

Microsoft Power BI Performance
Best Practices

Learn practical techniques for building high-speed
Power BI solutions

Thomas LeBlanc | Bhavik Merchant

Microsoft Power BI Performance Best Practices
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Apeksha Shetty
Publishing Product Manager: Nilesh Kowadkar
Book Project Manager: Aparna Nair
Senior Editor: Sushma Reddy
Technical Editor: Kavyashree K S
Copy Editor: Safis Editing
Proofreader: Sushma Reddy
Indexer: Manju Arasan
Production Designer: Prashant Ghare
DevRel Marketing Coordinator: Nivedita Singh

First published: April 2022
Second edition: July 2024
Production reference: 1260724

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83508-225-6
www.packtpub.com

http://www.packtpub.com

To my family, Janet, Tyler, and Kaylyn – I love y’all!

Thomas LeBlanc

Foreword

I have known Thomas for close to 15 years. From the very beginning, his desire to pass on his knowledge
to those around him was obvious. Today, it is my pleasure to serve with him as a leader in the Baton
Rouge User Groups. Thomas co-leads our SQL Server and .NET User Group meetings. He also plays
a key role in the organization of our annual SQL Saturday and Analytics events. He understands the
value of community and he works hard to bring more people into our community and make them
feel welcome.

Thomas is not only a great leader but also a great friend. He is always supportive, generous, and kind
to everyone he meets. He has taught me a lot about SQL Server, BI, and community building. I am
honored to serve the community with him and to be able to call him a friend.

Kenneth Neal,

President, Baton Rouge User Groups

Contributors

About the author
Thomas LeBlanc is a seasoned Business Intelligence Architect at Data on the Geaux, where he applies
his extensive skillset in dimensional modeling, data visualization, and analytical modeling to deliver
robust solutions. With a Bachelor of Science in Management Information Systems from Louisiana State
University, Thomas has amassed over 30 years of experience in Information Technology, transitioning
from roles as a software developer and database administrator to his current expertise in business
intelligence and data warehouse architecture and management.

Throughout his career, Thomas has spearheaded numerous impactful projects, including consulting
for various companies on Power BI implementation, serving as lead database administrator for a major
home health care company, and overseeing the implementation of Power BI and Analysis Service for
a large bank. He has also contributed his insights as an author to the Power BI MVP book.

Thomas is recognized as a Microsoft Data Platform MVP and is actively engaged in the tech community
through his social media presence, notably as TheSmilinDBA on Twitter and ThePowerBIDude on
Bluesky and Mastodon. With a passion for solving real-world business challenges with technology,
Thomas continues to drive innovation in the field of business intelligence.

I want to thank all the people who have helped me with the updates to an already great book.

Bhavik Merchant has nearly 18 years of deep experience in Business Intelligence. He is currently the
Director of Product Analytics at Salesforce. Prior to that, he was at Microsoft, first as a Cloud Solution
Architect and then as a Product Manager in the Power BI Engineering team. At Power BI, he led the
customer-facing insights program, being responsible for the strategy and technical framework to
deliver system-wide usage and performance insights to customers. Before Microsoft, Bhavik spent
years managing high-caliber consulting teams delivering enterprise-scale BI projects. He has provided
extensive technical and theoretical BI training over the years, including expert Power BI performance
training he developed for top Microsoft Partners globally.

About the reviewer
Devanshu Tayal is a highly accomplished data scientist with a master’s degree from BITS, Pilani,
India. His extensive expertise in data science is evidenced by his contributions to a wide range of
industries. Devanshu is deeply committed to mentoring and guiding aspiring data scientists and is
an avid researcher of emerging technologies in the field. He is a strong advocate for diversity and
inclusion and has shared his insights through various publications. Devanshu is frequently invited to
deliver guest lectures at universities throughout India, and his contributions as a technical reviewer
have been acknowledged in multiple books. His comprehensive knowledge and experience in the field
make him an asset to any team or project.

Preface xv

Part 1: Architecture, Bottlenecks, and
Performance Targets

1
Setting Targets and Identifying Problem Areas 3

Defining good performance 4
Reporting performance goals 4
Setting realistic performance targets 6

Considering areas that could slow
you down 7

Connecting data sources 8
Import mode 8
DirectQuery mode 8
Live connection mode 9
DirectLake mode 9

Summary 9

2
Exploring Power BI Architecture and Configuration 11

Understanding data connectivity and
storage modes 12
Choosing between Import, DirectQuery, and
Direct Lake mode 14
Import mode 15
DirectQuery mode 17
Direct Lake mode 18
Live connection 20

Deploying Power BI gateways 21
How gateways work 22
Good practices for gateway performance 23
Sizing gateways 24

General architectural guidance 30
Capacities 30
Planning data and cache refresh schedules 33

Summary 34

Table of Contents

Table of Contentsviii

3
Learning the Tools for Performance Tuning 35

Technical requirements 36
Overview of data engine architecture 36
Import mode 37
Executing a query 38
Term definitions 39

Learning about the performance
analyzer 40
Actions and metrics in the
performance analyzer 41
Determining user actions 43
Exporting and analyzing performance data 44

Using the Optimize ribbon 49
Pause and Refresh visuals 49
Optimization presets 51
The Apply all slicers button 51

Adapting external tools 52
DAX Studio 52
Query Diagnostics 53
Tabular Editor 54
Other tools 54

Summary 55

Part 2: Performance Analysis, Improvement,
and Management

4
Analyzing Logs and Metrics 59

Power BI usage metrics 59
Customizing the usage metrics report 63

Power BI logs and engine traces 73
Activity logs and unified audit logs 73
Import from activity logs 74

Analysis Services server traces with the
XMLA endpoint 76
Integration with Azure Log Analytics 77

Monitoring Azure Analysis Services
(AAS) and PBIE 77
Azure metrics for AAS 77

Summary 79

Table of Contents ix

5
Optimization for Storage Modes 81

DirectQuery and relationships 82
Optimizing DirectQuery relationships 86

General DirectQuery guidance 88
Power BI Desktop settings 88
Optimizing external data sources 91

Direct Lake semantic models 93
Using Delta tables in Fabric 93
On-demand loading 94

Summary 95

6
Third-Party Utilities 97

Technical requirements 98
Exploring Power BI Helper 98
Identifying large column dictionaries 98
Identifying unused columns 99
Identifying bidirectional and
inactive relationships 100
Identifying measure dependencies 101

Working with Tabular Editor 102
Using Tabular Editor’s Best Practice Analyzer 102

Tuning with DAX Studio and
VertiPaq Analyser 106
Analyzing model size with VertiPaq Analyzer 106
Performance tuning the data model and DAX 108

Summary 115

7
Performance Governance Framework 117

Establishing a repeatable
improvement process 118
The performance management cycle 118

Knowledge sharing and awareness 121
Helping self-service users 121
Leveraging professional developers 122
Applying steps to different usage scenarios 122

Using performance metrics reports 126
Usage metrics report 126

Fabric Capacity Metrics 128

Calling REST APIs for
monitoring data 133
Custom connectors 134
Storing REST API data 136
Other resources 137

Summary 138

Table of Contentsx

Part 3: Fetching, Transforming, and
Visualizing Data

8
Loading, Transforming, and Refreshing Data 141

Technical requirements 142
General data
transformation guidance 142
Data refresh, parallelism, and resource usage 142
Improving the development experience 145

Folding and joining queries 151
Query folding 151
Joining queries 156

Refreshing incrementally 156
Using Query Diagnostics 160
Collecting Power Query diagnostics 161
Analyzing the Power Query logs 162

Optimizing dataflows 164
Gen2 destinations 168

Summary 168

9
Report and Dashboard Design 171

Technical requirements 171
Optimizing report layout 172
Too many elements in a report 172
Reduce a busy report 175
Reducing queries to the semantic model 177
Using the small multiples option 178

Interaction optimization for slicing
and dicing 180
Selecting a value for a slicer 180
Disabling interaction when necessary 181

Using Top N to limit data 182
Moving slicers to the filter pane 183

Optimization for dashboard and
paginated reports 184
Following best practices for dashboards 184
Optimizing paginated reports 186

Summary 187

Table of Contents xi

Part 4: Data Models, Calculations, and Large
Semantic Models

10
Dimensional Modeling and Row Level Security 191

Technical requirements 192
Building efficient models 192
The Kimball dimensional model theory 192
Designing a basic star schema 194

Building a single source of truth 196
Reducing dataset size 198

Considering many-to-many
relationships and bi-directional
filtering 201
Using bi-directional relationships carefully 204

Avoiding pitfalls with row-level
security 205
General guidance for RLS configuration 205
Optimize relationships 206
Guidance that applies to dynamic RLS 206

Summary 210

11
Improving DAX 211

Technical requirements 212
Understanding row and filter context 212
Calculated column 212
Measure 213
Dissecting row context 214
Discovering filter context 214
Improving the performance of
a calculated column 216

Improving filter context for a measure 217

Understanding DAX pitfalls and
optimizations 219
Tuning DAX 219
DAX guidance 220

Summary 229

Table of Contentsxii

12
High Scale Patterns 231

Technical requirements 232
Scaling with capacities and Azure
Analysis Services 232
Leveraging Fabric for data scale 232
Throttling and smoothing in Fabric capacity 234
Leveraging AAS for data and user scale 234
Using QSO to achieve higher
user concurrency 235
Using partitions in the fact table 238

Scaling with aggregations and
composite models 240
Leveraging composite models 240

Leveraging aggregations 242

Improving performance with
Synapse and Fabric 247
The modern data warehouse
architecture (Synapse) 248
ADLS 249
Azure Synapse Analytics and Fabric 249

Summary 251
Further reading 251

Part 5: Optimizing Capacities in
Power BI Enterprises

13
Working with Capacities 255

How a noisy neighbor impacts
shared capacity 256
Controlling capacity workloads
and settings 258
Capacity settings 259

How capacities manage resources 262
Managing capacity overload and Autoscale 264
Handling peak loads in Premium capacity
with Autoscale 267

Capacity planning, monitoring,
and optimization 269
Determining the initial capacity size 269
Validating capacity size with load testing 271
Alert notifications 273
Monitoring capacities 274
Understanding the compute report page 275

Summary 284

Table of Contents xiii

14
Performance Needs for Fabric Artifacts 287

Fabric artifacts 288
Delta tables 291
Warehouse or lakehouse 292
The Spark engine 293

Using Direct Lake for data sources 294
Monitoring Fabric
resource consumption 295
Measuring the hotness of data 296

Tips for enhancements 297
Load balancing 298
Dataflow copy fast 298
On-demand loading 298
Loading data in large chunks 299
Vacuum and Delta table structure 299

Summary 299

15
Embedding in Web Apps 301

Improving embedded performance 302
Measuring embedded performance 306

Summary 308

Index 309

Other Books You May Enjoy 320

Preface

It is very easy to start building analytical solutions in Power BI. Insightful content can come from
many sources imported into a semantic model. The popularity of the model can bring many requests
from various people in the organization for additional slicers and filters. If you do not plan for scale
appropriately, performance issues will arise at all angles. This book can help by covering performance
issues with optimizations for every layer of Power BI, from the report pane to data modeling as well
as transformation, storage, and architecture.

Developers and architects working with Power BI will be able to put their knowledge to work with
this practical guide to designing and implementing solutions at every step of the development process
ending with a deployment. This book is not only a collection of best practices but it also provides
a structured process with a hands-on approach to identifying and preventing common issues with
using Power BI.

Complete with explanations of essential concepts and practical examples, you’ll learn about common
design choices that affect the performance and consumption of resources. You’ll grasp common
architectural patterns and settings that affect most deployments to the service. As you progress through
the book, each level will show a typical example at that stage. This will help with the scale and usability
of the semantic model and any reports associated with that model. The layers include the report pane,
a semantic model, capacities for deployment, and gateway optimizations.

By the end of this book, you will know where to go to get the latest optimization techniques for each
layer of design and deployment of Power BI models and reports.

Who this book is for
This book is for a range of users. These can be data analysts who use Power BI for analytical reporting.
They could be architects who are deploying a shared model to a host of report developers. As far as
Power BI administrators are concerned, there are chapters for the gateway and capacities assisting
with configurations. Other titles include business intelligence developers, report writers, application
developers, and Power Platform administrators. These titles do not include beginner levels because an
intermediate level of business intelligence implementation should be already part of their experience.

Prefacexvi

What this book covers
Chapter 1, Setting Targets and Identifying Problem Areas, describes a Power BI solution as a stream of
data from multiple sources reaching consumers in a consolidated fashion. We look at how data can
be stored in Power BI and the different paths it can take before reaching a user. Many of the initial
architectural design choices made in the early stages of the solution are very difficult and costly to
switch later. That’s why it’s important to have a solid grasp of the implications of those choices and
how to decide what’s best at the start.

Chapter 2, Exploring Power BI Architecture and Configuration, looks at data storage modes in Power BI
and how the data reaches the data model while giving some general guidance to improve throughput
and latency. The storage mode chosen can limit size and data freshness. It also covers how to best deploy
Power BI gateways, which are commonly used to connect to external data sources. This is important
because users often demand up-to-date data, historical data, and aggregated data.

Chapter 3, Learning the Tools for Performance Tuning, explores how the easiest way to see where time
is being spent in reports is to use the desktop Performance Analyzer to get detailed breakdowns for
every user action, on a per-visual basis. Queries from this tool can be run in DAX Studio for server
timing breakdown and better analysis. In addition, Tabular Editor can be used to examine measures
for properties and syntax for performance tuning.

Chapter 4, Analyzing Logs and Metrics, describes how performance can only be improved if it can
be measured objectively. Therefore, this chapter covers all the sources of performance data and how
to make sense of the information provided to identify the parts of the solution that are bottlenecks.
This includes useful native and third-party utilities. We also provide guidelines to help monitor and
manage performance continuously.

Chapter 5, Optimization for Storage Models, describes how, with the proliferation of data lakes, more
options are available for performance improvements with DirectQuery or DirectLake. Synapse has
brought Massively Parallel Processing (MPP) from big data to analytical databases. DirectQuery
can use the column store type tables in Synapse and other MPPs in the cloud. The use of aggregations
with DirectQuery external data sources has become a common choice for large fact tables. There are
optimizations that can be made in both Power BI and external sources to avoid hitting limits too quickly.

Chapter 6, Third-Party Utilities, covers a few popular third-party utilities that are effective in performance
investigation and tuning and walks through typical use cases around connecting them to Power BI,
collecting metrics, and what to look for when diagnosing performance problems.

Chapter 7, Performance Governance and Framework, talks about how the metrics and tools covered in
earlier chapters are essential building blocks for performance management. However, success is more
likely with a structured and repeatable approach to build performance-related thinking into the entire
Power BI solution lifecycle. This chapter provides guidelines to set up data-driven processes to avoid
sudden scale issues for new content and prevent degradations for existing content.

Preface xvii

Chapter 8, Loading, Transforming, and Refreshing Data, explains how loading data periodically is a
critical part of any analytical system, and in Power BI, this applies to Import mode semantic models.
Data refresh operations in Import mode are CPU- and memory-intensive, which can lead to long
delays or failures, especially with large semantic models. This can leave users with stale data or slow
down development significantly, which is why it should be designed with performance in mind.

Chapter 9, Report and Dashboard Design, covers reports and dashboards, which are the “tip of the
iceberg” in a Power BI solution since they are what consumers interact with regularly. This chapter
covers important considerations and practices to apply regarding visual layout, configuration, and
slicing/filtering. It also looks at paginated reports, which behave differently from interactive reports
and have special performance considerations.

Chapter 10, Dimensional Modeling and Row-level Security, describes how the Power BI semantic model
is where data lands after being shaped, and where data is retrieved for analysis. Hence, it is arguably
the most critical piece, at the core of a Power BI solution. Power BI’s feature richness and modeling
flexibility provide alternatives when modeling data. Some choices can make development easier at
the expense of query performance and/or semantic model size. This chapter provides guidance on
model design, size reduction, and faster relationships.

Chapter 11, Improving DAX, covers DAX formulas, which allow BI developers to add a diverse range
of additional functionality into the model. The same correct result can be achieved by writing different
DAX formulas without realizing that one version may be significantly slower in certain query or
visual configurations. This chapter highlights common DAX issues and recommended practices to get
calculations performing at their best. It will also contain the definitions and examples for computed
columns and measures with a dive into the filter context.

Chapter 12, High-Scale Patterns, explains how the amount of data organizations collect and process
is increasing all the time. Even with Power BI’s data compression technology, it isn’t always possible
to load and store massive amounts of data in an Import mode model in a reasonable amount of
time. This problem is worse when you must support hundreds or thousands of users in parallel. This
chapter covers the options available to deal with such issues by leveraging Azure technologies and
Power BI aggregations and composite models. In addition, Fabric and Synapse will be utilized for
speed improvements in data sources including the lakehouse.

Chapter 13, Working with Capacities, covers working with and monitoring capacity. Power BI offers
dedicated capacity, higher limits, and many additional capabilities such as paginated reports and AI.
This does, however, require diligent capacity management to prevent resource exhaustion. This chapter
covers each of the available workload settings in detail. We then look at ideal to extreme usage/load
scenarios and how the capacity manages its memory in each case. We also look at the Microsoft-
provided template apps to monitor capacities.

Prefacexviii

Chapter 14, Performance Needs for Fabric Artifacts, talks about how Fabric options bring new artifacts
into the capacity and some that are updated. Performance of the capacity will be affected by pipelines,
Lakehouse/warehouse structures, as well as a destination added for Dataflow Gen2. These all have resource
requirements and many people will be guided toward a different capacity for using Fabric features.

Chapter 15, Embedding in Web Apps, teaches how embedding Power BI content in a custom web app
is a great way to expose data analytics within a completely customized UI experience, along with other
no-Power BI-related content. This pattern does introduce additional considerations since the Power
BI application is hosted externally via API calls. This chapter looks at how to do this efficiently and
then measure performance.

To get the most out of this book
Some chapters in this book come with sample files that you can open in Power BI Desktop to explore the
concepts and enhancements we provide. The examples largely show designs before and after performance
improvements have been implemented. Therefore, it is not mandatory to review these examples, but
they do provide useful context and can help teach new concepts through hands-on experience.

Software/hardware covered in the book Operating system requirements
Power BI Desktop Windows
DAX Studio 3.0.11
Tabular Editor 2.x
Power BI Pro license
Premium Capacity or Fabric (can be trial version)

We always recommend having the latest version of Power BI Desktop available due to the monthly
release cycle.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-
Edition. If there’s an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

Preface xix

The example files included with the book are of various types. The PBIX files are Power BI desktop
examples used in each chapter. The other file types are as follows:

1. .bak - SQL Server database backup file, to be used when data is needed.

2. .json - Exports from monitoring tools or configuration file examples.

3. .xlsx - Example Excel files.

4. .ps1 - PowerShell scripts for monitoring.

5. .txt - Tabular Editor rules for best practices.

6. .csv - Example data.

7. .gitattributes - GitHub configuration file.

Each file has a use for following a specific example in the related chapter.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We
exported this data and then worked on it in the sample Analyzing Desktop Performance Logs.pbix file.”

A block of code is set as follows:

{
 "version":"1.1.0",
 "events":[
 {
 "name":"User Action",
 "component":"Report Canvas",
 "start":"2021-09-03T03:53:22.139Z",
 "id":"a702542d7cbbcd9b37a0",
 "metrics":{
 "sourceLabel":"UserAction_StartedMonitoring"
 }
 },

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexx

Any command-line input or output is written as follows:

$json = Get-PowerBIActivityEvent -StartDateTime $StartDate-EndDateTime
$EndDate | ConvertFrom-Json

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Initial architectural choices can help
with the cost, but the Software as a Service (Saas) structure of Power BI enables many easy and fast
ways to adjust the service behind reports or dashboards”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xxi

Share Your Thoughts
Once you’ve read Microsoft Power BI Performance Best Practices, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-835-08225-4

Prefacexxii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

8. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-225-6

9. Submit your proof of purchase

10. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-225-6

Part 1:
Architecture, Bottlenecks,

and Performance Targets

In this part, we will review high-level Power BI architecture and identify areas where performance can
be affected by design choices. We will explain how to define realistic performance targets.

This part has the following chapters:

• Chapter 1, Setting Targets and Identifying Problem Areas

• Chapter 2, Exploring Power BI Architecture and Configuration

• Chapter 3, Learning the Tools for Performance Tuning

1
Setting Targets

and Identifying Problem Areas

Many people would consider report performance as the most critical area to focus on when trying to
improve the speed of an analytics solution. This is largely true, because it is the most visible part of the
system used by pretty much every class of user, from administrators to business executives. However,
you will learn that there are other areas of the solution that should be considered if performance is
to be managed comprehensively. For example, achieving good performance in the reporting layer
might be of no consequence if the underlying dataset that powers the report takes a long time to be
refreshed or is susceptible to failures due to resource limits or system limits being reached. In this
case, users may have great-looking, fast reports that do not provide value because the data is stale.

The authors of this book have experienced the effects of poor report performance firsthand but have
also enjoyed the fruits of improving performance or a great dimensional model. In multiple projects,
large companies have tried to migrate from one reporting system to another without much planning.
They just wanted to duplicate the existing system in a new reporting application. Copying the old
reporting system was not functionally equivalent. This led to poor design choices and resulted in some
slow reports. Some end users were reluctant to adopt the new system after lots of money was spent on
licensing and consulting. While this example is on the extreme side, it does demonstrate the potential
ramifications when you do not use a good design for great performance.

This chapter begins the journey to achieving good and consistent performance in Microsoft Power
BI. To introduce the full scope of performance management, we will describe a Power BI solution as
a stream of data from multiple sources. These streams will be consolidated and presented to a data
analyst. Data will be looked at to examine and understand the storage process and how it gets to the
report viewer. Initial architectural choices can help with the cost, but the Software as a Service (Saas)
structure of Power BI enables many easy and fast ways to adjust the service behind reports or dashboards.
Hence, it is important to have a solid grasp of the implications of the path to implementation and see
a data-driven approach to help us decide what is the best start.

Setting Targets and Identifying Problem Areas4

An area of performance management that is easily overlooked is that of setting performance targets.
How do you know whether the experience you are delivering is great, merely acceptable, or poor? We
will begin by exploring this theoretical area first to define our goal before diving into technical concepts.

The chapter is broken into the following sections:

• Defining good performance

• Considering areas that could slow you down

• Choices that affect performance

Defining good performance
With the advent of ever-faster computers and the massive scale of processing available today by way
of cloud computing, business users expect and demand analytical solutions that perform well. This is
essential for competitive business decision-making. Business Intelligence (BI) software vendors echo
this need and tend to promise quick results in their sales and marketing materials. Their expectations
mean that it is uncommon to find users getting excited about how fast reports are or how fresh data
is because it is something implicit to them having a positive experience.

Conversely, when users must wait a long time for a report to load, they are quite vocal and tend to
escalate such issues via multiple channels. When these problems are widespread, they can damage
the reputation of both software platforms and the teams involved in building and maintaining those
solutions. In the worst possible case, users may refuse to adopt these solutions and management may
begin looking for alternative platforms. It’s important to think about performance from the onset
because it is often very costly and time-consuming to fix performance after a solution has reached
production, potentially affecting thousands of users.

Reporting performance goals

Today, most BI solutions are consumed via a web interface. A typical report consumption experience
involves not just opening a report, but also interacting with it. In Power BI terms, this translates to
opening a report and then interacting with filters, slicers, and report visuals, plus navigating to other
pages explicitly or via a bookmark and drill through. With each report interaction, the user generally
has a specific intention, and the goal is to not interrupt their flow. A term commonly used in the
industry is analysis at the speed of thought. This experience and the related expectations are very
similar to navigating regular web pages or interacting with a web-based software system.

Defining good performance 5

Figure 1.1 – Power BI portal (app.powerbi.com)

Therefore, defining good performance for a BI solution can take some cues from the many studies on
web and user interface performance that have been performed over the past two or three decades: it
is not a complex task. Nah F. (2004) conducted a study focusing on tolerable wait time (TWT) for
web users. TWT was defined as how long users are willing to wait before abandoning the download
of a web page. Nah reviewed many previous studies that explored the thresholds at which users’
behavioral intentions get lost and when their attitudes begin to become negative. From this research,
we can derive that a well-performing Power BI report should completely load a page or the result of
an interaction, ideally, in less than 4 seconds and in most cases not more than 12 seconds. We should
always measure report performance from the user’s perspective, which means we measure from the
time they request the report (for example, click a report link on the Power BI portal) until the time
the last report visual finishes drawing its results on the screen.

Setting Targets and Identifying Problem Areas6

Setting realistic performance targets

Now that we have research-based guidance to set targets, we need to apply it to real-world scenarios.
A common mistake is to set a single performance target for every report in the organization and to
expect it to be met every single time a user interacts with a report. For example, very large dataset
sizes (tens of GBs) combined with complex nested DAX calculations that are displayed on multiple
hierarchical levels of granularity in a table visual will naturally need significant time to be processed
and displayed. This would generally not be the case with a report working on a small data model (tens
of MBs) containing a row of simple sum totals, each displayed within a Card visual.

Figure 1.2 – Card and table visuals

Due to the variability of the solution complexity and other factors beyond the developer’s control
(such as the speed of a user’s computer or which web browser they use), it is recommended that you
think of performance targets in terms of typical user experience and acknowledge that there may be
exceptions and outliers. Therefore, the performance target metric should consider what most users
experience. We recommend report performance metrics that use the 90th percentile of the report
load or interaction duration, often referred to as P90. Applying the research guidance on how long
a user can wait before becoming frustrated, a reasonable performance target would be a P90 report
load duration of 10 seconds or less. This means 90% of report loads would occur in under 10 seconds.

However, a single target such as P90 is still not sufficient and we will introduce further ideas about
this in Chapter 7, Performance Goverance Framework . For now, we should consider that there may
be different levels of complexity, so it is recommended to set up a range of targets that reflect the
complexity of solutions and the tolerance levels of users and management alike. The following table
presents an example of a performance target table that could be adopted in an organization:

Considering areas that could slow you down 7

Typical Report Complex Report
P90 Duration Target Under 5 Seconds Under 15 Seconds

Figure 1.3 – Example report performance targets

Next, we will look at Power BI from a high level to get a broad understanding of the areas that need
to be considered for performance improvement.

Considering areas that could slow you down
The next step in our performance management journey is to understand where time is spent. A Power
BI solution is ultimately about exposing data to a user and can be thought of as a flow of data from
source systems to data stores. Through these various components, eventually, the visual will reach
a user through a browser or mobile device. A simplified view of a Power BI solution is presented in
the following figure.

Figure 1.4 – Power BI solution overview

Here, we will briefly focus on the different paths of a typical solution to explain why each piece has
important considerations for users and the effect poor performance can have on each process. Some of
these areas will be covered in more detail in Chapter 2, Exploring Power BI Architecture and Configuration.

Setting Targets and Identifying Problem Areas8

Connecting data sources
The following diagram highlights the areas of the solution that are affected when data sources and
connectivity methods do not perform well:

Figure 1.5 – Areas affected by data source and connectivity issues

Import mode

When using Import mode datasets, developers can experience sluggish user interface responsiveness
when working with Power Query or M on the desktop. In extreme cases, this can extend data
transformation development from hours to days. Once the solution is deployed, problems in this
area can cause refresh times to time out or fail. The Power BI service has a refresh limit of 2 hours,
while Premium and Fabric capacities can extend this to 5 hours. Any refresh hitting this limit will be
canceled by the system.

DirectQuery mode

DirectQuery mode leaves the data at the source and needs to fetch data and process it for measures
when users interact with a report page. Issues with this part of the configuration most often cause
slow report responses. Visuals will take a longer time to load because the source data must be accessed
and transformed. Users will get frustrated and, in turn, interrupt the current page, and interact with
another view that has a similar response time. This itself will issue more queries to the data source and,
ironically, slow down the report even further by placing an additional load on the external data system.

Summary 9

Live connection mode

Live connection mode originally referred exclusively to connections to external Analysis Services
deployments. These could be cloud-native (Azure Analysis Services) or on-premises (SQL Server
Analysis Services). More recently, this mode was extended to more use cases with the introduction of
shared datasets deployed to the Power BI service. Now, the desktop can connect to a published dataset
and build a report separate from the data or have a composite mode with a dataset connection and
import mode for more data sources. The connected dataset can be Import, DirectQuery, or DirectLake
(see the next subsection), so performance can vary.

DirectLake mode

DirectLake is a Fabric (or Premium) capacity data source that uses the Delta Lake structure from a
Fabric warehouse or lakehouse. The performance is somewhere between an Import and DirectQuery
mode connection. The structure of the Parquet files underlying the Delta tables plus the processing
of a big data system can help increase performance with a single source data. This is called OneLake
in the Fabric documentation.

Summary
As we have seen in this chapter, interacting with analytical reports is very similar to other web
applications, so the user’s level of engagement and satisfaction can be measured in similar ways. Studies
of use interfaces and web browsing suggest that a report that is generated in less than 5 seconds is
ideal. They also suggest that reports completing in 10-second durations or higher should be considered
carefully as this is the point of user frustration.

You should set performance targets and be prepared for outliers by measuring against baselines.
Success may still require setting the right expectations by having different targets if you have highly
complex reports.It is impotant to remember that each component of Power BI along with system
resources can contribute to performance issues. Therefore, performance issues cannot be solved in
isolation of just the report.

In the next chapter, we will focus on data conectivity with various storage modes of the semantic
model. We will also look at gateway optimization and general architectural advice to make sure the
environment does not become a bottleneck.

2
Exploring Power BI

Architecture and Configuration

In the previous chapter, we established guidelines for setting reasonable performance targets and gained
an understanding of the major solution areas and Power BI components that should be considered
for holistic performance management.

In this chapter, we will dig deeper into specific architectural choices, learning how and why these
decisions affect your solution’s performance. You will learn to consider broad requirements and make
informed decisions to design a solution that meets the needs of different stakeholders. Ultimately, this
chapter will help you choose the best components to host your data within Power BI. We will focus
mainly on the efficient movement of data from the source system to end users by improving data
throughput and minimizing latency.

We will begin by looking at data storage modes for the tabular engine and how data reaches the Power
BI dataset. We will cover how to best deploy Power BI gateways, which are commonly used to control
external data sources. These aspects are important because users often demand up-to-date data, or
historical data, and there can be thousands of parallel users in very large deployments.

This chapter is broken down into the following sections:

• Understanding data connectivity and storage modes

• Deploying Power BI data gateways

• General architectural guidance

Exploring Power BI Architecture and Configuration12

Understanding data connectivity and storage modes
Choosing a data connectivity and storage mode is usually the first major decision that must be made
when setting up a brand-new solution in Power BI. Today, this decision is based on what is available
in Power BI or Fabric, plus the underlying data sources. This means choosing between Import,
DirectQuery, and Direct Lake, which we introduced in the previous chapter. Within Power BI Desktop
or the Power BI service, you need to make this decision as soon as you connect to a data source and
before you can see a preview of the data to begin modeling.

A few notes here:

• DirectQuery mode does not support all data sources. Most only offer Import mode. Be aware
of this for data freshness and when combining different data sources.

• Direct Lake supports the Delta Table format in Fabric. An extract, transform, and load method
would need to be implemented in Fabric or another Lakehouse tool to have the Delta Table
support needed for this storage mode.

• Direct Lake is only supported by developing in the Power BI service or a third-party tool such
as Tabular Editor. It is not supported by the Power BI Desktop application.

Figure 2.1 shows a SQL Server data connector in Power BI Desktop showing both Import and
DirectQuery modes:

Figure 2.1 – Data connectivity options for a SQL Server source

Understanding data connectivity and storage modes 13

Excel workbooks can only be configured with Import mode. Figure 2.2 demonstrates this, where we
can only see a Load button without any choices for data connectivity mode. This implies that it is
Import mode.

Figure 2.2 – Data connection for Excel showing no Import or DirectQuery choice

The Direct Lake mode is created in a Lakehouse or Warehouse in Fabric. Figure 2.3 shows the creation
of a semantic model in a Lakehouse.

Figure 2.3 – Data connection to Direct Lake Delta Table(s) in Fabric Lakehouse

Exploring Power BI Architecture and Configuration14

The Warehouse model is shown in Figure 2.4 as the Model tab. There is no DirectQuery or Import mode
in this area of the Power BI service. The storage mode is like DirectQuery to a data source except there
is only one type of data source: Delta Tables. Fabric workspaces can be created in a Premium capacity.

Figure 2.4 – Data connection to Direct Lake Delta Table(s) for Fabric Warehouse

The following section will dig deeper into the storage modes of data for a tabular model. The tabular
engine from SQL Server Analysis Services is the underlying storage for Power BI semantic models.
This engine uses xVelocity technology to create a compressed, column storage structure that is fast for
analytical reporting. It also places the data in-memory, which is faster than disk storage.

Choosing between Import, DirectQuery, and Direct Lake mode

When using Power BI Desktop, import data connectivity mode is the default choice because it is faster
than DirectQuery, sometimes by orders of magnitude. Import mode tables store data in a tabular
database, which is effectively an in-memory cache. With the advent of Fabric, Power BI datasets will now
be called semantic models. The use of the term dataset and semantic model refers to the same object.

Understanding data connectivity and storage modes 15

The different modes offer different speeds and capabilities, listed as follows:

• Fastest – Import mode: Data is imported into an in-memory cache

• Acceptable – Direct Lake mode: DirectQuery to Parquet supported with Delta Table structure

• Slowest – DirectQuery mode: Connection to a data source with queries retrieving the data

Import mode

From a purely performance-oriented standpoint, the recommendation is Import mode to take
advantage of the tabular engine. The column-store compressed structure will help satisfy the analytical
reporting needed from Power BI. The downside is data must be refreshed to be current. Composite
models with aggregate tables can help.

The other reason why Import models are much faster is that they use Microsoft’s proprietary xVelocity
storage known as VertiPak. xVelocity is a column-based storage engine, as opposed to row-based storage
found in relational databases. Column-based storage came about to deal with how badly row-based
transactional databases handle queries from reporting applications. They do many aggregations,
potentially over large volumes of data while also offering detailed data exploration capability.

Figure 2.5 shows the imported semantic models (datasets) in a data warehouse workspace with their
imported data sizes.

Figure 2.5 – Import mode models and sizes

Exploring Power BI Architecture and Configuration16

Row-based data storage engines physically store information in groups of rows. This works well when
used by transaction systems because they frequently read and write individual or small groups of
rows. They end up using most or all columns in the underlying table and were traditionally optimized
to save and retrieve whole rows of data. Consider a sales management system where a new order is
entered into a system – this would require writing a few complete rows in the database. Now consider
the same system being used to view an invoice onscreen – this would read a few rows from various
tables and likely use most of the columns in the underlying tables.

Now, let’s consider typical reporting and analytical queries for the same sales management system.
Business staff would most often be looking at aggregate data such as sales and revenue figures by
month, broken down into various categories or being filtered by them. These queries need to look at
large volumes of data to work out the aggregates, and they often ignore many columns available in
the underlying tables. This access pattern led to column-based storage engines, which store columns
physically instead of rows. They are optimized to perform aggregates and filtering on a column of
data without having to retrieve entire rows with many redundant columns that do not need to be
displayed or filtered.

The following diagram shows a simplified view of a table stored in a row-based relational database
versus column-based storage of analytical databases.

Figure 2.6 – Comparison of row and column storage

They also recognize that there is often significant repetition within a column of data; that is, the same
values can be found many times. This fact can be leveraged to apply compression to the columns by
not storing the same physical values many times. The xVelocity engine does exactly this – it applies
different compression algorithms to columns depending on their data type and the number of unique
values. This concept of reducing repetition to reduce data size is not new and is the same technique
you end up using when you compress or zip files on a computer to make them smaller.

In summary, xVelocity’s column-based compression technology gives you the best speed by bringing
the data close to reports and squeezes that data down to significantly less than the original size. In
Chapter 10, Data Modeling and Row-Level Security, you will learn how to optimize import models.

Understanding data connectivity and storage modes 17

Keeping import models as small as possible will help you avoid hitting system limits such as the
per-workspace storage limit, which varies depending on shared capacity (1 GB) versus dedicated
capacity (10 to 100s of GB).

Important note
A good rule of thumb is that Import mode tables using xVelocity are about 5 to 10 times smaller.
For example, 1 GB of raw source data could fit into a 100 to 200 MB semantic model. It is often
possible to get even higher compression depending on the data’s cardinality (uniqueness of
values in a column).

Next, we will talk about when DirectQuery mode is more appropriate than Import mode.

DirectQuery mode

From a near real-time reporting perspective, DirectQuery would be the go-to for this requirement.
DirectQuery does not import data into the VertiPaq engine. The DAX measure sends a structured query
to the data source engine to gather data for visuals. Each interaction with the visuals will send a new
query to the data source for execution. The downside is slower results with administrative requirements
for the source data. If this were a relational database as a source, then a database administrator would
be needed for any performance tuning at the source.

The advantage of DirectQuery over Import mode is the query gets current data from the data source
whereas the Import mode would have to perform a refresh to get current data. While Import mode
offers great benefits in terms of model size and query speed, there are some good reasons to choose
DirectQuery instead. The main point is that it gets current data from a data source. Sometimes, you
will not have a choice and requirements will dictate the use of DirectQuery. The model is smaller
because only the metadata about tables, columns, relationships, and measures is stored.

Important note
Import versus DirectQuery is a trade-off. Import gives you the best query performance
while needing data refresh management and potentially not having the latest data available.
DirectQuery can get you the latest data and allow you to have data sizes beyond Power BI’s
model size limits. DirectQuery sacrifices some queries and can add optimization work to the
source system. Direct Lake offers current data but relies on the storage and compute engines
of OneLake for data retrieval.

Exploring Power BI Architecture and Configuration18

Here are the main reasons why you would use DirectQuery mode:

• Large data volumes: A model published to a workspace in a capacity can vary in size limit
according to the available memory capacity. So, a P1 is 25 GB while a P5 is 400 GB. The 10
GB limit is for publishing a pbix file to the service. If you have more data than this, it may be
impractical or simply impossible to move it into the service and have a refresh run successfully.
DirectQuery does have a 1 million row limit per query. The row limit is because Power BI is
an analytical tool for aggregation, not row-level detail reporting.

• Near real-time access to source data: If business requirements stipulate near real-time results
from the data source, then DirectQuery is the right choice between the Import and DirectQuery
models. Direct Lake is also a possibility for near real-time queries.

• Existing data platform investment: Some organizations may already have significant investments
in a data warehouse or data mart(s) that stores data in a centralized database. These already
contain clean data, modeled in a form that is directly consumable by analysts and business
users, and act as a single source of truth. These data sources are likely to be accessed by different
reporting tools and a consistent, up-to-date view is expected across these tools. You may want
to use DirectQuery here to fit into this central source of truth model and not have older copies
in a Power BI model.

• Regulatory or compliance requirements: Laws or company policies that restrict where data
can be stored and processed may require source data to remain within a specific geographical
or political boundary. This is often referred to as data sovereignty. If you cannot move the data
into Power BI because it would break compliance, you may be forced to use DirectQuery mode.

• Frequently changed data: If the source of data changes frequently, such as in a matter of seconds
or minutes, the visuals might change aggregations after applying a filter and then returning to
the non-filtered data. The user might see different results from the previous non-filtered total
and believe the reports are working correctly and then not want to return to the report again.

• Single sign-on (SSO): This is the only security used for connecting DirectQuery to SQL Server
data sources. There is no alternative in DirectQuery mode.

More details about using DirectQuery mode are discussed in Chapter 5, Optimization for Storage Modes.

Direct Lake mode

Direct Lake is the latest capability for analyzing large data sources. Direct Lake performance is
somewhere between DirectQuery and Import mode levels but leans more toward the performance of
Import mode. All data is stored in Delta Table (Parquet file format) collectively in OneLake. Since the
data is not imported into the in-memory structure, you achieve some of the near real-time reporting.
In addition to that, the Parquet file format is a column store compressed big data structure. Just like
Databricks and Synapse, the compute performance is achieved by the Spark cluster(s) engine. Here,
like other Lakehouse structures, the storage is separated from the compute engine, so scaling can be
increased for speed and decreased for cost savings.

Understanding data connectivity and storage modes 19

The Direct Lake engine also has some caching options for storing some query results in memory for
quicker access when needed. The data is based on column segments and has a temperature (hot to cold)
that eventually determines what gets paged out of memory. The column segment data is compressed
data held in the Vertipaq engine. The downside of Direct Lake is the semantic model must be designed
in the service in a Fabric-enabled workspace as well as the data structure in Delta Table(s). A plus
with this is that OneLake can share these Delta Tables with other workspaces through Shortcuts.

Figure 2.7 does a comparison between Import, DirectQuery, and Direct Lake modes. The OneLake
model eliminates an intermediate step that is involved with the Import and DirectQuery modes.

Figure 2.7 – Comparing Import, DirectQuery, and Direct Lake

If the caching of the Direct Lake query results in too much memory being requested, beyond the
capacity, the DAX will not fail. The engine will default to using DirectQuery to the SQL endpoint in
the lakehouse structure.

Important note
Unlike Import mode, which requires memory to be available in the right capacity for a full
refresh, the Direct Lake structure does not require this. Since the whole semantic model for
Direct Lake does not have this memory requirement, the memory limit capacity does not need
to be as high as in the Import mode.

Now that we have discussed the three primary storage mode options and understand the trade-offs,
we recommend bearing the following considerations in mind when choosing between them:

• How much source data do you have and at what rate will it grow?

• How compressible is your source data?

Exploring Power BI Architecture and Configuration20

• Is there a capacity option that allows larger Import models to be hosted?

• Can you move or create the data warehouse in a lakehouse in Fabric?

• Will a blended architecture suffice? See the following Composite models section.

From purely a performance standpoint, the recommendation is Import mode.

Composite models

Power BI does not limit you to using only a single mode for a dataset or .pbix file. It is possible
to combine one or more Import mode tables with one or more DirectQuery tables in a composite
model. In a composite model, the Import and DirectQuery tables would be optimized the same way
you would in a strictly Import-only or strictly DirectQuery-only model. However, combined with the
Aggregations feature, composite models allow you to strike a balance between report performance,
data freshness, dataset size, and dataset refresh time. You will learn how to leverage aggregations in
Chapter 10, Data Modeling and Row-level Security.

Live connection

Live connection is not a storage model. A live connection is a report that instead of using a storage
mode, the connection is to a deployed data model. This could be an Analysis Service’s tabular model
or a Power BI semantic model. The connected model could be a DirectQuery, Import, or DirectLake
storage mode. The idea behind this method is to create one semantic model and have multiple reports
get the data from the same set of data. This is commonly called a single source of truth data model.
This method of connecting eliminates multiple pbix files having the same or similar data imported,
which can cause issues with size or capacity limitation.

The Power BI report will issue native DAX queries to the external dataset. A live connection is used
in the following scenarios:

• Creating reports from a dataset available in a Power BI workspace from Power BI Desktop or
Power BI on the web.

• Your organization has invested in Azure Analysis Services or SQL Server Analysis Services,
and this is the primary central data source for Power BI reports. The top reasons for choosing
this are as follows:

 � You need a high level of control around partitions, data refresh timings, scale-out, and query/
refresh workload splitting

 � Integration with CI/CD or similar automation pipelines

 � Granular Analysis Services auditing and diagnostics are required

 � The initial size of the dataset cannot fit into Premium capacity

 � Previous investment in using SQL Server Analysis Services and training for developers

Deploying Power BI gateways 21

Figure 2.4 highlights the scenarios that use a live connection:

Figure 2.8 – Live connection scenarios

Important note
Connections to Analysis Services or Power BI semantic models also support Import mode,
where data is copied and only updated when a data refresh is executed. The external Analysis
Services semantic model may itself be in Import mode, so you should consider whether a live
connection is indeed a better option to get the latest data. Import can be a good choice if you
are simply building lookup tables for a smaller data mart or temporary analysis (for example,
a list of products or customers).

The way a report connects to its data source depends on where the report is being run. A connection
from Power BI Desktop from a work office may take a completely different route than a connection
from the Power BI service initiated by a person using the Power BI web portal or mobile app. When
organizations need a way to secure and control communications from Power BI to their on-premises
data sources (data that is not in the cloud), they deploy Power BI gateways. In the next section, we will
discuss Power BI gateways, their role in data architecture optimization, and specific tips on getting
the most out of gateways.

Deploying Power BI gateways
The on-premises data gateway provides a secure communications channel between on-premises data
sources and various Microsoft services in the Power Platform domain. These cloud services include
Power BI, Power Apps, Power Automate, Azure Analysis Services, and Azure Logic Apps. Gateways
allow organizations to keep sensitive data sources within their network boundaries on-premises and
then control how Power BI and users can access them. The gateway is available in Enterprise, Personal,
and cloud versions. The remainder of this section focuses on the Enterprise version.

Exploring Power BI Architecture and Configuration22

When a gateway is heavily loaded or undersized, this usually means slower report loading and interactive
experiences for users. Worse, an overloaded gateway may be unable to make more data connections,
which will result in failed queries and some empty report visuals. What can make matters worse is
that the user’s first reaction is often to refresh the failed report, which can add even more loads to a
gateway or on-premises data source.

How gateways work

Gateways are sometimes thought of as just a networking component used to channel data. While they
are indeed a component of the data pipeline, gateways do more than just allow data movement. The
gateway hosts Power BI’s Mashup Engine and supports Import, DirectQuery, and live connections.
The gateway service must be installed on a physical or virtual server. It is important to know that
the gateway executes PowerQuery/M as needed, performing the processing locally on the gateway
machine. In addition, the gateway compresses and encrypts the data streams it sends to the Power BI
service. This design minimizes the amount of data sent to the cloud to reduce the refresh and query
duration. However, since the gateway supports such broad connectivity and performs potentially
expensive processing, it is important to configure and scale gateway machines, so they perform well.

Figure 2.5 shows a simplified view of the gateway architecture. The dotted line is the layers of processing
that are hidden for a normal user.

Figure 2.9 – The on-premises gateway performs mashup processing locally

Deploying Power BI gateways 23

Good practices for gateway performance

Some general guidelines should be applied whenever gateways are deployed. We will discuss each one
in the following list and provide reasons to explain how this design will benefit you:

• Place gateways close to data sources: Gateways should be as physically close to the data source
as possible. The physical distance can add to network latency due to more infrastructure and
network paths. We want to remove as many hops as possible. For data sources on virtual machines
in the cloud, try to place them in the same region as your Power BI home region.

• Remove network throttling: Some network firewalls or proxies may be configured to throttle
connections to optimize internet connectivity. This may slow down transfers through the
gateway, so it is a good idea to check this with network administrators.

• Avoid running other applications or services on the gateway: This ensures that loads from
other applications cannot unpredictably impact queries and users. This could be relaxed for
development environments.

• Separate DirectQuery and scheduled refresh gateways: Import mode connections would
only be used during data refresh operations and are often used more after hours, when data
refreshes are scheduled. Since they often contain Power Query/M data transformations, refresh
operations consume both CPU and memory and may require significant amounts for complex
operations on large datasets. For DirectQuery connections, the gateway acts as a pass-through for
query results from a data source. DirectQuery connections generally consume much less CPU
and memory than Import mode. Significant bursts in CPU can occur for datasets with lots of
transformations and calculations. By separating DirectQuery from Import datasets to different
gateways, the servers can be created with the proper resources on the VM or physical server.

• Use sufficient and fast local storage: The gateway server buffers data on the disk before it
sends it to the cloud. It is saved to the %LOCALAPPDATA%\Microsoft\On-premises
data gateway\Spooler location. If you are refreshing large datasets in parallel, you
should ensure that you have enough local storage to temporarily host those datasets. We highly
recommend using high-speed, low-latency storage options such as solid-state disks to avoid
storage becoming a bottleneck.

• Understand gateway parallelism limits: The gateway will automatically configure itself to use
reasonable default values for parallel operations based on the CPU cores available. We recommend
monitoring the gateway. If advised by an expert to change parallelism settings, consulting with
Microsoft is the best option due to the advanced nature of parallelism and servers.

Exploring Power BI Architecture and Configuration24

Sizing gateways

Most organizations start with a single gateway server and then scale up and/or out based on their real-
world data needs. It is very important to follow the minimum specifications suggested by Microsoft
for a production gateway. At the time of writing, Microsoft recommends a machine with at least 8
CPU cores, 8 GB RAM, and multiple gigabit network adapters. Regular monitoring is recommended
to understand what load patterns the gateway experiences and which resources are under pressure.
We will cover monitoring later in this chapter.

We have already learned that the gateway supports different connection types. The type and number
of connections will largely determine resource usage on the gateway server. Therefore, you should
keep the following questions in mind when planning a gateway deployment:

• How many concurrent dataset refreshes will the gateway need to support?

• How much data is going to be transferred during the refresh?

• Is the refresh performing complex transformations?

• How many users would hit a DirectQuery source in parallel?

• How many visuals are in the most used DirectQuery reports? Each data-driven visual will
generate at least one query to the data source.

• How many reports use Automatic Page Refresh and what is the refresh frequency?

In the next section, we will look at how to monitor a gateway and gather data to inform sizing and
scaling to ensure consistent performance.

Configuring gateway performance logging

The on-premises gateway has performance logging enabled by default. There are two types of logs
captured – query executions and system counters. The gateway configuration file has many configuration
options that can fine-tune the individual gateway.

Administrative access must be enabled to look at the raw logs. They can be exported from the gateway
service application as well.

Deploying Power BI gateways 25

Figure 2.6 shows the diagnostic setup and configuration for log files in the gateway.

Figure 2.10 – The gateway application Diagnostics screen to export logs

Things such as turning the logs on and off are controlled in the configuration file by the
DisableSystemCounterReport setting. Other settings include ReportFileCount and
ReportFileSizeInBytes, as well as QueryExecutionAggregarionTimeInMinutes. Due to the monthly
updates for the gateway application, it is better to reference Microsoft’s help online than to list the
options and values in this book. The default as well as the suggested range can change frequently, as
well as the type of log files.

Exploring Power BI Architecture and Configuration26

When logging is enabled, you will start to collect information in four sets of files with the .log
extension and numerical suffixes in the filename. The log file group names are provided in the following
list. This is explained in more detail in the Microsoft documentation for monitoring and optimizing
gateways – https://learn.microsoft.com/en-us/data-integration/gateway/
service-gateway-performance:

• Query execution report: These logs contain detailed information on every query execution.
They tell you whether the query was successful, the data source information, the type of query,
how long is spent executing and processing data, how long it took to write data to the disk, how
much data was written, and what the average speed was of the disk operations. This information
can be used to work out where bottlenecks are at a query level.

• Query start report: These are simpler query logs that provide the actual query text, data source
information, and when the query started. You can see the exact query that was sent to data
sources, which can be useful for performance troubleshooting, especially with DirectQuery
data sources.

