Beginning
Django

Web Application Development and
Deployment with Python

Covers 1.11 LTS, compatible with
Python 2 and 3

Daniel Rubio

Apress’

Beginning Django

Web Application Development and
Deployment with Python

Daniel Rubio

Apress’

Beginning Django: Web Application Development and Deployment with Python

Daniel Rubio
F. Bahia, Ensenada, Baja California, Mexico

ISBN-13 (pbk): 978-1-4842-2786-2 ISBN-13 (electronic): 978-1-4842-2787-9
https://doi.org/10.1007/978-1-4842-2787-9

Library of Congress Control Number: 2017958633
Copyright © 2017 by Daniel Rubio

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com).

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Tri Phan
Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227862. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2787-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227862
http://www.apress.com/source-code

To Valentina, Nancy and all my immediate family

To my uncle Alfonso, whose Commodore 64 let me gain an affinity
for technology

Contents at a Glance

About the AUthOrccccsmimmms s —————=—=——_ Xxi
About the Technical REVIEWETccussssemsssssssmssmsasssssmsssssssssssssssssssssssssssnssnssnsnns XXiii
AcknowledgmeEnts.......cccueersssssssnmsnnmsmmssssssssssssnnsssesssssssssssnnnsssessssssssnnnnnnsssssssssnnnnnns XXV
Introduction ... ——————————_—— XXvii
Chapter 1: Introduction to the Django Framework..........ccccuresssnnnnmsssssnnsssssssssssssns 1
Chapter 2: Django Urls and VIEWSc.ucccemmmmsssmnnmmssssssnmmssssssssssssssssssssssssnsssssssnnnss 31
Chapter 3: Django Templates........ccccrrmsssmmnmmmsssnnnmmsssssnnnmsssssnssmssssssssssssssnnssssssnnnnns 73
Chapter 4: Jinja Templates in DJango........ccuseemmmmsssnnnmmssssssnnsssssssssssssssssssssssnnns 117
Chapter 5: Django Application Management............ccccnnemmmmnssssnnnnnsssssnnssssssnnns 163
Chapter 6: Django FOrmS.......ccuuuemmmmmmmmmmmssssssssssssnssssssssssssssnsssssssssssssssnnnssssssssnns 217
Chapter 7: Django MOUEISccuuscemnrrmsssnnnmmssssnnnsssssssssssssssssnsssssssnsssssssnnnsssssnnnnss 275
Chapter 8: Django Model Queries and Managersccccuuseesmmssssnnsssssssnnsssssssnnnss 341
Chapter 9: Django Model Forms and Class VIEWSccuuseesmssssssssssssssssnssssssnnnss 403
Chapter 10: Django User Management..........ccccrunmnsmmnmmsssssnnsnssssssssssssssssssssssnnnss 441
Chapter 11: Django admin Managementccousmmmsssnnmssssssssssssssssssssssnssssnnsnss 495
Chapter 12: REST Services with Djangocccccurernsssssssmssmmnmmsssssssssssssnsssessssnns 549
Appendix A: Python BasiCS......cuuummmmsmsmsmmmmmmmmsssssssssmsmssssssssssssssssssssssssssssssssns 567
INA@X . ueiieninrisse s ——————————————__——_— 585

Contents

ADOUT the AUTNOLceeiirreeeiirrenssisrrssssssrsssnssssssnssssnssnsssssssnnssssssnnssssnsnnnsssnsnnnsnsnnnnnnns XXi

About the Technical REVIEWETccourrmrresmsmmssssssssmssssssnssssssssssssssnnnnssssssssssssnnnnnssnss XX

AcknowledgmeEnts.......cccueersssssssnmsnnmsmmssssssssssssnnsssesssssssssssnnnsssessssssssnnnnnnsssssssssnnnnnns XXV
INtroductioncccsiismmmismsmnse s ———————————— XXVii
Chapter 1: Introduction to the Django Framework...........cousasmssesmssnsssansssassssnsssansas 1
Django Framework Design PriNCIPIESccccveerreriersersersis s ses e ses s e snssnssnnnes 2
Don’t Repeat Yourself (DRY) PHNCIPIE........coueoeeerireeeerreeere et 2
Explicit Is Better Than IMpPLCIE..........coocoeeriecrrecr e 4
Loosely Coupled ArCRITECIUIEcocovieeerirecririee i 5
TS 721 0T T oo S 5
InStall Python (PrErEQUISITE).......ceeererererrerereerereererersssersesessesessesassessssessesessesessessssesseessessssessssesssnesssnsnaen 6
Update or Install pip Package Manager (Prer@qUISItE)ccoreererrerrererrererererseressersesessesessesesessssessesenaes 7
Install virtualenv (Optional PrereqUISItE).......ccerereriereerererererererssereeseseesessesessesessesaesessesessesessesassesssnenaes 8
1153 e LN] o R 1
Install Django from Git...........ccoveeerererierrreresere e s s s rae e se e se s sa e sae e s aesesaesessesaesesaesesaenesasanaens 1
Start @ Django ProjECT ..o e 13
Set Up a Database for a Django Projectccooverercrcrcescsss e 15
Install Python Datahase PACKAGES..........ccrueeererueeieririeeereres s 18
Test Django Database Connection and Build Django Base Tables..........c.coeoeerrreicnnncscncneneesesenns 18
Set Up Content: Understand Urls, Templates, and APPSccccvvevverrerieererssesesssessesssesns 19
Create and Configure DJANg0 UFIScccoeererererererercressesteseseses e sessesesessesessesessessssessssessssessssesassanaens 20
Create and Configure Django TEMPIALEScceoeeerereriereriererererer e seresersesessesessesessesasessesessesesassanaens 21
Create and Configure DJANg0 APPS......ccceerererererererersersssessesessesessessssessesessesesssssssessssessssessessssssssassassens 22

vii

CONTENTS

Set Up the Django admin Siteccccevverrniiennscresire e snsnens 25
Configure and Install the Django admin Site APP......ccoeeeerererenerirrreseser s sens 25
Configure and Install the Django admin Site dOCS APPccceererreerererrererererreese e sessesenes 28

Chapter 2: Django Urls and VIEWSc.uucemmmmssssnnmmssssssnsssssssssssssssssssssssssnnnsssssnnnnss 31

Url Regular EXPrESSIONSccccerserueressersesssesesssssesessesssessssens 31
Precedence Rule: Granular Urls First, Broad Urls Last...........ccceererrinniennrcrenene s s sesesesaesennens 31
Exact Url Patterns: Forgoing Broad MatChing...........cooeeerneeicninnescseseeseses e sessenes 32
ComMON Ur PAHEINS ... 33

Url Parameters, Extra Options, and Query Strings........ccccovvvrervnnnessnes s ses s sessenens 35

Url Consolidation and Modularization.............ccernnnn e 38

Url Naming and NamESPACEScccecerrerrerereersersessessesssssessens 40

View Method BEqUESTS........cce e sn e sne s nne s 47

View Method RESPONSESccccererierierirsirsir s sn s sn s snssrssr s snssnssnssnssnannsnnns 49
Response Options for HTTP Status and Content-Type Headers...........covcvvcrenerennccnnscnssesesesenennens 50
Built-In Response Shortcuts and Templates for Common HTTP Status: 404 (Not Found),

500 (Internal Server Error), 400 (Bad Request), and 403 (Forbidden)........c.ccccoevrerererienensesensersnsessenennns 51
Built-In Response Shortcuts for Inline and Streamed Content...........ccoeveverevecnsece e 55

View Method MIddIBWAIE..........ccceceeerierereriereesese s ses s sn s 57
BUilt-In MiddIEWAre ClaSSES........cocreereererereeseseesesesesese e 57
Middleware Structure and EXECULION PrOCESS.........cocoeeerererenenenesesese s 60

Middleware Flash Messages in View Methods...........ccocvvrvrrnrnnnnensensesses s s s sessenens 64
Add FIASN MESSAGES....cverererrerrirserserserssessssssssssassasssssssssssssssssssssssassssssssssssssssssessessssssssssssssssssssensssssssenes 65
ACCESS FIASh IMBSSAQES......ceieeeririrrir ettt sa s sa s sa s sa e s e b e et e e b e e e b e e et e na e n e e e s 67

Class-Based VIBWSccriererimnimss s s s ss s s sssss s 68
Built-In Class-Based VIBWS...........ccciriiciiississ bbb 69
Class-Based View Structure and EXECULION...........ccccuruiiicniriniscccs s 69

viii

CONTENTS

Chapter 3: Django Templates........cccernssnmmmmmssssnnnmmssssssnmsssssssssssssssnssssssssnsssssssnnnees 13

Django Template SYNTaX........cccccerirerriennre s 73
Auto-Escaping: HTML and Erring on the Safe Side.........c.cuvvvnnnnnnnssssssssssssenens 74
Django Template Configurationcccecvvrierirsrsssr s e 75
Template SEArCh PathS..........oo i 76
Invalid Template VariabIs ..o s 78
DEDUG QULPUL....coeeeeee e e e e e r e 80
AULO-ESCAPE ...ttt e b e e et b e s e s e e e nnns 81
Fil CRAISEL......cecccc e 82
Automatic Access to Custom Template tag/filter MOAUIESccverererrcernrc s 83
TEMPIALE LOAUETS ... 84
Create Reusable TEMPIALES.......ccccvverierre v se e sn e sa e snenae s 85
Built-In Context PrOCESSOrS........ouiuiuiieiirerisssssssssss s sasens 87
Django debug context processor (django.template.context_processors.debug)........ccccccevvverereriernnnens 88
Django request context processor (django.template.context_processors.request)cccecvvereriernnnens 88
Django auth context processor (django.contrib.auth.context_processors.auth)..........cccooevveierieinnnens 88
Django messages context processor (django.contrib.messages.context_processors.messages)....... 89
Other Built-In Django Context Processors: i18n, media, static, tz, and CSRF context Processors........ 89
Custom Context PrOCESSOISccvuierermseserssessssssss s s ss s sssss e 90
BUilt-In DJANGO0 FIlLErS.....cocviervererierrererer st e e se e se s sa s snssnssn e s snssassns s nees 91
DALES ..o ———————————————————— 91
Strings, Lists, ANt NUMDEIS.......coccveecerere ettt see e se e e s sae e sae e saesas e sa s e sae e saenenans 94
NUMDEIS .. 95
311 96
Lists @and DiCtIONANEScccuvuririirririissr s ————— 98
Spacing and SPECial CRAraCLErS.........cccererereriererrerrerererereres e reesesseresaesessesassesaeessesessesessesassessenessenssaes 99
Development and TESTINGcccveererre e e rere s re e sa e ree e s se e saesa s e e s e sae e sae e saesanaesassesaeneres 100
UMIS oo ———————————————— 101
BUilt-IN DJANGO0 TAGS ...uvverererersessessessessessessessessessessessesssnsans 101
DALES ... —————————————————————_ 102
FOMMS o ——————————————— 102

CONTENTS

COMPAriSON OPEIALIONScceveerrererrererrererersesersesersesessesessesassesssessesessesessersssessssessssessesssesssessssesseneres 102
0 0L SRS 104
Python and Filter OPErationscccceeererieresieresersesessesessesesessesessesessesessessssessssessssessessssessssesassessenenes 107
Spacing and SPECial CRAIACIELS.........ccvererrererererererrersesersesesresessessssessesesaessssessssessssesseessensssessssessssens 108
TEMPIATE STTUCIUIES ..eveeeeeceec e a e e ae e e s e e s e e e aenaeaena e e e a e e ne e nnen 109
Development and TESTINGccceviierinerere e e r e e r e s p e e e e e nae s 110
UMIS ot ————————————— 110
CUSTOM FIREIS ...t 110
R3] ({17 1] 110
Options: Naming, HTML, and What Comes In and Utcccovrrrnnnnsnnscnness e 112
INSTAllAtion AN ACCESS......cocveciiiriree e 114
Chapter 4: Jinja Templates in DJango........ccuseenmmssssnnnsmsssssssssssssssssssssssssssssssnnns 117
Jinja Advantages and DiSadvantages...........ccurrennnesns s 117
Transition to Jinja Templates from Django Templates.........ccccvrvrvrrrvrirrrsnsensencennn, 118
What Works the Same Way in Jinja and Django Templates.........c.ccovoerererrrenenesnesesesenssssesensssseseneens 118
What Works Differently in Jinja Templates Compared to Django Templates...........cccocvvrerererenieserennnn 119
New Concepts and Features in Jinja Templates vs. Django Templates...........ccovrerererrresesesensnsenenens 121
Jinja Template Configuration in Django..........ccccvvrrerverrernnsnsences s sees 123
Template SEArCh PAtNS........cccccveererererre s e sa e a e sa e e a e e aesa e a e e ne e nnen 123
AUt0-ESCAPING BENAVIOKcevvieeieiesiesee sttt ss s s et s sttt sa s st sttt e et sa e e na e sa e nn e nan 125
Auto-Reload Template Behavior and CaChing..........cccceeerererrerenrereresesessessssessssessesessessssessssessesessesesaes 126
Invalid Template VariabIEs ... e nn e s 127
QLT 00T 0] s UCC T 0T U0 L S SSSS 128
Create Reusable Jinja TempIatescccceeeeeerccccc s 128
Jinja Globals: Access Data on All Jinja Templates, Like Django Context Processors........ 134
Jinja Built-In Statements/Tags and Functions (Like Django Template Tags)................ 135
COMPAriSON OPEIALIONScceveereererrerererereressersesersesessesessessssessssessesessesessessssessssesssessesssessssessssessenees 136

CONTENTS

Python and Filter OPErationscccceevererereeieresersesesesessesesessssessesessesessesassessssessssessessssessssessssessenenns 141
Spacing and SPECial CRAIACIEIS.........ccvererrererererererersesessesessesessessssessesessesessessssessssessssesssnsssessssesassens 142
Template STrUCIUIES ... ——————— 145
Jinja Built-In Filters and Tests (Like Django Filters)ccccverrrrrsscessessessesses s sensennns 146
Strings, Lists, Dictionaries, Numbers, and ObjJectS.........cccovvievriennicnnsrnss s 147
STHNGS @NA LISES.....c.eeieeeiririeceisisiee e e e n e s e p s 148
Dictionaries and ODJECTS.......cccvurueeerirrreereriree s 149
RS (] 10 OO 151
NUIMDEES .. 152
Spacing and Special CharaCters..........cuiriieriierniesnse s e s sre s se e e 153
Development and TESTINGoccoceerereerrree e 155
UMIS o 155
Custom Filters and Tests in JiNja.........ccocueereenrenennesnesess s 156
R3] (0 (1] 3PP 156
INSTAlALION ANU ACCESS.......cuecceeereeere e e 157
JiNJA EXTENSIONS ..o s sa e s sa e s sa e s a e s s 158
Enable Jinja EXIENSIONS ..o sa e sa e s b b s e a e a e a e a e s p e a e na e na e nn e s 159
Create Jinja EXLENSIONScccveicreierererereseressessesessssessesessesassessssessssessesesssssssessssessssessssssessssesassessenenes 160
JiNJA PONICIES ..c.eeeecererer sttt n e sn e e 161
Chapter 5: Django Application Management...........cccocunnnmmnmnnsssnnnnnssssssnssssssnnns 163
Django settings.py for the Real World ..o 163
SWitCh DEBUG t0 FaISE.......cocuieieiririiiicisiiiiissssss s ssssnsnas 163
Defing ALLOWED _HOSTScooeeeireereesesreasesisssssssessesssssssssssssssssssess s ssssssssssssssssssssssssssssssssnssssssssnsens 164
Be Careful with the SECRET_KEY VAIUE.........cccouureurerrieresinsessessssessesessssssssssesssssssssssssssssssssssssssssssssens 165
Define Administrators for ADMINS and MANAGERScoconnnnsssssssss s 165
Use DynamiC ADSOIULE PAINSccou e 166
Use Multiple Environments or Configuration Files for Djangoc.cccocerreenenerneneseneneseseseseeeens 168
Set Up Static Web Page Resources - Images, CSS, JavaScript.........ccccceevrvrrrrreriennnns 173
Set Up Static Resources in a Development Environment (DEBUG=FalS€)...........ccceerrrrerererrererererennenes 173
Access Static Resources in Django TeMPIALEScccovreererernenesrne s sessns 176

xi

CONTENTS

Access Static Resources in Jinja TEMPIALES.......ccciveerererereniererrereseresesessssessesessesessessssessssessesessesssses 178
Set Up Static Resources in a Production Environment (DEBUG=TIUE)ccceverrererrererrereererseserserenens 178
D LT [0l T To 4o S S SS S SSSRS 179
Python Core LOgging CONCEPLS......cccvurueerererreeseresiessesesesseese s e e ss s s e s sesessanssnens 180
Django Default LOGUINGccorureeererrrreeriririeesesessssse e se s ss s s e s s s s sssssssssnnns 180
Create LOG IMESSAGESceecrererreeerrrseeesessesesesessssssesesssss e e s e e e e sse s e e sssa e ssssssssssssssssssssssssansnsnens 183
CUSTOM LOGGING....eveueeereeneirereeseesesssseesesessesesesesssss e sesasse e e sss e e e e ssase e sessass s ssssssasssssssssnsssssssensnsens 185
LOGGING WIth SENTIY ...t 190
Django EMAil SEIVICEccoviereerererreseresessessesessessssessessssessssessessssesssssssssssssssssssssssssssnes 193
Set Up a Default Connection t0 an EMAil SEIVETccccvreerernnenesersesesesesse s sessssssesessssenes 193
Set Up a Default Connection to Third-Party Email ProVIidersccccevrerererenenesesssssesesessssesesessnsenes 194
Built-In Helpers t0 Send EMAil.........ccoeoeerereiesinricescsirissese s se e sesessssssssnens 197
Custom Email: Attachments, Headers, CC, BCC, and More with EmailMessage...........cccccecveererrerennene. 199
Debug Django APPlICAtIONScceccerieerirrerrir e n s 203
Django Shell: Python manage.py ShEll ... sesse s e s sessesassesassesssnenes 204
Django DeDUQY TOOIDAL.........coi i sa e s r s r e s a e a e e s r e e e e e e saenn e s 204
DJANGO PUD . e E e e A E e e e A e e e e e e e e s 206
DjaNgo EXIENSIONSevuiiiiiririire e s a e st a e sa e e s a e e e b e b e e e e e e e a e e e e e e et e s 208
Django Management COMMANGSc.ccccreereeriersessnsses s sesse e e e e sns s snenns 211
Custom Management Command STrUCLUIEc.ceoeerircierriree e 212
Custom Management Command INStallation.............ccoourenriciennneer s 214
Management Command AUTOMALION ... 215
Chapter 6: Django FOrmMS......ccccussemnmmssssssnsessssssnsssssssssssssssssnsssssssnssssssnnnnsssssnnnnss 217
Django Form Structure and WOrkflowcccvcvcrvrcrcessssissss s sns s 217
Functional Web Form Syntax for Django FOIMS ..o 219
Django View Method to Process Form (POST Handling)ccceoeeenereeencnennsnesisseesesese e 220
CSRF: What Is It and How Does It Work with DJango? ... 222
Django Form Processing: Initialization, Field Access, Validation,
and Error HANAIINGcceoeeeeeeeeceeceecee s e ses s s s snssssssssssssssssssssssssssssssssssssnnens 224
Initialize Forms: Initial for Fields and Forms, __init__ method, label_suffix, auto_id,
field_order, and use_required_attribute........ccocvvevivinncn s ———— 225

xii

CONTENTS

Accessing Form Values: request.POST and cleaned_data............c.ccoeverrerenrernrerennesensesessessssessenenns 229
Validating Form Values: is_valid(), validators, clean_<field>(), and clean().........c..ceeevrerrerrerrerrersennens 230
Error FOrm Values: EFTOrS.......covvnnnnmiiiiisss s 234
Django Form Field Types: Widgets, Options, and Validations............ccccccvereerrercercennnns 235
The Relationship between Widgets and FOrm Fields..........cooeoirieinrncscrereeesereseeeseseee s 245
Empty, Default, and Predetermined Values: Required, Initial, and Choices.........ccccovrrivrerierericrenenns 246
Limiting Text Values: max_length, min_length, strip, and Validators............ccocecrivrrerniennccnnccrnnenn 246
Limiting Number Values: max_value, min_value, max_digits, decimal_places, and Validators 247
Error MeSSages: BITOr _MESSAUES.cucueerererrerererersesssesessssesssessssessssssssesssssssssssssssssssssssssssssnsssssssensssssns 247
Field Layout Values: label, label_suffix, help_text ... 248
Set Up the Layout for Django Forms in Templatescccceoveeenierennsenssesesesscssennnnens 248
Output Form Fields: form.as_table, form.as_p, form.as_ul, and Granularly by Field 249
Output Field Order: field_order and order_fields...........ccocevrierrrerereresre e ses e 252
Output CSS Classes, Styles, and Field Attributes: error_css_class, required_css_class, Widget,
Customization, and Various FOrm Field OpLionScocoveeerernenenesensesesessssesesssssse s sesesessssseens 252
Output Form Field Errors: form.<field_name>.errors, form.errors, form.non_field_errors 254
Django Custom Form Fields and Widgets........c.ccvervrrrrrnrsennensensesses s sessessesssssessenns 255
Create Custom FOrm FIeldS ... 256
Customize BUilt-In WIQETS.......cccvrerererererererertesersssesessessesessessssessesessesessessssesassessssesssssssssessessssessenenes 257
Create CuStOmM FOrM WItgeTS.......ccverererererererrererresessesesseses e ssssessesessesessessssesassessesesssssssssassesassessssenes 258
Custom Form Widget Configuration OplionS.........cceevevvererieresiere s sesessesessesessesessesassessssenes 260
Django Advanced Form Processing: Partial Forms, AJAX, and Filesccceccveevcennnne 261
Partial FOMMS ..o 261
AJAX FOrm SUDMISSION ... 263
FIlBS IN FOMMS ...t 265
DJANG0 FOIMSELScouceeeerceerereere e e s nr e en e 268
L0 0 ES T O e 0] 270
Formset Management Form and FOrmset ProCESSINGccvreverererrnenesesssesesesssssesesessssesesessssenenens 270
Formset Custom Validation and FOrMSEt EITOrS ..o seeesenens 272

xiii

CONTENTS

Chapter 7: Django MOEIScccusemmmmmsssnnnnmsssssnnnmssssssnnsssssssssssssssnnsssssssnnnsssssnnnns 2 19

Django Models and the Migrations WOrkflow...........c.cceeverersersessessesses s ses s sessennns 275
Create Django MOUEISccoeeeeeerereresirers e s s r e b e n e e e e sn e nn e r e 276
Migrations and the Django Model WOrkflow.........ccccceerevniennncrescnesess e 277

Django Model Data TYPESccveerrerrerieriirerserser s se e e sn s sn e snssnssnssnesnesnenns 280
Limiting Values: max_length, min_value, max_value, max_digits, and decimal_places.................... 287
Empty, Null and Not Null Values: Blank and NUIL..............coovrreiennneiercsseeesesesee e 288
Predetermined Values: default, auto_now, auto_now_add, and ChOiCeSc.ccevrererererererererenenns 290
Unique values: unique, unique_for_date, unique_for_month and unique_for_year.........c.ccecsernuee. 293
Form Values: Editable, help_text, verbose_name, and error_mesSagescocvrererererreseresessesesenens 293

Database Definition Language (DDL) Values: db_column, db_index, db_tablespace, primary_key ...294

Built-In and Custom Validators: Validators...........c.courerereneninennssssseseseesesesessesesese s 295
Django Model Default and Custom Behaviors..........ccccvververversersensessessessessessessessessenenns 296
MOdEl MEENOAS ... —————————— 296
Model Manager Field: ODJECTSccovrerererrereerereerereesereerereresesss e saesessesessesassessssessesessesessssassesassesseneres 304
Model Meta Class and OPLiONScccceererrererrererererereseseresessesessesessesessessssessssessssessesessssassessssessenerns 305
Relationships in Django MOEISccccveerrrrernessessessesses s ses s e sessss e sns s sessnssnssssnnns 310
One to Many Relationships in Django MOGEIScccceererriernrcnesre e 311
Many to Many Relationships in Django MOGEIS...........ccccverrierererenene s 311
One to One Relationships in Django MOGEIS.........cccccveeriernierncre e 312
Options for Relationship Model Data TYPEScccvccevrererrerirers s 313
Django Model TranSaClioNSccccecerierrerierserrirsir s sn s sn s sn e snnnns 317
Transaction per Request: ATOMIC_REQUESTS and Decorators..........coccvevriernrerenesesenesessessssessenenns 317
Context Manager and Callbacks: atomic() and on_Commit().......ccoerererererenenesennesesesese s 318
Django Model Migrationscccvververneriersensinsesses e sesses e ses s sssssssssssssesssnns 319
Migration File Creationccceeeerererererererrere e sereesesseses e sseseseesessesessesassesassessesessssessssessesassesssnenes 319
Migration File RENAMING.........ccceerereererererererrereesertesereesesseses e ssssessesessesessesassesassessssessssessssassesassesssneres 320
Migration File SQUASHING.......cccveeerererererererereseresereesesseses e sae e seesessesesaesassesassessesessssesassassesassessenerns 321

xiv

CONTENTS

Migration File STTUCTUIE........coueeeeeree ettt r e e a e se s sa s e e ae e ae e s aenaenena e e es 322
Migration File ROIDACK.........ccccirireierise e sa e saesa s sa ettt sa e sa s a e st st e sa e e sa e s s 323
Django Model Database TASKSccccveerrersersersessessessesses s s sessessesssssessnsssssessssssssssnnnns 323
Backup Data: Fixtures, dumpdata, loaddata, and inspectdb............cccecvvvrerrrennnnnene e 324
Delete Data: Flush, sqlflush, and SqISEQUENCEIESELccecerrrererrirrierr s 324
Interact with Data: dDShEll.........c.coii e —————— 325
Django Model Initial Data SEtUPcccveerreresrrerene e ene e enes 325
Hard-code predefined records in Python migration filec.cccevmeiennnnesesssesesesesese s 325
SQL script With SQL StAtBMENTSc.ccverererererereeere e s s s sesssesesssesesssesssssssesesesesesesenes 326
DJjango fIXTUIE filEcueoeeeeeeeeceerrre e s s e nnnne e e 328
Django Model SignalS.........cocceeeererrinesesncee s ss s sr e sne e 329
Built-In Django MOdel SIgNaISccccerererierererereresesesese e essesessesessesessessssessssessssessessssessssessssessenenns 330
Listen for Django MOodel SIgNaS.........ccccvrrereerererersrerereserssessssessesessesessessssessssessesessesssssssssessssessenenns 330
Emit Custom Signals in Django Model SignalS..........ccccecveverierererenenesesesessessssessesessesessessssessssessesens 333
Django Models Outside of MOEIS.PYccccerrerrerrerieriersirses s snenns 334
Django Models Inside Apps in the Models FOIAEr ... 334
Django Models Inside Apps in CUSTOM FOIAEIS.........cccoruiiinererceerereeer e 335
Django Models Outside Apps and Model Assignment to Other AppsS.......ccovcevrvernrncrncc v 336
Django Models and Multiple Databases...........ccceevvererrriernsmsesessesesssesesse s sesssesnes 336
Multiple Databases for Django MOEIS: USINGcceeerererrerererersesesesesssssesessssssssessssssssessssssssssssssssnssnns 337
Multiple Databases for Django ToOIS: ~-AatahASE..........ccverererrrerererrresesesesrsese s sesseeeens 337
Multiple Database Routers: DATABASE_ROUTERS SEttiNg.......ccccoererereerenesersnsnesessnssesesessssesesessssensnens 337
Chapter 8: Django Model Queries and Managersuuusseeesssssesssssssssssnnsssssssssas 341
CRUD Single Records in Django MOAEIS.........ccceerrermrereereessssesssessssssssssssssssesssssssssssenns 341
Create a Single Record with SAVe() OF Create()uourerererrererererreresererseesesessssssesessssesesessssssesesesssssnnens 3
Read a Single Record with get() Or get_0r_Create()c.curerererererererrsreseserssssesessssssesessssssesesesssssnsnens 343
Update a Single Record with save(), update(), update_or_create(), or refresh_from_db()................. 345
Delete a Single Record With AEIETE()cocrerrererererrrerererrrseesesesesesesesssese s se e ssssssesesssssssssnns 347

XV

CONTENTS

CRUD Multiple Records in Django MOdElS.........cccccverrnmrennsernnssenssesesessessssessesessens 348
Create Multiple Records With BUIK_Create()eeererererrererererreesisesieesesesssse e sessesesesesseseenens 349
Read Multiple Records with all(), filter(), exclude(), or in_BUIK().......coceeerererrenererrrenerereresesesesseenenens 351
Understanding a QuerySet: Lazy Evaluation and Cachingccccerevenererenenenenenesesesesesesesesseenenens 353
Read Performance Methods: defer(), only(), values(), values_list(), iterator(), exists(), and none()..... 356
Update Multiple Records with update() or select_for_update()........c.ceoerererrrerererrenesensesesesesseenenens 359
Delete Multiple Records with delete()cccvveerrrrrnercrrcrrerr e 361

CRUD Relationship Records Across Django MOodelSccceevrerrrerrersessessessessessessensenns 361
One to Many CRUD OPEIatiONSccceeeererrererrersesersesersesessessssessssessesessessssessssessssessessssesssssssssessssessenens 361
Many to Many CRUD OPEIationS.........ccceverereererserereesersesesersssessssessesessesessessssessssessesessesssssssssessssessenenes 365
One t0 ONe CRUD OPEIatiOnS.........ccovvereererereesersesersesessesessessssessssessesessessssessssessssessesssssnssssssssessssessenens 367
Read Performance Relationship Methods: select_related() and prefetch_related().......coceeererrereenne. 368

Model Queries by SAL KEYWOIdcocerrerreierereniersesesessesessessssessssessessssesssssssessssesaes 370
WHERE Queries: Django Field LOOKUPS.........cccorurrirerereesesesise e ses s 370
DISTINCT QUEKTES...cucueeiiiseisesesesesesesesssese e 377
ORDER Queries: order_DY() and rBVEISE()......ccueurerreurrerersrseererssseesessssssesesessssssesessssssssssssssssssssssnssssens 379
T T 380
IMEIGE QUETIEScoveeeeereceece et ee e a st e e e e b e e A e Re e b e s Re e se e s Re e e e s nenn e nas 381
AQGregation QUEKIEScoceurueeerereeeese s se e se e se s e s et s e se e e e s R e se e s b e nenrans 384
Expression and FUNCHON QUETIEScceeereriricrrcre s e sa e 387

Model Queries with Raw (Open-Ended) SQL..........ccccormmmnnincnnnnnseeens 392
SQL Queries with a Model Manager’s raw() Methodcccoereercnnneserreesessee s 393
SQL Queries With Python’s DB APL..........c.cciiiiissssssssss s ssssssss s ssssssssssssssssssnes 395

Model MANAGETS........cccccereeererrerie s sae s s e e s n e s n e s n e s ne s 396
Custom and Multiple MOdel MANAGETScccererrererrererererersssersesersesessesessessssessssessesessessssessssessssessenees 397
Custom Model Managers and QuerySet Classes with Methodsccccvvvevrverereresercesereree e 398
Custom Reverse Model Managers for Related Models..........ccoeeerererererererseressersesessesessesessesessesssenes 401

xvi

CONTENTS

Chapter 9: Django Model Forms and Class VIEWSccccusseesssmssssssssssssssnssssssnness 403

