 Task 1: Use Report Builder to Create a Report
1. In Internet Explorer®, in the Reports page of the Adventure Works Portal SharePoint Server site, click

the Files tab on the ribbon, and in the New Document drop-down list, click Report Builder Report.
If you are prompted to open the application, click Open.

2. When you are prompted to run the Report Builder application, click Run and wait for the application
to be downloaded and started.

3. In the Getting Started pane, ensure that New Report is selected and click Table or Matrix Wizard.

4. On the Choose a dataset page, ensure that Create a dataset is selected, and click Next.

5. On the Choose a connection to a data source page, click Browse. Browse to the Reports\Data
Sources folder, select the AWDataWarehouse.rsds data source, and click Open. Then click Next.

6. On the Design a query page, expand Tables, expand DimProduct, and select ProductName, and
then expand FactInternetSales, and select Order Quantity. Then expand the Relationships section
and verify that a relationship has been detected based on the ProductKey field.

7. In the Selected fields list, in the Aggregate column for the OrderQuantity field, select Sum. Then
verify that the Grouped by aggregate is automatically specified for the ProductName field.

8. Click Edit as Text to view the Transact-SQL code that has been generated by the query designer, and
modify it to match the following code:

SELECT TOP 10 DimProduct.ProductName, SUM(FactInternetSales.OrderQuantity) AS
SalesCount
FROM DimProduct INNER JOIN FactInternetSales
ON DimProduct.ProductKey = FactInternetSales.ProductKey
GROUP BY DimProduct.ProductName
ORDER BY SalesCount DESC;

9. Click the Run icon to view the query results, and then click Next.

10. On the Arrange fields page, drag both fields to the Values area, and then click Next.

11. On the Choose the layout page, click Next.

12. On the Choose a style page, select any style and click Finish.

13. In the report designer, add the title Top 10 Internet Sellers. Then widen the columns as required so
that the headers are fully visible.

14. Click Run to preview the report, and then click Design to return to design view, making any changes
you think necessary to improve the report formatting.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-4 Implementing a Data Warehouse with Microsoft® SQL Server®

15. When you are satisfied with the report, click the Save icon, browse to the Reports folder, and save
the report as Top 10 Sellers.rdl.

16. Close Report Builder, and refresh the Reports page in Internet Explorer. Then click Top 10 Sellers to
view your report.

17. When you have viewed the report, close Internet Explorer.

 Task 2: Use Excel to Create a Data Model
1. Start Excel and create a new blank workbook. Save the workbook as Analysis.xlsx in the

D:\Labfiles\Lab13\Starter folder.

2. On the ribbon, click File. Then click Options.

3. In the Excel Options dialog box, on the Add-Ins page, in the Manage list, select COM Add-Ins and
click Go.

4. In the COM Add-Ins dialog box, if the following add-ins are not selected, select them and click OK.

o Microsoft Office PowerPivot for Excel 2013

o Microsoft Power Query for Excel

5. On the PowerPivot tab, click Manage. The PowerPivot for Excel window opens.

6. In the PowerPivot for Excel window, in the Get External Data area (which may be condensed into a
drop-down list, depending on the screen resolution), in the From Database list, click From SQL
Server.

7. In the Table Import Wizard, on the Connect to a Microsoft SQL Server Database page, change the
friendly connection name to AWDataWarehouse and enter the server name MIA-SQL. Then, ensure
that Use Windows Authentication is selected, in the Database name list, select
AWDataWarehouse, and click Next.

8. On the Choose How to Import the Data page, ensure that Select from a list of tables and views
to choose the data to import is selected, and click Next.

9. On the Select Tables and Views page, select the DimCustomer, DimGeography and
FactInternetSales tables. Then change the Friendly Name value for the selected tables to
Customer, Geography and Internet Sales, and click Finish.

10. Wait for the data from the selected table to be imported, and then click Close.

11. In the PowerPivot for Excel window, click Diagram View and note that the relationships between the
tables have been detected.