• Query execution aggregation report: These logs contain aggregated query information in
buckets of 5 minutes by default. They provide useful summary information such as the number
of queries within the time window, the average/minimum/maximum query execution duration,
and the average/minimum/maximum data processing duration.

• System counter aggregation report: This log contains aggregated system resource information
from the gateway server. It aggregates average/minimum/maximum CPU and memory usage
for the gateway machine, gateway service, and the mashup engine.

Parsing and modeling gateway logs

Microsoft has provided a basic Power BI report template to help you analyze gateway data. This
template can be found at the following link: (https://learn.microsoft.com/en-us/
data-integration/gateway/service-gateway-performance). The template will
scan your log folder and process all the files it finds that match the default naming pattern. It parses
and expands complex columns such as JSON.

https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance

Deploying Power BI gateways 27

Figure 2.8 demonstrates one of the default views in the gateway performance template:

Figure 2.11 – Example of gateway performance visualization from the template

The Microsoft-provided template does a reasonable job of giving you visibility of some aggregate and
detailed operations on the gateway. However, to extract further value from it, you will likely need to
make some changes to the transformations, data model, and calculations. This could take some work
to perfect, so it may be worth considering whether a pre-built option is feasible.

If your organization uses Microsoft Premier or Unified support, you may have access to Power BI
performance assessments. These are run by experienced customer engineers who have enhanced
templates to analyze gateway logs. Another option is to engage consultants who have a professional
solution on the market.

If you choose to build on the Microsoft template yourself, do consider the following improvements:

• Examine the PowerQuery transformations in the template to see how to parse the log files.

• Automate the retrieval and storage of logs from the gateway server, for example, with
PowerShell scripts.

• Build separate date and time dimensions and connect them to all the log tables so that you can
build reports that can look at time-correlated activity across every log.

• Build common dimension tables for Query Status, Query Type, and Data Source from the log
files and connect them to each log table. This will allow you to slice report pages using the
same filter across different logs.

Exploring Power BI Architecture and Configuration28

• Add a dimension table containing details of all your gateways, such as the environment,
gateway ID, name, memory size, and CPU core count. Use the gateway ID to connect it to the
fact tables log.

• Build report views that focus on trends and aggregates to highlight spikes in CPU or memory
while able to distinguish between DirectQuery and Refresh queries. Further details are provided
in the next section.

Next, we’ll look at gateway logs.

Analyzing gateway logs

We suggest that the initial views you build on gateway logs will help you to answer high-level questions
and spot problem areas quickly. Here are some important questions you should be able to answer:

• Are there any spikes in overall gateway resource usage and do the spikes recur regularly? When
I reach high or maximum resource usage, what is the workload pattern?

• What datasets, dataflows, or reports consume the most gateway resources?

• What is the gateway throughput in terms of queries per second and bytes processed per second?
When I see throughput drops, what operations were running in that time slice, and which
contributed most from a resource perspective?

• Is the gateway performing many refresh and DirectQuery operations in parallel? This is likely
to create pressure on CPU and memory at the same time, so consider dedicated DirectQuery
and refresh gateways, spreading out refresh operations and scaling.

• What is the average query duration over time and what contributes to increases – gateway
resource limits or growing data volume/query complexity?

• What are the slowest queries? Are they consistently slow or does the performance vary greatly?
The former may suggest query or model design issues, or that optimization may be needed at
the data source or even the network. The varying performance of the same queries suggests
unpredictable loads on the gateway or data source are the issue.

Next, we will look at when you should consider scaling and how to do so.

Scaling up gateways

It is possible to manage a gateway well but still begin to reach resource limits due to data and usage
growth. Scaling up is simply adding more resources or replacing them with faster components. You
know it is time to scale when your analysis shows you are hitting a memory, CPU, or disk limit and
have no more room to import refresh schedules or optimize other layers of the solution. We will cover
such optimizations in detail in subsequent chapters.

Deploying Power BI gateways 29

For now, let’s assume that the deployed solutions are perfect, yet you are seeing performance degradation
and an increase in query failures caused by excessive loads. The first choice here should be to scale up.
You may choose to increase the number of CPU cores and memory independently if your analysis
identified only one as the problem and you see enough headroom in the other. While CPU and memory
are the common candidates for scaling up, do keep an eye on disk and network performance too. You
may need to scale those up too or scale out if this is not an option.

Scaling out with multiple gateways

When you can no longer effectively scale up a single gateway machine, you should consider adding a
node or nodes to the cluster. When an enterprise gateway is created, a cluster is automatically created
when the initial node is created. This will allow you to load balance across more than one gateway
machine, referred to as a node. Clusters also provide high availability through redundancy in case
one machine goes down for whatever reason.

To create a gateway cluster, you simply run the gateway installer on a different server. At the time
of installation, you will be given the option of connecting the gateway to an existing gateway cluster,
which acts as the primary instance. This is shown in the following figure.

Figure 2.12 – Adding a gateway to a cluster by selecting the primary instance

Exploring Power BI Architecture and Configuration30

All requests are routed to the primary instance of a gateway cluster. The request is routed to another
gateway instance in the cluster only if the primary gateway instance is offline.

Tip
If a gateway member server goes down, you should remove it from the cluster using the
Remove-OnPremisesDataGateway PowerShell command. If not, query requests may
still be sent to it, which can reduce performance.

Load balancing on the gateway is random by default. You can change this to balance the load based
on CPU or memory thresholds. This will change the behavior so that when a member is at or over the
throttling limit, another member within the cluster is selected. The request will fail only if all members
within the cluster are above the limits.

A gateway admin must update settings in the config file introduced earlier.

The following settings can be adjusted to control load balancing:

• CPUUtilizationPercentageThreshold: A value between 0 and 100 that sets the
throttling limit for the CPU. 0 means the configuration is disabled.

• MemoryUtilizationPercentageThreshold: A value between 0 and 100 that sets
the throttling limit for memory. 0 means the configuration is disabled.

• ResourceUtilizationAggregationPeriodInMinutes: The time window in
minutes for which CPU and memory system counters of the gateway machine are aggregated.
These aggregates are compared against the thresholds defined beforehand. The default value is 5.

Now that we have a good grasp of storage modes and gateway optimization, we will consider broader
factors that come into play and can slow down operations in these areas.

General architectural guidance
This section presents general architectural items for using Power BI.

Capacities

There are different capacities for Power BI architecture. They can be grouped under two categories
– shared and dedicated:

• Shared capacity: Power BI Pro license or Premium Per User (PPU) license not in a tenant
with a Premium or Fabric capacity

• Dedicated: Premium, Fabric, and Embedded capacities purchased through a subscription

General architectural guidance 31

Shared capacities

The Power BI Pro and PPU licenses allow individuals to publish datasets and reports to shared capacity.
You share the capacity with other Pro and PPU users. There is no administration for controlling or
adjusting the resources for your reports and datasets. Limits for dataset sizes to import as well as the
number of refreshes (8) are tighter than dedicated capacity. To ensure everyone on shared capacity
plays together, there are certain limits and throttling done behind the scenes.

Dedicated capacity

Dedicated capacity is either a Premium, Embedded, or Fabric subscription. This capacity is reserved just
for a single Power BI company. In the admin portal, there are tenant settings as well as adjustments for
capacity to help set the resources for the workload’s needs. There are features such as more refreshes a
day and refresh size increases than for shared capacity. These capacity nodes are like individual virtual
machines for each capacity purchased with a few vCPUs and memory size.

Figure 2.13 – Capacity administration

Exploring Power BI Architecture and Configuration32

Figure 2.10 shows the capacity administration and the option to manage autoscale for this capacity.

Other options for capacities are the ability to split the capacity node(s) into individual other capacities
within the company tenant. A P2 capacity can be purchased and split into a developement and test
capacity and different security groups can manage each capacity separately. Additionally, an A1 or
higher SKU can be created in your Azure environment to assign to the Autoscale option. Figure 2.11
shows the Enable Autoscale option.

Figure 2.14 – Autoscale settings

Autoscaling enables an additional set of compute to be turned on and used while a large load is
running to prevent a timeout. The autoscale function will turn off the additional compute when the
load returns below the Premium capacity and a configurable amount of time has elapsed. This is
configured in the Manage Autoscale settings.

The embedded and Fabric subscriptions can have their capacities paused. This allows for pay-as-you-go
type billing, whereas Premium has a fixed cost per month. Fabric allows a fixed cost per month as
well as the ability to be pay-as-you-go.

General architectural guidance 33

Power BI Report Server

The Power BI Report Server license is for a version of SQL Server Report Server with Power BI support
that can be installed on a physical or virtual server. The limits are the resources in the physical or
virtual server. The releases for updates to this version are every three to five months and some features
such as AutoML, AI functions, and dashboards are not available. Tuning is the job of an administrator
with the infrastructure for CPU, memory, and disk speeds.

Planning data and cache refresh schedules

A sometimes-overlooked consideration is how fresh an Import dataset’s sources are. There is no point
refreshing a dataset multiple times a day if it relies on an external data mart that is only refreshed
nightly. This adds an unnecessary load on data sources and the Power BI service.

Look at your environment to see when refresh operations are happening and how long they take.
If many are happening in parallel, this could slow down other operations due to intense CPU and
memory usage. The effect can be larger with Power BI Premium. Consider working with dataset
owners to remove unnecessary refreshes or change timings so that they do not occur altogether but
are potentially staggered instead. A data refresh in progress can require as much additional memory
as the dataset itself – sometimes more if the transformations are complex or inefficient. A general rule
of thumb is that a refreshing dataset consumes twice the memory.

Reducing network latency

In an earlier section, we discussed how reducing the physical distance and hops between data sources
helps to reduce network latency. Here are additional considerations:

• Co-locate your data sources, gateways, and other services as much as possible, at least for
production. If you relied on Azure, for example, it would be recommended to use the same
Azure Region as your Power BI home tenant region.

• Consider a cloud replica of on-premises data sources. This incurs some cloud costs but can
significantly reduce latency for Power BI if the cloud region is far from the on-premises data center.

• If your data is in the cloud, consider performing Power BI development through a remote
desktop into cloud virtual machines. Those virtual machines should ideally be in the same
region as the data sources.

• Use Azure ExpressRoute to have a secure, dedicated, high-speed connection from your
on-premises network to the Azure cloud.

Now that you have a good understanding of the architectural choices that affect performance in Power
BI, let’s summarize what we’ve learned before we explore the next area of performance in Power BI.

Exploring Power BI Architecture and Configuration34

Summary
In this chapter, we saw how the different storage modes in Power BI work. Import mode datasets create
an in-memory data cache in the Power BI service. DirectQuery mode datasets pass queries to the
external data sources. Delta Lake allows connections to Delta Table structures in a Fabric lakehouse
or warehouse. Generally, import mode is the fastest because it is local to Power BI, in-memory, a
column-based analytical database, and compresses data. However, DirectQuery mode provides a
way to always have the latest data returned from the source and avoid managing refreshes. Fabric’s
Direct Lake is somewhere in between. There is a trade-off between all three options. There is also
the composite model if the data is large, but you can provide some aggregate tables in import mode.

You also learned about the role of on-premises gateways for enterprises to allow Power BI to connect
securely with on-premises data sources. Gateways host Power BI’s mashup engine, where data
transformations are performed locally. These can be resource-hungry, especially with hundreds or
thousands of users, which could translate to many connections per second. This means gateways
need to be sized, monitored, and scaled. Hence, we looked at the high-level questions that should be
asked, for example, relating to simultaneous refreshes or user counts. An introduction to gateway logs
drifted to the Microsoft-provided template for monitoring. Patterns were revised to help if a scale-up
or scale-out approach is needed.

The last section looked at other performance features such as parallel activity, refresh scheduling, and
capacity options through subscription. The next chapter will start to review the different free tools to
use for performance tuning and management. These tools will be used throughout the book to help
with best practices in Power BI performance tuning.

3
Learning the Tools for

Performance Tuning

Until now, we have looked at Power BI performance from a relatively high level. You have learned which
areas of Power BI performance can be impacted by your design decisions and what to consider when
making these choices. Those decisions were architectural, so were about choosing the right components
to ensure the most efficient movement of data to suit your data volume and freshness requirements.

However, this knowledge alone is not sufficient and will not guarantee good performance. With the
gateways in the previous chapter, we saw how a single component of the solution can be configured
and optimized quite heavily. This applies to most of the other areas of Power BI, so now we will begin
to look at performance tools that can help us pinpoint issues.

In Chapter 2, Exploring Power BI Architecture and Configuration, we looked at storage modes for
Power BI datasets and learned about Import, DirectQuery (DQ), and Direct Lake (DL). For Power
BI reports, we often need to know whether visuals, queries, or combinations thereof are slow. Using
these tools can help with slow model calculations, slow reports, or slow model refreshes.

Some of this granularity is not available from the Power BI service in production at the time of writing.
However, you can get much more granular performance information using desktop and external
tools. As we progress through this book, you will learn how the performance experience is affected
by varied factors. An effective way to pinpoint these is to analyze report behavior at the level of each
user interaction, and the behavior of each visual in response to that action.

This chapter will cover the following topics:

• Overview of data engine architecture

• Learning about the performance analyzer

• Using the Optimize ribbon

• Adapting external tools

Learning the Tools for Performance Tuning36

Technical requirements
There are samples available for some parts of this chapter. We will mention which files to refer to in the
relevant sections. Please check out the Chapter03 folder on GitHub to get these assets: https://
github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-
Practices-Second-Edition.

Overview of data engine architecture
Whenever you launch Power BI Desktop, an Analysis Service process is launched on your local
machine. Figure 3.1 shows the service running in Task Manager.

Figure 3.1 – Analysis Services service in Task Manager

This engine, referred to as VertiPaq, is where the imported and transformed data resides for a Power
BI dataset. The term dataset has been switched for semantic model, which was the original name
for SQL Server Analysis Services. This process or service stores the data in the column structure in
a compressed mode. Included with the structure are column indexes, dictionaries, and hierarchies.
We will see more on this in the sections on DAX Studio. DAX Studio can display the actual storage
structure for column data and all the subsets of the column structure.

There are two engines that process queries and return data in visualizations in Power BI. The formula
engine processes the query request, and the storage engine returns the data. Figure 3.2 shows a common
flow of using the VertiPaq service to submit DAX query processing to the data source.

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

Overview of data engine architecture 37

Figure 3.2 – VertiPaq service processing a query

The processing is either a query to retrieve data for a visual or the import process to format the
source data into the in-memory structure. This structure for import mode is a column store and is
compressed as explained in Chapter 2. The storage engine can aggregate some data for the formula
engine, such as the DAX measures SUM or SUMX. The reference to calculations can mean calculated
columns, measures, or queries in a semantic model.

The following two sections will explain the difference between the semantic model storing the data
versus a query running against the semantic model.

Import mode

The tabular semantic model needs to be processed to store data in the VertiPaq in-memory structure.
This is different than a DAX query that retrieves data for a visualization. Storing and retrieving
analytical measures is a powerful aspect of tabular data. Aggregations can be as simple as SUM or
COUNT, but can be as complicated as computing a rolling average using the CALCUATE function
with other DAX functions.

In addition to column-store compressed data, the storage engine can create indexes and dictionaries
for faster lookups. These are created for each column in a table if necessary. Some numeric-based
columns do not need an index or dictionary based on the low cardinality of data in a column. Storing
this data is more CPU intensive than requiring larger memory sets.

Consider an example: The following steps reflect a semenatic model refresh that has transformations
in Power Query as well as dimension tables with one-to-many relationships:

1. Process refresh initiated.

2. Semantic model structure requests source data.

3. Transformations from Power Query processed on data.

4. Table data is stored in column structure with compression.

5. Dictionary, hierarchies, and indexes created on columns.

6. In-memory structure recalculated for all measures and relationships.

Learning the Tools for Performance Tuning38

Figure 3.3 – Semantic model of Sales related to Date

Figure 3.3 shows the model view of the semantic model for this example.

Executing a query

To be able to optimize the calculation, it is important to know what is happening with these engines
for query requests. When the query is processed by the semantic model, the formula engine receives
the request and creates a query plan. The plan has steps for performing the calculations and child steps
that request data from the storage engine. The formula engine is single-threaded, while the storage
can have multiple threads based on a single request from the formula engine. The storage engine will
then retrieve and aggregate the data from the semantic model.

One note to remember is this process is for import mode. If using DirectQuery or Direct Lake, there
is no storage of data in memory, only retrieval from the data source and aggregated for returning the
data to the formula engine. The speed of the data retrieval is dependent on the data source service.

There is a cache that can have data from queries recently run that can answer subsequential queries
that return the same data.

Overview of data engine architecture 39

Term definitions

• VertiPaq: Contains the in-memory data formatted by the metadata from the semantic model
designed in Power Query through transformations. This model must be refreshed periodically.

• Formula engine: Generates a query plan for formatting the data requested by a visualization or
slicer in a report or DAX query request. Part of the query plan is requests to the storage engine.

• Storage engine: Retrieves data from the VertiPaq in-memory data for Import model semantic
models or sends query requests to the data source system for DirectQuery or Direct Lake
semantic models.

• Tabular model: Set of tables, columns, relationships, transformations, calculated columns,
and measures in your semantic model. This is called the metadata about the semantic model.

• Cardinality: The number of unique values in a column.

Figure 3.4 – Table visual

Consider the following example. The steps here reflect running a DAX query from a table visual in a
PowerBI report like Figure 3.4. Figure 3.4 above shows the tables and relationships for the semantic model.

1. The query is generated from the visual to retrieve the table from the visual.

2. The tabular semantic model has metadata for the table:

A. Date table related to Sales table by OrderDateKey

B. Net Sales is a DAX measure – SUM(Sales[SalesAmount])

3. The formula engine does calculations for total sales by year (more advanced calculations):

A. Calculates the grand totals (row or column)

B. Table visual data is sorted by year

Learning the Tools for Performance Tuning40

4. The storage engine is requested for each row with a year and related total sales for the intersection
of date with sales:

A. Calculates the aggregate of Sales by Year – returns this data.

B. xmSQL – the language for requests made to the VertiPaq engine.

5. Data is returned to the formula engine for query requests and results are sent to the
requestor (report).

The next section will go through the use of the performance analyzer to assist with performance
tuning a report.

Learning about the performance analyzer
The performance analyzer is an excellent tool for analyzing the reports in a pbix file. In this section,
we will spend some time learning about its features. We will also learn when and how to use the tool
to diagnose performance problems.

The performance analyzer lets you record user actions and break down report behavior by each report
visual, including DAX and DirectQuery queries. The tool provides durations for phases of a report
visual’s internal operations, in milliseconds. The following screenshot shows how the Performance
analyzer pane displays statistics for a single-page refresh operation that’s initiated from the tool itself.

Figure 3.5 – Performance analyzer results with an expanded visual

Learning about the performance analyzer 41

Take note of the action that’s been captured, and the duration breakdowns provided. The Copy
query functionality is especially useful when you’re debugging performance related to DAX and
data model design. It allows you to extract a DAX query or the external DirectQuery command that
the visual generated. These queries can be analyzed in other tools, which we will cover in Chapter 6,
Third-Party Utilities.

This chapter will focus on practical examples of using the tool and nuances in Power BI’s behavior that
should be considered when running performance testing. If you do need an introduction to using the
performance analyzer, please review the product documentation: https://docs.microsoft.
com/power-bi/create-reports/desktop-performance-analyzer.

Important note
The performance analyzer measures durations from its perspective – that is, the Power BI
Desktop client. Be aware that development conditions in Power BI Desktop may be very
different from those in production. Many things can differ, such as data volume, source load,
user concurrency, security enforcement, location, and the inclusion of on-premises gateways.
Always keep this in mind when assessing benchmarks from the performance analyzer. Power
BI Desktop development conditions are often ideal and may not represent reality for most users.

Actions and metrics in the performance analyzer

The performance analyzer captures the following user actions:

• Changed page: This covers changing pages using the tabs provided by Power BI and custom
page navigation buttons that you place in the report.

• Cross-highlighted: This captures typical cross-highlight activities such as selecting points or
bars in visuals. Note, however, that most clicks in Power BI report visuals trigger at least a visual
refresh. For example, when you click an empty space in a visual to deselect a cross-highlighted
item, the visuals refresh as expected. If you click the same empty space again, you will notice
a visual refresh, and this will be captured by the performance analyzer.

• Changed a slicer: This triggers when a slicer value is changed and is applied to the other visuals.
If you are using the Query Reduction settings in the report to place an Apply button on slicers,
you need to click the Apply button to trigger the Changed a slicer event. Even if you do not use
Apply buttons, interacting with slicers can trigger visual updates that the analyzer will capture.

• Changed a filter: This triggers when a report filter value is applied. Query reduction with Apply
buttons on filters behaves the same way as with slicers.

https://docs.microsoft.com/power-bi/create-reports/desktop-performance-analyzer
https://docs.microsoft.com/power-bi/create-reports/desktop-performance-analyzer

Learning the Tools for Performance Tuning42

The following figure shows the changes in items captured, such as page changes and Cross-highlighted.

Figure 3.6 – Performance analyzer additional captured items

The performance analyzer contains the following breakdowns per visual:

• DAX query: This is only shown if a query is required. It measures the time from when the visual
issues the query to when it receives the results from the Analysis Services engine (VertiPaq).
This time is expected to be a bit longer than the DAX query time that’s reported by the Analysis
Services engine because it includes communication and other overhead. It can be affected by
users’ physical distance from data sources.

• Direct query: This is only shown for DirectQuery data storage if a query was required. It
measures the time from when the Analysis Services engine issued an external query to when it
received the results. This number should correspond to DirectQuery class event timings from
the Analysis Services engine.

• Visual display: This is the time spent by the visual drawing results on the screen. It includes the
time taken fetching external assets such as images or performing geocoding. Poorly implemented
or complex custom visuals tend to take more time here.

Learning about the performance analyzer 43

• Other: This is a general category for any non-display-related activities that are performed by the
visual, such as preparing queries or other background processing. It also includes time spent
waiting for other visuals. This is because visuals all share a single user interface thread and,
in very simplistic terms, they all get a sequential slice of the CPU. Every time you add a new
visual to a page, the higher this other number becomes for every visual. This isn’t necessarily
bad, but it can make visual-heavy reports more sluggish. We will explore this topic in more
detail in Chapter 9, Report and Dashboard Design.

Tip
A visual refresh does not necessarily trigger a query in the underlying data source. The Power
BI client has a local query result cache, so it can avoid re-running queries when switching back
and forth between recently used filtered views. This explains why it is possible to see no DAX
query for a data-driven visual. To force the query, you can use the Refresh visuals button in
the Performance analyzer pane.

Determining user actions

At the time of writing, there are some interesting behaviors to note when viewing captured activity in the
performance analyzer. Some user interactions will not be logged at the action level by the performance
analyzer. If you have a slicer configured as a dropdown, for example, not all your interactions with it
will be captured at the same granularity. This can make it difficult to work out what the user was doing
after a long series of report interactions. The following screenshot shows a simple case as an example:

Figure 3.7 – The Slicer dropdown is opened, then a selection is made

Learning the Tools for Performance Tuning44

Here, first, the Slicer dropdown is opened, then the slicer value is selected, denoted by Changed a
slicer. It is not obvious that the first item was a user action since it looks like a generic visual update.
If we extend this example by opening the Slicer dropdown again, it becomes even less clear. The
following screenshot shows how the analyzer simply appends the drop-down action to the visuals
from the previous Changed a slicer action:

Figure 3.8 – The Slicer dropdown opened a second time

Exporting and analyzing performance data

Earlier in this chapter, we came across a few limitations regarding the information that the performance
analyzer provides. A great way to dive deeper into these logs is to import and parse them in Power BI
itself so that you can analyze the data. In this section, you will get some guidance on how to import
and transform the logs and use the additional information they provide.

The Power BI performance analyzer log is a JSON file with the following properties:

• All user actions and events generated by visuals are at the top level of the JSON document,
contained in an events element

• Some events contain a metrics element, which can have multiple properties such as query
duration, query text, and visual metadata, such as ID and type

• Events have an id and a parentid, both of which can be used to define a parent-child
hierarchy of events, allowing you to visualize the tree

Learning about the performance analyzer 45

The following screenshot shows the first few entries in an exported performance analyzer log
file (PowerBIPerformanceData.json):

Figure 3.9 – The first few elements of the performance analyzer log file

Some transformation work is required before you can get value out of the data. We mentioned earlier
that the user actions and visual events are at the same level in the file. Events themselves are not
associated with the user action because user actions have no children. First, we must assume that, after
a user action, the next few events in the time sequence are the visual changes caused by that action.
To visualize the events like a tree, we must derive some new columns to group each user action’s
events together and parent them to that action. We can also calculate a duration by subtracting the
start and end timestamps.

Learning the Tools for Performance Tuning46

The following screenshot shows a simple DirectQuery report that we will use to analyze the log files:

Figure 3.10 – DirectQuery report with four visuals

The performance log is generated by switching to this page from a blank page and then performing
a visual refresh in the analyzer. There is a total of two user actions. The log from the user interface is
shown in the following screenshot:

Figure 3.11 – A performance analyzer trace for the two user actions

Learning about the performance analyzer 47

We exported this data and then worked on it in the sample Analyzing Desktop Performance
Logs.pbix file. The following figure shows the Export button.

Figure 3.12 – Performance analyzer export

When the data has been shaped to our needs, we can build a simple chronological view, allowing us
to filter out various event types and visuals. You can use this to investigate the sequence and duration
of the events:

Learning the Tools for Performance Tuning48

Figure 3.13 – Sequence of events and performance metrics

The following screenshot shows how to build a tree view for each user action. In this example, we used
the slicer to select one user action. Now, we can see its statistics and event tree:

Figure 3.14 – Tree visualization of a user action

Using the Optimize ribbon 49

This view contains a FirstToLastSeconds calculation, which is from the earliest start time to the latest
end time of events in scope. It tries to give you an idea of the duration of the user action itself until
the last activity is completed. This addresses one gap in the desktop UI.

Important note
Calculating the duration of the user action using this custom method is not officially documented
and should be considered approximate only. You should use it to compare the relative changes
in performance from one design to another.

The transformation methods that were used in the sample file are quite basic and rely on you manually
hardcoding line numbers in the file to partition user actions. This is intentional, to illustrate the
structure of the JSON in a small file. You can point this sample to your log file and make changes as
necessary to make it more automatic over much larger performance log files.

Now that we have finished looking at the performance analyzer, let us look at some more external
tools to help performance tuning.

Using the Optimize ribbon
In the previous section, we talked about the performance analyzer in Power BI Desktop and its ability
to analyze the times for visuals and queries. Now, we are going to look at some options for helping
the analysis while navigating visuals and pages in a report. This is also part of Power BI Desktop.
Figure 3.15 shows the Optimize menu on the desktop.

Figure 3.15 – Optimize ribbon

Pause and Refresh visuals

The first section of the Optimize ribbon has two buttons. The first is a way to pause visual refreshes.
This stops the refreshing of slicers and visuals on a page, while we select a value in a slicer or an item
in a visual. Then, the second button can refresh the visuals after the changes have been completed.

Learning the Tools for Performance Tuning50

This enables the actions to not execute a refresh for every selection on a page. These options are
available for all data storage modes.

Figure 3.16 – Visuals are paused banner

Figure 3.16 shows the banner displayed for the report once the Paused visuals button is clicked. There
is a link at the end of the banner to go to more information about this option. The banner is there to
be a reminder of the state of the visuals. The following figure shows the Refresh visuals button that
appears on visuals once a slicer or other visual has been selected.

Figure 3.17 – Refresh visuals button

Using the Optimize ribbon 51

Optimization presets

The optimization presets are refresh scenarios that can be active on a page:

• Query reduction: An Apply button is added to the page to apply changes to visuals because
cross-highlighting and cross-filtering are turned off by this option, thus reducing the number
of queries

• Interactivity: As the default setting, all cross-filtering, cross-highlighting, and real-time changes
are turned on

• Performance analyzer: The same option as explained previously in this chapter

• Customize: This option allows the user to choose which reduction settings are needed for
this page

The following figure shows the Optimization presets menu choices:

Figure 3.18 – “Optimization presets” menu choices

The Apply all slicers button

This option allows two buttons to be added to the page – one for applying all filters at once and the
other to clear all slicers at once. By using these buttons, the end user of the report needs to be aware
that when the slicer values are selected, the slicer values will not be filtered on the page until the Apply
all slices button is clicked. This is another option for reducing the number of queries generated by
user interaction on a page, thereby reducing queries sent to the engine(s).

Learning the Tools for Performance Tuning52

Adapting external tools
The external tools mentioned here have a free version available. These are used throughout the industry
to assist with performance tuning and development. Detailed examples will be shown in Chapter 6,
Third-Party Utilities.

DAX Studio

DAX Studio is written by the folks at https://www.sqlbi.com/. They have combined useful
tools into one application. The main query window allows connections to desktop files, deployed
Power BI semantic models, as well as Analysis Services models. The query window enables users to
type their own DAX queries for validation against a model. The additional options for queries can
display the timings from the formula and storage engines. A DAX query plan can be extracted for
advanced analysis.

Figure 3.19 – DAX Studio

Figure 3.19 shows the query window with a queried copy from the performance analyzer for analysis.
The tool also has a View Metrics feature in the Advanced ribbon for an analysis of the size and memory
consumption. The whole model contains details for tables, columns, relationships, and more. This
feature has a separate application called VertiPaq Analyzer, which can be run outside of DAX Studio.
These analyses can be exported to other tools to dig further into performance. This tool is open source.

https://www.sqlbi.com/

Adapting external tools 53

Query Diagnostics

Query Diagnostics is part of Power Query. So, this is available in Power Query online as well as in
integrations with Excel and Power Pivot. Figure 3.20 provides a view of the Tools ribbon in Power
Query. The feature does have to be enabled in Power BI Desktop, in theOptions/Diagnostics section.

Figure 3.20 – Query diagnostics

The diagnostics can be on an activity for the whole model in Power Query, or just one step – Diagnose
Step. Starting diagnostics will start a trace of the Power Query refreshes or changes and can produce
up to four queries of data that will be added to your Power Query queries pane but hidden from the
model. Four diagnostic queries are displayed in the following figure.

Figure 3.21 – Diagnostic queries

The key feature is finding the query folding that Power Query can do. This query folding can send a
source query to the data engine for execution rather than in Power BI, thus pushing the processing
to the source.

Learning the Tools for Performance Tuning54

Tabular Editor

Tabular Editor (TE) is a development tool for Power BI and Analysis Services semantic models. It
allows editing the metadata without having to import any data. So, if you want to change the display
format of multiple columns, TE allows selecting multiple columns and applying the change at once.

Figure 3.22 – Best Practice Analyzer

Figure 3.22 shows Best Practice Analyzer within TE. As far as performance tuning is concerned, the
Best Practice Analyzer integrated into TE is the most helpful. Analyzing the structure of a model can
be compared to a set of checks that can give useful information about the model design. Suggestions
about optimization are given as well as links to the internet for more information on the optimization.
The JSON file used to do the analysis can be edited manually or within TE. The rules are divided into
categories such as performance, DAX expressions, error prevention, formatting, and maintenance.

Other tools

The Profiler from SQL Server Management Studio can be used with semantic models in Power BI
and Analysis Services. This allows the capturing of events and columns during a refresh process or
query from a visual.

Another option is a Performance Metric report, which is a Power BI Template App downloadable
from Microsoft. It is installed in your Power BI tenant as a workspace. The report in the workspace
can get statistical data for the last 30 days of activity. This data is formatted into visuals in the report.
The data is scheduled to refresh regularly to update the statistical information.

Summary 55

Summary
In this chapter, we started with a summary of the engines in the Analysis Services process – formula
and storage engines. Understanding where the processing time is taken is a good start for performance
tuning a semantic model. We then introduced the performance analyzer as a built-in tool to help you
assess performance for report visuals.

Breaking processing into querying, visualizing, and the other aspects helps focus performance tuning
with durations and metrics. It lets you copy queries for analysis in other tools. Next, we looked at log
files for durations of actions. Transforming the exported data was assisted by hierarchies as well as
techniques for using it with the performance analyzer.

We concluded by looking at external tools. The first was DAX Studio, where we can see DAX queries
analyzed for performance in the engines. Query diagnostics in Power Query helped analyze extraction
code for timings. Tabular Editor was talked about in terms of changing metadata as well as a Best
Practice Analyzer. Profiler and Performance Metric report were mentioned for additional analysis.

Part 2:
Performance Analysis,

Improvement, and
Management

In this part, we will identify sources of performance information in Power BI and how to access them
and look at when to use DirectQuery and DirectLake for large data sources in a semantic model. You
will learn which free external tools are appropriate for different layers, how to debug issues, and how
to apply a structured approach to performance improvement.

This part has the following chapters:

• Chapter 4, Analyzing Logs and Metrics

• Chapter 5, Optimization for Storage Modes

• Chapter 6, Third-Party Utilities

• Chapter 7, Performance Governance Framework

4
Analyzing Logs and Metrics

In the first part of this book, we built a solid foundation for performance management in Power BI by
identifying the major architectural components that can affect your experience. We learned why your
choices in these areas can slow things down, and we provided recommendations and justifications
in each area.

Once these theoretical concepts have been put into practice, you will need to know how to measure
performance and analyze the data. This will let you make informed decisions on where to invest time
to investigate further and where to make changes for performance tuning. Hence, it is time to move
into the second part of this book, where we will look at the different places you can get performance-
related information in Power BI and how to make sense of that data.

In this chapter, we will focus on the first part of report performance management, which is obtaining
performance information. You’ll learn what information is available, how to retrieve it, and what to
focus on to determine the causes of bad performance.

This chapter covers the following topics:

• Power BI usage metrics

• Power BI logs and engine traces

• Monitoring Analysis Services and Power BI Embedded (PBIE)

Power BI usage metrics
In Chapter 1, Setting Targets and Identifying Problem Areas, we discussed how report loading performance
is the most obvious factor regarding the speed of a business intelligence platform. In Power BI, a
workspace administrator can get performance information using the built-in usage metrics report.

Analyzing Logs and Metrics60

You can access usage metrics using the report drop-down menu in the content list of the Power BI
workspace, as shown in Figure 4.1:

Figure 4.1 – How to view the usage metrics for a report in a workspace

You can also launch the usage metrics report from the report toolbar when viewing a report. This is
shown in the following screenshot (Figure 4.2):

Figure 4.2 – How to view the usage metrics after opening a report

After you launch the usage metrics report, the Report usage page displays. This will initially show
usage for the selected report. You can clear the report filter in the filter pane and see usage for all
reports. The visuals show data for the last 30 days, which is the maximum number of days saved to the
semantic model. You can change the date range with the date slicer in the right pane but only based
on the last 30 days. This is shown in the following screenshot:

Power BI usage metrics 61

Figure 4.3 – The reported usage in the Usage Metrics report

You can look at performance-related metrics by switching to the Report performance tab on the left
menu pane. There is a 7-day performance tab that shows a chart smoothing the trend by a 7-day
rolling aggregate. Figure 4.4 shows the Report performance tab selected.

Figure 4.4 – The Report performance trend in the Usage Metrics report

Analyzing Logs and Metrics62

Tip
Power BI currently supports two versions of usage metrics. If your usage metrics report looks
different from the one shown in the preceding screenshot and does not contain any performance
information, check that the New usage report on option is enabled in the toolbar, as shown
in the preceding screenshot. You can use the toggle to switch back to the classic usage metrics
if needed.

The report performance page provides a few different metrics that are worth describing:

• Typical opening time: This is the 50th percentile (or median) of the report load duration across
the selected period in the report. It represents the middle number if you sorted all the report
load durations from shortest to longest. The median can provide a better approximation of
the typical duration than the average because the latter can be affected by outliers and small
sample sizes.

• Opening time trend: This shows the percentage change in typical opening time (50th percentile),
comparing the value for the first half of the reporting period to the value for the second half.
In the preceding screenshot, we can see that the report has become 20% faster because the
opening time has been reduced.

• For most of the users your report opens between [X] and [Y] seconds: This statement provides
you with a range of report open durations. The lower bound (X) represents the 10th percentile,
while the upper bound (Y) represents the 90th percentile. Therefore, “most” here represents
80% of the total report opens. This is a good way to think about performance since it covers
a broad range and will not be heavily affected by outliers. Ideally, these two numbers will not
differ by too much, though there isn’t a general rule to apply here. Your goal should be to have
the upper bound within your target report load duration, as discussed in Chapter 1, Setting
Targets and Identifying Problem Areas.

• 25% of report open actions: This is the 25th percentile of the report’s load duration.

• 50% of report open actions: This is the 50th percentile (median) of the report’s load duration.

• 75% of report open actions: This is the 75th percentile of the report’s load duration.

Note the chart at the bottom right of the Report performance page. It shows the typical (50th percentile)
report open duration by Country, Consumption Method, and Browser. We recommend monitoring
performance by these categories regularly to see whether any scenarios stand out. There are additional
data points available in the semantic model that power the usage metrics report, though they are not
shown in the report by default. In the next section, we’ll learn how to expose and use them.

Power BI usage metrics 63

Customizing the usage metrics report

The visuals in the usage metrics report provide us with an easy way to get a quick overview of the
performance of a specific report. You’ll likely want to build some views of this data, so next, we’ll look
at ways you can adjust a copy of the report or access the semantic model to build a view.

Filtering usage metrics

The usage metrics report is filtered to one report by default. You may want to look at performance
for the entire workspace in aggregate or view metrics for a different report. You can achieve this by
expanding the filter pane on the right, clearing any existing filters, and then selecting the report name
or ID that you are interested in. The following screenshot in Figure 4.5 shows the expanded filter pane
with the default ReportGuid is (All) filter cleared and the list of report names expanded. Note how
the metrics report title changes to (Multiple reports selected) to let you know that multiple reports
are in scope:

Figure 4.5 – Report load performance for the entire workspace

Now, let’s learn how to open the data model behind this report and make report customizations.

Analyzing Logs and Metrics64

Making a copy of the usage metrics report to edit

The Power BI usage metrics report is managed by the system. You are not allowed to edit it and editing
options will not appear in the toolbar. However, you can work around this by creating a copy of the usage
metrics report. Simply use the File menu and select Save a copy, as shown in the following screenshot:

Figure 4.6 – Saving a copy of the usage metrics report

When you save a copy of the usage metrics report, it will be placed in the same workspace as the
original system-managed version. You do not need to configure a refresh for this report because it
uses the hidden, system-managed usage metrics semantic model as a source.

To customize the copy, you can edit the report in the portal in the same way you work with any regular
Power BI report in the Power BI service. Simply navigate to it and open it, then use the Edit button
on the toolbar and make the necessary modifications. The following figure shows the tables that are
exposed when we edit the report:

Figure 4.7 – The usage metrics semantic model is visible in a customized copy

Power BI usage metrics 65

Now, we’ll briefly describe the major elements of the usage metrics semantic model to help you
construct views that answer your common questions. Figure 4.8 shows the relationships and tables
with key columns in the semantic model.

Figure 4.8 – The usage metrics semantic model tables and relationships

The measures include the following:

• Model measures: A logical container for the measures in the semantic model. It contains
subfolders to group the measures for better manageability.

The dimensions include the following:

• Dates: A common date table. We recommend using this table for filtering and visualizing by
date because it is connected to all the relevant log tables and will allow you to place different
metrics next to each other in the same date context.

• Reports: A list of all reports in the workspace by name and identifier. Use the
IsUsageMetricsReport column to exclude any system reports from your analysis –
they will be set to True.

• Report pages: A list of all the report pages by name and identifier, including a mapping to the
report ID that the page belongs to.

• Users: A list of all user principal names (UPNs) whose activity is captured in the report. The
UPN is most often an email address.

Analyzing Logs and Metrics66

The facts include the following:

• Report page views: A table containing an entry for each report page view, as reported by the
Power BI client. Use this table to analyze views at the report page’s granularity level.

• Report load times: This contains an entry for each report of the open activity, as reported by the
Power BI client (for example, app.powerbi.com in a web browser or the Power BI mobile
app on a phone). It contains activity start and end timestamps, which are used in the semantic
model to calculate duration. A current limitation is that the report page is not identified, so
the activity could be for any page of the report.

• Report views: This contains an entry for each report open activity, as reported by the Power
BI service. This will be reported by the Power BI backend each time a report is opened. This
data is not affected by client/network issues and every report open activity is expected to reach
Power BI.

• Report rank: A static ranking table listing all the reports in the workspace and the viewership
rank over the entire tenant.

• Workspace reports: A summary of the total days with usage and usage trends for each report.
Use the IsUsageMetricsReportWS column to exclude any system reports from your
analysis – they will be set to True. This data is used to populate the Report list page of the
Power BI usage metrics report.

• Workspace views: A summary of the total views for each report by user, distribution method, and
consumption method. This is used to power the Report list page of the system-generated report.

A practical way to understand how the usage metrics semantic model supports analyzing different
scenarios is provided by Microsoft in the Usage Metrics documentation. We recommend checking out
the example at the following link to see how different usage scenarios are captured and reported. This
will help you interpret the usage metrics data: https://docs.microsoft.com/power-bi/
collaborate-share/service-modern-usage-metrics#worked-example-of-
view-and-viewer-metrics.

The next section will look at creating a new report with the Power BI desktop from the usage metric
semantic model connection.

Accessing semantic model data with a new custom usage metrics report

You may prefer to use Power BI Desktop to author your custom performance report, or you may not
want to use a copy of the system-generated usage metrics report as a base. In this case, you can create
a new Power BI report in Power BI Desktop that’s connected to the usage metrics semantic model in
the workspace you’re interested in. You will find a usage metrics semantic model in any workspace
where the usage metrics have been accessed at least once.

http://app.powerbi.com
https://docs.microsoft.com/power-bi/collaborate-share/service-modern-usage-metrics#worked-example-of-view-and-viewer-metrics
https://docs.microsoft.com/power-bi/collaborate-share/service-modern-usage-metrics#worked-example-of-view-and-viewer-metrics
https://docs.microsoft.com/power-bi/collaborate-share/service-modern-usage-metrics#worked-example-of-view-and-viewer-metrics

Power BI usage metrics 67

To build reports over a usage metrics semantic model in Power BI Desktop, choose the data source
called Power BI semantic model, then search for usage metrics report in the dialog box.
This will list all the system-managed usage metrics semantic models and allow you to connect to the
one in the workspace. Figure 4.9 shows the result of a search where all the usage metrics semantic
models are listed:

Figure 4.9 – List of usage metrics report semantic models found in Power BI Desktop

Once connected to the semantic model, the data model described in the previous section will be
exposed and you can construct the desired views.

Now, we will see how to connect to the usage metric semantic model from Excel.

Model data access via Analyze in Excel over usage metrics

Another way to access the report performance and usage data is through Excel. Here, you can use
the standard Analyze in Excel functionality once the usage metrics report has loaded. Power BI will
prompt you to download an Excel file that has the necessary connection information embedded into it:

Figure 4.10 – The Analyze in Excel option for usage metrics

Analyzing Logs and Metrics68

You can open the Excel document and construct Excel visuals over the Power BI semantic model.
The same semantic model that we described earlier is exposed via the Excel pivotable interface. If
you have multi-factor authentication turned on, you will be prompted to log in and authenticate to
use the connection from Excel. The following figure shows a pivot table view that was created after
opening the semantic model in Excel. It looks at the performance percentiles for a single report,
compared by the browser:

Figure 4.11 – Analyzing the usage metrics semantic model in Excel

Next, we will learn about the additional details you can get from building custom views over the usage
metrics semantic model that Power BI provides.

Power BI usage metrics 69

Viewing granular performance data

Our coverage of the performance data available in usage metrics thus far has only dealt with aggregates,
as provided in the default report. This is a good starting point, but aggregate data won’t allow you
to isolate issues and move closer to the root cause analysis. The great news is that more granular
performance (and usage) data is available in the semantic model. Now that we have described the
usage metrics semantic model that Power BI provides, we can construct a granular performance view
using the Report load times table.

While we will only demonstrate one option, the same result can be achieved with any of the customization
methods described earlier. Figure 4.12 shows how a tabular and graphical view of performance can
be created to analyze non-aggregated data. The goal here was to compare two reports and see how
they performed over time. This can easily be extended by using the other dimensions available in the
semantic model:

Figure 4.12 – Granular report performance view in a custom report

The loadTime (column name) data is based on a report not a page of a report, so it does not
directly tie to a page. There are separate measures for reports (report views) and pages (page views)
to measure specific pages in a report.

Next, let’s explore what to look for in the performance data provided by Power BI, and then consider
what you might do next based on your findings.

Analyzing report performance metrics

So far, we have learned about the different ways we can access and customize views for the report
performance data provided by Power BI. Now, we will provide some general guidance on how to use
this data to identify issues.

Analyzing Logs and Metrics70

If you are trying to resolve a known consistent performance issue with a specific report, you must
look at visuals and queries in detail. We employ a process and specific tools for this. This was covered
in Chapter 3, Learning the Tools of Performance Tuning, and will be expanded on in Chapter 6, Third-
Party Utilities. For now, we are going to approach report performance from a summary level, looking
for trends and anomalies and learning what the next best actions are.

You don’t need to customize the report performance information to get some good insights. The
built-in Performance page can help you answer some useful questions. Figure 4.13 serves as a guide
to customizing report performance:

Figure 4.13 – A guide to analyzing summary report performance data

Power BI usage metrics 71

The screenshots that follow show 1 month of real performance data of a production Power BI report
that had over 60,000 views. The screenshot in Figure 4.14 shows that the report’s performance appears
to be quite consistent, except for 2 days where the 75th percentile seemed to increase by 5 or more
seconds than the norm. This may warrant an investigation to see whether any other reports were
impacted and potentially by a more general issue. If other reports were fine, you should check whether
this report experienced high usage, which suggests its design isn’t scaling well. It’s also possible that
only users of this report were affected. Here, you can use the country and username data to visualize
and isolate these reports:

Figure 4.14 – Daily performance trend showing two abnormal spikes

Figure 4.15 shows the browser performance data for the same report, from the built-in usage metrics.
Here, we can see that deprecated browsers are much slower than their modern counterparts for
this report:

Figure 4.15 – Performance differences across browsers

Analyzing Logs and Metrics72

Customizing the views is highly recommended. The screenshot in Figure 4.16 shows an example of
a useful custom chart you can create with the metrics data. The left box shows three reports that are
much slower than the rest and have reasonable usage. The right box shows a report with very high
usage. While it is nowhere near the slowest report of the entire group, it has a typical opening time
of 50 seconds, which is far from ideal and should be investigated:

Figure 4.16 – Reports by Typical Opening Time versus User Count – this helps prioritize investigations

Now, let’s learn how to collect performance metrics from multiple workspaces.

Collecting performance metrics from multiple workspaces

At the time of writing, Power BI does not provide a single place to get report performance metrics
from multiple Power BI workspaces. If you need to combine usage and performance data from multiple
workspaces, you will need to perform some manual steps. Here is a suggested method:

1. Use Analyze in Excel against the built-in usage metrics to build a flat table of the performance
data you need. Pick a date range that aligns with how frequently you want to run this process
and get fresh data. For example, you may choose a seven-day range if you plan to update weekly,
and this is assumed for the rest of the examples.

2. Repeat Step 1 for each Power BI workspace and save the Excel file separately.

3. Use Power BI Desktop to import and combine the Excel files. Build the query in such a way
that it will load all the files in a folder. This way, each week, when you get new data, you can
simply add the weekly files to the folder and refresh Power BI.

4. Each week, you can reuse the previous week’s Excel files and just update the date filter.

Power BI logs and engine traces 73

You could design a more sophisticated solution for this, such as loading the usage data into a central
database and using that as a source for any data analysis. This is more suited to administrators and
those with scripting ability, and we will describe this in the next section.

Power BI logs and engine traces
The report usage and performance metrics we covered in the previous section are primarily designed
for workspace administrators. For service/tenant administrators, Power BI has raw logs that are
available, though today, they do not contain report performance metrics. However, since Microsoft
has stated its intention to improve logging capabilities, it is worth briefly covering these sources as
they are likely to become relevant for performance tuning in the future.

Activity logs and unified audit logs

There are two sources of administrative logs from Power BI that cover activities across the entire
tenant. Figure 4.17 describes the major similarities and differences:

Figure 4.17 – Comparison of activity and audit logs

Please see the Further reading section for more information.

You’ll need to create reports to analyze activity logs, so we suggest setting up a process like the one
described earlier for workspace usage metrics. The difference with audit logs is that you will not need
to use Excel documents and can save comma-separated value (CSV) files instead. It is also easier to
automate administrative logging due to the availability of PowerShell cmdlets and REST APIs.

The next section will cover extracting data from the Power BI activity log to import into an SQL
Server table for analysis.

Analyzing Logs and Metrics74

Import from activity logs

A JSON file can be extracted from the Power BI activity log into an SQL Server table or other data storage
for analysis. To retrieve this data, the login used to run the REST API will have to be an administrator
of Power BI. This section will give an example PowerShell script to retrieve the information as well
as a suggested table structure for storing the data. You will want to extract this data on a frequency of
daily, weekly, or monthly basis to keep a historical record of the data.

The PowerShell script will use a Power BI Management API called Get-PowerBIActivityEvent.
The API would need to be loaded into the environment before running. You will also have to log in as a
service principal or service account using Connect-PowerBIServiceAccount – see https://
learn.microsoft.com/en-us/powershell/module/microsoftpowerbimgmt.
admin/get-powerbiactivityevent?view=powerbi-ps. The API call will return a JSON
structure you have to save to a variable and write out to a file to import into an SQL Server table.

Here is an example of calling the cmdlet to extract the activity log:

Get-PowerBIActivityEvent -StartDateTime 2019-08-10T14:35:20
-EndDateTime 2019-08-10T18:25:50

This output can be piped into a variable as follows:

$json = Get-PowerBIActivityEvent -StartDateTime $StartDate
-EndDateTime $EndDate | ConvertFrom-Json

To write to a file, try this:

Get-PowerBIActivityEvent -StartDateTime $StartDate -EndDateTime
$EndDate -ResultType JsonString |
 Out-File -FilePath "c:\temp\AuditLog_$(Get-Date -Date $EndDate
-Format yyyyMMdd).json"

https://learn.microsoft.com/en-us/powershell/module/microsoftpowerbimgmt.admin/get-powerbiactivityevent?view=powerbi-ps
https://learn.microsoft.com/en-us/powershell/module/microsoftpowerbimgmt.admin/get-powerbiactivityevent?view=powerbi-ps
https://learn.microsoft.com/en-us/powershell/module/microsoftpowerbimgmt.admin/get-powerbiactivityevent?view=powerbi-ps

Power BI logs and engine traces 75

The output looks like Figure 4.18.