Django Model Form Structure and WOrkflowccccovveerrrcennscnesssenenccesesesesenas 403
Create Django Model FOrMS.......c.coieirmnnmnnisss s s 404
Django Model Form Options and Field Mappingccccevrvernrnensensessessessessessessessensenns 405
Model Form Required Options: Model and Fields or EXCIUCEcccceeeererersererrereerererereserereseneeenns 405
Model Form Default Field Mappingcccccverererereneresererersereesessesessesessessssesssessssessesssssssssessssessenees 406
Model Form New and Custom Fields: Widgets, Labels, help_texts, error_messages,
field_classes, and 10CaliZe_fiEldS.........ccuuuieieieeieeienierire s see e s ss s sa e s ss e s e s e sassassnesnes 408
Django Model Forms with Relationships.........c.ccoccvevsrsrsnsessesses s 410
ModelChoiceField and ModelMultipleChoiceField Form Field Options: queryset, empty_label,
to_field_name, and label_from_iNStANCE.......ccccviiiiiriiiiisinsrs s s ss e ssnssnas 410
Django Model FOrm ProCeSSINgc.ccuverrersersersessessessessessesssssesssssesssssssssssssssssssssssssnsnns 413
Model Form Initialization: Initial and INSTANCE...........ccoierrreririrerer s 413
Model FOrm Validation ... 414
Django Model FOrMSELSccccvvrverrerierrirerserserses s e se s se e se e s s sassassnesesnns 416
Model FOrmSEt FACIOrY.......ccvviriiece e s e s sa e n e p e n e nr e n s 416
Class-Based Views With MOEIS ... 417
Create Model Records with the Class-Based View CreateView.........c.covvvnnininsnnsnnsnnnnsnsssssnns 418
CreateView Fields and Methods ... 420
Read Model Records with the Class-Based Views ListView and DetailViewcoovvneneninssnnnnnns 426
ListView Fields and Methods.........c.covvnnnnnnniiisssssssssss s 428
DetailView Fields and Methods ... 431
Update Model Records with the Class-Based View UpateView.........cccocvvvvvvennvnnnnssensesnes s senneens 433
UpdateView Fields and Methodscoevereiininnnnnene e ssesassae s s ssessssssssssse s 435
Delete Records with the Class-Bases View DeleteView ... 436
DeleteView Fields and MEthods ... 437
Class-Based Views With MiXiNS ... s 438

xvii

CONTENTS

Chapter 10: Django User Management...........ccconmmnsmmnnnmmssssnnssssssssnssssssssnssssssnnnns 441

Introduction to the Django User System...........cccecierrincnnicnnsnse e 441
User Types, Subtypes, Groups, and PErmMISSIONScccerernneresesesessssssessssesse s sessssessessssesssnesns 411
L0 12T 1N = 442
MANAGE USEIS.....veeereererire st a s b e r e e R bR e R e e R e e Re e e e n e e R e e e 445
Create and Manage GrOUDSccucceeeerrerrresrnserse e e sseses e sss e ss e sss e se e sesas e ss e ese e se e nesnssesnssessaneens 450
PermiSSion TYPES......cccvcerierreriersersesser s s s s se s e e e sn s sn s sn e sr e sn e sn s nn e sn e nnssnennennnnans 452
User Permissions: Superuser, Staff, and ACHVE ... 453
Model Permissions: Add, Change, Delete, and CUSTOM..........ccecevecererrennierrere e 453
Permission Checks and ENnforcement.............covvnnnnnnnsssssssssesenens 455
View Method Permission ChECKS ... ssssssssssssssses 455
URL Permission CRECKS........uvuiuerririinsssnisisssssssisssssssssssss st s sssssens 458
Template Permission CRECKS........ccovrrerererererrre st se e se e e s e sae e sae e aesassesassesaesesaeenans 459
Class-Based View Permission ChECKS........cuuumrimninissmsissssssssss s ssssssssssssssens 460
User Authentication and Auto-Management............cccoceeeeereresessessesesssesse s sessssssnnenns 462
Login and LOgout WOTKFIOWccceeeerereienincrre e sesse s e sss e s s s sss s e sssssssssnssesssnens 463
Password Change WOrKFlOW ... s sns s sns e sns e sns s 464
Password Reset WOrkflow ... 464
USEr SignUuP WOTKFIOWcccceuiiiicricice e sse s se s s s s sn e e 465
Custom User Model FIelds.........ccoiiiiiimiiiniiesensnsssssssssssnsssssssssssssssssssssssssssssssssssnns 467
Custom Authentication Back ENdS ..o 469
User Management with Django allauth ..o 471
Install and Set Up django-allauth ... s 471
First Log In and Log Out with Superuser in Django allauthcccoverevniennccnecrecre e 473
User Signup with Django allauth ... s 475
Password Reset and Change with Django allauth ..o 475
Add and Change User Email with Django allauth ..o 476
Change Templates for Django allauth...........occoveecreccecrr s 477
Models and Database Tables Behind Django allauth.............ccoveecnecnccnscnscre e 477

xviii

CONTENTS

Social Authentication with Django allauth.............coeererrinenscrec s 478
Set Up Django allauth for Different SoCial ProViders...........cccovrrvercrrnsscsissesesesessee s 478
Set Up Facebook with Django @llauth.............coeoeerreienrees e 480
Set Up Google with Django allauth ..o s 486
Set Up Twitter with Django @llauth ..o s 491

Chapter 11: Django admin Managementcccccurrmssssssssssnmnmmssssssssssssnsseessssnes 495

Set Up Django Models in the Django admin...........ccoceevveenneresnsesenessessse e sessessesensens 495

Django admin Read Record OplioNnS.........cccovververrersersessessessesses s sessessessessessessesssssassenns 496
Record Display: list_display, format_html, empty_value_displayccoceverrrerrrererercererierenrereenenns 498
Record Order: admin_order_field and Ordering.........ccceeveererrereerererereresseressessssessesessesessesessessssessenees 502
Record Links and Inline Edit: list_display_links and list_editable...........ccccoorrvrrrrerrcerrererereeen 503
Record Pagination: list_per_page, list._max_show_all, paginator...........cccceeevvrerrrerererrererieresserensenns 506
Record Search: search_fields, list_filter, show_full_result_count, preserve_filterscccovrerrrnene. 507
Record Dates: date_hiErarchyccccevrcerrrerereresesesesesesessesessesessesessesassesassessssessssessesassessssessenenes 512
Record Actions: actions_on_top, actions_on_bottom, actions.........c.cccceeeververerrererereseneresereseseeenns 514
ReCOrd RelatioNSHIPS......ccviererereererererereseraseras e rsesesaesessesassess e e saesessesessesassesassesassessssesassassesassessnnenes 514

Django admin Create, Update, Delete Record Options..........ccccoeverversersersessessessensennnnns 519
Record Forms: fields, readonly_fields, exclude, fieldsets, formfield_overrides, form,
Prepopulated_fiellS........o e p e 520
Actions, Links, and Positions: save_on_top, save_as(Clone records),
save_as_continue and VIEW_ON_SIe ..o 527
Relationships: filter_horizontal, filter_vertical, radio_fields, raw_id_fields, inlines..........cccoecvrurunne. 529

Django admin Custom Page Layout, Data, and Behaviors.............ccceeriernseresenserennennes 536
Django admin Custom Global Values for Default Templates............cocovnnennninenenensnensnesseseeeeees 536
Django admin Custom Page Layout with Custom Templates..........cocoveeerrnenennnesesesseseseseseeeens 538
Django admin Custom StatiC RESOUICESccccverreererirereerereseesesesseese s ses e ssssssssesessssnssens 540
Django admin Custom Data and Behaviors with admin Class Fields and Methods.............ccceveeuenene 541

Django admin CRUD PermiSSions........c.ccucuvserversersersessessessessessessessssssssessssssssssssssssssssenns 543

Multiple Django admin SIteScccccieeeeerereserere e sre e e sne e snssnssnesrenans 545

Xix

CONTENTS

Chapter 12: REST Services with Djangoccceusssmmnsmssssnnnssssssnsssssssssnsssssssnnns 549
REST Services in DJangocccccveerierenniesesise s sss s se s sss e snssessessssesnes 549
Standard View Method Designed as REST SErViCe..........cccuvieenienniennnenesise s ssssessssessssessessnsens 550
Django REST FrAMEWOIKcoucuecrererieeeririeesese s sa s 554
Django Tastypie FrameEWOrKc.co i 554
Django REST Framework Concepts and Introduction............ccceeveerenniennsesesensessnnennes 555
SEHAlIZEIS NG VIBWSceeieecririeeseses e s ss s e sa s e s sannnes 555
ClaSS-BaSEU VIBWSccceueueererrrreeresesseeesessesesesessssssesesssss e e s s s sessssassssssssssssssssssssnsssssssssssssssansssens 558
Mixins and Generic Class-Based VIBWS..........ccccvurreererirrneeressseesesessessesessssssesesssssssesssssssssssssessssnns 559
VieW SEtS and ROULETS.......cccouruiueeerirecses et 560
Django REST Framework SECUKLY.......c.ccvrerrerrersersersersesses s sessessessessessessesssssesssssssssssenns 562
Set Up REST Framework Services PEIMISSIONSccoeeeruerererererersersssessesessesessesessessssessssessessssesssaens 562
Set Up REST Framework LOGIN PAQE.........coecerererererereerereesereesessesessesssessesessesessesessessssessssssssnsssssanaens 565
Appendix A: Python BaSiCS.....ccccuurummmsssssssssnmsmsssnnnns 567
Strings, Unicode, and Other Annoying Text Behaviors.........ccccocvvvvnvvvnnessssensensensennens 567
Methods Arguments: Default, optional, *args, and **Kwargsccceerrersersensessensenns 571
Classes and SUDCIASSES........cccceeerererererrerre e sse e s e sresresrssnesaesnssnesnennenns 574
Loops, Iterators, and GENEratorscccevveerierreerierreessee e sssesesssessesssessesssesssssessnessesns 576
List Comprehensions, Generator Expressions, Maps, and Filters..........ccccceeveveecencnns 581
Lambda Keyword for Anonymous Methods..........cccvceerreiennsesnsnnesnsesessssessssessesessens 583
INO@X . ueeeiiiensssnnnsssnnssssnnsssssnssssansssssnssssansssssn s asssnnaassnnansnnnansannanssnnn s nnnnnsannnnnnnnnnssnnss 585

XX

About the Author

Daniel Rubio has worked in software development for over 15 years, in roles that include developer,
software architect, manager, consultant, and CTO. He has worked with startups, government agencies, as
well as corporations in industries that include banking, education, social media, and retail.

He has coauthored the best-selling Spring Recipes book and other titles for Apress (2010), in addition to
writing for various other online publications. Daniel’s expertise in the early part of his career was focused on
Java, Linux, and open source technology, whereas more recently he has focused on Python, JavaScript, and
Cloud technology.

xxi

About the Technical Reviewer

Tri Phan is the founder of Programming Learning Channel on YouTube. He has over 7 years of experience
in the software industry. Specifically, he has worked in many outsourcing companies and has written many
applications of many fields in different programming languages such as PHP, Java, and C #. In addition, he
has over 6 years of experience in teaching at international and technological centers such as Aptech, NIIT,
and Kent College.

xxiii

Acknowledgments

I'want to thank the entire team at Apress for making this book a reality. In particular, Steve Anglin to whom I
first presented this book as an idea; Mark Powers who was there every step of the way coordinating the work;
as well as Matthew Moodie and Tri Phan, both of whom helped me maintain the technical accuracy of the
book.

I would also like to thank all the customers and colleagues with whom I've had the pleasure to work
with throughout the years. Without all their questions and problems they faced, I would have never
discovered many of the solutions and techniques described in this book.

Finally, I would like to thank the entire community behind the Django framework for putting together
one the best web application frameworks on the market. Without their endless amount of work, the Django
framework and this book would not have come to light.

XXV

Introduction

The web framework market is an extremely competitive environment, with many programming languages
and framework design philosophies to choose from. But if you need to build web-based software with quick
turnaround times and a scripting language, there’s a high probability the Django framework - or something
built with it - will be your top choice.

Django has competitors, but even its nearest competitor in the Python ecosystem, the Flask framework
has about one-fourth the mind share of Django, based on the benchmark of worldwide Google searches
made for Django vs. Flask.! Outside the Python ecosystem, but still in the scripting language segment, the
Ruby on Rails framework - which emerged along the same time as Django and follows a similar design
philosophy - has always maintained an almost equal mind share with Django, as it can also be proven by the
amount of worldwide Google search activity.

So what makes the Django framework such a strong choice for web development? It provides a rapid
development foundation to create complex web applications. A rapidness that is provided by a modular
and simple philosophy of not repeating constructs and logic throughout a project’s structure (a.k.a. the DRY
principle or Don’t Repeat Yourself principle).

And it’s this DRY principle, which has given way to a thriving community, as well as a multitude of
packages and other frameworks based on the Django framework. Over 10 years after its initial release, there’s
now a full-fledged CMS (Content Management System), a turn-key e-commerce platform and over 3000
packages, all built or designed to work with the Django framework. Not to mention, there are two annual
conferences in the United States and Europe to showcase Django innovations.

This book will walk you through the many core concepts associated with the Django framework. It will
help you learn standard and best practices that are essential to creating effective Django projects. And if and
when you use a Django-based package or framework, these same foundations will help you navigate the
more complex concepts and avoid any blind spots that are part of the core Django framework.

'"https://g.co/trends/yXpSy

xxvii

https://g.co/trends/yXpSy

CHAPTER 1

Introduction to the Django
Framework

The Django framework started in 2003, as a project done by Adrian Holovaty and Simon Willison at the
Journal-World newspaper in Lawrence, Kansas, in the United States. In 2005, Holovaty and Willison released
the first public version of the framework, naming it after the Belgian-French guitarist Django Reinhardt.

Fast forward to 2017 - the Django framework now operates under the guidance of the Django Software
Foundation (DSF), the framework core has over 1000 contributors with more than 15 release versions, and
there are over 3000 packages specifically designed to work with the Django framework.!

The Django framework has remained true to its origins as a Model-View-Controller (MVC)
server-side framework designed to operate with relational databases. Nevertheless, Django has stayed
up to date with most web development tendencies - via third-party packages - to operate alongside
technologies like non-relational databases (NoSQL), real-time Internet communication, and modern
JavaScript practices. All this to the point, the Django framework is now the web development framework
of choice for a wide array of organizations, including the photo sharing sites Instagram? and Pinterest;
the Public Broadcasting System(PBS)*; in the United States, National Geographic® and with the help of
this book, your organization!

In this chapter you'll learn about the Django framework design principles, which are key to
understanding the day-to-day aspects of working with the Django framework. Next, you'll learn how to
install Django in various ways: as a tar.gz file, with pip, using git, and with virtualenv.

Once you install the Django framework, you'll learn how to start a Django project and how to set it up
with a relational database. Next, you'll learn about the core building blocks in the Django framework - urls,
templates, and apps - and how they work with one another to set up content. Finally, you'll learn how to
set up the Django admin site, which is a web-based interface designed to access the relational database
connected to a Django project.

'https://djangopackages.org/
*https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-
technologies-adf2e22da2ad#.pui97g5jk
Shttps://www.quora.com/Pinterest/What-is-the-technology-stack-behind-Pinterest-1
*http://open.pbs.org/

*https://github.com/natgeo

© Daniel Rubio 2017 1
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_1

https://doi.org/10.1007/978-1-4842-2787-9_1
https://djangopackages.org/
https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad#.pui97g5jk
https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad#.pui97g5jk
https://www.quora.com/Pinterest/What-is-the-technology-stack-behind-Pinterest-1
http://open.pbs.org/
https://github.com/natgeo

CHAPTER 1 © INTRODUCTION TO THE DJANGO FRAMEWORK

Django Framework Design Principles

If you work long enough in web development, you'll eventually come to the conclusion that you can produce
the same results with just about any web framework and programming language. But while you can, in

fact, produce identical results, what will vary drastically is the time you spend creating a solution: the time
creating a prototype, the time adding new features, the time doing testing, the time doing debugging, and the
time deploying to scale, among other things.

In this sense, the Django framework uses a set of design principles that produces one of the most
productive web development processes compared to many other web frameworks. Note, I'm not saying
Django is a silver bullet (e.g., the best at prototyping, the most scalable); I'm saying that at the end of the day,
the Django framework incorporates a set of design principles and trade-offs that make it one of the most
productive frameworks for building the features needed by most medium to large web applications.

Now, while you might think I'm biased - after all I'm writing an entire book about the topic - I'll lay out
these design principles first, so you can gain a better understanding of what gives the Django framework this
edge.

Don’t Repeat Yourself (DRY) Principle

Repetition might be good to emphasize a point, but when it comes to web development, it just leads to
additional and time-consuming work. In fact, the very nature of web development, which operates across
multiple tiers interacting with one another (e.g., HTML templates, business logic methods, and databases),
lends itself to repetition.

The Django framework really tries to force you not to repeat yourself, so let’s see how Django enforces
not repeating yourself and why this is a good thing.

Let’s say you want to build a coffeehouse application to publish information about stores and also
have a contact form for customers. The first thing you’ll need to do is determine what kind of information is
required for stores and the contact form. Figure 1-1 illustrates a mock-up of two Django models for each of
these entities.

Store Contact

name = models.CharField{max_length=30)
address= models.CharField(max_length=30)
city = models.CharField(max_length=30)
state = models.CharField(max_length=2)

name = models.CharField(max_length=30)
email = models.EmailField()
message = models.TextField()

Figure 1-1. Django models for store and contact entities

Notice how the Django models in Figure 1-1 each have different field names and a data type to restrict
values. For example, the statement name = models.CharField(max_length=30) tells Django a store name
should have a maximum of 30 characters, while the statement email = models.EmailField() tells Django
the contact entity should contain a valid email value. If the coffeehouse is like most web applications, you'll
generally end up doing the following for the store and contact entities:

e Create relational database tables to save entity information.
e Create business logic to ensure the entities comply with requirements.

e Create HTML forms to allow data to be submitted for the entities.

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

e (Create an interface to allow administrative users to access entities in the database.
e Create REST services to expose entities for a mobile app version.

The crux of doing this last task list is you have the potential of repeating dozens of similar pieces of
information (e.g., names, value limits) in database definition language (DDL), HTML forms, business
validation logic, and URLs, among other things - process that’s not only time consuming, but also error
prone.

Wouldn't it be easier that based on a statement like models.CharField(max_length=30) you could
generate an HTML form input, a DDL statement, and automatically validate information to only contain 30
characters? This is exactly what Django’s DRY design principle does.

Figure 1-2 illustrates the same Django models from Figure 1-1 and the various constructs you can
generate from the same models without the need to repeat yourself.

Edit store form (Administrator)

Contact form (Public site)

Store

name = models.CharField{max_length=30)
address= models.CharField(max_length=30)
city = models.CharField{max_length=30)
state = models.CharField(max_length=2)

CREATE TABLE STORE (
name VARCHAR(3@),
address VARCHAR(30),
city VARCHAR(30)
state VARCHAR(2))

Contact

name = models.CharField(max_length=30)

email = models.EmailField()
message = models. TextField()

CREATE TABLE CONTACT (
name VARCHAR(30),
email VARCHAR(254),
message LONGTEXT)

Figure 1-2. Django models create separate constructs based on DRY principle

Asyou can see in Figure 1-2, the entities that represent Django models are capable of generating HTML
forms to present to the public, an administrative interface to manage the entities, validation logic to enforce
entity values, as well as the DDL to generate database tables representing the entities.

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

While it’s a little premature to discuss the actual techniques to generate such constructs from
Django models, needless to say it’s much simpler than keeping track of multiple references of the same
thing (e.g., name, email) in HTML forms, DDL, validation logic, and other locations.

In this sense, Django really helps you define things in a single place and not have to repeat them
elsewhere. Note that it’s always possible to repeat yourself to obtain custom behaviors, but by default,
Django enforces DRY principles in nearly everything you do with it.

Explicit Is Better Than Implicit

Python, the programming language used by Django, has a mantra-like statement called “The Zen of Python”
defined as part of the language’s Python Enhancement Proposals (PEP), specifically PEP 20.° One of the
statements in PEP 20 states “Explicit is better than implicit” and with Django being based on Python, this
principle is also taken to heart.

Being explicit leads to web applications that are easily understood and maintained by a greater number
of people. Adding new features or understanding the logic behind a web application can be hard enough for
someone that didn’t write it originally, but if you toss into the mix constructs that have implicit behaviors,
users only face greater frustration trying to figure out what'’s being done implicitly. Explicit does require a
little more work typing, but it’s well worth it when you compare it to the potential effort you can face trying to
debug or solve a problem.

Let’s take a quick look at Django’s explicitness in a common web development construct used across
different MVC frameworks: a view method. A view method acts as the C(ontroller) in an MVC framework,
charged with handling incoming requests, applying business logic, and then routing requests with an
appropriate response.

To get a better feel for this explicitness, I'll present a Django view method and an equivalent Ruby on
Rails view method that performs the same logic of fetching a store by a given id and routing the response to
a template. The following snippet is the Ruby on Rails version; note the lines with # that are comments and
indicate what’s happening.

class StoresController < ApplicationController
def show
Automatic access to params, a ruby hash with request parameters and view parameters
@store = Store.find(params[:id])
Instance variables like @store are automatically passed on to view template
Automatically uses template views/stores/show.html.erb
end
end

Although very succinct, notice all the implicit behavior surrounding the process to access data, pass
data to a template, and assign a template. The following snippet is an equivalent Django view method.

Explicit request variable contains request parameters
Other view parameters must be explicitly passed to views
def detail(request, store_id):
store = Store.objects.get(id=store_id)
Instance variables must be explicitly passed on to a view template
Explicit template must be assigned
return render(request, 'stores/detail.html', {'store': store})

*https://www.python.org/dev/peps/pep-0020/

4

https://www.python.org/dev/peps/pep-0020/

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Notice in this last snippet there’s no guessing where input parameters come from, they’re explicitly
declared as arguments in the view method. In addition, values are explicitly passed to a template, and the
template is also explicitly declared, so the logic is much more amicable to newcomers.

The implicitness of the Ruby on Rails view method is often called ‘magic’ and is even considered a
feature by many. It’s called ‘magic’ because certain behaviors are provided behind the scenes. However,
unless you know the framework and application down to a tee, it can be very difficult to pinpoint why certain
things are happening, making it more difficult to fix or update things. So even though ‘magic’ may be able to
save you a few minutes or hours in development time at the start, it can end up costing you hours or days in
maintenance later.

So just like in Python, the Django framework will always favor an explicit approach over any implicit
technique.

It's important to point out explicit doesn’t equal verbose or redundant. While you'll certainly end
up typing a little more code in Django vs. web frameworks that are implicitly driven (e.g., Rails), as it was
described in the prior DRY principle section, the Django framework goes to great lengths to avoid having to
introduce more code than necessary in a web application.

Finally, explicit also doesn’t mean no defaults. The Django framework does use reasonable defaults
where possible, it just doesn’t use default values where it isn’t obvious they’re being used. In essence, the
Django framework uses defaults, but avoids using defaults that produce ‘magical’ outcomes.

Loosely Coupled Architecture

The Django framework being an MVC framework operates across multiple tiers (e.g., HTML templates,
business logic methods, and databases). However, Django takes great care of maintaining a loosely couple
architecture across all the components that operate across these tiers.

Being loosely coupled means there are no rigid dependencies between the parts that make up a Django
application. For example, in Django it’s perfectly valid to serve content directly from an HTML template,
without the need to use business logic or set up database. Just like in Django it’s also perfectly valid to forgo
using an HTML template and return raw data directly from a business logic method (e.g., for a REST service).

A later section in this chapter entitled “Set Up Content: Understand URLs, Templates, and Apps” goes
into greater detail with examples on how Django’s loosely coupled architecture works.

Install Django

There are various ways to install the Django framework. You can download Django from its main site” and
install it like a regular Python application. You can also download and install Django via an operating system
(OS) package administration tool such as apt-get - available on Linux distributions.

Yet another option is to install Django is to download it via the Python package manager pip. And yet
another alternative is to install Django directly from its source on github.? The list of Django installation
options including their pros and cons is presented in Table 1-1.

"https://www.djangoproject.com/download/
fhttps://github.com/django/django/

https://www.djangoproject.com/download/
https://github.com/django/django/

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Table 1-1. Django installation options - Pros and Cons

Approach Pros Cons
Download/install with pip Allows install on virtual Python Latest version may not be available.
Python package manager. environment.
(Recommended option) Dependencies are taken care of
automatically.
Download from main siteas ~ Easiest access to latest Django Requires manual download and install.
tar.gz file. stable release. Requires additional management of
Django dependencies (if not using
pip).
Download from Git. Access to the latest Django Can contain bugs.
features. Requires additional management of

Django dependencies (if not using pip).

Download/install from OS Easy to install. Latest version may not be available.
package manager (apt-get). Dependencies are taken care of Installed on global Python
automatically. environment.

As emphasized in Table 1-1, the recommended option to install Django is to use the Python pip
package manager because it provides the most flexibility. Next, I'll describe each of the steps to install
Django using this approach and more importantly how to get up and running with pip.

Once I finish these steps, I'll also describe the steps to install Django from a tar.gz file and from
git - using pip - which can be helpful if you want to try out the latest Django features.

Install Python (Prerequisite)

Since Django is built on Python, you first need to install Python to run Django. The latest Django long-term
release (LTS), which is the focus of this book, is version 1.11. Django 1.11 requires that you either have a
Python 2.7 x release or a Python 3.4 or higher release (3.5 or 3.6).

If this is the first time you use Python, it’s important to note Python 2 and Python 3 are considerably
different. But while it’s certainly true Python 3 is the future, be aware the future has been in the making since
2008 - when the first Python 3 release came to light - and Python 2 has remained stubbornly entrenched to
the point that Python 2.7.13 came out in December 2016.

So should you use Python 2 or Python 3 with Django? As far as Django’s core is concerned, it’s compatible
with both, so you can easily switch between Python 2 and Python 3. Where it gets a little more tricky is when it
comes to third-party Python packages and the Django Python code you plan to write yourself.

While many third-party Python packages have been upgraded to run on Python 3, this process has
been sluggish. As I already pointed out, Python 3 has been almost 10 years in the making, so be aware
that if you take the Python 3 route, you may encounter third-party Python packages that won’t work
with Python 3.

When it comes to your own Django application code, the ideal choice is to make your code both
Python 2 and Python 3 compatible - just like Django’s core - it isn’t that hard and I'll use this technique
throughout the book. The sidebar contains more details on this topic of writing Python 2 and Python 3
compatible code.

Now, if want to stick to Python 2, just be aware Django 1.11 will be the last Django release to support
Python 2 - scheduled to be supported until around April 2020 - so if you eventually upgrade to something
higher than Django 1.11, you'll also need to upgrade all your application code to Python 3 - which is why I
recommend the dual Python 2 and Python 3 compatibility technique. If you want to stick to Python 3, that’s
the future, just be aware that as described earlier, some third-party packages might not work with Python 3.

6

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

DJANGO COMPATIBILITY WITH PYTHON 2 AND PYTHON 3

Django uses Six® to run Python 2 and Python 3 compatible logic. Six is a set of utilities that wraps over
the differences between Python 2 and Python 3, allowing that same logic to operate equally in either
Python 2 and Python 3. The Django framework’s internals — which you’ll rarely, if ever, need to inspect
or modify — already use this technique.

However, if you plan to write your Django application code to be compatible with both Python 2 and
Python 3, then you’ll need to be a little more aware of how you write it. Django publishes its own
guidelines on the various syntax and techniques you need to follow to make Django application code
work with both Python 2 and Python 3, techniques that are also used throughout the book.

If you use a Unix/Linux OS, Python is very likely installed on your system. If you type which python
on a Unix/Linux terminal and it returns a response (e.g., /usr/bin/python), it indicates the location of the
Python executable, if there is no response it indicates the Python executable is not available on the system.

If you don’t have Python on your system and you're using a Debian or Ubuntu Linux distribution, you
can use the OS package manager apt-get to install Python by typing: apt-get install python. Ifyou have
a Unix/Linux distribution that is not Debian or Ubuntu and you need to install Python, consult your Unix/
Linux documentation for available Python packages or download the Python sources from http://python.
org/download/ to do the installation.

If you have a system that runs on a Windows OS or macOS, Python installers are available for download
from http://python.orq/download/.

Irrespective of your system’s OS, once you've finished the Python installation, ensure Python is installed
correctly and accessible from anywhere on your system. Open a terminal and type python, and you should
enter a Python interactive session like the one illustrated in Listing 1-1.

Listing 1-1. Python interactive session

[user@~]$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

If you aren’t able to enter a Python interactive session, review the Python installation process because
you will not be able to continue with the following sections.

Update or Install pip Package Manager (Prerequisite)

To make Python package installation and management easier, Python uses a package manager called pip. If
you're using Python 2.7.9 (or greater 2.x branch) or Python 3.4 (or a greater 3.x branch), pip comes installed
by default. Now let’s upgrade pip on your system as shown in Listing 1-2, if you don’t have pip on your
system, I'll provide instructions shortly on how to get it.

*https://pythonhosted.org/six/
"®https://docs.djangoproject.com/en/1.11/topics/python3/

http://python.org/download/
http://python.org/download/
http://python.org/download/
https://pythonhosted.org/six/
https://docs.djangoproject.com/en/1.11/topics/python3/

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Listing 1-2. Update pip package manager

[user@~]$ pip install --upgrade pip
Collecting pip

Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)
Installing collected packages: pip

Found existing installation: pip 8.1.1
Successfully installed pip-9.0.1

Asyou can see in Listing 1-2, to update pip you invoke the pip executable with the arguments install
--upgrade pip.Upon execution, pip searches for a package by the provided name - in this case pip itself -
downloads it and performs an upgrade in case it’s already installed. If the installation output on your system
is similar to the one in Listing 1-2 - without any errors - you have successfully updated pip.

If you see an error like The program ‘pip’ is currently not installed or pip not found, it means your Python
installation is not equipped with pip. In this case, you'll need to install the pip executable by downloading
https://bootstrap.pypa.io/get-pip.py and then executing the downloaded file with the command:
python get-pip.py. Once the pip executable is installed, run the pip update procedure from Listing 1-2.

With pip on your system, you're ready to move on to the next step.

Install virtualenv (Optional Prerequisite)

Virtualenv is not essential to develop Django applications, but I highly recommend you use it because it
allows you to create virtual Python environments on a single system. By using virtual Python environments,
applications can run in their own ‘sandbox’ in isolation of other Python applications. Initially virtualenv
can appear to be of little benefit, but it can be of tremendous help for tasks like replicating a development
environment to a production environment and avoiding version conflicts that can arise between different
applications.

Without virtualenv you can still proceed to install Django and any other Python package using pip,
but the issue is that all packages are installed under the global Python installation. Initially this can seem
convenient, because you only need to install packages once in the global Python installation. But it’s not that
convenient if you think about some of the following questions.

What happens if a new Django version is released after your first project and you want to start a second
project? Do you upgrade the first project to run on the new Django version or start the second project as if
the new Django version doesn’t exist? The first option requires additional work, while the second option
requires you to develop on an outdated Django version. By using virtual Python environments you avoid this
problem, because each project can run its own Django version in isolation.

If you consider this potential version conflict for any Python package, you'll realize why I recommend
you use virtualenv. Many Python packages have specific version dependencies (e.g., package A depends
on package B version 2.3 and package C version 1.5). If you update a new package with specific cross-
dependency versions, it can be very easy to break a Python installation if you're using a global Python
installation. With virtualenv you can have multiple Python installations without them interfering with one
another.

Now that I've explained the benefits of virtualenv, let’s install the virtualenv executable with pip, as
show in Listing 1-3.

Listing 1-3. Install virtualenv with pip

[user@~]$ pip install virtualenv

Downloading/unpacking virtualenv
Downloading virtualenv-15.1.0.tar.gz (1.8Mb): 1.8Mb downloaded
Running setup.py egg info for package virtualenv
Installing collected packages: virtualenv

https://bootstrap.pypa.io/get-pip.py

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Running setup.py install for virtualenv
Installing virtualenv script to /usr/local/bin
Installing virtualenv-2.7 script to /usr/local/bin
Successfully installed virtualenv
Cleaning up...

As illustrated in Listing 1-3, pip automatically downloads and installs the requested package. Similar
to the pip executable, a virtualenv executable is also installed that should be accessible from anywhere
on your system. The virtualenv executable allows you to create virtual Python environments. Listing 1-4
illustrates how to create a virtual Python environment with virtualenv.

Listing 1-4. Create virtual Python environment with virtualenv

[user@~]$ virtualenv --python=python3 mydjangosandbox
Already using interpreter /usr/bin/python3

Using base prefix '/usr'

New python executable in /mydjangosandbox/bin/python3
Also creating executable in /mydjangosandbox/bin/python
Installing setuptools, pkg resources, pip, wheel...done.

The virtualenv executable accepts several parameters. The task in Listing 1-4 makes use of the
--python flag, which tells virtualenv to create a virtual Python based on the python3 executable, creating a
Python 3 virtual environment. This is a common option when you have multiple Python versions on an OS
(e.g., Python 2 and Python 3) and you need to specify the Python version with which to create the virtualenv.
You can omit the --python flag; just be aware that doing so the virtualenv is created with the default OS
python executable.

By default, virtualenv creates a pristine virtual Python environment like the one you had when
you made the initial Python global installation. Following virtualenv parameters, you only need to
specify an argument for the name of the virtual Python environment, which in the case of Listing 1-4 is
mydjangosandbox. Upon execution, virtualenv creates a directory with the virtual Python environment
whose contents are illustrated in Listing 1-5.