12. Minimize the PowerPivot for Excel window and return to the Excel Workbook.

13. In Excel on the Power Query tab, in the Get External Data area (which may be condensed into a
drop-down list, depending on the screen resolution), in the From File list, click From Excel.

14. Browse to the D:\Labfiles\Lab13\Starter folder, select GasPrices.xlsx, and click OK.

15. In the Navigator pane, select Sheet1, and click Edit.

16. In the Query Editor, click Use First Row as Headers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-5

17. In the drop-down list for the Country/Region column, select only the following values, and click OK.

o Australia

o Canada

o France

o Germany

o United Kingdom

o United States

18. Right-click the US$/US gallon (95 RON) header and click Rename. Then rename this column to
Price per Gallon.

19. Click the Price per Gallon column header, and then in the Data Type list, select Number.

20. In the Query Settings pane, change the Name to Gas Prices. Then, clear Load to worksheet, and
select Load to data model.

21. Click Apply and Close.

22. Close the Workbook Queries pane and maximize the PowerPivot for Excel window. Note that the
Gas Prices table has been added to the data model.

23. On the Design tab, click Create Relationship.

24. In the Create Relationship dialog box, in the Table list, select Gas Prices and in the Column list,
select Country/Region. Then in the Related Lookup Table list, select Geography and in the
Related Lookup Column list, select CountryRegionName, and click Create.

25. In the PowerPivot for Excel window, on the Home tab, in the PivotTable drop-down list, click
PivotTable. Then in the Insert PivotTable dialog box, select Existing Worksheet and click OK.

26. In the PivotTable Fields pane, expand Gas Prices and select Country/Region and Price per Gallon,
expand Internet Sales and select Sales Amount. Note that the PivotTable displays the sales revenue
and price per gallon for each sales territory.

27. Save the workbook.

 Task 3: Use Excel to Visualize Data
1. In Excel, on the ribbon, click File. Then click Options.

2. In the Excel Options dialog box, on the Add-Ins page, in the Manage list, select COM Add-Ins and
click Go.

3. In the COM Add-Ins dialog box, if the Power View add-in is not selected, select it and click OK.

4. On the Insert tab, click Power View, and wait for the Power View sheet to be added to the
workbook.

5. In the Power View report, close the Filters pane and add the title Sales By Geography.

6. In the Power View Fields pane, expand Geography and select CountryRegionName, and then
expand Internet Sales and select SalesAmount.

7. In the Switch Visualization area of the ribbon, in the Column Chart list, select Stacked Column.
Then resize the column chart to fill the top half of the report.

8. Click the empty area under the column chart, and in the Power View Fields pane, expand Gas Prices
and select Country/Region and Price per Gallon. Then, under Internet Sales, select SalesAmount.

9. In the Fields area, in the SalesAmount drop-down list, select Average.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L13-6 Implementing a Data Warehouse with Microsoft® SQL Server®

10. In the Switch Visualization area of the ribbon, in the Bar Chart list, select Clustered Bar. Then resize
the bar chart to fill the bottom half of the report.

11. In the bar chart, click the bar that shows the average sales amount for the United States
country/territory. Note that all charts in the report are filtered to highlight the data for the United
States.

12. Click the average sales amount bar for France and note that the chart updates to highlight data for
France.

13. Click the average sales amount bar for France again to remove the filter.

14. Close Excel, saving the changes to the workbook if prompted.

Results: After this exercise, you should have a report named Top Sellers and an Excel workbook called
Analysis.xslx.

	3247400
	3247401
	3247402
	Blank Page

	3247403
	Blank Page

	3247404
	3247405
	Blank Page

	3247406
	3247407
	3247408
	Blank Page

	3247409
	Blank Page

	3247410
	3247411
	Blank Page

	3247412
	Blank Page

	3247413
	3247414
	3247415
	3247416
	3247417
	3247418
	Blank Page

	3247419
	3247420
	3247421
	3247422
	Blank Page

	3247423
	Blank Page

	3247424
	3247425
	Blank Page

	3247426

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