Figure 4.18 – JSON output from an activity Log

The data from this JSON structure can be queried in SQL Server as the following figure shows. Here,
we are using OPENROWSET with OPENJSON in a cross-join. The case of the column names in the
WITH clause needs to match the case of the columns in the JSON structure. If it does not match, no
error is thrown. The data will be null in the output, so a special inspection of the column data should
be implemented before accurate results can be used in a report.

Analyzing Logs and Metrics76

Figure 4.19 – Using T-SQL to query data from the JSON file

Now, we will look at using profiles to capture semantic model processing metrics.

Analysis Services server traces with the XMLA endpoint

If you are using Power BI Premium or Fabric, you will have the XMLA endpoint available if it has been
enabled in Tenant Settings. This is a management endpoint that can be used to perform operations
on Power BI semantic models by capturing commands directly in the Analysis Services engine. This
will let you initiate a server trace from SQL Server Profiler on the workstation and collect detailed
semantic model information in near-real time. Analysis Services data is very useful to help understand
engine load, query performance, and refresh performance. We will cover engine traces in more detail
in later chapters. For now, note that SQL Profiler provides a generic log capture and viewing interface,
and it’s not recommended. We will recommend other tools in Chapter 6, Third-Party Utilities. For those
interested in SQL Profiler or unable to use unofficial tools, we recommend a blog post by Christopher
Webb, a well-known authority on Analysis Services, who is the author of many books on the subject. This
article can be found at the following link: https://blog.crossjoin.co.uk/2020/03/02/
connecting-sql-server-profiler-to-power-bi-premium/.

The next section gives a brief description of using Log Analytics from Azure Monitoring.

https://blog.crossjoin.co.uk/2020/03/02/connecting-sql-server-profiler-to-power-bi-premium/
https://blog.crossjoin.co.uk/2020/03/02/connecting-sql-server-profiler-to-power-bi-premium/

Monitoring Azure Analysis Services (AAS) and PBIE 77

Integration with Azure Log Analytics

Microsoft released a feature that allows you to connect Power BI to Azure Log Analytics workspaces.
Azure Log Analytics is a platform where you can ingest logs, retain them for up to two years, perform
ad hoc queries on near-real-time data, set alerts, and extract data for reporting and analytics. This
feature is accompanied by sophisticated downloadable report templates. More information is available
at the following link: https://learn.microsoft.com/en-us/power-bi/transform-
model/log-analytics/desktop-log-analytics-overview.

The following section gives a brief description of some other monitoring options.

Monitoring Azure Analysis Services (AAS) and PBIE
AAS and PBIE are first-party Azure services. This means they are provisioned, managed, and billed
via Azure. You can leverage these services in a standalone manner, directly integrating them with
custom applications or using them as independent data tiers that can be scaled on-demand as needed.
We will primarily use Azure tooling to look at data from these services.

Azure metrics for AAS

After you have provisioned an AAS instance, you can use built-in metrics to visualize your load and
operations. Simply navigate to the AAS instance in the Azure portal and select the metrics link from
the left navigation. You can then select various metrics to plot in the web interface, as described in the
documentation (https://docs.microsoft.com/en-us/azure/analysis-services/
analysis-services-monitor). Let’s highlight some of the more important metrics and how
they can help you:

• Current User Sessions: The number of concurrent active user sessions. Correlate this with known
periods of poor performance to determine whether user load may be a contributing factor.

• M Engine Memory: The memory usage that’s used by mashup engine processes when you’re
running data refreshes. Keep an eye on this to identify spikes. See whether high values coincide
with reports of failures or lower-than-expected performance. You may need to reschedule
refreshes, optimize content, or handle the higher load by scaling up or out.

• M Engine QPU: The processing power that’s used by the mashup engine processes, measured
in Query Processing Units (QPUs). For example, if you have an S1-sized instance, then you
have 100 QPUs and should ensure that there is enough headroom for queries when you hit
peak QPU usage by the M engine. The exact number depends on your scenario and can be
determined by load testing when there is no refresh. We will cover load testing in Chapter 13,
Optimizing Capacities in Power BI Enterprise.

• Memory Usage: The total memory usage by all the server processes on the instance. If this
is near the maximum that’s provided on the SKU, query and refresh performance will likely
degrade and even result in some failures.

https://learn.microsoft.com/en-us/power-bi/transform-model/log-analytics/desktop-log-analytics-overview
https://learn.microsoft.com/en-us/power-bi/transform-model/log-analytics/desktop-log-analytics-overview
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-monitor
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-monitor

Analyzing Logs and Metrics78

• QPU: The processing power that’s used across the entire instance. A well-optimized instance
should operate at peak load without reaching the maximum QPU for sustained periods, though
high values are not necessarily bad.

• Query Pool Busy Threads: The number of processor threads being used for queries. The
maximum varies by SKU. If you see this reaching a maximum number and remaining flat for
extended periods, this means that there are too many reports/queries being run at the same
time. Some queries will have to wait before they can start executing.

Figure 4.20 shows the AAS QPU metrics displayed in the Azure portal:

Figure 4.20 – The AAS QPU metrics trend in the Azure portal

There are also detailed server traces available for AAS. Some configuration is required to obtain these.
We will explore this topic next.

Azure diagnostics for AAS

Earlier in this chapter, we described how the XMLA endpoint can be used to connect to a
Premium workspace to capture engine traces. The same concept applies to AAS, though we can
use Azure diagnostic logging and Azure Log Analytics to capture and analyze this information.

Summary 79

There are some Azure prerequisites and dependencies to satisfy before you can connect AAS to the
logging service, namely provisioning a destination for the logs. This requires some administrative
permissions in Azure. The setup is beyond the scope of this book, so we encourage you to read the
official guidance to configure diagnostic logging, which can be found at the following link: https://
docs.microsoft.com/azure/analysis-services/analysis-services-logging.

Azure metrics and diagnostics for PBIE

PBIE supports built-in Azure metrics that are accessed from the Azure portal in the same way we
described previously for AAS. A point to note is that fewer metrics are available than with AAS. Please
refer to the online documentation to get the current list. This reference also covers diagnostic logging
for PBIE, which works the same way as AAS. It can be found at the following link: https://docs.
microsoft.com/power-bi/developer/embedded/monitor-power-bi-embedded-
reference#metrics.

In subsequent chapters, we will dive deeper into AS engine logs. The advice given here will apply to
the AS engine within Power BI, AAS, and PBIE.

Now that we’ve covered the primary sources of performance information in Power BI, let’s summarize
what we’ve learned in this chapter.

Summary
Since report performance is such an important aspect of the user experience, we began by looking at
Power BI’s built-in workspace usage metrics, which are targeted at workspace administrators.

With the usage metrics report, we saw a report performance page to visualize report trends and break
download duration. We noted that the aggregate information it provides is a good start. To reach this
detailed data, we learned how to copy and customize the built-in report. All these methods allow you
to access details and create more useful custom views. Finally, we looked at typical questions to ask
of the performance data.

Then, we moved on to logs and traces, noting that there are tenant-wide logs available for administrators.
We learned that this is an important source of data for query and refresh performance. When using
Premium or Fabric semantic models, you can connect to the XMLA endpoint to start a near-real-time
trace. You also have a PaaS-based option to connect Power BI to Azure Log Analytics to capture the
granular data in an environment you own.

For those using AAS or PBIE, we learned that Azure metrics and diagnostic logging must be used
since these are standalone Azure services. An important point is that all AS engine logs are derived
from the same traces, even though they are exposed in different ways and formats.

The next part of our journey will see us diving deeper into performance analysis by using tools to
analyze report and query performance data in detail, at a report page and visual level. We will begin by
looking at how to use the Power BI Desktop Performance Analyzer. This is an important tool that will
be referred to in later chapters as we look at the performance implications of various design choices.

https://docs.microsoft.com/azure/analysis-services/analysis-services-logging
https://docs.microsoft.com/azure/analysis-services/analysis-services-logging
https://docs.microsoft.com/power-bi/developer/embedded/monitor-power-bi-embedded-reference#metrics
https://docs.microsoft.com/power-bi/developer/embedded/monitor-power-bi-embedded-reference#metrics
https://docs.microsoft.com/power-bi/developer/embedded/monitor-power-bi-embedded-reference#metrics

5
Optimization for

Storage Modes

With the proliferation of data lakes, more options are available for performance improvements with
DirectQuery and Direct Lake. Synapse has brought Massively Parallel Processing (MPP) from big
data to analytical databases. DirectQuery can use the column store indexes in Synapse or other cloud
database systems. The use of aggregations with DirectQuery external data sources has become a
common choice for large fact tables. There are optimizations that can be done in both Power BI and
external sources to avoid hitting limits too quickly.

In the previous chapter, we looked at ways to get performance and usage information from the Power
BI service through reports and logs. Through the usage metrics report and some template apps,
Microsoft provides tools for analyzing performance data. For Power BI reports, we often need to
know whether visuals, queries, or combinations thereof are slow. Page view granularity isn’t available
from the Power BI service in production at the time of writing but there are some new page view
measures. However, you can get good performance information in Power BI Desktop with the built-in
Performance Analyzer and analyze the queries in DAX Studio.

InChapter 2, Exploring Power BI Architecture and Configuration, we looked at storage modes for Power
BI semantic models and learned about Import, DirectQuery, and Direct Lake. In this chapter, we
will look specifically at DirectQuery mode with some new information about Direct Lake in Fabric.
Power BI reports issue queries in parallel by design. Each user interaction on a report can trigger
multiple queries. You can have many users interacting with DirectQuery reports that use the same data
source. This potentially high rate of queries to the external source must be taken into consideration
when building DirectQuery models. Direct Lake will bank on the proper population of Delta tables
in the pipelines, plus maintenance using an optimized function.

We will look at data modeling for DirectQuery models to reduce the chances of overwhelming the data
source. You will learn how to avoid Power BI and the data source performing extra processing. You
will also learn about the settings available to adjust DirectQuery parallelism. Then, ways to optimize
the external data source and leverage its strengths to handle generated traffic will conclude the analysis
of DirectQuery performance tuning.

Optimization for Storage Modes82

This chapter is broken into the following sections:

• DirectQuery and relationships

• General DirectQuery guidance

• Direct Lake semantic models

DirectQuery and relationships
Data modeling can be thought of very simply as determining which data attributes are grouped into
tables, and how those tables connect to one another. Building a DirectQuery data model in Power
BI allows you to load table schema metadata and relationships from the data source. If desired, you
can also define your own relationships and calculations across any compatible tables and columns.

Calculations in a DirectQuery model are translated to external queries that the data source must handle.
You can check the external query that is generated in the Power Query Editor by right-clicking on
the query step and then choosing View Native Query, as shown in Figure 5.1:

Figure 5.1 – The View Native Query option in Query Settings

DirectQuery and relationships 83

You can check the native query to see how Power BI translates your calculation to the data source’s native
query language to assess whether it might have performance implications. The following example shows
the native query for a table where a single calculation was added. The source is a SQL Server database
and the calculation is a simple subtraction of the two numeric columns – TotalWithoutFreight:

Figure 5.2 – Native T-SQL query with a custom calculation

Tip
In DirectQuery mode, keep calculations simple to avoid generating complex queries for the
underlying data source. For measures, initially limit them to sum, count, minimum, maximum,
and average. Monitor the native queries generated and test the responsiveness before adding
more complexity, especially with CALCULATE statements.

Optimization for Storage Modes84

If you choose a transformation step in Power Query that is not supported by the Naïve Query, you
will get a warning and action to convert the semantic model to Import mode – Switch all tables to
Import mode. This is the only option to apply the added step. The conversion of the data type would
need to be done on the data source side, not Power BI, or by converting to Import mode. Figure 5.3
shows what happens if a column is converted to a different data type that is not supported.

Figure 5.3 – Data type change that is not supported by DirectQuery

Another point to keep in mind is that there does not need to be any physical relationships in the
underlying data source to create virtual relationships in the semantic model. Physical relationships
are created internally by data engineers to optimize joins between tables for common query patterns,
so we want Power BI to leverage these whenever possible.

DirectQuery and relationships 85

The following figure shows a simple DirectQuery model in Power BI Desktop with an arbitrary
relationship created across two Dimension tables – Person and Product.

Figure 5.4 – An arbitrary relationship in DirectQuery

This trivial data model, with a single relationship, is simply for the sake of illustration. The point is
that it is highly unlikely that the underlying database would have a relationship set up across these
tables, and certainly not across those text columns representing the name of products and people.
However, when we create such a relationship in Power BI, we are asking the data source or Power
BI to perform that join on-demand. This is typically much slower as it cannot take advantage of any
existing relationship optimizations at the source.

This was a good example of how the flexibility provided by Power BI can lead to unintended
consequences if we do not fully understand the implications of our choices. There will be more of
these as we progress through future chapters.

Optimization for Storage Modes86

Optimizing DirectQuery relationships

Let’s build further on physical relationships in the data source. There are likely to be existing Primary
Key and Foreign Key columns with relationships, constraints, and indexes defined at the data source.
Figure 5.5 provides a simple example from a retail sales scenario, where the territory lookup table is
related to a sales order table. The TerritoryID column in each table is used for the join:

Figure 5.5 – Typical relationship to a lookup table on a numerical identifier

In cases like this, referential integrity may be enforced at the source. This means that the
SalesTerritory table can be considered the master list of territories and that every entry in the
SalesOrderHeader table must have a corresponding TerritoryID. This implies that there
cannot be null or empty values for TerritoryID in either table. This is a good practice enforced
in many database systems, which is important for Power BI because a DirectQuery dataset can issue
more efficient queries to the remote data source if you can assume referential integrity.

In database terms, having referential integrity means Power BI can generate an INNER JOIN instead
of an OUTER JOIN when pulling data across more than one table. Referential integrity means a
more efficient INNER JOIN can be used with a safe assumption that no rows from either table will
be excluded due to a failure to match keys. You need to instruct Power BI to do this in the data model
for each relevant relationship. Figure 5.6 shows where to do this in the relationship editor in Power
BI Desktop for the sales example we discussed earlier:

DirectQuery and relationships 87

Figure 5.6 – Setting referential integrity for a DirectQuery relationship

Another convenience provided by Power BI is the ability to define calculated columns, which also
works for DirectQuery tables. Power BI supports building relationships using a single column from
each table. However, occasionally, when data modeling, it may be necessary to use a combination of
columns to uniquely identify some entities. A simple modeling technique to address this is to introduce
a calculated column to concatenate the relevant columns into a unique key. This key column is then
used to build relationships in the semantic model. Relationships across calculated columns are not as
efficient as those across physical columns. This is especially true for DirectQuery.

 Note
In DirectQuery mode, avoid creating relationships using calculated columns. This join may
not be pushed down to the source and may require additional processing in Power BI. When
possible, use COMBINEVALUES() to create concatenated columns because it is specifically
optimized for DirectQuery relationships.

Optimization for Storage Modes88

Two more aspects of relationships to consider are Cardinality and Cross filter direction (as seen
in Figure 5.6). A cardinality setting of Many-to-Many will disable the referential integrity setting
and might result in less efficient queries if the data does in fact support a One-to-Many relationship
instead. Similarly, having a Cross filter direction set to Both (sometimes called a bi-directional
relationship) could result in additional queries to the data source. This is because more tables are
affected by minor report actions such as slicer changes, as the filter effect needs to be cascaded across
relationships in more tables.

Tip
Bi-directional relationships are sometimes used to have slicer values in a report update as the
filter state of the report changes. Consider using a measure filter on the slicer visual to achieve
the same effect. Continuing with our sales scenario as an example, this technique could be used
to only show values in a report slicer if the product did have some sales.

The final piece of advice on relationships in DirectQuery concerns the Globally Unique Identifier
(GUID) or slightly differently defined Universally Unique Identifier (UUID). These are represented
by 32 hexadecimal characters and hyphens. An example of a GUID is 123e4567-e89b-
12d3-a456-426614174000. They can be used to uniquely identify a record in a data store and
are often found in Microsoft products and services.

Tip
Avoid creating relationships on GUID columns in DirectQuery. Power BI does not natively
support this data type and needs to convert the data type when joining. Consider adding a
materialized text column or integer surrogate key in the data store instead and use those to
define a relationship.

In the next section, we will look at configuration and data source optimization that can benefit DirectQuery.

General DirectQuery guidance
There are a few settings that can be adjusted in Power BI to speed up DirectQuery semantic models.
We will explore these next.

Power BI Desktop settings

In the Power BI Desktop options, there is a section called DirectQuery under the CURRENT FILE
main menu. This option is only available if the semantic model has a DirectQuery connection. It will
not appear otherwise. Figure 5.7 shows a highlighted option for the setting that controls how many
connections per data source can be made in parallel. The default is 10. This means, no matter how
many visuals are in a report or how many users are accessing the report in parallel, only 10 connections
at a time will be made.

General DirectQuery guidance 89

If the data source can handle more parallelism, it is recommended to increase this value before publishing
the semantic model to the Power BI service. However, with very busy data sources, you may find the
overall performance can improve by reducing the value instead. This is because too many parallel
queries can overwhelm the source and result in a longer total execution time. A lower value means
some queries will have to wait and be issued a little later, giving the data source some breathing room.

This option to lower or raise the parallelism would need to be discussed and tested with an administrator
of the source system such as a SQL Server system and the database administrator(s).

Important note
Power BI Desktop will allow you to enter large numbers for the Maximum connections setting.
However, there are hard limits defined in the Power BI service that can differ depending on
whether you are using a Premium capacity and what size your capacity is. These limits can
change and are not publicly documented, so it is recommended to contact Microsoft Support
to learn more about your scenario.

Figure 5.7 – Maximum connections per data source setting

Optimization for Storage Modes90

Another useful section of Power BI Desktop options that can benefit DirectQuery is Query reduction
(as shown in Figure 5.8). The figure reflects the default setting, which means that Power BI will issue
queries to update visuals for every filter or slicer change a user makes in a report. This keeps the
experience highly interactive but can have undesired effects with DirectQuery sources that are busy
or not optimized, and with reports that have complex underlying queries. This is because the data
source may not even have finished processing queries for the first filter or slicer change when the user
makes further changes, which issues even more queries.

Figure 5.8 – Query reduction settings

The query reduction settings allow you to add Apply buttons for slicers and filters. This allows the
user to make multiple selections before applying changes, so only a single set of queries will be sent.
The report snippet in Figure 5.9 shows a single slicer and the filter pane of a report after the query
reduction settings have been applied:

General DirectQuery guidance 91

Figure 5.9 – Apply buttons added to slicers and filters

Note
It is no longer recommended to place a single Apply button on slicers. The recommended
option is to add an Apply all slicers button on the page of a report. This option is in the Insert
ribbon on the desktop. This suggestion is explained in the Options settings in Figure 5.8. Click
the Learn more link for details. This is only for slicers and is not a suggestion for filters.

Next, let’s look at how you can optimize the external data source to perform better in DirectQuery scenarios.

Optimizing external data sources

We have learned that DirectQuery semantic models can perform slower than import semantic models
because the external source might not be designed to handle workloads from business intelligence tools.

Optimization for Storage Modes92

Regardless of what technology is powering the external data source, there are some common practices
that apply to many storage systems that you should consider implementing to speed up queries for
Power BI. These are as follows:

• Indexes: An index provides a database with an easy way to find specific records for operations
such as filtering and joining. Consider implementing covering indexes on columns that you
use for Power BI relationships and displays or that are often used in report filters or slicers to
limit data. Using the Performance Analyzer to see native queries sent to data sources can be
beneficial in determining the proper index.

• Column storage technology: Modern data storage platforms allow you to define special indexes
that use column storage instead of typical row storage principles. This can speed up aggregate
queries in Power BI semantic models. Try to define indexes using columns that are often retrieved
together for summaries in reports that are usually fact tables that have measures in Power BI.

• Materialized views: A materialized view is essentially a query whose results are pre-computed
and physically stored, such as a regular table of data. SQL Server calls these views Indexed
Views. Whenever the base data changes, the materialized view is updated to reflect the current
state. You can move transformations to a materialized view in the data source instead of defining
them in the Power BI semantic model. The source will have the key results ready for Power BI
to consume. This works well with data that does not change very frequently. Be aware that too
many materialized views can have a performance impact on the source, as it must continually
keep them up to date. Over-indexing can start to reduce performance gains as well.

• In-memory databases: One reason import mode semantic models can perform so well is that
all data is in-memory instead of slower disk storage. The DirectQuery source system may have
its own in-memory capabilities that could be leveraged for Power BI.

• Read-only replicas: Consider creating a read-only replica of your source system dedicated
to Power BI semantic models. This can be optimized for Power BI traffic independently of
the original data source. It can even be synchronized periodically as a real-time replica is not
necessary, which can improve performance further.

• Scaling up/out: You may be able to increase the power of the source system by giving it more
computing and memory resources and distributing the load across multiple servers, or do so
to better handle complex parallel queries. The latter is a common pattern in Big Data systems.

• Maintaining database statistics: Modern relational database systems use internal statistics
to help the internal query optimizer pick the best query plan. These statistics need to be
maintained regularly to ensure the optimizer is not making decisions based on incorrect
cardinality and row counts. Check with the database administrator about the schedule and
rules for updating statistics.

You will need to understand what queries Power BI is sending to the external data source
before you can decide what optimizations will provide the best return on investment. In
Chapter 4, Analyzing Logs and Metrics, and Chapter 3, Learning the Tools for Performance Tuning,

Direct Lake semantic models 93

you learned how to capture these queries from Power BI Desktop and the Power BI service. You also
used query logging and tracing in the external source to do this, which is more typical in production
scenarios where reports are published to the service.

As mentioned about scaling up/out above, the next section will look at the simplification of big
data with Fabric’s implementation of Delta tables, using Parquet files to help with performance in
Lakehouse deployments.

Direct Lake semantic models
Microsoft Fabric introduced a new semantic model called Direct Lake. This semantic model is built
in the Fabric (Power BI) service under a lakehouse or warehouse artifact. The warehouse structure is
for those familiar with T-SQL and the lakehouse is for those developers using code such as Python in
notebooks for ETL implementations. Both create and support what are called Delta tables. The best
resource for understanding the properties of Delta tables is from Databricks: (https://docs.
databricks.com/en/delta/index.html).

Using Delta tables in Fabric

Delta tables can be created and populated in Fabric or used in Fabric as a shortcut. Inside a warehouse
or lakehouse, Delta tables can be linked to the Fabric artifact through a pointer in Fabric called a
shortcut rather than to the files or table structure. Figure 5.10 shows the Delta Table and shortcut (two
types), which have different icons.

Figure 5.10 – Shortcut icon for tables

https://docs.databricks.com/en/delta/index.html
https://docs.databricks.com/en/delta/index.html

Optimization for Storage Modes94

Though Delta tables are a new technology, Microsoft has taken the complexity out of using these new
structures and provides methods to create and write to them as well as connect to them like you are
connecting to SQL Server tables (server-less). These tables are then made into a semantic model like
DirectQuery but with performance closer to Import mode.

The Parquet file structure is a column-store compressed format. This is like the column store compressed
in the memory of an import model. The difference is Direct Lake has no import or refresh requirement,
thus reducing the requirement for refreshes and making current data available for reports. The data
is drawn from the Data Lake storage of the underlying files.

The following are observations for using Direct Lake:

• Used for large datasets, usually exceeding 5 GB when in the model

• ETL development to understand column store structures

• Existing Delta Tables created in other systems such as Databricks or Synapse

• Understanding and using dimensional modeling for table structures

• Allows you to take advantage of V-Order on Delta Tables: https://learn.microsoft.
com/en-us/fabric/data-engineering/delta-optimization-and-v-
order?tabs=sparksql

Dimensional modeling is discussed in Chapter 10, Data Modeling and Row-Level Security.

On-demand loading

On-demand loading takes only the data needed for a query and loads it in memory on demand.
This in turn makes Direct Lake faster than DirectQuery. The structure of Direct Lake data is backed
by a Data Lake storage system that spreads the data in a way that Big Data systems support. The data
returned from the Parquet structure has the column store compressed data needed for Power BI
semantic model structures.

On-demand loading was introduced back in 2012 for semantic models that get evicted from memory
because of a lack of use and memory needs for other semantic models or DAX queries. This was
just an Import mode feature but has been utilized for Direct Lake. To track the usage of on-demand
loading, look at the IsPageable, IsResident, Temperature, and Last Assessed columns
in DMV SYSTEMRESTRICSCHEMA. The following is a query looking at usage for a semantic
model, ContosoDW-DevOneLake:

Select COLUMN_ID, SEGMENT_NUMBER, ISPAGEABLE, ISRESIDENT, TEMPERATURE,
LAST_ACCESSED
 from SYSTEMRESTRICTSCHEMA($System.DISCOVER_STORAGE_TABLE_COLUMN_
SEGMENTS, [DATABASE_NAME] = 'ContosoDW-DevOneLake')

https://learn.microsoft.com/en-us/fabric/data-engineering/delta-optimization-and-v-order?tabs=sparksql
https://learn.microsoft.com/en-us/fabric/data-engineering/delta-optimization-and-v-order?tabs=sparksql
https://learn.microsoft.com/en-us/fabric/data-engineering/delta-optimization-and-v-order?tabs=sparksql

Summary 95

On-demand loading is automatically enabled for any Premium or Fabric capacity. It requires a large
model enabled on the semantic model. If you want suggestions for running a performance test on
Direct Lake, please see this article: https://blog.crossjoin.co.uk/2023/07/09/
performance-testing-power-bi-direct-lake-mode-datasets-in-fabric/.

Let’s now review the key learnings for DirectQuery and Direct Lake semantic models before we move
on to discuss the sources of performance metrics available in Power BI.

Summary
In this chapter, we defined basic data modeling as a process where you choose which data attributes
are grouped into entities and how they are related. We learned that for DirectQuery and Direct Lake,
transformations in Power Query should be kept simple to avoid generating overly complex query
statements. We also learned how to use the native query viewing feature in Power Query to see the
exact query used.

The chapter explained that Power BI is flexible enough to allow you to define your own relationships
across DirectQuery tables, not necessarily matching those already in the data source. This must be
done with care and some planning. It is better to leverage relationships and referential integrity that
are already defined in the external data source where possible, as these are likely already optimized.
We also explored relationship settings and their implications for DirectQuery.

We explored settings in Power BI Desktop that help control levels of parallelism. The optimization of
data source systems was explained for optimization and scaling that can be used with DirectQuery
semantic models. These external optimizations may require collaboration with database administrators
to implement them. We concluded by introducing the latest Fabric implementation of Direct Lake
in a lakehouse (or warehouse). This implementation of Delta tables with a Parquet file backend is the
future for Data Lakes in Power BI.

In the next chapter, we will look at freely available third-party utilities that complement the Performance
Analyzer and help you optimize your report, data model, and DAX queries.

https://blog.crossjoin.co.uk/2023/07/09/performance-testing-power-bi-direct-lake-mode-datasets-in-fabric/
https://blog.crossjoin.co.uk/2023/07/09/performance-testing-power-bi-direct-lake-mode-datasets-in-fabric/

6
Third-Party Utilities

In the previous chapters, we used tools and data provided by Microsoft to get insights into report
performance. In this chapter, we will cover some popular freely available third-party utilities that
complement the built-in offerings and improve productivity when investigating report performance issues.

These tools have a range of features, such as documenting our solutions, analyzing them to give
recommendations, the ability to modify object properties, capturing performance traces, and running
queries. It is beyond the scope of this book to cover the full functionality of these tools, so we will limit
our coverage to features and techniques that help us assess and improve performance.

The utilities introduced in this chapter are largely maintained by community contributors and are
often open source. All the utilities described in this chapter are widely used to the point where they
are formally acknowledged by Microsoft. Power BI Desktop will recognize them if they are installed
on your computer and allow you to launch them from its External Tools menu, sometimes even
connected to the .pbix file you are working on. At the time of writing, these utilities are actively
maintained, and the releases are generally of high quality.

However, while the development of these open-source tools is often stewarded by experts who run
their own Power BI consulting and training businesses, they are not always officially supported, so
you should bear this in mind. Your organization may not be able to get prompt dedicated assistance
as you normally would with a support case for a paid commercial offering.

All utilities in this chapter can connect to Analysis Services semantic models running within Power
BI Desktop, Azure Analysis Services, or the Power BI service. Therefore, we will simply refer to these
tools connecting to Analysis Services semantic models for most of the chapter.

This chapter is broken into the following sections:

• Exploring Power BI Helper

• Working with Tabular Editor

• Tuning with DAX Studio and VertiPaq Analyzer

Third-Party Utilities98

Technical requirements
There are samples available for some parts of this chapter. We will call out which files to refer to.
Please check out the Chapter06 folder on GitHub to get these assets: https://github.
com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-
Second-Edition.

Exploring Power BI Helper
Power BI Helper has a range of features that help you explore, document, and compare local Power
BI Desktop files. It also lets you explore and export metadata from the Power BI service, such as lists
of workspaces and semantic models plus their properties. Power BI Helper can be downloaded from
the following link: https://powerbihelper.org and is hosted by RADACAD. RADACAD
is a consulting company out of New Zealand that has a wealth of Power BI information online
at https://radacad.com/.

In previous chapters, we discussed how important it is to keep Power BI semantic models smaller
by removing unused tables and columns. Power BI Helper includes features to help you find these
unused objects, so it could be a useful tool to incorporate into standard optimization processes before
production releases.

Identifying large column dictionaries

In general, having a smaller model speeds up report loads and data refreshes, which is why it is good
to be able to identify the largest items easily. For now, we simply want to introduce this capability
so you are aware of this technique. We will learn about semantic model size reduction in detail in
Chapter 10, Data Modeling and Row-Level Security. Complete the following steps to investigate the
dictionary size of columns in a semantic model:

1. Open your .pbix file in Power BI Desktop, then connect Power BI Helper to the semantic model.

2. Navigate to the Modeling Advise tab.

3. Observe how Power BI Helper lists all columns sorted by their dictionary size from largest
to smallest.

The dictionary size is how much space Power BI must reserve for unique possibilities in a column. It
is not the total size a column uses but helps identify those columns that have a wide range of values
referred to as cardinality. Figure 6.1 shows the result of this tab:

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://powerbihelper.org
https://radacad.com/

Exploring Power BI Helper 99

Figure 6.1 – The Modeling Advise tab showing the largest column

In this example, the SalesOrderNumber column (referred to as an attribute) takes about 93 MB.
The .pbix file was 400+ MB. From these sizes, we can calculate that this one column’s dictionary
contributes to about 25% of the file size, which is significant. If this column is not being used, it can
be removed. The column data type is text and since it is an identifier of the sales, there are not many
duplicate values which makes Power BI use a dictionary to store the unique values. Dictionaries are
a feature of the VertiPaq engine for storage. If you need it for reporting, relationships, or calculation
purposes, try optimizing it using techniques from Chapter 10, Data Modeling and Row-Level Security.

Tip
A Power BI Desktop file in Import mode contains a complete copy of the source data. The data
is contained within the .pbix file as an Analysis Services backup file (.abf). Even though
the .pbix file size is not the same as the size of the semantic model when it is loaded into
memory, it can be used for a quick approximation to judge the impact of column and table
sizes on the overall size.

Identifying unused columns

Power BI Helper can identify all the unused columns in your model. You simply navigate to the
Visualization tab and observe them in a list. You can remove them from the semantic model by right-
clicking the items and selecting Delete. This is shown in Figure 6.2 at the bottom right:

Third-Party Utilities100

Figure 6.2 – Deleting unused columns from Power BI Helper

Note that any changes applied in Power BI Helper will be applied to the .pbix file you have open. By
default, Power BI Helper will back up your original file to the location specified at the top left, as shown
in the previous figure. It is recommended to use this backup feature to recover from accidental deletions.

Caution
This feature will only identify columns not used in the current .pbix file. If you are using the
semantic model to source the data to multiple .pbix files as reports, then you should not use
this feature because the columns could be used in other .pbix files or service-created reports.

Identifying bidirectional and inactive relationships

The Modeling Advise tab referred to in Figure 6.1 has a relationship section on the right-hand side.
You can use this to conveniently identify all bidirectional relationships in your semantic model. These
can slow down queries and might have unintentional filter consequences, so it’s a good idea to review
each one to ensure it is really needed.

Exploring Power BI Helper 101

Identifying measure dependencies

Power BI Helper visualizes measure dependencies via the Model Analysis tab. Measures can be
used within other measures, and this is the best practice for maintainability. In a chain of measure
dependencies, the start of the chain is often referred to as the base measure. The following figure
shows the measure, dependencies, and reverse dependency tree.

Figure 6.3 – Measure dependencies in Power BI Helper

Base measures may be used in many other measures and Power BI Helper lets you easily identify
all those reserve dependencies. You can use this information to get a better return on investment
when performance tuning because optimizing base measures that are used in many other measures
could have a large overall impact. Conversely, you may have a complex measure that uses many other
measures. In this case, Power BI Helper helps you identify all the measures it uses so you know which
to consider when optimizing.

We have seen how Power BI Helper can help us identify a few common semantic model design issues.
Next, we will look at Tabular Editor, another free (as well as paid version) tool that can go in more
depth into semantic model design guidance.

Third-Party Utilities102

Working with Tabular Editor
Tabular Editor is available as both a commercial offering (3.x) and an open-source version. The paid
version offers some advanced development functionality and even dedicated support, which professional
Power BI developers may find useful. The good news is that the free version (2.x) contains all the
useful core features at the time of this writing, and it can be downloaded at the following GitHub
link: https://github.com/TabularEditor/TabularEditor.

Tabular Editor is a productivity tool aimed at improving many aspects of the development experience
offered by Power BI Desktop or Microsoft Visual Studio. These core features are beyond the scope of
this book. Due to the sheer popularity of the tool with experienced business intelligence developers,
you are encouraged to learn more about Tabular Editor if you expect to build and maintain complex
enterprise models over many months or even years. Please follow the product documentation to
become familiar with the interface and functionality of Tabular Editor. We are going to focus on a
specific feature of Tabular Editor called the Best Practice Analyzer (BPA).

Using Tabular Editor’s Best Practice Analyzer

Tabular Editor has a powerful extension called the BPA. This extension lets you define a set of modeling
rules that can be saved as collections. An example of a rule is to avoid using floating-point data types
for numerical columns. Once you have a set of rules defined, you can use the BPA to scan a semantic
model. BPA comes with a default set of common rules. It will check all objects against applicable
modeling rules and generate a report in the process.

After you have installed Tabular Editor, open the Tools menu. Here, you will find the option to launch
the BPA and manage its rules, as shown in the following figure:

Figure 6.4 – Managing BPA rules in Tabular Editor

If this is the first time you are using Tabular Editor, you will find that there are no rules selected
yet. The best way to start is to use a default set of best practices that Microsoft helped define, and
you need to perform some brief manual steps to load in some default rules. For reference, you can
find the rules included within the Tabular Editor project on GitHub at https://github.com/
TabularEditor/BestPracticeRules.

https://github.com/TabularEditor/TabularEditor
https://github.com/TabularEditor/BestPracticeRules
https://github.com/TabularEditor/BestPracticeRules

Working with Tabular Editor 103

To install the rules, you simply copy the BPARules.json file found at the previous link into the
%localappdata%\TabularEditor folder on your computer. You can paste this exact location
into Windows File Explorer to get to the appropriate place.

Once you have the rules loaded, you can view, modify, and add rules as you please. Figure 6.5 shows
what the interface looks like after the rules are imported:

Figure 6.5 – BPA rules loaded into Tabular Editor

The following screenshot shows the rule editor, after opening an existing rule:

Figure 6.6 – Editing a best practice rule from BPA

Third-Party Utilities104

When you want to run the BPA rules against your semantic model, connect to it using one of the
supported methods in Tabular Editor. Once connected, run the BPA by pressing F10 or by selecting
it from the Tools menu, which was introduced in Figure 6.4.

A sample of results that can be obtained from running the BPA on a semantic model is shown in the
following figure. Highlighted under the Best Practice Analyzer title bar are useful toolbar buttons.

Figure 6.7 – BPA results, highlighting context-sensitive toolbar actions

Those options are as follows:

• Go to object…: This will open the model script at the definition of the offending object.

• Generate fix script: This will generate a script you can use to apply the change and copy it to
the clipboard.

• Apply fix: This will apply the fix script to your model immediately. Be careful with this option
and make sure you have a backup in place beforehand or use source control for versioning.

The other highlighted areas are as follows:

• Performance: Do not use floating point data types

• DAX Expressions: Measure references should be unqualified

Working with Tabular Editor 105

Once you have the BPA results, you need to decide which changes to apply. It might seem like a great
idea to simply apply all changes automatically. However, we advise a careful review of the results and
applying some thought to which recommendations to apply and in what order.

Note
Tabular Editor can connect to a locally opened Power BI .pbix file as well as a semantic
model deployed to the Power BI server or Analysis Services. There are also options to connect
to a model .bim file (from developing in Visual Studio) or a folder structure with .json
files. Please be aware of what connection was used because saving changes from the BPA will
update this connection’s semantic model.

The default BPA rules are grouped into six categories:

• DAX Expressions

• Error Prevention

• Formatting

• Maintenance

• Naming Conventions

• Performance

For performance optimization, we advise focusing on the Performance and DAX Expressions
categories. These optimizations have a direct impact on the query and refresh performance. The other
categories benefit usability and maintenance. Changes suggested by BPA will be more discussed in
Chapter 11, Improving DAX, and Chapter 10, Data Modeling and Row-Level Security

Tip
The best way to be certain that performance optimizations have had the expected impact is to
test the effect of each change in typical usage scenarios. For example, if you plan to optimize
three independent DAX measures, change one at a time and check the improvement you get
with each change. Then, check again with all changes applied. This will help you identify the
most impactful change and not assume that every change will result in a measurable difference
when stacked with others. This will also help you learn the relative impact of design patterns,
so you know what to look for first next time around to get the best return on investment when
optimizing designs.

Thus far, we have been introduced to some utilities that help us identify semantic model design issues.

Next, we will look at DAX Studio and VertiPaq Analyzer. These are complementary tools that give
us more information and help us debug and resolve model and DAX performance issues, with the
ability to customize DAX queries and measure their speed.

Third-Party Utilities106

Tuning with DAX Studio and VertiPaq Analyser
DAX Studio, as the name implies, is a tool centered on DAX queries. It provides a simple yet intuitive
interface with powerful features to browse and query Analysis Services semantic models. We will cover
querying later in this section. For now, let’s look deeper into semantic models.

The Analysis Services engine has supported dynamic management views (DMVs) for over a decade.
These views refer to SQL-like queries that can be executed on Analysis Services to return information
about semantic model objects and operations.

VertiPaq Analyzer is a utility that uses publicly documented DMVs to display essential information
about which structures exist inside the semantic model and how much space they occupy. It started
life as a standalone utility, published as a Power Pivot for an Excel workbook, and still exists in that
form today. In this chapter, we will refer to its more recent incarnation as a built-in feature of DAX
Studio 3.0.11.

It is interesting to note that VertiPaq is the original name given to the compressed column store engine
within Analysis Services (Verti referring to columns and Paq referring to compression).

Analyzing model size with VertiPaq Analyzer

VertiPaq Analyzer is built into DAX Studio as the View Metrics features, found in the Advanced
tab of the toolbar. You simply click the icon to have DAX Studio run the DMVs for you and display
statistics in a tabular form. This is shown in the following figure:

Figure 6.8 – Using View Metrics to generate VertiPaq Analyzer stats

Tuning with DAX Studio and VertiPaq Analyser 107

You can switch to the Summary tab of the VertiPaq Analyzer pane to get an idea of the overall total
size of the model along with other summary statistics, as shown in the following figure:

Figure 6.9 – Summary tab of VertiPaq Analyzer

The Total Size metric provided in the previous figure will often be larger than the size of the semantic
model on disk (as a .pbix file or Analysis Services .abf backup). This is because there are additional
structures required when the model is loaded into memory, which is particularly true of Import mode
semantic models.

In Chapter 2, Exploring Power BI Architecture and Configuration, we learned about Power BI’s
compressed column storage engine. The DMV statistics provided by VertiPaq Analyzer let us see just
how compressible columns are and how much space they are taking up. It also allows us to observe
other objects, such as relationships.

The Columns tab is a great way to see whether you have any columns that are very large relative to
others or the entire dataset. The following figure shows the columns view for the same model we saw
in Figure 6.9. You can see how from 238 columns, a single column called SalesOrderNumber takes
up a staggering 22.40% of the whole model size! It’s interesting to see its Cardinality (or uniqueness)
value is about twelve times lower than the next largest column (SalesKey):

Third-Party Utilities108

Figure 6.10 – Two columns monopolizing the semantic model

In Figure 6.10, we can also see that Data Type is String for Online Sale-SalesOrderNumber,
which was a column suggested by Tabular Editor to have a large dictionary footprint. These statistics
would lead you to deduce that this column contains long, unique test values that do not compress
well because there is a large cardinality. Indeed, in this case, the column contains a sales order number
that is unique to each order plus is not used to group or slice analytical data in a Power BI report well.

This analysis may lead you to re-evaluate the need for this level of reporting in the analysis of sales
data. You’d need to ask yourself whether the extra storage space and time taken to build compressed
columns and potentially other structures is worth it for your business case. In cases of highly detailed
data such as this where you do not need detail-level sales order data, consider limiting the analysis to
customer-related data such as demographics or date attributes such as year and month.

Now, let’s learn about how DAX Studio can help us with performance analysis and improvement.

Performance tuning the data model and DAX

The first-party option for capturing Analysis Services traces is SQL Server Profiler. When starting a
trace, you must identify exactly which events to capture, which requires some knowledge of the trace
events and what they contain. Even with this knowledge, working with the trace data in Profiler can
be tough since the tool was designed primarily to work with SQL Server application traces. The good
news is that DAX Studio can start an Analysis Services server trace and then parse and format all the
data to show you relevant results in a well-presented way within its user interface. It allows us to both
tune and measure queries in a single place and provides features for Analysis Services that make it a
good alternative SQL Profiler for tuning semantic models.

Tuning with DAX Studio and VertiPaq Analyser 109

Capturing and replaying queries

This All Queries command in the Traces section of the DAX Studio toolbar will start a trace against the
semantic model you have connected to. Figure 6.11 shows the result when a trace is successfully started:

Figure 6.11 – Query trace successfully started in DAX Studio

Once your trace has started, you can interact with the semantic model outside DAX Studio, and it
will capture queries for you. How you interact with the semantic model depends on where it is. For
a semantic model running on your computer in Power BI Desktop, you would simply interact with
the report. This would generate queries that DAX Studio will see. The All Queries tab at the bottom
of the tool is where the captured queries are listed in time order with durations in milliseconds. The
following figure shows two queries captured when opening the Unique by Account No page from
the Slow vs Fast Measures.pbix sample file:

Third-Party Utilities110

Figure 6.12 – Queries captured by DAX Studio

The preceding queries come from a screen that has the same table results in a visual, but two different
DAX measures that calculate the aggregation. These measures make one table come back in less than a
second while the other returns in about 17 seconds. The following figure shows the page in the report:

Figure 6.13 – Tables with the same results but from using different measures

Tuning with DAX Studio and VertiPaq Analyser 111

The following screenshot shows the results of the Performance Analyzer for the tables previously.
Observe how one query took over 17 seconds, whereas the other took under 1 second:

Figure 6.14 – Vastly different query durations for the same visual result

In Figure 6.12, the second query was double-clicked to bring the DAX text to the editor. You can
modify this query in DAX Studio to test performance changes. We see here that the DAX expression
for the UniqueRedProducts_Slow measure was not efficient. We’ll learn a technique to optimize
queries soon, but first, we need to learn about capturing query performance traces.

Obtaining query timings

To get detailed query performance information, you can use the Server Timings command shown
in Figure 6.11. After starting the trace, you can run queries and then use the Server Timings tab to
see how the engine executed the query, as shown in the following figure:

Third-Party Utilities112

Figure 6.15 – Server Timings showing detailed query performance statistics

Figure 6.15 gives very useful information. FE and SE refer to the formula engine and storage engine.
The storage engine is fast and multi-threaded, and its job is fetching data. It can apply basic logic such
as filtering data to retrieve only what is needed. The formula engine is single-threaded, and it generates
a query plan, which is the physical steps required to compute the result. It also performs calculations
on the data such as joins, complex filters, aggregations, and lookups. We want to avoid queries that
spend most of the time in the formula engine, or that execute many queries in the storage engine. The
bottom-left section of Figure 6.15 shows that we executed almost 4,900 SE queries. The list of queries
to the right shows many queries returning only one result, which is suspicious.

For comparison, we look at timing for the fastest version of the query and we see the following:

Figure 6.16 – Server Timings for a fast version of the query

Tuning with DAX Studio and VertiPaq Analyser 113

In Figure 6.16, we can see that only three server engine queries were run this time, and the result was
obtained much faster (milliseconds compared to seconds).

The faster DAX measure was as follows:

UniqueRedProducts_Fast =
CALCULATE(
 DISTINCTCOUNT('SalesOrderDetail'[ProductID]),
 'Product'[Color] = "Red"
)

The slower DAX measure was as follows:

UniqueRedProducts_Slow =
CALCULATE(
 DISTINCTCOUNT('SalesOrderDetail'[ProductID]),
 FILTER('SalesOrderDetail', RELATED('Product'[Color]) = "Red"))

Tip
The Analysis Services engine does use data caches to speed up queries. These caches contain
uncompressed query results that can be reused later to save time fetching and decompressing
data. You should use the Clear Cache button in DAX Studio to force these caches to be cleared
and get a proper worst-case performance measure. This is visible in the menu bar in Figure 6.11.

We will build on these concepts when we look at DAX and model optimizations in later chapters.
Now, let’s look at how we can experiment with DAX and query changes in DAX Studio.

Modifying and tuning queries

Earlier in this section, we saw how we could capture a query generated by a Power BI visual and then
display its text. A nice trick we can use here is to use query-scoped measures to override the measure
definition and see how performance differs.

The following figure shows how we can search for a measure, right-click, and then pull its definition
into the query editor of DAX Studio:

Third-Party Utilities114

Figure 6.17 – The Define Measure option and result in the Query pane

We can now modify the measure in the query editor, and the engine will use the local definition instead
of the one defined in the model! This technique gives you a fast way to prototype DAX enhancements
without having to edit them in Power BI and refresh visuals over many iterations.

Remember that this technique does not apply any changes to the dataset you are connected to. You can
optimize expressions in DAX Studio, then transfer the definition to Power BI Desktop/Visual Studio
when ready. The following figure shows how we changed the definition of UniqueRedProducts_
Slow in a query-scoped measure to get a huge performance boast:

Figure 6.18 – Modified measure giving better results

Summary 115

The technique described here can be adapted to model changes too. For example, if you wanted to
determine the impact of changing a relationship type, you could run the same queries in DAX Studio
before and after the change to draw a comparison.

Here are some additional tips for working with DAX Studio:

• Isolate measure: When performance tuning a query generated by a report visual, comment out
complex measures and then establish a baseline performance score. Then, add each measure
back to the query individually and check the speed. This will help identify the slowest measures
in the query and visual context.

• Work with Desktop Performance Analyzer traces: DAX Studio has a facility to import the
trace files generated by Desktop Performance Analyzer. You can import trace files using the
Load Perf Data button located next to All Queries highlighted in Figure 6.12. This trace can be
captured by one person and then shared with a DAX/modeling expert who can use DAX Studio
to analyze and replay their behavior. The following figure shows how DAX Studio formats the
data to make it easy to see which visual component is taking the most time. It was generated by
viewing each of the three report pages in the Slow vs Fast Measures.pbix sample file:

Figure 6.19 – Performance Analyzer trace shows the slowest visual in the report

• Export/import model metrics: DAX Studio has a facility to export or import the VertiPaq model
metadata using .vpax files. These files do not contain any of your data. They contain table
names, column names, and measure definitions. If you are not concerned with sharing these
definitions, you can provide .vpax files to others if you need assistance with model optimization.

Summary
In this chapter, we introduced some popular utilities that use different methods to analyze Power BI
solutions and help us identify areas to improve. One caveat is that free versions of these tools are often
community projects and are not officially supported. DAX Studio and Tabular Editor have been widely
adopted by the Power BI community and are continuously updated as of the publication of this book.

Third-Party Utilities116

We learned about Power BI Helper’s ability to document large dictionary columns and relationships
and measure dependencies. Next, we learned about Tabular Editor’s BPA. This gave us an easy way to
load in default rules provided by experts, and then scan a semantic model for best practices.

 DAX Studio is a complete query development and tuning utility that can capture real-time query
activity and timings. We learned how to generate model metrics that give us detailed information
about the objects and how much space they occupy. We then moved on to query timings, so we learned
about the roles of the formula and storage engine. The ability to use query-scoped measures in DAX
Studio gives us a fast and powerful way to prototype DAX and model changes.

At this point in the book, we learned about optimizing largely from a high-level design perspective.
We also learned about tools and utilities to help us measure performance. In the next chapter, we will
propose a framework where you will combine processes and practices that use these tools to establish,
monitor, and maintain good performance in Power BI.

7
Performance Governance

Framework

We began this book by introducing performance management and how to set reasonable targets,
borrowing from user interface research. We identified that areas of Power BI can affect report and
semantic model refresh performance, and then we walked through architectural concepts and
optimization choices. Chapters 4, 5, and 6 focused on sources of information and tools that can help
us monitor reports and query performance.

The metrics and tools in earlier chapters are essential building blocks for performance management.
However, success is more likely with a structured and repeatable approach to build performance-
related thinking into the entire Power BI solution life cycle. This chapter provides guidelines to set up
data-driven processes to avoid sudden scaling issues with new content and prevent the degradation
of existing content.

You could consider performance management as having two distinct phases. The first involves monitoring
and identifying areas that are slowing you down. The second involves root cause analysis (RCA) and
remediation. The technical topics covered prior to this chapter are sufficient to give you a great head
start with Power BI performance management, mainly from a reporting perspective. Since report
usage is the most common use case of a business intelligence system (BIS), we’ll intentionally cover
the governance framework now before going deeper into detailed best practices for each product area.

We intend to give you sufficient knowledge to tackle the first phase of performance management after
completing this and the previous six chapters. Once you know you have a problem and where it is, you
can move on to the second phase. The tail end of this chapter gives some monitoring information for
performance management. Subsequent chapters focus on the second phase and will provide specific
advice on how to optimize a specific layer such as the report design, semantic model design, and M
Query design.

Performance Governance Framework118

This chapter consists of the following sections:

• Establishing a repeatable improvement process

• Knowledge sharing and awareness

• Using performance metrics reports

• Calling REST APIs for monitoring data

Establishing a repeatable improvement process
In Chapter 1, Setting Targets and Identifying Problem Areas, we learned about the potential negative
impacts of poor BIS performance. It is great to have knowledge, metrics, and tools to resolve performance
issues. However, a behavior that is seen too often is that these are usually leveraged reactively after
an issue has had enough of an impact on the business that it is formally raised and brought to the
attention of developers and administrators. This is not a good situation to be in for reasons described
in the following points:

• Production changes: These changes are non-trivial and require careful change management.
Change management involves more than just deploying new technical artifacts. One example is
that users may need training and documentation may need to be updated if there are significant
reports or semantic model-level changes.