Listing 1-5. Virtual Python environment directory structure

+<virtual _environment_name>

|

|

+---+-<bin>

|

| +-activate

| +-easy install

| +-pip

| +-python
+-python-config

| +-wheel

+---+-<include>

+---+-<1ib>

+---+-<local>t

+---+-<share>

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Tip Depending on the Python version used to create the virtualenv, the bin directory can contain multiple
aliases or versions of the same command (e.g., In addition to python, python2.7, and python3; in addition to
activate, activate.csh, and activate_this.py).

Notet local folder is only included in a Python 2 virtualenv and links to top-level directories of the virtual
directory to simulate a Python installation.

As illustrated in Listing 1-5, a virtual Python environment has a similar directory structure to a global
Python installation. The bin directory contains executables for the virtual environment, the include
directory is linked to the global Python installation header files, the 1ib directory is a copy of the global
Python installation libraries and where packages for the virtual environment are installed, and the share
directory is used to place shared Python packages.

The most important part of the virtual environment is the executables under the bin directory. If you use any
of these executables, such as pip, easy _install, python, orwheel, they execute under the context of the virtual
Python environment. For example, the pip under the bin folder installs packages for the virtual environment.
Similarly, an application that runs on the python executable under the bin folder is only able to load packages
installed on the virtual Python environment. This is the ‘sandbox’ behavior I mentioned previously.

Even though access to different virtual Python environments and executables is a powerful feature,
having different pip and python executables for multiple virtual Python environments and the executables
of the global Python installation itself, can become confusing due to long access paths and relative paths.

For this reason, virtualenv has a mechanism to load virtual environments so that if you execute pip,
python, or any other executable from anywhere on your system, the executables from a selected virtual
environment are used (instead of the default global Python installation executables). This is achieved with
the activate executable inside the bin directory, a process illustrated in Listing 1-6.

Listing 1-6. Activate virtual Python environment

[user@~]$ source ./bin/activate
[(mydjangosandbox)user@~] $
NOTE: source is a Unix/Linux specific command, for other 0S just execute activate

Notice in Listing 1-6 how after invoking the activate executable, the command prompt adds the virtual
environment name between parentheses. This means the executables under the bin directory of the virtual
Python environment mydjangosandbox are used over those in the global Python installation. To exit a virtual
Python environment just type deactivate and you fall back to using the global Python installation executables.

As you've now learned, virtualenv works transparently allowing you to maintain different Python
installations each with its own set of executables like the main python interpreter and the pip package
manager. You only need to take care of switching between virtual environments so you install and run
Python applications in the appropriate virtual environment.

Note In future sections | won’t make any reference to virtualenv (e.g., mydjangosandbox) since it isn’t
directly related to Django. Though | recommend you use virtualenv, I'll leave it up to you if you want to keep using
the global Python installation python and pip executables for everything or if you prefer to keep virtual Python
environments with their own executables to make Python application management easier. So when you see Python
executables referenced in the book, assume they are global or from a virtualenv, whichever you’re using.

10

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Install Django

Once you have all the previous tools working on your system, the actual Django installation is very simple.
Listing 1-7 illustrates how to install Django using pip.

Listing 1-7. Install Django with pip

[user@~]$ pip install Django==1.11
Downloading/unpacking Django==1.11
Collecting Django==1.11
Downloading Django-1.11-py2.py3-none-any.whl (6.9MB)
100% |
Collecting pytz (from Django==1.11)
Downloading pytz-2017.2-py2.py3-none-any.whl (484kB)
100% |
Installing collected packages: pytz, Django
Successfully installed Django-1.11 pytz-2017.2

| 6.9MB 95kB/s

| 491kB 735kB/s

The pip install taskin Listing 1-7 uses the Django==1.11 syntax to tell pip to download and install the
Django 1.11 version. With this same syntax you can install any specific Django version. If you don’t specify a
package version, pip downloads and installs the most recent available version for the specified package.

Sometimes a Django release may take a few days to become available through pip, in which case you'll
receive an error. In such cases you can download the release directly from the Django main site at https://
www. djangoproject.com/download/. Once you download the release file in tar.gz format, you can use pip to
make the installation as illustrated in Listing 1-8.

Listing 1-8. Install Django from local tar.gz file with pip

[user@~]$ pip install /home/Downloads/Django-1.11.tar.gz
Processing /home/Downloads/Django-1.11.tar.gz
Collecting pytz (from Django==1.11)
Using cached pytz-2017.2-py2.py3-none-any.whl
Building wheels for collected packages: Django
Running setup.py bdist wheel for Django ... done
Stored in directory: /home/ubuntu/.cache/pip/wheels/56/bf/24/
f44162e115f4fe0cfebsboae99b570fb55a741a8d090c9894d
Successfully built Django
Installing collected packages: pytz, Django
Successfully installed Django-1.11 pytz-2017.2

Notice in Listing 1-8 how pip is capable of installing Python packages directly from a compressed file on
the local file system.

Install Django from Git

If you want to use the most recent functionalities available in Django, then you'll need to install Django from
its Git repository. The Git repository contains the latest changes made to Django. Even though the Django
Git version can be unstable, it’s the only way to develop with the newest Django features or get bug fixes for
problems that aren’t yet available in public releases.

11

https://www.djangoproject.com/download/
https://www.djangoproject.com/download/

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Note You need to install Git to execute the following tasks. You can download Git for several 0Ses at
http://git-scm.com/

Just like the prior pip installation examples, pip is sufficiently flexible to make a Django installation
from Git. There are two alternatives to use pip with Git. You can provide the remote Django Git repository,
in which case pip clones the repository locally and discards it after the installation, as illustrated in Listing
1-9. Or you can clone the Django Git repository locally - where you'll be able to make modifications at a later
time - and then run pip to do the installation, as illustrated in Listing 1-10.

Listing 1-9. Install Django from remote Git with pip

[user@~]$ pip install git+https://github.com/django/django.git
Collecting git+https://github.com/django/django.git
Cloning https://github.com/django/django.git to ./pip-31j bcqa-build

Requirement already satisfied: pytz in /python/mydjangosandbox/1ib/python3.5/site-packages
(from Django==2.0.dev20170408112615)
Installing collected packages: Django
Successfully uninstalled Django-1.11
Running setup.py install for Django ... done
Successfully installed Django-2.0.dev20170408112615

Listing 1-10. Download Django from Git and install locally with pip

[user@~]$ git clone https://github.com/django/django.git

Cloning into django...

remote: Counting objects: 388550, done.

remote: Compressing objects: 100% (19/19), done.

remote: Total 388550 (delta 5), reused 0 (delta 0), pack-reused 388531
Receiving objects: 100% (388550/388550), 158.63 MiB | 968.00 KiB/s, done.
Resolving deltas: 100% (281856/281856), done.

Checking connectivity... done.

Assuming Django Git download made to /home/Downloads/django/
[user@~]$ pip install /home/Downloads/django/
Processing /home/Downloads/django
Collecting pytz (from Django==2.0.dev20170408112615)
Using cached pytz-2017.2-py2.py3-none-any.whl
Installing collected packages: pytz, Django
Running setup.py install for Django ... done
Successfully installed Django-2.0.dev20170408112615 pytz-2017.2

Notice in Listing 1-9 the syntax to download a remote Git repository is git+ followed by the remote Git
location. In this case https://github.com/django/django.git represents the Django Git repository. In
Listing 1-10 the Django Git repository is cloned locally first, and then pip is executed with the argument of
the local Git repository directory.

12

http://git-scm.com/
https://github.com/django/django.git

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Start a Django Project

To start a Django project you must use the django-admin executable or django-admin.py script that
comes with Django. After you install Django, both this executable and script should be accessible from
any directory on your system (e.g., installed under /usr/bin/,/usr/local/bin/ or the /bin/ directory of
avirtualenv). Note that both the executable and script offer the same functionality; therefore I will use the
django-admin term interchangeably going forward.

The django-admin offers various subcommands you'll use extensively for your daily work with Django
projects. But it’s the startproject subcommand you'll use first, since it creates the initial structure of a
Django project. The startproject subcommand receives a single argument to indicate the name of project,
as illustrated in the following snippet.

#Create a project called coffeehouse
django-admin startproject coffeehouse
#Create a project called sportstats

django-admin startproject sportstats

A Django project name can be composed of numbers, letters, or underscores. A project name cannot
start with a number, it can only start with a letter or underscore. In addition, special characters, and spaces
are not allowed anywhere in a project name, mainly because Django project names serve as a naming
convention for directories and Python packages.

Upon executing django-admin startproject <project_name>, a directory called <project_name> is
created containing the default Django project structure. The default Django project structure is illustrated in
Listing 1-11.

Listing 1-11. Django project structure

+<BASE_DIR_project_name>
I

+----manage.py

+---+-<PROJECT_DIR_project_name>
|
+-__init__.py
+-settings.py
+-urls.py
+-wsgi.py

If you inspect the directory layout, you'll notice there are two directories with the <project_name>
value. I will refer to the top-level Django project directory as BASE_DIR, which includes the manage. py file
and the other subdirectory based on the project name. And I will refer to the second-level subdirectory
-whichincludes the _init_ .py, settings.py, urls.py, and wsgi.py files - as PROJECT DIR. Next, I'll
describe the purpose of each file in Listing 1-11.

e manage.py .- Runs project specific tasks. Just as django-admin is used to execute
system wide Django tasks, manage.py is used to execute project specific tasks.

e _ init_ .py.- Python file that allows Python packages to be imported from
directories where it’s present. Note __init__.py is not Django specific, it’s a generic
file used in almost all Python applications.

13

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

e settings.py .- Contains the configuration settings for the Django project.
e urls.py .- Contains URL patterns for the Django project.

e wsgi.py.- Contains WSGI configuration properties for the Django project. WSGI is
the recommended approach to deploy Django applications on production (i.e., to
the public). You don’t need to set up WSGI to develop Django applications.

Tip Rename a project’s BASE_DIR. Having two nested directories with the same name in a Django project
can lead to confusion, especially if you deal with Python package import issues. To save yourself trouble, |
recommend you rename the BASE_DIR to something different than the project name (e.g., rename, capitalize, or
shorten the name to make it different than the PROJECT_DIR).

Caution Do not rename the PROJECT DIR. The PROJECT DIR name is hard-coded into some project files
(e.g., settings.py and wsgi.py), so do not change its name. If you need to rename the PROJECT DIR it’s
simpler to create another project with a new name.

Now that you're familiar with the default Django project structure, let’s see the default Django project in
a browser. All Django projects have a built-in web server to observe an application in a browser as changes
are made to project files. Placed in the BASE_DIR of a Django project - where the manage. py file is - run the
command python manage.py runserver as shown in Listing 1-12.

Listing 1-12. Start Django development web server provided by manage.py

[user@coffeehouse ~]$ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).

You have 13 unapplied migration(s). Your project may not work properly until you apply the
migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

May 23, 2017 - 22:41:20

Django version 1.11, using settings 'coffeehouse.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

As illustrated in Listing 1-12, the command python manage.py runserver starts a development
web server on http://127.0.0.1:8000/ - which is the local address on your system. Don’t worry
about the 'unapplied migration(s)' message for the moment, I'll address it in the upcoming section
on setting up a database for a Django project. Next, if you open a browser and point it to the address
http://127.0.0.1:8000/ you should see the default home page for a Django project illustrated in
Figure 1-3.

14

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

= ¢ localhost

It worked!
Congratulations on your first Django-powered page.

Of course, you haven actuslly done ary work yel Mext, st your first app by running python manage.py startapp [app label).

Youre seeing this message because you have DEBUG = True in your Django sefttings fe and you haven configured any URLs. Get to work!

Figure 1-3. Default home page for a Django project

Sometimes it’s convenient to alter the default address and port for Django’s development web server.
This can be due to the default port being busy by another service or the need to bind the web server to
anon-local address so someone on a remote machine can view the development server. This is easily
achieved by appending either the port or full address:port string to the python manage.py runserver
command, as shown in the various examples in Listing 1-13.

Listing 1-13. Start Django development web server on different address and port

Run the development server on the local address and port 4345 (http://127.0.0.1:4345/)
python manage.py runserver 4345

Run the dev server on the 96.126.104.88 address and port 80 (http://96.126.104.88/)
python manage.py runserver 96.126.104.88:80

Run the dev server on the 192.168.0.2 address and port 8888 (http://192.168.0.2:8888/)
python manage.py runserver 192.168.0.2:8888

Set Up a Database for a Django Project

Django in its ‘out-of-the-box’ state is set up to communicate with SQLite - a lightweight relational database
included with the Python distribution. So by default, Django automatically creates a SQLite database for
your project.

In addition to SQLite, Django also has support for other popular databases that include PostgreSQL,
MySQL, and Oracle. The Django configuration to connect to a database is done inside the settting.py file
of a Django project in the DATABASES variable.

If you open the settings.py file of a Django project, you'll notice the DATABASES variable has a default
Python dictionary with the values illustrated in Listing 1-14.

15

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Listing 1-14. Default Django DATABASES dictionary

Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))

DATABASES = {
"default': {
"ENGINE': 'django.db.backends.sqlite3’,
"NAME': os.path.join(BASE DIR, 'db.sqlite3'),

Tip Use SQLite if you want the quickest database setup.

A database setup by itself can be time consuming. If you want the quickest setup to enable Django with
a database, leave the previous configuration as is. SQLite doesn’t require additional credentials or Python
packages to establish a Django database connection. Just be aware a SQLite database is a flat file and Django
creates the SQLite database based on the NAME variable value. In the case of Listing 1-14, under a Django
project’s BASE_DIR and as a flat file named db.sqlite3.

Note If you use SQLite, you can skip to the last step in this section “Test Django database connection and
build Django base tables.”

The Django DATABASES variable defines key-value pairs. Each key represents a database reference name
and the value is a Python dictionary with the database connection parameters. In Listing 1-14 you can
observe the default database reference. The default reference name is used to indicate that any database
related operation declared in a Django project be executed against this connection. This means that unless
otherwise specified, all database CRUD (Create-Read-Update-Delete) operations are done against the
database defined with the default key.

The database connection parameters for the default database in this case are the keys ENGINE and NAME,
which represent a database engine (i.e., brand) and the name of the database instance, respectively.

The most important parameter of a Django database connection is the ENGINE value. The Django
application logic associated with a database is platform neutral, which means that you always write database
CRUD operations in the same way irrespective of the database selection. Nevertheless, there are minor
differences between CRUD operations done against different databases, which need to be taken into account.

Django takes care of this issue by supporting different back ends or engines. Therefore, depending on
the database brand you plan to use for a Django application, the ENGINE value has to be one of the values
illustrated in Table 1-2.

Table 1-2. Django ENGINE value for different databases

Database Django ENGINE value
MySQL django.db.backends.mysql
Oracle django.db.backends.oracle

PostgreSQL django.db.backends.postgresql psycopg2
SQLite django.db.backends.sqlite3

16

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

The Django database connection parameter NAME is used to identify a database instance, and its value
convention can vary depending on the database brand. For example, for SQLite NAME indicates the location
of a flat file, whereas for MySQL it indicates the logical name of an instance.

The full set of Django database connection parameters is described in Table 1-3.

Table 1-3. Django database connection parameters based on database brand

Django connection
parameter Default value Notes

ATOMIC_REQUESTS False Enforces (or not) a transaction for each view request. By
default set to False, because opening a transaction for every
view has additional overhead. The impact on performance
depends on the query patterns of an application and on how
well a database handles locking.

AUTOCOMMIT True By default set to True, because otherwise it would require
explicit transactions to perform commits.

CONN_MAX_AGE 0 The lifetime of a database connection in seconds. By default
0 which closes the database connection at the end of each
request. Use None for unlimited persistent connections.

ENGINE "' (Empty string) The database back end to use. See Table 1-2 for value options.
HOST "' (Empty string) Defines a database host, where an empty string means localhost.

For MySQL: If this value starts with a forward slash (‘/’),

MySQL will connect via a Unix socket to the specified socket
(e.g.,HOST”: ‘/var/run/mysql’). If this value doesn’t start with a
forward slash, then this value is assumed to be the host.

For PostgreSQL: By default(”), the connection to the database
is done through UNIX domain sockets (‘local’ lines in pg_hba.
conf). If the UNIX domain socket is not in the standard
location, use the same value of unix_socket_directory from
postgresql.conf. If you want to connect through TCP sockets,
set HOST to ‘localhost’ or ‘127.0.0.1" (‘host’ lines in pg_hba.
conf). On Windows, you should always define HOST, as UNIX
domain sockets are not available.

NAME "' (Empty string) The name of the database to use. For SQLite, it’s the full path
to the database file. When specifying the path, always use
forward slashes, even on Windows (e.g., C:/www/STORE/
db.sqlite3).

OPTIONS {} (Empty dictionary) Extra parameters to use when connecting to the database.
Available parameters vary depending on database back end,
consult the back end module’s own documentation. For a list
of back-end modules see Table 1-2.

PASSWORD "' (Empty string) The password to use when connecting to the database. Not
used with SQLite.

PORT "' (Empty string) The port to use when connecting to the database. An empty
string means the default port. Not used with SQLite.

USER "' (Empty string) The username to use when connecting to the database. Not
used with SQLite.

17

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Install Python Database Packages

Besides configuring Django to connect to a database, you'll also need to install the necessary Python
packages to communicate with your database brand - the only exception to this is SQLite, which is included
in the Python distribution.

Each database relies on different packages, but the installation process is straightforward with the
pip package manager. If you don’t have the pip executable on your system, see the previous section in this
chapter “Install Django” in the “Install pip” subsection.

The Python packages for each database supported in Django in its ‘out-of-the-box’ state are
enumerated in Table 1-4. In addition, Table 1-4 also includes the pip command to install each package.

Table 1-4. Python packages for different databases

Database Python package pip installation syntax
PostgreSQL psycopg2 pip install psycopg2
MySQL mysql-python pip install mysql-python
Oracle cx_Oracle pip install cx Oracle
SQLite Included with Python 2.5+ N/A

DATABASE DEVELOPMENT LIBRARIES

If you receive an error trying to install one of the Python database packages in Table 1-4, ensure the
database development libraries are installed on your system. Database development libraries are
necessary to build software that connects to a database.

Database development libraries are not related to Python or Django, so you’ll need to consult the
database vendor or operating system documentation (e.g., On a Debian Linux or Ubuntu Linux system
you can install the MySQL development libraries with the following apt-get task: apt-get install
libmysglclient-dev).

Test Django Database Connection and Build Django Base Tables

Once you update the Django settings.py file with database credentials, you can test it to see if the Django
application can communicate with the database. There are several tasks you'll do throughout a Django
project that will communicate with the database, but one of the most common tasks you can do right now to
test a database connection is to migrate the project’s data structures to the database.

The Django database migration process ensures all Django project logic associated with a database is
reflected in the database itself (e.g., the database has the necessary tables expected by a Django project).
When you start a Django project, there are a series of migrations Django requires that create tables to keep
track of administrators and sessions. This is always the first migration process a Django project runs against
a database. So to test the Django database connection, let’s run this first migration on the database to create
this set of base tables.

To run a migration on a Django project against a database, use the manage. py script in a project’s BASE_
DIR with the migrate argument (e.g., python manage.py migrate). The first time you execute this command
the output should be similar to Listing 1-15.

18

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Listing 1-15. Run first Django migrate operation to create base database tables

[user@coffeehouse ~]$ python manage.py migrate

Operations to perform:
Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry remove_ auto_add... OK
Applying contenttypes.0002_remove content type name... OK
Applying auth.0002_alter permission_name_max_length... OK
Applying auth.0003_alter user_email max_length... OK
Applying auth.0004_alter user_username_opts... OK
Applying auth.0005_alter user_ last login null... OK
Applying auth.0006_require_contenttypes 0002... OK
Applying auth.0007_alter validators add error messages... OK
Applying auth.0008 alter user_username_max_length... OK
Applying sessions.0001_initial... OK

As illustrated in Listing 1-15, if the connection to the database is successful, Django applies a series
of migrations that create database tables to manage users, groups, permissions, and sessions for a project.
For the moment, don’t worry too much about how these Django migrations work or where they are located
- I'll provide details later - just be aware these migrations are needed by Django to provide some basic
functionality.

Tip Connect directly to the database. If you receive an error trying to connect to the database or migrating
the Django project to create the initial set of database tables, try to connect directly to the database using the
same Django parameters.

On many occasions a typo in the Django variables NAME, USER, PASSWORD, HOST, or PORT can cause the
process to fail or inclusively the credentials aren’t even valid to connect directly to the database.

Set Up Content: Understand Urls, Templates, and Apps

Content in Django projects works with three major building blocks: urls, templates, and apps. You create and
configure Django urls, templates, and apps separately, though you connect one to another to fulfill content
delivery, which is part of Django’s loosely coupled architecture design principles.

Urls define the entry points or where to access content. Templates define the end points that give form
to the final content. And apps serve as the middleware between urls and templates, altering or adding
content from a database or user interactions. To run static content you only need to create and configure
Django urls and templates. To run dynamic content - built from a database or user interactions - you need to
create and configure Django apps, in addition to urls and templates.

But before describing how to create and configure urls, templates, and apps, it’s very important you
understand how each of these parts works with one another. Figure 1-4 shows the Django workflow for user
requests and how they work with Django urls, templates, and apps.

19

CHAPTER 1 © INTRODUCTION TO THE DJANGO FRAMEWORK

Content to user

Urls layer
to route

Static content direct to templates layer

requests

Defined In

X e with

regular
expressions

Apps layer
to modify/enrich

content

Defined In apps folders

Templates layer
to structure

content
Defined as flles
Inside directory.
Directorles defined In
3] property of

created with [TEMFLATES Jij setiings.py]|
manage.py startapp

App folders contain
| models.py EUEE Views.py |

Figure 1-4. Django workflow for urls, templates, and apps

Asyou can see in Figure 1-4, there are two separate pipelines to deliver either static or dynamic content.
More importantly, notice how each of the different Django layers is loosely coupled (e.g., you can forgo the
apps layer if it isn’t required and the urls layer and templates layer are still able to communicate with one
another).

Create and Configure Django Urls

The main entry point for Django urls is the urls.py file created when you start a project - if you're unfamiliar
with a Django project structure, see Listing 1-11 earlier in the chapter. If you open the urls.py file, you'll
notice it only has one active url to /admin/ that is the Django admin - I will discuss the Django admin in the
next and final section of this chapter.

Now that you're familiar with the urls.py file syntax, let’s activate a url to view custom content on the
home page of a Django project.

Django urls use regular expressions to match incoming requests. The regular expression pattern to
match a home page is *$ - the next chapter includes a dedicated section on the use of regular expression
in Django urls. In addition to the regular expression pattern, an action of what to do when a request is
intercepted for a matching pattern is also needed (e.g., send the content from a specific template).

Open the urls.py file and add line 3 - the one below django.contrib import admin - andline9 - the
one below url(r'*admin/', admin.site.urls), - asillustrated in Listing 1-16.

20

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Listing 1-16. Django url for home page to template

from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView

urlpatterns = [
url(r'*admin/', admin.site.urls),
url(x'~$',TemplateView.as_view(template_name="homepage.html')),

As show in Listing 1-16, urlpatterns is a Python list of url() statements. The url method comes from
the django.conf.urls package. The url method you just added defines the pattern for the home page - the
regular expression *$ - followed by the action TemplateView.as_view(template name="homepage.html").
This last action is a helper method to direct the requesting party to a template that takes the argument
template name="homepage.html'.

In summary, the url method you added in Listing 1-16 tells Django that requests for the home page
should return the content in the template homepage . html. The url method is very versatile and can accept
several variations, as I'll describe shortly and extensively in the next chapter.

Now let’s test the home page. Start the development web server by executing python manage.
py runserver on the Django project’s BASE_DIR. Open a browser on the default address
http://127.0.0.1:8000/. What do you see? An error page with Exception Type: TemplateDoesNotExist
homepage . html. This error is caused because Django can’t locate the homepage . html template defined for
the url. In the next section, I'll show you how to configure and create templates.

Caution If you receive the error OperationalError - no such table: django_session instead of
the TemplateDoesNotExist homepage.html error, this means the database for a Django project is still not
set up properly. You'll need to run python manage.py migrate in a project’s BASE_DIR so Django creates the
necessary tables to keep track of sessions. See the previous section on setting up a database for more details.

Create and Configure Django Templates

By default, Django templates are interpreted as HTML. This means Django templates are expected to have a
standard HTML document structure and HTML tags (e.g., <html>, <body>). You can use a regular text editor
to create Django templates and save the files with an . html extension.

Lets create a template for the url in the past section. In a text editor, create a file named homepage . html
and place the contents of Listing 1-17 into it. Save the file on your system, in a subdirectory called templates
in your Django project’s PROJECT_DIR.

Listing 1-17. Template homepage.html

<html>
<body>
<h4>Home page for Django</h4>
</body>
</html>

21

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Once you have a directory with Django templates, you need to configure a Django project so it can find
the templates in this directory. In the settings.py file of the Django project, you need to define the template
directory in the DIRS property of the TEMPLATES variable. The DIRS property is a list, so you can define
several directories to locate templates, though I recommend you only use a single directory with various
subdirectories for classification.

AsIrecommended previously, you should aim to keep Django templates inside a subdirectory - using
an obvious name like templates - in a Django project’s PROJECT_DIR. So for example, if the absolute path
to a Django project PROJECT DIR is /www/STORE/coffeehouse/, the recommended location for a DIRS
value would be /www/STORE/coffeehouse/templates/. Listing 1-18 illustrates a sample DIRS definition in
settings.py using the PROJECT DIR reference variable set dynamically at the top of settings.py.

Listing 1-18. TEMPLATES and DIRS definition in settings.py

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {

"context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context _processors.messages',

1

1
1

An important takeaway from Listing 1-18 is that it doesn’t use hard-coded directory paths; instead it
uses the PROJECT _DIR variable that is determined dynamically. This may seem trivial at the moment, but it’s
a good practice once the location of a Django project has a tendency to change (e.g., group development,
deployment to production).

Finally, start the Django development web server once again and open a browser on the default address
http://127.0.0.1:8000/. Instead of the error page you saw in the previous section, you should now see the
contents of the template homepage . html on the home page.

Create and Configure Django Apps

Django apps are used to group application functionality. If you want to work with content from a database or
user interactions you have to create and configure Django apps. A project can contain as many apps as you
need. For example, if you have a project for a coffeehouse, you can create an app for stores, another app for
menu items, another app for about information, and create additional apps as they're needed. There’s no
hard rule to the number of apps in a project. Whether to make code management simpler or delegate app
work to a team, the purpose of Django apps is to group application functionality to make work easier.

Django apps are normally contained in subdirectories inside a project. This approach makes it easier to
use Python references and naming conventions. If the project name is coffeehouse, the functionality of an
app named stores is easily referred through Python packages as coffeehouse.stores.

22

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Because apps provide a modular way to group application functionality, it's common for other people
or groups to distribute Django apps with popular functionality. For example, if a Django project requires
forum functionality, instead of writing a forum app from scratch, you can leverage one of several Django
forum apps. The more general purpose the functionality you're looking for, the more likely you'll be able to
find a Django app created by a third party.

YOU ALREADY WORKED WITH DJANGO APPS!

You may not have realized it, but in the previous section when you set up a database for a Django
project, you already worked with Django apps when you invoked the migrate operation.

By default, all Django projects are enabled with six apps provided by the framework. These apps are
django.contrib.admin, django.contrib.auth, django.contrib.contenttypes, django.contrib.
sessions, django.contrib.messages, and django.contrib.staticfiles. When you triggered the
migrate operation, Django created the database models for these preinstalled apps.

Next, lets create a small Django app. Go to the PROJECT_DIR - where the urls.py and settings.
py files are - and execute the command django-admin startapp about to create an app called about.
A subdirectory named about is created containing the app. By default, upon creating an app its
subdirectory includes the following:

e init .py.- Python file to allow app packages to be imported from other
directories. Note __init__.pyis not a Django specific file, it’s a generic file used in
almost all Python applications.

e migrations.- Directory that contains migrations applied to the app’s database
definitions (i.e., model classes).

e admin.py .- File with admin definitions for the app - such definitions are needed to
access model class instances from the Django admin.

e apps.py .- File with configuration parameters for the app.

e models.py .- File with database definitions (i.e., model classes) for the app.
e tests.py .- File with test definitions for the app.

e views.py .- File with view definitions (i.e., controller methods) for the app.

Next, open the views.py file and add the contents from Listing 1-19.

Listing 1-19. Handler view method in views.py

from django.shortcuts import render
def contact(request):
Content from request or database extracted here

and passed to the template for display
return render(request, 'about/contact.html")

23

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

The contact method in Listing 1-19 - like all other methods in views.py files - is a controller method
with access to a user’s web request. Notice the input for the contact method is called request. Inside this
type of method you can access content from a web request (e.g., IP address, session) using the request
reference or access information from a database, so that toward the end you pass this information to a
template. If you look at the last line of the contact method, it finishes with a return statement to the Django
helper method render. In this case, the render method returns control to the about/contact.html template.

Because the contact method in Listing 1-19 returns control to the template about/contact.html, you'll
also need to create a subdirectory called about with a template called contact.html inside your templates
directory (i.e., the one defined in the DIRS property of the TEMPLATES variable).

The contact method by itself does nothing, it needs to be called by a url. Listing 1-20 illustrates how to
add a url to the urls.py file linked to the contact method in Listing 1-19.

Listing 1-20. Django url for view method

from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView

from coffeehouse.about import views as about_views

urlpatterns = [
url(r'~admin/', admin.site.urls),
url(r'~$',TemplateView.as view(template name="'homepage.html')),
url(r'~about/', about views.contact),

The first thing that’s declared in Listing 1-20 is an import statement to gain access to the contact
method in Listing 1-19. In this case, because the app is named about and it’s under the coffeehouse project
folder, it says from coffeehouse.about, followed by import views which gives us access to the app’s views.
py file where the contact method is located.

The import statement ends with as about_views to assign a unique qualifier, which is important if
you plan to work with multiple apps. For example, import statements without the as keyword, such as from
coffeehouse.about import views, from coffeehouse.items import views or from coffeehouse.stores
import views canimport conflicting view method references (e.g., three methods named index), so the as
qualifier is a safeguard to ensure you don’t unintentionally use a method with the same name from another
app.

The new url definition in Listing 1-20 uses a regular expression to match requests on the about
url directory (e.g., http://127.0.0.1:8000/about/) and instead of directing the request to a template,
control is given to the about_views.contact method - where about_views refers to the imported reference
described in the previous paragraph.

Next, start the Django development web server and open a browser on the address
http://127.0.0.1:8000/about/. Notice how a request on the about url directory displays the underlying
about/contact.html template defined in the contact method in views.py.

Finally, although you can now access an app’s views.py methods, you also need to configure the app
inside a project’s settings. py file. This last step is important so Django can find other app constructs you
create later (e.g., database model definitions, static resources, custom template tags).

Open the Django project’s settings.py file and look for the INSTALLED_APPS variable. You'll see a series
of apps already defined on the INSTALLED_APPS. Notice how the installed apps belong to the django.contrib
package, this means they're provided by the Django framework itself. Add the coffeehouse.about app to the
list as illustrated in line 8 of Listing 1-21.

24

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Listing 1-21. Add app to INSTALLED_APPS in Django settings.py

INSTALLED APPS = [
"django.contrib.admin’,
'django.contrib.auth’,
"django.contrib.contenttypes’,
'django.contrib.sessions’,
"django.contrib.messages’,
'django.contrib.staticfiles’,
' coffeehouse.about’,

As illustrated in line 8 of Listing 1-21, to add apps to a project you add the app package as a string to
the INSTALLED_APPS variable. Though the coffeehouse.about app is still practically empty, adding the
app to the INSTALLED_APPS variable is an important configuration step for future actions, such as database
operations and static resources associated with the app, among other things.

Set Up the Django admin Site

The Django admin site provides a web-based interface to access the database connected to a Django
project. Even for experienced technical administrators, doing database CRUD (Create-Read-Update-Delete)
operations directly on a database can be difficult and time consuming, given the need to issue raw SQL
commands and navigate database structures. For nontechnical users, doing database CRUD operations
directly on a database can be daunting, if not impossible. The Django admin site fixes this problem.

The Django admin site can expose all Django project-related data structures linked to a database, so
it’s easy for experts and novices alike to perform database CRUD operations. As a Django project grows,
the Django admin site can be a vital tool to administer the growing body of information in the database
connected to a Django project.

The Django admin site is built as a Django app; this means the only thing you need to do to set up the
Django admin site is configure and install the app as any other Django app. If you're unfamiliar with the
term Django app, read the previous section “Set Up Content: Understand Urls, Templates, and Apps.”

The Django admin site requires that you previously configure a database and also install the Django
base tables. So if you still haven’t done this, see the prior section “Set Up a Database for a Django Project.”

Configure and Install the Django admin site App

By default, the Django admin is enabled on all Django projects. If you open a Django project’s urls.
py file, in the urlpatterns variable you'll see the line url(r'~admin/"', admin.site.urls). This last
regular expression pattern tells Django to enable the admin site app on the /admin url directory
(e.g., http://127.0.0.1:8000/admin/).
Next, if you open the project’s settings.py file and go to the INSTALLED_APPS variable, near the top of
this variable you'll see the line django.contrib.admin that indicates the Django admin site app is enabled.
Start the development web server by executing python manage.py runserver on Django’s BASE_DIR.
Open a browser on the Django admin site http://127.0.0.1:8000/admin/. You'll see a login screen like the
one in Figure 1-5.

25

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

= €[5 localhostB8000/admi

Django administration

Usemame:

Password:

m

Figure 1-5. Django admin site login

Next, let’s create a Django superuser or administrator to access the Django admin via the interface in
Figure 1-5. To create a Django superuser you can use the createsuperuser command from manage.py as
illustrated in Listing 1-22.

Listing 1-22. Create Django superuser for admin interface

[user@coffeehouse ~]$ python manage.py createsuperuser
Username (leave blank to use 'admin'):

Email address: admin@coffeehouse.com

Password:

Password (again):

The password is too similar to the email address.

This password is too short. It must contain at least 8 characters.
This password is too common.

Password:

Password (again):

Superuser created successfully.

Caution If you receive the error OperationalError - no such table: auth_user, this means the
database for a Django project is still not set up properly. You'll need to run python manage.py migrateina
project’s BASE_DIR so Django creates the necessary tables to keep track of users. See the previous section
“Set Up a Database for a Django Project” for more details.

26

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

Tip By default, Django enforces that user passwords comply with a minimum level of security. For
example, in Listing 1-22 you can see that after attempting to use the password coffee, Django rejects the
assignment with a series of error messages and forces a new attempt. You can modify these password
validation rules in the AUTH_PASSWORD_VALIDATORS variable in setttings.py.

This last process creates a superuser whose information is stored in the database connected to the
Django project, specifically in the auth_user table. Now you might be asking yourself, how do you update
this user’s name, password, or email? While you could go straight to the database table and perform updates,
this is a tortuous route; a better approach is to rely on the Django admin, which gives you a very friendly
view into the database tables present in your Django project.

Next, introduce the superuser username and password you just created into the interface from
Figure 1-5. Once you provide the superuser username and password on the admin site, you'll access the
home page for the admin site illustrated in Figure 1-6.

= [localhosts pr—

Site administration

AUTHENTICATION AND AUTHORIZATION «
Recent actions

[+ add Change

[+ add Change My actions

None available

Figure 1-6. Django admin site home page

On the home page of the Django admin site illustrated in Figure 1-6, click on the ‘Users’ link. You'll see
a list of users with access to the Django project. At the moment, you'll only see the superuser you created
in the past step. You can change this user’s credentials (e.g., password, email, username) or add new users
directly from this Django admin site screen.

This flexibility to modify or add records stored in a database that’s tied to a Django project is what
makes the Django admin site so powerful. For example, if you develop a coffeehouse project and add
apps like stores, drinks, or customers, Django admin authorized users can do CRUD operations on these
objects (e.g., create stores, update drinks, delete customers). This is tremendously powerful from a content
management point of view, particularly for nontechnical users. And most importantly it requires little to no
additional development work to enable the Django admin site on a project’s apps.

27

CHAPTER 1~ INTRODUCTION TO THE DJANGO FRAMEWORK

The Django admin site tasks presented here are just the ‘tip of the iceberg’ in functionality; a future
chapter covers the Django admin site functionality in greater detail.

Configure and Install the Django admin site docs App

The Django admin site also has its own documentation app. The Django admin site documentation app
not only provides information about the operation of the admin site itself, but also includes other general
documentation about Django filters for Django templates. More importantly, the Django admin site
documentation app introspects the source code for all installed project apps to present documentation on
controller methods and model objects (i.e., documentation embedded in the source code of app models. py
and views.py files).

To install the Django admin site documentation app, you first need to install the docutils Python
package with the pip package manager executing the following command: pip install docutils.Once
you install the docutils package, you can proceed to install the Django admin site documentation app as any
other Django app.

Add the url to access the Django admin site documentation app. If you open the project’s urls.py file,
in the urlpatterns variable add the following line:

url(zr'~admin/doc/"', include('django.contrib.admindocs.urls"))

Ensure you add this before the url(r'~admin/"..line to keep more general matching expressions
toward the bottom and more granular expressions on the same url path (e.g., /admin) toward the top. This
last regular expression pattern tells Django to enable the admin site documentation app on the /admin/doc/
url directory (e.g. http://127.0.0.1:8000/admin/doc/).

Next, open the project’s settings.py file and go to the INSTALLED_APPS variable. Near the final values in
this variable add the line django.contrib.admindocs to enable the Django admin site documentation app.

With the development web server running, open a browser on the address http://127.0.0.1:8000/
admin/doc/ and you should see a page like the one in Figure 1-7.

= = & [localhost8000/admin/dog; ok

m

Home : Documentation

Documentation

Tags

List of all the template tags and their functions.

Filters

Filters are actions which can be applied to variables in a template to alter the cutput.

Models

Models are descriptions of all the objects in the system and their associated fields. Each model has a list of fields which can be accessed as template variables.
Views

Each page on the public site is generated by a view. The view defines which template is used 10 generate the page and which objects are available to that template,
Bookmarklets

Tools for your browser to quickly access admin functionality.

Figure 1-7. Django admin site doc home page

28

CHAPTER 1 * INTRODUCTION TO THE DJANGO FRAMEWORK

If you logged off the Django admin site, you'll need to log in again to access the documentation since
it also requires user authentication. Once you log in, you'll be able to see the documentation home page
for the Django admin site - illustrated in Figure 1-7 - as well as the documentation on a project’s controller
methods and model objects.

29

CHAPTER 2

Django Urls and Views

In Chapter 1 you learned about the core building blocks in Django, inclduing what are views, models, and
urls. In this chapter, you'll learn more about Django urls, which are the entry point into a Django application
workflow. You'll learn how to create complex url regular expressions, how to use url values in view methods
and templates, how to structure and manage urls, and how to name urls.

After urls, Django views represent the next step in almost all Django workflows, where views are
charged with inspecting requests, executing business logic, querying a database and validating data, as well
as generating responses. In this chapter, you'll learn how to create Django views with optional parameters,
the structure of view requests and responses, how to use middleware with views, and how to create
class-based views.

Url Regular Expressions

Regular expressions provide a powerful approach in all programming languages to determine patterns.
However, with power also comes complexity, to the point that there are entire books written on the topic of
regular expressions.!

Although most Django urls will never exceed a fraction of the complexity illustrated in many regular
expression books, it’s important that you understand some of the underlying behaviors and most common
patterns of regular expressions in Django urls.

Precedence Rule: Granular Urls First, Broad Urls Last

Django urls need to follow a certain order and syntax to work correctly. Broad url regular expressions should
be declared last and only after more granular url regular expressions.

This is because Django url regular expression matching doesn’t use short-circuiting behavior, like a
nested conditional statement (e.g., if/elif/elif/ elif/else) where as soon as one condition is met, the remaining
options are ignored. In Django urls if there’s more than one matching regular expression for an incoming
url request, it will be the top-most one’s action that gets triggered. Precedence for matching url regular
expressions is given from top (i.e., first declared) to bottom (i.e., last declared).

You shouldn’t underestimate how easy it can be to introduce two url regular expressions that match
the same pattern, particularly if you've never done regular expressions since the syntax can be cryptic.
Listing 2-1 illustrates the right way to declare Django urls, with more granular regular expressions toward the
top and broad regular expressions toward the bottom.

*http://www.apress.com/la/book/9781590594414

© Daniel Rubio 2017 31
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_2

https://doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_1
http://www.apress.com/la/book/9781590594414

CHAPTER 2 © DJANGO URLS AND VIEWS

Listing 2-1. Correct precedence for Django url regular expressions

from django.views.generic import TemplateVieww

urlpatterns = [
url(r'~about/index/",TemplateView.as view(template name='index.html')),
url(r'~about/",TemplateView.as_view(template_name='about.html')),

Based on Listing 2-1, let’s walk through what happens if Django receives a request for the url /about/
index/. Initially Django matches the last regular expression, which says ‘match “about/’ Next, Django
continues upward inspecting the regular expressions and reaches ‘match “about/index/' thatis an exact
match to the request url /about/index/ and therefore triggers this action to send control to the index.html
template.

Now let’s walk through a request for the url /about/. Initially Django matches the last regular
expression that says ‘match "“about/’ Next, Django continues upward inspecting the regular expressions
for a potential match. Because no match is found - since ‘match “about/index/" is a more granular regular
expression - Django triggers the first action to send control to the about.html template, which was the only
regular expression match.

Asyou can see, Listing 2-1 produces what can be said to be expected behavior. But now let’s invert the
order of the url regular expressions, as shown in Listing 2-2, and break down why declaring more granular
regular expressions toward the bottom is the wrong way to declare Django url regular expressions.

Listing 2-2. Wrong precedence for Django url regular expressions

from django.views.generic import TemplateVieww

urlpatterns = [
url(r'~about/',TemplateView.as view(template name='about.html")),
url(r'~about/index/",TemplateView.as view(template name='index.html")),

The issue in Listing 2-2 comes when a request is made for the url /about/index/. Initially Django
matches the last regular expression, which says ‘match *about/index/’ However, Django continues
inspecting the regular expressions and reaches ‘match *about/"' which is a broader match to the request
url /about/index/, but nevertheless a match! Therefore Django triggers this action and sends control to
the about.html template, instead of what was likely expected to be the index.html template from the first
match.

Exact Url Patterns: Forgoing Broad Matching

In the past section, I intentionally used regular expressions that allowed broad url matching. In my
experience, as a Django project grows you'll eventually face the need to use this type of url regular
expression - but more on why this is so, shortly.

As it turns out, it’s possible to use exact url regular expressions. Exact url regular expressions remove
any ambiguity introduced by the order in which Django url regular expression are declared.

Let’s rework the url regular expressions from Listing 2-2 and make them exact regular expressions so
their order doesn’t matter. Listing 2-3 illustrates exact regular expressions on basis of those in Listing 2-2.

32

CHAPTER 2 © DJANGO URLS AND VIEWS

Listing 2-3. Exact regular expressions, where url order doesn’t matter

from django.views.generic import TemplateVieww

urlpatterns = [
url(r'"about/$"',TemplateView.as view(template name='about.html")),
url(xr'"~about/index/$",TemplateView.as view(template name='index.html")),

Notice the regular expressions in Listing 2-3 end with the $ character. This is the regular expression
symbol for end of line, which means the regular expression urls only match an exact pattern.

For example, if Django receives a request for the url /about/index/ it will only match the last regular
expression in Listing 2-3, which says ‘match “about/index/$’. However, it won’t match the higher-up "/
about/$ regular expression because this regular expression says match about/ exactly with nothing else
after, since the $ indicates the end of the pattern.

However, as useful as the $ character is to make stricter url regular expressions, it’s important you
analyze its behavior. If you plan to use url Search Engine Optimization (SEO), A/B testing techniques, or
simply want to allow multiple urls to run the same action, stricter regular expressions with $ eventually
require more work.

For example, if you start to use urls like /about/index/, /about/email/,/about/address/ and
they all use the same template or view for processing, exact regular expressions just make the amount
of urls you declare larger. Similarly, if you use A/B testing or SEO where lengthier variations of the
same url are processed in the same way (e.g., /about/landing/a/, /about/landing/b/, /about/
the+coffeehouse+in+san+diego/) broad url matching is much simpler than declaring exact url patterns.

In the end, whether you opt to use exact url regular expression ending in $, would still recommend you
maintain the practice of keeping finer-grained url regulars at the top and broader ones at the bottom, as this
avoids the unexpected behaviors described in Listing 2-2 when more than one regular expression matches a
url request.

Common Url Patterns

Although url regular expressions can have limitless variations - making it next to impossible to describe
each possibility - I'll provide examples on some of the most common url patterns you're more likely to use.
Table 2-1 shows individual regular expression characters for Django urls and Table 2-2 shows a series of

more concrete examples with url patterns.

Table 2-1. Regular expression syntax for Django urls: Symbol (Meaning)

A (Start of url) $ (End of url) \ (Escape for interpreted | (Or)

values)

+ (1 or more ? (0 or 1 occurrences) {n} (n occurrences) {n,m} (Between n and m

occurrences) occurrences)

[] (Character grouping) (?P<name>___) (Capture . (Any character) \d+ (One or more digits).
occurrence that matches Note escape, without
regexp ___and assign it escape matches ‘d+’
to name literally.

\D+ (One or more [a-zA-Z0-9_]+ (One or \w+ (One ormoreword [-@\w]+ (One or more

non-digits).Note more word characters, characters, equivalent word character, dash. or at

escape, without escape letter lower or uppercase, to [a-zA-Z0-9_]). Note sign). Note no escape for
matches ‘D+’ literally] number, or underscore) escape, without escape \w since it’s enclosed in
matches ‘w+’ literally]. brackets (i.e., a grouping).

33

CHAPTER 2 © DJANGO URLS AND VIEWS

Table 2-2. Common Django url patterns and their regular expressions, with samples

Url regular expression Description

Sample urls

url(r'Ar$’,.....) Empty string (Home
page)
url(r‘Astores/’,.....) Any trailing characters

url(r‘Aabout/contact/$’,.....) Exact, no trailing
characters

url(r‘Astores/\d+/’,.....) Number

url(r‘Adrinks/\D+/’,.....) Non-digits

url(r‘Adrinks/mochalespresso/’,.....) Word options, any
trailing characters

url(r‘Adrinks/mocha$|espresso/$’,.....) Word options exact, no
trailing characters

url(r‘Astores/\w+/’,.....) Word characters
(Any letter lower or
uppercase, number, or

underscore)
url(r‘Astores/[-\w]+/’,.....) Word characters or dash
url(r‘Astate/[A-Z]{2}/’,.....) Two uppercase letters

Matches:
http://127.0.0.1/

Matches:

http://127.0.0.1/stores/
http://127.0.0.1/stores/long+stri
ng+with+anything+12345

Matches: http://127.0.0.1/about/
contact/

Doesn’t match: http://127.0.0.1/
about/

Matches:
http://127.0.0.1/stores/2/
http://127.0.0.1/stores/34/
Doesn’t match: http://127.0.0.1/
stores/downtown/

Matches: http://127.0.0.1/drinks/
mocha/

Doesn’t match: http://127.0.0.1/
drinks/324/

Matches: http://127.0.0.1/drinks/
mocha/ http://127.0.0.1/drinks/
mochaccino/ http://127.0.0.1/
drinks/espresso/

Doesn’t match: http://127.0.0.1/
drinks/soda/

Matches: http://127.0.0.1/drinks/
mocha/

Doesn’t match: http://127.0.0.1/
drinks/mochaccino/

Matches: http://127.0.0.1/drinks/
espresso/

Doesn’t match: http://127.0.0.1/
drinks/espressomacchiato/

Matches: http://127.0.0.1/stores/
sandiego/
http://127.0.0.1/stores/LA/
http://127.0.0.1/stores/1/
Doesn’t match:
http://127.0.0.1/san-diego/

Matches:
http://127.0.0.1/san-diego/

Matches:
http://127.0.0.1/CA/
Doesn’t match:
http://127.0.0.1/Ca/

34

http://127.0.0.1/stores/
http://127.0.0.1/stores/long+string+with+anything+12345
http://127.0.0.1/stores/long+string+with+anything+12345
http://127.0.0.1/about/contact/
http://127.0.0.1/about/contact/
http://127.0.0.1/about/
http://127.0.0.1/about/
http://127.0.0.1/stores/2/
http://127.0.0.1/stores/34/
http://127.0.0.1/stores/downtown/
http://127.0.0.1/stores/downtown/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/324/
http://127.0.0.1/drinks/324/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/soda/
http://127.0.0.1/drinks/soda/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espressomacchiato/
http://127.0.0.1/drinks/espressomacchiato/
http://127.0.0.1/stores/sandiego/
http://127.0.0.1/stores/sandiego/
http://127.0.0.1/stores/LA/
http://127.0.0.1/stores/1/
http://127.0.0.1/san-diego/
http://127.0.0.1/san-diego/
http://127.0.0.1/CA/
http://127.0.0.1/Ca/

CHAPTER 2 © DJANGO URLS AND VIEWS

DJANGO URLS DON’T INSPECT URL QUERY STRINGS

On certain urls - those made by HTTP GET requests, common in HTML forms or REST services -
parameters are added to urls with ? followed by parameter name=parameter value separated by &
(e.9., /drinks/mocha/?type=cold8size=1large). These set of values are known as query strings and
Django ignores them for the purpose of url pattern matching.

If you need to make use of these values as url parameters — a topic explored in the next section — you
can access these values in Django view methods through the request reference. Another alternative is
to change the url structure to accommodate regular expressions (€.g., /drinks/mocha/cold/large/
instead of /drinks/mocha/?type=colddsize=1arge).

Url Parameters, Extra Options, and Query Strings

You just learned how to use a wide variety of regular expressions to create urls for your Django applications.
However, if you look back at Listings 2-1, 2-2, and 2-3, you'll notice the information provided on the urls is
discarded.

Sometimes it’s helpful or even necessary to pass url information to the processing construct as a
parameter. For example, if you have several urls like /drinks/mocha/, /drinks/espresso/, and /drinks/
latte/, the last part of the url represents a drink name. Therefore it can be helpful or necessary to relay this
url information to the processing template to display it or use it in some other way in a view (e.g., query a
database). To relay this information the url needs to treat this information as a parameter.

To handle url parameters Django uses Python’s standard regular expression syntax for named groups.?
Listing 2-4 shows a url that creates a parameter named drink_name.

Listing 2-4. Django url parameter definition for access in templates

urlpatterns = [
url(zr'~drinks/(?P<drink name>\D+)/',TemplateView.as view(template name='drinks/index.
html")),

Notice the (?P<drink name>\D+) syntax in Listing 2-4. The ?P<> syntax tells Django to treat this part of
the regular expression as a named group and assign the value to a parameter named drink_name declared
between <>. The final piece \D+ is a regular expression to determine the matching value; in this case the
matching value is one or more non-digit characters, as described in Table 2-1.

It's very important you understand a parameter is only captured if the provided value matches the
specified regular expression (e.g., \D+ for non-digits). For example, for the url request /drinks/mocha/ the
value mocha is assigned to the drink_name parameter, but for a url like /drinks/123/ the regular expression
pattern doesn’t match - because 123 are digits - so no action is taken.

If a url match occurs in Listing 2-4, the request is sent directly to the template drinks/index.html.
Django provides access to all parameters defined in this manner through a Django template context variable
with the same name. Therefore to access the parameter you would use the parameter name drink_type
directly in the template. For example, to output the value of the drink_name parameter you would use the
standard {{}} Django template syntax (e.g., {{drink_name}}).

*https://docs.python.org/3/howto/regex. html#non-capturing-and-named-groups

35

https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups

CHAPTER 2 © DJANGO URLS AND VIEWS

In addition to treating parts of a url as parameters, it’s also possible to define extra options in the url
definition to access them in Django templates as context variables. These extra options are defined inside a
dictionary declared as the last part of the url definition.

For example, look at the following modified url Django definition from Listing 2-4:

url(r'~drinks/(?P<drink _name>\D+)', TemplateView.as view(template name='drinks/index.html'),
{"onsale':True}),

Notice how a dictionary with key-values is added at the end of the url definition. In this manner, the
onsale key becomes a url extra option, which is passed to the underlying template as a context variable. Url
extra options are accessed like url parameters as template context variables. So to output the onsale extra
option you would use the {{onsale}} syntax.

Next, let’s take a look at another variation of url parameters illustrated in Listing 2-5, which sends
control to a Django view method.

Listing 2-5. Django url parameter definition for access in view methods in main urls.py file

Project main urls.py
from coffeehouse.stores import views as stores_views

urlpatterns = patterns|
url(r'~stores/(?P<store id>\d+)/',stores views.detail),
]

Notice the (?P<store_id>\d+) syntax in Listing 2-5 is pretty similar to the one in 2-4. The thing that
changes is the parameter is now named store_id and the regular expression is \d+ to match digits. So, for
example, if a request is made to the url /stores/1/ the value 1 is assigned to the store_id parameter and if
arequest is made to a url like /stores/downtown/ the regular expression pattern doesn’t match - because
downtown are letters not digits - so no action is taken.

If a url match occurs for Listing 2-5, the request is sent directly to the Django view method
coffeehouse.stores.views.detail. Where coffeehouse.stores is the package name, views.py the
file inside the stores app and detail the name of the view method. Listing 2-6 illustrates the detail view
method to access the store_id parameter.

Listing 2-6. Django view method in views.py to access url parameter

from django.shortcuts import render

def detail(request,store id):
Access store_id with 'store id' variable
return render(request, 'stores/detail.html")

Notice in Listing 2-6 how the detail method has two arguments. The first argument is a request object,
which is always the same for all Django view methods. The second argument is the parameter passed by the
url. It's important to note the names of url parameters must match the names of the method arguments. In
this case, notice in Listing 2-5 the parameter name is store_id and in Listing 2-6 the method argument is
also named store_id.

With access to the url parameter via the view method argument, the method can execute logic with the
parameter (e.g., query a database) that can then be passed to a Django template for presentation.

36

CHAPTER 2 © DJANGO URLS AND VIEWS

Caution Django url parameters are always treated as strings, irrespective of the regular expression. For
example, \d+ catches digits, but a value of one is treated as ‘1’ (String), not 1 (Integer). This is particularly
important if you plan to work with url parameters in view methods and do operations that require something
other than strings.

Another option available for url parameters handled by view methods is to make them optional, which
in turn allows you to leverage the same view method for multiple urls. Parameters can be made optional by
assigning a default value to a view method argument. Listing 2-7 shows a new url that calls the same view
method (coffeehouse.stores.views.detail) but doesn’t define a parameter.

Listing 2-7. Django urls with optional parameters leveraging the same view method

from coffeehouse.stores import views as stores views

urlpatterns = patterns|
url(r'~stores/',stores views.detail),
url(zr'"stores/(?P<store id>\d+)/',stores views.detail),

If you called the url /stores/ without modifying the detail method in Listing 2-6, you would get an
error. The error occurs because the detail view method expects a store_id argument, which isn’t provided
by the first url. To fix this problem, you can define a default value for the store_id in the view method, as
illustrated in Listing 2-8.

Listing 2-8. Django view method in views.py with default value

from django.shortcuts import render

def detail(request,store id="1"):
Access store_id with 'store_id' variable
return render(request, 'stores/detail.html")

Notice in Listing 2-8 how the store_id argument has the assignment ="1". This means the argument
will have a default value of '1" in case the view method is called without store_id. This approach allows you
to leverage the same view method to handle multiple urls with optional parameters.

In addition to accessing url parameters inside view methods, it’s also possible to access extra options
from the url definition. These extra options are defined inside a dictionary declared as the last argument in
a url definition. After the view method declaration, you add a dictionary with the key-value pairs you wish
to access inside the view method. The following snippet illustrates a modified version of the url statement in
Listing 2-7.

url(r'~stores/',stores views.detail,{'location':'headquarters'})

In this case, the location key becomes a url extra option that’s passed as a parameter to the view
method. Url extra options are accessed just like url parameters, so to access a url extra option inside a view
method you need to modify the method signature to accept an argument with the same name as the url

extra option. In this case, the method signature:

def detail(request,store id="1"):

37

CHAPTER 2 © DJANGO URLS AND VIEWS

needs to change to:
def detail(request,store id="1",location=None):

Notice the location argument is made optional by assigning a default value of None.

Finally, it’s also possible to access url parameters separated by ? And & - technically known as a query
string - inside Django view methods. These type of parameters can be accessed inside a view method using
the request object.

Take, for example, the url /stores/1/?hours=sunday&map=flash, Listing 2-9 illustrates how to extract
the arguments from this url separated by ? and & using request.GET.

Listing 2-9. Django view method extracting url parameters with request. GET

from django.shortcuts import render

def detail(request,store id="1",location=None):

Access store id param with 'store id' variable and location param with 'location’
variable

Extract 'hours' or 'map' value appended to url as

?hours=sunday@map=flash

hours = request.GET.get('hours', '")

map = request.GET.get('map', '")

'hours' has value 'sunday' or if hours not in url

'map' has value 'flash' or '' if map not in url

return render(request, 'stores/detail.html")

Listing 2-9 uses the syntax request.GET.get(<parameter>, '').If the parameter is present in
request.GET it extracts the value and assigns it to a variable for further usage; if the parameter is not present
then the parameter variable is assigned a default empty value of ' ' - you could equally use None or any other
default value - as this is part of Python’s standard dictionary get () method syntax to obtain default values.

This last process is designed to extract parameters from an HTTP GET request; however, Django
also supports the syntax request.POST.get to extract parameters from an HTTP POST request, which is
described in greater detail in the chapter on Django forms and later in this chapter in the section on Django
view method requests.

Url Consolidation and Modularization

By default, Django looks up url definitions in the urls.py file inside a project’s main directory - it’s worth
mentioning this is on account of the ROOT_URLCONF variable in settings.py. However, once a project grows
beyond a couple of urls, it can become difficult to manage them inside this single file. For example, look at
the urls.py file illustrated in Listing 2-10.

Listing 2-10. Django urls.py with no url consolidation

from django.conf.urls import url

from django.views.generic import TemplateView

from coffeehouse.about import views as about_views
from coffeehouse.stores import views as stores views

38

CHAPTER 2 © DJANGO URLS AND VIEWS

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html')),
url(r'~about/',about views.index),
url(r'~about/contact/"',about views.contact),
url(r'~stores/',stores views.index),
url(r'~stores/(?P<store id>\d+)/',stores views.detail,{'location':'headquarters'}),

]

Asyou can see in Listing 2-10, there are a couple of urls that have redundant roots - about/ and
stores/. Grouping these urls separately can be helpful because it keeps common urls in their own files and
avoids the difficulties of making changes to one big urls.py file.

Listing 2-11 shows an updated version of the urls.py file with the about/ and stores/ roots placed in
separate files.

Listing 2-11. Django urls.py with include to consolidate urls

from django.conf.urls import include, url
from django.views.generic import TemplateView

urlpatterns = [
url(r'~$',TemplateView.as view(template_name='homepage.html')),
url(r'~about/',include(' coffeehouse.about.urls")),
url(r'~stores/',include(' coffeehouse.stores.urls"),{"'location’: 'headquarters'}),

]

Listing 2-11 makes use of the include argument to load urls from completely separate files. In this
case, include(' coffeehouse.about.urls") tells Django to load url definitions from the Python module
coffeehouse.about.urls, which parting from a Django base directory corresponds to the file route /
coffeehouse/about/urls.py. In this case, I kept using the urls.py file name and placed it under the
corresponding Django about app directory since it deals with about/ urls. However, you can use any file
name or path you like for url definitions (e.g., coffeehouse.allmyurl.resturls to load urls from a file route
/coffeehouse/allmyurls/resturls.py).

The second include statement in Listing 2-11 works just like the first one, where
include(' coffeehouse.stores.urls") tells Django to load url definitions from the Python module
coffeehouse.stores.urls. However, notice this second statement appends an additional dictionary as a url
extra option, which means all the urls in the include statement will also receive this extra option.

Listing 2-12 illustrates the contents of the file /coffeehouse/about/urls.py linked via
include('coffeehouse.about.urls").

Listing 2-12. Django /coffeehouse/about/urls.py loaded via include

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'~$',views.index),
url(r'~contact/$"',views.contact),

39

CHAPTER 2 © DJANGO URLS AND VIEWS

A quick look at Listing 2-12 and you can see the structure is pretty similar to the main urls.py file;
however, there are some minor differences. While the url regular expression r'*$' can look like it matches
the home page, it isn’t. Because the file in Listing 2-12 is linked via include in the main urls.py file, Django
joins the url regular expression with the parent url regular expression. So the first url in Listing 2-12 actually
matches /about/ and the second url in Listing 2-12 actually matches /about/contact/. Also because the
urls.py file in Listing 2-12 is placed alongside the app’s views.py file, the import statement uses the relative
path from . import views syntax.

In addition to using the include option to reference a separate file with url definitions, the include
option can also accept url definitions as a Python list. In essence, this allows you to keep all url definitions in
the main urls. py file, but give it more modularity. This approach is illustrated in Listing 2-13.

Listing 2-13. Django urls.py with inline include statements

from django.conf.urls import include, url
from django.views.generic import TemplateView

from coffeehouse.about import views as about_views
from coffeehouse.stores import views as stores_views

store patterns = [
url(r'~$',stores views.index),
url(r'~(?P<store_id>\d+)/$',stores views.detail),

]

about_patterns = [
url(r'~$',about views.index),
url(r'~contact/$',about views.contact),

]

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html')),
url(r'~about/"',include(about patterns)),
url(r'~stores/',include(store_patterns),{'location':'headquarters'}),

]

The outcome of the url patterns in Listing 2-13 is the same as Listings 2-11 and 2-12. The difference is
Listing 2-13 uses the main urls.py file to declare multiple url lists, while Listings 2-11 and 2-12 rely on url
lists declared in different files.

Url Naming and Namespaces

A project’s internal links or url references (e.g., Home Page) tend to be hard-coded,
whether it’s in view methods to redirect users to certain locations or in templates to provide adequate user
navigation. Hard-coding links can present a serious maintenance problem as a project grows, because it
leads to links that are difficult to detect and fix. Django offers a way to name urls so it’s easy to reference
them in view methods and templates.

The most basic technique to name Django urls is to add the name attribute to url definitions in urls.
py. Listing 2-14 shows how to name a project’s home page, as well as how to reference this url from a view
method or template.

40

CHAPTER 2 © DJANGO URLS AND VIEWS

Listing 2-14. Django url using name

Definition in urls.py
url(r'~$',TemplateView.as view(template name='homepage.html'),name="homepage")

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):
return HttpResponsePermanentRedirect(reverse("homepage'))

Definition in template
Back to home page

The url definition in Listing 2-14 uses the regular expression ' *$" that translates into / or the home
page, also known as the root directory. Notice the name attribute with the homepage value. By assigning the
url a name you can use this value as a reference in view methods and templates, which means any future
changes made to the url regular expression, automatically update all url definitions in view methods and
templates.

Next in Listing 2-14 you can see a view method example that redirects control to reverse("homepage").
The Django reverse method attempts to look up a url definition by the given name - in this case homepage -
and substitutes it accordingly. Similarly, the link sample Back to home
page in Listing 2-14 makes use of the Django {% url %} tag, which attempts to look up a url by its first
argument - in this case homepage - and substitute it accordingly.

This same naming and substitution process is available for more complex url definitions, such as those
with parameters. Listing 2-15 shows the process for a url with parameters.

Listing 2-15. Django url with arguments using name

Definition in urls.py
url(r'~drinks/(?P<drink_name>\D+)/',TemplateView.as view(template name='drinks/index.
html'),name="drink"),

Definition in view method

from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

return HttpResponsePermanentRedirect(reverse('drink', args=(drink.name,)))

Definition in template
Drink on sale

Drink on sale
The url definition in Listing 2-15 uses a more complex regular expression with a parameter that

translates into urls in the form /drinks/latte/ or /drinks/espresso/. In this case, the url is given the
argument name drink_name.

41

CHAPTER 2 © DJANGO URLS AND VIEWS

Because the url uses a parameter, the syntax for the reverse method and {% url %} tag are slightly
different. The reverse method requires the url parameters be provided as a tuple to the args variable
and the {% url %} tagrequires the url arguments be provided as a list of values. Notice in Listing 2-15 the
parameters can equally be variables or hard-coded values, so long as it matches the url argument regular
expression type - which in this case is non-digits.

For url definitions with more than one argument, the approach to using reverse and {% url %} is
identical. For the reverse method you pass it a tuple with all the necessary parameters and for the {% url %}
tag you pass it a list of values.