• Short deadlines: There may be deadlines for the business to resolve performance issues,
especially from leadership. RCA, evaluation enhancements, and deploying changes can be
time-consuming by nature, so this time pressure can affect the quality of work and introduce
other unrelated issues through human error.

• Lack of experience and knowledge: There may be limited expertise to resolve complex issues,
due to lack of expert skills within the organization or limited availability of those staff members.
This could delay a resolution indefinitely, increasing user frustration.

Now, let’s cover the performance management cycle of Power BI-related projects.

The performance management cycle

It is recommended to minimize performance enhancement efforts by being pro-active about performance
management. This can be achieved by thinking of performance management as a continuous cycle,
shown in the following diagram:

Establishing a repeatable improvement process 119

Figure 7.1 – Performance management cycle

Let’s look at each of these phases in more detail to understand what they involve.

Establish/update baselines and targets

You cannot improve performance without being able to compare results from different scenarios or
different system conditions. The first step is to know what a reasonable expectation is for a specific
scenario, ideally under known and controlled conditions. This is what we refer to as a baseline, and it
serves as the standard against which you would compare real-world measurements.

Let’s put this into practical terms. Suppose we have occasional complaints about a slow report from
two users. We find that the first user has a report that takes around 15 seconds, while a different user
reports 45 seconds for the same report to render. If we had no other information available to us, we
might spend a lot of time with both users trying to work out why the issue is occurring. While 15
seconds is not a good report load time, we don’t know if that is within the expected range for that user’s
scenario. The same applies to the 45-second duration. Therefore, it is recommended to use baselines
to help you both set expectations and understand the relative change when something slows down.
Here are some guidelines to help you establish good baselines:

• A baseline metric should be an average of multiple data points for the same scenario. A minimum
of three is recommended, though more is better.

• Create a baseline per semantic model and report page combination. Page granularity is
important because visual designs can vary, and one page of a report can be more complex and
slower than others.

Performance Governance Framework120

• For reports, establish baselines for reports in Power BI Desktop and after publishing to the
service. Comparing metrics both before and after changes can help identify architectural or
configuration issues.

• Consider the effect of row-level security (RLS) on reports and queries. Set a baseline for the report
with RLS turned off and compare it with it turned on, especially for complex security models.

• Maintain a record of when changes are deployed and what they were. This will set a clear point
in your trend analysis where different results are expected. It also helps if changes need to be
reassessed and compared to the original baseline.

Some of the previous guidelines apply specifically to Power BI reports. However, you can and should
apply the concepts to other areas of Power BI. For example, you can establish baselines for semantic
model refreshes, both in Power BI Desktop and the Power BI service.

The baseline establishment step is both the start and the end of the cycle because any performance-
related work could change the overall behavior of the system for all users, not just the ones who have
problems. Hence, your baseline needs to be adjusted accordingly.

Monitor and retain history

At the time of writing this book, there are 30 days of historical usage information for Power BI reports.
For semantic models on capacities (Premium or Fabric), you can get the 60 most frequent refreshes
for the admin portal. This may not be sufficient to build a good trending view and spot gradual
performance degradation, so it is recommended to extract metrics and retain historical data to build
a long-term view, as described in the last two sections of this chapter and in the Power BI usage metrics
section of Chapter 4, Analyzing Logs and Metrics.

This can also help identify seasonal issues – for example, extra load caused by end-of-month processing.
You should review performance against baselines and targets regularly. We recommend reviewing
performance against baselines at least weekly or having alerts indicate when data is significantly longer
than previous runs. You can consider plotting rolling averages to smooth out small fluctuations.

Identify problems and prioritize

This part is straightforward. Here, you will compare your actual results to baselines and targets. Those
that do not meet the standard should be flagged and prioritized in terms of user impact and business
impact. Try to address items that will help the most people and the most critical business process.
Sometimes, this can be out of your hands and driven by executive priorities.

Diagnose and fix

The artifact with the problem must be investigated and profiled, as we described in the previous two
chapters. The initial goal here is to work out which part of the process is problematic. Using a report
as an example, you should work out if certain visuals are slow, if a measure is performing badly, or
if a security filter expression is the issue. Detailed examples of what to look for in each area will be
given in later chapters.

Knowledge sharing and awareness 121

Tip
When resolving a report performance issue, it is a good idea to start with the visual layer. Even
if Data Analysis Expressions (DAX) or model optimizations can help, these changes could
take longer to implement safely since there could be many dependencies on the semantic
model. However, the report layer can often be optimized independently and even in parallel.

Set preventative measures

An important part of being pro-active about performance management is to learn from your experiences
and try not to repeat mistakes. This step is about updating standards, checklists, training, and other
related material used by the development team to raise awareness.

We recommend building performance-tuning routines into your regular development cycle, at an
appropriate level for the user. Enforce best practices at the initial development stage and use Power
BI Desktop and third-party utilities to profile and optimize your content before deploying it to users.
Also, consider scale testing before going live.

Next, we will explore ways to socialize performance practices within your organization.

Knowledge sharing and awareness
In the previous section, we talked about the importance of being pro-active about performance
management. Since there are many areas to cover, some being quite technical, we need to have the
right level of complexity and relevance for the audience. We will introduce these groups in general
and then summarize with role-specific advice.

Helping self-service users

One of Power BI’s greatest strengths is its approachability and ease of use for non-technical users or
analysts who are not professional BI developers. The drawback of this is that lack of knowledge can
lead to poorly optimized solutions. We recommend using the guidance in later chapters to create
the following:

• Report design guide: This will incorporate style, theme, and design choices to avoid. These
can even be supplied as a Power BI template file.

• Data modeling and loading guide: This will have common guidance, such as the basics of
dimensional modeling, relationship pitfalls, removing unnecessary data, and Power Query tips.

• Custom links to guides: Guidance from other chapters in this book can be used to point
developers in the right direction. For instance, the Building efficient models section in Chapter 10,
Data Modeling and Row-Level Security, has a section on dimensional modeling.

Let’s move on to leveraging professional developers.

Performance Governance Framework122

Leveraging professional developers

You can establish rules about why self-service content or data subject areas need a formal performance
review before going live. This can be done by embedded champions and subject-matter experts
(SMEs) or central experts who would typically work in an enterprise BI team or Center of Excellence
(CoE). Microsoft has invested heavily in the CoE concept with the material at this site: https://
learn.microsoft.com/en-us/power-bi/guidance/fabric-adoption-roadmap-
center-of-excellence.

This is simply a detailed and formal performance review that covers every relevant layer of the solution
– including things such as DAX tuning, which may not be left to self-service users. The point is to
enforce the performance review as part of the development cycle before going live. Also, performance
reviews should not be at the end of the report but iterative and frequent during development.

Approaching performance improvement collaboratively

By now, you can see that many different skillsets are required to build and optimize a large Power BI
solution. Therefore, various roles must collaborate to manage performance effectively. Unfortunately, it
is easy to get into a situation where one area takes all the blame. Report developers may feel pressure to
fix reports without realizing measures are slow. Data engineers may feel pressure to fix slow semantic
model refreshes without knowing the source system is under heavy load. These are just two examples
of many similar steps in performance tuning.

It is recommended you set up a process to assist with performance tuning. Nominate champions
or specialists who have specific strengths to be involved in reviews. These could be technical (for
example, modeling, DAX, or report design) and business domain SMEs such as finance, inventory
management, or drilling employees.

Lastly, try to stay on top of product changes through documentation updates and blogs. A good
example is DAX performance. Improvements made by Microsoft are sometimes via the release of
new functions with different names since the old ones are left unchanged for backward compatibility.

Now that we have understood the phases of the performance management cycle and different skill
levels, we will describe different usage scenarios and the responsibilities various roles should have.

Applying steps to different usage scenarios

BI tools are used by everyone from individuals to large global corporations. Naturally, you would
expect the ways in which analytics are developed and maintained to change as an organization
grows. The larger the organization is, the more the need for governance and central control grows.
In our opinion, even in large organizations, a healthy BI environment is one that balances the
needs of individuals and small teams with centralized corporate data management practices.
Individuals and small groups need to frequently perform new analyses or data mashups and
prefer to have minimal technical friction and standards imposed because it slows them down.

https://learn.microsoft.com/en-us/power-bi/guidance/fabric-adoption-roadmap-center-of-excellence
https://learn.microsoft.com/en-us/power-bi/guidance/fabric-adoption-roadmap-center-of-excellence
https://learn.microsoft.com/en-us/power-bi/guidance/fabric-adoption-roadmap-center-of-excellence

Knowledge sharing and awareness 123

This can clash with organizational goals of standardization, usability guides, and best practices around
modeling and design, which can affect performance.

These conflicting needs are often referred to as the balance between self-service BI and corporate or
IT-led BI. It is beyond the scope of this book to recommend how best to balance these needs, noting
that similar-sized organizations could adopt quite different approaches with their own trade-offs.
However, we will describe common scenarios in an organization, identify typical roles that work within
them, and recommend their responsibilities to help apply the performance framework.

Self-service BI

This refers to a model where business users access and analyze data even if they do not have formal
training in statistics or data analysis. Self-service BI is intentionally and often the fastest and least
governed way to gain insights. Users can load, manipulate, mash up, and visualize data to suit their
tactical needs. They may use a mixture of formal and informal sources of data, including information
from external service providers (SPs) (for example, population stars or weather data). This can be
thought of as primarily a “pull mode,” where users find what they want and create their own reporting.

An example here is someone working for a cloud software provider who wants to test the hypothesis
that demand for one of their services is higher following a public holiday. They need to quickly combine
internal usage data with holiday dates from a public website. Depending on the governance model,
the analysis may be shared with other individuals, teams, or even the entire organization, which has
performance implications.

There is only one role here, and that is the business user whose performance responsibilities are
the following:

• Use Performance Analyzer to help eliminate issues

• Check for acceptance performance after publishing with data

Team or domain-based BI

This refers to a model where a group with a shared function or goal is looking to perform analytics on
a set of known themes or initiatives. Some examples here are a company division such as procurement
wanting to analyze supplier efficiency or a virtual team for a special project such as a marketing
campaign that wants to understand the return on investment (ROI) for each channel used in the
campaign. There will be business SMEs in the team and potentially data SMEs who can play a role
in applying best practices that help performance. As with self-service, team-based BI may employ a
mix of data sources, and indeed self-service BI frequently occurs within these teams. Groups such as
these usually build analytics for their own use and for management reporting.

Performance Governance Framework124

There are three roles with performance responsibilities:

• Business users

 � Use Performance Analyzer to help eliminate issues

 � Check for acceptance performance after publishing with data

 � Decision makers establish performance criteria

 � Leverage guidance from SMEs and technical teams and review together before publishing

• Business and data SMEs

 � Maintain a central definition of common business logic such as calculations

 � Establish recommended practices for data sourcing and transformation

• Data analyst/report developer

 � Document common pitfalls and workarounds for loading, modeling, and visualizing

 � Leverage logs and third-party utilities to optimize artifacts

Corporate/IT-led BI

This is a model where a central team builds common artifacts for use by many different parts of the
organization – dataflows, semantic models, reports, dashboards, and so on. This can be thought of
as a “push model” because a central team manages distribution largely to pure consumers. There is
a higher level of governance and standardization here for everything from naming conventions and
data modeling standards to report design guides and corporate themes. A central BI team also often
defines the infrastructure, architecture, processes, and controls that support team and self-service BI:

• Business users

 � As per team-based

• Business and data SMEs

 � As per team-based, but in collaboration with developers

• Data analyst/report developer

 � As per team-based, but likely more focused on visualizations

 � Review content for publication issues before broad publication

Knowledge sharing and awareness 125

• Data modeler

 � Establish and document modeling standards, including domain-specific special cases that
do not follow theory exactly

 � Review content for performance issues before broad publication

 � Leverage logs and third-party utilities to optimize artifacts

• Extract, transform, load (ETL) developer

 � Establish and document data loading and transformation standards

 � Review content for performance issues before broad publication

 � Leverage logs and third-party utilities to optimize artifacts

• Solution architect

 � Establish and document architectural options

 � Leverage logs and third-party utilities to inform architectural changes and future designs

 � Be aware of new product development that can improve performance (the same applies to
other specialist roles)

• BI manager/analytics lead

 � Establish processes, roles, and responsibilities for performance management

 � Collaborate with all parties to establish realistic performance targets

 � Track solution performance over time and refine process and performance guidance assets
with the team

Note
The previous descriptions of BI usage scenarios suggest that a common pathway for analytics
in terms of solution maturity starts with self-service BI, which can evolve into corporate BI.
This is true because businesses usually identify new analytical needs, but as the reach and scale
of the solution grows, there is a need to apply some governance that needs guidance from IT.
Therefore, we stress again the importance of applying relevant performance management for
all these scenarios to reduce the overall performance remediation effort. Microsoft’s guidance
for different BI scenarios can be found here: https://learn.microsoft.com/en-
us/power-bi/guidance/powerbi-implementation-planning-usage-
scenario-overview.

The next section will describe two different reports provided by Microsoft to monitor activities.

https://learn.microsoft.com/en-us/power-bi/guidance/powerbi-implementation-planning-usage-scenario-overview
https://learn.microsoft.com/en-us/power-bi/guidance/powerbi-implementation-planning-usage-scenario-overview
https://learn.microsoft.com/en-us/power-bi/guidance/powerbi-implementation-planning-usage-scenario-overview

Performance Governance Framework126

Using performance metrics reports
To implement the performance management cycle, administrators will need to be able to see metrics
about the service and capacities. Initially, we will want to see report performance and then proceed
to background activities such as semantic model refreshes. These provide the basic monitoring
functionality to start pro-actively responding to issues. It also provides a view into activities of users
interacting with the system.

Let’s look at the metrics for reports.

Usage metrics report

If end users are complaining about the speed of reports, the first area to examine is a usage metric
report. This canned report can give insights into the performance of reports in a specific workspace.
The underlying semantic model for the usage report is controlled by the Power BI service and cannot
be changed by any administrator. You can, however, connect to the semantic model to build your own
reports or extract information for your own reporting.

Note
There are two versions of the report using the same semantic model. The newer one will be
reviewed in this chapter. The newer report expands on the metrics of the first. There is a toggle in
the upper right of the report to switch between New usage report on or New usage report off.

Let’s start with the menu choices. By default, the report will go to the Report usage page. Figure 7.2
shows an overview of the report. Outlined are the key performance indicators (KPIs) most relevant
for review – Report opens, Report page view, Unique viewers, and Report open trend:

Figure 7.2 – Report usage KPIs

Using performance metrics reports 127

For performance monitoring, these are indicators of whether the report is being used and whether
usage is trending up, down, or the same. From there, we can look at the Report open requests and
Report viewers bar/line visual to see trends in usage on a daily or weekly basis, as shown in Figure 7.3:

Figure 7.3 – Report open requests and Report viewers

For performance, we can see a gap in viewing the report before an increase to more recent viewing.
These graphs are good indicators of usage and whether user interaction was recent or in the past. If
more usage is in the past, that might be an indicator that users are decreasing the use of the report,
maybe from rendering taking longer than the user tolerates.

Next, we can go to the Report performance menu choice on the left for more performance-related
metrics. This report page indicates opening time as well as opening trends with two graphs for daily
performance and 7-day performance. Figure 7.4 shows the typical opening time for this report as
23.5 seconds. That is a problem for most users. But, if we look at the Daily performance graph, that
issue is mainly an anomaly from late April or early May. We can change the date range in the upper
right to eliminate that date and look at more recent data:

Performance Governance Framework128

Figure 7.4 – Report performance page

The other two menu choices for this report are a listing of reports and a frequently asked questions
(FAQs) page. Both are handy for understanding the reports in the workspace or understanding each
metric on each page.

Let’s look at the metrics for capacity.

Fabric Capacity Metrics

Fabric Capacity Metrics is a template app from Microsoft to help with an analysis of processing,
interactive and background, in a capacity. The capacity can be Fabric or Premium. Pro and Premium
Per User (PPU) licenses will not be able to use this template app. The template app can be installed
from the Apps icon in the main Power BI portal, as shown in Figure 7.5:

Using performance metrics reports 129

Figure 7.5 – Getting template apps

After clicking the Get apps button, search for Fabric Capacity Metrics and click Install. The
semantic model will have to refresh before any data can be displayed. This process starts automatically
for you, but the information will take 2 to 30 minutes to be available. Also, when you first come into the
app, no capacity is selected. Use the Capacity name drop-down list (Figure 7.6: upper left of report) to
select a capacity. The view will give you an idea of the performance of the capacity for the last 14 days.
If this is on a Fabric capacity, alerts can be set up to email when visuals exceed a specific KPI measure.

The report can be viewed from the app or from the workspace, depending on the permissions of the
user. We assume you are an administrator of the capacity or of Power BI. Figure 7.6 shows a high-level
view of the report with the Capacity name dropdown highlighted:

Figure 7.6 – High-level view of Fabric Capacity Metrics report

Performance Governance Framework130

The first area of interest for performance is the bar graph visual in the upper right named CU % over
time. This visual has four buttons to drill to various levels of monitoring performance. Figure 7.7
zooms in on this visual:

Figure 7.7 – CU % over time

This analysis shows spikes at the beginning of different days. These spikes mainly consist of semantic
model refreshes along with report views. The third spike shows usage exceeding 100%. In Fabric,
we can exceed the capacity, and more capacity will be added to handle the overage. You can see the
smoothing (spreading) of the overage in a more detailed graph shown in Figure 7.8. Chapter 13, Working
with Capacities, contains detailed information on smoothing capacity units (CUs) in Fabric. We can
drill through to these details by right-clicking on the spike and going to the TimePoint Detail menu
choice from the Drill through menu seen in Figure 7.8:

Using performance metrics reports 131

Figure 7.8 – Drill through menu choice to TimePoint Detail page

The TimePoint Detail page has a visual named Overages in the bottom right. This shows us Burndown
% from the previous smoothing and Add % because of the additional capacity required, as shown
in Figure 7.9:

Figure 7.9 – Overages

Chapter 13, Working with Capacities, and Chapter 14, Performance Needs for Fabric Artifacts, provide
a more detailed explanation of the usage reported here.

Performance Governance Framework132

Returning to the Compute page of the report gives us some other areas of performance metrics. If
you hover the mouse over one of the items in the table visual at the bottom of this report, a report
tooltip gives details of the CU(s) needed for processing that event, as well as duration(s). This is
featured in Figure 7.10:

Figure 7.10 – Item processing details

This highlighted semantic model has an on-demand refresh taking over 2,200 CUs at a duration of
1,005.8 seconds. There is also CUs used for Query and Dataset Scheduled Refresh. With these numbers,
we can see the refresh uses a lot more CUs than queries for reports. In this case, we would want to
look at optimization techniques referenced in the following chapters to optimize this semantic model.

Tip
Since both reports rely on a semantic model, you can connect reporting tools such as Power
BI Desktop, Power BI dataflows, and spreadsheet tools with an Analysis Services driver to
view the performance information stored in the semantic model. The model’s name for usage
metric is Usage Metrics Reports, which contains all reports from one workspace. The capacity
metric semantic model is named Fabric Capacity Metrics from the Microsoft Fabric Capacity
Metrics workspace.

We are now going to see an example of storing monitoring data along with a custom connector to
view REST API output.

Calling REST APIs for monitoring data 133

Calling REST APIs for monitoring data
Performance metrics can be extracted from the Power BI service using REST API calls. These can be
executed from PowerShell or an application development tool. These calls return JSON structures that
can be read into a report or database. Keeping this data historically can assist with long-term planning
and overall monitoring. The following is a list of common calls for monitored Power BI resources:

• Reports: API call to get a list of reports from a workspace or related to a semantic model:

GET https://api.powerbi.com/v1.0/myorg/reports

• Groups: API call to get a list of workspaces in a capacity:

GET https://api.powerbi.com/v1.0/myorg/admin/groups

• Capacities: API call to get a list of capacities the logged-in user has access to:

GET https://api.powerbi.com/v1.0/myorg/admin/capacities

• Datasets: API call to get a list of semantic models. This call can be filtered by the workspace
and other attributes:

GET h t t p s : / / a p i . p o w e r b i . c o m / v 1 . 0 / m y o r g / a d m i n /
datasets?$filter={$filter}

• Get refresh history: This call gets the history from the end time of the refresh. If it is blank or
empty, the refresh failed or is still processing:

GET https://api.powerbi.com/v1.0/myorg/datasets/{datasetId}/
refreshes

These REST API calls can assist in naming assets in the service to extract relevant data for an activity.
The main call for activities is activityevents:

GET https://api.powerbi.com/v1.0/myorg/admin/activityevents

This call returns a JSON structure that can be read into a database table or table structure in an
application such as Power BI. Here is a list of typical activity types in the output to help with monitoring:

• ViewReport – A user tries to render the report in the service. There is a column in the output,
IsSuccess, to see if the report displayed with or without an issue.

• ViewDashboard – Same as ViewReport except for a dashboard of tiles from various reports.

• RunArtifact – A generic activity that shows a semantic model, notebook, dataflow, and
so on executing in the capacity.

• RefreshDataset – Activity related to the refreshing of a semantic model.

https://api.powerbi.com/v1.0/myorg/reports
https://api.powerbi.com/v1.0/myorg/admin/groups
https://api.powerbi.com/v1.0/myorg/admin/capacities
https://api.powerbi.com/v1.0/myorg/admin/datasets?$filter={$filter}
https://api.powerbi.com/v1.0/myorg/admin/datasets?$filter={$filter}
https://api.powerbi.com/v1.0/myorg/datasets/{datasetId}/refreshes
https://api.powerbi.com/v1.0/myorg/datasets/{datasetId}/refreshes
https://api.powerbi.com/v1.0/myorg/admin/activityevents

Performance Governance Framework134

There are many more, but these are the most used for monitoring a Power BI system. You can see
all calls, explanations, and examples at this site: https://learn.microsoft.com/en-us/
rest/api/power-bi/.

Note
The names of some of these calls are confusing, such as group for workspace or dataset for
semantic model. While Microsoft has updated its terminology for artifacts (semantic model
instead of dataset), it has not updated the names of these REST APIs to match those changes.
At one point in Power BI, workspaces were created by creating a group in Office 365. That is
why the call to get workspaces is named group.

Next, we will look at a community-provided connector to help us analyze REST API calls.

Custom connectors

Custom connectors are used in Power BI Desktop like a connection to a database. The Power BI REST
API Connector removes the requirement to call an API from Power Query in Power BI Desktop to
retrieve results. This connector is not the answer to monitoring, but it does give an administrator a
better glance at the data returned from the REST API calls without having to write code, execute it in
PowerShell, and consume in a file or table. It even has a function, GetData, for you to pass the URL
and parameters of a REST API to call an API not currently in the connector.

Figure 7.11 shows a list of the query options while using the custom connector in Power BI Desktop:

Figure 7.11 – Using a custom connector

https://learn.microsoft.com/en-us/rest/api/power-bi/
https://learn.microsoft.com/en-us/rest/api/power-bi/
https://learn.microsoft.com/en-us/rest/api/power-bi/
https://learn.microsoft.com/en-us/rest/api/power-bi/

Calling REST APIs for monitoring data 135

As we see in Figure 7.11, there are folders for various areas of REST API calls, such as Workspaces.
If we drill into the folder, we will see more items (Reports) for those areas, as seen in Figure 7.12:

Figure 7.12 – Reports for workspaces

This custom connector is great at helping a new user understand REST API calls and the output to
better prepare a custom monitoring system for their own needs. The site to get instructions on using
this custom connector is https://www.thepoweruser.com/2021/02/21/power-bi-
rest-api-connector/.

The last part of this section will show a table structure and REST API call in PowerShell to help
store output.

https://www.thepoweruser.com/2021/02/21/power-bi-rest-api-connector/
https://www.thepoweruser.com/2021/02/21/power-bi-rest-api-connector/

Performance Governance Framework136

Storing REST API data

Even though the custom connector is helpful with retrieving monitoring data into a Power BI report,
the data is time-sensitive. You will not always have access to all this information. As of the writing of
this book, activity is only available for the last 90 days. So, building a storage system to save historical
data is imperative. The following is a table structure you can use to store activity data from the REST
API GetActivity call:

CREATE TABLE [dbo].[GetActivity](
 [ActivityId] [varchar](60) NULL,
 [RecordType] [int] NULL,
 [CreationTime] [datetime] NULL,
 [UserKey] [varchar](50) NULL,
 [Workload] [varchar](50) NULL,
 [UserId] [varchar](50) NULL,
 [Activity] [varchar](50) NULL,
 [ItemName] [varchar](255) NULL,
 [WorkSpaceName] [varchar](255) NULL,
 [DatasetName] [varchar](500) NULL,
 [ReportName] [varchar](500) NULL,
 [WorkspaceId] [varchar](50) NULL,
 [ObjectId] [varchar](500) NULL,
 [DatasetId] [varchar](50) NULL,
 [RefreshType] [varchar](50) NULL,
 [LastRefreshTime] [datetime] NULL,
 [ReportId] [varchar](50) NULL,
 [ReportType] [varchar](50) NULL,
 [DistributionMethod] [varchar](50) NULL,
 [DateRan] [datetime] NOT NULL
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[PowerBIActivityLog]
 ADD DEFAULT (getdate()) FOR [DateRan]
GO

To populate this table from the activity REST API call, we have an example from PowerShell. The
example uses a date range as well as a subset of columns to look at activity:

$UserName = "no-reply@thomas-leblanc.com"
$PWD = "DoNotUsePassword1"

$PWDSecure = ConvertTo-SecureString $PWD -AsPlainText -Force
$CredentialsTxt = New-Object System.Management.Automation.
PSCredential($UserName,$PWDSecure)

Calling REST APIs for monitoring data 137

Connect-PowerBIServiceAccount -Credential $CredentialsTxt

$StartDate = Get-Date((get-date).AddDays(-30)) -Format "yyyy-MM-dd"
+ 'T00:00:00'
$EndDate = Get-Date((get-date).AddDays(-1)) -Format "yyyy-MM-
dd"$Datum + 'T23:59:59'
$json = Get-PowerBIActivityEvent -StartDateTime $StartDate
-EndDateTime $EndDate | ConvertFrom-Json
$outputjson = $json | Select Id, RecordType, CreationTime, UserKey,
Workload, UserId, Activity, ItemName, WorkSpaceName, DatasetName,
ReportName, WorkspaceId, ObjectId, DatasetId, RefreshType,
LastRefreshTime, ReportId, ReportType ,DistributionMethod

Write-SqlTableData -InputData $outputjson -ServerInstance
"MySQLServer2022" -DatabaseName "MyDatabase" -SchemaName "dbo"
-TableName "PowerBIActivityLog" -Force

This pattern of creating and loading historical data will allow administrators of Power BI to track
activity over time. This example used a table in SQL Server, but it can be any database storage system
available. The PowerShell example in this case is scheduled to run every 30 days to track the last 30
days of activity. To get related information, tables and REST API calls can be used to save workspace,
semantic model, report, and other artifact information.

Other resources

Here are some additional URLs for resources created by Power BI community members for
performance monitoring:

Visualise your Power BI Refresh – https://dax.tips/2021/02/15/visualise-your-
power-bi-refresh/

Gateway performance monitoring – https://learn.microsoft.com/en-us/data-
integration/gateway/service-gateway-performance#gateway-performance-
monitoring-public-preview

Let’s summarize the learnings from this chapter.

https://dax.tips/2021/02/15/visualise-your-power-bi-refresh/
https://dax.tips/2021/02/15/visualise-your-power-bi-refresh/
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance#gateway-performance-monitoring-public-preview
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance#gateway-performance-monitoring-public-preview
https://learn.microsoft.com/en-us/data-integration/gateway/service-gateway-performance#gateway-performance-monitoring-public-preview

Performance Governance Framework138

Summary
In this chapter, we introduced a repeatable process to help you manage performance pro-actively
in your organization. This is important for consistency and the overall satisfaction of users. If we
catch and repair issues before they become widespread, we can save time and money. We started that
conversation with baselines for various artifacts and factors for baselines.

Baselines lead to maintaining performance history for trends and spotting anomalies. When problematic
content is identified, the recommendation for remediation work is prioritized based on business value
and use impact. That investment involves metrics and tools we described in previous chapters to profile
systems and slow areas. We then learned about taking lessons from any fixes back into standards and
common practices to reduce future issues.

The chapter then transitioned to ways to share knowledge and awareness of performance issues with
the developer community and how to leverage guidance documentation and expert help to improve
solutions. The different scenarios talked about included self-service, team-based, and IT-managed users.
The roles were identified for each set of users and workflows for the performance management cycle.

We completed the chapter by looking at options for monitoring, mainly for reports and processes. The
use of a custom connector helped with seeing returned data in a tool we are familiar with – Power BI.
The last couple of sections showed important REST API calls for monitoring as well as a suggestion
for storing historical data.

In the next chapter, we begin to dive deep into each area of a Power BI solution. Any BI solution starts
with data, so we will look at how to optimize data loading and M queries in Power BI.

Part 3:
Fetching, Transforming,

and Visualizing Data

In this part, you will understand how the M query engine behaves and how resources are consumed
when loading, transforming, and refreshing data. We will explain how many different aspects of report
design slow down performance, what to avoid, and whether there are alternatives.

This part has the following chapters:

• Chapter 8, Loading, Transforming, and Refreshing Data

• Chapter 9, Report and Dashboard Design

8
Loading, Transforming, and

Refreshing Data

So far, we have focused a lot on performance monitoring and investigation. We have now reached the
next phase of our journey into Power BI performance management. Here, we will begin looking at
what actions we can take to remedy the performance issues we discovered while using the tools that
were introduced in previous chapters. From here on, each chapter will look deeper at a specific area
with solutions and guidance.

Loading new data periodically is a critical part of any analytical system and this mainly applies to
Import mode for Power BI. Data refreshes and their associated transformations can be some of the most
CPU and memory-intensive operations. Reports depend on current data. Failures can cause users to
not trust the report data. Large semantic models that occupy a significant portion of a host’s memory,
and that have complex data transformations, are more prone to resource contention. Poorly designed
transformations contribute to high resource usage and can result in refresh failures. They can even
affect development productivity by slowing down, or in extreme cases, crashing Power BI Desktop.

In this chapter, we will learn how Power BI’s Power Query transformation engine works and how to
design queries with performance in mind. Additionally, we’ll learn how to use the strengths of data
sources and avoid pitfalls in query design with the aim of reducing CPU and memory use. This provides
benefits when the semantic models are still in development and when they are deployed to production.

In this chapter, we will cover the following main topics:

• General data transformation guidance

• Folding and joining

• Refreshing incrementally

• Using query diagnostics

• Optimizing dataflows

Loading, Transforming, and Refreshing Data142

Technical requirements
There are examples available for some parts of this chapter. We will call out which files to refer to.
Please check out the Chapter08 folder on GitHub to get these assets: https://github.
com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-
Second-Edition.

General data transformation guidance
Power Query allows users to build relatively complex data transformation pipelines through a point-
and-click interface. Each step of the query is defined by a line of M script that has been autogenerated
by the UI. It’s quite easy to load data from multiple sources and perform a wide range of transformations
in a somewhat arbitrary order. Suboptimal step ordering and configuration can use the necessary
resources and slow down the data refresh.

Note
Using Power Query to do more than connect to a data source and add/remove column
transformations should be used for small data sources. If you find yourself having to transform
large tables and data sources, the data source structure should be examined with dimensional
modeling techniques in mind. This will push the transformations to the ETL level instead of
Power Query. Semantic models are meant for analytical reporting and adding other types of
reporting to Power BI Desktop can cause lots of issues with performance.

Sometimes, the problem might not be apparent in Power BI Desktop. This is more likely when using
smaller subsets of data for development, which is a common practice. Hence, it’s important to apply
good Power Query design practices to avoid surprises. We will begin by looking at how Power Query
uses resources.

Data refresh, parallelism, and resource usage

When you perform a full data refresh for an Import mode semantic model in the Power BI service,
the current semantic model and data stay online. It can still be queried by published reports or even
from Power BI Desktop and other client tools such as Excel. This is because a second copy of the
semantic model is refreshed in the background, while the original is still online and can serve users.
However, this functionality comes at a price because both copies take up memory. Furthermore,
transformations that are being performed on the incoming data also use memory.

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

General data transformation guidance 143

Note
For a full refresh, you should assume that a semantic model will need at least two times its size
in memory to be able to refresh successfully. Those with complex or inefficient transformations
might use significantly more memory. In practical terms, this means a 2 GB dataset would need
at least 4 GB of memory available to refresh.

Using an incremental model or customizing the partition refreshes will reduce the required memory.
The amount depends on the dictionary for columns in the refreshed partition. However, it will still
be significantly less than a fully refreshed partition.

The actual work of loading and transforming data in Power BI is performed by the Power BI Query
mashup engine. The host, as mentioned at the beginning of the chapter, refers to the machine where
this mashup engine is running. This host could be Power BI Desktop, the Power BI service, capacities,
or a gateway. Each table being refreshed runs in an evaluation container. In Power BI Desktop, each
evaluation container is allocated 432 MB of physical memory by default. If a container requires more
physical memory than this, it will use virtual memory and be paged to disk, which dramatically slows
it down or freezes up Power BI Desktop.

Additionally, the number of containers executing in parallel depends on the host. In Power BI Desktop,
the number of containers running in parallel defaults to the number of logical cores available on the
machine. This can be adjusted in the Data Load section of the Power Query settings pane. Also, you
can adjust the amount of memory used by each container. These settings can be seen in Figure 8.1:

Figure 8.1 – The Power Query parallel loading settings

Loading, Transforming, and Refreshing Data144

There are two settings:

• Maximum number of simultaneous evaluations: 8

• Maximum memory used per simultaneous evaluations (MB): 432

Each will default to an installation value, but if you hover the mouse point over the information symbol
(i) to the right of each value, Power BI Desktop will search your system for the best values based on
the number of processors and amount of RAM in your system as shown in Figure 8.2 and Figure 8.3 :

Figure 8.2 – Maximum number of simultaneous evaluation suggestions

As you can see in Figure 8.3, Power BI suggests not exceeding 905 MB for optimal usage.

Figure 8.3 – Maximum memory used per simultaneous evaluations

Increasing these settings can help with larger datasets. Some data transformations require a lot of
memory for temporary data storage. If the container memory is completely used up, the operation
pages to disk, which is much slower. The setting will assign one container per available logical core,
and they will all run in parallel. Depending on the complexity of the transformation and what else is
running on the development computer, this might have a reasonable load.

Microsoft provides a table of examples to suggest what to change with these settings based on the
issue. This link provides up-to-date options and scenarios: https://learn.microsoft.com/
en-us/power-bi/create-reports/desktop-evaluation-configuration.

https://learn.microsoft.com/en-us/power-bi/create-reports/desktop-evaluation-configuration
https://learn.microsoft.com/en-us/power-bi/create-reports/desktop-evaluation-configuration

General data transformation guidance 145

For Power BI capacities, embedded, and Azure Analysis Services, you cannot modify the number of
containers or memory settings through any UI. The limits depend on the SKU and are managed by
Microsoft. However, using the XMLA endpoint, you can manually override the setting for how many
tables or partitions can be processed in parallel. This is done by using the sequence command in a
TMSL script. You can use a tool such as SQL Server Management Studio to connect to the semantic
model and execute it. The following example uses a sequence command to enable 10 parallel
evaluation containers:

{ "sequence":{
 "maxParallelism":10,
 "operations":[
 {"refresh":{
 "type":"full",
 "objects":[
 {"database":"ExampleDataset",
 "table":"ExampleLogs",
 "partition":"ExampleLogs202112" }
 // specify further tables and partitions here
] } }] } }

Note that only one table is listed as an example. You can simply modify this script and specify more
tables or partitions in the table and partition section of the script.

Now, let’s see how to make working with queries faster in Power BI Desktop.

Improving the development experience

When working with significant data volumes, complex transformations, or slow data sources, Power BI
Desktop development environment can occasionally slow down or become non-responsive. One reason
for this is that a local data cache is maintained to show you data previews for each transformation step,
and Power BI tries to refresh this in the background. It can also be caused if there are many dynamic
queries being driven by a parameter. When properly used, query parameters are a good Power Query
design practice. However, a single parameter change can cause many previews to be updated at once,
and this can slow things down and put excess load on the data source.

Loading, Transforming, and Refreshing Data146

If you experience such issues, you can turn off Background Data in the Power Query settings, as
shown in Figure 8.4. This will cause a preview to only be generated when you select a query step. The
appropriate setting is shown in the following figure:

Figure 8.4 – The Data Load settings to disable complex queries

Figure 8.4 also shows a Parallel loading of tables setting to prevent the parallel loading of tables. This
is very useful in scenarios where you are running many complex queries and know for certain that
the source would handle sequential queries better. Often, this is the case when using handwritten
native queries for a data source with many joins, transformations, and summarizations. The Parallel
loading of tables setting has options for disabling (just one thread), Default (6 concurrent threads),
and a Custom number (threads).

General data transformation guidance 147

Another method for reducing the load on source data while still in development is to use a parameter.
This example will use a date range to limit data in a fact table. The parameters used in Figure 8.5 are
RangeStart and RangeEnd:

Figure 8.5 – Parameters used to filter dates

The parameters can then be used in the Power Query Editor to place a filter on the Sales table as
in Figure 8.6.

Figure 8.6 – Parameters used as filters for the Sales table

Loading, Transforming, and Refreshing Data148

This will limit the data in Power BI Desktop to one year. Once deployed to the Power BI service, you
can change the parameter values in the settings and manually trigger a refresh. Figure 8.7 shows the
deployed semantic model and its settings.

Figure 8.7 – Power BI service settings for semantic model

If you are using multiple data sources and values from one source to control the queries of another,
you can experience lower performance with the default privacy settings. This is because Power Query
prevents any leakage of data from one data source to another for security reasons. For example, if
you use values from one database to filter data from another, the values you pass could be logged and
viewed by unintended people. Power Query prevents this leakage by pulling all the data locally and
then applying the filter. This takes longer because Power Query must wait to read all the data. Also,
it can’t take advantage of any optimizations at the source by reducing data from the source or taking
advantage of indexes from a database.

General data transformation guidance 149

If you are comfortable with the risks associated with data leakage, you can disable the Privacy Levels
settings, as shown in Figure 8.8. This shows a global setting. However, note that you can also set this
individually for each .pbix file in the Privacy setting for the current file (not shown in the figure).

Figure 8.8 – Ignoring the Privacy Levels settings can improve performance

Another helpful Power Query technique is using the reference feature to use one query to start a new
query. A user can right-click a query and select Reference. It is similar to making a copy of a query
except it is a pointer to the previous query. This is useful when you need to split a data stream into
multiple formats or filter and transform subsets differently.

A common mistake is to leave this reference table available in the data model even though it is never
directly used in reports. Even if you hide it from users, it will still be loaded and occupy memory. In
such cases, it’s better to turn off the Enable Load option, which can be found by right-clicking on a
query or table in Power Query. Disabling the load will only temporarily keep the table during refresh
and reduce the semantic model’s memory footprint.

In the following figure, the CSV source files contain two different groups of records, Students and
Scores. Once these groups are separated into their own tables, the starting table does not need to
be loaded.

Loading, Transforming, and Refreshing Data150

Figure 8.9 – How to turn off loading intermediate tables

A final tip is to consider whether you really need the Auto data/time feature in Power BI. When
enabled, it will create a hidden internal date table associated with every date or date/time field found
in the semantic model.

Figure 8.10 shows this auto-generated date table in DAX Studio for a .pbix file with this enabled.

Figure 8.10 – Auto date tables in DAX Studio

Folding and joining queries 151

This can take up significant space if you have a wide range of dates and many date fields. A better
practice is to use your own date dimension table that is connected to only the meaningful dates in a
fact table that need aggregations to a date attribute such as month, quarter, week, or year. The option
setting for Auto date/time can be enabled on a .pbix file or set globally to any new .pbix file that
is created. Figure 8.11 shows the GLOBAL option.

Figure 8.11 – Time intelligence in the Power Query settings

Next, we’ll look at ways to leverage the strengths of large data stores for offload work from Power
Query and reduce refresh times.

Folding and joining queries
Two common performance issues come with the relationship and SQL that is sent to the database
relational engine. These involve joining queries by common keys and adding transformations that
translate into SQL for the database engine.

Query folding

While Power Query has its own capable data shaping engine, it can push down certain transformations
to data sources in their native query language. This is known as query folding, and formally, it means
that the mashup engine can translate your transformation steps into single SELECT statements that
are sent to the data source.

Tip
Query folding is an important concept as it can provide huge performance benefits. Folding
minimizes the amount of data being returned to Power BI, and it can make a huge difference
in refresh times or DirectQuery performance with large data volumes such as millions or
billions of rows.

Loading, Transforming, and Refreshing Data152

There is a bit of knowledge and trial and error required to get the best folding setup. You know a query
step is folded when you can right-click on the step and see the View Native Query option enabled,
as shown in Figure 8.12.

Figure 8.12 – View Native Query indicates that folding has occurred

Ideally, you will want to see the last step of your query that allows you to view the native query because
this means the entire query has been folded. This seems straightforward enough, but it’s important
to understand which operations can be folded and which can break a chain of otherwise foldable
operations. This depends on the individual data source and the documentation is not comprehensive.

Note
Sometimes you cannot get all the steps to fold. That is OK. Just make sure to order the steps
by folding first, then end with the steps that do not fold.

Not every source supports viewing a native query: one example is OData, which is a standard for
building and consuming REST APIs. You can use Query Diagnostics in such cases to learn more
about what each step is doing. We will cover Query Diagnostics in the next section. To keep up to
date on changes to query folding, use this link: https://learn.microsoft.com/en-us/
power-query/power-query-folding.

The following list of operations is reported by Microsoft to support folding:

• Removing columns from a query: It is suggested to use the Choose Column button in the
toolbar for Power Query rather than highlighting a column and deleting it. This consolidates
that column removal in one step.

https://learn.microsoft.com/en-us/power-query/power-query-folding
https://learn.microsoft.com/en-us/power-query/power-query-folding

Folding and joining queries 153

• Changing the column name in the model: This does not change the name of the data source
column but does use the alias in the native query for the column.

• Simple logic to add a new column: These include M functions that have an equivalent function
in the data source.

• Pivot and unpivot of data: If supported by the relational database engine.

• Filtering rows by columns: This will be moved to the WHERE clause of the SELECT data source.

• Simple aggregations that are grouped: Translate into the GROUP BY in a SELECT statement
with, as an example, COUNT or SUM.

• Merge or append queries that do not use fuzzy compares: JOIN and UNION operations in
SELECT are selected for this transformation.

The following list of operations is not foldable:

• Column data type changes: This has gotten better in recent releases, but it is still one to check
after making a change. Relational database tables should have the proper data types, but views
can help translate at the source.

• Columns that are index types in Power Query: These are used when no true surrogate key is
available but are not used often.

• Appending and merging queries from different data sources.

• Complex logic in new columns.

Tip
If you are fluent in the native language of the data source and are comfortable writing your own
query, you can use a custom query instead of letting Power Query generate one for you. This
can be a last resort to ensure that everything possible has been pushed down. It is particularly
useful when you know the source data characteristics such as frequency and distribution and
can use source-specific capabilities such as query hints to improve speed. Complex joins and
aggregations might not be completely pushed down to the source and might benefit from being
implemented within a custom query.

Next, we will look at an example where the same query logic is performed in two different ways, that
is, by only changing a data source. We’ll show how this affects folding and how to investigate the
impact on performance.

Loading, Transforming, and Refreshing Data154

In this scenario, we have a data warehouse and want to create a wide denormalized table as a quick
stopgap for an analyst. We need to take a sales fact table and enrich it with qualitative data from four
dimensions, such as customer, stock, employee, and city. For the sake of this example, these tables are
loaded individually into Power BI Desktop, as shown in the following figure:

Figure 8.13 – The starting tables loaded into the semantic model

We dumped this database-hosted fact table inside a .csv file and named it FactSale_disk to
provide an alternative data source to perform the comparison.

We perform a merge from the fact to the dimensions, expanding the columns we need after each
merge. We expect this version to be folded. We expect the disk version to not be folded because the
joins and filters are applied directly to the CSV on disk. The difference between these is shown in the
comparison of query steps that follow. Note how FlattenedForAnalyst_NotFolded has the
View Native Query option disabled, which confirms this difference in Figure 8.14.

Folding and joining queries 155

Figure 8.14 – A comparison of the same query logic using different sources

Loading, Transforming, and Refreshing Data156

In the following figure, we compare the high-level activities and durations of these two refresh operations.

Figure 8.15 – A shorter duration and fewer operations with the folded query

We can clearly see that the pure database method was significantly faster – about 10 seconds compared
to about 34 seconds for the mixed database and file method. This should not be a surprise when we
think about how the mashup engine works. For the pure database method, all logic was folded and sent
to the data source as a single query. However, when using the fact table from the file and dimension
from the database, Power Query needs to execute queries to fetch the dimension data so that the join
can perform locally. This explains why we see significantly more activities.

Joining queries

Next, we will look at how incrementally loading data can decrease refresh times for semantic model
fact tables.

Refreshing incrementally
For data sources that support queries being pushed down, Power Query can use incremental refresh.
This is used mostly on fact tables that have a column to indicate the date/time the rows were updated,
and there are no changes to historical data – minimum updates to rows. This useful design pattern
is considered for improving refresh speeds on large data imports. By default, Power BI requires a full
load of all tables when a semantic model is using Import mode. This means all the existing data in
the table is discarded before the refresh operation, and it ensures that the latest data is loaded into
the semantic model.

Refreshing incrementally 157

However, this results in unchanged historical data being loaded into the semantic model each time it
is refreshed. If you know that you have source data that is only ever appended and historical records
are never modified, you can configure individual tables to use incremental refresh to load just the
most recent data. The following steps should be followed in sequence to enable incremental refresh:

1. Before you can use the incremental fresh feature, you must add two date/time parameters,
called RangeStart and RangeEnd, to control the start and end of the refresh period. The
setup of the parameters is shown in the following figure:

Figure 8.16 – The date/time parameters required for incremental refresh

Loading, Transforming, and Refreshing Data158

2. Next, you must use these parameters as dynamic filters to control the amount of data returned
by your query. An example of this configuration is shown in Figure 3.17, where the DateKey
column is used for filtering the Sales table:

Figure 8.17 – Filter configuration to support parameterized date ranges in a query

3. Once you have a query configured to use the date range parameters, you can enable incremental
refresh on this table. You simply right-click on the sales table name in the Power BI Desktop
and select the Incremental refresh option. A column of data/time data type must exist on the
table. This column needs to be the column of the filter date range used previously. Figure 8.18
has archive data in partitions set to 10 years, while the current refresh will update the current
month partition:

Refreshing incrementally 159

P

Figure 8.18 – Incremental refresh configured within a table

4. Next, the model must be deployed to the Power BI service, and a manual refresh executed.
This will create the initial partitions for the archive and update partitions in the current year.

There are three other options available in the incremental refresh setup dialog that enable you to have
more control:

• Get the latest data in real time with DirectQuery (Premium only): If you are using DirectQuery
with incremental refresh, this is the option to refresh query data immediately or near real time.

• Only refresh complete month: This will ensure that only the most recent complete month
(or day or quarter, etc.) of data will be refreshed. The date option (month, day, quarter, etc.)

Loading, Transforming, and Refreshing Data160

depends on the selection from the Incrementally refresh data starting setting. This is required
to ensure the accuracy of some business metrics. For example, calculating the monthly average
users for a web application would not be accurate if considering incomplete months.

• Detect data changes: This will allow you to choose a timestamp column in the source database
that represents the last modified date of the record. If this is available in the source, it can further
improve performance by allowing Power BI to only select changed rows within the refresh period.

Next, we will see how the built-in query diagnostics can help us spot and resolve performance issues.

Using Query Diagnostics
In Power BI Desktop, you can enable Query Diagnostics to get a detailed understanding of what each
step of your query is doing. Even with seemingly simple queries that have few transformations, if
performance is bad, you will need to know which part is slowing you down so that you can concentrate
your optimization efforts. Diagnostics needs to be enabled in the Power Query settings, as shown
in the following figure.

Figure 8.19 – Query Diagnostics enabled in the Power Query settings

Using Query Diagnostics 161

You might not need all the traces that are shown in the previous figure. At a minimum, enable the
Aggregated diagnostic level and Performance counters.

There are up to four types of logs that are available:

• Aggregated: This is a summary view that aggregates multiple related operations into a single
log entry. The exclusive durations are summed per entry.

• Detailed: This is a verbose view with no aggregation. It is recommended for complex issues or
where the summary log does not provide enough to determine a root cause.

• Performance counters: Every half second, Power Query takes a snapshot of the current memory
use, CPU utilization, and throughput. This might be negligible for queries that are fast or push
all the work to the data source.

• Data privacy partitions: This helps you identify the logical partitions that are used internally
for data privacy.

Next, we will learn how to collect the traces and explore the information contained within them.

Collecting Power Query diagnostics

Diagnostic traces are not automatically collected after the settings, as shown in Figure 8.19, have been
enabled. To save trace data to disk, you need to start diagnostics from the Tools menu of the Power
Query Editor screen, as shown in Figure 8.20.

Figure 8.20 – The Power Query diagnostic controls

Loading, Transforming, and Refreshing Data162

Select the Start Diagnostics button to enable data collection. From this point on, any query or refresh
operations will be logged to disk. You can perform as many operations as you want, but nothing will
be visible until you use the Stop Diagnostics button. After stopping the diagnostics, the logs are
automatically added to the query editor, as shown in the following figure.

Figure 8.21 – The query logs are automatically loaded

You can only collect traces from the Query Editor UI. It will capture any activity, even loading previews
and working in a single step. Additionally, you can capture activity from the Report view, which is great
for tracing a full table or semantic model refresh. The choice you make will depend on the scenario
you are trying to debug. You can select a single query step and use the Diagnose Step button to run
a single step, which will create a dedicated trace file that is named after the step.

Tip
Query logs can become quite large and might become difficult to work with. The Power Query
Editor UI performs background operations and caching to improve the user experience, so all
the steps might not be properly represented. We recommend that you only capture diagnostics
for the operations or tables you are trying to debug to simplify the analysis. Start diagnostics,
perform the action you want to investigate, then stop diagnostics immediately after and analyze
the files.