Caution Beware of invalid url definitions with reverse and {% url %}. Django always checks at startup that
all reverse and {% url %} definitions are valid. This means that if you make an error in a reverse method or {%
url %} tag definition - like a typo in the url name or the arguments types don’t match the regular expression -
the application won’t start and throw an HTTP 500 internal error.

The error for this kind of situation is NoReverseMatch at....Reverse for 'urlname' with arguments '()'
and keyword arguments '{}' not found. X pattern(s) tried. If you look at the error stack you’ll be able
to pinpoint where this is happening and correct it. Just be aware this is a fatal error and if it is not isolated to
the view or page where it happens, it will stop the entire application at startup.

Sometimes the use of the name attribute by itself is not sufficient to classify urls. What happens if you
have two or three index pages? Or if you have two urls that qualify as details, but one is for stores and the
other for drinks?

A crude approach would be to use composite names (e.g., drink_details, store_details). However, the
use of composite names in this form can lead to difficult-to-remember naming conventions and sloppy
hierarchies. A cleaner approach supported by Django is through the namespace attribute.

The namespace attribute allows a group of urls to be identified with a unique qualifier. Because the
namespace attribute is associated with a group of urls, it’s used in conjunction with the include method
described earlier to consolidate urls.

Listing 2-16 illustrates a series of url definitions that make use of the namespace attribute with include.

Listing 2-16. Django urls.py with namespace attribute

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html'),name="homepage"),
url(r'*about/"',include(' coffeehouse.about.urls',namespace="about")),
url(r'~stores/"',include(' coffeehouse.stores.urls',namespace="stores")),

]

About urls.py
from . import views

urlpatterns = [

url(r'~$',views.index,name="index"),
url(r'~contact/$',views.contact,name="contact"),

42

CHAPTER 2 © DJANGO URLS AND VIEWS

Stores urls.py
from . import views

urlpatterns = [
url(r'~$',views.index,name="index"),
url(r'~(?P<store_id>\d+)/$',views.detail,name="detail"),

)

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):
return HttpResponsePermanentRedirect(reverse('about:index"))

Definition in template
Back to stores index

Listing 2-16 starts with a set of include definitions typical of a main Django urls.py file. Notice both
definitions use the namespace attribute. Next, you can see the urls.py files referenced in the main urls.
py file that make use of the name attribute described in the past example. Notice both the about and stores
urls.py files have a url with name="index'

To qualify a url name with a namespace you use the syntax <namespace>:<name>. As you can see toward
the bottom of Listing 2-16, to reference the index in the about urls.py you use about:index and to reference
the index in the stores urls.py file you use stores:index.

The namespace attribute can also be nested to use the syntax <namespacel>:<namespace2>: <namespac
e3>:<name> to reference urls. Listing 2-17 shows an example of nested namespace attributes.

Listing 2-17. Django urls.py with nested namespace attribute

Main urls.py
from django.conf.urls import include, url
from django.views.generic import TemplateView

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html'),name="homepage"),
url(r'~stores/"',include(' coffeehouse.stores.urls',namespace="stores")),

]

Stores urls.py
from . import views

urlpatterns = [
url(r'~$',views.index,name="index"),
url(r'~(?P<store_id>\d+)/$',views.detail,name="detail"),
url(r'~(?P<store_id>\d+)/about/"',include('coffeehouse.about.urls", namespace="about")),

]

About urls.py
from . import views

43

CHAPTER 2 © DJANGO URLS AND VIEWS

urlpatterns = [
url(r'~$',views.index,name="index"),
url(r'~contact/$",views.contact,name="contact"),

]

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):
return HttpResponsePermanentRedirect(reverse('stores:about:index', args=(store.id,)))

Definition in template
See about for {{store.name}}

The url structure in Listing 2-17 differs from Listing 2-16 in that it creates about urls for each store (e.g.,
/stores/1/about/) instead of having a generic about url (e.g., /about/). At the top of Listing 2-17 we use
namespace="stores" to qualify all urls in the stores urls.py file.

Next, inside the stores urls.py file notice there’s another include element with namespace="about" to
qualify all urls in the about urls.py. And finally inside the about urls. py file, there are urls that just use the
name attribute. In the last part of Listing 2-17, you can see how nested namespaces are used with the reverse
method and {% url %} tagusinga : to separate namespaces.

In 99% of Django urls you can use the name and namespace parameters just as they been described.
However, the namespace parameter takes on special meaning when you deploy multiple instances of the
same Django app in the same project.

Since Django apps are self-contained units with url definitions, it raises an edge case even if Django
apps use url namespaces. What happens if a Django app uses namespace X, but you want to deploy the app
two or three times in the same project? How do you reference urls in each app, given they're all written to
use namespace X? This is where the term instance namespace and the app_name attribute come into the
picture.

Let’s walk through a scenario that uses multiple instances of the same Django app to illustrate
this edge case associated with url namespaces. Let’s say you develop a Django app called banners to
display advertisements. The banners app is built in such a way that it has to run on different urls (e.g., /
coffeebanners/,/teabanners/,/foodbanners/) to simplify the selection of banners. In essence, you are
required to run multiple instances of the banners app in the same project, each one on different urls.

So what'’s the problem of multiple app instances and url naming? It has to do with using named urls that
need to change dynamically based on the current app instance. This issue is easiest to understand with an
example, so let’s jump to the example in Listing 2-18.

Listing 2-18. Django urls.py with multiple instances of the same app

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html"'),name="homepage"),
url(r'~coffeebanners/"',include('coffeehouse.banners.urls',namespace="coffee-banners")),
url(r'~teabanners/',include('coffeehouse.banners.urls', namespace="tea-banners")),
url(r'~foodbanners/',include(' coffeehouse.banners.urls"', namespace="food-banners")),

44

CHAPTER 2 © DJANGO URLS AND VIEWS

Banners urls.py
from django.conf.urls import url
from . import views

urlpatterns = [
url(r'*$',views.index,name="index"),
]

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

return HttpResponsePermanentRedirect(reverse('coffee-banners:index"))
return HttpResponsePermanentRedirect(reverse('tea-banners:index"))
return HttpResponsePermanentRedirect(reverse('food-banners:index"))

Definition in template

Coffee banners
Tea banners

Food banners

In Listing 2-18 you can see we have three urls that point to the same coffeehouse.banners.urls file
and each has its own unique namespace. Next, let’s take a look at the various reverse method and {% url
%} tag examples in Listing 2-18.

Both the reverse method and {% url %} tag examples in Listing 2-18 resolve to the three different url
names using the <namespace> : <name> syntax. So you can effectively deploy multiple instances of the same
Django app using just namespace and name.

However, by relying on just namespace and name the resolved url names cannot adapt dynamically to
the different app instances, which is an edge case associated with internal app logic that must be included to
support multiple instances of a Django app. Now let’s take a look at both a view and template scenario that
illustrates this scenario and how the app_name attribute solves this problem.

Suppose inside the banners app you want to redirect control to the app’s main index url (e.g., due to
an exception). Now put on an app designer hat, how would you resolve this problem? As an app designer
you don’t even know about the coffee-banners, tea-banners or food-banners namespaces, as these are
deployment namespaces. How would you internally integrate a redirect in the app that adapts to multiple
instances of the app being deployed? This is the purpose of the app_name parameter.

Listing 2-19 illustrates how to leverage the app_name attribute to dynamically determine where to make
aredirect.

Listing 2-19. Django redirect that leverages app_name to determine url

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
url(r'~$',TemplateView.as view(template name='homepage.html'),name="homepage"),
url(r'~coffeebanners/',include('coffeehouse.banners.urls',namespace="coffee-banners")),
url(r'~teabanners/',include('coffeehouse.banners.urls', namespace="tea-banners")),
url(r'~foodbanners/',include(' coffeehouse.banners.urls"', namespace="food-banners")),

45

CHAPTER 2 © DJANGO URLS AND VIEWS

Banners urls.py
from django.conf.urls import url
from . import views

app_name = 'banners_adverts'

urlpatterns = [
url(r'*$',views.index,name="index"),

]

Logic inside Banners app
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):
try:
except:
return HttpResponsePermanentRedirect(reverse('banners adverts:index'))

Notice the urls.py file in Listing 2-19 of the banners app sets the app_name attribute before declaring
the urlpatterns value. Next, notice the reverse method in Listing 2-19 uses the banners_adverts:index
value, where banners_adverts represents the app_name. This is an important convention, because Django
relies on the same syntax to search for app_name or namespace matches.

So to what url do you think banners_adverts: index resolves to? It all depends on where the
navigation takes place, it's dynamic! If a user is navigating through the coffee-banners app instance (i.e., url
coffeebanners) then Django resolves banners_adverts:index to the coffee-banners instance index, if a
user is navigating through the tea-banners app instance (i.e., url teabanners) then Django resolves banners_
adverts:index to the tea-banners instance index, and so on for any other number of instances. In case a
user is navigating outside of a banners app instance (i.e., there is no app instance) then Django defaults to
resolving banners_adverts:index to the last defined instance in urls. py, which would be food-banners.

In this manner and based on where the request path instance a user is coming from (e.g., if the user is on a
path with /coffeebanners/ or /teabanners/), the reverse method resolves banners_adverts:index dynamically
to one of the three url app instances vs. hard-coding specific url namespaces as shown in Listing 2-18.

Now let’s assume the banners app has an internal template with a link to the app’s main index url.
Similarly, how would you generate this link in the template to take into account the possibility of multiple

app instances? Relying on the same app_name parameter solves this problem for the template link illustrated
in Listing 2-20.

Listing 2-20. Django template link that leverages app_name to determine url

template banners/index.html
{% url 'banners adverts:index' %}

Notice the {% url %} tagin Listing 2-20 points to banners_adverts:index. The resolution process for the
banners_adverts:index is the same outlined in the previous method example that uses the reverse method.

If a user is navigating through the coffee-banners app instance (i.e., url coffeebanners) then Django
resolves banners_adverts:index to the coffee-banners instance index, if a user is navigating through
the tea-banners app instance (i.e., url teabanners) then Django resolves banners_adverts:index to the
tea-banners instance index, and so on for any other number of instances. In case a user is navigating
outside of a banners app instance (i.e., there is no app instance) then Django defaults to resolving banners_
adverts:index to the last defined instance in urls.py that would be food-banners.

46

CHAPTER 2 © DJANGO URLS AND VIEWS

As you can see, the app_name attribute’s purpose is to give Django app designers an internal mechanism
by which to integrate logic for named urls that dynamically adapt to multiple instances of the same app. For
this reason, it’s not as widely used for url naming and can be generally foregone in most cases in favor of just
using the namespace and name attributes.

View Method Requests

So far you've worked with Django view methods and their input - a request object and parameters - as well

as their output, consisting of generating a direct response or relying on a template to generate a response.
However, now it’s time to take a deeper look at what’s available in view method requests and the various

alternatives to generate view method responses.

The request reference you've placed unquestionably in view methods up to this point, is an instance
of the django.http.request.HttpRequest class.’ This request object contains information set by entities
present before a view method: a user’s web browser, the web server that runs the application, or a Django

middleware class configured on the application.

The following list shows some of the most common attributes and methods available in a request

reference:
[]

Asyou can attest from this brief list, the request reference contains a lot of actionable information to
fulfill business logic (e.g., you can respond with certain content based on geolocation information from
auser's IP address). There are well over 50 request options available between django.http.request.
HttpRequest and django.http.request.QueryDict attributes and methods, all of which are explained in

request.method.- Contains the HTTP method used for the request (e.g., GET, POST).

request.GET or request.POST.- Contains parameters added as part of a GET or
POST request, respectively. Parameters are enclosed as a django.http.request.
QueryDict® instance.

e request.POST.get('name',default=None).- Gets the value of the name
parameter in a POST request or gets None if the parameter is not present. Note
default can be overridden with a custom value.

e request.GET.getlist('drink',default=None).- Gets a list of values for the
drink parameter in a GET request or gets an empty list None if the parameter is
not present. Note default can be overridden with a custom value.

request.META.- Contains HTTP headers added by browsers or a web server as part of
the request. Parameters are enclosed in a standard Python dictionary where keys are
the HTTP header names - in uppercase and underscore (e.g., Content-Length as key
CONTENT_LENGTH).

e request.META['REMOTE_ADDR'].- Gets a user's remote IP address.

request.user.- Contains information about a Django user (e.g., username, email)
linked to the request. Note user refers to the user in the django.contrib.auth
package and is set via Django middleware, described later in this chapter.

parts of the book where they’re pertinent - however you can review the full extent of request options in the
footnote links in the previous page.

*https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#HttpRequest
*https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#QueryDict

47

https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#HttpRequest
https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#QueryDict

CHAPTER 2 © DJANGO URLS AND VIEWS

Once you're done extracting information from a request reference and doing related business logic
with it (e.g., querying a database, fetching data from a third-party REST service), you then need to set up data
in a view method to send it out as part of a response.

To set up data in a Django view method, you first need to declare it or extract it inside the method body.
You can declare strings, numbers, lists, tuples, dictionaries, or any other Python data structure.

Once you declare or extract the data inside a view method, you create a dictionary to make the data
accessible on Django templates. The dictionary keys represent the reference names for the template, while
the values are the data structures themselves. Listing 2-21 illustrates a view method that declares multiple
data structures and passes them to a Django template.

Listing 2-21. Set up dictionary in Django view method for access in template

from django.shortcuts import render

def detail(request,store id="1",location=None):

Create fixed data structures to pass to template

data could equally come from database queries

web services or social APIs

STORE_NAME = 'Downtown'

store_address = {'street':'Main #385','city':'San Diego','state':'CA"}

store _amenities = ['WiFi','A/C']

store menu = ((0,"'"), (1, 'Drinks"), (2, 'Food"))

values for template = {'store name':STORE NAME, 'store address':store address, 'store
amenities':store amenities, 'store menu':store menu}

return render(request, 'stores/detail.html', values for template)

Notice in Listing 2-21 how the render method includes the values_for_template dictionary. In
previous examples, the render method just included the request object and a template to handle the
request. In Listing 2-21, a dictionary is passed as the last render argument. By specifying a dictionary as the
last argument, the dictionary becomes available to the template - which in this case is stores/detail.html.

Tip If you plan to access the same data on multiple templates, instead of declaring it on multiple views,
you can use a context processor to declare it once and make it accessible on all project templates. The next
chapter on Django templates discusses this topic.

The dictionary in Listing 2-21 contains keys and values that are data structures declared in the method
body. The dictionary keys become references to access the values inside Django templates.

OUTPUT VIEW METHOD DICTIONARY IN DJANGO TEMPLATES

Although the next chapter covers Django templates in depth, the following snippet shows how to output
the dictionary values in Listing 2-21 using the {{}} syntax.

<h4>{{store _name}} store</h4>

<p>{{store_address.street}}</p>
<p>{{store_address.city}},{{store_address.state}}</p>

<hr/>

<p>We offer: {{store amenities.0}} and {{store amenities.1}}</p>
<p>Menu includes : {{store menu.1.1}} and {{store menu.2.1}}</p>

48

CHAPTER 2 © DJANGO URLS AND VIEWS

The first declaration {{store_name}} uses the stand-alone key to display the Downtown value. The
other access declarations use dot(.) notation because the values themselves are composite data
structures.

The store_address key contains a dictionary, so to access the internal dictionary values you use
the internal dictionary key separated by a dof(.). store_address.street displays the street value,
store address.city displays the city value, and store address.state displays the state value.

The store_amenities key contains a list that uses a similar dot(.) notation to access internal values.
However, since Python lists don’t have keys you use the list index number. store_amenities.0
displays the first item in list store_amenities and store_amenities.1 displays the second item in list
store_amenities.

The store_menu key contains a tuple of tuples that also requires a number on account of the lack of
keys. {{store_menu.1.1}} displays the second tuple value of the second tuple value of store menu
and {{store_menu.2.1}} displays the second tuple value of the third tuple of store_menu.

View Method Responses

The render () method to generate view method responses you've used up to this point is actually a shortcut.

You can see toward the top of Listing 2-21, the render () method is part of the django.shortcuts package.
This means there are other alternatives to the render () method to generate a view response, albeit the

render () method is the most common technique. For starters, there are three similar variations to generate

view method responses with data backed by a template, as illustrated in Listing 2-22.

Listing 2-22. Django view method response alternatives

Option 1)

from django.shortcuts import render

def detail(request,store id="1",location=None):

return render(request, 'stores/detail.html', values for template)

Option 2)
from django.template.response import TemplateResponse

def detail(request,store id="1",location=None):
return TemplateResponse(request, 'stores/detail.html’, values for template)

Option 3)
from django.http import HttpResponse
from django.template import loader, Context

def detail(request,store id='1",location=None):

response = HttpResponse()

t = loader.get_template('stores/detail.html")
c = Context(values for template)

return response.write(t.render(c))

49

CHAPTER 2 © DJANGO URLS AND VIEWS

The first option in Listing 2-22 is the django. shortcuts.render () method that shows three arguments
to generate a response: the (required) request reference, a (required) template route and an (optional)
dictionary - also known as the context - with data to pass to the template.

There are three more (optional) arguments for the render () method that are not shown in Listing 2-22:
content_type that sets the HTTP Content-Type header for the response and which defaults to DEFAULT _
CONTENT_TYPE parameter in settings.py, which in itself defaults to text/html; status that sets the HTTP
Status code for the response that defaults to 200; and using to specify the template engine - either jinja2
or django - to generate the response. The next section on HTTP handling for the render () method describes
how to use content_type & status, while Chapters 3 and 4 talk about Django and Jinja template engines.

The second option in Listing 2-22 is the django.template.response.TemplateResponse() class, which
in terms of input is nearly identical to the render () method. The difference between the two variations is
that TemplateResponse() can alter a response once a view method is finished (e.g., via middleware), where
as the render () method is considered the last step in the life cycle after a view method finishes. You should
use TemplateResponse() when you foresee the need to modify view method responses in multiple view
methods after they finish their work, a technique that’s discussed in a later section in this chapter on view
method middleware.

There are four more (optional) arguments for the TemplateResponse() class that are not shown in
Listing 2-22: content_type that defaults to text/html; status that defaults to 200; charset that sets the
response encoding from the HTTP Content-Type header or DEFAULT_CHARSET in settings.py that in itself
defaults to utf-8; and using to indicate the template engine - either jinja2 or django - to generate the
response.

The third option in Listing 2-22 represents the longest, albeit the most flexible response creation
process. This process first creates a raw HTTPResponse instance, then loads a template with the django.
template.loader.get template() method, creates a Context() class to load values into the template, and
finally writes a rendered template with its context to the HTTPResponse instance. Although this is the longest
of the three options, it’s the preferred choice when a view method response requires advanced options.

The upcoming section on built-in response shortcuts for inline and streamed content, has more details on
HTTPResponse response types.

Response Options for HTTP Status and Content-Type Headers

Browsers set HTTP headers in requests to tell applications to take into account certain characteristics for
processing. Similarly, applications set HTTP headers in responses to tell browsers to take into account
certain characteristics for the content being sent out. Among the most important HTTP headers set by
applications like Django are Status and Content-Type.

The HTTP Status header is a three-digit code number to indicate the response status for a given
request. Examples of Status values are 200, which is the standard response for successful HTTP requests
and 404, which is used to indicate a requested resource could not be found. The HTTP Content-Type header
is a MIME (Multipurpose Internet Mail Extensions) type string to indicate the type of content in a response.
Examples of Content-Type values are text/html, which is the standard for an HTML content response and
image/gif, which is used to indicate a response is a GIF image.

By default and unless there’s an error, all Django view methods that create a response with django.
shortcuts.render(), a TemplateResponse() class, or HttpResponse() class - illustrated in Listing 2-22
- create a response with the HTTP Status value set to 200 and the HTTP Content-Type set to text/html.
Although these default values are the most common, if you want to send a different kind of response (e.g., an
error or non-HTML content) it’s necessary to alter these values.

Overriding HTTP Status and Content-Type header values for any of the three options in Listing 2-22
is as simple as providing the additional arguments status and/or content_type. Listing 2-23 illustrates
various examples of this process.

50

http://dx.doi.org/10.1007/978-1-4842-2787-9_3
http://dx.doi.org/10.1007/978-1-4842-2787-9_4

CHAPTER 2 © DJANGO URLS AND VIEWS

Listing 2-23. HTTP Content-type and HTTP Status for Django view method responses

from django.shortcuts import render
No method body(s) and only render() example provided for simplicity

Returns content type text/plain, with default HTTP 200
return render(request, 'stores/menu.csv', values for template, content type='text/plain')

Returns HTTP 404, wtih default text/html

NOTE: Django has a built-in shortcut & template 404 response, described in the next
section

return render(request, 'custom/notfound.html',status=404)

Returns HTTP 500, wtih default text/html

NOTE: Django has a built-in shortcut & template 500 response, described in the next
section

return render(request, 'custom/internalerror.html’,status=500)

Returns content type application/json, with default HTTP 200
NOTE: Django has a built-in shortcut JSON response, described in the next section
return render(request, 'stores/menu.json', values for template, content type='application/json")

The first example in Listing 2-23 is designed to return a response with plain text content. Notice the
render method content_type argument. The second and third examples in Listing 2-23 set the HTTP
Status code to 404 and 500. Because the HTTP Status 404 code is used for resources that are not found, the
render method uses a special template for this purpose. Similarly, because the HTTP Status 500 code is
used to indicate an error, the render method also uses a special template for this purpose.

Tip Django has built-in shortcuts and templates to deal with HTTP Status codes 404 and 500, as well as
a JSON short-cut response, all of which are described in the next section and that you can use instead of the
examples in Listing 2-23.

The fourth and last example in Listing 2-23 is designed to return a response with JavaScript Object
Notation(JSON) content. The HTTP Content-Type application/jsonisacommon requirement for
requests made by browsers that consume JavaScript data via Asynchronous JavaScript (AJAX).

Built-In Response Shortcuts and Templates for Common HTTP
Status: 404 (Not Found), 500 (Internal Server Error), 400 (Bad
Request), and 403 (Forbidden)

Although Django automatically triggers an HTTP 404 Status (Not Found) response when a page is not found
and also triggers an HTTP 500 Status (Internal Server Error) response when an unhandled exception is
thrown in a view, it has built-in shortcuts and templates that are meant to be used explicitly in Django views
when you know end users should get them. Table 2-3 illustrates the different shortcuts to trigger certain
HTTP status responses.

51

CHAPTER 2 © DJANGO URLS AND VIEWS

Table 2-3. Django shortcut exceptions to trigger HTTP statuses

HTTP status code Python code sample
404 (Not Found) from django.http import Http404
raise Http404
500 (Internal Server Error) raise Exception
400 (Bad Request) from django.core.exceptions import SuspiciousOperation

raise SuspiciousOperation

403 (Forbidden) from django.core.exceptions import PermissionDenied
raise PermissionDenied

*Django automatically handles not found pages raising HTTP 404 and unhandled exceptions raising HTTP 500

Asyou can see in the examples in Table 2-3, the shortcut syntax is straightforward. For example, you can
make evaluations in a Django view like if article_id < 100: or if unpayed_subscription: and based on
the result throw exceptions from Table 2-3 so end users get the proper HTTP status response.

So what is the actual content sent in a response besides the HTTP status when an exception from
Table 2-3 is triggered? The default for HTTP 400 (Bad Request) and HTTP 403 (Forbidden) is a single line
HTML page that says “Bad Request (400)” and “403 Forbidden”, respectively. For HTTP 404 (Not Found)
and HTTP 500 (Internal Server Error), it depends on the DEBUG value in settings.py.

If a Django project has DEBUG=True in settings.py, HTTP 404 (Not Found) generates a page with the
available urls - as illustrated in Figure 2-1 - and HTTP 500 (Internal Server Error) generates a page with
the detailed error - as illustrated in Figure 2-2. If a Django project has DEBUG=False in settings.py, HTTP
404 (Not Found) generates a single line HTML page that says “Not Found. The requested URL <url_
location> was not found on this server.” and HTTP 500 (Internal Server Error) generates a single line
HTML page that says “A server error occurred. Please contact the administrator".

- € | [} localhost

Page not found o4
Request Method: GET

Request URL: hitpuAocalhost BO0O/s1cee)

Using the URLconf defined in cof feshouse.urls, Django tiod these URL patioms, in this onder

“~about/
“drinks/{ Pedrink_typesiD+)s
~stores/|iP<store_id>\d+)/

B e

7. “adain/
The cument URL. store/, diant match any of these.

You're seeing this enor because you have DEBUG = True i your Diango settings Mle. Change that to False, and Django will display a standard 404 page.

Figure 2-1. HTTP 404 for Django project when DEBUG=True

52

CHAPTER 2 © DJANGO URLS AND VIEWS

L € | [localhost

SyntaxError at /stores/
invalid syntax (views.py, line 21)

Request Method: GET

Request URL: hitp focalhost BOOO/S1ores/
Dfango Version: 1.764
Exception Type: SyntaxEroe

Exception Value: invalid syntas [views.py. line 21]

Location: _inin_pry in impon_medule, line 37

Python Executable: fpython/m nyqugmmbunuwmrm
Python Version: 2.7.3
Python Path: [’ fwww/djangarecipes/2 move_values_in_django”.

' /pythen/mydjangesandBox /Lib/oythan 7/ site-packages/distribute-0.6.24-py2. 7. 009"
* fpythen/myd] angosandbox /L 1b/pythana. 2iwite- -packages/pip-1.1-py2.7. 403",
* Fpyt hen g myd) angosandion /1 ib/pyt hond
‘feythen/eyd) angesandbon ."llh(nr!h:nl T.’n'll\ Lanux2",
* fpythen ey d] sngosandbox 1k /pythond. 7/lib-tk"
* fpythan/mydj angosandbor /lib/python2. 7/1ib-old’,
'anymem’-,d;anouuomr\;n!nnhm.'.r.'lxn-dmlna'.
‘fuse/lib/pythen. 7'
“yuse /1 ib/pythond. T/Elat-1inux2’ .
‘fusrlib/python2. 7/lab-tk*
* fpythen/mydiangesandbon /lib/oythan2. 7/ sate-packages' |

Server ime: Fri, 20 Jun 2014 Z3:05:16 +0000

Ti back swich 1o copy-and-pasie view

hon/aydjangosandbex /lib/prthon2, 7/ site - package

resolver_satch = resolve

Lvelrequest.path_infal
> Local vars

fpython/mydiangosandbox /11b/pythonZ. 7/site-packages/diange/core/url resslvers. py in resalve

340. sub_sateh = pattern.resolvelnes_path)
» Local vass
fpythan/mydjangosandbos [1ib/prthon, 7isite -packages /djangoscarefurl resslvers. gy In resslve
224 return ResolverMatch(self, callback, args, kwargs, self name) - =

Figure 2-2. HTTP 500 for Django project when DEBUG=True

It's also possible to override the default response page for all the previous HTTP codes with custom
templates. To use a custom response page, you need to create a template with the desired HTTP code and
.html extension. For example, for HTTP 403 you would create the 403 .html template and for HTTP 500
you would create the 500.html template. All these custom HTTP response templates need to be placed in a
folder defined in the DIRS list of the TEMPLATES variable so Django finds them before it uses the default HTTP
response templates.

Caution Custom 404.html and 500.html pages only work when DEBUG=False.

If DEBUG=True, it doesn’t matter if you have 404 .html or 500.html templates in the right location,
Django uses the default response behavior illustrated in Figure 2-1 and Figure 2-2, respectively. You need to
set DEBUG=False for the custom 404.html and 500.html templates to work.

On certain occasions, using custom HTTP response templates may not be enough. For example, if you
want to add context data to a custom template that handles an HTTP response, you need to customize the
built-in Django HTTP view methods themselves, because there’s no other way to pass data into this type
of template. To customize the built-in Django HTTP view methods you need to declare special handlers in
a project’s urls.py file. Listing 2-24 illustrates the urls.py file with custom handlers for Django’s built-in
HTTP Status view methods.

Listing 2-24. Override built-in Django HTTP Status view methods in urls.py

Overrides the default 400 handler django.views.defaults.bad_request
handler400 = 'coffeehouse.utils.views.bad request'

Overrides the default 403 handler django.views.defaults.permission_denied
handler403 = 'coffeehouse.utils.views.permission denied’

Overrides the default 404 handler django.views.defaults.page not_ found

53

CHAPTER 2 © DJANGO URLS AND VIEWS

handler404 = 'coffeehouse.utils.views.page not found'
Overrides the default 500 handler django.views.defaults.server error
handler500 = 'coffeehouse.utils.views.server error'

urlpatterns = [...

]

Caution If DEBUG=True, the handler404 and handler500 handlers won’t work, Django keeps using the
built-in Django HTTP view methods. You need to set DEBUG=False for the handler404 and handler500 handlers
to work.

As you can see in Listing 2-24, there are a series of variables in urls. py right above the standard
urlpatterns variable. Each variable in Listing 2-24 represents an HTTP Status handler, with its value
corresponding to a custom Django view to process requests. For example, handler400 indicates that all
HTTP 400 requests should be handled by the Django view method coffeehouse.utils.views.bad_request
instead of the default django.views.defaults.bad_request. The same approach is taken for HTTP 403
requests using handler403, HTTP 404 requests using handler404 and HTTP 500 requests using handler500.

As far as the actual structure of custom Django view methods is concerned, they are identical to any
other Django view method. Listing 2-26 shows the structure of the custom view methods used in Listing 2-25.

Listing 2-25. Custom views to override built-in Django HTTP view methods

from django.shortcuts import render

def page not_found(request):
Dict to pass to template, data could come from DB query
values for template = {}
return render(request, '404.html',values for template,status=404)

def server error(request):
Dict to pass to template, data could come from DB query
values for template = {}
return render(request, '500.html',values_for template,status=500)

def bad_request(request):
Dict to pass to template, data could come from DB query
values for template = {}
return render(request, '400.html',values for template,status=400)

def permission_denied(request):
Dict to pass to template, data could come from DB query
values for template = {}
return render(request,'403.html’,values for template,status=403)

Asyou can see in Listing 2-26, the custom HTTP view methods use the same render method from
django.shortcuts as the previous view method examples. The methods point to a template named by the
HTTP Status code, use a custom data dictionary that becomes accessible on the template and uses the
status argument to indicate the HTTP status code.

54

CHAPTER 2 © DJANGO URLS AND VIEWS

Built-In Response Shortcuts for Inline and Streamed Content

All the prior view response examples have worked on the basis of content being structured through a
template. However, there can be times when using a template to output a response is unnecessary (e.g., a
one-line response that says “Nothing to see here”).

Other times it makes no sense for a response to use a template, such is the case for HTTP 301
(Permanent Redirect) or HTTP 302 (Redirect) where the response just requires a redirection url. Table 2-4
illustrates the different shortcuts to trigger HTTP redirects.

Table 2-4. Django shortcuts for HTTP redirects

HTTP status code Python code sample

301 (Permanent Redirect) from django.http import HttpResponsePermanentRedirect
return HttpResponsePermanentRedirect(“/”)

302 (Redirect) from django.http import HttpResponseRedirect
return HttpResponseRedirect(“/”)

Both samples in Table 2-4 redirect to an application’s home page (i.e., "/"). However, you can also set the
redirection to any application url or even a full url on a different domain (e.g., http://maps.google.com/).

In addition to response redirection shortcuts, Django also offers a series of response shortcuts where
you can add inline responses. Table 2-5 illustrates the various other shortcuts for HTTP status codes with
inline content responses.

Table 2-5. Django shortcuts for inline and streaming content responses

Purpose or HTTP Status code Python code sample

304 (NOT MODIFIED) from django.http import HttpResponseNotModified
return HttpResponseNotModified()*

400 (BAD REQUEST) from django.http import HttpResponseBadRequest

return HttpResponseBadRequest(“<h4>The request doesn’t
look right</h4>")

404 (NOT FOUND) from django.http import HttpResponseNotFound
return HttpResponseNotFound(“<h4>Ups, we can’t find
that page</h4>")

403 (FORBIDDEN) from django.http import HttpResponseForbidden
return HttpResponseForbidden(“Can’t look at anything
here’,content_type="text/plain”)

405 (METHOD NOT ALLOWED) from django.http import HttpResponseNotAllowed
return HttpResponseNotAllowed(“<h4>Method not
allowed</h4>")

410 (GONE) from django.http import HttpResponseGone
return HttpResponseGone(“No longer here’,content_
type="text/plain”)

500 (INTERNAL SERVER ERROR) from django.http import HttpResponseServerError
return HttpResponseServerError(“<h4>Ups, that’s a mistake
on our part, sorryl</h4>")

(continued)

55

http://maps.google.com/

CHAPTER 2 © DJANGO URLS AND VIEWS

Table 2-5. (continued)

Purpose or HTTP Status code Python code sample
Inline response that serializes data to JSON from django.http import JsonResponse
(Defaults to HTTP 200 and content type data_dict = {name’:’Downtown;address’:'Main
application/json) #385,city’:’San Diego;state’:’CA’}

return JsonResponse(data_dict)
Inline response that stream data (Defaults from django.http import StreamingHttpResponse
to HTTP 200 and streaming content, which return StreamingHttpResponse(large_data_structure)
is an iterator of strings)
Inline response that stream binary files from django.http import FileResponse
(Defaults to HTTP 200 and streaming return FileResponse(open('Report.pdf;rb’))
content)

Inline response with any HTTP status code from django.http import HttpResponse
(Defaults to HTTP 200) return HttpResponse(“<h4>Django inline response</h4>")

* The HTTP 304 status code indicates a “Not Modified” response, so you can't send content in the response, it
should always be empty.

Asyou can see in the samples in Table 2-5, there are multiple shortcuts to generate different HTTP
Status responses with inline content and entirely forgo the need to use a template. In addition, you can see
the shortcuts in Table 2-5 can also accept the content_type argument if the content is something other than
HTML (i.e., content_type=text/html).

Since non-HTML responses have become quite common in web applications, you can see Table 2-5
also shows three Django built-in response shortcuts to output non-HTML content. The JsonResponse class
is used to transform an inline response into JavaScript Object Notation (JSON). Because this response
converts the payload to a JSON data structure, it automatically sets the content type to application/json.
The StreamingHttpResponse class is designed to stream a response without the need to have the entire
payload in-memory, a scenario that’s helpful for large payload responses. The FileResponse class - a
subclass of StreamingHttpResponse - is designed to stream binary data (e.g., PDF or image files).

This takes us to the last entry in Table 2-5, the HttpResponse class. As it turns out, all the shortcuts in
Table 2-5 are customized subclasses of the HttpResponse class, which Iinitially described in Listing 2-22 as
one of the most flexible techniques to create view responses.

The HttpResponse method is helpful to create responses for HTTP status codes that don’t have direct
shortcut methods (e.g., HTTP 408 [Request Timeout], HTTP 429 [Too Many Requests]) or to inclusively
harness a template to generate inline responses as illustrated in Listing 2-26.

Listing 2-26. HttpResponse with template and custom CSV file download

from django.http import HttpResponse
from django.utils import timezone
from django.template import loader, Context

response = HttpResponse(content_type='text/csv')

response['Content-Disposition'] = 'attachment; filename=Users %s.csv' % str(timezone.now().
today())

t = loader.get template('dashboard/users csvexport.html')

c = Context({'users': sorted users,})

response.write(t.render(c))

return response

56

CHAPTER 2 © DJANGO URLS AND VIEWS

The HTTPResponse object in Listing 2-26 is generated with a text/csv content type to advise the
requesting party (e.g., browser) that it’s about to receive CSV content. Next, the Content-Disposition
header also tells the requesting party (e.g., browser) to attempt to download the content as a file named
Users_%s.csv where the %s is substituted with the current server date.

Next, using the loader module we use the get_template method to load the template users_
csvexport.html that will have a CSV-like structure with data placeholders. Then we create a Context object
to hold the data that will fill the template, which in this case it’s just a single variable named users. Next, we
call the template’s render method with the context object in order to fill in the template’s data placeholders
with the data. Finally, the rendered template is written to the response object via the write method and the
response object is returned.

The HttpResponse class offers over 20 options between attributes and methods,’® in addition to the
content_type and status parameters.

View Method Middleware

In most circumstances, data in requests and responses is added, removed, or updated in a piecemeal
fashion in view methods. However, sometimes it’s convenient to apply these changes on all requests and
responses.

For example, if you want to access certain data on all view methods, it’s easier to use a middleware
class to make this data accessible across all requests. Just as if you want to enforce a security check on all
responses, it’s easier to do so globally with a middleware class.

Since middleware is a rather abstract concept, before I describe the structure of a Django middleware
class, I'll walk you through the various built-in Django middleware classes so you can get a firmer
understanding of where middleware is good design choice.

Built-In Middleware Classes

Django comes equipped with a series of middleware classes, some of which are enabled by default on all
Django projects. If you open a Django project’s settings. py file you'll notice the MIDDLEWARE variable whose
default contents are shown in Listing 2-27.

Listing 2-27. Default Django middleware classes in MIDDLEWARE

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
"django.contrib.sessions.middleware.SessionMiddleware',
"django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
"django.contrib.auth.middleware.AuthenticationMiddleware’,
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

Asyou can see in Listing 2-27, Django projects in their out-of-the-box state come enabled with seven
middleware classes, so all requests and responses are set to run through these seven classes. If you plan
to leverage Django’s main features, I advise you not to remove any of these default middleware classes.
However, you can leave the MIDDLEWARE variable empty if you wish; just be aware doing so may break certain
Django functionalities.

https://docs.djangoproject.com/en/1.11/ref/request-response/#django.http.HttpResponse

57

https://docs.djangoproject.com/en/1.10/ref/request-response/#django.http.HttpResponse

CHAPTER 2 © DJANGO URLS AND VIEWS

To give you a better understanding of what the Django middleware classes in Listing 2-27 do and help
you make a more informed decision to disable them or not, Table 2-6 describes the functionality for each of
these middleware classes.

Table 2-6. Django default middleware classes and functionality

Middleware class Functionality
django.middleware.security. Provides security enhancements, such as:
SecurityMiddleware « SSLredirects based on the SECURE_SSL_REDIRECT and

SECURE_SSL_HOST settings.
o Strict transport security through a variety of settings.

django.contrib.sessions.middleware. Enables session support.

SessionMiddleware
django.middleware.common. Provides a common set of features, such as:
CommonMiddleware » Forbidding access to user agents in the DISALLOWED_USER_
AGENTS setting, which can be a list of compiled regular
expression objects.
o Performing url rewriting based on the APPEND_SLASH and
PREPEND_WWW settings in order to normalize urls.
o Setting the HTTP Content-Length header for non-streaming
responses.
django.middleware.csrf. Adds protection against Cross Site Request Forgeries by adding
CsrfviewMiddleware hidden form fields to POST forms and checking requests for the
correct value.
django.contrib.auth.middleware. Adds the user attribute, representing the currently logged-in user,
AuthenticationMiddleware to every incoming HttpRequest object. NOTE: This middleware

class depends on functionality from the middleware django.
contrib.sessions.middleware. SessionMiddleware and must appear
after it.

django.contrib.messages.middleware. Enables cookie-based and session-based message support.

MessageMiddleware NOTE: This middleware class depends on functionality
from the middleware django.contrib.sessions.middleware.
SessionMiddleware and must appear after it.

django.middleware.clickjacking. Provides clickjacking protection via the X-Frame-Options
XFrameOptionsMiddleware header. For more details on what is clickjacking see: http://
en.wikipedia.org/wiki/Clickjacking.

As you can see in Table 2-6, although the purpose of the various default middleware classes varies
considerably, their functionality applies to features that need to be applied across all requests or responses
in a project.

Another important factor of the middleware classes in Table 2-6 is that some are dependent on others.
For example, the AuthenticationMiddleware class is designed on the assumption it will have access to
functionality provided by the SessionMiddleware class. Such dependencies are important because it makes
the middleware class definition order relevant (i.e., certain middleware classes need to be defined before
others in MIDDLEWARE), a topic I'll elaborate on more in the next section.

In addition to the default middleware classes presented in Table 2-6, Django also offers other
middleware classes. Table 2-7 illustrates the remaining set of Django middleware classes you can leverage in
your projects, which can be helpful so you don’t have to write middleware classes from scratch.

58

http://en.wikipedia.org/wiki/Clickjacking
http://en.wikipedia.org/wiki/Clickjacking

CHAPTER 2 © DJANGO URLS AND VIEWS

Table 2-7. Other Django middleware classes and functionality

Middleware class

Functionality

django.middleware.cache.
UpdateCacheMiddleware

django.middleware.cache.
FetchFromCacheMiddleware

django.middleware.common.
BrokenLinkEmailsMiddleware

django.middleware.
ExceptionMiddleware

django.middleware.gzip.
GZipMiddleware

django.middleware.http.
ConditionalGetMiddleware

django.middleware.locale.
LocaleMiddleware

django.contrib.sites.middleware.
CurrentSiteMiddleware

django.contrib.auth.middleware.
PersistentRemoteUserMiddleware

django.contrib.auth.middleware.
RemoteUserMiddleware

django.contrib.
flatpages.middleware.
FlatpageFallbackMiddleware

django.contrib.
redirects.middleware.
RedirectFallbackMiddleware

Response-phase cache middleware that updates the cache if the
response is cacheable. NOTE: UpdateCacheMiddleware must be the
first piece of middleware in MIDDLEWARE so that it'll get called last
during the response phase.

Request-phase cache middleware that fetches a page from the
cache. NOTE: FetchFromCacheMiddleware must be the last piece of
middleware in MIDDLEWARE so that it'll get called last during the
request phase.

Sends broken link notification emails to MANAGERS.

Django uses this middleware regardless of whether or not you
include it in MIDDLEWARE; however, you may want to subclass if
your own middleware needs to transform the exceptions it handles
into the appropriate responses.

Compresses content for browsers that understand GZip
compression. NOTE: GZipMiddleware should be placed before any
other middleware that need to read or write the response body so
that compression happens afterward. Compression is only done by
this middleware if the request party sends gzip on the HTTP Accept-
Encoding header and if content is larger than 200 bytes and the
response hasn’t set the HTTP Content-Encoding header.

Handles conditional GET operations. If the response doesn’t have an
HTTP ETag header, one is added. If the response has an ETag or Last-
Modified header, and the request has If-None-Match or If-Modified-
Since, the response is replaced by an HttpNotModified.

Parses a request and decides what translation object to install in
the current thread context. This allows pages to be dynamically
translated to the language the user desires.

Adds the site attribute representing the current site to every
incoming HttpRequest object.

Adds REMOTE_USER -- available in request. META -- via an external
source (e.g., web server) for the purpose of Django authentication.

Allows web-server-provided authentication. If request.user is

not authenticated, this middleware attempts to authenticate

the username passed in the REMOTE_USER request header. If
authentication is successful, the user is automatically logged in to
persist the user in the session.

Each time a Django application raises a 404 error, this middleware
checks the flatpages database for the requested url as a last resort.

Each time a Django application raises a 404 error, this middleware
checks the redirects database for the requested url as a last resort.

59

CHAPTER 2 © DJANGO URLS AND VIEWS

Now that you know about Django’s built-in middleware classes and what they’re used for, let’s take a
look at the structure of middleware classes and their execution process.

Middleware Structure and Execution Process

A Django middleware class has two required methods and three optional methods that execute at different
points of the view request/response life cycle. Listing 2-28 illustrates a sample middleware class with its
various parts.

Listing 2-28. Django middleware class structure

class CoffeehouseMiddleware(object):

def _init_ (self, get response):
self.get response = get response
One-time configuration and initialization on start-up

def call (self, request):
Logic executed on a request before the view (and other middleware) is called.

get response call triggers next phase
response = self.get response(request)

Logic executed on response after the view is called.

Return response to finish middleware sequence
return response

def process view(self, request, view func, view args, view kwargs):
Logic executed before a call to view
Gives access to the view itself & arguments

def process_exception(self,request, exception):
Logic executed if an exception/error occurs in the view

def process template response(self,request, response):
Logic executed after the view is called,
ONLY IF view response is TemplateResponse, see listing 2-22

In order for view methods to execute the Django middleware class in Listing 2-28, middleware classes
must be added to the MIDDLEWARE variable in settings.py. So for example, if the CoffeehouseMiddleware
class in Listing 2-28 is stored in a file/module named middleware.py under the coffeehouse/utils/ project
folders, you would add the coffeehouse.utils.middleware.CoffeeMiddleware statement to the list of
MIDDLEWARE values in settings.py.

Next, I'll describe the two required methods in all Django middleware class shown in Listing 2-28:

e _ init .- Usedin all Python classes to bootstrap object instances. The __init
method in Django middleware classes only gets called once, when the web server
backing the Django application starts. The __init__ method in Django middleware
must declare a get_response input, which represents a reference to a prior
middleware class response. The get_response input is assigned to an instance

60

CHAPTER 2 © DJANGO URLS AND VIEWS

variable - also named get_response - which is later used in the main processing
logic of the middleware class. The purpose of the get_response reference should
become clearer shortly when I expand on the Django middleware execution process.

e call .- Usedinall Python classes to call an object instance as a function. The __
call__method in Django middleware classes is called on every application request.
Asyou can see in Listing 2-28, the _call method declares a request input that
represents the same HttpRequest object used by view methods. The _call
method goes through three phases:

e Before view method call.- Once the __call _method is triggered, you get the
opportunity to alter the request reference before it’s passed to a view method. If
you want to add or modify something in request before it gets turned over to a
view method, this is the phase to do it in.

e Trigger view method call.- After you modify (or not) the original request, you
must turn over control to the view method in order for it to run. This phase is
triggered when you pass request to the self.get_response reference you set
inthe _init_ method. This phase effectively says, “I'm done modifying the
request, go ahead and turn it over to the view method so it can run.”

e Postview method call.- Once a view method finishes, the results are assigned
to the response referencein __call . In this phase, you have the opportunity
to perform logic after a view method finishes. You exit this phase by simply
returning the response reference from the view method (i.e., return response).

This is the core logic behind every Django middleware class performed by these two required methods.
Now let’s take a look at the three optional middleware class methods presented in Listing 2-28:

e process_view.- The required middleware methods - _init and call -lack
any knowledge about the view method they're working on. The process_view
method gives you access to a view method and its argument before the view method
is triggered. If present, the process_view middleware method is invoked right after
__call and before calling self.get response(request), which triggers the view
method.

e process_exception.- If an error occurs in the logic of a view method, the process_
exception middleware method is invoked to give you the opportunity to perform
post-error clean-up logic.

e process_template_response.- After the self.get_response(request) is called and
aview method finishes, it can be necessary to alter the response itself to perform
additional logic on it (e.g., modify the context or template). If present, the process
template response middleware method is invoked after a view method finishes to
give you the opportunity to tinker with the response.

Warning The process_template_response middleware method is only triggered if a view method returns a
TemplateResponse. If a view method generates a response with render() the process_template_response is not
triggered. See Listing 2-22 for view method responses for more details.

61

CHAPTER 2 © DJANGO URLS AND VIEWS

In summary, the execution process for a single middleware class is the following:
1. __init_ method triggered (On server startup).
2. call method triggered (On every request).
3. Ifdeclared, process_view() method triggered.
4. View method starts with self.get response(request) statementin _call .
5. Ifdeclared, process_exception() method triggered when exception occurs in
View.

o

View method finishes.

7. Ifdeclared, process_template response() triggered when view returns
TemplateResponse.

Although it’s important to understand the execution process of a single middleware class, a more
important aspect is to understand the execution process of multiple middleware classes. As I mentioned at
the outset of this section, Django projects are enabled with seven middleware classes shown in Listing 2-27,
so the execution of multiple middleware classes is more the norm rather than the exception.

Django middleware classes are executed back to back, but the view method represents an inflection point
in their execution order. The execution order for the default middleware classes in Listing 2-27 is the following:

Server start-up

__init__ on django.middleware.security.SecurityMiddleware called

__init__ on django.contrib.sessions.middleware.SessionMiddleware called
__init__ on django.middleware.common.CommonMiddleware called

__init__ on django.middleware.csrf.CsrfViewMiddleware called

__init__ on django.contrib.auth.middleware.AuthenticationMiddleware called
__init__ on django.contrib.messages.middleware.MessageMiddleware called
__init__ on django.middleware.clickjacking.XframeOptionsMiddleware called

request for index() view method

_call _ on django.middleware.security.SecurityMiddleware called

process view on django.middleware.security.SecurityMiddleware called (if declared)
__call__ on django.contrib.sessions.middleware.SessionMiddleware called

process_view on django.contrib.sessions.middleware.SessionMiddleware called (if declared)
__call__ on django.middleware.common.CommonMiddleware called

process view on django.middleware.common.CommonMiddleware called (if declared)

_call on django.middleware.csrf.CsrfViewMiddleware called

process view on django.middleware.csrf.CsrfViewMiddleware called (if declared)

__call__ on django.contrib.auth.middleware.AuthenticationMiddleware called

process_view on django.contrib.auth.middleware.AuthenticationMiddleware called (if declared)
__call__ on django.contrib.messages.middleware.MessageMiddleware called

process view on django.contrib.messages.middleware.MessageMiddleware called (if declared)
__call _ on django.middleware.clickjacking.XframeOptionsMiddleware called

process view on django.middleware.clickjacking.XframeOptionsMiddleware called (if declared)

start index() view method logic

if an exception occurs in index() view
process_exception on django.middleware.clickjacking.XframeOptionsMiddleware called (if declared)
process_exception on django.contrib.messages.middleware.MessageMiddleware called (if declared)

62

CHAPTER 2 © DJANGO URLS AND VIEWS

process_exception on django.contrib.auth.middleware.AuthenticationMiddleware called(if
declared)

process_exception on django.middleware.csrf.CsrfViewMiddleware called (if declared)
process_exception on django.middleware.common.CommonMiddleware called (if declared)
process_exception on django.contrib.sessions.middleware.SessionMiddleware called (if declared)
process_exception on django.middleware.security.SecurityMiddleware called (if declared)

if index() view returns TemplateResponse

process_template_response on django.middleware.clickjacking.XframeOptionsMiddleware called
(if declared)

process_template response on django.contrib.messages.middleware.MessageMiddleware called (if
declared)

process_template_response on django.contrib.auth.middleware.AuthenticationMiddleware
called(if declared)

process_template response on django.middleware.csrf.CsrfViewMiddleware called (if declared)
process_template_response on django.middleware.common.CommonMiddleware called (if declared)
process template response on django.contrib.sessions.middleware.SessionMiddleware called (if
declared)

process_template response on django.middleware.security.SecurityMiddleware called (if declared)

Notice the execution order for middleware classes prior to entering the execution of the view method,
follows the declared order (i.e., first declared runs first, last declared last). But once the view method is
executed, the middleware execution order is inverted (i.e., last declared runs first, first declared last).

This behavior is similar to a corkscrew, where to get to the center (view method), you move in one
direction (1 to 7) and to move out you go in the opposite direction (7 to 1). Therefore the middleware
methods process_exception and process_template_response execute in the opposite order of _init
__call__andprocess_view.

Visually the execution process for the default Django middleware classes in Listing 2-27 is illustrated in
Figure 2-3.

[Sorvorsmm.p] [HttpRequest HttpResponse]
o NN
A) T P
[| SecurityMiddleware L i Tj
o 1 1P ¢! |
[At SessionMiddleware ot e j
S, | SR 1L ' 8, A
c—c—r |c. 18 E
| a ° e CommonMiddleware 19 o T
n [J S S e 't E
L . el
[:1 "1 e CsrViewMiddleware ot "]
—V—n ! - 9
[o |* AuthenticationMiddleware ol :é.’ ?]
— " m e o
. essageMiddleware i o s
— q Y o P
[u XFrameOptionsMiddleware 'n! e :j
1 s S s
t [I e
) L | ‘:I 0
1 ' 8,
o N N \/_’ LI 18,

view function

Figure 2-3. Django middleware execution process

63

CHAPTER 2 © DJANGO URLS AND VIEWS

Middleware Flash Messages in View Methods

Flash messages are typically used when users perform an action (e.g., submit a form) and it’s necessary to
tell them if the action was successful or if there was some kind of error. Other times flash messages are used
as one-time notifications on web pages to tell users about certain events (e.g., site maintenance or special
discounts). Figure 2-4 shows a set of sample flash messages.

Well done! You successfully read this important alert message.
Heads up! This alert needs your attention, but it's not super important.
Warning! Better check yourself, you're not looking too good

Oh snap! Change a few things up and try submitting again

Figure 2-4. Web page flash messages

DJANGO FLASH MESSAGES REQUIRE A DJANGO APP,
MIDDLEWARE, AND A TEMPLATE CONTEXT PROCESSOR

By default, all Django projects are enabled to support flash messages. However, if you tweaked your
project’s settings.py file you may have inadvertently disabled flash messages.

In order for Django flash messages to work you must ensure the following values are set in settings.py:

The variable INSTALLED_APPS has the django.contrib.messages value, the variable MIDDLEWARE has

the django.contrib.messages.middleware.MessageMiddleware value, and the context_processors list in
OPTIONS of the TEMPLATES variable has the django.contrib.messages.context_processors.messages value.

Asyou can see in Figure 2-4 there can be different types of flash messages, which are technically known
as levels. Django follows the standard Syslog standard severity levels and supports five built-in message
levels described in Table 2-8.

Table 2-8. Django built-in flash messages

Level Constant Tag Value Purpose

DEBUG debug 10 Development-related messages that will be ignored (or
removed) in a production deployment.

INFO info 20 Informational messages for the user.

SUCCESS success 25 An action was successful, for example, “Contact info was sent
successfully.”

WARNING warning 30 A failure did not occur but may be imminent.

ERROR error 40 An action was not successful or some other failure occurred.

64

CHAPTER 2 © DJANGO URLS AND VIEWS

Add Flash Messages

Django flash messages are managed on a per request basis and are added in view methods, as this is the best
place to determine whether flash messages are warranted. To add messages you use the django.contrib.
messages package.

There are two techniques to add flash messages with the django.contrib.messages package: one is
the generic add_message () method, and the other is shortcuts methods for the different levels described in
Table 2-8. Listing 2-29 illustrates the different techniques.

Listing 2-29. Techniques to add Django flash messages

from django.contrib import messages

Generic add_message method

messages.add message(request, messages.DEBUG, 'The following SQL statements were executed:
%s' % sqlqueries) # Debug messages ignored by default

messages.add message(request, messages.INFO, 'All items on this page have free shipping.')
messages.add message(request, messages.SUCCESS, 'Email sent successfully.')

messages.add message(request, messages.WARNING, 'You will need to change your password in
one week.")

messages.add_message(request, messages.ERROR, 'We could not process your request at this
time.")

Shortcut level methods

messages.debug(request, 'The following SOL statements were executed: %s' % sqlqueries) #
Debug messages ignored by default

messages.info(request, 'All items on this page have free shipping.')
messages.success(request, 'Email sent successfully.')

messages.warning(request, 'You will need to change your password in one week.')
messages.error(request, 'We could not process your request at this time.')

The first set of samples in Listing 2-29 uses the add_message () method, where as the second set uses
shortcut level methods. Both sets of samples in Listing 2-29 produce the same results.

If you look closely at Listing 2-29 you'll notice both DEBUG level messages have the end-of-line comment
Ignored by default. The Django messages framework by default processes all messages above the INFO
level (inclusive), which means DEBUG messages - being a lower-level message threshold, as described in
Table 2-8 - are ignored even though they might be defined.

You can change the default Django message level threshold to include all message levels or inclusively
reduce the default INFO threshold. The default message level threshold can be changed in one of two ways:
globally (i.e., for the entire project) in settings.py with the MESSAGE_LEVEL variable as illustrated in
Listing 2-30 or on a per request basis with the set_level method of the django.contrib.messages package
as illustrated in Listing 2-31.

Listing 2-30. Set default Django message level globally in settings.py

Reduce threshold to DEBUG level in settings.py
from django.contrib.messages import constants as message_constants
MESSAGE_LEVEL = message_constants.DEBUG

Increase threshold to WARNING level in setting.py

from django.contrib.messages import constants as message constants
MESSAGE_LEVEL = message_constants.WARNING

65

CHAPTER 2 © DJANGO URLS AND VIEWS

Listing 2-31. Set default Django message level on a per request basis

Reduce threshold to DEBUG level per request
from django.contrib import messages
messages.set_level(request, messages.DEBUG)

Increase threshold to WARNING level per request
from django.contrib import messages
messages.set level(request, messages.WARNING)

The first MESSAGE_LEVEL definition in Listing 2-30 changes the default message level to DEBUG, which
means all message level definitions get processed, since DEBUG is the lowest threshold. The second
MESSAGE_LEVEL definition in Listing 2-30 changes the default message level to WARNING, which means
message levels higher than WARNING (inclusive) are processed (i.e., WARNING and ERROR).

The first set_level definition in Listing 2-31 changes the default request message level to DEBUG, which
means all message level definitions get processed, since DEBUG is the lowest threshold. The second
set_level definition in Listing 2-31 changes the default message level to WARNING, which means message
levels higher than WARNING (inclusive) are processed (i.e., WARNING and ERROR).

If you define both default message level mechanisms at once, the default request message level
takes precedence over the default global message level definition (e.g., if you define messages.set_
level(request, messages.WARNING), message levels above WARNING (inclusive) are processed, even if
the global MESSAGE_LEVEL variable is set to MESSAGE_LEVEL = message_constants.DEBUG to include all
messages.

In addition to setting up flash messages and knowing about the built-in threshold mechanism that
ignores messages from a certain level, it’s also important you realize the message definitions in Listing 2-29
assume the Django messages framework prerequisites are declared in settings.py - as described in the
sidebar at the beginning of this section.

Because you can end up distributing a Django project to a third party and have no control over the
final deployment settings.py file, the Django messages framework offers the ability to silently ignore
message definitions in case the necessary prerequisites aren’t declared in settings.py. To silently ignore
message definitions if prerequisites aren’t declared, you can add the fail_silently=True attribute to either
technique that adds messages, as illustrated in Listing 2-32.

Listing 2-32. Use of the fail_silently=True attribute to ignore errors in case Django messages framework not
installed

from django.contrib import messages

Generic add_message method, with fail silently=True

messages.add message(request, messages.INFO, 'All items on this page have free
shipping.',fail silently=True)

Shortcut level method, with fail silently=True
messages.info(request, 'All items on this page have free shipping.',fail silently=True)

Now that you know how to add messages and the important aspects to keep in mind when adding
messages, let’s take a look at how to access messages.

66

CHAPTER 2 © DJANGO URLS AND VIEWS

Access Flash Messages

The most common place you'll access Django flash messages is in Django templates to display to end
users. As a shortcut and thanks to the context processor django.contrib.messages.context_processors.
messages Django flash messages are available on all templates through the messages variable. But before we
get to an actual template sample, let’s take a quick look at the structure of Django flash messages.

When you add a Django flash message with one of the techniques described in the previous section,
Django creates an instance of the storage.base.Message class. Table 2-9 describes the structure of the
storage.base.Message class.

Table 2-9. Django storage.base.Message structure

Attribute Description Example
message The actual text of the message. All items on this page have free
shipping.
level An integer describing the type of the message 20
(see Value column in Table 2-8).
tags A string combining all the message tags info
(extra_tags and level_tag) separated by spaces.
extra_tags A string containing custom tags for this message, Empty, by default.
separated by spaces.
level tag The string representation of the level. info

Asyou can see in Table 2-9, there are several attributes that you can leverage to display in Django
templates. Listing 2-33 shows the boilerplate template code you can use to display all flash messages set in a
request.

Listing 2-33. Boilerplate code to use in Django template to display Django flash messages

{% if messages %}
<ul class="messages">
{% for msg in messages %}

<div class="alert alert-{{msg.level tag}}" role="alert">
{{msg.message}}
</div>
</1i>
{% endfor %}

{% endif %}

Listing 2-33 starts by checking if the messages variable exists - which contains all flash messages - if it
does, then an HTML list is started with . Next, a loop is made over all the elements in messages, where
each of these elements corresponds to a storage.base.Message instance. For each of these elements, a
list and section tag - <1i> and <div> - are created to output the level tag attribute as a CSS class and the
message attribute as the <div> content.

You can modify the boilerplate code in Listing 2-33 as you see necessary, for example, to include
conditionals and output certain message levels or leverage some of the other storage.base.Message
attributes, among other things.

67

CHAPTER 2 © DJANGO URLS AND VIEWS

Note The HTML code in Listing 2-33 uses the CSS class class="alert alert-{{msg.level_tag}}” that gets
rendered into class="alert alert-info” or class="alert alert-success”, depending on the level_tag attribute.These
CSS classes are part of the CSS bootstrap framework. In this manner, you can quickly format flash messages to
look like those presented in Figure 2-2.

Although you’ll commonly access Django flash messages in Django templates, this doesn’t mean you
can’t access them elsewhere, such as view methods. You can also gain access to Django flash messages
in a request through the get_messages () method of the django.contrib.messages package. Listing 2-34
illustrates a code snippet with the use of the get_messages () method.

Listing 2-34. Use of get_messages() method to access Django flash messages

from django.contrib import messages

the_req messages = messages.get messages(request)
for msg in the_req_messages:
do_something with_the_flash_message(msg)

In Listing 2-34 the get_messages () method receives the request as input and assigns the result to the_
req_messages variable. Next, a loop is made over all the elements in the_req_messages, where each of these
elements corresponds to a storage.base.Message instance. For each of these elements, a call is made to the
method do_something_with_the flash_message to do something with each flash message.

An important aspect to understand when accessing Django flash messages is the duration of the
messages themselves. Django flash messages are marked to be cleared when an iteration occurs on the main
messages instance and cleared when the response is processed.

For access in Django templates, this means that if you fail to make an iteration in a Django template
like the one in Listing 2-33 and flash messages are in the request, it can lead to stale or phantom messages
appearing elsewhere until an iteration is made and a response is processed. For access in Django view
methods (i.e., using get_messages()), this has no impact because even though you may make an iteration
over the main messages instance - therefore, marking messages to be cleared - a response is not processed
in a Django view method, so messages are never cleared, just marked to be cleared.

Class-Based Views

In Chapter 1 and at the start of this chapter - in Listing 2-1 - you saw how to define a Django url and make
it operate with a Django template without the need of a view method. This was possible due to the django.
views.generic.TemplateView class, which is called a class-based view.

Unlike Django view methods backed by standard Python methods that use a Django HttpRequest
input parameter and output a Django HttpResponse, class-based views offer their functionality through
full-fledged Python classes. This, in turn, allows Django views to operate with object-oriented programming
(OOP) principles (e.g., encapsulation, polymorphism, and inheritance) leading to greater reusability and
shorter implementation times.

Although Django class-based views represent a more powerful approach to create Django views,
they are simply an alternative to the view methods you've used up to this point. If you want to quickly
execute business logic on Django requests you can keep using view methods, but for more demanding
view requirements (e.g., form processing, boilerplate model queries) class-based views can save you
considerable time.

68

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

CHAPTER 2 © DJANGO URLS AND VIEWS

Built-In Class-Based Views

The functionality provided by the django.views.generic.TemplateView class-based view is really a time
saver. While it would have been possible to configure a url to execute on an empty view method and then
send control to a template, the TemplateView class allows this process to be done in one line.

In addition to the TemplateView class-based view, Django offers many other built-in class-based views
to shorten the creation process for common Django view operations using OOP-like principles. Table 2-10
illustrates Django’s built-in classes for views.

Table 2-10. Built-in classes for views

Class Description

django.views.genericView Parent class of all class-based views, providing core
functionality.

django.views.generic TemplateView Allows a url to return the contents of a template, without
the need of a view.

django.views.generic.RedirectView Allows a url to perform a redirect, without the need of a
view.

django.views.generic.ArchiveIndexView Allows a view to return date-based object results, without

django.views.generic.YearArchiveView the need to explicitly perform Django model queries.

django.views.generic.MonthArchiveView
django.views.generic.WeekArchiveView
django.views.generic.DayArchiveView
django.views.generic.TodayArchiveView
django.views.generic.DateDetailView

django.views.generic.CreateView Allows a view to execute Create-Read-Update-Delete
django.views.generic.DetailView (CRUD) operations , without the need to explicitly perform
django.views.generic.UpdateView Django model queries.

django.views.generic.DeleteView
django.views.generic.ListView
django.views.generic.FormView

In the upcoming and final section of this chapter, I'll explain the classes in the top half of Table 2-10 so
you can gain a better understanding of the structure and execution process of Django class-based views. The
class-based views in the bottom half of Table 2-10 that involve Django models are described in a separate
chapter on Django models.

Class-Based View Structure and Execution

To create a class-based view you need to create a class that inherits from one of the classes in Table 2-10.
Listing 2-35 shows a class-based view with this inheritance technique, as well as the corresponding url
definition to execute a class-based view.