Analyzing the Power Query logs

The Power Query diagnostic logs have different schemas that might change over time. We recommend
that you check the online documentation to understand what each field means. It can be found
at https://learn.microsoft.com/en-us/power-query/query-diagnostics.

https://learn.microsoft.com/en-us/power-query/query-diagnostics

Using Query Diagnostics 163

We are mostly interested in the Exclusive Duration field found in the aggregate and details logs. This
tells you how long an operation took in seconds, and it helps us to find the slowest items. The Microsoft
documentation describes how you can slice the log data by step name or ID. This is an easy way to
find the slowest step, but it does not help you to understand which operation dependencies exist. The
logs contain a hierarchical parent-child structure with arbitrary depth depending on your operation
complexity. To make it easier to analyze this, we provide Power Query functions that can be used to
flatten the logs into an explicit hierarchy that is easier to analyze using the decomposition tree visual.
Please see the ParsePQLog.txt example file. This function is adapted from a blog post that was
originally published by Chris Webb and is still relevant as of the printing of this edition: https://
blog.crossjoin.co.uk/2020/02/03/visualising-power-query-diagnostics-
data-in-a-power-bi-decomposition-tree/.

We have provided an example of how the parsed data can be visualized. The following figure is a
snippet of the Query Diagnostic.pbix example file and shows how a decomposition tree is
used to explore the most expensive operation group and its children. From the tooltip, we can see
that the Level 2 step took about 29 seconds and loaded over 220,000 rows. Additionally, we can see
the exact SQL statement sent to the data source to confirm that folding occurred.

Figure 8.22 – A hierarchical view of a query log after flattening

https://blog.crossjoin.co.uk/2020/02/03/visualising-power-query-diagnostics-data-in-a-power-bi-decomposition-tree/
https://blog.crossjoin.co.uk/2020/02/03/visualising-power-query-diagnostics-data-in-a-power-bi-decomposition-tree/
https://blog.crossjoin.co.uk/2020/02/03/visualising-power-query-diagnostics-data-in-a-power-bi-decomposition-tree/

Loading, Transforming, and Refreshing Data164

Now, we have gained useful fundamental knowledge and analytical methods to help identify slow
operations in Power Query. Next, we will explore performance tuning for dataflows.

Optimizing dataflows
A Power BI dataflow is a type of artifact contained within a Power BI workspace. A dataflow contains
Power Query data transformation logic, which is also defined in the M query language that we
introduced earlier. The dataflow contains the definition of one or more tables produced by those
data transformations. Once it has been successfully refreshed, a Gen1 dataflow also contains a copy
of the transformed data stored in Azure Data Lake. Gen2 adds the ability to write the output to four
areas as shown in Figure 8.23.

Figure 8.23 – Gen2 dataflow destination options

A dataflow might seem very similar to the query objects you define in Power BI Desktop, and this is
true. However, there are some important differences, as noted in the following points:

• A data flow can only be created online through the Power BI web application via Power
Query Online.

• A dataflow is a standalone artifact that can exist independently. It is not bundled or published
with a semantic model, but semantic model items can use the dataflow as a standard data source.

• There are some UI and functionality differences between Power Query in Power BI Desktop
compared to Power Query Online.

• A dataflow can be used by semantic models or even other dataflows to centralize
transformation logic.

Optimizing dataflows 165

The last point in the preceding bullet list is important since it describes a key reason that dataflows
exist in the first place. They are designed to promote data reuse while avoiding duplicated data
transformation operations and redundant processing. Let’s explore this using a practical example. This
example is an organization that encourages self-serving report development so that business users
can get insights quickly. They realize that many different people are trying to access a list of customers
with properties from two different source systems: a finance system and a customer relationship
management (CRM) system. Rather than let every person try to figure out how to transform and
consolidate customer data across two systems, they could build one standard customer dataflow and
have every user leverage this dataflow.

Tip
Dataflows are a great way to centralize common data transformation logic and expose the
final tables to users in a consistent way. This means that the processing does not need to be
duplicated for every semantic model. It reduces the total amount of data refreshes and speeds
up report development by giving developers pre-transformed data. Additionally, you can update
the dataflow to ensure that all downstream objects benefit from the changes without needing
changes themselves (assuming that the output table structure is unchanged).

The dataflow query design benefits from all the performance optimization recommendations we
provided for Power Query. You are encouraged to apply the same learnings when building dataflows.
However, dataflows have some backend architectural differences that provide additional opportunities
for optimization. These are detailed in the following list:

• Separate dataflows for ingestion and transformation: This allows you to load untransformed
data into a dedicated dataflow, typically referred to as staging. This can speed up downstream
transformations by having source data available locally, potentially reused for many independent
downstream transformations for added benefits.

• Separate dataflows for complex logic or different data sources: For long-running or complex
operations, consider putting each of them in a single dedicated dataflow. This allows for entity
transformations to be maintained and optimized separately. This can make some entities available
sooner, as they do not have to wait for the entire dataflow to be completed.

• Separate dataflows with different refresh cadences: You cannot select individual entities to
refresh in a dataflow, so all entities will refresh when scheduled. Therefore, you should separate
entities that have different refresh cadences to avoid redundant loading and processing.

• Consider Premium or Fabric (dedicated) capacities: Dedicated capacity has additional features
that increase performance and reusability.

Loading, Transforming, and Refreshing Data166

The following performance-enhancing features for dataflows are highly recommended. Please note
that the following items are only available for dataflows running on dedicated capacity:

• Incremental refresh: This works for dataflows in the same way as described earlier for loading
a table in a semantic model. Configuring this can greatly reduce dataflow refresh time after
the first load.

• Linked entities: You can use one dataflow as a data source for a different dataflow. This allows
you to break transformation logic into groups or different phases. The following figure shows
how the UI uses a link icon indicator:

Figure 8.24 – A linked entity indicated visually

In the previous example, the Audit Log Files entity contains JSON log records from the
activity log. The user wants to parse this log into subsets based on activity type. A linked entity
is used to reuse the log data without importing it multiple times.

• Enhanced compute and computed entities: Dedicated capacity dataflows can take advantage
of the enhanced compute engine, which is turned on by default for Premium capacity. This
reduces refresh time for long-running transformations while using joins, distinct filters, and
grouping. The engine uses an SQL-like cache that can handle query folding. The following
figure shows this dataflow setting:

Optimizing dataflows 167

Figure 8.25 – Enhanced compute in the dataflow settings

The enhanced compute engine only works when using other dataflows as a source. You can tell that you
have a computed entity when you see the lightning symbol on top of its icon, as shown in Figure 8.26.
It also shows how Power BI provides a tooltip when hovering over the Source step, which indicates
it will be evaluated externally.

Figure 8.26 – A computed entity indicated visually

Loading, Transforming, and Refreshing Data168

Next, we will talk about Gen2 dataflow destinations.

Gen2 destinations

The other performance area needing attention is the destination of Gen2 dataflow destinations.
Gen2 dataflows do not need a destination and can be used like Gen1 dataflows. The addition of the
destinations allows storage options that can be used outside of Power BI. The performance options
vary based on output. See the following:

• Azure SQL Database: Depending on the size of the Azure resource, writing output to a table
can vary because of vCPUs, memory size, and disk speed. Also, you must look at the structure
of the table and what constraints, such as primary key, foreign key, and indexes, are used on
the destination table.

• Lakehouse: Since this is a new feature of Fabric and Premium workspaces, there is not a lot of
real-world experience around this option. So, performance will vary, but look for improvement
as time goes by and more enterprises adopt this feature and Microsoft uses telemetry to improve
the option.

• Azure Data Explorer (Kusto): This is Microsoft’s streaming resource for Fabric. Like Azure SQL
Database, it is dependent on the resources available based on the size used when the resource
is created. There is a lot of memory usage for streaming, so, the more memory, the faster it is.

• Warehouse: Warehouse is another structure similar to Lakehouse and the same caution is
used for this option.

We now have a great understanding of how data gets transformed in Power BI and how we can
minimize refresh operations and make them faster. Let’s wrap up the chapter with a summary of
what we’ve learned.

Summary
In this chapter, we began to dive deeper into specific areas of an actual Power BI solution, starting
from transforming and loading data. We saw how Power Query and the mashup engine take center
stage in this part of the pipeline, powered by the M query language. Additionally, we learned about
parallelism and how you can change the settings to improve performance. There are settings that can
be adjusted to speed up the developer experience and optimize data loading.

We moved on to transformations, focusing on operations that can slow down with large volumes of
data such as filtering and joining. We introduced the mashup engine’s ability to perform query folding
and why we should leverage this because it pushes resource-intensive operations down to the data
source. We learned how to see where folding is occurring in Power BI Desktop and examined how to
configure incremental refresh to reduce the amount of data loaded.

Summary 169

The Power Query diagnostic logs contain information about each query step and its resource usage. We
saw how these were not easy to parse, but they do offer a lot of detail that can provide valuable insights
into slow query steps or data sources. We concluded the chapter by learning how dataflows can be used
to reduce data loading and transformation by centralizing common logic. However, dataflows do have
their own optimization tips with specific performance features such as the enhanced compute engine.

Now that we have learned how to get data into Power BI efficiently, in the next chapter, we will look at
report and dashboard design tips to provide a better user experience while reducing data consumption.

9
Report and Dashboard Design

In the previous chapter, we looked at how to load data into Power BI efficiently to reduce system
resource use and the amount of time taken to load data. Slow data refreshes generally do not impact
a user’s report performance experience directly because they usually occur in the background and
are scheduled at off-peak times.

Now, we will shift our focus to the visual layer of Power BI. Here, inappropriate choices can directly
affect the end user experience, from both a performance and a usability perspective. While we will
continue to focus on design patterns that improve performance, we will point out when performance
guidance can also improve usability.

In this chapter, we will learn how the Power BI visual framework works within reports and how these
relate to queries and engine load. This will give us some fundamental knowledge of report behavior,
which will help us identify what to optimize. We will then go through a range of common design
pitfalls and recommend solutions that can provide better performance, covering the three options
for creating visual content in Power BI.

This chapter consists of the following sections:

• Optimizing report layout

• Interaction optimization for slicing and dicing

• Optimizing dashboards and paginated reports

Technical requirements
There are samples available for some parts of this chapter. We will call out which files to refer to.
Please check out the Chapter09 folder on GitHub to get these assets: https://github.
com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-
Second-Edition.

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

Report and Dashboard Design172

Optimizing report layout
There is a direct relationship between the number of visuals and the load generated by a report. Higher
loads often result in poorer performance. This load will be spread over two areas – both the client
device executing visuals and the semantic model that is responding to queries. This includes queries
sent to external data sources in DirectQuery mode. Therefore, you should strive to reduce the total
number of visuals on a page wherever possible, especially knowing that the more you have, the more
work you are asking a single CPU thread to do. You should also configure visuals in a way that avoids
complex queries and try to return the least amount of data – only what is needed for the scenario.

Next, we will look at why having too many visuals causes rendering issues.

Note
When a report is rendered in the Power BI service, only the current page selected for the report
will have queries executed. So, it is not until the end user selects a different page that the report
page queries are executed against the semantic model. Some suggestions in this chapter talk
about moving visuals to different pages to help performance. It is not only the filtering of the
data on another page that helps with the user experience but also having multiple pages to
help spread the load.

Too many elements in a report

An important point to note is the visuals are designed to execute in parallel. This has interesting
implications for performance. When you open a report, all visuals execute at once. Data-driven
visuals will each issue at least one query to the underlying semantic model, and the queries are sent
in batches to be executed in parallel where possible. All visuals need CPU time even if they do not
execute a query. Even though visuals execute in parallel, they are executed on a single CPU thread,
which means time is divided between the visuals. For Power BI, it means that the more visuals you
have on a page, the more time they can spend waiting for the CPU, due to the contention with all
other visuals. Figure 9.1 is going to the extreme:

Optimizing report layout 173

Figure 9.1 – Too many visuals

And as compared to Figure 9.1, the following Figure 9.2 is a little toned down as far as number of
visuals on a screen:

Report and Dashboard Design174

Figure 9.2 – A little toned down

There is no specific number of visuals beyond which a report will slow down. Some guidance online
suggests around 20 visuals being a concern, but we do not wish to go down this path. The reason for
this is that the visual type, configuration, and underlying dataset and DAX designs will have the largest
effect on performance, and two reports with the same number of visuals may have vastly different
performance characteristics. Instead, we recommend driving report and dataset optimization based
on pre-established targets and thresholds that take user requirements and report complexity into
account. This guidance was covered in Chapter 7, Governing with a Performance Framework, in the
Performance governance framework section, where we talked about establishing baselines and targets.

Let’s now cover a busy report table that can be used as a Drill Through page.

Optimizing report layout 175

Reduce a busy report

The report in Figure 9.3 shows a table that is refreshed with every view or selection of a visual or filter.
The table does not need to be viewed until the user selects the correct filters or slicers. The end users
specify, based on their requirements, that it’s better to see an overview of the report before examining
the table details.

Figure 9.3 – Busy report table

The table could have millions of rows that do not look appealing to an analyst at first glance; however
selecting Subcategory from the donut chart or a Yearly Income bracket from the bar/line chart
would filter the table to a more reasonable size. The issue is the number of queries and amount of data
returned to the table each time something triggers a refresh, especially when first entering the page
without filters. Figure 9.4 shows the right-click Drill through option that is available to use to go to
a separate page that has the table filtered:

Report and Dashboard Design176

Figure 9.4 – Drill through to table report page

The resulting report page looks like Figure 9.5. You can see Power BI adds a back button as well as an
indicator on the table being filtered:

Figure 9.5 – Drill through table page

Optimizing report layout 177

For this page to enable Drill through, the Add drill through fields here pane needs to be populated
with possible filter columns from the main page:

Figure 9.6 – Add Drill through fields here

One thing to keep in mind: Power BI visualizations are intended for aggregated results with visuals
pointing to an analysis. Detailed reporting is available but was never intended for millions of rows
in a table or matrix visual.

Next, let’s look at the effect of many card visuals on one page and how to help with queries sent to
the semantic model.

Reducing queries to the semantic model

You can reduce the number of queries sent to the engine by using fewer visuals. Sometimes a report
developer wants to use a card visual to show amounts, percentages, or counts. Each card has a query to
run to get the results. Figure 9.7 shows the Performance analyzer window for each card and the query:

Report and Dashboard Design178

Figure 9.7 – Single card for each measure with queries

You could solve this issue with a multi-row card visual or a table as shown in Figure 9.8. This reduces
the five queries to one for each visual instead of for the table or the multi-row card. This one change
can reduce the time required for large semantic models dealing with queries issued to the engine:

Figure 9.8 – Multi-row card and table – one query each

Next, we will learn how to use small multiples for too many line chart queries.

Using the small multiples option

Small multiples is another visual that can reduce the queries to the VertiPaq engine. This is useful
when a report page has line charts for different filters in the visual.

Figure 9.9 shows line charts for different categories of products and sales measures:

Optimizing report layout 179

Figure 9.9 – Individual chart for each category

The filter is on each visual and produces a query for each line chart. Like the multi-card visual used
in the previous example, Power BI has small multiples for line charts. Figure 9.10 shows the small
multiples for the same data as Figure 9.9 with one filter on the categories to be reported. The change
produces just one query for the line chart(s) rather than six:

Figure 9.10 – Small multiples for line chart

Report and Dashboard Design180

The next section will look at examples of using slicers and filters for performance improvements.

Interaction optimization for slicing and dicing
When using the term interactive, we refer to the report page implementation experience using Power
BI Desktop to create a published report to the service. These reports have dynamic visuals designed
primarily for viewing on internet browsers. The visuals can resize and react to screen dimension and
resolution changes. The experience is expressed as What You See Is What You Get (WYSISYG).

The term interactive report is unofficial and used in this book for convenience and clarity. Microsoft
specifically differentiates interactive reports from paginated reports by name – only the latter is a
documented term. Paginated reports were originally created by SQL Server Report Services (SSRS),
but today, paginated reports can exist in the Power BI service.

The next section will talk about having a value pre-selected for a slicer.

Note
From here on, we will specifically refer to paginated reports. If a distinction is not made, please
assume we are referring to interactive reports. Interactive reports are built by placing individual
visuals along with slicers on one or more predetermined report pages. Most visuals are data-
driven, which means they need to be supplied with data to render meaningful content.

Selecting a value for a slicer

If you have a very large semantic model, it can take a while to return results even after optimization.
By default, Power BI will not select any values for filters and slicers. To make the initial experience
faster, you can consider preselecting values for slicers or filters to limit the query space and reduce
the amount of data scanned.

Figure 9.11 shows using a slicer to get a set of relative days to use on the initial display page:

Interaction optimization for slicing and dicing 181

Figure 9.11 – Date slicer using relative days

This selection in the slicer will only display data for the last six months. When the page is opened,
only the last six months of data based on order date will be queried. This will reduce the time for the
initial page to display and the visuals populated. The query only returns a fraction of the data from
the 10 years of data in the full model.

Preselect the most frequently used set of attributes to cater for the broadest set of users. Even if some
users need to change the slicer selections to get the desired context, this can save them a lot of time
because they avoid waiting for a very slow initial report load. To set the default filter and slicer selection,
simply save the report with the filters already applied.

The next section will look at the edit interaction feature for visuals.

Disabling interaction when necessary

When you select a data point on a Power BI visual, the default behavior is to cross-filter all other visuals.
Sometimes, this might not add any value to the analysis. Therefore, we recommend reviewing report
interactions for every visual and removing those that are unnecessary. This will reduce the number of
queries issued because a selection in one visual no longer affects every other one. This technique also
applies to slicers interacting with each other. The following figure shows how this can be configured
by selecting a visual and then using the Edit interactions option in the Format menu. The slicer is
selected and has its interactions edited so that it no longer affects the right-hand side visual. When
editing interactions, visuals indicate their behavior with small icons at the top right, as highlighted:

Report and Dashboard Design182

Figure 9.12 – A slicer will only affect the right-side visual, as shown by the icons

Using Top N to limit data

The example semantic model used in the previous three figures is small, so the difference to an end user
is negligible. However, with larger datasets and measures of higher complexity, significant performance
gains can be realized with Top N filtering technique.

When looking at summary information, it is good practice to highlight items with the highest or
lowest values instead of listing every single one. For example, a customer-satisfaction-related visual
can be limited to just the 10 customers who had the lowest satisfaction scores. This reduces the
amount of data returned and can speed up the report. There are two ways you can implement Top
N filtering: the simplest method is to use the out-of-the-box Top N filtering available for Power BI
visuals in the Filters pane. This can be seen in Figure 9.12, where the left-side visual is in the default
state, whereas the right-side visual has been configured to show the top five Manufacturer names
ranked by SalesAmount:

Interaction optimization for slicing and dicing 183

Figure 9.13 – The left is the default state and the right is configured to show the top five items

Another way to implement Top N is to write measures that explicitly use ranking functions. While
this approach requires more effort, it allows you to perform dynamic ranking through slicer or filter
values. This allows a user to choose from a list of pre-determined group sizes such as 5, 10, and 20.
Whichever approach you use, we still recommend testing with and without Top N enabled. There can
be cases where the ranking calculation itself is expensive, and this can cause the visual to be slower
when limited by Top N.

Moving slicers to the filter pane

It is tempting to include many different slicers in a report to provide a user with a range of options
to set their context when analyzing data. A slicer is a regular Power BI visual that needs to query a
semantic model to populate its values. When a slicer selection is made, the default behavior in Power
BI is to update all other slicers to reflect the selection made to give you a better idea of how data is
distributed. The other slicers execute queries to make this update. While this functionality is useful, it
can slow down reports if you have a lot of slicers with large datasets. In such cases, consider moving the
least frequently used slicers to the Filters pane. This reduces the number of queries executed during
report interaction because a filter only queries the data source to fetch values after user interaction
and is not affected by slicer selections.

Next, we will progress to other report types in Power BI.

Report and Dashboard Design184

Optimization for dashboard and paginated reports
Outside of Power BI reports, workspaces allow the deployment of dashboards and paginated reports.
Though different, there are still best practices to help the performance of these objects. These include
making queries to the source data rather than directly from a relational database (DirectQuery) or
semantic models (Import mode) deployed to the service. There are various levels of caching available
for visuals and reports, such as semantic models in the service.

Following best practices for dashboards

A dashboard lets users pin visuals to one canvas that provides links back to the original deployed
report. Pinning enables a single page to display many related visuals from various report pages. It is
an easy way to create customized views of the most important elements from different and potentially
unrelated reports. Dashboards were designed to be fast and behave differently than reports because,
where possible, they cache the query result and visual beforehand. This greatly reduces dashboard
load time because it avoids most on-demand processing. Power BI does this by executing queries and
preparing dashboard tiles when the underlying data has been updated.

Note
Visuals are cached when pinned to a dashboard, but reports (called live report tiles) are not.
Therefore, we recommend only pinning individual visuals to dashboards instead of report
pages to take advantage of caching.

There is also the potential to add significant background load on a system when using dashboards.
This is because dashboard tiles must respect security context. If you are using row-level security, there
will be different roles/contexts, so Power BI will need to generate a unique tile cache for each security
context. This happens automatically after a refresh for Import mode. For DirectQuery semantic
models, tiles are refreshed hourly, but this can be increased to every 15 minutes. This can be changed
in the settings of a semantic model, as shown in Figure 9.13. There is an option for a manual refresh.

Optimization for dashboard and paginated reports 185

Figure 9.14 – Tile refresh in a semantic model

With large semantic models and many contexts, there is the potential to generate hundreds or thousands
of background queries in a short time span. If you are not using dedicated capacities (Premium or
Fabric), the most likely effect is increased data refresh durations because the tiles refresh is performed
at the end. However, if you are using a dedicated capacity, then you have a fixed set of resources, and
these background operations have a higher likelihood of impacting interactive users.

Since tile refresh is automatic and there are no settings available to configure it, we recommend testing
without row-level security to determine whether tile refresh is the cause of a suspected performance issue.

Next, let’s look at some best practices for paginated reports.

Report and Dashboard Design186

Optimizing paginated reports

Paginated reports use the tried-and-true SQL Server Reporting Services (SSRS) technology. This
report service implements the XML-based Report Definition Language (RDL) to code reports.
Often referred to as “pixel-perfect,” these reports are specifically designed for printing on pages. They
are designed with a pre-determined page size and borders. The report designer will lay out elements
exactly where they need to appear on a page by specifying element sizes. They are very good at handling
operational-style reports with many rows and pages, such as a group of sales invoices, by providing
features such as page headers, footers, and margins. The designer often does not know how many pages
the report will generate, as extra content simply overflows to a new page. Power BI Report Builder is
the authoring tool for these types of reports.

Paginated reports can use a relational or analytical database as a data source, which can be hosted
in the cloud or on-premises. The latter database type refers to dimensional model sources such as
Power BI semantic models, and we will explore their optimization in detail in the next chapter. For
the remainder of this chapter, we will focus on relational sources – typically, transactional database
systems such as Oracle or SQL Server. Usually, line detail data is requested for these reports, and that
is why a relational database is suggested rather than an analytical database. Analytical databases such
as the semantic model engine are not designed to perform well with line-item detail rows. They are
designed for aggregations of numeric columns while slicing by attributes.

The following points provide guidance on optimizing paginated reports:

• Use cloud data sources: On-premises sources are likely to be geographically distant and need
to be accessed through a gateway. This can be much slower than a cloud source, especially if it
is in the same region as the Power BI service.

• Use the DAX query designer for analytical sources: Power BI Report Builder offers an Analysis
Services DAX query designer. Data Analysis Expressions (DAX) is a different query language
supported by the Analysis Services engine. This designer can be used for semantic model data
sources. You will get better performance using the DAX designer than by manually entering
DAX queries.

• Leverage stored procedures in the relational source: Stored procedures encapsulate pieces
of business logic. If there are performance issues, a database administrator can fine-tune the
stored procedure without having to edit the Power BI semantic model. The aggregations can
be included in the stored procedure if needed, which pushes the processing to the data source
and is probably faster.

• Only retrieve required data: Everybody seems to want everything to be available. By narrowing
the requirements, the performance of a report benefits from only selecting the tables and
columns needed for current reporting requirements. The paginated report is used for tabular
line-item results and only so many columns can fit on the report page.

Summary 187

• Dataset versus parameterization: Paginated reports can apply filters over already retrieved
data (filtering) or pass a filter directly to the data source (parameterization). Suppose we have
a sales report that can be filtered by country. With dataset filtering, the report will retrieve all
country data upfront. When a user selects a specific country, it will perform the filtering without
needing to issue new queries to the data source. With dataset parameterization, changing the
country will issue a new query and retrieve only the results for the selected country.

Note
Paginated reports still use the term dataset. It is the query that returns results for the report. Do
not confuse this term with the change in Power BI from dataset to semantic model mentioned
in Part 1 of this book.

We recommend dataset filtering when you expect a different subset of the dataset rows to be
reused many times – in our example, the user may switch between countries often. Here you
recognize that the cost of retrieving a larger dataset can be traded off against the number of
times it will be reused. However, caching large datasets on a per-user basis may negatively
impact performance and capacity throughput.

• Avoid calculated fields: A paginated report allows you to define your own custom fields within
a query result. For example, you might concatenate values or perform some arithmetic. We
recommend doing this at the data source instead so that the calculation will be done beforehand
and be readily available for the report. This can have a significant impact if the query returns
many rows.

• Optimize images: Keep image file sizes as small as possible by using the lowest resolution that
still gives you good quality. Compressed formats such as JPG will help reduce size, and some
graphics programs let you adjust compression settings to balance size with quality.

• Do not use embedded images: Embedded images can bloat the report size and slow down
rendering. A better alternative is to use images stored on web servers or a database, which
improves maintainability through central storage. However, be aware that when using web
servers, the images may load slowly if they are from an external network.

Now let’s summarize the chapter.

Summary
In this chapter, we started with visualization optimization, covering into visual layouts and then slicer
and interaction filtering. The busy report was mentioned, and some alternatives, such as drill-through
reporting, were demonstrated. Edited interactions between visuals were used to stop some unnecessary
filtering. Training was mentioned for end users selecting items in the filtering pane. A reminder was
given about the potential negative impact of executing multiple queries on large semantic models.

Report and Dashboard Design188

The chapter switched to the other report types – dashboards and paginated reports. Dashboards are
tiles from Power BI reports and the latter come from SSRS. Paginated reports are used for line-item
types that are not good performance-wise for semantic model data. Dashboards enable visuals from
different reports to be placed on one canvas.

All these types of scenarios have best practices for optimizing performance for end users. These ranged
from using filters to reducing the amount of data in a report. Each scenario requires clear requirements
and limits for optimal reporting to the consumer of the reports.

In the next chapter, we will get into data modeling, which is one of the most important sections of
the book. A poorly performing data model can affect the reporting layer significantly and negate the
guidance we covered in this chapter.

Part 4:
Data Models, Calculations,

and Large Semantic Models

In this part, we will explain how to build data models that are efficient and intuitive, and how to avoid
slowing down queries with sub-optimal relationships or DAX calculations. You will learn how to use
aggregations and composite models for very large semantic models.

This part has the following chapters:

• Chapter 10, Dimensional Modeling and Row-level Security

• Chapter 11, Improving DAX

• Chapter 12, High-Scale Patterns

10
Dimensional Modeling and

Row Level Security

In the previous chapter, we looked at the visual layer in Power BI, where a key point was to reduce
the load on data sources by minimizing the report page complexity and number of queries sent to the
Analysis Services engine. We learned that this area is usually the easiest and quickest place to apply
performance-related fixes. However, experience working with a wide range of Power BI solutions has
shown that issues with the underlying semantic model are very common and typically have a greater
negative performance impact. Importantly, this impact can be amplified because a semantic model
can be used by more than one report. Semantic model reuse is a recommended best practice to reduce
data duplication and development effort.

Therefore, in this chapter, we will move one layer deeper, into Power BI semantic models with a focus
on Import mode. Semantic model design is arguably the most critical piece, being at the core of a
Power BI solution and heavily influencing usability and performance. Power BI’s feature richness
and modeling flexibility provide alternatives when you’re modeling data, and some choices can make
development easier at the expense of query performance and/or model size. Conversely, certain inefficient
configurations can completely slow down a report, even with data volumes of far less than 1 GB.

We will discuss model design, data model size reduction, building well-thought-out relationships,
and avoiding pitfalls with row-level security (RLS). We will also touch on the tools and techniques
we learned about in the previous chapters to look at the impact of design decisions.

In this chapter, we will cover the following topics:

• Building efficient models

• Building a single source of truth

• Considering many-to-many relationships versus bi-directional filtering

• Avoiding pitfalls with row-level security

Dimensional Modeling and Row Level Security192

Technical requirements
Some samples are provided in this chapter. We will specify which files to refer to. Please check out
the Chapter10 folder in this book’s GitHub repository to get these assets: https://github.
com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-
Second-Edition.

Building efficient models
We will begin with some theoretical concepts on how to model data for efficient storage, which leads to
faster queries. These design techniques have been around the data warehouse world since the 1990s. The
simplicity of dimensional modeling has always been centered around efficient structures for analytical
reports. The Analysis Services engine was designed for star schemas in both the multidimensional
cubes as well as tabular semantic models.

Let’s review together the basics of dimensional modeling.

The Kimball dimensional model theory

Data modeling can be thought of as how to group and connect attributes in a set of data. There are
competing schools of thought as to what style of data modeling is the best and they are not always
mutually exclusive. Learning about dimensional modeling is the best fit for Power BI semantic models,
so we will concentrate on this method.

We will be looking at dimensional modeling, a very popular technique that was encouraged successfully
by the Kimball Group. It is considered by many to be an excellent way to present data to business
users and happens to suit Power BI’s Analysis Services engine like a glove. It can be a better alternative
than trying to include every possible required field into a single table that’s presented to the user. We
recommend that you become more familiar with Kimball techniques as they cover the entire process
of developing business intelligence (BI) solutions, starting with effective requirements gathering.
Though the group is retired, the published books are still available as well as their website: https://
www.kimballgroup.com.

Transactional databases are optimized for efficient storage and retrieval and aim to reduce data
duplication via a technique called normalization. This can split related data into many different
tables and requires joins on common key fields to retrieve the required attributes. For example, it is
common for enterprise resource planning (ERP) suites to contain thousands of individual tables
with unintuitive table and column names. To deal with this problem, a central concept in the world of
dimensional modeling is the star schema. Modeling data into a star schema involves designing data
structures for faster analysis and reporting but where we don’t have to store the data like normalized
databases. The simplest dimensional model consists of two types of tables:

• Dimension tables: These tables contain attributes that slice (filter) or dice (group) measures
from the related fact tables. Examples are Employees, Dates, Products, and so on.

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://www.kimballgroup.com
https://www.kimballgroup.com

Building efficient models 193

• Fact tables: These tables contain surrogate keys that are foreign keys to dimension tables. When
these surrogate keys are combined in the fact table, they define the grain of the quantitative
values. Usually, these tables contain numeric facts (measures) with as few attributes (move to
dimension table) as possible.

Note
Fact tables are defined as one of three types. The first, and most common, is a transaction
such as sales from a company or a grade from tests or assignments. The second is a snapshot,
which contains the data captured as its state on one day such as the end of the month. The
last is accumulative, such as inventory processing. We mainly look at transaction data in this
book. The other methods for snapshots and accumulative facts can be found on the Kimball
site website: https://www.kimballgroup.com.

After defining the facts and dimensions in our model, we can see how the star schema gets its name.
A simple star schema has a single fact table that’s related to some dimension tables that surround it,
like the points of a star. Multiple star schemas can have conformed dimensions between them setting
up a cluster of schemas that can become a data warehouse.

Figure 10.1 shows the points of the star as dimension tables, the relationships as lines, and the middle
of the star as the fact table.

Figure 10.1 – A star schema

https://www.kimballgroup.com

Dimensional Modeling and Row Level Security194

The diagram in Figure 10.1 shows a five-point star simply for convenience to aid our conceptual
learning. There is technically no limit to how many dimensions you can include, though there are some
usability considerations when there are too many. We’ll look at a practical example of a dimensional
model in the next section.

Designing a basic star schema

Let’s consider an example where we want to build a dimensional model to analyze employee leave
bookings. We want to be able to determine the total hours they booked but also drill down to individual
booking records to see how much time was booked and when the leave period starts. We need to
identify the facts and dimensions and design the star schema. The Kimball Group recommends a
four-step process to perform dimensional modeling. These steps are presented here, along with the
results for our example scenario in parentheses:

1. Identify the business process (leave booking).

2. Declare the grain (one record per contiguous leave booking).

3. Identify the dimensions (employee and date).

4. Identify the fact (hours booked).

Now that we have completed the modeling process, let’s look at a diagram of the star schema for this
employee leave booking scenario. It contains the fact and dimensions we identified via the Kimball
process. However, instead of two dimensions, you will see three related to the fact table. Date appears
twice since we have two different dates to analyze – the date booked and the start date. This is known
as a role-playing dimension, another Kimball concept, as shown in Figure 10.2:

Figure 10.2 – Star schema for employee leave bookings

Building efficient models 195

Steps 1 and 2 help determine our scope. The real work starts with step 3, where we need to define
the dimensions. With star schemas, we perform denormalization and join some tables beforehand
to bring the related attributes together into a single-dimension table where possible. Denormalized
tables can have redundant, repeated values.

Grouping values for a business entity makes for easier business analysis, and repetition isn’t a problem
for a column-storage engine such as Analysis Services tabular models, which is built to compress
repeating data.

The concept of grouping can be seen in the following diagram, which shows normalized and denormalized
versions of the same employee data:

Figure 10.3 – Denormalizing three tables into a single employee dimension

In Figure 10.3, we can see that the RoleName attribute has been duplicated across the last two roles
since we have two employees who are in the Analyst role.

A Date dimension simply contains a list of contiguous dates (complete years), along with date parts
such as day of the week, month name, quarter, year, and so on. This is typically generated using a
database script, M query, or DAX formulas. How you generate the date table is up to the developer.

Dimensional Modeling and Row Level Security196

The final step is to model the fact table. Since we determined that we want one row per employee leave
booking, we could include these attributes in the fact table in Figure 10.4:

Figure 10.4 – Leave booking fact table

We have provided a trivial example of a business problem for dimensional modeling in this book
to aid learning. Note that dimensional modeling is a unique discipline, and it can be significantly
more complex in some scenarios. There are different types of dimension and fact tables and even
supplementary tables that can solve granularity issues. We will briefly introduce a few of these more
advanced modeling topics, though we encourage you to perform deeper research to learn about these
areas if needed.

Next, we look at using a single source of truth to provide a common semantic model for multiple reports.

Building a single source of truth
Once you have the concept of a star schema, it is time to move on to conformed dimensions. Additional
star schemas can be linked together through a common dimension with the same surrogate keys.
Using this extension to a star schema will assist the Analysis Services engine to use measures between
fact tables to relate based on a dimension attribute. This process is known as a hub and spokes data
warehouse. Figure 10.5 displays conformed dimensions – Date, SalesTerritory, and Product – related
to two different fact tables – ResellerSales and InternetSales.

Building a single source of truth 197

Figure 10.5 – Conformed dimensions

So, instead of creating two different semantic models, InternetSales versus ResellerSales,
we can consolidate those into one semantic model called Sales. Conformed dimensions make this a
single source of truth because the measure calculations for ResellerSales and InternetSales
can be contained in one model. Now, we get an additional bonus with a single model: measures can
be calculated between the conformed facts. Any attribute from Date, Product, or SalesTerritory can
be placed in the same visual and compared. Figure 10.6 shows the combination of InternetSales
with ResellerSales sliced by Sales Territory Country and Year from the date dimension:

Dimensional Modeling and Row Level Security198

Figure 10.6 – Measures combining reseller and internet sales

Next, we will look at tasks to help with model size.

Reducing dataset size

In Chapter 2, Exploring Power BI Architecture and Configuration, we learned that the Import mode
tables are stored in a proprietary compressed format by Analysis Services. We should aim to keep
these tables as small as possible to reduce both data refresh and query durations. There is also the
initial semantic model load to consider. Power BI does not keep every semantic model in memory all
the time for practical reasons. When a semantic model has not been used recently, it must be loaded
from disk into memory the next time someone needs it. This initial semantic model load duration
increases as the size increases.

The benefits of smaller semantic models are beyond just speed. In general, less data to process means
less CPU and memory usage, which benefits the overall environment by leaving more resources
available for other processes.

The following techniques can be used to reduce semantic model size.

Removing unused tables and columns

If any table or column elements are not needed anywhere in the semantic model or downstream
reports, it is a good idea to remove them. Sometimes, tables or attributes are used for calculations
and not exposed to users directly, so these can’t be removed easily.

Building a single source of truth 199

Avoiding high precision and high cardinality columns

Sometimes, source data may be stored in a format that supports a much higher precision than we
would ever need for our analysis. For example, a date column to the second is not required if we only
ever analyze per day at the highest granularity. Similarly, the weight of a person to two decimal places
might not be needed if we always plan to display them as a whole number. Therefore, we recommend
reducing the precision in Power Query, in a pushed-down transformation, or permanently in the
original data source if that’s feasible and safe. Let’s build on the decimal versus whole number example.
Power BI stores both types as a 64-bit value that occupies 8 bytes. Initially, this won’t seem like it
makes a difference in terms of storage. This is true, though the semantic model size reductions will
be realized because we are reducing the number of unique values with lower precision (for example,
all the values between 99.0 and 99.49 collapse to 99 when we reduce the precision). Fewer unique
values will reduce the size of the internal dictionary.

The same concept extends to high cardinality columns. Cardinality means the number of unique
elements in a group. A high cardinality column will have few repeated values and will not compress
well. Sometimes, you will already know that every value in a column is unique. This is typical of
primary/surrogate keys such as an employee ID or employee key, which are unique by design. Be
aware that you may not be able to remove unique columns because they are essential for relationships
or report visuals.

Adjusting date and time settings

If you have many date columns in your semantic model, a lot of space may be taken up by the hidden
date tables that Power BI automatically creates. You can disable auto date/time in the Options
settings of a Power BI report. Be sure to disable this setting in Power BI Desktop, as described in
Chapter 2, Exploring Power BI Architecture and Configuration.

If you need to perform analysis with both date and time, consider splitting the original datetime
attribute into two values – that is, date only and time only. This reduces the total number of unique
date elements. If we had 10 years of data to analyze and design a date table to the second granularity,
we would have about 315 million unique datetime entries (10 years x 365 days x 24 hours x 60 minutes
x 60 seconds). However, if we split this, we would only get 90,050 unique items – that is, a table of
unique dates with 10 x 365 entries, and a table of unique times with 24 x 60 x 60 entries. This represents
a raw row count reduction of over 99%.

Replacing GUIDs with surrogate keys for relationships

A GUID is a Globally Unique Identifier consisting of 32 hexadecimal characters separated by
hyphens. An example of this is 123e4567-e89b-12d3-a456-426614174000. They are
stored as text in Analysis Services. Relationships across text columns are not as efficient as those
across numerical columns. You can use Power Query to generate a surrogate key that will be
substituted for the GUID in both the dimension and fact tables. This could be resource- and
time-intensive for large semantic models, trading off refresh performance for query performance.

Dimensional Modeling and Row Level Security200

An alternative is to work with database or data warehouse professionals to have surrogate keys provided
at the source if possible. This technique does cause problems if the GUID is needed. For example,
someone may want to copy the ID value to look up something in an external system. You can avoid
preloading the GUID in the dataset by using a composite model and a report design that provides a
drilling experience to expose just one or a small set of GUIDs on-demand via DirectQuery. We will
cover composite models in more detail in Chapter 12, High-Scale Patterns.

Composite models for very large models

When you have models that approach many tens or even hundreds of tables, you should consider
creating subsets of smaller datasets for better performance. Try to include only facts that are highly
correlated from a business perspective and that need to be analyzed by the same type of user in a
single report visual, page, or analytical session. Avoid loading facts that have very few dimensions in
common into the same dataset. For example, leave bookings and leave balances would likely belong
to the same dataset, whereas leave bookings and website inquiries would likely not. You can also solve
such problems using aggregations and composite models, which we will also discuss in Chapter 12,
High-Scale Patterns. This tip also applies to slow DirectQuery models, where moving to composite
models with aggregations can provide significant performance benefits.

Efficient data types

Power BI will try to choose the right data types for columns for you. If data comes from a strongly
typed source such as a database, it will match the source data type as closely as possible. However,
with some sources, the default that’s chosen may not be the most efficient, so it’s worth checking.
This is especially true for flat files, where whole numbers might be loaded as text. In such cases, you
should manually set the data type for these columns to integers because integers use value encoding.
This method compresses more than dictionary encoding and run-length encoding, which are used
for text. Integer relationships are also faster.

Offloading DAX calculated columns

Calculated columns do not compress as well as physical columns. If you have calculated columns,
especially with high cardinality, consider pushing the calculation down to a lower layer. You can
perform this calculation in Power Query. Aim to leverage push-down here too, using guidance from
Chapter 8, Loading, Transforming, and Refreshing Data.

Setting the default summarization

Numeric columns in a semantic model usually default to the SUM aggregation, and occasionally to
the COUNT aggregation. This property can be set in the Data tab of Power BI Desktop. You may have
integers that do not make sense to aggregate, such as a unique identifier such as an order number. If
the default summarization is set to SUM, Power BI will try to sum this attribute in visuals. This may
confuse users, but for performance, we are concerned that we are doing meaningless sums. Therefore,
we advise reviewing the Summarization settings, as shown in Figure 10.7:

Considering many-to-many relationships and bi-directional filtering 201

Figure 10.7 – Summarization on an identifier column set to Count instead of Sum

Next, we will look at one advanced data modeling topic that has specific relevance to Power BI.

Considering many-to-many relationships and bi-
directional filtering
An important Kimball concept that has specific relevance to Power BI is many-to-many relationships,
which we will abbreviate as M2M. This type of relationship is used to model a scenario where there
can be duplicate values in the key columns on both sides of the relationship. For example, you may
have a table of target or budget values that are set at the monthly level per department, whereas other
transactions are analyzed daily. The latter requirement determines that the granularity of the date
dimension should be daily. Figure 10.8 shows some sample source data for such a scenario. It highlights
the YearMonth field, which we need to use to join the tables at the correct granularity, and that there
are duplicate values in both tables:

Figure 10.8 – Calendar and Budgets data showing duplicates in the key column

Dimensional Modeling and Row Level Security202

This example demonstrates a completely legitimate scenario that has different variations. When you
try to build a relationship between columns with duplicates in Power BI, you will find that you can
only create an M2M type, as shown in Figure 10.9:

Figure 10.9 – Many-to-many relationship configuration

Considering many-to-many relationships and bi-directional filtering 203

Once the M2M relationship has been configured, Power BI will resolve the duplication and display
the correct results in visuals. For example, if you show the total Budget values using the year from
the Calendar table, the sums will be correct, as shown in Figure 10.10:

Figure 10.10 – Correct results with the M2M relationship type

Now that we have described when and how to use M2M relationships, we advise using them with
care and generally with smaller semantic models.

The M2M relationship type should be avoided when you’re dealing with large semantic models, especially
if there are many rows on both sides of the relationship. The performance of this relationship type is
slower than the most common one-to-many relationships and can degrade more as data volumes and
DAX complexity increase. Instead, we recommend employing bridge tables to resolve the relationship
into multiple one-to-many relationships. You will need to adjust the measure slightly. This approach
will be described shortly.

You can avoid the performance penalty of using an M2M relationship by adding a new table to the
semantic model called a bridge table. The following screenshot shows how we can introduce a bridge
table between the Calendar and Budgets tables with all the relationships being one-to-many. The
bridge table simply contains pairs of keys that can connect unique rows for each table. So, we need
to introduce a BudgetKey field to the Budgets table to uniquely identify each row, as in Figure 10.11:

Figure 10.11 – A bridge table added with only one-to-many relationships

Dimensional Modeling and Row Level Security204

A small change is required to ensure the bridge tables work correctly with calculations. We need to
wrap any measure around a CALCULATE() statement that explicitly filters over the bridge table. In
our case, we can hide the Budget column and replace it with a calculation, as shown here:

BudgetMeasure = CALCULATE(SUM(Budgets[Budget]), Budget_Bridge)

You can see both techniques in action in the sample Many to many.pbix file that’s included
with this chapter. There is also an example Conformed Dimension M2M.pbix where Internet
Sales have multiple Sales Reasons.

In our trivial examples with a small number of rows, creating a bridge table would seem like an
unnecessary effort, and it even introduces more data into the model. The performance benefit is
likely to be negligible and using the M2M relationship type would be better for easier maintenance.
However, as data volumes grow, we recommend implementing bridge tables and doing performance
comparisons rather than reporting scenarios.

Next, we will look at one case where bi-directional filtering is okay.

Using bi-directional relationships carefully

This type of relationship allows slicers and filter context to propagate in either direction across a
relationship. If a model has many bi-directional relationships, applying a filter condition to a single
part of the dataset could have a large downstream impact as all the relationships must be followed
to apply the filter. Traversing all the relationships is extra work that could slow down queries. We
recommend only turning on bi-directional relationships when the business scenario requires it.
Figure 10.12 highlights the relationship using bi-directional filtering:

Figure 10.12 – Bi-directional filter for SalesReason

Avoiding pitfalls with row-level security 205

FactInternetSalesReason can have multiple SalesReasonKey values for one line item in InternetSales.
FactInternetSalesReason is hidden from the report because there is nothing to report. SalesOrderNumber
and SalesOrderLineNumber (SaleID) must be concatenated together to form a relationship
between the two fact tables. Since this M2M is needed for reporting SalesReason for line items,
the bi-directional filter applied is correct and useful to the model. Usually, requirements dictate the
creation of a bi-directional filter. The improvement in performance in this example can be gained by
replacing the concatenated columns with a surrogate key as an integer data type rather than the text
data type of SaleID.

Next, we will look at optimizing RLS for datasets.

Avoiding pitfalls with row-level security
RLS is a core feature of Power BI. It is the mechanism that’s used to prevent users from seeing certain
data. It works by limiting the rows that a user can access in tables by applying DAX filter expressions.

There are two approaches to configuring RLS. The simplest configuration involves creating a role
and then adding members, which can be individual users or security groups. Then, DAX table filter
expressions are added to the role to limit which rows members can see. A more advanced approach
(sometimes referred to as dynamic RLS) is where you can create security tables that contain user and
permission information. The latter is commonly used when permissions can change often, and it allows
the security tables to be maintained automatically, without the Power BI model needing to be changed.

Performance issues can arise when applying filters becomes relatively expensive compared to the same
query with no RLS involved. This can happen when the filter expression is not efficient and ends up
using the single-threaded formula engine, which we learned about in Chapter 6, Third Party Utilities.
The filter may also be spawning a lot of storage engine queries.

General guidance for RLS configuration

It is recommended to perform RLS filtering on dimension tables rather than fact tables. Dimensions
generally contain far fewer rows than facts, so applying the filter on the dimension allows the engine
to take advantage of the much lower row count and then use the relationship with the fact to perform
the filtering.

Operations such as conditional statements and string manipulations are formula engine-bound and can
become very inefficient for large semantic models. Try to keep the DAX filter expressions simple and
adjust the data model to precalculate any intermediate values that are needed for the filter expression.
One example is parent-child hierarchies, where a table contains relationship information within it
because each row has a parent row identifier that points to its parent in the same table. Consider the
following example of a parent-child dimension for an organization structure. It has been flattened with
the helper columns such as Path beforehand so that the DAX calculations and security can be applied
to the levels. Figure 10.12 shows a typical example in Power BI for handling a parent-child situation:

Dimensional Modeling and Row Level Security206

Figure 10.13 – A typical parent-child dimension configured for Power BI

Suppose we wanted to create a role to give people access to all of Finance. You might be tempted to
configure a simple RLS expression, like so:

PATHCONTAINS('Organization Structure'[Path], 2)

This will work, but it does involve string manipulation because the function is searching for a character
in the Path column. For better performance, the following longer expression is preferred because it
only compares integers:

'Organization Structure'[Path] = 2

Optimize relationships

Security filters are applied from dimensions to facts by following relationships, just like any regular
filter that’s used in a report or query. Therefore, you should follow the relationship best practices that
were mentioned in Chapter 5, Optimization for Storage Modes.

Power BI Desktop allows you to stimulate roles to test RLS. You should use tools such as Performance
Analyzer and DAX Studio to capture durations and engine activity with and without RLS applied.
Look for differences in formula engine durations and storage engine query counts to see what impact
the RLS filter has on timings. It is also recommended to test a published version in the Power BI
service with a realistic population data volume. This can help identify issues that may not be caught
in development with smaller data volumes. Remember to establish baselines and measure the impact
of individual changes, as recommended in Chapter 7, Governing with a Performance Framework.

Guidance that applies to dynamic RLS

Avoid unconnected security tables and LOOKUPVALUE() to not simulate relationships by using a
function to search for value matches in columns across two tables. This operation involves scanning
through data and is much slower than if the engine were to use a physical relationship, which we
recommend instead. You may need to adjust your security table and data model to make physical
relationships possible, which is worth the effort.

Avoiding pitfalls with row-level security 207

With dynamic RLS, the filter condition is initially applied to the security tables, which then filter
subsequent tables via relationships. We should model the security tables to minimize the number
of rows they contain. This minimizes the number of potential matches and reduces engine filtering
work. Bear in mind that a single security table is not a Power BI requirement, so you are not forced to
combine many permissions and grains into a large security table. Having a few small security tables
that are more normalized can provide better performance.

Security filter operations are not cached when they use them; try to limit the security tables to less than
128,000 rows. If you have many different RLS filters from dimensions being applied to a single fact table,
you can build a single security table using the same principles as the Kimball junk dimension. This
can be a complete set of every possible combination of permissions (also known as a cross-product)
or just the actual unique permission sets that are required by users. A cross-product is very easy to
generate but can result in combinations that do not make sense and can never exist.

To see this technique in practice, let’s consider the following setup, where one fact table is being filtered
by multiple dimensions with security applied. The arrows in Figure 10.13 represent relationships and
the direction of the filter propagation:

Figure 10.14 – Securing a single fact via multiple dimensions

Dimensional Modeling and Row Level Security208

We could reduce the amount of work that’s needed to resolve security filters by combining the
permissions into a single security table, as shown in Figure 10.14:

Figure 10.15 – More efficient configuration to secure a single fact

Note that our SEC_Combined table does not use a cross-product – it only contains combinations that
exist in the source data, which will result in a smaller table. This is preferred when you have many
dimensions and possible values. In our trivial example, the table contains 20 rows instead of the 30
combinations that would come from a cross-product (five Geography rows by six ProductGroup rows).

You can see the effect of this change by running some report pages or queries with and without RLS
applied, as described earlier. Check out RLS.pbix and RLS Combine.pbix in the sample files to
see these in action. They contain the configurations from Figure 10.13 and Figure 10.14, respectively,
with a single fixed role to simulate the Super Man user.

We ran some tests in DAX Studio using a role built for Super Man and got the results shown in
Figure 10.15. Even though we only had 25,000 rows, and the durations were trivial, you can already
see a 300% difference in the total duration when RLS is applied using the combined approach. With
many users, dimensions, and fact rows, this difference will be significant and noticeable in the report:

Avoiding pitfalls with row-level security 209

Figure 10.16 – Performance comparison of different RLS configurations

One last note about security context: the security table in this example contains multiple rows and some
duplicate permission sets. For example, observe that both Spider Man and Black Widow have access
to all of Asia and Outdoor Furniture. If you have many hundreds or thousands of users, security tables
like this can get quite large. If users have the same permission sets, we can reduce the size significantly
by performing modeling, as shown for the Geography dimension in Figure 10.16. Observe how we
have much smaller security tables. Also, note the appropriate use of M2M and bi-directional filters by
exception here – performance can improve massively with this setup when used correctly:

Figure 10.17 – Combining multiple users and permissions

Building specialized security tables such as the one shown can be achieved in different ways. You
could build the tables externally as part of regular data warehouse loading activities, or you could
leverage Power Query.

Now, let’s summarize what we’ve learned in this chapter.

Dimensional Modeling and Row Level Security210

Summary
In this chapter, we learned how to speed up semantic models for Import mode. The theory from the
Kimball Group was used frequently for dimensional modeling. The star schema provides an efficient
use of data for semantic models. This format works well with the Analysis Services engine used in
Power BI. The four-step dimensional modeling process from Kimball provides practical examples we
can use for optimal performance.

Then, we focused on reducing the size of the semantic models. This is important because less data
means less processing, which results in better performance and more free resources for other parallel
operations. We also explored techniques to help Analysis Services compress data better, such as choosing
appropriate data types, reducing cardinality for columns, and preferring numbers over text strings.

Lastly, we learned how to optimize RLS. We learned that RLS works just like regular filters and that
previous guidance about fast relationships also applies to RLS. The main thing to remember with RLS
is to keep DAX security filter expressions as simple as possible, especially to avoid string manipulation.

In the next chapter, we will look at DAX formulas, where we will identify common performance traps
and suggest workarounds.

11
Improving DAX

In the previous chapter, we focused on the Import mode for the visual layer in Power BI, where a key
point was to reduce the load on data sources by minimizing the complexity and number of queries
that are issued to the semantic model.

In theory, a well-designed data model should not experience performance issues easily unless there
are extremely high data volumes with tens of millions of rows or more. However, it is still possible to
get poor performance with good data models due to the way DAX measures are constructed.

Learning the Data Analysis Expressions (DAX) basics may be considered easy by many people
because it can be approached by people without a technical data background but who are comfortable
writing formulas in a tool such as Microsoft Excel. However, mastering DAX can be challenging. This
is because DAX is a rich language with multiple ways to achieve the same result. DAX code requires
having knowledge of row context and filter context, which determines what data is in scope at a point
in the execution.

In Chapter 6, Third-Party Utilities, we talked about the formula engine and storage engine in Analysis
Services. In this chapter, we will look at examples of how DAX design patterns and being in filter
context versus row context can affect how the engine behaves. We will see where time is spent in
slower versus faster versions of the same calculation. We will also identify patterns that typically cause
performance problems and how to rewrite them.

In this chapter, we’re going to cover the following main topics:

• Understanding row and filter context

• Improving the performance of a calculated column

• Improving filter context for a measure

• DAX pitfalls and optimizations

Improving DAX212

Technical requirements
There are two files to support this chapter as examples (DisctinctCountSaleGT500.pbix and
DAX Optimization.pbix) in the Chapter11 folder in this book’s GitHub repository: https://
github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-
Practices-Second-Edition.

Let’s start talking about the areas where DAX is used in Power BI semantic models.

Understanding row and filter context
There is some confusion about using a calculated column versus a measure. There are no cases where
one or the other can be used based on a requirement. For instance, if the requirement says give me a
sum of sales, then and only then can a measure be used. On the other hand, if the requirement is to
calculate the invoice line item’s margin, then using a calculated column is the method to use. DAX
code is used in both cases.

Next, let’s look at an example of a calculated column and a measure.

Calculated column

In the realm of DAX (Data Analysis Expressions) for Power BI, grasping row and filter context is
fundamental. This knowledge dictates when to employ calculated columns versus measures, ensuring
accurate data computations tailored to specific needs. Let’s explore these concepts through an example
involving an Internet Sales Margin calculation.

Internet Sales Margin = InternetSales[SalesAmount] -
InternetSales[TotalProductCost]

Figure 11.1 displays this new column in a table:

Figure 11.1 – Displaying Internet Sales Margin in a table

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

Understanding row and filter context 213

The columns add the physical values to the table along with all imported columns for the query.

Measure

Here we introduce a measure called ‘Internet Sales,’ designed to calculate the total sales amount from
the ‘InternetSales’ table. Measures like this aggregate data based on specified conditions or filters,
providing insights into sales performance.

Internet Sales = SUM(InternetSales[SalesAmount])

Figure 11.2 displays the measure in a visual:

Figure 11.2 – Displaying Internet Sales in a donut chart

The calculation of the amounts for each year does not happen until the visual is rendered. It does not
add space to the size of the query or the model.

Next, we will discuss row context.

Improving DAX214

Dissecting row context

Now, from the preceding calculated column example, we can see that Internet Sales Margin will be
calculated row by row. Each time a row is viewed or displayed, this calculated row-level value is shown.
It is also stored physically in the table with the imported columns. This is the easiest example of row
context (row by row). For row 1, the value would be x and for row 2, the value is y.

Measures can also have a row context before applying a filter context. The X DAX measures do this.
There is SUMX for the DAX SUM function. The same with AVERAGE (AVERAGEX), MIN (MINX), MAX
(MAXX), COUNT (COUNTX), and so on. The X means that some calculation needs to be performed on
each row before aggregating all the row values, as in this instance:

Internet Sales = SUMX(InternetSales[Qty] * InternetSales[UnitPrice])

In this instance of a measure, the sales amount for each row must be calculated from the Qty and
UnitPrice columns before the total sum of internet sales can be shown. This use of SUMX makes
the measure perform a row context (row by row) calculation before the filter context of the dataset
is computed. Iterating over each row can be time-consuming and make the display of the measure
take more time.

Discovering filter context

Filter context and DAX for measures go hand in hand. A measure is usually an aggregation of multiple
rows to give analytical results to an end user. The result helps with business decisions or validates the
options available for a path to implement. The data in a semantic model is returned from a dataset
(filtered or not) to perform this aggregation. Using DAX in an efficient manner helps the determination
of the aggregate during a visualization display. In Figure 11.3, the Internet Sales measure is
aggregated as a measure for the order year and month, city of sale, and customer gender:

Understanding row and filter context 215

Figure 11.3 – Table used to display dimension attributes and measures

The current filter context for the table of data is the intersection of the year, month, city, and gender.
The SUM DAX measure for Internet Sales is coded here:

Internet Sales = Sum([SalesAmount])

This is a simple measure and DAX formula and an easy way to see data. If the slicer for Year is used
to show only 2012, the filter context of the table would change (filter) to only show the rows for
2012. Also, if the City slicer selects Berlin or multiple cities, the filter context of the table would
change to the cities selected plus the year selected.

Note
To learn more about using DAX, there are many helpful resources available. A good suggestion
to browse DAX functions is https://dax.guide.

Next, we will see how to move a calculated column to the Power Query step to reduce the size of a model.

https://dax.guide

Improving DAX216

Improving the performance of a calculated column

This example uses the customer name from the customer dimension. The table has the first name and
last name, but the requirements indicate to use customer name by concatenating the last name with
the first name with a comma and space between them. The calculated column would be like this:

Customer Name = Customer[LastName] & ", " & Customer[FirstName]

This is a valid DAX code. This creates a new column in the customer entity and leaves FirstName
and LastName in the table. FirstName and LastName must exist in the table in the semantic
model for this column to be created. Figure 11.4 shows the calculated column:

Figure 11.4 – Calculated column called ccCustomer name

Figure 11.4 also displays the CustomerName column created in Power Query. Both columns,
ccCustomerName and CustomerName, contain the same data. Figure 11.5 shows the difference
in size from the DAX Studio metrics viewer:

Figure 11.5 – Size for calculated column versus Power Query in DAX Studio view metrics

The Power Query column is smaller in this case. Also, FirstName and LastName do not need
to exist in the final table or query because the concatenation happens in the T-SQL being sent to the
data source. That is another by-product of creating this column in Power Query. The processing is in
the native query on the data source, thus saving CPU resources when refreshing the semantic model.

Understanding row and filter context 217

Next, we will see an example of a DAX measure that performs poorly but is changed to
improve performance.

Improving filter context for a measure

In this example, the measure will invoke a row-by-row comparison rather than a table filter before
counting distinct orders. Figure 11.6 shows the report page with two different count measures that
look for large customer sales:

Figure 11.6 – Large customer distinct count measure

This is the code for the measure:

Large Customer Order Count =
CALCULATE (
 DISTINCTCOUNT ('Internet Sales'[SalesOrderNumber]),
 FILTER ('Internet Sales', 'Internet Sales'[SalesAmount] > 500)
)

The distinct count on the sales is filtered by a sales amount of over 500. The issue with this calculation
is that the distinct count will be performed first, and then a filter applied to each row of the distinct
count to see whether the sales amount of the order is above 500. This will iterate row by row until
the comparison is complete. Figure 11.7 shows the query in DAX Studio and the number of query
executions for each comparison:

Improving DAX218

Figure 11.7 – Query server timings from DAX Studio

This method of analysis is explained in the Performance tuning the data model section of Chapter 3,
Learning the Tools of Performance Tuning.

The issue with the measure in Figure 11.7 shows that 1,000+ queries are executed in the storage engine
for filtering on the sales amount greater than 500. A simple change to this measure will improve the
performance with fewer queries. Here, we add the ALL function to the FILTER of the measure:

Large All Customer Order Count =
CALCULATE (
 DISTINCTCOUNT ('Internet Sales'[SalesOrderNumber]),
 FILTER (all('Internet Sales'[SalesAmount]), 'Internet
Sales'[SalesAmount] > 500)
)

This will change the filter context of the measure to look at all the rows in the Internet Sales
table first and filter the row set to only sales above 500. Then, the filter context of the visual and slicers/
filters will be applied after the distinct count of sales is returned from the whole query. Figure 11.8
shows the DAX Studio server timings with the different measures.

Understanding DAX pitfalls and optimizations 219

Figure 11.8 – Query server timings from DAX Studio using the ALL DAX function

Next, we will cover the pitfalls along with optimizations you can use as best practices for improved
performance of DAX expressions.

Understanding DAX pitfalls and optimizations
Before we dive into specific DAX improvements, we will briefly review the following suggested process
to tune your DAX formulas, as shown earlier.

Tuning DAX

In Chapter 3, Learning the Tools for Performance Tuning, and Chapter 6, Third-Party Utilities, we
provided detailed information and examples of how to use various tools to measure performance.
We’ll take this opportunity to remind you of which tools can help with DAX tuning and how they
can be used. A recommended method to tune DAX is as follows:

1. Review DAX expressions in the semantic model. Ideally, use the Best Practice Analyzer (BPA)
to identify potential improvements. The BPA does cover some of the guidance provided in the
next section, but it’s a good idea to check all the rules manually.

2. Rank the suggestion in terms of estimated effort, from lowest to highest. Consider moving
some calculations or even intermediate results to Power Query. This is usually a better place
to perform row-by-row calculations.

3. In a development version of the semantic model, implement trivial fixes right away, but always
check your measures to make sure they are still providing the same results.

4. Using the Power BI Desktop Performance Analyzer, check the performance of the report
pages and visuals. Copy the queries that have been captured by the Analyzer into DAX Studio.
Then, use the server timing feature in DAX Studio to analyze the load on the formula engine
versus the storage engine.

Improving DAX220

5. Modify your DAX expressions and confirm that performance has improved in DAX Studio –
remember that DAX Studio allows you to safely overwrite measures locally without changing
the actual semantic model.

6. Make DAX changes in the semantic model and check the report again with Performance Analyzer
in Power BI Desktop to ensure that there are no unexpected performance degradations and
that the results are still correct.

7. Test the changes in a production-like environment using realistic user scenarios and data
volumes. If successful, deploy to the production environment; otherwise, repeat the process
to iron out any remaining issues.

Next, let’s review some DAX guidance.

DAX guidance

We will continue with the theme of having the Analysis Services engine do as little work as possible,
with as little data as possible. Even with optimized datasets that follow good modeling practices,
inefficient DAX can make the engine unnecessarily scan rows or perform slow logic in the formula
engine. Therefore, our goals for tuning DAX are as follows:

• Reduce code that executes on the single-threaded formula engine

• Reduce the total number of internal queries that are generated by a DAX query

• Avoid scanning large tables

Note
In this section, we will only show the performance results for the first few tips. Please be aware
that you can use DAX Studio, Desktop Performance Analyzer, and other tools to measure
performance and tune DAX for all cases mentioned here.

The following list represents some common design choices that lead to lower performance. We will
explain why each one can be problematic and what you can do instead:

• Use variable instead of repeating measure definitions: Sometimes, when we are creating a
measure, we need to reuse a calculation multiple times to get the result. We will use an example
where we have some sales figures and need to calculate the variance percentage compared to
the same period in the previous year. One way to write this calculation is as follows:

YoY% =
(
SUM('Fact Sale'[Total Sales])
- CALCULATE(SUM('Fact Sale'[Total Sales]), DATEADD('Dimension
Date'[Date], -1, YEAR))

Understanding DAX pitfalls and optimizations 221

)
/
CALCULATE(SUM('Fact Sale'[Total Sales]), DATEADD('Dimension
Date'[Date], -1, YEAR)

Observe that we are referencing the prior year’s sales value twice – once to calculate the numerator
and again to calculate the denominator. The Analysis Service engine will have to run this code
twice. It is better to let the engine use caching with a variable. Notice the variable and the use
of DIVIDE to handle division errors:

YoY% VAR =
VAR _PY_Sales =
CALCULATE(
SUM('Fact Sale'[Total Sales]),
DATEADD('Dimension Date'[Date], -1, YEAR))
RETURN DIVIDE (
 SUM('Fact Sale'[Total Sales]) - _PY_Sales),
 _PY_Sales
)

The difference here is that we have introduced the VAR statement to define a variable called
_PY_Sales, which will hold the value of the previous year’s sales. This value can be reused
anywhere in the formula simply by name, without incurring recalculation.

You can see this in action in the sample file, which contains both versions of the measure.
The Without Variable and With Variable report pages contain a table visual, as in Figure 11.9:

Figure 11.9 – Table visual showing a year-on-year % growth measure

Improving DAX222

We captured the query trace information in DAX Studio to see how these perform. The results
can be seen in Figure 11.10:

Figure 11.10 – DAX Studio showing less work and duration with a variable

In Figure 11.10, the first query without the variable was a bit slower. We can see it executed
one extra storage engine query, which does appear to have hit a cache in our simple example.
We can also see more time being spent in the formula engine than with the version with a
variable. In our example, where the fact table contains about 220,000 rows, this difference would
be unnoticeable. This can become significant with higher volumes and more sophisticated
calculations, especially if a base measure is used in other measures that are all displayed at the
same time.

Note
Using variables is probably the single most important tip for DAX performance. There are so
many examples of calculations that need to use calculated values multiple times to achieve the
desired result. You will also find that Power BI automatically uses this and other recommended
best practices in areas where it generates code for you, such as Quick Measures.

• Use DIVIDE instead of the division operator: When we divide numbers, we sometimes
need to avoid errors by checking for blank or zero values in the denominator. This results in
conditional logic statements that add extra work for the formula engine. Let’s continue with
the example from Figure 11.10. Instead of year-over-year growth, we now want to calculate a
profit margin. We want to avoid report errors by handling blank and zero values:

Profit IF =
IF(

Understanding DAX pitfalls and optimizations 223

 OR(
 ISBLANK([Sales]), [Sales] == 0
),
 BLANK(),
 [Profit]/[Sales}
)

An improved version would use the DIVIDE function as follows:
Profit DIVIDE = DIVIDE([Profit], [Sales])

This function has several advantages. It automatically handles zeros and blank values at the
storage engine layer, which is parallel and faster. It has an optional third parameter that allows
you to specify an alternative value to use if the denominator is zero or blank. It is also a much
shorter measure that is easier to understand and maintain.

When we look at the performance numbers in DAX Studio, we can see stark differences. The
first version is nearly three times slower than the optimized version, as shown in Figure 11.11:

Figure 11.11 – DAX Studio showing less work done by DIVIDE

Figure 11.11 also shows us that the slower version issued more internal queries and spent
about four times longer in the storage engine. It also spent about twice as much time in the
formula engine. Once again, this is just a single query for one visual. The difference can be
compounded for a typical report page that runs many queries. You can experiment with this
using the Profit IF and Profit Divide pages in the sample file.

Improving DAX224

• For measures, avoid converting blank results into zero or some text value: Sometimes, for
usability reasons, people write measures with conditional statements to check for a blank result
and replace it with zero. This is more common in financial reporting, where people need to see
every dimensional attribute value (for example, Cost Code or SKU), regardless of whether
any activity occurred. Let’s look at an example. We have a simple measure called Sales in our
sample file that sums the 'Fact Sale'[Total Including Tax] column. We have
adjusted it to return zero instead of blanks, as follows:

SalesNoBlank =
 VAR _SumSales = SUM('Fact Sale'[Total Including Tax])
RETURN
 IF(ISBLANK(_SumSales), 0, _SumSales)

Then, we constructed a matrix visual that shows sales by product barcode for both versions of
the measure. The results are shown in Figure 11.12. At the top, we can see the values for 2016,
which implies there are no sales for the product barcodes in other years. At the bottom, we can
see 2013 onward, which we can scroll through:

Figure 11.12 – The same totals but many more rows when replacing blanks

Both results shown in Figure 11.12 are technically correct. However, there is a performance
penalty for replacing blanks. If we think about a dimensional model, in theory, we could
record a fact for every possible combination of dimensions. In practical terms, for our Sales
example, in theory, we could sell things every single day, for every product, for every employee,
in every location, and so on. However, there will nearly always be some combinations that are
not realistic or simply don’t have activities against them. Analysis Services is highly optimized
to take advantage of empty dimension intersections and doesn’t return rows for combinations
where all the measures are blank. We measured the query that was produced by the visuals in
the proceeding screenshot. You can see the performance difference in Figure 11.13:

Understanding DAX pitfalls and optimizations 225

Figure 11.13 – Slower performance when replacing blanks

Figure 11.13 shows a longer total duration, more queries executed, and significantly more
time spent in the formula engine. You can see these on the MeasureWithBlank and
MeasureNoBlank report pages in the sample file.

Consider not replacing blanks in your measure but solving this problem on a per-visual basis.
You can do this by selecting a visual and using the Fields pane in Power BI Desktop to enable
Show items with no data for specific attributes of a dimension, as shown in Figure 11.14. This
change with still produce a less optimal query, but not one that’s quite as slow as using a measure:

Figure 11.14 – Show items with no data

Improving DAX226

Another advantage of the visual-based approach is that you are not forced to take a performance
hit everywhere the measure is used. You can balance performance selectively.

If you still need to implement blank handling centrally, you could consider making the measures
more complex to only substitute a blank for the correct scope of data. We recommended checking
out the detailed article from SQLBI on this topic, which shows a combination of DAX and data
modeling techniques to use, depending on your scenario: https://www.sqlbi.com/
articles/introducing-summarizecolumns.

A final point here is to avoid replacing blanks in numerical data with text values such as No
Data. While this can be helpful for users, it can be even slower than substituting a zero because
we are forcing the measures to become a string. This can also create problems downstream if
the measure is used in other calculations.

• Use SELECTEDVALUE instead of VALUES: Sometimes, a calculation is only relevant when
a single item from a dimension is in scope. For example, you might use a slicer as a parameter
table to allow users to dynamically change measures such as scaling by some factor. One pattern
to access the single value in scope is to use HASONEVALUE to check for only one value, and
then use the VALUES DAX function. If we had a parameter table called Scale, our measure
would look like this:

Sales by Scale =
DIVIDE (
 [Sales Amount],
 IF(HASONEVALUE (Scale[Scale]), VALUES (Scale[Scale]), 1
)
)

Instead, we suggest that you use SELECTEDVALUE, which performs both steps internally.
It returns blank if there are no items or multiple items in scope and allows you to specify an
alternative value if there are zero or multiple items in scope. A better version is as follows:

Sales by Scale =
DIVIDE (
 [Sales],
 SELECTEDVALUE ('Scale'[Scale], 1)
)

You can see this technique in use in the sample file on the SELECTEDVALUE report page.

• Use IFERROR and ISERROR appropriately: These are helpful functions that a data modeler can use
to catch calculation errors. They can be wrapped around a measure to provide alternatives if there
are calculation errors. However, they should be used with care because they increase the number of
storage engine scans required and can force row-by-row operations in the engine. We recommend
dealing with data errors at the source or in the ETL stages to avoid performing error checking in DAX.

https://www.sqlbi.com/articles/introducing-summarizecolumns
https://www.sqlbi.com/articles/introducing-summarizecolumns

Understanding DAX pitfalls and optimizations 227

This may not always be feasible, so depending on the situation, you should try to use other
techniques, such as the following:

 � The FIND or SEARCH functions to search for and substitute values for failed matches

 � The DIVIDE or SELECTEDVALUE functions to handle zeros and blanks

• Use SUMMARIZE only for text columns: This is the original function that’s included in
DAX to perform grouping. While it allows any column type, we advise not using numerical
columns for performance reasons. Instead, use SUMMARIZECOLUMNS, which is newer and
more optimized. There are many examples and use cases here, so we recommend checking
out the following article by SQLBI, which provides much deeper coverage: https://www.
sqlbi.com/articles/introducing-summarizecolumns.

• Avoid FILTER in functions that accept filter conditions: Functions such as CALCULATE
and CALCULATETABLE accept a filter parameter that is used to adjust the context of
the calculation. The FILTER function returns a table, which is not efficient when it’s used as
a filter condition in other table functions. Instead, try to convert the FILTER statement into
a Boolean expression:

Wingtip Sales FILTER =
CALCULATE(
 [Sales],
 FILTER('Dimension Customer', 'Dimension Customer'[Buying
Group] == "Wingtip Toys")
)

It is better to replace the table expression with a Boolean expression, as follows:
Wingtip Sales =
CALCULATE(
 [Sales],
 'Dimension Customer'[Buying Group] == "Wingtip Toys")
)

The FILTER function can force row-by-row operations in the engine, whereas the improved
Boolean version will use more efficient filtering on the column stores.

• Use COUNTROWS instead of COUNT: We often write measures to count the number of
rows in a table without context. Two choices will provide the same result, but only if there are
no blank values. The COUNT function accepts a column reference, whereas the COUNTROWS
function accepts a table reference. When you need to count rows and do not care about blanks,
the latter will perform better.

• Use ISBLANK() instead of = BLANK() to check for empty values: They achieve the same
result, but ISBLANK() is faster.

https://www.sqlbi.com/articles/introducing-summarizecolumns
https://www.sqlbi.com/articles/introducing-summarizecolumns

Improving DAX228

• Optimize virtual relationships with TREATAS: There are times when we need to filter a
table based on column values from another table but cannot create a physical relationship
in the semantic mode. It may be that multiple columns are needed to form a unique key, or
that the relationship is many-to-many. You can solve this using FILTER and CONTAINS, or
INTERSECT. However, TREATAS will perform better and is recommended.

Look at the TREATAS report page in our sample file. Figure 11.15 shows an example where
we added a new table to hold rewards groupings for customers based on their buying group
and postal code. We want to filter sales using the new Reward Group column. We will not
be able to build a single relationship with more than one key field:

Figure 11.15 – The new Reward Group table cannot be connected to the Customer table

We can write a measure to handle that using CONTAINS, as follows:
RG Sales CONTAINS =
CALCULATE([Sales],
 FILTER(
 ALL('Dimension Customer'[Buying Group]),
 CONTAINS(
 VALUES(RewardsGroup[Buying Group]),
 RewardsGroup[Buying Group],
 'Dimension Customer'[Buying Group]
)),
 FILTER(
 ALL('Dimension Customer'[Postal Code]),
 CONTAINS(
 VALUES(RewardsGroup[Postal Code]),
 RewardsGroup[Postal Code],
 'Dimension Customer'[Postal Code]
)))

Summary 229

This is quite long for a simple piece of logic, and it does not perform that well. A better version
that uses TREATAS would look like this:

RG Sales TREATAS =
CALCULATE([Sales],
 TREATAS(
SUMMARIZE(RewardsGroup, RewardsGroup[Buying Group],
RewardsGroup[Postal Code]),
'Dimension Customer'[Buying Group],
'Dimension Customer'[Postal Code]
)
)

We have not shown the INTERSECT version here, but note that this will be a little easier to
write and can provide better performance. However, the TREATAS version is much shorter and
easier to read and maintain. It will also perform better. Here, we visualized a simple table, as
shown in Figure 11.16, and managed to get nearly a 25% speed improvement with TREATAS.
We also reduced the number of storage engine queries from 11 to 8:

Figure 11.16 – The visual that was used to test CONTAINS versus TREATAS performance

Now that we have learned about DAX optimization and row versus filter context, let’s summarize
what we’ve learned in this chapter.

Summary
In this chapter, we started with row and filter context and progressed to learning about optimization
techniques for DAX functions that perform the same calculations. This is because the DAX pattern
directly influences how Analysis Services retrieves data and calculates query results.

Using calculated columns can cause unneeded processing at the engine level instead of the import step.
Using Power Query for additional columns helps with performance and optimization. DAX tuning
tools are the go-to for examining the functions and their individual performance in the storage and
formula engine. We recommended starting the Performance Analyzer to capture the queries to test
in DAX Studio for server timings. It is important to look at the total duration, number of internal
queries, and time spent in the engines.

Improving DAX230

Next, we looked at a range of common DAX pitfalls and alternative designs that can improve
performance. We learned that, in general, we are trying to avoid formula engine work and wish
to reduce the number of queries. Explanations of the performance penalties as well as examples of
alternatives rounded out the chapter.

Considering what we’ve learned so far, there may be still issues where the sheer volume of data can
cause problems where additional modeling and architecture approaches need to be used to provide
acceptable performance. Therefore, in the next chapter, we will look at techniques that can help us
manage big data that reaches the terabyte scale.

12
High Scale Patterns

In the previous chapter, we learned how to optimize DAX expressions. So far, we have covered all the
advice on optimizing different layers of a Power BI solution, from the semantic model layer to report
design. In this chapter, we will take a step back and revisit architectural concepts and related features
that help deal with very high data volumes.

The amount of data that organizations collect and need to analyze is increasing all the time. With the
progression of streaming data such as the Internet of Things (IoT) and predictive analytics, certain
industries, such as energy and resources, are collecting more data than ever before. It is common for
a modern mine or gas plant to have tens of thousands of sensors, each generating many data points
at a granularity much higher than a second.

Even with Power BI’s data compression technology, it isn’t always possible to load and store massive
amounts of data in an Import mode model in a reasonable amount of time. The problem is worse
when you must support hundreds or thousands of users in parallel. This chapter will cover the options
you have to deal with such issues by leveraging composite models and aggregations, Premium or
Fabric capacities, and Azure technologies. The concepts in this chapter are complementary and can
be combined in the same solution as required.

In this chapter, we will cover the following topics:

• Scaling with capacities and Azure Analysis Services (AAS)

• Scaling with aggregations and composite models

• Using Azure Synapse and Fabric for data source improvements

High Scale Patterns232

Technical requirements
There is a combined sample file available for this chapter. All the sample references can be found in the
Composite and Aggs.pbix file, in the Chapter12 folder in this book’s GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-
Best-Practices-Second-Edition. Since this example uses DirectQuery to access a SQL
server database, the Adventure Works database(s) can be downloaded from GitHub; we have included
the AdvWrk17.bak SQL backup. Restore that database to a SQL server and update the connection
in Power BI Desktop to run the sample successfully.

Scaling with capacities and Azure Analysis Services
Power BI users can use a Pro or Premium Per User (PPU) desktop license to develop reports that can
be published to the service for others to view. The default area is called Shared capacity. To provide
a consistent and fair experience for everyone, there are certain limits in Shared capacity. One that
affects data volumes is the 1 GB size limit of a compressed semantic model. Once a company reaches
enterprise levels of data, a larger, dedicated capacity will be required to avoid the “noisy neighbors”
in a shared service. With a dedicated capacity that is not shared with any other company, models and
reports can be monitored within the company’s service.

Leveraging Fabric for data scale

Microsoft first introduced Premium capacities to handle this volume size. It came in five different
SKUs. Recently, in October 2023, Microsoft released Fabric capacities to General Availability (GA).
Microsoft announced in March of 2024 that renewals for Premium capacities will be guided to Fabric
capacity. Figure 12.1 shows a comparison of capacities. The third column shows P for Premium, E for
Embed, abd A for Azure, while Fabric (F) is in the first column:

SKU

Fabric

Capacity
Unit (CU)

SKU (P for
Premium, E for
Embedded, or
A for Azure)

v-cores RAM limit
model
load size

Automatic
query
memory limit

Maximum
memory
in GB

F2 2 - 0.25 1 GB 1 GB 3
F4 4 - 0.5 2 GB 1 GB 3
F8 8 EM/A1 1 3 GB 1 GB 3
F16 16 EM2/A2 2 5 GB 2 GB 5
F32 32 EM3/A3 4 6 GB 5 GB 10
F64 64 P1/A4 8 10 GB 10 GB 25
F128 128 P2/A5 16 10 GB 10 GB 50
F256 256 P3/A6 32 10 GB 10 GB 100

https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Performance-Best-Practices-Second-Edition

Scaling with capacities and Azure Analysis Services 233

SKU

Fabric

Capacity
Unit (CU)

SKU (P for
Premium, E for
Embedded, or
A for Azure)

v-cores RAM limit
model
load size

Automatic
query
memory limit

Maximum
memory
in GB

F512 512 P4/A7 64 10 GB 20 GB 200
F1024 1024 P5/A8 128 10 GB 40 GB 400
F2048 2048 - 256 10 GB 40 GB 400

Figure 12.1 – Mapping Fabric to other capacities and limits

Customers can purchase these capacities, as shown in Figure 12.1. The purchased model can be fixed
cost per month or pay-as-you-go. The EM and A SKU capacities were mainly for embedded users
of reports shared on websites. SKUs were also used to extend Premium SKUs with AutoScale. These
services are created in the Azure portal and managed differently than Premium. Premium is licensed,
purchased, and billed differently than Azure resources. Fabric capacities are created in Azure and fold
back into your company’s Azure portfolio. Going forward, Microsoft will only sell new licenses for
Fabric and not Premium. Renewals for Premium can be obtained if on an Enterprise agreement, but
only until January 2025.

Note
The main issues with Premium capacities that were preventing important features from being
used with Power BI include security with VNet and private endpoints, as well as the ability to
turn on or off (pause/resume) the capacity. These also include integration with Synapse-type
features that are now in Fabric, including streaming services.

Figure 12.2 shows the Large semantic model storage format setting on a published semantic model.
It is part of the Semantic model page and can be accessed from a Power BI workspace. You can enable
this to remove the model’s size limit:

Figure 12.2 – Large semantic model storage format option in Dataset settings

High Scale Patterns234

Tip
If your semantic model will grow beyond 1 GB in size, you should consider using a Fabric
capacity. This capacity will allow you to upload a semantic model to a size between 1 and 10 GB,
depending on the capacity. (See Figure 12.1 for a reminder of the limits.) The semantic model
can then be refreshed with more data to grow beyond the load limit. However, if you choose the
large semantic model format, the model will have no size limits. The available capacity memory
is the only limiting factor. You can even provision capacities of different sizes and spread load
accordingly. Always plan to have free memory on the capacity to handle temporary storage for
queries, which can include uncompressed data. Lastly, the large model format can also speed
up write operations performed via the XMLA endpoint.

Be aware that you can set the large model format to be the default on a Fabric capacity. Administrators
can set a limit on the maximum semantic model size to prevent users from consuming significant
amounts of a capacity.

Next, we will see a feature presented in Fabric capacities to help with overages.

Throttling and smoothing in Fabric capacity

From time to time, a refresh or report query can result in usage over the SKU capacity. Fabric offers
a throttling and smoothing process that initially lets the capacity usage exceed its limits and tries to
smooth the usage for billing purposes over a 24-hour period. The throttling will limit new queries or
processes until the CPU and/or memory free up in the capacity. Microsoft has multiple ways to notify
administrators when the capacity is beyond normal parameters:

• Alerts: Once CU usage exceeds a threshold, email alerts can be sent to certain email addresses
or security groups

• Monitoring: Microsoft provides a thorough app to monitor capacity: https://learn.
microsoft.com/en-us/fabric/enterprise/metrics-app

If throttling consistently happens, an administrator will need to investigate a larger capacity.

Next, we will see how AAS can be used for semantic models and a better scaling out of resources for
large models.

Leveraging AAS for data and user scale

AAS is a Platform-as-a-Service (PaaS) offering. The engine from AAS is the same engine used in
Power BI semantic models. A corporation can choose not to build semantic models in Power BI and
instead use AAS as the analytical database engine. The advantage of using AAS is seamless migration
from an on-premises analysis service to Azure. Another advantage is that you can use the Visual Studio
developer environment like an on-premises development and not lose any functionality.

https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app
https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app

Scaling with capacities and Azure Analysis Services 235

AAS is part of a broader suite of data services offered by Microsoft in the Azure cloud. A range of
SKUs are available, with processing power stated in Query Processing Units (QPU). AAS can be
considered as the cloud alternative to SQL Server Analysis Services (SSAS), which is used with
on-premises servers or VMs. For organizations that already use SSAS and want to migrate to the
cloud. AAS provides a seamless transition.

Note
At the time of writing, third-party applications such as AML Toolkit and Tabular Editor can
provide ways to migrate on-premises SSAS to Power BI semantic models. Just be aware that
there are limitations to the editing of the models once one of these tools is used to migrate,
such as not being able to modify the model without Tabular Editor after it is deployed to a
workspace. Also, the connections to on-premises data sources will have to go through a data
gateway, unless there is a direct link between the Power BI service and the on-premises network.

AAS is billed on a pay-as-you-go basis. Fabric capacity can also be pay-as-you-go as well as a fixed monthly
cost. This means that the service can be paused and scaled on-demand while it offers comprehensive
support for Power BI Pro developer tools, such as Microsoft Visual Studio with version control. This
option helps with using DevOps and Continuous Integration/Continuous Development (CI/CD).
Like SSAS, AAS is a data engine only, so it only supports hosting semantic models and the mashup
engine. You would still need to use a client tool, such as Power BI Desktop, or a portal, such as app.
powerbi.com, to host reports that read from AAS. AAS can be considered a subset of Premium or
Fabric features. This is because there are differences, such as dynamic memory management, which
is only offered in Premium or Fabric, and Query Scale Out (QSO), which is only available in AAS
(the standard tier). QSO is a great way of handling high user concurrency with minimal maintenance.

Using QSO to achieve higher user concurrency

Power BI Premium, Fabric, and AAS have the same data size limits, so you can host the same data
volumes on any of them. However, QSO offers certain advantages. Let’s see what they are.

The unique performance enhancements of QSO

QSO is a unique capability of AAS that allows it to handle many more concurrent users by spreading
the query read load across multiple redundant copies of data. You simply configure the service to
create additional read replicas (up to a maximum of seven replicas). When client connections are
made, they are load-balanced across query replicas. Note that not every region and SKU supports
seven replicas, so consult the documentation for information on availability by region at https://
docs.microsoft.com/azure/analysis-services/analysis-services-overview.
Also, note that replicas do incur costs, so you should consider this aspect when you review your
performance gains.

http://app.powerbi.com
http://app.powerbi.com
https://docs.microsoft.com/azure/analysis-services/analysis-services-overview
https://docs.microsoft.com/azure/analysis-services/analysis-services-overview

High Scale Patterns236

Another useful performance-related feature of AAS is its ability to separate the query and processing
servers when we use QSO. This maximizes the performance of both processing and query operations.
This separation means that at refresh time, one of the replicas will be dedicated to the refresh, and no
new client connections will be assigned to it. New connections will be assigned to query replicas only
so that they can handle reads, while the processing replica can handle writes.

Configuring replicas can be done via the Azure portal or scripted via PowerShell. Figure 12.3 shows
an example where we are allowed to create one additional replica:

Figure 12.3 – An AAS server with one replica highlighting the query pool separation setting

Note that creating replicas does not allow you to host larger semantic models than if you were not
using QSO. It simply creates additional identical copies with the same server SKU.

Now, let’s talk about how to determine the right time to scale out.

Knowing when to scale out with QSO

You can observe AAS metrics in the Azure portal to look at QPU over time. If you find that you regularly
reach the maximum QPU of your service and that those time frames are correlated with performance
issues, it is time to consider QSO. Figure 12.4 shows the QPU metric for an S0-sized AAS server that
has a QPU limit of 40. S0 is the lowest source size for AAS, and represents the standard edition. There
are other tiers, such as B for basic and D for Developer. S0 has 20 Query Processor Units (QPUs)
and a maximum size of 3 GB of memory. The largest can be 1,280 QOUs and 400 GB of memory.

Scaling with capacities and Azure Analysis Services 237

Figure 12.4 – Metrics in the Azure portal showing QPU over time

In the preceding figure, we can see that we are not hitting that limit right now.

Synchronization modes for query replicas in QSO

The final performance-related point concerns synchronization mode for query replicas. When semantic
models are updated, the replicas that are used for QSO also need to be updated to give all users the
latest data. By default, these replicas are rehydrated in full (not incrementally) and in stages. Assuming
there are at least three replicas, they are detached and attached two at a time, which can disconnect
some clients. This behavior is determined by a server property called ReplicaSyncMode. It is an
advanced property that you can set using SQL Server Management Studio, as shown in Figure 12.5.
This setting can be changed to make synchronization occur in parallel. Parallel synchronization updates
in-memory caches incrementally and can significantly reduce synchronization time. It also provides
the benefit of not dropping any connection because replicas are always kept online:

High Scale Patterns238

Figure 12.5 – Analysis Server Properties, showing that ReplicaSyncMode has been updated

The following settings for ReplicaSyncMode are allowed:

• 1: Full rehydration performed in stages. This is the default.

• 2: Parallel synchronization.

Next, we’ll learn how partitions can improve refresh performance.

Using partitions in the fact table

Support for partition tables is available for the Premium, Fabric, and AAS semantic models. Partitions
simply divide a table into smaller parts that can be managed independently. Typically, partitioning
is done by date and is applied to fact tables. For example, you could have 5 years of data split into 60
monthly partitions. In this case, you can process individual partitions separately and even perform
entirely different operations on them, such as clearing data from one while loading data into another.

From a performance perspective, partitions can speed up data refresh operations in two ways:

• Firstly, you can only process new and updated data by leaving historical partitions untouched
and avoiding a full refresh.

• Secondly, you can get better refresh performance, since partitions can be processed in parallel.

Maximum parallelism can be used to process multiple streams of data imported into a model, and
its use assumes that there are sufficient compute and memory resources available, and that the data
source can support the load. The AAS engine automatically utilizes parallel processing for two or
more partitions, and there are no associated configuration settings for it.

Scaling with capacities and Azure Analysis Services 239

Note
The large semantic model storage format uses a segment size of 8 million rows. Segments are the
internal structures that are used to split columns into manageable chunks, and compression is
applied at the segment level. Therefore, we recommend employing a strategy where partitions have
at least 8 million rows when fully populated. This will help the engine get the best compression
and avoid the need for extra maintenance work on many small partitions. Over-partitioning
can slow down a semantic model refresh and result in slightly larger models.

Tables defined in a semantic model have a single partition by default. You cannot directly control
partitioning in Power BI Desktop, but you can define them in third-party tools. Also, when you
implement incremental refreshes, partitions are automatically created and managed, based on the
time granularity and data refresh settings.

So, when we use AAS or a capacity, we need to define partitions manually using other tools. Partitions
can be defined at design time in Visual Studio using the Partition Manager screen for AAS models.
Power BI semantic models would need to use a tool such as Tabular Editor to create the partitions.
Post-deployment, they can be managed using SQL Server Management Studio by running the Tabular
Model Scripting Language (TMSL). You can also manage them programmatically via the Tabular
Object Model (TOM). You can control parallelism at refresh time by using the TMSL parameter,
called MaxParallelism, which limits the total number of parallel operations, regardless of
the data source. Some sample code for this was provided in the first section of Chapter 8, Loading,
Transforming, and Refreshing Data.

A simple approach would use monthly partitions. A more advanced approach could be to have yearly
or monthly historical partitions with daily active partitions. This provides you with a lot more flexibility
to update recent facts and minimize re-processing if refresh failures occur, since you can re-process at
the single-day granularity. However, this advanced strategy requires extra maintenance, since partitions
would need to be merged. For example, at the end of each month, you can merge all the daily partitions
into a monthly one, but performing this type of maintenance manually can become tedious. Therefore,
it is recommended that you automate this process with the help of some tracking table to manage
date ranges and partitions. A detailed automated partition management sample has been published
by Microsoft that we recommend looking at; the Automated Partition Management for
Analysis Services Tabular Models.pdf file is located on GitHub at https://github.
com/microsoft/Analysis-Services/tree/master/AsPartitionProcessing.

In the next section, we’ll learn how to take advantage of composite models to address large data
volumes and slow DirectQuery issues.

https://github.com/microsoft/Analysis-Services/tree/master/AsPartitionProcessing
https://github.com/microsoft/Analysis-Services/tree/master/AsPartitionProcessing

High Scale Patterns240

Scaling with aggregations and composite models
So far, we have discussed how Import mode offers the best possible speed for semantic as Direct Lake
from Fabric capacity is catching up. However, sometimes, high data volumes and their associated
refresh limitations may lead you to select DirectQuery mode instead, especially for large detail data in
a fact table. We may, at this point, return to Chapter 5, Optimization for Storage Modes, to understand
the storage options for Power BI semantic models.

We also discussed how the AAS engine is designed to aggregate data efficiently because Business
Intelligence (BI) solutions typically aggregate data most of the time. When we use DirectQuery, we
want to push these aggregations down to the source where possible to avoid Power BI having to bring
all the data over to compute them. With very large tables containing tens of millions or billions of
rows, these aggregations can be costly and time-consuming, even when the source has been optimized.
This is where the composite models and aggregation features become relevant.

Let’s dig deeper into composite models in the next section.

Leveraging composite models

So far, we have discussed the Import and DirectQuery modes separately. This may have implied that
you must choose only one mode, but this is not the case. A composite model (also known as Mixed
mode) is a feature of Analysis Services that lets you combine DirectQuery and Import mode in the
same semantic model. This opens interesting possibilities. You could enhance a DirectQuery source
with infrequently changing import data that is held elsewhere. You could even combine different
DirectQuery sources. For more information on DirectQuery, Chapter 5, Optimization for Storage
Modes, explains the use of the DirectQuery, Import, and Direct Lake modes.

Regardless of the requirement, you are advised to follow all the latest recommended guidelines
provided in this book for Import and DirectQuery. There are some additional performance concepts
and considerations for composite models that we will introduce later in this chapter.

AAS maintains storage mode at the table level. This allows us to mix storage modes with a semantic
model. The bottom-right corner of Power BI Desktop gives us an indication of the type of model. An
Import mode model will not show any status, but DirectQuery and Composite will show some text,
as shown in Figure 12.6:

Figure 12.6 – Power BI Desktop, indicating the DirectQuery or Mixed (composite) storage mode

Scaling with aggregations and composite models 241

There are different ways to achieve a Mixed model in Power BI Desktop. You could add a new table in
the Import model to an existing DirectQuery model, or vice versa. Another way is to directly change
the storage model in the Model view of Power BI Desktop, as shown in Figure 12.7:

Figure 12.7 – The Storage mode setting in the Model view

The are interesting things to note in the proceeding figure. The Storage mode dropdown offers Import,
DirectQuery, and Dual storage modes. In the model diagram view, the table header’s colors and icons
indicate what type of storage model is used. With Dual mode, depending on the query’s scope and
grain, AAS will decide whether to use the in-memory cache or the latest data from the data source.
Let’s look at the storage modes and learn how to use them:

• DirectQuery: This is the blue header bar with the DirectQuery icon (for example, OrderDetail).
Choose this mode for tables that contain very large data volumes, or where you need to fetch
the latest results all the time (near-real-time analytics). Power BI will never import this data
during a refresh. Typically, these would be fact tables or transaction data.

• Import: This is the plain white header bar with the Import icon (for example, ProductCategory).
Choose this mode for smaller or very compressible tables that need to be fast and don’t change
as frequently as the DirectQuery source.

• Dual: This is the branded blue and white header bar with the DirectQuery icon (for example,
Product). Choose this mode for tables that act as dimensions that are used to filter or group
data in the fact table – that is, DirectQuery. This means there are scenarios where the table will
be queried together with fact tables as the source.

High Scale Patterns242

Now, let’s explore how these storage modes are used by the engine in different scenarios. This will
help you design and define the storage modes appropriately. This is important because it determines
the type of relationship that’s used, which directly impacts performance. The following are some
possible query scenarios:

• Query uses Import or Dual table(s) only: This populates slicers or filters, typically on dimension
tables. Such queries achieve the best performance by using the local in-memory cache.

• Query uses Dual or DirectQuery table(s) from the same source: This occurs when the query
needs to relate Dual model dimension tables to DirectQuery fact tables. It will issue one or
more native queries to the DirectQuery source and can achieve relatively good performance if
the source is optimized. One-to-one or one-to-many relationships within the same data source
are evaluated as regular relationships that perform better. A regular relationship is where the
column on the “one” side contains unique values.

• Any other query: Any query that needs to resolve relationships across different data sources
falls into this category. This happens when a Dual or Import mode table from source A needs to
join a DirectQuery table from source B. Here, the engine uses limited relationships, which are
slower. Many-to-many relationships and relationships across different data sources are limited.

Next, we will introduce aggregations and how they relate to composite models.

Leveraging aggregations

Most analytical scenarios involve aggregating data in some way. It is common to look at historical
trends, exceptions, and outliers at a summary level, and then drill down to more detail as required.
Let’s look at an example of a logistics company tracking thousands of daily shipments to watch for
delays. They are unlikely to start this analysis at the individual package level. They will, more likely,
have some performance indicators grouped by transportation type or region. If they see unsatisfactory
numbers at the summary level, they may drill down to more and more detail to narrow down the root
cause. In Chapter 9, Report and Dashboard Design, we recommended designing report experiences
like this to provide better performance and usability.

You can follow the recommended design principles and still have performance issues with very large
DirectQuery semantic models. Even with great optimizations, there is still a physical limit as to how
fast you can process data with fixed computing resources. An aggregation table is a summary of another
fact table but one that’s always stored in Import mode in memory. As such, aggregation tables must
be reloaded during data refresh.

Scaling with aggregations and composite models 243

We will build on the example shown in Figure 12.7 to illustrate this. We want to add aggregations to the
OrderDetail table to avoid generating an external DirectQuery. Our requirements have determined
that many reports aggregate total sales at the product level. We can achieve better performance by
adding an aggregation table. We will add a table to the Import model, called Agg_SalesByProduct,
that’s defined by the following SQL expression:

SELECT
ProductID,
sum(sod.LineTotal) as TotalSales,
sum(sod.OrderQty) as TotalQuantity
FROM
[SalesLT].[SalesOrderDetail] sod
GROUP BY ProductID

Once the aggregation table exists, we need to tell Power BI how to use it. Right-click the OrderDetail
table in the model view, select the Manage aggregations option, and configure the aggregations, as
shown in Figure 12.8:

Figure 12.8 – Configuring the aggregations for OrderDetail

There are a few things to note in the previous statement. First, we had to tell Power BI which table we
wanted to use as an aggregate for OrderDetail. We also had to map the columns and identify what
type of summarization was used. There is also the option to select a Precedence value because you can
have multiple aggregation tables at different granularities. Precedence will determine which table is
used first when the result can be served by more than one aggregation table. Once the aggregations
have been configured, the final step is to create the relationship between the aggregation table and
the Product dimension, as shown in Figure 12.9:

High Scale Patterns244

Figure 12.9 – The Agg_SalesByProduct table related to the Dual-mode Product table

In Figure 12.9, note that the aggregation table and its columns are all hidden in the Power BI semantic
model. Power BI will do this by default, since we do not want to confuse users. We can hide aggregation
tables and rely on the engine to pick the correct tables internally.

Note
The example shown in the preceding figures demonstrates aggregations based on relationships.
We rely on a relationship so that the values from the Product table can filter OrderDetails.
We added the aggregation table, as we needed to create this relationship. In typical big data
systems such as Hadoop, data is often stored in wide denormalized tables to avoid expensive
joins at query time. The aggregation function of AAS still works in these scenarios.

Next, we’ll learn how to identify when and which aggregations are used with DAX Studio. We will
begin by constructing three table visuals, showing different sales groupings. You can see these in the
sample file on the Agg Comparison report page:

Scaling with aggregations and composite models 245

Figure 12.10 – Different sales groupings to test aggregations

The visual titles in Figure 12.10 refer to tables in the sample report, which are shown in Figure 12.9.
We constructed the visuals at different granularities, using different grouping tables, to see how the
queries behave. We used DAX Studio to capture the output and discovered the following:

• Grouping by the Product table: The query was completely satisfied through the Import tables.
Only one storage engine query was needed. Note how DAX Studio provides information on the
RewriteAttempted event subclass, which means the engine recognized that aggregations
were present and tried to use them. You can click on the event to get the detail on the right-hand
side, confirming which aggregation table was used, as shown in Figure 12.11:

Figure 12.11 – Query performance information for table visual for Color

• Grouping by the ProductCategory table: Again, the query was completely satisfied through
the Import tables. What is great here is that even though ProductCategory is not
directly related to the aggregation table, the engine does use it, leveraging the Product and
ProductSubcategory tables as a snowflake dimension relationship. This has allowed us to
avoid an external query for a scenario that we did not originally plan for, as shown in Figure 12.12:

High Scale Patterns246

Figure 12.12 – Query performance information for table visual for Category

• Grouping by the Product and Customer table: This time, the query tried to use aggregation
for a customer but was unable to, since we did not define our aggregation at the customer
granularity level. The engine did use an external query, which is proven by the SQL event
subclass. However, it was still able to use the aggregation table later, as shown in Figure 12.13:

Figure 12.13 – Query performance information for the table visual with AccountNumber

The previous examples demonstrate how aggregations are used, but we have not compared the same
query with and without aggregations yet. To test this, we can simply delete the aggregation table and
profile the same visuals in DAX Studio, with the query durations shown in Figure 12.14:

Figure 12.14 – A performance comparison of different visual groupings with aggregations

In our example, designing and managing aggregations would be simple. In the real world, it can
be difficult to predict the complexity, volume, and frequency of the queries that will be generated.
This makes it hard to design aggregations beforehand. Microsoft has considered this problem
and has released automatic aggregations as an enhancement to user-defined aggregations.