Listing 2-35. Class-based view inherited from TemplateView with url definition

views.py
from django.views.generic import TemplateView

class AboutIndex(TemplateView):
template_name = 'index.html'

69

CHAPTER 2 © DJANGO URLS AND VIEWS

def get context data(self, **kwargs):
**kwargs contains keyword context initialization values (if any)
Call base implementation to get a context
context = super(AboutIndex, self).get context data(**kwargs)
Add context data to pass to template
context['aboutdata'] = 'Custom data'
return context

#urls.py
from coffeehouse.about.views import AboutIndex

urlpatterns = [
url(r'~about/index/",AboutIndex.as view(),{'onsale':True}),
]

I chose to create a view that inherits from TemplateView first because of its simplicity and because you
already know the purpose of this class. The example in Listing 2-35 and the first example in this chapter from
Listing 2-1 produce nearly identical outcomes.

The difference is, Listing 2-1 declares a TemplateView class instance directly as part of the url (e.g.,
TemplateView.as view(template name="index.html'))), where as Listing 2-35 declares an instance of a
TemplateView subclass named AboutIndex. Comparing the two approaches, you can get the initial feel for
the OOP behavior of class-based views.

The first part in Listing 2-35 declares the AboutIndex class-based view, which inherits its behavior from
the TemplateView class. Notice the class declares the template_name attribute and the get_context_data()
method.

The template_name value in the AboutIndex class acts as a default template for the class-based view.
But in OOP fashion, this same value can be overridden by providing a value at instance creation (e.g.,
AboutIndex.as_view(template_name='other.html") to use the other.html template).

The get_context_data method in the AboutIndex class allows you to add context data to the class-
view template. Notice the signature of the get_context_data method uses **kwargs to gain access to
context initialization values (e.g., declared in the url or parent class-views) and invokes a parent’s class
get context_data method using the Python super () method per standard OOP Python practice. Next,
the get_context_data method adds the additional context data with the aboutdata key and returns the
modified context reference.

In the second part of Listing 2-35, you can see how the AboutIndex class-based view is first imported
into a urls.py file and then hooked up to a url definition. Notice how the class-based view is declared on the
url definition using the as_view() method. In addition, notice how the url definition declares the url extra
option {'onsale' : True} that gets passed as context data to the class-based view (i.e., in the **kwargs of the
get context_data method).

Tip All class-based views use the as_view() method to integrate into url definitions.

Now that you have a basic understanding of Django class-based views, Listing 2-36 shows another
class-based view with different implementation details.

Listing 2-36. Class-based view inherited from View with multiple HTTP handling

views.py

from django.views.generic import View
from django.http import HttpResponse
from django.shortcuts import render

70

CHAPTER 2 © DJANGO URLS AND VIEWS

class ContactPage(View):
mytemplate = 'contact.html'
unsupported = 'Unsupported operation'

def get(self, request):
return render(request, self.mytemplate)

def post(self, request):
return HttpResponse(self.unsupported)

#urls.py
from coffeehouse.contact.views import ContactPage

urlpatterns = [
url(r'~contact/$"',ContactPage.as view()),
]

The first difference in Listing 2-36 is the class-based view inherits its behavior from the general purpose
django.views.generic.View class. As outlined in Table 2-10, the View class provides the core functionality
for all class-based views. So in fact, the TemplateView class used in Listing 2-35 is a subclass of View,
meaning class-based views that use TemplateView have access to the same functionalities of class-based
views that use View.

The reason you would chose one class over another to implement class-based views is rooted in OOP
polymorphism principles. For example, in OOP you can have a class hierarchy Drink— Coffee — Latte,
where a Drink class offers generic functionalities available to Drink, Coffee, and Latte instances; a Coffee
class offers more specific functionalities applicable to Coffee and Latter instances; and a Latte class offers the
most specific functionalities applicable to only Latte instances.

Therefore if you know beforehand you need a class-based view to relinquish control to a template
without applying elaborate business logic or custom request and response handling, the TemplateView class
offers the quickest path to a solution vs. the more generic View class. Expanding on this same principle, once
you start working with Django models and views, you'll come to realize some of the more specialized class-
based views in Table 2-10 also offer quicker solutions than creating a class-based view that inherits from the
general purpose View class. Now that you know the reason why you would chose a View class-based view
over a more specialized class, let’s break down the functionality in Listing 2-36.

Notice the class-based view ContactPage declares two attributes: mytemplate and unsupported. These
are generic class attributes and I used the mytemplate name to illustrate there’s no relation to the template_
name attribute used in Listing 2-35 and TemplateView class-based views. Class-based views derived from a
TemplateView expect a template_name value and automatically use this template to generate a response.
However, class-based views derived from a View class don’t expect a specific template, but instead expect
you to implement how to generate a response, which is where the get and post methods in Listing 2-36
come into play.

The get method is used to handle HTTP GET requests on the view, while the post method is used to
HTTP POST requests on the view. This offers a much more modular approach to handle different HTTP
operations vs. standard view methods that require explicitly inspecting a request and creating conditionals
to handle different HTTP operations. For the moment, don’t worry about HTTP GET and HTTP POST view
handling; this is explored in greater detail in Django forms where the topic is of greater relevance.

Next, notice both the get and post methods declare a request input, which represents a Django
HttpRequest instance just like standard view methods. In both cases, the methods immediately return
aresponse, but it’s possible to inspect a request value or execute any business logic before generating a
response, just like it can be done in standard view methods.

71

CHAPTER 2 © DJANGO URLS AND VIEWS

The get method generates a response with the django.shortcuts.render method and the post
method generates a response with the HttpResponse class, both of which are the same techniques used to
generate responses in standard view methods . The only minor difference in Listing 2-36 is both the render
method and HttpResponse class use instance attributes (e.g., self.mytemplate, self.unsupported) to
generate the response, but other than this, you're free to return a Django HttpResponse with any of the
variations already explained in this chapter (e.g., Listing 2-22 response alternatives, Table 2-5 shortcut
responses).

Finally, the last part in Listing 2-36 shows how the ContactPage class-based view is imported into a
urls.py file and later hooked up to a url using the as_view() method.

To close out the discussion on class-based views and this chapter, we come to the django.views.
generic.RedirectView class. Similar to the TemplateView class-based view that allows you to quickly
generate a response without a view method, the RedirectView class-based view allows you to quickly
generate an HTTP redirect - like the ones described in Table 2-4 - without the need of a view method.

The RedirectView class supports four attributes described in the following list:

e permanent.- Defaults to False to perform a non-permanent redirect supported by
the HttpResponseRedirect class described in Table 2-4. If set to True, a permanent
redirect is made with the HttpResponsePermanentRedirect class described in
Table 2-4.

e url.- Defaults to None. Defines a url value to perform the redirect.

e pattern_name.- Defaults to None. Defines a url name to generate a redirect url via
the reverse method. Note the reverse method is explained in the url naming and
namespace section earlier in this chapter.

e query string.- Defaults to False to append a query string to a redirect url. If
provided, the query_string value to the redirect url.

And with this we conclude our exploration into Django views and urls. In the next two chapters, you'll
learn about Django templates and Jinja templates.

72

CHAPTER 3

Django Templates

Django templates define the layout and final formatting sent to end users after a view method is finished
processing a request. In this chapter, you'll learn the syntax used by Django templates, the configuration
options available for Django templates, as well as the various Django template constructs (e.g., filters, tags,
context processors) that allow you to create elaborate layouts and apply formatting to the content presented
to end users.

Django Template Syntax

Although there are over 100 built-in constructs that help you build Django templates - all of which you’ll
learn as this chapter progresses - to start out, these are the most important syntax elements you need to
recognize:

e {{output variable}}.- Values surrounded by double curly braces at the start and
end represent output for variables. Variables are passed by Django views, url options,
or context processors into templates. In a template, you can use {{ } } to output the
contents of a variable, as well as use Python’s dot notation to output deeper elements
of a variable (e.g., fields, keys, methods). For example, {{store.name}} tells a Django
template to output the store variable’s name, where store can be an object and name
afield or store can be a dictionary and name a key.

o {% tag %}.- Values surrounded by curly braces wrapped with percentage signs are
called tags. Django tags offer complex formatting logic wrapped in a simple syntax
representation.

e variable|filter .- Values declared after a vertical bar | are called filters. Django
filters offer a way to apply formatting logic to individual variables.

Any other syntax in Django templates besides these three variations is treated 'as is'. This means that if
a template declares the Hypertext Markup Language(HTML) heading <h1>Welcome!</h1>, a user will get a
large HTML heading. It’s that simple.

But let’s take a look at one not so obvious Django template syntax behavior that’s important you
understand right away, since it’s a recurring theme in practically everything associated with Django
templates.

© Daniel Rubio 2017 73
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_3

https://doi.org/10.1007/978-1-4842-2787-9_3

CHAPTER 3 © DJANGO TEMPLATES

Auto-Escaping: HTML and Erring on the Safe Side

Django projects operate on the Web, so by default all templates are assumed to produce HTML. While this is
areasonable assumption, it isn’t, until you face one of two things:

e You can't ensure Django templates produce valid HTML and in fact may produce
dangerous markup.

e You want Django templates to produce non-HTML content, such as Comma
Separated Values (CSV), eXtensible Markup Language (XML), or JavaScript Object
Notation (JSON).

So how could you possibly introduce invalid HTML or even dangerous content into Django templates?
Well it’s the Internet, its content from other users or providers that can end up in your Django templates that
can cause problems (e.g., data submitted by users, third-party services, content from databases).

The issue isn’t content you place directly in Django templates - that’s given to be valid since you type
itin - the issue is dynamic content placed through variables, tags, filters, and context processors, which has
the potential to come from anywhere. Let’s analyze this further with the following variables:

store legend = "Open since 1965!"
js_user date = "<script>var user date = new Date()</script>"

If variables with this content make it to Django templates and you attempt to output them, they are
output verbatim. The store_legend won't be output as an HTML bold statement, but rather a statement
surrounded by and . Similarly, the js_user_date won’t produce a JavaScript variable with a user
browser local date, but rather output the <script> statement literally.

This happens because by default Django auto-escapes content present in dynamic constructs
(i.e., variables, tags, filters, and context processors). Table 3-1 illustrates the characters Django auto-escapes
by default.

Table 3-1. Characters Django auto-escapes by default

Original character Escaped to
< &ldt;

> >
'(single quote) '

" (double quote) "

& &

Asyou can see in Table 3-1, Django auto-escaping consists of converting potentially conflicting and
even dangerous characters - in the context of HTML - to equivalent visual representations also known as
escape characters.!

This is done because malicious users or unchecked sources can easily produce content with the
characters on the left column of Table 3-1, which can mangle a user interface or execute malicious JavaScript
code. So Django errs on the safe side and auto-escapes the characters in Table 3-1 to equivalent visual
representations. While you can certainly disable the auto-escaping of characters from Table 3-1, this has to
be done explicitly, since it represents a security risk.

*https://en.wikipedia.org/wiki/Escape_character

74

https://en.wikipedia.org/wiki/Escape_character

CHAPTER 3 * DJANGO TEMPLATES

While auto-escaping is a good security precaution for HTML output, this takes us to the second point
in assuming Django always produces HTML. What happens if a Django template has to output CSV, JSON,
or XML content, where characters like <, >, '(single quote), "(double quote), and 8, have special meaning
to content consumers and can’t use equivalent visual representations? In such cases, you'll also to need to
explicitly disable the default auto-escaping behavior enforced by Django.

So whether you want to output actual HTML through variables in Django templates or output CSV,
JSON, or XML without Django applying an HTML security practice to this content, you'll need to deal with
Django auto-escaping.

There are various ways to control auto-escaping in Django templates (e.g., globally, individual variables,
individual filters), which you'll learn as you progress through this chapter. But auto-escaping is a constant
theme in Django templates, along with these related terms:

e Safe.- If a Django template construct is marked as safe, it means no characters from
Table 3-1 are escaped. In other words, safe equals "I know what I'm doing" output the
content 'as is'.

e Escape.- If a Django template construct is marked to be escaped, it means characters
from Table 3-1 are escaped. In other words, escape equals "Ensure no potentially
dangerous HTML characters are output, use equivalent visual representations."

e Auto-escape on/ Auto-escape off (safe).- If a Django template uses auto-escape on,
it means Django template constructs in this scope should escape characters from
Table 3-1. If a Django template uses auto-escape off, it means Django template
constructs in this scope should be output 'as is' and not escape characters from
Table 3-1.

And with this we finish the conversation on this rather dry, yet important topic of Django auto-escaping.
Next, let’s explore the various configuration options for Django templates.

Django Template Configuration

By default, Django templates are enabled on all Django projects due to the TEMPLATES variable in settings.
py. Listing 3-1 illustrates the default TEMPLATES value in Django projects.

Listing 3-1. Default Django template configuration in settings.py

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS": [],
"APP_DIRS': True,
"OPTIONS': {

"context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
"django.contrib.auth.context_processors.auth’,
"django.contrib.messages.context _processors.messages’,

1,

}s
b

75

CHAPTER 3 © DJANGO TEMPLATES

The BACKEND variable indicates the project uses Django templates. The DIRS and APP_DIRS variables tell
Django where to locate Django templates and are explained in the next section. The context_processors
field inside OPTIONS tells Django which context processors to enable for a Django project. In short, a context
processor offers the ability to share data across all Django templates, without the need to define itin a
piecemeal fashion in Django views.

Later sections in this chapter describe what data is provided by default Django context processors and
how to write your own context processors to share custom data on all Django templates.

Template Search Paths

Django determines where to look for templates based on the values in the DIRS and APP_DIRS variables. As
you can see in Listing 3-1, Django defaults to an empty DIRS value and sets the APP_DIRS variable to True.

The APP_DIRS variable set to True tells Django to look for templates in Django app subfolders named
templates - if you've never heard of the Django app concept, look over Chapter 1, which describes this
concept.

The APP_DIRS behavior is helpful to contain an app's templates to an app's structure, but be aware the
template search path is not aware of an app's namespace. For example, if you have two apps that both rely
on a template named index.html and both app's have a method in views. py that returns control to the
index.html template(e.g., render (request, 'index.html")), both apps will use the index.html from the
top-most declared app in INSTALLED_APPS, so only one app will use the expected index.html.

The first set of folders illustrated in Listing 3-2 shows two Django apps with this type of potential
template layout conflict.

Listing 3-2. Django apps with templates dirs with potential conflict and namespace qualification

Templates directly under templates folder can cause loading conflicts
+---+-<PROJECT_DIR project name_conflict>
I
+-__init_ .py
+-settings.py
+-urls.py
+-wsgi.py
I
+-about(app)-+
| +-__init_ .py
| +-models.py
| +-tests.py
| +-views.py
| +-templates-+
I I
| +-index.html
+-stores(app)-+
+-__init__.py
+-models.py
+-tests.py
+-views.py
+-templates-+
|

+-index.html

76

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

CHAPTER 3 * DJANGO TEMPLATES

Templates classified with additional namespace avoid loading conflicts
+---+-<PROJECT_DIR project_name_namespace>

+-__init__.py
+-settings.py
+-urls.py
+-wsgi.py
+-about(app)-+
| +-__init_ .py
| +-models.py
| +-tests.py
| +-views.py
| +-templates-+
| |
| +-about-+
| |
| +-index.html
+-stores(app)-+
+-__init__.py
+-models.py
+-tests.py
+-views.py

+-templates-+
|
+-stores-+

+-index.html

To fix this potential template search conflict, the recommended practice is to add an additional subfolder
to act as a namespace inside each templates directory, as illustrated in the second set of folders in Listing 3-2.

In this manner, you can redirect control to a template using this additional namespace subfolder
to avoid any ambiguity. So to send control to the about/index.html template you would declare
render(request, 'about/index.html") and to send control to the stores/index.html you would declare
render (request, 'stores/index.html").

If you wish to disallow this behavior of allowing templates to be loaded from these internal app
subfolders, you can do so by setting APP_DIRS to FALSE.

A more common approach to define Django templates is to have a single folder or various folders that
live outside app structures to hold Django templates. In order for Django to find such templates, you use the
DIRS variable as illustrated in Listing 3-3.

Listing 3-3. DIRS definition with relative path in settings.py

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates’,
'DIRS': ['%s/templates/' % (PROJECT DIR),
"%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
77

CHAPTER 3 © DJANGO TEMPLATES

"context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context _processors.messages',

1

1
1

Asyou can see in Listing 3-3, you can declare various directories inside the DIRS variable. Django looks
for templates inside DIRS values and then in templates folder in apps - if APP_DIRS is TRUE - until it either
finds a matching template or throws a TemplateDoesNotExist error.

Also note the DIRS values in Listing 3-3 rely on a path determined dynamically by the PROJECT_DIR
variable. This approach is helpful when you deploy a Django project across different machines, because
the path is relative to the top-level Django project directory (i.e., where the settings.py and main urls.py
file are) and adjusts dynamically irrespective of where a Django project is installed (e.g., /var/www/, /opt/
website/, C://website/).

Invalid Template Variables

By default, Django templates do not throw an error when they contain invalid variables. This is due to design
choices associated with the Django admin that also uses Django templates.

While this is not a major issue in most cases, it can be frustrating for debugging tasks as Django
doesn't inform you of misspelled or undefined variables. For example, you could type {{datee}} instead of
{{date}} and Django ignores this by outputting an empty string ' ', you could also forget to pass a variable
value to a template in the view method and Django also silently outputs an empty string ' ' even though you
may have it defined in the template.

To enable Django to inform you when it encounters an invalid variable in Django templates, you can use
the string_if invalid option. The first configuration option for string if invalid shown in Listing 3-4
outputs a visible string instead of an empty string "'

Listing 3-4. Output warning message for invalid template variables with string_if invalid

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [

{
"BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS": ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
'string_if invalid': "**** WARNING INVALID VARIABLE %s ****",
"context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth’,
"django.contrib.messages.context _processors.messages’,
)
}s
b

78

CHAPTER 3 * DJANGO TEMPLATES

Asyou can see in Listing 3-4, string_if invalidis assigned the string "**** WARNING INVALID
VARIABLE %s ****" When Django encounters an invalid variable, it replaces the occurrence with this
string, where the %s variable gets substituted with the invalid variable name, allowing you to easily locate
where and what variables are invalid.

Another configuration option for the string_if invalid option is to perform more complex logic
when an invalid variable is encountered. For example, Listing 3-5 illustrates how you can raise an error so
the template fails to render in case an invalid variable is found.

Listing 3-5. Error generation for invalid template variables with string_if invalid
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

class InvalidTemplateVariable(str):
def _mod_ (self,other):
from django.template.base import TemplateSyntaxError
raise TemplateSyntaxError("Invalid variable : '%s'" % other)

TEMPLATES = [

{
"BACKEND': 'django.template.backends.django.DjangoTemplates’,
'DIRS': ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT_DIR),],
"APP_DIRS': True,
"OPTIONS': {
'string_if_invalid': InvalidTemplateVariable("%s"),
"context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
"django.contrib.auth.context_processors.auth’,
"django.contrib.messages.context_processors.messages’,
1
1
1

In Listing 3-5 string_if invalidis assigned the InvalidTemplateVariable class that uses the %s input
variable, which represents the invalid variable name - just like the previous example in Listing 3-4.

The InvalidTemplateVariable class is interesting because it inherits its behavior from the
str(string) class and uses a Python __mod__ (modulo) magic method implementation. While the
__mod__ (modulo) magic method is proper of number operations, in this case, it's useful because
the passed in string uses the % (modulo) symbol, which makes the __mod__ method run. Inside the
__mod__ method we just raise the TemplateSyntaxError error with the invalid variable name to halt the
execution of the template.

79

CHAPTER 3 © DJANGO TEMPLATES

Caution The Django admin might get mangled or broken with a custom string if invalid value.

The Django admin templates in particular rely heavily on the default string_if invalid outputting empty
strings ' ', due to the level of complexity in certain displays. In fact, this string_if invalid default behavior is
often considered a “feature,” as much as it's considered a “bug” or “annoyance.”

Therefore if you use one of the approaches in Listing 3-4 or Listing 3-5 to override string_if invalid, be
aware you will most likely mangle or brake Django admin pages. If you rely on the Django admin, you should
only use these techniques to debug a project's templates.

Debug Output

When you run a Django project with the top-level DEBUG=True setting and an error occurs, Django templates
output a very detailed page to make the debugging process easier - see Chapter 5 for more details on the
DEBUG variable, specifically the section “Django settings.py for the Real World.”

By default, Django templates reuse the top-level DEBUG variable value to configure template debug
activity. Behind the scenes, this configuration is set through the debug field inside OPTIONS of the TEMPLATES
variable. Figure 3-1 illustrates what an error page looks when DEBUG=True.

L1}

- ¢ locathost ¢

TemplateSyntaxError at /

Invalid block tag: ‘lock’

Request Method: GET
Request URL: hitpiocailast 8000/
Django Version: 18.1
Exception Type: TemplateSyrtaxError
Exception Valse: Invalid block tag: “leck’
Exception Location: /iy HANGOrEC o 2. Tisite-packagesidy " Py i invalid_block_tag, line 355

Python Executable: /pythonidjangoreepesiniyihon
Python Version: 2.7.3
U pwwsrdjangorecipes/3 djange tesplates
T J..a?...,., e iaeil ce i 71 1 ey thand. 7/nite-puckages/dist ribute-0.6. 2r2.7.c09".

/Bythen/ 8] ansorecines 1 o<ul FUib/ /aythen2. 7/site-packages/pie-1.1-0y2. 7.8
*spythensdjangerecipes 1ib pythend.

' fpythen/d)angorecipes/lib/pythona. -’m\m 'lxr\ulz

*7pythen/d) mngarecipes/l ib/pythond. /13
*pythen/djangorecipes/1ib/python2. e e

£eython/d) sngoreciges/lib/python2. 711ib-dyn nlaad’ .

*suse Libspytho

st ib eyt hond. 7ot at Linurz',

'Juu.r\;burlhenz 7kt

g Ehgara: theafi oeal fLib/pythand. 3/site -packages*]

Server time: Fri. 28 Aug 2015 05:00:04 +0000

Error during template rendering
In template /www/djangorecipes/3_djange_tesplates/coffechouse/tenglates/base. htal, emor al line 5

Invalid block tag: “lock’
1 <!DOCTYPE hinl>
2 <htal lang="en">
3 <head>
4 <meta charset="utf-5">
5
<titles
1% lock titlev)
1% endblocik}</titlex

Figure 3-1. Django error page when DEBUG=True automatically sets template OPTION to ‘debug’:True

Asyou can see in Figure 3-1, Django prints the location of the template, as well as a snippet of the
template itself to make it easier to locate an error. This template information is generated due to the
"debug' : True option, which is set based on the top-level DEBUG variable. However, you can explicitly set the
debug option to False as illustrated in Listing 3-6, in which case the error page would result without any
template details and just the traceback information, as illustrated in Figure 3-2.

80

http://dx.doi.org/10.1007/978-1-4842-2787-9_5

CHAPTER 3 * DJANGO TEMPLATES

Listing 3-6. Option with debug equals False omits template details

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_ file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {

"debug' :False,

"context_processors': [
'django.template.context_processors.debug',
"django.template.context processors.request',
"django.contrib.auth.context_processors.auth',
"django.contrib.messages.context processors.messages’,

1,

1
b

- ¢ [localhostB000

TemplateSyntaxError at /
Invalid block tag: ‘lock’

Request Method: GET
Request URL: nopuifecalhost 8000/
Django Version: 18.1
Exception Type: TemplateSyntaxErmor
Excoption Value: Invalid block tag: “lock®

[Exception Location: i -y In invalk]_biock_tag, ine 395
Python Executable: /python'dglangorecpes/tin/python
Python Version: 2.7.3
thon Patn: ['/vwidiangorecipes/3 djange tesplates'.
e *fpythens acal 7L2b/oythen2. 775 ihute usumzf:w

‘spythen/diangorecipes /local Mlib/pythond. Hae nnuqoupas 110py2.7 e
Jpythen/ 3
fpythen/ ib/pythana. 7/ Lot - 'llrw)
Jpyt han/d) ang ¥ 7hibe
* fpythens i L .711 b ld
*fpythens ythenZ. 7/13b-dynlond ' .
Jusr/lib,

¥thonz.
'iu:r—’lxbn"?r‘hﬂl‘? 7."9\ul Tinus2',
‘jusr/libspython2. 7/1ib-th" ,
*fpythenid; focal flib/oython2. 7, kages']

Server ime: Fri, 28 Aug 2015 05:01:12 +0000

hack

Ti Swalch 1o cogy vievy

fevthon/dyangorecipes/locel /lib/oython2. 7/s1te- packages di ango/core/handl ers/base . py N get_respense
164, response = response.render()

> Local vars

feython/djangorecipes/local /lib/pythan2. 7/site- packages /d) ango/t empl ate/ response . py in rende

158, self.content = self.rendered_content
» Local vars

fpython/djangerecipes local /Lib/oythan2. 7/site-packages /dj ango/t empl ate/ resgonse. py in rendered_content
135 content = tesplate. render(context, self._request)

Figure 3-2. Django error page when DEBUG=True and explicit OPTION ‘debug’:False

Auto-Escape

By default, Django templates use the security practice to auto-escape certain characters - described in
Table 3-1 - contained in dynamically generated constructs (e.g., variables, tags, filters). Auto-escaping
converts characters that can potentially mangle a user interface or produce dangerous outcomes into safe
representations, a process that was described in the first section of this chapter.

81

CHAPTER 3 © DJANGO TEMPLATES

However, you can globally disable auto-escaping on all Django templates -- and knowingly render < as
<, > as >, etc... -- with the autoescape field in OPTIONS as shown in Listing 3-7.

Listing 3-7. Option with auto-escape equals False omits auto-escaping on all Django templates

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS": ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
"autoescape' :False,
"context_processors': [
'django.template.context processors.debug’,
"django.template.context processors.request’,
"django.contrib.auth.context_processors.auth’,
"django.contrib.messages.context_processors.messages’,
1
b
1

It's worth mentioning that an alternative to disabling auto-escaping on every Django template - as it's
done in Listing 3-7 - is to selectively disable auto-escaping. You can either use the {% autoescape off %}
tag to disable auto-escaping on a section of a Django template or the safe filter to disable auto-escaping on
a single Django template variable.

If you do decide to disable auto-escaping on all Django templates as illustrated in Listing 3-7 - which
I frankly wouldn't recommend if you plan to use just HTML, because of the potential security risk-- you
can also granularly enable auto-escaping again if required. You can either use the {% autoescape on %}
tag to enable auto-escaping on a section of a Django template or the escape filter to escape a single Django
template variable.

File charset

Files used in Python projects often declare an encoding value at the top (e.g., # -*- coding: utf-8 -*-)
based on the Python PEP-263 specification,? which ensures the characters in the file are interpreted correctly.
In Django templates, you don't define the underlying file's encoding in this manner, but instead do it inside a
project's settings.py file.

There are two ways to declare the encoding character for Django templates: explicitly as part of the
file charset field in OPTIONS inside the TEMPLATES variable or via the top-level FILE_CHARSET variable in
settings.py. The explicit declaration in file_charset within OPTIONS takes precedence over the FILE
CHARSET assignment, but the value of file_charset defaults to FILE_CHARSET, which, in itself defaults to
utf-8 (Unicode) encoding.

*https://www.python.org/dev/peps/pep-0263/

82

https://www.python.org/dev/peps/pep-0263/

CHAPTER 3 * DJANGO TEMPLATES

So by default, Django template encoding is assigned to utf-8 or Unicode, which is one of the most
widely used encodings in software. Nevertheless, in the event you decide to incorporate data into Django
templates that isn't utf-8 compatible (e.g., Spanish vowels with accents like 4 or é encoded as ISO-8859-

1 or Kanji characters like % or ‘7- encoded as JIS) you must define the FILE_CHARSET value in a project's
settings.py file - or directly in the file_charset field in OPTIONS inside the TEMPLATES - so Django template
data is interpreted correctly.

Django templates can be assigned any encoding value from Python's standard encoding values.?

Automatic Access to Custom Template tag/filter Modules

Django templates have access to a series of built-in tags and filters that don't require any setup steps.
However, if you plan to use a third-party template tag/filter module or write your own template tag/filter
module, then you need to set up access on each Django template with the {% load %} tag (e.g., {% load
really useful_tags_and_filters %}), a process that can get tiresome if you need to access a particular
tag/filter on dozens or hundreds of templates.

To automatically gain access to third-party template tags/filters or your own template tags/filters as if
they were built-in tags/filters (i.e., without requiring the {% load %} tag), you can use the builtins field in
OPTIONS as illustrated in Listing 3-8.

Listing 3-8. Option with builtins to gain automatic access to tags/filters on all templates

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_ file))

TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {

'context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context_processors.messages’,

1,

"builtins': [

'coffeehouse.builtins',
"thirdpartyapp.customtags.really useful tags and filters',
1
b
1

As you can see in Listing 3-8, the builtins field accepts a list of modules that includes tags/filters for
built-in treatment. In this case, coffeehouse.builtins represents a builtins.py file - which includes the
custom tags/filters - under a project named coffeehouse. And the thirdpartyapp.customtags.really
useful tags and filters is a third-party package with tags/filters that we also want to access in Django
templates without the need to use the {% load %} tag.

*https://docs.python.org/3/1ibrary/codecs.html#standard-encodings

83

https://docs.python.org/3/library/codecs.html#standard-encodings

CHAPTER 3 © DJANGO TEMPLATES

Another default behavior of third-party template tag/filter modules and custom template tag/filter
modules is they are required to use their original label/name for reference, while the latter also requires it to
be placed inside a folder named templatetags in a registered Django app. These two default behaviors can
be overridden with the libraries field in OPTIONS as illustrated in Listing 3-9.

Listing 3-9. Option with libraries to register tags/filters with alternative label/name and under any project
directory

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_ file))

TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/' % (PROJECT DIR),'%s/dev_templates/' % (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {

"context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context_processors.messages’,

1,

"libraries': {

'coffeehouse_tags': 'coffeehouse.tags filters.common',

b

b
b

The libraries statement in Listing 3-9 'coffeehouse_tags': 'coffeehouse.tags filters.common'
tells Django to load the common. py file - that includes the custom tags/filters - from the tags_filters folder
in the coffeehouse project and make it accessible to templates through the coffeehouse_tags reference
(e.g., {% load coffeehouse tags %}). With the approach in Listing 3-9, you can place custom tag/filter
modules anywhere in a Django project, as well as assign custom tag/filter modules - or third-party tag/filter
modules - an alternative reference value instead of their original label/name.

Template Loaders

Earlier in the section “Template Search Paths,” I described how Django searches for templates using the
DIRS and APP_DIRS variables, which are part of Django’s template configuration. However, I intentionally
omitted a deeper aspect associated with this template search process: each search mechanism is backed by
a template loader.

A template loader is a Python class that implements the actual logic required to search and load
templates. Table 3-2 illustrates the built-in template loaders available in Django.

84

CHAPTER 3 * DJANGO TEMPLATES

Table 3-2. Built-in Django template loaders

Template loader class Description

django.template.loaders.filesystem.Loader Searches and loads templates in directories declared
in the DIRS variable. Enabled by default when DIRS
is not empty.

django.template.loaders.app_directories.Loader Searches and loads templates from subdirectories

named templates in all apps declared in
INSTALLED_APPS. Enabled by default when APP

DIRS is True.
django.template.loaders.cached.Loader Searches for templates from an in-memory cache,

after loading templates from a file-system or app

directory loader.
django.template.loaders.locmem.Loader Searches for templates from an in-memory cache,

after loading templates from a Python dictionary.

Asyou can see, two of the Django template loaders in Table 3-2 are automatically set up by the presence
of either the DIRS or APP_DIRS variables. Nevertheless, any of the template loaders in Table 3-2 can be set up
explicitly using the loaders field in OPTIONS inside TEMPLATES.

Create Reusable Templates

Templates tend to have common sections that are equally used across multiple instances. For example,

the header and footer sections on all templates rarely change, whether a project has 5 or 100 templates.
Other template sections like menus and advertisements also fall into this category of content that’s constant
across multiple templates. All of this can lead to repetition over multiple templates, which can be avoided by
creating reusable templates.

With reusable Django templates you can define common sections on separate templates and reuse
them inside other templates. This process makes it easy to create and manage a project's templates because
a single template update takes effect on all templates.

Reusable Django templates also allow you to define page blocks to override content on a page-by-
page basis. This process makes a project's templates more modular because you define top-level blocks to
establish the overall layout and define content on a page-by-page basis.

Lets take the first step toward building reusable Django templates exploring the Django built-in
{% block %} tag. Listing 3-10 illustrates the first lines of a template called base.html with several
{% block %} tags.