Improving performance with Synapse and Fabric 247

With automatic aggregations, the system uses machine learning to maintain aggregations automatically,
based on user behavior. This can greatly simplify aggregation management if you use it.

Note
Automatic aggregations are currently available for the Premium, PPU, Embedded, and Fabric
capacities. The feature is well-documented in the following website from Microsoft: https://
docs.microsoft.com/power-bi/admin/aggregations-auto.

Finally, let’s look at Azure Synapse and Fabric using a data lake. These are first-party technologies
from Microsoft, which you may wish to consider for external data storage in big data scenarios that
need DirectQuery or Direct Lake.

Improving performance with Synapse and Fabric
Many data analytics platforms are based on a symmetric multi-processing (SMP) design. This involves
a single computer system with one instance of an operating system that has multiple processors,
working with shared memory and shared disk arrays. An alternative example is a massively parallel
processing (MPP) system. This involves a grid or cluster of computers, each with processors, an
operating system, memory, and a disk array. Each server is referred to as a node.

In practical terms, consider computing a sum across 100 billion rows of data. With SMP, a single
computer would need to do all the work. With MPP, you could logically allocate the sum of its group
in parallel, and then add up the sums. If we wanted the results faster, we could spread the load further
with more parallelism, such as by having 50 machines processing about 2 billion rows each. Even with
communications and synchronization overhead, the latter approach will be much faster.

Big data systems such as Hadoop, Apache Spark, and Azure Synapse use the MPP architecture because
parallel operations can process data much faster. MPP also gives us the ability to both scale up (bigger
machines) and scale out (more machines). With SMP, only the former is possible until you reach a
physical limit regarding how large a machine you can provision.

The increased rate of ingestion from modern global applications, such as IoT systems, creates an
upstream problem when we consider data analysis. BI applications typically use cleaned and modeled
data, which requires modeling and transformations beforehand. This works fine for typical business
applications. However, with big data, such as a stream of sensor data or web app user tracking, it is
impractical to store raw data in a traditional database, due to the sheer volume. Hence, many big data
systems use files (specially optimized, such as Parquet) that store denormalized tables. They perform
Extract-Load-Transform (ELT) operations, instead of the typical Extract-Transform-Load (ETL)
operations that we can do in Power Query. With ELT, raw data is shaped on the fly in parallel.

Now, let’s relate these concepts to the modern data warehouse architecture and the Azure offerings.

https://docs.microsoft.com/power-bi/admin/aggregations-auto
https://docs.microsoft.com/power-bi/admin/aggregations-auto

High Scale Patterns248

The modern data warehouse architecture (Synapse)

We can combine traditional ETL-style analytics with ELT and big data analytics using a hybrid data
warehouse architecture, based on a data lake. A data lake could be described as a landing area for raw
data. Data in the lake is not typically accessed directly by business users.

Once data is in the lake, it can be used in different ways, depending on the purpose. For example, data
scientists may want to analyze raw data and create subsets for machine learning models. Conversely,
business analytics team members might regularly transform and load some data into structured storage
systems, such as SQL Server. Figure 12.15 shows a highly simplified view of Azure components that
could make up a modern data warehouse:

Figure 12.15 – A Synapse modern data warehouse architecture (image credit: Microsoft)

The numbered steps in the preceding diagram indicate typical activities:

1. Store all types of raw data in Azure Data Lake Storage Gen2 (ADLS) using pipelines.

2. Leverage Synapse Analytics to clean up data.

3. Store clean, structured data in Synapse tables.

4. Model data in AAS or Power BI semantic models.

5. Build reports in Power BI.

Improving performance with Synapse and Fabric 249

Note
These steps are ordered, and the diagram shows connections between components. This
represents production-style data paths and is only to aid learning. In a modern enterprise,
it is realistic to skip some steps or connect different technologies, depending on the scenario
and a user’s skill level. For example, a data engineer may connect Power BI directly to ADLS
to explore data format and quality.

Now, let’s look closer at some technologies that help with data scaling.

ADLS

ADLS is a modern data store from Microsoft that’s designed for all data scenarios. It provides limitless
storage and is compatible with non-proprietary technologies, such as Hadoop Distributed File System
(HDFS), which is a core requirement for many Hadoop-based systems. Note that the current version is
referred to by Microsoft as ADLS Gen2, indicating that we are in the second generation offering. Gen2
is the only ADLS available for new work from Microsoft. Synapse and Fabric services are optimized
to work with data in parallel in ADLS Gen2. The Parquet file format is the suggested structure, with
first-level ingestion to Delta Tables.

Azure Synapse Analytics and Fabric

Azure Synapse and Fabric capacities are analytics platforms that contain different services that address
the special needs of different data stages. Synapse was previously called SQL Server Data Warehouse,
and at the time, the focus was to provide a distributed version of SQL Server to handle multi-TB
and larger data volumes. Fabric is a new capacity from Microsoft that integrates Synapse pipelines
and Azure Data Factory services with ADLS Gen2 storage, providing a one-stop shop for analytics,
including streaming. Both provide similar options.

Synapse Analytics

Synapse Analytics offers the following options:

• Synapse Studio: This is a web-based environment that serves multiple personas. People can
ingest, transform, explore, and visualize data here.

• Power BI integration: You can link Power BI workspaces to your Synapse workspace in Synapse
Studio. Then, you can analyze data hosted in Synapse services using Power BI.

• Notebook integration: Synapse Studio supports Python notebooks for interactive data exploration
and documentation. These notebooks can switch between languages such as PySpark, Scala,
SparkSQL, and C#.

High Scale Patterns250

• Serverless and dedicated SQL pools: These offer structured SQL Server storage in the cloud.
A serverless pool needs little configuration and management – you do not need to provision
a server, the service auto-scales, and you pay per query. A dedicated pool must be configured
beforehand and is billed constantly over time. Dedicated pools can be paused and scaled up
and down. These options provide a balance between costs and management overhead.

• Serverless and dedicated Spark pools: Apache Spark is a very popular open source big data
platform. It is an in-memory technology and offers a SQL interface over data. It also offers
integrated data science capabilities. Synapse integrates with Spark pools directly, allowing
analysts to run Spark Jobs from the workspace.

• Dataflows: This is a PowerQuery interface that provides visually designed data transformations
to cleanse and shape data, using a Spark engine.

• Data pipelines: This allows users to orchestrate and monitor data transformation jobs.

The Fabric capacity

The Fabric upgrade to the Power BI service includes the following:

• A web-based interface: End users can create a lakehouse or warehouse to ingest, transform,
explore, and visualize data.

• Power BI integration: All artifacts are within a Power BI workspace.

• Notebook integration: Notebooks can be created to utilize various languages such as PySpark,
Scala, and SparkSQL. The experience is interactive for data exploration and documentation.

• Dataflows: Allows analytic engineers to use a graphical interface for data ingestion
and transformations.

• Pipelines: Orchestration can be performed to chain artifacts together for workflows.

• Power BI administration and monitoring: All the features of a Premium tenant are available
in Fabric capacities.

There are many options and variations within the modern data warehouse architecture. Unfortunately,
it is beyond the scope of this book to cover these in detail. Microsoft offers multiple reference guides
as well as learning paths for all the aforementioned services.

Now that we have introduced the Azure technologies we can use to deal with data at a high scale, let’s
summarize what we’ve learned in this chapter.

Summary 251

Summary
In this chapter, we looked at large data volumes. We reviewed the limitations of desktop licenses as well
as the capacities available to handle large loads. Technically, we can use all the available memory on
the capacity, which is 400 GB on the largest Fabric or Premium capacity. We also provided suggestions
for addressing CPU and memory issues with capacities and AAS.

After that, we looked at improving DirectQuery performance with composite models, a feature that
lets you combine Import mode and DirectQuery data sources. The Dual model demonstrated examples
that included monitoring in DAX Studio. Aggregations were reviewed to improve composite models,
particularly when dealing with large fact tables where queries are frequently aggregated by dimensional
attributes. DirectQuery was then used for reporting involving more rows, which can go to DirectQuery
for results and result in longer query times. These situations are not frequently encountered by users,
and it is understood that reporting will take more time.

Finally, we looked at other technologies in the Azure space that can deal with large data volumes
requiring a modern data warehouse. Ingesting and transforming would be better at the storage level
than PowerQuery in Power BI. The systems use multiple processing and storage distributions that can
take advantage of big data technology. This also included introductions to Azure Data Lake Storage
Gen2 with Azure Synapse Analytics and Fabric capacities.

In the next chapter, we will focus on optimizing the capacity that Microsoft provides for
enterprise-level companies.

Further reading
Note that, just like Power BI, every area of Synapse benefits from specific performance-tuning guidance.
The following are some references to the relevant performance guidance materials:

• Serverless SQL pool best practices: https://docs.microsoft.com/azure/synapse-
analytics/sql/best-practices-serverless-sql-pool

• Optimizing Synapse query performance tutorial: https://docs.microsoft.com/
learn/modules/optimize-data-warehouse-query-performance-azure-
synapse-analytics

• Fabric optimizations: https://learn.microsoft.com/en-us/fabric/data-
warehouse/guidelines-warehouse-performance

https://docs.microsoft.com/azure/synapse-analytics/sql/best-practices-serverless-sql-pool
https://docs.microsoft.com/azure/synapse-analytics/sql/best-practices-serverless-sql-pool
https://docs.microsoft.com/learn/modules/optimize-data-warehouse-query-performance-azure-synapse-analytics
https://docs.microsoft.com/learn/modules/optimize-data-warehouse-query-performance-azure-synapse-analytics
https://docs.microsoft.com/learn/modules/optimize-data-warehouse-query-performance-azure-synapse-analytics
https://learn.microsoft.com/en-us/fabric/data-warehouse/guidelines-warehouse-performance
https://learn.microsoft.com/en-us/fabric/data-warehouse/guidelines-warehouse-performance

Part 5:
Optimizing Capacities in

Power BI Enterprises

This part will help you become familiar with various capacities available today such as Premium,
Fabric, Azure, and Embedded. These all have settings and resource limits to be aware of. You will gain
a deep understanding of workload prioritization and memory management in capacities, learn how
to size and load test capacities, and see capacity limits side by side for different SKUs.

This part has the following chapters:

• Chapter 13, Working with Capacities

• Chapter 14, Performance Needs for Fabric Artifacts

• Chapter 15, Embedding in Web Apps

13
Working with Capacities

In the previous chapter, we looked at ways to deal with high data and user scales. The first option we
provided was to leverage Power BI Premium and Fabric capacities because they have higher data size
limits than shared capacity.

In this chapter, we will take a much closer look at the Fabric and Premium capacities. Even though
they are purchased and billed separately, they offer similar options, with Fabric slated to replace
Premium in 2025. When talking about performance optimization on a capacity in general, the type
of capacity will not be mentioned if they are the same. Specific text will point out when it relates to
Premium only or when it relates to Fabric only.

We will learn that there are more than just increased resources and semantic model sizes with a
capacity. Capacities offer unique services that are not available in shared capacities. This is because the
capacity is dedicated to your company. The caveat is that these extra capabilities come with additional
management from capacity administrators. We will review those options for capacity settings as well
as workload areas to watch.

Then, we will learn how to determine adequate capacity size and plan for future growth. One important
technique is load testing to help determine the limits and bottlenecks of your data and usage patterns.
We will also learn how to use the Fabric Capacity Metrics app to identify areas of concern, perform
root cause analysis, and determine the best corrective actions.

Working with Capacities256

In this chapter, we will cover the following topics:

• How a noisy neighbor impacts shared capacity

• Controlling capacity settings in the admin portal

• Capacity planning, monitoring, and optimization

First, we will look at how shared capacity can have a noisy neighbor that affects the performance of
deployed semantic models and report queries.

How a noisy neighbor impacts shared capacity
Shared capacity is used for deployed semantic models and reports when not using a dedicated
capacity. Dedicated capacities are Premium, Embedded, or Fabric licenses. If you are using a Power
BI Pro or Premium Per User license for the desktop and have not purchased a dedicated capacity,
you are deploying to the service that is considered shared. A shared capacity is based on the idea of
a multitenant system that uses pooled resources among users.

The term noisy neighbor is used for services that share tenant resources where one tenant uses a
disproportionate amount of those resources. This noisy neighbor degrades the performance of other
tenants using the same pool of resources. Power BI allows this for companies that do not purchase or
use capacities, which in turn saves money. Even if a company has a capacity, the workspace must be
assigned to that capacity; otherwise, it uses a shared capacity. Figure 13.1 shows the license mode for
assigning a workspace to a license mode:

How a noisy neighbor impacts shared capacity 257

Figure 13.1 – Assigning a license mode to a new workspace

Working with Capacities258

In Figure 13.1, the Premium and Fabric capacities are the only available selections to create a workspace
on a dedicated capacity. The other two available options, Pro and Premium Per User, are shared capacity.

Note
The only way to determine whether a noisy neighbor is an issue is to get a support ticket with
Microsoft to investigate. You would need to save any statistical information about the issues to
send to the support team. The difficulty is that the issue often occurs at some point, but then
the problem seems to go away on its own. You will also want to have proof that your model is
optimized and following the best practices for design and implementation before creating a
support call because that is the first type of question that is usually asked by Microsoft support.
Many chapters in this book are about applying best practices to the model.

The noisy neighbor issue comes from sharing a capacity in the service when another company’s
artifacts are using most of the resources available. An example is when you are refreshing a semantic
model and it takes hours rather than the usual minutes, and the refresh happens at the same time of
day as previous days. The other issue could be that a report that normally renders in seconds now
takes minutes to render, especially when selecting slicer or filter values that did not have an impact
on performance before today.

With the addition of Fabric capacities that are smaller than the default Premium P1, the cost of having
a dedicated capacity is now lower than ever. Not only is it dedicated, but you also have tools to monitor
the performance that a Pro or PPU license does not offer. Fabric capacities can be paused to help
save even more money when the resources are not in use and restarted when reports or processing
need to happen.

Now, let’s explore how capacity workloads are categorized and which load settings can be controlled
through the admin portal.

Controlling capacity workloads and settings
Premium and Fabric capacities provide reserved resources for your organization. This isolates you
from noisy neighbors that you may experience in the shared capacity. Let’s start by briefly reviewing
the capabilities of the capacity resources that differentiate them by providing greater performance
and scale:

• Ability to Autoscale: Premium allows for additional Azure capacity to be created for Autoscale.
With Fabric, the Autoscale is automatic with additional resources and smoothing over time
for overages.

• Higher storage and semantic model size limits: The resources have 100 TB of total storage
and a semantic model size of 400 GB (100 GB in PPU).

Controlling capacity workloads and settings 259

• More frequent semantic model refreshes: The refreshes happen 48 times per day via the UI
and potentially more often via scripts through the XMLA endpoint.

• Greater refresh parallelism: You can have more refreshes at the same time, ranging from 1 to
1280 depending on the capacity.

• Advanced dataflow features: Capacity dataflows have a performance enhancement, such as
the enhanced compute engine.

On-demand load with large semantic model storage formats: Capacities do not always keep every
semantic model in memory. Semantic models that are unused for a period are evicted to free up memory.
Using the large semantic model format will speed up the initial load of data. The on-demand process
will only load the data needed to satisfy a query rather than loading the whole model in memory. The
whole model will be needed in memory if a large semantic model storage format is not used.

Other capabilities in capacities are not directly related to performance. We’ll list them here for awareness.
Note that the final three items are not available for PPU:

• Availability of paginated reports: Highly formatted reports based on SQL Server Reporting
Services that are optimized for printing and broad distribution

• XMLA endpoint: API access to allow automation and custom deployment and refresh configurations

• Application Life Cycle Management (ALM): You can use deployment pipelines, manage
development, and evaluate app versions

• Multi-region deployments: You can deploy Premium capacities in different regions to help
with data sovereignty requirements

• Bring Your Own Key (BYOK): You can apply your encryption key to secure data

Next, we will examine the settings that can be adjusted for workloads on capacities.

Capacity settings

The scale and performance of workloads can be controlled in a capacity by adjusting some admin
settings. The Power BI workloads settings are under Capacity settings, as shown in Figure 13.2.
These are accessed in the Power BI Admin Portal. The user will have to be a capacity admin or Power
BI admin to access these settings:

Working with Capacities260

Figure 13.2 – The capacity settings that are relevant to performance tuning

Controlling capacity workloads and settings 261

This list can help safeguard against issues in semantic models or from ad hoc reports that generate
complex, expensive queries.

AI

Next are the safeguards for AI functions.

Allow usage from Power BI Desktop: For Power BI Desktop to use some AI function in Power
Query, a user must be logged into a tenant with the setting enabled and access to a workspace with a
capacity assigned. Disabling this item can prevent capacity (resources) from being used, which can
be significant for some AI functions. This is not something to give everyone access to.

Paginated reports

Next are the safeguards for paginated reports:

• Block outbound connectivity: If this is disabled, paginated reports in Power BI capacity can
fetch external files such as images, execute Azure functions, or call external APIs. If it is enabled,
those options are not available and can save memory and CPU cycles.

Semantic models

Next are safeguards for semantic models:

• Observe XMLA-based workspace settings (which may override capacity settings): This lets
you enable control over XMLA activities at the workspace level. XMLA calls affect resources
and performance.

• Enable parallel queries for DirectQuery: This option allows Power BI to send multiple queries
to the data source and parallel process the returned data for reporting. This will improve the
refresh of visuals in a report using DirectQuery.

• Query memory limit (%): This is the maximum percentage of memory that a single executed
query can use. The default value, 0, means no limit.

• Query timeout (seconds): This refers to the number of seconds a query is allowed to execute
before being considered for a timeout. The default value (3600) represents one hour. The 0
value disables the timeout.

• Max intermediate row count: For DirectQuery, this limits the number of rows that are returned
by a query, which can help reduce the load on source systems.

• Max result row count: This refers to the maximum number of rows that can be returned by a
DAX query. DAX and Power BI are not structured for long lists of rows to be reported. They
rely on designs to report analytical results such as sum and average aggregations.

Working with Capacities262

• Max offline dataset size (GB): This determines how large an offline semantic model can be,
which translates to the size on the disk. A limit can be placed here for an administrator to limit
the size of models that developers can deploy.

• Automatic page refresh: This enables a report page that is connected to a DirectQuery model
to refresh on an interval, which is the minimum refresh interval setting.

• Minimum refresh interval: This is the interval in selected time periods when a report connected
to a DirectQuery model will refresh automatically. This can override any developer-set time
of refresh in a report.

• Minimum execution interval (for change detection measures): This is like the previous point
but applies to the frequency of checking the change detection measure.

Next, we will learn how capacities evaluate load and what happens when the capacity gets busy.

How capacities manage resources
Capacities evaluate load every 30 seconds, with each bucket referred to as an evaluation cycle. We
will use practical examples to explain how the load calculations work in each cycle and what happens
when the capacity threshold is reached.

Power BI evaluates capacity utilization using Capacity Unit (CU) time, which is measured in eight CUs
per one vCPU when compared to previous Premium-only capacities. If a single vCPU is completely
utilized for one second, this is eight CUs. However, this is different from the actual duration when it’s
measured from start to finish. Taking our example one step further, if we know that an operation took
eight CU seconds, that does not necessary mean that the start-to-finish duration was one second. It
could mean that a single vCPU core was 100% utilized for one second or that the operation used less
than 100% of the vCPU for more than one second.

Note
P capacities refer to Premium, while F capacities refer to Fabric. There is a comparison of the
two main capacity types in the Determining the initial capacity size section later in this chapter.

We will use a P1 (F64) capacity for our examples. The capacity comes with four backend cores and
four frontend cores. The backend cores are used for core Power BI functions such as query processing,
semantic model refresh, and R/Python server processing, while the frontend cores are responsible
for user experience aspects such as web service, content management, permission management, and
scheduling. Capacity load is evaluated against the backend cores only.

How capacities manage resources 263

Knowing that Power BI evaluates the total load every 30 seconds, we can work out the maximum CU
time that’s available to us over this time during the evaluation cycle of a P1 (F64). This is 30 seconds
multiplied by 4 cores to get a result of 120 vCPU seconds, but 960 CU seconds. So, for a P1 (F64)
capacity, every 30 seconds, the system will determine whether workloads are consuming more or less
than 960 CU seconds. As a reminder, with a capacity, it is designed to temporarily consume more than
960 CU seconds since spare capacity is available. For a premium capacity, the next situation depends
on whether you have Autoscale turned on. With Fabric, the over-usage can be spread over a 24-hour
period by default with spare capacity.

Before we describe this in more detail, it is useful to know how CU load is aggregated, since interactive
and background operations are counted within the evaluation cycle in which they ran. CU usage
for background operations is smoothed in both Premium and Fabric capacities over a rolling 24
hour period, which is evaluated regularly in the same 30-second buckets. The system smooths the
background operations by spreading the last 24 rolling hours of background CU time evenly over all
the evaluation cycles. There are 2,880 evaluation cycles in 24 hours.

Let’s illustrate this with a simple but realistic example. Suppose we have a P1 capacity that has just
been provisioned. Two scheduled refreshes named A and B have been configured and will complete
by 1 AM and 4 AM respectively. Suppose that the former refresh will take 14,400 CPU seconds (5
per evaluation cycle), while the latter will take 5,760 CPU seconds (2 per evaluation cycle). Finally,
suppose that users start running reports hosted on the capacity at around 9 AM and do not hit the
capacity threshold. The following diagram shows how load evaluation works for this scenario and how
the available capacity changes over time. We have marked four different evaluation cycles to explain
how the operations contribute to the load score. The example scenario we’ve described covers a period
similar to a 24-hour period. Let’s visualize this behavior and load like in Figure 13.3:

Figure 13.3 – Load evaluation for a P1 capacity at different times (A to D)

Working with Capacities264

Note
In Figures 13.3 and 13.4, since the background refresh activity is spread out over 2,880 evaluation
cycles, it is correct to show the load that’s been incurred by those operations as being constant
over time once they have been completed. For the interactive operations shown in green, the
CPU load will vary over time for each operation. However, for simplicity, we have illustrated
interactive operations as if they generate a constant load.

Let’s walk through the four evaluation cycles to understand how the capacity load is calculated at
each of these points:

1. Evaluation cycle A: At this point, the capacity is brand new and completely unused. There is
no prior background activity to consider in this evaluation cycle.

2. Evaluation cycle B: This occurs after refresh A has completed but before refresh B starts. The
background load for refresh A is 14,400 CPU seconds divided into 30-second buckets, which
gives 5 CPU seconds per evaluation cycle. Since there are no other activities, the total load
during this cycle is 5 CPU seconds.

3. Evaluation cycle C: This occurs after refresh B has been completed. The background load for
refresh B is 5,750 CPU seconds, which smooths to 2 CPU seconds per evaluation cycle. This
time, the background activities from refreshes A and B are both considered because they are
both within 24 hours of the current evaluation cycle. Even though both refreshes are already
complete at this point, their smoothed activity carries forward, so the total load on capacity
is 7 CPU seconds.

4. Evaluation cycle D: Now, we have both the background activity and interactive activity
occurring at the same time. The total load on the capacity is the background contribution of 7
seconds, plus the actual work that’s been done by the queries in that cycle. The number is not
important for this example. The main point is that the total activity in the evaluation cycle is
less than 120 CPU seconds.

Next, we will explore what happens if we reach an overload situation. This term is used to describe a
capacity that needs more CPU resources than have been allocated.

Managing capacity overload and Autoscale

The next situations will separate a Premium P1 capacity from a Fabric capacity as far as overage is
concerned. As of the printing of this book, Microsoft is going to sunset Premium capacities unless
the Enterprise Agreement (EA) with a company does not expire before January 1, 2025. Otherwise,
only Fabric capacities will be created with or without an EA. After January 1, 2025, companies are
encouraged to work with Microsoft to start planning moves from Premium capacities to Fabric
capacities. Chapter 12, High Scale Patterns, has a chart comparing Premium and Fabric capacities
with some resource limits in the Leveraging Fabric for data scale section.

How capacities manage resources 265

Premium capacity overage

For a P1 capacity, overload means that the total load (including smoothed background activity) exceeds
120 CPU seconds (960 CU seconds) during an evaluation cycle. When this state is reached, the system
starts to perform throttling, also called interactive request delay mode, unless Autoscale is enabled.
The system will remain in delay mode while each new evaluation cycle exceeds the available capacity.
In delay mode, the system will artificially delay interactive requests such as reports. The amount of
delay is dynamic and increases as a function of the capacity load.

The delay mode does not completely shut down access to the capacity. This feature was added in Gen2
of Premium and improved with Fabric capacities. Delaying new interactive requests when overloaded
may seem like it would make the problem worse, but this is not the case. For users who experience
delayed requests, the experience will be slower than if the capacity was not overloaded. However,
they are still much more likely to have their requests completed successfully. This is because delaying
operations gives the capacity time to finish ones that are already in progress, preventing them from
being overloaded to the point where new interactive actions fail. Figure 13.4 illustrates how request
delays work. Observe that in cycle A, we needed more capacity than was allocated. This is indicated by
the queries stacking up higher than the 120-second capacity, which protects the capacity and reduces
the degradation of the user experience:

Figure 13.4 – Interactive operations are delayed due to the overload in cycle A

If you often experience overload, you should consider scaling up to a larger capacity. However, a larger
capacity represents a significant cost increase, which may be hard to justify when the scale issues
are transient and unpredictable. You could also manually scale out by spreading workspaces around
multiple capacities so that a single capacity does not experience a disproportionately high load. If you
only have one capacity available to you, distributing the load in this way is not an option.

Working with Capacities266

Fabric capacity overage

For Fabric capacities in the same scenario, Autoscale is not needed. Instead, Fabric uses additional
capacity behind the scenes and uses a burndown method to have the overage spread over an evaluation
period. If the overage is more than the evaluation period can absorb, additional costs could be added
to the Azure bill. If this happens frequently, a higher Fabric capacity should be purchased if there is
no other option to move the processing to a different resource period. Figure 13.5. shows the overage
burndown (the blue lines) for the evaluation period:

Figure 13.5 – Fabric overage burndown over time

This overage is for CU usage (vCPUs in Premium). For three of the cycles, the green lines indicate
that Add % was over 100%. The blue lines show the burndown of this overage over time until the
additional CU used over the capacity side is smoothed out.

This still does not stop other types of errors if, say, the process uses more memory than is allowed for
the capacity. This error message is shown in Figure 13.6:

How capacities manage resources 267

Figure 13.6 – An out-of-memory error for a semantic model refresh

In this case, the size of the semantic model would need to be reduced or the capacity would need to
be increased. To reduce the size of a model, you can use this article from Microsoft to help:

https://learn.microsoft.com/en-us/power-bi/guidance/import-modeling-
data-reduction

Figure 13.9 provides the memory limitations for Premium, Embedded, Azure, and Fabric capacities.

First, let’s look at another way to mitigate peak load.

Handling peak loads in Premium capacity with Autoscale

An efficient way to manage excessive load in premium capacities without incurring upfront costs is
to use the Autoscale capability.

Note
Autoscale is not needed for Fabric because capacities in Fabric already have an auto scaling
capability. Autoscale is not available for Embedded (EM and A Stock Keeping Unit (SKU))
capacities in the same way it is for Premium. For Embedded, you must use a combination of
metrics and APIs, or PowerShell, to manually check resource metrics and issue the appropriate
scale-up or scale-down commands. This requires the skills of an Azure infrastructure person.

https://learn.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction
https://learn.microsoft.com/en-us/power-bi/guidance/import-modeling-data-reduction

Working with Capacities268

Autoscale in Premium works by linking an Azure subscription to a Premium capacity and allowing it to
use extra v-cores when an overload occurs. Fabric does this automatically for you without provisioning
an A SKU in Azure. Power BI will assign one v-core at a time to the maximum allowed, as configured
by the administrator. V-cores are assigned for 24 hours at a time and are only charged when they’re
assigned during these 24-hour overload periods. Figure 13.7 shows the Autoscale settings pane, which
can be found in the Capacity settings area of the admin portal:

Figure 13.7 – The Autoscale settings to link an Azure subscription and assign v-cores

Figure 13.8 shows how the overload scenario that we described in Figure 13.4 would change if Autoscale
was enabled. We can see that a v-core was assigned in the next evaluation after an overload occurred,
which increased the capacity threshold. It is also important to note that the interactive operation that
occurred after the overload is now not delayed:

Capacity planning, monitoring, and optimization 269

Figure 13.8 – Autoscale assigns an additional core and avoids delays

Now that we have learned how capacities evaluate load and can be scaled, let’s learn how to plan for
the right capacity size and keep it running efficiently.

Capacity planning, monitoring, and optimization
A natural question that occurs when organizations consider purchasing Premium, Embedded, or Fabric
capacity is what size to provision. We know that there are different services available in capacities
and we can safely assume that workload intensity and distribution vary between organizations. This
can make it difficult to predict the correct size based on simple metrics such as total users. Capacity
usage naturally increases over time too, so even if you have the right size to begin with, there may
come a point where you need to scale. Therefore, in the next few sections, you will learn about the
initial sizing and then how to monitor and scale.

Determining the initial capacity size

Earlier in this chapter, we mentioned that Power BI capacities are available in varied sizes through
different licensing models. We will assume that you will choose the appropriate SKU based on your
organizational needs. We would like to provide a reminder here that feature-based dependencies may
force you to use a certain minimum size if you considering the A or F series of SKUs from Azure, or
the P and EM series that are available via Office. For example, paginated reports are not available on
the A1-S3 or EM1-EM3 capacities, and AI is not available on A1, EM1, or F2-F32.

Working with Capacities270

It is useful to have these capacities in mind when you start planning. At the time of writing this, these
capacities and limits are shown in Figure 13.9:

SKU

Fabric

CU SKU
(P-Premium,
EM-Embedded,
or A-Azure)

v-cores RAM
limit
model
load size

Automatic
Query
Memory
Limit

Maximum
memory
in GB

DirectQuery
or Live
connections
per second

F2 2 - 0.25 1GB 1GB 3 1

F4 4 - 0.5 2GB 1GB 3 <2

F8 8 EM/A1 1 3GB 1GB 3 3.75
F16 16 EM2/A2 2 5GB 2GB 5 7.5
F32 32 EM3/A3 4 6GB 5GB 10 15
F64 64 P1/A4 8 10GB 10GB 25 30
F128 128 P2/A5 16 10GB 10GB 50 60
F256 256 P3/A6 32 10GB 10GB 100 120
F512 512 P4/A7 64 10GB 20GB 200 240
F1024 1024 P5/A8 128 10GB 40GB 400 480
F2048 2048 - 256 10GB 40GB 400 960

Figure 13.9 – The available SKUs and their limits

Now, let’s look at what to consider when sizing a capacity. We will consider all of these in the next
section on load testing:

• Size of individual semantic model: Focus on larger, more complex semantic models that will
have heavier usage. You can prototype semantic models in Power BI Desktop and use DAX Studio
and VertiPaq Analyzer to estimate the compressibility of data to predict the semantic model’s
size. Ensure that the capacity you choose has enough room to host the largest semantic model.
The VertiPaq Analyzer is part of DAX Studio and is used to analyze the storage structure of a
semantic model. This is the best tool to use to view table and column sizes in a semantic model
and helps determine the type of storage used by Analysis Services engine used in Power BI.

• Number and complexity of queries: Think about how many users might be viewing different
reports at the same time. Consider centralized organizational reports, and then consider adding
this percentage from how broadly the organization wishes to support self-service content. You
can determine the number and complexity of queries from typical report actions using Desktop
Performance Analyzer and DAX Studio.

• Number and complexity of data refreshes: Estimate the maximum number of semantic
models you may need to refresh at the same time at various stages of your initiative. Choose
a capacity that has an appropriate refresh parallelism limit.

Capacity planning, monitoring, and optimization 271

Also, bear in mind that a semantic model’s total memory footprint is the sum of what’s used
by its tables and data structures, execution of queries, and background data refreshes. If this
exceeds the capacity limit, the refresh will fail.

• Load from order services: Remember that other artifacts can be created in the capacity such as
dataflows, AI functions, paginated reports, and now Fabric data resources such as a Lakehouse
or Warehouse, as well as pipelines and notebooks. These require a Spark engine. If some of
these Fabric items are not to be used, disable them in the admin portal.

• Periodic distribution of load: Capacity load will vary at different times of the day in line with
work hours. There may also be predictable times of extra activity, such as month-ends or holiday
sales. We suggest that you compare regular peak activity to these unique events. If the unique
events need far more resources compared to normal peak times, it would be better to rely on
Autoscale for Premium capacities. See the note that follows for Fabric scaling.

Note
Fabric capacities can be scaled up and down in Azure. This does not require a new purchasing
agreement with Microsoft like EM and Premium SKUs would. Once the large load is finished,
the capacity can be scaled back down. As of the printing of this book, automation of the scale-
up and scale-down is in public preview.

Validating capacity size with load testing

Once you have a proposed capacity size, you should perform testing to gauge how the capacity responds
to different situations. Microsoft has provided two sets of PowerShell scripts to help simulate load in
different scenarios. These tools take advantage of REST APIs that are only available in the Premium or
Fabric capacities. You can configure the tool to execute reports that are hosted in a reserved capacity
under certain conditions. You should try to host semantic models and reports that represent realistic
use cases so that the tool can generate actionable data. This activity will be captured by the system
and will be visible in the Fabric Capacity Metric app, which we will describe later in this section. We
will use this app to investigate resource usage, overload, and smoothing.

First, let’s review the testing provided by Microsoft. Both suites are available in subfolders at the same
location on GitHub:

https://github.com/microsoft/PowerBI-Tools-For-Capacities

These are described as follows:

• LoadTestingPowerShellTool: This tool is simple. It aims to simulate a lot of users opening
the same reports at the same time. This represents a worst-case scenario that is unlikely
to occur, but it provides value by showing just how much load the capacity can manage
for a given report in a short amount of time. The script will prompt you to specify the
number of reports you want to run, authenticate with the user you wish to test each report,

https://github.com/microsoft/PowerBI-Tools-For-Capacities

Working with Capacities272

and define which filter values to cycle through. When the configuration is complete, it will
open a new browser window for each report and continuously execute it, looping over the
filter values you supply.

• RealisticLoadTestTool: This is a more sophisticated script that requires additional setup. It is
designed to simulate a realistic set of user actions, such as changing slicers and filters. It also
allows time to be taken between actions to simulate users interpreting information before
interacting with the report again. This script will also begin to ask you how many reports you
want to test and which users to use. At this point, it will simply generate a configuration file
called PBIReport.json in a new subfolder named with the current date and time. Then you
need to edit that file to customize the configuration. This time, you can load specific pages or
bookmarks, control how many times the session restarts, specify filter or slicer combinations
with multiple selections, and add “think time” in seconds between the actions. The following
sample file is a modified version of one that’s been included with the tool and clearly illustrates
these configurations:

reportParameters={
"reportUrl":"https://app.powerbi.com/
reportEmbed?reportId=36621bde-4614-40df-8e08-79481d767bcb",
"pageName": "ReportSectiond1b63329887eb2e20791",
"bookmarkList": [""],
"sessionRestart":100,
"filters": [
{
"filterTable":"DimSalesTerritory",
"filterColumn":"SalesTerritoryCountry",
"isSlicer":true,
"filtersList":[
"United States",
["France","Germany"]
]
},
{
"filterTable":"DimDate",
"filterColumn":"Quarter",
"isSlicer":false,
"filtersList":["Q1","Q2","Q3","Q4"]
}
],
&"thinkTimeSeconds":1
};

Capacity planning, monitoring, and optimization 273

Note that the scripts have prerequisites:

• PowerShell must be executed with elevated privileges (Run as Administrator).

• You need to set your execution policy to allow the unsigned testing scripts to run
Set-ExecutionPolicy Unrestricted.

• The Power BI commandlet modules must be installed by running Install-Module
MicrosoftPowerBIMgmt.

More information is available at https://docs.microsoft.com/en-us/azure/load-
testing/overview-what-is-azure-load-testing.

Next, we will examine settings within the capacity for alerts when limits are reached for certain resources.

Alert notifications

Power BI allows a capacity administrator to configure customized notifications for each capacity. They
are available in the capacity settings and allow you to set thresholds that will trigger email alerts. We
recommend configuring the items shown in Figure 13.10 so you can be proactively notified when
problematic conditions are met:

Figure 13.10 – The capacity notification settings

https://docs.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://docs.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing

Working with Capacities274

We suggest configuring the first notification so that it’s around 85%. This will help you identify peaks
before they become a problem. This gives you time to plan for an increased capacity scale or identify
content that could be optimized to reduce load. The rest of the checkboxes depicted in Figure 13.10
are self-explanatory. The Autoscale options are specific to Premium capacities.

All your planning is not worth much if you cannot examine the effects that organic growth, design
choice, and user behavior have on the capacity. You will need a way to determine load issues at a high
level, then investigate deeper at varying levels of granularity. Microsoft provides a template app called
the Microsoft Fabric Capacity Metrics app that can help with this. It is not built into the service and
must be manually installed from the AppSource portal. You can access it directly here, though note
that you must be a capacity admin to install it:

https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app-
install?tabs=1st

Currently, the app contains 14 days of near-real-time data and allows you to drill down to the artifact
and operations levels. An obvious example of an artifact is a semantic model, and the operations that
are performed on it could be data refreshes or queries from reports.

The official documentation describes each page and visual of the report sequentially and in detail.
We will not repeat this, but we will illustrate how to use the report to investigate a few scenarios. We
performed our testing on an F2 and F4 Fabric capacity for most figures. There are some processes
and reports using a P1 Premium capacity; they are noted where different. F2 and F4 were selected
because they were small enough to be overloaded.

Next, we will introduce the monitoring app and learn how to use it to identify and diagnose capacity
load issues.

Monitoring capacities

The easiest way to monitor a dedicated capacity is to use the template app provided by Microsoft.
You can install it by following the instructions at https://learn.microsoft.com/en-us/
fabric/enterprise/metrics-app-install?tabs=1st. The documentation suggests
that you install to a new workspace in a Pro license and not a dedicated capacity workspace. This
separates the app from the production system running models and reports in a capacity.

Note
Many large companies write their own monitoring tools. Most consist of calling Power BI
REST APIs to gather data and save, historically in a database or data storage area. This enables
more control over the overall monitoring but requires maintenance and code to achieve good
results. The template app only shows the last 14 days of data.

Next, let’s break down the different areas for the monitoring app.

https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app-install?tabs=1st
https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app-install?tabs=1st
https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app-install?tabs=1st
https://learn.microsoft.com/en-us/fabric/enterprise/metrics-app-install?tabs=1st

Capacity planning, monitoring, and optimization 275

Understanding the compute report page

The main page of the app has three sections. Figure 13.11 shows these areas with a boundary around each:

Figure 13.11 – The Fabric capacity metrics

The top two visuals on the report are to monitor a capacity. These visuals can only show results if a
capacity is selected, which is available in the upper left of Figure 13.12:

Figure 13.12 – Selecting a capacity for a Fabric Capacity Metrics report

Working with Capacities276

The ribbon chart depicted in the upper left in Figure 13.11, Multi metric ribbon chart, will look at
the last 14 days and determine which artifacts used resources in that period. The top part of the chart
has buttons to switch between Compute Usage, Duration, Operations, and Users. The flow of a period
shows the changes in resources sliced by time like in Figure 13.13:

Figure 13.13 – A ribbon chart for resource consumption

Figure 13.13 shows that semantic models (datasets) consumed the most resources over time. A
dataset’s new name, as referenced at the beginning of this book, is now semantic model, though this
report has not been updated with the new syntax and still shows the word dataset. If you ever have a
question about what each resource means, select the visual and click the exclamation point in a circle
(information object) in the upper right like in Figure 13.14:

Capacity planning, monitoring, and optimization 277

Figure 13.14 – The information object from a visual

The visual in the upper right, CU % over time, shows a time series bar chart with a time slider and
multiple legends. The title and displayed measures are based on the selected type of resource used in
the previous chart, Multi metric ribbon chart. So, if we had selected Duration instead of CU, the title
and charted measure would change. Figure 13.5 shows the CU percentage over time:

Figure 13.15 – The CU percentage over time

Working with Capacities278

The larger matrix visual in the lower part of the page, Items (x days), lists the artifacts from the capacity
and sorts the listing by CU(s) used. The values displayed, as well as the days of data, are based on the
selected visual in the Multi metric ribbon chart. If no days are selected, all 14 days are summarized
like in Figure 13.6:

Figure 13.16 – An items (14 days) visual

The next section has specific data from certain days to show how to monitor the performance of a
system and explain some of the processes.

Utilization overage

In this example, a Fabric F2 capacity had an overage for the day. You can see this issue in the Utilization
section for the CU % over time visual in Figure 13.17:

Figure 13.17 – The Utilization visual showing an overage

Capacity planning, monitoring, and optimization 279

If we change this visual to the Overages button and use the slider to zoom in on the overage time
period, we can see Fabric spreading the overage as Burndown % once free resources are available in
that 24-hour smoothing period in Figure 13.18:

Figure 13.18 – Overage visual with Burndown %

In this example, there was the processing of semantic models and viewing reports (interactively) that
used more than the 60 CUs available for the capacity. Figure 13.19 shows the Add % that was needed
to complete the processing:

Figure 13.19 – The Timepoint Add% and expected minutes to burndown

Working with Capacities280

Another option is to display details about the system at that time. Here, we right-click and drill through
to the TimePoint Detail report like Figure 13.20:

Figure 13.20 – The drill through menu

The details will show the rows that are using Interactive operations versus background operations with
a matrix visual. In this case, the sum of the two, interactive and background operations, is above the
CU capacity, which is displayed in the upper right of the detail page in Figure 13.21:

Figure 13.21 – The TimePoint Detail report of overage

Capacity planning, monitoring, and optimization 281

As we can see in Figure 13.21, the Rundown table for timerange visual shows Add % to be 14.44%
overall, with a breakdown in the matrix of the resources that need extra capacity. The same drill-
through shows the burndown process for this overage. Figure 13.22 shows this and the minutes to
burndown in the Burndown table for timerange visual:

Figure 13.22 – The burndown percentage for the previous overage

Since this morning’s process was using additional CUs and needed more resources to complete other
activities, the capacity was changed from F2 to F4. The next day, there were no overages, as shown
in Figure 13.23:

Figure 13.23 – F4 and no overages

Working with Capacities282

The TimePoint Detail reveals useful granular information, as shown in Figures 13.22 and 13.21. It
displays about an hour of capacity activity with the selected time point in the middle, which is shown
as a vertical bar. Observe that Interactive Operations for timerange is separated from Background
Operations for timerange. The interactive operations are scoped to the hour, while the background
operations are from the previous 24 hours, since they all contribute to the load. The % of base capacity
metric tells us what proportion of the total capacity was used by the operation. We can also see how
long it took and whether any interactive delay was added, listed as Throttling in the report.

Performance delta

The Item (x days) visual on the main page of the report can help with tracking performance degradation.
In Figure 13.24, the Performance delta of a DirectQuery report shows that the semantic model has a
-26 delta in performance in red.

Figure 13.24 – A performance delta in a DirectQuery report

Capacity planning, monitoring, and optimization 283

Hovering over the semantic mode will show a report tip that the duration was high in two queries
coming from the ContosoDW DQ DirectQuery report. Since this could be an issue from the source
system, a DBA might need to be engaged to investigate the source system while we investigate the
report. Microsoft does not specify what the number represents, only that a lower value is highlighted
in red, -10 to -25 is yellow, and greater than -10 shows no color. If the number is positive, this means
that the performance of the report is improving over time.

The next section talks about some other artifacts using resources.

Notebook in capacity

There are many artifacts other than semantic models and reports that can affect resources. Figure 13.25
shows that notebooks have a higher usage than semantic models. These notebooks should be moved to
their own workspace, and capacity if possible, to help separate the resource utilization between Power
BI artifacts (semantic models and reports) and the newer Fabric artifacts (Lakehouses, Warehouses,
notebooks, and pipelines):

Figure 13.25 Notebook resource grabbing in utilization

At this point in our analysis, we would expect some collaboration between capacity admins and content
owners to determine whether the throttling and overage are impacting users and to what extent. If users
were impacted and we saw background operations contribute a lot, we could look at the scheduling
refreshes at different times to lessen the total smoothed background activity and reduce the chance
of an overload occurring. Fabric has helped with this issue with additional capacity and burndown,
but it is still an issue with a capacity and should be mitigated before it affects end users and SLAs.

Working with Capacities284

Let’s summarize this section with some guidance on the steps you should take when you see overloads
in a report:

1. Begin by identifying the largest artifacts that contribute to overloading, with an emphasis on
those that are used by a higher proportion of users.

2. Look at the trends for the artifacts to see whether the problem is isolated or periodic. Also, check
whether there is a visible increase in activity, users, or overloaded minutes over time. Gradual
uptrends are an indication of organic growth, which could lead to a decision to scale up or out.

3. Investigate the periods of high load to see what other activity is occurring on the capacity. You
may be able to identify interactive usage peaks in the same periods across different semantic
models. You could move some busy artifacts to a capacity with more available resources, choose
to increase the capacity’s size, or enable Autoscale (if you are using Premium).

Note
Fabric and Embedded A SKUs are Platform as a Service (PaaS) services that are purchased
and billed through Azure. They support native integration with Azure Log Analytics. This
integration is an alternative source of capacity activity tracking and provides near-real-time
traces and metrics, which are similar to those available from Log Analytics from Azure Analysis
Services. There is no associated reporting, so you will have to query and report the data in
Log Analytics yourself. Also, you will bear additional Azure costs and maintenance using Log
Analytics. You can find out more about setting this up at https://learn.microsoft.
com/en-gb/power-bi/transform-model/log-analytics/desktop-log-
analytics-overview.

Next, let’s summarize this chapter.

Summary
In this chapter, we came closer to the end of our journey of performance optimization in Power BI.
We focused on the reserved capacities that are available as Power BI Premium, Embedded, and Fabric
offerings. We learned that you could purchase and license the offerings differently, but that they share
more functionality across SKUs. This means that the same performance optimization guidance applies
to capacities consistently.

We introduced Fabric capacities that are set to replace Premium as of the printing of this book. We
learned that there are still improvements that Premium brought to the table that are improved in
Fabric when using large semantic models. After that, we looked at capacity settings such as query
timeouts and refresh intervals, which you can use to prevent expensive operations from severely
affecting the capacity.

https://learn.microsoft.com/en-gb/power-bi/transform-model/log-analytics/desktop-log-analytics-overview
https://learn.microsoft.com/en-gb/power-bi/transform-model/log-analytics/desktop-log-analytics-overview
https://learn.microsoft.com/en-gb/power-bi/transform-model/log-analytics/desktop-log-analytics-overview

Summary 285

Then, we discussed how capacities have different ways of evaluating capacity load. The memory limits
we listed by capacity and options for scaling were discussed, such as Autoscale with an A SKU resource
for Premium, as well as how Fabric uses reserved capacity for overages. For the overage situations,
examples were given to demonstrate options for adding capacity without incurring a fixed cost. The
30-second evaluation cycle was discussed. It was also shown how the sum of activity during a 24-hour
time frame can be smoothed so as not to incur overages.

We concluded the chapter by learning about monitoring, starting with alert emails to administrators.
The newer template app from Microsoft for monitoring, Fabric Capacity Metrics, was covered in detail,
with examples of overage and burndown of the extra capacity used. With the app, we can show how
the main resources can be watched over time for opportunities to increase capacity if needed, as we
learned. The artifacts were shown in a matrix visual with the relevant metrics to watch even with an
ability to drill through to time-based usage.

In the next chapter, we will detail some of the performance needs with the new artifacts related to
using a Fabric capacity.

14
Performance Needs
for Fabric Artifacts

In the previous chapter, we looked at how to manage and monitor capacities. In this chapter, we
will look specifically at the new artifacts in Fabric capacities that were not in Premium capacities.
Fabric was created by Microsoft to simplify the modern data warehouse. All artifacts created are
constructed to either relieve you of managing infrastructure or improve the performance of data
warehouse development.

This chapter will give an overview of OneLake, Fabric’s data storage, which is like OneDrive for
data. The warehouse or lakehouse gives a container for tables or files plus coding areas. Inside each
container is a default semantic model for Power BI to report the data. Alerts have been integrated into
the streaming resource to help with real-time requirements. Data science people will have OneLake
to consume raw, curated, or dimensional data.

The whole point of Fabric is to improve performance by consolidating common data warehouse tasks
into one environment to satisfy the needs of anyone in the corporation who needs data to perform an
analysis. The warehouse or lakehouse resource is a software-as-a-service (SaaS) container for handling
workload management, table concurrency, and storage management. This structure relieves users
of the administration of physical infrastructure. Fabric does not remove the best practices around
dimensional modeling or proper data types for modeling. The best practices expressed in the other
chapters of this book still apply to Fabric artifacts.

In this chapter, we will cover the following:

• Fabric artifacts

• Using Direct Lake for data sources

• Monitoring Fabric resource consumption

• Tips for enhancements

Performance Needs for Fabric Artifacts288

Fabric artifacts
Fabric is a new capacity type for Power BI. If you want, you can run the same Power BI semantic
models, dataflows, and reports in a Fabric capacity as you run in a Premium capacity. So, what’s the
difference? The difference is Fabric is adding analytics, data warehousing, and streaming resources
to the capacity.

What are these additional resources? Here is a list as of the printing of this book:

• OneLake: Microsoft has made a point with Fabric that storage is in one place and one structure.
The storage is built behind the scenes on Azure Data Lake Storage Gen2, which is Microsoft’s
answer to big data. This also separates the processing of compute from data storage. All
organizational data is stored in one unified location. Additionally, shortcuts can be created for
other data sources to be used in OneLake without having to copy the data.

• Lakehouse or warehouse: The containers of data and code can be one of two types, or both
can be used together. The main separation between the two is a warehouse, which is for those
who are used to working in a relational database such as SQL Server. Most of their work is
coding in T-SQL and stored procedures, whereas a lakehouse is for developers who are used to
working with data lake files or table structures with programming languages such as Python.

• Delta table: All data structures saved in Fabric are stored in a Delta table. This ACID-compliant
format has parquet files at the root storage level. A transaction log is added separately from
the parquet files (data) that gives the structure a table with concurrency. Parquet files are the
latest column-store, compressed format for big data. The parquet file type is optimized for
performance with analytical reporting.

• Azure Data Factory (ADF) / Azure Data Pipelines: When performing extract, load, and
transform (ELT) operations, ADF is the place for orchestration. Here, you can chain executions
together from various objects such as notebooks, dataflows, and API calls. ADF requires a
Spark engine to be engaged while debugging the flow. There is a heavy use of a Spark engine
for dataflows within ADF, which is why some developers prefer notebooks to ADF.

• Notebooks/Spark engine: Though you can use dataflows to import data from API calls or ingest
XML files, the efficiency of notebooks running on a Spark engine can speed up imports. The
use of open-source libraries helps simplify tasks and the amount of code that must be written.
Over and over, we have seen pySpark or SparkSQL exceed the performance of dataflows in
getting data formatted and stored for Power BI semantic models.

• Power BI: These are not new to capacities, just included with Fabric capacities. The main
resources are semantic models, reports, and dataflows. Best practices for Power BI resources
are talked about in a majority of the chapters in this book.

Fabric artifacts 289

Note
As of the printing of this book, streaming services and alerts are still in public preview. Due to
the nature of changes in artifacts from public preview to general availability (GA), they have
been excluded from this chapter because they can change before GA. In their current state,
they consume resources and could affect performance. Monitoring the use of these features is
necessary and can be tracked the same way as described in this book for other artifacts.

All these artifacts need a serverless compute resource to execute a task. In Fabric, all the compute
services are within a capacity. The capacity is tied to a workspace and you can only have one capacity
for a workspace. So, if you want to separate compute resources, you will have to create multiple
capacities and assign them to different workspaces. This is OK because Fabric data can be shared
between workspaces and thus between capacities. Permissions can even be given to a semantic model
in one workspace to a role or user without giving the user any access to the workspace. Figure 14.1,
shows the separation of storage from compute while organizing by the persona:

Figure 14.1 – Fabric personas drilling down to compute and storage

Figure 14.1 shows the persona of Fabric at the top. For the data warehouse persona, T-SQL is the
serverless compute used to access the data in OneLake Storage. The data engineering persona uses
a Spark serverless compute to access data in OneLake. Each persona will have various serverless
compute while accessing the data in OneLake. Even though they use different compute, the data is
still in the same storage area.

Performance Needs for Fabric Artifacts290

So, how does this affect performance? Well, all these new resources need compute, and this is usually
from a Spark engine. This engine will use resources in the capacity that can affect Power BI semantic
model refreshes, queries, and report renderings. So, you must monitor and determine the capacity
needed to support Power BI artifacts as well as artifacts from Fabric. Using Fabric artifacts can be
turned off in Admin portal. Figure 14.2 shows Tenant settings for this:

Figure 14.2 – Admin portal – User can create Fabric items

Here is an explanation of each setting in Figure 14.2:

1. This is the item in Tenant settings of Admin portal. You can search for it in the upper-right
hand of the screen.

2. An administrator can toggle the setting on or off.

3. Applying this setting can be for The entire organization or a specific set of users and/or
Specific security groups. There is an option to exclude security groups only: Except specific
security groups.

4. These features can be given to Capacity admins to turn on or off at the capacity level instead
of the tenant level (all capacities).

Fabric artifacts 291

Next, we will look at the details of these Fabric artifacts, starting with Delta tables.

Delta tables

Delta tables bring a data warehouse structure to the data lake. With an open-source format file structure,
Delta tables use parquet files with a transaction log. This brings data manipulation language (DML)
statements (INSERT, UPDATE, DELETE) to data lake storage. So, all tables stored in a warehouse or
lakehouse are Delta tables. This enables the default semantic model in each type to have a single storage
structure for reporting. Figure 14.3 shows the Fabric Explorer displaying the underlying parquet files
and transition log for a Delta table:

Figure 14.3 – Warehouse container for tables and related objects

There are two main benefits of Delta tables, the first one being its open-source structure, as most
programming languages can read and write to this format, and the other is since it is the common
format in Fabric, SQL, as well as Python, can be used to access the data for analytical reporting as well
as manipulation of the data. The end user does not need to know the details; they just use it in Fabric.
Each parquet file is immutable, which means the underlying files cannot be updated, so the changes
invoked are placed in a new file and the transaction log directs the reader of the data to the proper files.

Performance Needs for Fabric Artifacts292

As a user of Fabric, you do not need to understand the internals of Delta tables to use a warehouse
or lakehouse. Just understand that all tables created in Fabric are Delta tables. By default, a semantic
model is created to use those Delta tables in each lakehouse or warehouse. The column-store structure
of parquet files is what helps analytical reporting such as Power BI with aggregations and filtering
as well as parallel processing queries. The performance gains by using this structure help alleviate
infrastructure tuning for data warehousing.

On that note, an essential aspect of data warehousing is the differences between a lakehouse and
a warehouse.

Warehouse or lakehouse

A warehouse or lakehouse is a container for tables and files used in the default semantic model for
analytics. A warehouse looks like you are in SQL Server Management Studio or Azure Data Studio
managing tables, schemas, views, and stored procedures such as a relational database. There are options
in the interface to launch ingestion tools such as dataflows, pipelines, or notebooks. Figure 14.4 shows
this view with 1 for ingestions, 2 for a new report, and 3 for managing tables:

Figure 14.4 – Warehouse container for tables and related objects

All these objects can affect performance and count toward the capacity units (CUs). A CU is set by
the capacity size; for more detail, see Chapter 13. All these artifacts are mentioned to help understand
that planning to use a capacity depends on all resources.

Fabric artifacts 293

In the past, when using on-premises resources or even individual cloud resources, each artifact would
have its own resources allocated and managed. Fabric removes the managing of multiple resources but
does not remove the fact that the processing must be accounted for. So, when planning, Microsoft gives
you the option to start a 60-day trial (F64) Fabric capacity. This trial can be used to run simulations
of workloads and monitor to find how the artifacts will affect the capacity for planning your capacity
size. There is also an option for pay-as-you-go where you can pause and resume the capacity. Always
start small and increase as you monitor.

Next, let’s look at the Spark engine as far as performance is concerned.

The Spark engine

Most compute in Fabric comes from a Spark engine. In notebooks, it is obvious because, when
running the code, you see the Spark engine ramp up. The other processing in Fabric uses Spark as a
behind-the-scenes engine.

One main goal Microsoft has for Fabric is to have Spark servers on standby to be used by a capacity
thus reducing the wait time for a Spark engine to be allocated. Things will start faster. Any current
user of Synapse can attest to issues with starting a new Spark pool. Fabric is trying to eliminate this
wait. Figure 14.5 shows the monitoring in the Fabric service that drills into the Spark engine from
a notebook:

Figure 14.5 – Spark resource for a notebook run

Having discussed the Spark engine, let’s transition to the default semantic model that uses Delta
tables in Fabric.

Performance Needs for Fabric Artifacts294

Using Direct Lake for data sources
In Chapter 5, Direct Lake semantic models were introduced along with performance tuning in Import
Mode and DirectQuery. It is now the third option for a semantic model. The performance of these
different types of semantic models is created for a specific scenario. In the case of Direct Lake, the
option is for large data volumes. For best results over Import Mode, as of the printing of this book,
there is a need to have 100s of millions or billions of rows and 100+ GBs of data for Direct Lake to
exceed the performance of Import Mode. We expect Microsoft to improve on this performance since
Fabric was made GA in November of 2023.

The other requirement for using Direct Lake instead of Import Mode would be near real-time data
in the model. Direct Lake is the replacement for DirectQuery on big data sources. Import Mode
requires a data refresh when new data is available. Direct Lake does not need a data refresh because the
connection is to the Delta tables in the warehouse or lakehouse. Even though data can be in-memory,
the access to data is disk-based.

To see the options for Direct Lake, Figure 14.6 displays the property for a Direct Lake model to switch
between Automatic, Direct Lake Only, or DirectQuery Only:

Figure 14.6 – Direct Lake behavior

Monitoring Fabric resource consumption 295

In this figure, there are three options. The default is Automatic. This means Fabric handles the use
of Direct Lake over DirectQuery. A switch to DirectQuery over Direct Lake can happen when the
queries in the report using this semantic model exceed a limit. For instance, an F2 capacity has a
limit of 300 million rows. If the query needs 310 million, the model “automatically” switches to
DirectQuery over Direct Lake. This means the use of memory for queries cannot happen since the
number of rows exceeds the capacity limit. The other two options force the model to use Direct Lake
Only or DirectQuery Only.

There are two caches for Direct Lake – one for in-memory and the other for disk. So, even though
there is no import mode, Direct Lake still takes advantage of caching data. The in-memory cache is to
help with I/O operations, while the disk cache helps when data is not in memory. The caching relies
on previous queries to cache data that was used in the query. So, while the first one to three queries
of the day may seem slow, subsequent queries that read the same or similar data will benefit from the
cache. Caching is transparent to the user.

Now that we know what new Fabric artifacts are present, let’s move on to how to monitor these artifacts
with existing Power BI artifacts.

Monitoring Fabric resource consumption
The main monitor help for the printing of this book is the Microsoft Fabric Capacity Metrics app.
This is a Power BI template app you can install to monitor a Premium and/or Fabric capacity. The
template app is explained in detail in Chapter 13. The details allow 30-second periods to be examined
for all resources and the main measurement is CUs.

Performance Needs for Fabric Artifacts296

Figure 14.7 shows the list of SynapseNotebook resources used in a time slice of Fabric:

Figure 14.7 – Specific Fabric resource in monitor solution

Other resource types include Dataflow, Dataset, Lakehouse, and Warehouse. All these
resources will show CU usage as well as durations for execution, queries, or data refreshes. The term
“dataset” is referring to a semantic mode. The template app has not updated the header of this column yet.

To help you understand how to monitor resource consumption in real time, let’s look at a system
function to return information about column usage.

Measuring the hotness of data

There are system queries you can run to find the level of usage of data from a semantic model. The
following code has a temperature column from a query. This indicates how often it is used, and, if it is
lower than others, it can be evicted from memory when memory is needed by other queries or processes:

Select COLUMN_ID, SEGMENT_NUMBER, ISPAGEABLE, ISRESIDENT, TEMPERATURE,
LAST_ACCESSED from SYSTEMRESTRICTSCHEMA ($System.DISCOVER_STORAGE_
TABLE_COLUMN_SEGMENTS, [DATABASE_NAME] = 'AdvWkrDW')

Tips for enhancements 297

DATABASE_NAME is where you specify the semantic model name. This example looks at the
AdvWrkDW model and finds the temperature of each column. Figure 14.8 shows the temperature of
model columns from the AdvWrkDW semantic model:

Figure 14.8 – The SYSTEMRESTRICTSCHEMA system function

The temperature for CalendarYear is higher than EnglishCountryRegionName. The
data for the EnglishCountryRegionName column would be evicted from memory before
CalendarYear. This also means that CalendarYear is queried more often. There is also a
column named ISRESIDENT in which True means it is in-memory.

Let’s look at some tips for enhancement performance for new Fabric artifacts.

Tips for enhancements
There are various options for handling performance with new Fabric artifacts. These can range from
improving the model to using different capacities. One thing to keep in mind is that Fabric is a new
capacity that will continuously have new features and improvements to the existing resources. There
is always a monthly update that needs to be reviewed to understand the new features. Some of these
would need to be turned on or off in the Admin portal.

First, let’s look at load balancing.

Performance Needs for Fabric Artifacts298

Load balancing

Each function can be placed into its own capacity. That helps with resource contention and monitoring.
Instead of creating one F32 capacity for all the work, you can separate it into multiple capacities. An
F16 can be created for data warehousing where moving data is centralized. Dataflows and notebooks
can use this capacity for processing lots of data and curating the data into a reportable structure. The
semantic model can be on an F8 capacity for model processing and the reports can be on an F8 as well.
If a company decides to use pay-as-you-go, the capacities can be paused and resume when needed.
This ability can save money to not have a capacity running when it is not being used. Since semantic
models can be shared between workspaces, there is no issue with a report being in a capacity different
than a model. Since there are shortcuts, data can reside in a lakehouse in one workspace while the
curated layer can be in another.

Next, we will look at a new feature for dataflows.

Dataflow copy fast

Dataflows offer a no-code or low-code experience through a graphical user interface. This easier process
of moving data does come with a performance expense. Microsoft has been working hard to improve this
performance gap. The latest is the copy fast improvement to Dataflow Gen2. It is a behind-the-scenes
mechanism that mimics the pipeline copy activity from Synapse. This provides scale-out capabilities
without having to switch this function to Azure Synapse. One prerequisite is for large files, such as
CSV files of at least 100 MB. You can read more about this new feature here: https://learn.
microsoft.com/en-us/fabric/data-factory/dataflows-gen2-fast-copy.

Let’s continue this area with the on-demand loading of data.

On-demand loading

This feature was added before Fabric, but it allows the data to reside on disk while only the data needed
for queries are in memory. Since the data is structured in parquet files, they are optimized for column
storage and compression, which makes analytical reporting (aggregations) faster. Fabric has added
this performance enhancement for users of data warehousing.

Note
Since the Delta tables are stored in parquet files, this structure is optimized for analytical
reporting. It is not a good structure for row-by-row analysis of data. This is a standard report
method that data from a relational database is structured better for. You are not going to get the
same performance improvement for standard reporting as you will get for analytical reports
on large datasets.

Let’s look at the data size next.

https://learn.microsoft.com/en-us/fabric/data-factory/dataflows-gen2-fast-copy
https://learn.microsoft.com/en-us/fabric/data-factory/dataflows-gen2-fast-copy

Summary 299

Loading data in large chunks

Delta tables work best with loading data in large chunks. One or two rows at a time are not going to
work well with this structure. Multiple small files will hurt the performance of Delta tables. The structure
is meant for millions of rows. Parquet files created for Delta tables will show the most bang for the
buck when the sets of data inserted are very large. In a Delta table, no data is updated in a previously
created file by a change to a row. A new file will be inserted with the changes and the transaction log
for the table will indicate to the data reader what files to load.

Lastly, let’s look at maintenance that can help with too many files related to Delta tables.

Vacuum and Delta table structure

There is a maintenance option for optimizing Delta table structures once more data is added or
updated. The command is called Optimize and comes from the Apache Delta table open-source
functions. This function will try to optimize the number of files for the Delta table structure. This is
like performing regular maintenance on table indexes in a relational database. It should be scheduled
and monitored over time.

Here are some examples of using Optimize:

OPTIMIZE factSales VORDER;

OPTIMIZE factOrders WHERE predicate ZORDER BY InvoiceDate,
SalesOrderNumber;

The first example uses the ORDER optimization for the entire table. The second example uses the
ZORDER to optimize the table file structures by the InvoiceDate and SalesOrderNumber
columns in the table.

Let’s summarize this chapter.

Summary
In this chapter, we learned about how Fabric improves performance overall with a data warehouse and
analytical reporting. To begin with, we went over the additional artifacts in Fabric. We discussed the
overarching concept of OneLake while talking about Delta tables. We also discussed data movement
with notebooks and dataflows. In addition, we touched on the Spark engine as the ready-to-run
serverless compute for most processing in Fabric.

Next, we looked at Direct Lake as a source for semantic models. Since the main data structure is Delta
tables, the warehouse and lakehouse have a default semantic model with all Delta tables created in
the container. We learned that Direct Lake mode is used only for very large datasets and that Import
mode is still the best for small and intermediate semantic models unless near real-time reporting is
required. We learned that Import Mode still can be used and should be if not looking to analytically
report large data sets (big data). Microsoft has intentions of improving this.

Performance Needs for Fabric Artifacts300

Finally, we discussed monitoring with a main template app called Microsoft Fabric Capacity Metrics.
We learned where a resource can be selected to help look specifically at that CU usage. At the end, we
explored ways to enhance parts for the different artifacts and showed how these improve performance
and why.

In the next chapter, we will learn how to optimize the process of embedding Power BI content in
custom web applications.

15
Embedding in Web Apps

In the previous chapter, we talked about the new Fabric artifacts that will impact performance. The
chapter started with data integration topics that need a spark engine that stores data in the Delta
table format for Direct Lake access. The discussion ended with the monitoring tool used to measure
performance with Fabric.

In this chapter, we will learn how to optimize for embedding, a capability that extends the reach of
Power BI. This allows developers to use the Power BI APIs to embed reports, dashboards, or tiles into
their custom applications. There are many possible uses for this, with popular choices being serving
analytical content within company intranets, public-facing websites, or even commercial applications.

Embedding is technically possible with any Power BI capacity, so you don’t need to buy Premium,
Fabric, or Embedded to try it. However, for this to work properly at scale, you need to purchase
reserved capacity to get around the limits of shared capacities, such as a limited number of embed
tokens. Hence, the material in this chapter is relevant to the Premium, Fabric, and Embedded capacities.
We will not cover Publish to Web, which is intended for mass distribution and behaves differently.

We will discuss what embedding involves, why there are special considerations, and how to make sure
the Power BI content is loaded into the external applications as quickly as possible. We will also learn
how to monitor Embedded content to identify areas that are slowing you down.

In this chapter, we will cover the following topics:

• Improving embedded performance

• Measuring embedded performance

Embedding in Web Apps302

Improving embedded performance
Embedding content in external applications gives organizations more flexibility in how they deploy
and consume Power BI. There are different deployment costs and licensing considerations that will
affect which type of capacity you purchase. Microsoft effectively provides reserved capacity offerings
that are catered primarily to externally sharing content versus internally sharing content. However, the
embedded functionality and mechanisms that are used to surface and optimize content are the same.
Hence, the advice that will be provided in this chapter can be considered as generally applicable. If
you would like to learn more about embedding licensing and distribution models and which capacity
type is best for you, please check out the following documentation: https://docs.microsoft.
com/power-bi/developer/embedded/embedded-faq.

Embedding content using APIs is an alternate way to expose where you don’t use Power BI’s web
frontend. This can be seen in the diagram in Figure 15.1:

Figure 15.1 – Embedding Power BI content in other applications

In this configuration, users are interacting with the external application and not directly in the Power
BI or Fabric service. Once the content has been initialized within the external application, performance
is not affected by that application, unless it is also competing for CPU on the client.

Note
When you’re embedding content, you should optimize it the same way as you would any other
Power BI content. Follow all the guidance we have provided around data modeling, loading,
report design, and so on. It is also important to perform capacity planning and sizing using
the methods described in Chapter 13, Working with Capacities.

However, there are considerations regarding how the application is configured with Power BI and how
it interacts with the Power BI service. Next, we will learn why embedding is different from viewing
in the service and how we can speed it up.

https://docs.microsoft.com/power-bi/developer/embedded/embedded-faq
https://docs.microsoft.com/power-bi/developer/embedded/embedded-faq

Improving embedded performance 303

When we embed Power BI content in another application, we are adding another layer of processing
and latency. When we view a report on the Power BI portal, under most conditions, the Power BI
application is already bootstrapped. This means that the core application code and dependencies have
already been loaded.

However, when we load Power BI on-demand within our applications, this may not be the case.
There may also be some overhead and latency between your application and the Power BI services.
This includes time taken by your application before it even calls Power BI, where users can see other
content already. This has the effect of exaggerating the delayed experience of loading Power BI content.
Therefore, the advice we will give focuses on minimizing the embedding overhead.

The following list provides guidance and rationale for optimizing Embedded scenarios:

• Consider application location and architecture: The bi-directional arrow shown in Figure 15.1
represents communication and data transfer between Power BI and your custom application.
You should minimize communication latency by placing the custom applications as close to
the Power BI home region as possible. This includes ensuring the number of network hops
is minimized and sufficient bandwidth is available between Power BI and the custom app.
Do keep in mind that visuals are executed on the client side, so if you have users in different
geographic locations, some may have a different performance experience for the same content.

• Keep SDK packages and tools up to date: The Power BI team regularly updates both client
tools and services, as frequently as once a month. These updates often contain new features,
but they do contain performance improvements as well. When you deploy an application with
embedded content, it is easy to continue updating the content without looking at the embedding
mechanisms. To avoid missing out on performance improvements, we recommend using the
latest SDK, API versions, and authoring tools such as Power BI Desktop. The SDK can be
found at https://www.nuget.org/packages/Microsoft.PowerBI.Api, while
the client libraries for embedding can be found at https://docs.microsoft.com/
javascript/api/overview/powerbi.

• Preloaded dependencies: The Power BI Embedded API provides a method called powerbi.
preload that allows you to load core Power BI dependencies on demand. This is useful when
you have a custom application that displays Power BI content, as you can improve the first load
experience. You can do this by calling powerbi.preload when you initialize the application,
but before your users reach areas that display the Power BI content. This will load JavaScript
files, CSS stylesheets, and any other artifacts to cache them locally. When the application needs
to show Power BI content, it can avoid fencing the dependencies first. Additional information
about preloading can be found here: https://docs.microsoft.com/javascript/
api/overview/powerbi/preload. Use preload only when the Power BI content is on a
different page of the application. It is best to bootstrap the iFrame when possible, as described
in the next point.

https://www.nuget.org/packages/Microsoft.PowerBI.Api
https://docs.microsoft.com/javascript/api/overview/powerbi
https://docs.microsoft.com/javascript/api/overview/powerbi
https://docs.microsoft.com/javascript/api/overview/powerbi/preload
https://docs.microsoft.com/javascript/api/overview/powerbi/preload

Embedding in Web Apps304

• Bootstrap the iFrame: Embedding uses an HTML construct called an iFrame to host Power BI
content. An iFrame is used to embed one HTML document within another and is typically used
to expose external content that’s served from a different web location or server. For example,
you could use it to embed the Google search home page into a section of your website.

When you embed content using powerbi.embed, you need a report identifier, an embedded
URL, and an access token. Not all of these are immediately available, depending on the application’s
design and user journey. When you call the powerbi.embed method, the iFrame is prepared
and initialized before the content loads. However, it is possible to perform this initialization
earlier using powerbi.bootstrap (element, config). You must provide it with an
HTML element and an embedded configuration object as parameters. When all the required
parameters are ready, you can call powerbi.embed, passing in the same HTML element that
has been already initialized. This is a great way to prepare for Power BI content to be displayed
in the background while the user is doing something else in the application. Depending on
the application’s architecture and configuration, this can save some precious seconds, making
a big difference to the user experience.

• Use embed parameters effectively: The second parameter in powerbi.embed(element,
config) allows you to set options that control what features are enabled in the embedded
content. The properties of the configuration object that affect performance are as follows:

 � EmbedURL: This property is the URL of the content you are embedding and is assigned to
the src attribute of the iFrame. Avoid generating this URL yourself. You can obtain the best
URL from the service using the Get Reports, Get Dashboard, or Get Tiles APIs.

 � Permissions: This property determines which operations you grant the person viewing the
content. Use the Read permission if the user does not need to create content or copy or
edit the report. This avoids initializing UI components that are not needed. Similarly, only
set the minimum permission level that’s needed if they require editing rights.

 � Slicers, filters, and bookmarks: These are separate properties in the configuration that allow
you to set the context for the content. By design, Power BI tries to cache visuals to speed up
report content while queries are executed in the background. This cached result considers
the report’s context set by slicers, plus more. However, if you are embedding and supplying
this context via the code, the cache is not used. Therefore, if you have a default starting
context for an embedded report, you should publish the report with that context already
set. Then, you can call the embed method without context to take advantage of the cache.

• Change reports efficiently: A custom application allows you to build interesting functionality,
such as a custom navigation UI that controls which Power BI report a user sees. A user could
simply click a button or a link to replace the current report, without reloading the page. If you
implement something like this, ensure that you reuse the iFrame. When you call powerbi.
embed, use a different configuration but pass it the same HTML element.

Improving embedded performance 305

• Use a custom UI to reduce slicer complexity: You can reduce the complexity of reports by
removing slicer visuals from the report canvas and setting them in the embedded report
configuration object described earlier in this list. This lets you capture a lot of different slicer
and filter selections and pass them all at once while you’re loading the initial embedded report.

• Throttle the custom application to prevent misuse: Users can double-click custom report links
or navigate between reports in the custom app very quickly, causing many calls to be issued to
Power BI’s backend. You can limit this kind of behavior in your application by setting a short
duration within which to ignore a user action that occurs too soon after the last one. A good
rule of thumb here is about 100 ms.

• Handling multiple visuals: Many reports contain more than just visuals. You can embed a page
containing multiple visuals as it was designed within a single iFrame. However, you may need
to combine and embed multiple reports or even individual tiles in your custom application;
each would need an iFrame. Initializing an iFrame is relatively expensive, so you should try to
have as few as possible. Here are some options:

 � Consolidate reports: If possible, consolidate data and visuals from separate semantic models
and reports. This will allow you to embed the content in one iFrame.

 � Use a dashboard to combine disparate content: A Power BI dashboard is designed to contain
report tiles from different reports and semantic models that have no technical relationship
with one another. If you need to embed tiles from different reports into your application,
consider putting them in a dashboard and embedding this instead of all the individual tiles.
This reduces the load to a single iFrame. You can also embed individual tiles from dashboards
instead of reports. These are more efficient than report tiles and will load faster. Consider
this option when you do not want all the tiles appearing together in your application and
you don’t want to use multiple iFrames.

• Use a custom layout: The embedded configuration has a layoutType property that can be set
to customLayout. The latter allows you to define a page’s size and visual layout, which will
override the defaults. It even allows you to hide visuals you do not want to see. It is also useful
to rearrange visuals so that they can be viewed on mobile devices. More information on setting
a custom layout can be found here: https://docs.microsoft.com/javascript/
api/overview/powerbi/custom-layout.

Now that we know how to optimize embedding scenarios, let’s learn how to gauge embedding performance.

https://docs.microsoft.com/javascript/api/overview/powerbi/custom-layout
https://docs.microsoft.com/javascript/api/overview/powerbi/custom-layout

Embedding in Web Apps306

Measuring embedded performance
When you embed Power BI content in your applications, it is recommended that you measure the
embedding activity to understand the performance profile. The methods we have described in this
book can help you measure and resolve the performance of the Power BI artifacts themselves, but they
do not tell you what is happening in your application and whether there is any inefficiency when it
is communicating with Power BI and loading content. For example, the embedded Power BI report
may execute queries and render visuals within two seconds, but the user experiences a longer total
wait time due to the embedding overhead. Before we learn how to measure the embedding overhead,
we will introduce a recommended practice.

When you are performance-tuning your embedded content, it is very important to obtain a baseline
of performance without embedding. This will help you set the appropriate range for the best case in
performance, as well as help you identify any issues unrelated to embedding. You can optimize their
semantic models, DAX, and so on, independently and in parallel to the embedding optimization. Just
be sure to optimize the embedding code in your web application using the same Power BI content all
the time. This way, you can ensure that any improvements are from the embedding changes, and not
from Power BI content changes.

When you embed Power BI content, the system generates events to help you track and optimize
embedding behavior. To learn more about capturing embedded events, please see the following
documentation: https://docs.microsoft.com/javascript/api/overview/
powerbi/handle-events.

Next, we will describe the relevant events and how they can help with performance tuning:

• Loaded: This event fires when a Power BI report or dashboard has been initialized. Loading is
complete when the Power BI logo shown in Figure 15.2 is no longer visible:

Figure 15.2 – The logo and progress bar that are shown when a report has been initialized

• Rendered: This event is raised after the report visuals have completed any work and displayed
their results on the screen.

https://docs.microsoft.com/javascript/api/overview/powerbi/handle-events
https://docs.microsoft.com/javascript/api/overview/powerbi/handle-events

Measuring embedded performance 307

• VisualRendered: This event is fired for every visual. It is not enabled by default and needs to
be enabled by setting VisualRenderedEvents to true in the embedding’s configuration.
This allows you to track the speed of each visual, as well as rank the visuals and focus on the
slowest ones. This information can also be gained from the Desktop Performance Analyzer
and is a good way to compare the performance of content that’s deployed to production versus
in development.

Now, let’s learn how to use events to understand where delays are occurring. We suggest using a
combination of the Power BI events we described in the previous list, plus the events that you manually
generate in the custom application. This will give you a complete picture of all the activities. Figure 15.3
shows a timeline representation of a user action in a custom application. In this example, we assume
that a user has clicked a button in the custom application (not a Power BI report), which makes the
calls to load a Power BI report that contains two visuals (A and B):

Figure 15.3 – Timeline of embedded activity and event generation

The diagram in Figure 15.3 shows a custom Start event and a custom Finish event. These represent
the entire user action from the time they clicked the custom button to the time the custom web app
finished its work. There may be other work besides loading the report, which is why we have included
a gap between the Rendered event and the custom Finish event.

Embedding in Web Apps308

Once you have captured these events, you can subtract the timestamps to work out the duration of
any component. Then, you can compare this to the results of the service, as well as in Performance
Analyzer, to see whether there is a substantial difference.

Now, let’s summarize what we’ve learned in this chapter.

Summary
In this chapter, we conclude our Power BI optimization journey by learning how to embed content
efficiently. We learned that reserved capacities that are sold allow developers to embed content in
external applications. This allows them to build their own user experience that’s been enhanced by
analytical content. When they do this, they avoid using the Power BI user interface, and users access
reports through the custom application.

Then, we learned that embedding involves communication between the Power BI service and the
custom application via APIs. The Embedded SDK allows developers to authenticate, load, and then
place content inside the custom application. This adds some overhead, which can be very noticeable if
there is significant latency between the application and Power BI. However, we have highlighted that
you can – and should – optimize your Power BI content separately from the embedding mechanisms.

We learned that it is important to use the latest tools and SDKs when embedding. We also introduced
the API methods that can be used to load or initialize Power BI components ahead of time. This
reduces the initial load time for content by having dependent assets such as JavaScript and CSS files
loaded. We also looked at configuration settings such as minimal permissions, which can speed up
content by only loading the necessary UI components.

Finally, we learned that when a custom application needs to load content, it uses an iFrame. We
discussed how every separate piece of content uses an iFrame and you should minimize the number
of iFrames used. The suggestion is to consolidate content to load faster. We learned how to measure
performance through events. The application would use and monitor custom events with Microsoft
events to look at performance. This gives a full picture and allows you to understand the total duration
from a user’s perspective between report initialization, rendering, and ready for input.

Congratulations! You have completed your Power BI optimization journey and should be ready to
tailor and apply what you’ve learned throughout this book to your everyday job. We will close with
a reminder that performance management should be a discipline that is ingrained into every stage
of your development life cycle. You can achieve great results and maintain good designs with a bit of
planning and strong collaboration between stakeholders with different roles and skill sets.

Index

Symbols
 Globally Unique Identifier (GUID) 199

A
Aggregations feature 20
AI functions 261
Analysis Service 36
Analysis Services server traces

with XMLA endpoint 76
Application Life Cycle Management

(ALM) 259
attribute 99
Autoscale

used, for handling peak loads in
Premium capacity 267-269

Azure Analysis Services (AAS)
Azure diagnostics 78
Azure metrics 77, 78
monitoring 77
using, for data and user scale 234, 235

Azure Analysis Services (AAS), monitoring
reference link 77

Azure Data Factory (ADF) 288
Azure Data Lake Storage Gen2 (ADLS) 248

Azure Data Pipelines 288
Azure Log Analytics

integration with 77
reference link 77

Azure metrics and diagnostics
for Power BI Embedded (PBIE) 79

Azure Synapse Analytics and Fabric 249, 250
ADLS 249
Fabric capacity 250
modern data warehouse architecture 248
Synapse Analytics 249, 250
used, for improving performance 247

B
base measures 101
Best Practice Analyzer (BPA) 102, 219

rules 105
using 102-105

bi-directional filtering 204
considering 201-204

bi-directional relationship 88
using 204, 205

bridge table 203
Bring Your Own Key (BYOK) 259
business intelligence (BI) 4, 59, 192

Index310

business intelligence system (BIS) 117
business user 123

C
calculated column 212, 213

performance, improving 216
capacities

used, for managing resources 262-264
capacity

alert notifications 273, 274
compute report page 275-278
initial size, determining 269-271
monitoring 269, 274
optimization 269
planning 269
size, validating with load testing 271-273

capacity, compute report page
notebook resource 283, 284
performance delta 282, 283
Utilization overage 278-282

capacity load
evaluation cycles 264

capacity settings 259-261
AI 261
controlling 258, 259
paginated reports 261
semantic models 261, 262

Capacity Unit (CU) 130, 262, 292
capacity workloads

controlling 258, 259
cardinality 98, 199
Center of Excellence (CoE) 122
column-based compression 16
comma-separated value (CSV) 73
composite model 20
Continuous Integration/Continuous

Development (CI/CD) 235

ContosoDW DQ 283
corporate/IT-led BI 124, 125
cross-product 207
custom connector 134, 135

reference link 135
customer relationship management

(CRM) 165
custom Finish event 307
custom layout

reference link 305
custom Start event 307
custom usage metrics report

used, for accessing semantic
model data 66, 67

D
dashboard optimization 184

best practices 184, 185
Data Analysis Expressions

(DAX) 121, 186, 211
calculated column 212, 213
filter context, discovering 214, 215
filter context, improving for

measure 217-219
guidance 220-229
measure 213
performance, improving of

calculated column 216
pitfalls and optimizations 219
row context, dissecting 214
tuning 219, 220

data engine architecture
import mode 37
overview 36, 37
query, executing 38
term definitions 39, 40

dataflow 164

Index 311

dataflow optimization 164-167
Gen2 destinations 168

data manipulation language (DML) 291
data model

performance tuning 108
dataset 296
data transformation guidance, Power Query

data refresh 142, 144
development experience, improving 145-151
parallelism 142-144
resource usage 142, 144, 145

data usage
measuring 296, 297

DAX Studio 52, 106, 244
performance tuning 108
queries, capturing and replaying 109-111
queries, modifying and tuning 113-115
query timings, obtaining 111-113
tips, for working with 115

dedicated capacity 166
Delta tables 288, 291, 292

using, in Fabric 93, 94
denormalization 195
diagnostic logging, setting up

reference link 79
dictionaries 99
dictionary size 98
dimensional model 192

dimension tables 192
fact tables 193

Direct Lake (DL) 9, 18-20, 35, 81, 240
composite model 20
using, for data sources 294, 295

Direct Lake semantic models 93
on-demand loading 94, 95

DirectQuery (DQ) 35, 81, 88
external data sources, optimizing 91, 92
Power BI Desktop, settings 88-91
relationships 82-85

DirectQuery mode 8, 17, 18
usage, reasons 18

DirectQuery relationships
optimizing 86-88

domain-based BI 123
dynamic management views (DMVs) 106
dynamic RLS 205

E
efficient models

building 192
Kimball dimensional model theory 192-194
star schema, designing 194-196

email alerts 234
embedded performance

improving 302, 303
measuring 306-308

embedded scenarios
optimizing, guidance and rationale 303-305

embedding 301
Enterprise Agreement (EA) 264
enterprise resource planning (ERP) 192
evaluation container 143
event handling

reference link 306
external data sources

optimizing 91, 92
external tools, for Power BI

adapting 52
DAX Studio 52
other tools 54

Index312

Query Diagnostics 53
Tabular Editor (TE) 54

extract, load, and transform (ELT) 247, 288
Extract-Transform-Load (ETL) 247

F
Fabric

Delta tables, using 93, 94
Fabric artifacts 288-290
Fabric capacity

throttling and smoothing 234
Fabric Capacity Metrics 128-132, 271
Fabric capacity overage 266, 267
Fabric resource consumption

monitoring 295, 296
fact tables 193
fast copy in Dataflows Gen2

reference link 298
filter context

discovering 214, 215
improving, for measure 217-219

Foreign Key 86
formula engine (FE) 112
frequently asked questions (FAQs) 128

G
gateway cluster 29
gateways 21
Gen2 dataflow destinations

Azure Data Explorer (Kusto) 168
Azure SQL Database 168
Lakehouse 168
Warehouse 168

general availability (GA) 232, 289
Get-PowerBIActivityEvent

reference link 74

Globally Unique Identifier (GUID) 88

H
Hadoop Distributed File System (HDFS) 249
host 143

I
iFrame 304
Import 81
Import mode 8, 15-17
incremental model 143
incremental refresh 156-160
Indexed Views 92
interaction feature

disabling 181
interaction optimization

for slicing and dicing 180
interactive request delay mode 265

J
junk dimension 207

K
key performance indicators (KPIs) 126
Kimball dimensional model theory 192
Kimball techniques 192

L
Lakehouse 288, 292, 293
live connection 20, 21
Live connection mode 9
load balancing 30

Index 313

load testing
used, for validating capacity size 271-273

local data cache 145

M
many-to-many relationships (M2M) 201

considering 201-204
Mashup Engine 22
massively parallel processing (MPP) 81, 247
Microsoft Fabric Capacity Metrics app 295
Microsoft Power BI

areas, considering performance
improvement 7

data sources, connecting 8
good performance, defining 4
performance goals, reporting 4, 5
realistic performance targets, setting 6, 7

Microsoft.PowerBI.Api
reference link 303

Microsoft Power BI, data sources
DirectLake mode 9
DirectQuery mode 8
Import mode 8
Live connection mode 9

Mixed mode 240
model data

accessing, via Analyze in Excel
over usage metrics 67, 68

model size
analyzing, with VertiPaq Analyzer 106-108

multiple Power BI workspaces
performance metrics, collecting from 72, 73

N
Naïve Query 84
node 247

noisy neighbor
impacts, on shared capacity 256-258

normalization 192
Notebooks 288

O
OData 152
on-demand loading 94, 95
OneLake 288
on-premises data gateway 21
Optimize 299
Optimize ribbon

Apply all slices button 51
optimization presets 51
pause and refresh visuals 49, 50
using 49

P
P2 capacity 32
paginated report optimization 184

best practices 186, 187
paginated reports 261
Paq 106
Parquet 94
partitions

using, in fact table 238, 239
performance analyzer 40, 41

actions and metrics 41-43
performance data, exporting

and analyzing 44-49
user actions, determining 43, 44

performance enhancement,
for Fabric artifacts

dataflow copy fast 298
data, loading in large chunks 299

Index314

load balancing 298
on-demand loading of data 298
tips 297
Vacuum and Delta table structure 299

performance management cycle 118
baselines and targets 119
diagnose and fix 120
monitor and retain history 120
preventative measures 121
problems and prioritize 120

performance metrics reports
Fabric Capacity Metrics 128-132
usage metric report 126-128
using 126

performance responsibilities roles
business and data SMEs 124
business users 124
data analyst/report developer 124

performance tuning
events 306, 307

physical relationships 84-86
pinning 184
pitfalls

avoiding, with row-level security 205
guidance, for RLS configuration 205, 206
guidance, to dynamic RLS 206-209
relationships, optimizing 206

Platform-as-a-Service (PaaS) 234, 284
Power BI 288

architectural guidance 30
data connectivity 12-14
storage modes 12-14

Power BI activity log
importing from 74, 75
versus unified audit logs 73

Power BI architecture
capacities 30-33
data and cache refresh schedules,

planning 33

Power BI content
embedding, in other applications 302, 303

Power BI Desktop
Direct Lake mode 18-20
DirectQuery mode 17, 18
Import mode 15-17
live connection 20, 21
settings 88-91

Power BI Desktop Performance Analyzer
using 219

Power BI embedded analytics Client APIs
reference link 303

Power BI Embedded (PBIE)
Azure metrics and diagnostics 79
monitoring 77

Power BI gateways
deploying 21
logs, analyzing 28
logs, modeling 26-28
logs, parsing 26-28
logs, scaling up 28
performance, best practices 23
performance log, configuring 24-26
scaling, out with multiple gateways 29, 30
sizing 24
usage, considerations 22

Power BI Helper
bidirectional relationship, identifying 100
exploring 98
inactive relationship, identifying 100
large column dictionaries, identifying 98, 99
measure dependencies, identifying 101
unused columns, identifying 99

Power BI Query mashup engine 143
Power BI reports 35, 81
Power BI Report Server 33
Power BI scenarios

corporate/IT-led BI 124, 125
domain-based BI 123

Index 315

reference link 125
self-service BI 123
team-based BI 123
usage 122

Power BI semantic model 67
Power BI usage metrics report 59-62

copy, creating to edit 64-66
customizing 63
filtering 63
granular performance data, viewing 69
model data access, via Analyze

in Excel over 67, 68
performance metrics, analyzing 69-72
performance metrics, collecting from

multiple workspaces 72, 73
Power Query 8, 216

general data transformation guidance 142
Power Query diagnostics

collecting 161, 162
Power Query logs, analyzing 162-164

Power Query Editor 82
Power Query Online 164
preloading

reference link 303
Premium P1 capacity 265

peak loads, handling with Autoscale 267-269
Premium Per User (PPU) 30, 128, 232
Primary Key 86
professional developers

performance improvement 122
using 122

Profiler 54

Q
queries

joining 156

Query Diagnostics 53, 152
Power Query diagnostics,

collecting 161, 162
using 160, 161

Query Editor UI 162
query executions 24
query folding 151-156
query parameters 145
Query Processing Units (QPUs) 77, 235, 236
Query Scale Out (QSO)

scaling out 236, 237
synchronization modes for query

replicas 237, 238
unique performance enhancements 235, 236
using, to achieve higher user

concurrency 235
query-scoped measures 113

R
RADACAD 98
referential integrity 86
Rendered event 307
repeatable improvement process 118
ReplicaSyncMode 237
Report Definition Language (RDL) 186
report layout optimization

busy report, reducing 175-177
number of visuals, reducing 172-174
performing 172
queries, reducing to semantic

model 177, 178
small multiples option, using 178-180

REST APIs 152
data, storing 136

REST APIs, for monitoring data
calling 133, 134
custom connector 134, 135

Index316

resources 137
REST API data, storing 136

return on investment (ROI) 123
reverse dependency tree 101
role-playing dimension 194
root cause analysis (RCA) 117
row context

dissecting 214
row-level security (RLS) 120

S
scaling up 28
scaling, with aggregations and

composite models 240
aggregation, leveraging 242-247
composite models, leveraging 240-242

scaling, with capacities and AAS 232
Fabric, leveraging for data scale 232, 233
throttling and smoothing,

Fabric capacity 234
self-service BI 123
self-service users 121
semantic model 13, 14, 261, 262

data accessing, with custom usage
metrics report 66, 67

service providers (SPs) 123
service/tenant administrators 73
shared capacity 232

noisy neighbor, impacts on 256-258
single sign-on (SSO) 18
single source of truth

building 196, 197
composite models, for very large models 200
dataset size, reducing 198
date and time settings, adjusting 199
DAX calculated columns, offloading 200
default summarization, setting 200, 201

efficient data types 200
GUIDs, replacing with surrogate

keys for relationships 199
high precision and high cardinality

columns, avoiding 199
unused tables and columns, removing 198

slicer
moving, to filter pane 183
value, selecting 180, 181

slicing
performance improvement examples 180

software-as-a-service (SaaS) 287
Spark engine 288, 293
SQL Server 83
SQL Server Analysis Services (SSAS) 235
SQL Server Management Studio 145
SQL Server Profiler 76
SQL Server Reporting Services

(SSRS) 180, 186
star schema 192, 193

designing 194-196
Stoke Keeping Unit (SKU) 77, 267
storage engine (SE) 112
subject-matter experts (SMEs) 122
surrogate key 199
symmetric multi-processing (SMP) 247
system counters 24

T
Tabular Editor (TE) 54

Best Practice Analyzer (BPA), using 102-105
working with 102

Tabular Model Scripting
Language (TMSL) 239

Tabular Object Model (TOM) 239
tabular semantic model 37
team-based BI 123

Index 317

tolerable wait time (TWT) 5
Top N filtering technique

using, to limit data 182

U
unified audit logs

versus Power BI activity log 73
Universally Unique Identifier (UUID) 88
usage metric report 126-128
user principal names (UPNs) 65

V
Verti 106
VertiPaq 36
VertiPaq Analyzer 52, 106

used, for analyzing model size 106-108

W
warehouse 288, 292, 293
What You See Is What You Get

(WYSISYG) 180

X
XMLA endpoint 145

used, for Analysis Services server traces 76

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Complete Power BI Interview Guide

Sandielly Ortega Polanco, Gogula Aryalingam, Abu Bakar Nisar Alvi

ISBN: 978-1-80512-067-4

• Elevate your profile presentation with standout techniques

• Navigate the Power BI job market strategically for job hunting success

• Cultivate essential soft skills for career growth

• Explore the complete analytics development cycle in Power BI

• Master key Power BI development concepts in core areas

• Gain insights into HR interviews, salary negotiations, and onboarding procedures

https://www.amazon.com/dp/1805120670

321Other Books You May Enjoy

Data Cleaning with Power BI

Gus Frazer

ISBN: 978-1-80512-640-9

• Connect to data sources using both import and DirectQuery options

• Use the Query Editor to apply data transformations

• Transform your data using the M query language

• Design clean and optimized data models by creating relationships and DAX calculations

• Perform exploratory data analysis using Power BI

• Address the most common data challenges with best practices

• Explore the benefits of using OpenAI, ChatGPT, and Microsoft Copilot for simplifying data
cleaning

https://www.amazon.com/dp/1805126407

322

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Microsoft Power BI Performance Best Practices, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon review page
for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-835-08225-4

323

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-225-6

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-225-6

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Architecture, Bottlenecks, and Performance Targets
	Chapter 1: Setting Targets and Identifying Problem Areas
	Defining good performance
	Reporting performance goals
	Setting realistic performance targets

	Considering areas that could slow you down
	Connecting data sources
	Import mode
	DirectQuery mode
	Live connection mode
	DirectLake mode

	Summary

	Chapter 2: Exploring Power BI Architecture and Configuration
	Understanding data connectivity and storage modes
	Choosing between Import, DirectQuery, and Direct Lake mode
	Import mode
	DirectQuery mode
	Direct Lake mode
	Live connection

	Deploying Power BI gateways
	How gateways work
	Good practices for gateway performance
	Sizing gateways

	General architectural guidance
	Capacities
	Planning data and cache refresh schedules

	Summary

	Chapter 3: Learning the Tools for Performance Tuning
	Technical requirements
	Overview of data engine architecture
	Import mode
	Executing a query
	Term definitions

	Learning about the performance analyzer
	Actions and metrics in the performance analyzer
	Determining user actions
	Exporting and analyzing performance data

	Using the Optimize ribbon
	Pause and Refresh visuals
	Optimization presets
	The Apply all slicers button

	Adapting external tools
	DAX Studio
	Query Diagnostics
	Tabular Editor
	Other tools

	Summary

	Part 2:
Performance Analysis, Improvement, and Management
	Chapter 4: Analyzing Logs and Metrics
	Power BI usage metrics
	Customizing the usage metrics report

	Power BI logs and engine traces
	Activity logs and unified audit logs
	Import from activity logs
	Analysis Services server traces with the XMLA endpoint
	Integration with Azure Log Analytics

	Monitoring Azure Analysis Services (AAS) and PBIE
	Azure metrics for AAS

	Summary

	Chapter 5: Optimization for Storage Modes
	DirectQuery and relationships
	Optimizing DirectQuery relationships

	General DirectQuery guidance
	Power BI Desktop settings
	Optimizing external data sources

	Direct Lake semantic models
	Using Delta tables in Fabric
	On-demand loading

	Summary

	Chapter 6: Third-Party Utilities
	Technical requirements
	Exploring Power BI Helper
	Identifying large column dictionaries
	Identifying unused columns
	Identifying bidirectional and inactive relationships
	Identifying measure dependencies

	Working with Tabular Editor
	Using Tabular Editor’s Best Practice Analyzer

	Tuning with DAX Studio and VertiPaq Analyser
	Analyzing model size with VertiPaq Analyzer
	Performance tuning the data model and DAX

	Summary

	Chapter 7: Performance Governance Framework
	Establishing a repeatable improvement process
	The performance management cycle

	Knowledge sharing and awareness
	Helping self-service users
	Leveraging professional developers
	Applying steps to different usage scenarios

	Using performance metrics reports
	Usage metrics report
	Fabric Capacity Metrics

	Calling REST APIs for monitoring data
	Custom connectors
	Storing REST API data
	Other resources

	Summary

	Part 3:
Fetching, Transforming,
and Visualizing Data
	Chapter 8: Loading, Transforming, and Refreshing Data
	Technical requirements
	General data transformation guidance
	Data refresh, parallelism, and resource usage
	Improving the development experience

	Folding and joining queries
	Query folding
	Joining queries

	Refreshing incrementally
	Using Query Diagnostics
	Collecting Power Query diagnostics
	Analyzing the Power Query logs

	Optimizing dataflows
	Gen2 destinations

	Summary

	Chapter 9: Report and Dashboard Design
	Technical requirements
	Optimizing report layout
	Too many elements in a report
	Reduce a busy report
	Reducing queries to the semantic model
	Using the small multiples option

	Interaction optimization for slicing and dicing
	Selecting a value for a slicer
	Disabling interaction when necessary
	Using Top N to limit data
	Moving slicers to the filter pane

	Optimization for dashboard and paginated reports
	Following best practices for dashboards
	Optimizing paginated reports

	Summary

	Part 4:
Data Models, Calculations,
and Large Semantic Models
	Chapter 10: Dimensional Modeling and Row Level Security
	Technical requirements
	Building efficient models
	The Kimball dimensional model theory
	Designing a basic star schema

	Building a single source of truth
	Reducing dataset size

	Considering many-to-many relationships and bi-directional filtering
	Using bi-directional relationships carefully

	Avoiding pitfalls with row-level security
	General guidance for RLS configuration
	Optimize relationships
	Guidance that applies to dynamic RLS

	Summary

	Chapter 11: Improving DAX
	Technical requirements
	Understanding row and filter context
	Calculated column
	Measure
	Dissecting row context
	Discovering filter context
	Improving the performance of a calculated column
	Improving filter context for a measure

	Understanding DAX pitfalls and optimizations
	Tuning DAX
	DAX guidance

	Summary

	Chapter 12: High Scale Patterns
	Technical requirements
	Scaling with capacities and Azure Analysis Services
	Leveraging Fabric for data scale
	Throttling and smoothing in Fabric capacity
	Leveraging AAS for data and user scale
	Using QSO to achieve higher user concurrency
	Using partitions in the fact table

	Scaling with aggregations and composite models
	Leveraging composite models
	Leveraging aggregations

	Improving performance with Synapse and Fabric
	The modern data warehouse architecture (Synapse)
	ADLS
	Azure Synapse Analytics and Fabric

	Summary
	Further reading

	Part 5:
Optimizing Capacities in
Power BI Enterprises
	Chapter 13: Working with Capacities
	How a noisy neighbor impacts shared capacity
	Controlling capacity workloads and settings
	Capacity settings

	How capacities manage resources
	Managing capacity overload and Autoscale
	Handling peak loads in Premium capacity with Autoscale

	Capacity planning, monitoring, and optimization
	Determining the initial capacity size
	Validating capacity size with load testing
	Alert notifications
	Monitoring capacities
	Understanding the compute report page

	Summary

	Chapter 14: Performance Needs for Fabric Artifacts
	Fabric artifacts
	Delta tables
	Warehouse or lakehouse
	The Spark engine

	Using Direct Lake for data sources
	Monitoring Fabric resource consumption
	Measuring the hotness of data

	Tips for enhancements
	Load balancing
	Dataflow copy fast
	On-demand loading
	Loading data in large chunks
	Vacuum and Delta table structure

	Summary

	Chapter 15: Embedding in Web Apps
	Improving embedded performance
	Measuring embedded performance
	Summary

	Index
	Other Books You May Enjoy