Listing 3-10. Django template with {% block %} tags

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>{% block title%}Default title{% endblock title %}</title>
<meta name="description" content="{% block metadescription%}{% endblock metadescription %}">
<meta name="keywords" content="{% block metakeywords%}{% endblock metakeywords %}">

85

CHAPTER 3 © DJANGO TEMPLATES

Notice the syntax {% block <name>%}{% endblock <name> %} in Listing 3-10. Each {% block %} tag
has a reference name. The reference name is used by other Django templates to override the content for
each block.

For example, the {% block title %} tagwithin the HTML <title> tags defines a web page title. If
another template reuses the template in Listing 3-10, it can define its own web page title by overriding the
title block. If a block is not overridden on a template, the block receives the default content within the block.
For the title block the default content is Default title, for the metadescription and metakeywords
blocks the default content is an empty string.

The same mechanism illustrated in Listing 3-10 can be used to define any number of blocks (e.g.,
content, menu, header, footer). It's worth mentioning the <name> argument of {% endblock <name> %} is
optional and it’s valid to just use {% endblock %} to close a block statement; however, the former technique
makes it clearer where a block statement ends, which is especially helpful when a template has multiple
blocks.

Although it’s possible to call the template in Listing 3-10 directly by a Django view method or url
request, the purpose of this kind of template is to use it as a base template for other templates. To reuse a
Django template you use the Django built-in {% extends %} tag.

The {% extends %} tag uses the syntax {% extends <name> %} to reuse the layout of another template.
This means that in order to reuse the layout in Listing 3-10 defined in a file base.html, you use the syntax
{% extends "base.html" %}.In addition, if you use the {% extends %} tag it has to be the first definition in
Django template, as illustrated in Listing 3-11.

Listing 3-11. Django template with {% extends %} and {% block %} tag

{% extends "base.html" %}
{% block title %}Coffeehouse home page{% endblock title %}

Tip Inan{% extend <name> %} tag statement, the <name> value can also use a relative path (e.g., "../
base.html"), as well as a variable passed by a view that can be a string (e.g., "master.html") or Template object
loaded in the view.

Notice in Listing 3-11 how the first template statement is {% extends "base.html" %}.In addition,
notice how Listing 3-11 defines the {% block title %} tag with the content Coffeehouse home page. The
block in Listing 3-11 overrides the title block from the base.html template. So where are the HTML <title>
tags in Listing 3-11? There aren't any and you don't need them. Django automatically reuses the layout from
the base.html template and substitutes the blocks content where necessary.

Django templates that reuse other templates tend to have limited layout elements (e.g., HTML tags) and
more Django block statements to override content. This is beneficial because as I outlined previously, it lets
you establish the overall layout once and define content on a page-by-page basis.

The reusability of Django templates can occur multiple times. For example, you can have templates A,
B, and C, where B requires to reuse A, but C requires to reuse parts of B. The only difference is template C
needs to use the {% extends "B" %} taginstead of the {% extends "A"%} tag. But since template B reuses A,
template C also has access to the same elements in template A.

When reusing Django templates, it's also possible to access the block content from a parent template.
Django exposes the block content from a parent template through the reference block. super. Listing 3-12
illustrates three templates that show this mechanism for a block containing web page paths or “breadcrumbs.”

86

CHAPTER 3 * DJANGO TEMPLATES

Listing 3-12. Django templates use of {{block.super}} with three reusable templates

base.html template
<p>{% block breadcrumb %}Home{% endblock breadcrumb %}</p>

index.html template
{% extends "base.html" %}
{% block breadcrumb %}Main{% endblock breadcrumb %}

detail.html template
{% extends "index.html" %}
{% block breadcrumb %} {{block.super}} : Detail {% endblock breadcrumb %}

The base.html template in Listing 3-12 defines the breadcrumb block with a default value of Home. Next,
the index.html template reuses the base.html template and overrides the breadcrumb block with a value of
Main. Finally, the detail.html template reuses the index.html template and overrides the breadcrumb block
value. However, notice the {{block. super}} statement in the final block override. Since {{block.super}}
is inside the breadcrumb block, {{block.super}} tells Django to get the content from the parent template
block.

Another reusability functionality in Django templates is the inclusion of a Django template inside
another Django template. Django supports this functionality through the {% include %} tag.

The {% include %} tag expects a template argument - similar to the {% extend %} tag - which can be
either a hard-coded string reference (e.g., {% include "footer.html" %}), a relative path to a template
(e.g., {% include "../header.html" %}), or a variable passed by a view that can be a string or Template
object loaded in the view.

Templates declared as part of {% include %} tags are made aware of context variables in the template
that declares them. This means if template A uses the {% include "footer.html" %} tag, template A
variables are automatically made available to the footer.html template.

Inclusively, it's possible to explicitly provide context variables to {% include %} statements using the
with keyword. For example, the statement {% include "footer.html" with year="2013" %} makes the
year variable accessible inside the footer.html template. The {% include %} tag also supports the ability
to pass multiple variables using the with notation (e.g., {% include "footer.html" with year="2013"
copyright="Creative Commons" %}).

Finally, if you want templates declared as part of {% include %} tags to have restricted access to context
variables from the template that declares them, you can use the only keyword. For example, if template B
uses the {% include "footer.html" with year="2013" only %} statement, the footer.html template
only gets access to the year variable, irrespective of the variables available in template B. Similarly, the {%
include "footer.html" only %} statement restricts the footer.html template to no variables, irrespective
of the variables available in the template that uses the statement.

Built-In Context Processors

By default, Django templates are enabled to have access to various variables. This eliminates the need to
constantly declare widely used variables in every single Django view methods or as url extra options. These
variables are made available through template context processors.

Django template context processors are explicitly defined in a project's settings.py file, in the
TEMPLATES variable inside the OPTIONS key. By default and as illustrated in Listing 3-1, Django projects are
enabled with four context processors built in to Django. Next, I'll describe the data variables made available
by each of these context processors.

87

CHAPTER 3 © DJANGO TEMPLATES

Django debug context processor
(django.template.context_processors.debug)

The Django debug context processor exposes variables that are helpful for debugging. This context processor
makes the following variables available on all Django templates:

e debug.- Contains True or False, based on the DEBUG variable in the settings.py file.

e sql_queries.- Contains the database connection details (e.g., SQL statements) run
by the backing method view.

Note The Django debug context processor displays variable values only if the requesting IP address is
defined in the INTERNAL_IPS variable in settings.py. Even if the variables are declared in a template (e.g.,
{{debug}} or {{sql_queries}}) this restriction permits that only certain users view the debug messages in the
template, while other users won't view anything.

For example, to view the debug and sql_queries values on your local workstation, add INTERNAL_IPS =
['127.0.0.1"] to the settings.py file. This tells Django to display these variables values for requests made from
the IP address 127.0.0.1.

Django request context processor
(django.template.context_processors.request)

The Django request context processor exposes variables related to a request (i.e., HTTP request). This
context processor makes data available through a massive dictionary named request, which includes some
of the following key-values:

e request.GET.- Contains a request's HTTP GET parameters.

e request.POST.- Contains a request's HTTP POST parameters.

e request.COOKIES.- Contains a request's HITP COOKIES.

e request.CONTENT_TYPE.- Contains a request's HTTP Content-type header.
e request.META.- Contains a request's HTTP META data.

e request.REMOTE_ADDR.- Contains a request's HTTP remote address.

Django auth context processor
(django.contrib.auth.context_processors.auth)

The Django auth context processor exposes variables related to authentication logic. This context processor
makes the following variables accessible in Django templates:

e user.- Contains user data (e.g., id, name, email, anonymous user).

e perms.- Contains user app permissions (e.g., True, False or explicit app permissions
auser has access to in a django.contrib.auth.context_processors.Permrapper
object).

88

CHAPTER 3 * DJANGO TEMPLATES

Django messages context processor
(django.contrib.messages.context_processors.messages)

The Django messages context processor exposes variables related to the Django messages framework,
introduced in Chapter 2. Messages are added in Django view methods to the message framework, which
are then exposed in Django templates. This context processor makes the following variables accessible in
Django templates:

e messages.- Contains the messages added through the Django messages framework
in Django view methods.

e DEFAULT_MESSAGE_LEVELS.- Contains a mapping of the message level names to their
numeric value (e.g., { 'DEBUG": 10, "INFO': 20, 'WARNING': 30, 'SUCCESS':
25, "ERROR': 40}).

Other Built-In Django Context Processors: i18n, media, static, tz,
and CSRF context Processors

The previous context processors offer some of the most common data required across all Django project
templates, which is why they're enabled by default. However, this doesn't mean they are the only built-in
Django context processors. There are, in fact, five more built-in context processors you can use to access
certain data from all Django templates.

Django i18n context processor (django.template.context_processors.i18n)

The Django i18n context processor exposes variables related to internationalization logic. This context
processor makes the following variables accessible in Django templates:

e LANGUAGES.- Contains available languages for Django projects.

e LANGUAGE_CODE.-Contains the project language code, based on the LANGUAGE_CODE
variable in the settings.py file.

e LANGUAGE_BIDI.- Contains the current project language direction. It's set to False
for left-to-right languages (e.g., English, French, German) or True for right-to-left
languages (e.g., Hebrew, Arabic).

Django media context processor (django.template.context_processors.media)

The Django media context processor exposes a variable related to media resources. This context processor
makes the following variable accessible in Django templates:

e MEDIA URL.- Contains the media url, based on the MEDIA_URL variable in the
settings.py file.

Django static context processor (django.template.context_processors.static)

The Django static context processor exposes a variable related to static resources. This context processor
makes the following variable accessible in Django templates:

e STATIC_ URL.- Contains the static url, based on the STATIC_URL variable in the
settings.py file.

89

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

CHAPTER 3 © DJANGO TEMPLATES

Tip Even though the static context processor is accessible (i.e., it's not deprecated) its functionality is
outdated and should be avoided. You should use the staticfiles app instead. More details are provided in
Chapter 5 in the section on setting up static web page resources (Images, CSS, JavaScript).

Django tz context processor (django.template.context_processors.iz)

The Django tz context processor exposes a variable related to a project's time zone. This context processor
makes the following variable accessible in Django templates:

e TIME_ZONE.- Contains a project's time zone, based on the TIME_ZONE variable in the
settings.py file.

Django CSRF context Processor (django.template.context_processors.csrf)

The Cross Site Request Forgeries (CSRF) context processor adds the csxf_token variable to all requests. This
variable is used by the {% csrf token %} template tag to protect against Cross Site Request Forgeries.

Although you can gain access to the csrf_token variable value in any Django template, you will have
little - if any - need to expose it directly, as it's used as a security mechanism to detect forged requests.
Chapter 6, covering the topic of Django forms, describes what it is and how CSRF works with Django.

Due to the security significance of having the csrf_token variable available on all requests, the CSRF
context processor is always enabled - irrespective of the context_processors list in OPTIONS - and cannot be
disabled.

Custom Context Processors

When you set up data in view methods or url extra options, you do so to access the data on individual Django
templates. Custom Django context processors allow you to set up data for access on all Django templates.

A Django custom context processor is structured just like a regular Python method with an HttpRequest
object argument that returns a dictionary. The returning dictionary keys of the context processor represent
template references and the dictionary values data objects (e.g., strings, lists, dictionaries) accessible in
templates. Listing 3-13 illustrates a custom Django context processor method.

Listing 3-13. Custom Django context processor method

def onsale(request):
Create fixed data structures to pass to template
data could equally come from database queries
web services or social APIs
sale items = {'Monday':'Mocha 2x1', 'Tuesday':'Latte 2x1'}
return {'SALE_ITEMS': sale items}

Asyou can see in Listing 3-13, the onsale method has a request argument - representing an
HttpRequest object - and returns a dictionary. The dictionary in this case has a single key called SALE_ITEMS
and a value that is a hard-coded dictionary.

However, just as you can set up any type of data in a Django view method or url option to pass to a
template, a custom Django context processor method can also access data from the request argument
(e.g., cookie, remote IP address) or even query a database and make this data available to all templates.

90

http://dx.doi.org/10.1007/978-1-4842-2787-9_5
http://dx.doi.org/10.1007/978-1-4842-2787-9_6

CHAPTER 3 * DJANGO TEMPLATES

The custom context processor method can be placed inside any project file or directory. The location
and naming conventions are of little importance, because Django detects context processors through the
context_processors variable in OPTIONS of the TEMPLATES variable in a project's settings.py file. I'll place
the context processor method in Listing 3-13 in a file called processors.py in the stores app subdirectory.

Once you save the custom context processor method, you have to configure Django to locate it.

Listing 3-14 shows the context_processors variable update to include the custom context processor
method from Listing 3-13.

Listing 3-14. Django template context processor definitions in context_processors in OPTIONS of
TEMPLATES

"OPTIONS': {

"context_processors': [
'coffeehouse.stores.processors.onsale’,
'django.template.context_processors.debug',
"django.template.context processors.request’,
"django.contrib.auth.context_processors.auth',
'django.contrib.messages.context processors.messages’,

1,

In Listing 3-14 you can see the coffeehouse.stores.processors.onsale declaration, where
coffeehouse.stores represents the package.app name, processors is the file that contains the custom
context processor (i.e., processors.py inside the stores app) and onsale is the actual method that contains
the custom context processor logic.

Once you declare the context processors on you project's settings.py file, the custom dictionary with
the SALE_ITEMS key from Listing 3-13 becomes available to all Django templates.

Built-In Django Filters

Django filters are designed to format template variables. The syntax to apply Django filters is the vertical bar
character | also known as “pipe” in Unix environments (e.g., {{variable|filter}}). It's worth mentioning
that it’s possible to use multiple filters on the same variable (e.g., {{variable|filter|filter}}).

I'll classify each built-in Django filter into functional sections so it's easier to identify them. The
functional classes I'll use are Dates, Strings, Lists, Numbers, Dictionaries, Spacing and special characters,
Development, and Testing and Utls.

Tip You can apply Django filters to entire sections with the {% filter %} tag. If you have a group of variables
in the same section and want to apply the same filter to all of them, it’s easier to use the {% filter %} tag than to
individually declare the filter on each variable. The next section in this chapter on Django built-in tags provides
more details on the {% filter %} tag

Dates

e date.- The date filter formats Python datetime objects and only works if the variable
is this type of Python object. The date filter uses a string to specify a format. For
example, if a variable contains a datetime object with the date 01/01/2018, the filter
statement {{variable|date:"F jS 0"}} outputs January 1st 2018. The string syntax
for the date filter is based on the characters described in Table 3-3.

91

CHAPTER 3 © DJANGO TEMPLATES

Tip If you provide no string argument to the date filter (e.qg., {{variableldate}}), it defaults to the "N j, Y"
string, which comes from the default value of DATE_FORMAT.

Note The date filter can also accept predefined date variables {{variableldate:"DATE_FORMAT"}},
{{variableldate:"DATETIME_FORMAT"}}, {{variableldate:"SHORT_DATE_FORMAT" %} or {{variableldate:
"SHORT_DATETIME_FORMAT"}}.

The predefined date variables in themselves are also composed of date strings based on the syntax in
Table 3-3. For example DATE_FORMAT default's to "N j, Y" (e.g., Jan 1, 2018), DATETIME_FORMAT defaults
to "Nj,Y,P" (e.g.,Jan 1,2018, 12 a.m.), SHORT_DATE_FORMAT defaults to "m/d/Y" (e.g., 01/01/2018) and
SHORT_DATETIME_FORMAT defaults to "m/d/Y P" (e.g., 01/01/2018 12 a.m.). Each date variable can be
overridden with different date strings in a project's settings.py file.

Table 3-3. Django date and time format characters

Standards based Description

characters

c Outputs ISO 8601 format (e.g., 2015-01-02T10:30:00.000123+02:00 or 2015-01-
02T10:30:00.000123 if the datetime has no timezone [i.e.,naive datetime])

r Outputs RFC 2822 formatted date (e.g., "Thu, 21 Dec 2000 16:01:07 +0200")

0] Outputs seconds since Unix epoch date--January 1 1970 00:00:00 UTC

I (Uppercase i) Outputs whether daylight savings time is in effect (e.g., '1' or '0")

Hour based characters Description

a Outputs 'a.m.’ or 'p.m.’

A Outputs 'AM' or 'PM'

f Outputs time, 12-hour hours and minutes, with minutes left off if they're zero
(e.g.,'1",'1:30")

g Outputs hour, 12-hour format without leading zeros (e.g.'1" to '12")

G Outputs hour, 24-hour format without leading zeros (e.g., '0' to '23")

h Outputs hour, 12-hour format (e.g., '01' to '12")

H Outputs hour, 24-hour format (e.g., '00' to '23")

i Outputs minutes (e.g., '00' to '59")

P Outputs time, 12-hour hours, minutes and 'a.m."/'p.m.', with minutes left off if
they're zero and the special-case strings 'midnight' and 'noon' if appropriate
(e.g., '1a.m.’, '1:30 p.m.", 'midnight’, 'noon’, '12:30 p.m.")

] Outputs seconds, 2 digits with leading zeros (e.g., '00' to '59")

u Outputs microseconds (e.g., 000000 to 999999)

Timezone characters

e

Description

Outputs timezone name. Can be in any format, or might return an empty
string, depending on datetime definition (e.g., ", 'GMT', '-500', "US/Eastern')

92

(continued)

Table 3-3. (continued)

CHAPTER 3 * DJANGO TEMPLATES

Standards based Description

characters

(0] Outputs difference in timezone to Greenwich time in hours (e.g., '+0200')

T Outputs datetime time zone (e.g., 'EST', 'MDT")

Z Outputs time zone offset in seconds. The offset for timezones west of UTC is

Day and week characters
D

1 (Lowercase L)

S

N

Month characters
b
d

o=

z B 2 38 ™

t
Year characters
L

y
Y

always negative, and for those east of UTC is always positive (e.g., -43200 to
43200)

Description

Outputs day of the week, textual, 3 letters (e.g., 'Thu','Fri')

Outputs day of the week, textual, long (e.g.,'Thursday','Friday")

Outputs English ordinal suffix for day of the month, 2 characters (e.g., 'st', 'nd’,
'rd' or 'th')

Outputs day of the week, digits without leading zeros (e.g., '0' for Sunday to '6’
for Saturday)

Outputs day of the year (e.g., 0 to 365)

Outputs the week number of the year, with weeks starting on Monday based
on ISO-8601 (e.g., 1, 53)

Outputs week-numbering year, corresponding to the ISO-8601 week number
(W)(e.g., '1999")

Description

Outputs textual month, 3 letters, lowercase (e.g., 'jan’,'feb")

Outputs day of the month, 2 digits with leading zeros (e.g., '01' to '31")
Outputs day of the month without leading zeros (e.g., '1' to '31")

Outputs month, locale specific alternative representation usually used for long
date representation (e.g., 'listopada’ for Polish locale, as opposed to 'Listopad')

Outputs month, textual, long (e.g., 'January','February")
Outputs month, 2 digits with leading zeros (e.g., '01' to '12")
Outputs month, textual, 3 letters (e.g.'Jan’,'Feb")

Outputs month without leading zeros (e.g., '1' to '12")

Outputs month abbreviation in Associated Press style (e.g., 'Jan', 'Feb', 'March',
‘May')

Outputs number of days in the given month (e.g., 28 to 31)
Description

Outputs Boolean for whether it's a leap year (e.g., True or False)
Outputs year, 2 digits (e.g., '99')

Outputs year, 4 digits (e.g., '1999')

To literally output a date character in a string statement you can use the backslash character (e.g., {{variable|
date:"jS \o\f F o"}} outputs Ist of January 2018, note the escaped \o\f)

93

CHAPTER 3 © DJANGO TEMPLATES

e time.- The time filter formats the time component of a Python datetime object. The
time filter is similar to the date filter, which uses a string to specify a time format.
For example, if a variable contains a datetime object with a time of noon the filter
statement {{variable|time:"g:1i"}} outputs 12:00. The time filter uses the same
format characters illustrated in Table 3-3 related to the time of day.

Tip If you provide no string argument to the date filter (e.g., {{variableltime}}), it defaults to the "P" string,
which comes from the default value of TIME_FORMAT.

Note The time filter can also accept a predefined time variable {{variableldate:"TIME FORMAT"}. The
predefined time is also composed of a time string based on the syntax in Table 3-3. For example, TIME_FORMAT
default's to "P" (e.g., 4 a.m.) and this can be overridden defining TIME_FORMAT in a project's settings.py file.

e timesince.- The timesince filter outputs the time that's passed between
a datetime object and the current time. The timesince filter output is expressed
in seconds, minutes, hours, days, or weeks. For example, if a variable contains the
datetime object 01/01/2018 12:00pm and the current time is 01/01/2018 3:30pm
the statement {{variable|timesince}} outputs 3 hours 30 minutes. The timesince
filter can also calculate the time that's passed between two datetime object variables
- instead of the default current time - by appending a second datetime object
argument (e.g., {{variable|timesince:othervariable}}).

e timeuntil.- The timeuntil filter outputs the time that needs to elapse from the
current time to a datetime object. The timeuntil filter output is expressed in
seconds, minutes, hours, days, or weeks. For example, if a variable contains the
datetime object 01/01/2018 10:00pm and the current time is 01/01/2018 9:00pm
the statement {{variable|timeuntil}} outputs 1 hour. The timeuntil filter can
also calculate the time that needs to elapse between two datetime object variables
- instead of the default current time - by appending a second datetime object
argument (e.g., {{variable|timeuntil:othervariable}}).

Strings, Lists, and Numbers

e add.- The add filter adds values. The add filter can add two variables or a hard-
coded value and a variable. For example, if a variable contains 5 the filter statement
{{variable|add:"3"}} outputs 8. If values can be coerced to integers - like the last
example - the add filter performs a sum, if not the add filter concatenates. For a string
variable that contains "Hello" the filter statement {{variable|add:" World"}}

outputs Hello World. For a list variable that contains ['a’,'e','i'| and another list

variable that contains ['0','u'] the filter statement {{variable|add:othervariable}}

[PE R PRI SNN]

outputs ['a','e’,'i",'o’,'u'].

e default.- The default filter is used to specify a default value if a variable is false,
doesn't exist, or is empty. For example, if a variable doesn't exist in a template,
contains False or is an empty string (') the filter statement {{variable|default:"no
value"}} outputs no value.

94

CHAPTER 3 * DJANGO TEMPLATES

default_if none.- The default filter is used to specify a default value if a

variable is None. For example, if a variable contains None the filter statement
{{variable|default if none:"No value"}} outputsNo value.Note if a variable
contains an empty string (' ') this is not considered None and the default_if none
filter does not output its argument value.

length.- The length filter is used to obtain the length of a value. For example, if
avariable contains the string latte the filter statement {{variable|length}}
outputs 5. For a list variable that contains ['a", "e", "i"] the filter statement
{{variable|length}} outputs 3.

length_is.- The length_is filter is used to evaluate if the length of a value is the
size of a given argument. For example, if a variable contains latte the tag and filter
statement {% if variable|length is:"7" %} evaluates to false. For a list variable
thatcontains ['a',"'e", 'i"] the tag and filter statement {% if variable|length_
is:"3" %} evaluates to true.

make_list.- The make list filter creates a list from a string or number. For example,
for the filter and tag statement {% with mycharlist="mocha" |make list %} the
mycharlist variable is assigned the list ['m', '0', 'c’, 'h', 'a']. For an integer variable that
contains 724 the filter and tag statement {% with myintlist=variable|make list
%} the myintlist is assigned the list ['7', '2', '4'].

yesno.- The yesno filter maps the value of a variable from True,False and None

to the strings yes,no,maybe. For example, if a variable evaluates to True the filter
statement {{variable|yesno}} outputs yes, if the variable evaluates to False the
same statement outputs no, and if the variable evaluates to None the same statement
outputs maybe. The yesno filter also accepts custom messages as arguments. For
example, if a variable evaluates to True the filter statement {{variable|yesno:"ye
a,nay,novote"}} outputs yea, if the variable evaluates to False the same statement
outputs nay, and if the variable evaluates to None the same statement outputs novote.

Numbers

divisibleby.- The divisibleby filter returns a Boolean value if a variable is
divisible by a given value. For example, if a variable contains 20 the filter statement
{{variable|divisibleby:"5"}} returns True.

filesizeformat.-The filesizeformat filter converts a number of bytes into a
friendly file size string. For example, if a variable contains 250 the filter statement
{{variable|filesizeformat}} outputs 250 bytes, if it contains 2048 the output is 2
KB, if it contains 2000000000 the output is 1.9 GB.

floatformat.- The floatformat filter rounds a floating-point number variable.
The floatformat filter can accept a positive or negative integer argument to round
a variable a specific number of decimals. If no argument is used, the floatformat
filter rounds to one decimal place, as if the argument where -1. For example,
if a variable contains 9.33253 the filter statement {{variable|floatformat}}
outputs 9.3, for the same variable {{variable|floatformat:3}} outputs
9.333 and for {{variable|floatformat:-3}} the output is 9.333; if a variable
contains 9.00000 the filter statement {{variable|floatformat}} outputs 9,
{{variable|floatformat:3}} outputs 9.000 and {{variable|floatformat:-3}}
outputs 9; and if a variable contains 9.37000 the filter statement
{{variable|floatformat}} outputs 9.4, {{variable|floatformat:3}} outputs
9.370 and {{variable|floatformat:-3}} outputs 9.370.

95

CHAPTER 3 © DJANGO TEMPLATES

o get digit.- Theget digit filter outputs the digit of a number variable, where 1 is the
last digit, 2 is the second to last digit, and so on. For example, if a variable contains 10257,
the filter statement {{variable|get digit:"1"}} outputs 7 and the filter statement
{{variable|get digit:"3"}} outputs2.]If the variable or argument is not an integer or
if the argument is less than 1, the get_digit filter outputs the original variable value.

e phone2numeric.- The phone2numeric filter converts mnemonic letters in phone
numbers to digits. For example, if a variable contains 1-800-DJANGO the filter
statement {{variable|phone2numeric}} outputs 1-800-352646. A phone2numeric
filter value doesn't necessarily need to process valid phone numbers, the filter simply
converts letters to their equivalent telephone keypad numbers.

Strings

capfirst.- The capfirst filter capitalizes the first character of a string variable. For example, if a variable
contains hello world the filter statement {{variable|capfirst}} outputs Hello world.

e cut.- The cut filter removes all values of a given argument from a string
variable. For example, if a variable contains mocha latte the filter statement
{{variable|filter:"mocha"}} outputs latte. For the same variable the filter
statement is {{variable|filter:" "}} outputs mochalatte.

e linenumbers.- The linenumbers filter adds line numbers to each string value
separated by a new line. Listing 3-15 illustrates an example of the 1inenumbers filter.

Listing 3-15. Django linenumbers filter

Variable definition
Downtown

Uptown

Midtown

Template definition with linenumbers filter
{{variable|linenumbers}}

Output
1.Downtown
2.Uptown
3.Midtown

e lower.- The lower filter converts all values of a string variable to lowercase. For
example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs hello world.

e stringformat.- The stringformat filter formats a value with Python string
formatting syntax. For example, if a variable contains 7 the filter statement {{var
iable|stringformat:"03d"}} outputs 007. Note the stringformat filter does not
require the leading % used in Python string formatting syntax.

*https://docs.python.org/3/1ibrary/stdtypes.html#old-string-formatting

96

https://docs.python.org/3/library/stdtypes.html#old-string-formatting

CHAPTER 3 * DJANGO TEMPLATES

pluralize.- The pluralize filter returns a plural suffix based on the value of an
argument. For example, if the variable drink_count contains 1 the filter statement
"You have {{drink count}} drink{{pluralize|drink count}}" outputs

"You have 1 drink", if the variable contains 2 the same filter statement outputs
"You have 2 drinks".By default, the pluralize filter uses the letter s which is

the most common plural suffix. However, you can specify different singular and
plural suffixes with additional arguments. For example, the filter statement "We
have {{store count}} business{{store count|pluralize:"es"}}" outputs
"We have 1 business"ifstore countislor "We have 5 businesses" if store_
count is 5. Another example is the filter statement "We have {{resp number}}
responsibilit{{resp number|pluralize:"y","ies"}}" that outputs "We have 1
responsibility" if resp_numberis1or "We have 3 responsibilities"ifresp
number is 3.

slugify.- The slugify filter converts a string to an ASCII-type string. This means a
string in converted to lowercase, removes non-word characters (alphanumerics and
underscores), strips leading and trailing whitespace, as well as converts spaces to
hyphens. For example, if a variable contains Welcome to the #1 Coffeehouse! the
filter statement {{variable|slugify}} outputs welcome-to-the-1-coffeehouse.
The slugify filter is typically used to normalize strings for urls and file paths.

title.- The title filter converts all first character values of a string variable to
uppercase. For example, if a variable contains hello world the filter statement
{{variable|title}} outputs Hello World.

truncatechars.- The truncatechars filter truncates a string to a given number
of characters and appends an ellipsis sequence. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatechars:20}} outputs Coffeehouse started....

truncatechars_html.- The truncatechars_html filter is similar to the
truncatechars filter but is aware of HTML tags. This filter is designed for HTML
content, so content isn't left with open HTML tags. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncachars_html:20}} outputs Coffeehouse start....

truncatewords.- The truncatewords filter truncates a string to a given
number of words and appends an ellipsis sequence. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatwords:3}} outputs Coffeehouse started as....

truncatewords_html.- The truncatewords_html filter is similar to the
truncatewords filter but is aware of HTML tags. This filter is designed for HTML
content, so content isn't left with open HTML tags. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatwords _html:3}} outputs Coffeehouse started as....

upper.- The upper filter converts all values of a string variable to uppercase. For
example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs HELLO WORLD.

wordcount.- The wordcount filter counts the words in a string. For example, if a
variable contains Coffeehouse started as a small store the filter statement
{{variable|wordcount}} outputs 6.

97

CHAPTER 3 © DJANGO TEMPLATES

Lists and Dictionaries

dictsort.- The dictsort filter sorts a list of dictionaries and returns a new list sorted
by a given key argument. For example, if a variable contains [{ 'name" : 'Downtown’,
city':"'San Diego'}, {'name':'Uptown','city':'San Diego'},{"'name’:'Midto
wn','city':'San Diego'}] the filter and tag statement {% with newdict=variable
|dictsort:"name" %} the newdict variable is assigned the list [{'name" : 'Downtown
','city':"'San Diego'},{ 'name':'Midtown','city"':"'San Diego'},{ 'name':'Up
town', 'city':'San Diego'}]. The dictsort filter can also operate on lists of tuples
or lists by specify an index number (e.g., {% with otherlist=1listoftuples|dictso
rt:0 %})to sort by the first element of each tuple in the list).

dictsortreversed.- The dictsortreversed filter sorts a list of dictionaries and
returns a new list sorted in reverse by a given key argument. The dictsortreversed
filter works like dictsort except it returns the list in reverse order.

join.- The join filter joins a list with a string. The join filter works just like Python's
str.join(1list). For example, for a list variable that contains ['a’,'e",'i','0’,"u’] the
filter statement {{variable|join:"--"}} outputs a--e--i--o--u.

first.- The first filter returns the first item in a list. For example, for a list variable

(PR PR RIS N]

that contains ['a’,'e’,'i','0','u'] the filter statement {{variable|first}} outputs a.

last.- The last filter returns the last item in a list. For example, for a list variable that

(P N TN S A I

contains ['a’,'e",'l','0’,'u'] the filter statement {{variable|last}} outputs u.

random.- The randonm filter returns a random item in a list. For example, for a list

variable that contains ['a','e','i','0",'u'] the filter statement {{variable|random}}
could output a, e, i, 0, or u.

slice.- The slice filter returns the slice of a list. For example, for a list variable that

(PR SR R BN] (NEIRET]

contains ['a,'e",'i','0’,'u'] the filter statement {{variable|slice:":3"}} outputs ['a''e','i'].

unordered list.- The unordered list outputs an HTML unordered list from a list
variable. Listing 3-16 illustrates an example of the unordered_list filter.

Listing 3-16. Django unordered_list filter

Variable definition
["Stores",["San Diego",["Downtown","Uptown","Midtown"]]]

Template definition with linenumbers filter
{{variable|unordered list}}

Output
Stores

San Diego

Downtown</1i>
Uptown</1i>
Midtown</1i>

</1i>

</1i>

98

CHAPTER 3 * DJANGO TEMPLATES

Caution

The first level of the unordered_list filter does not include opening or closing HTML tags

Spacing and Special Characters

addslashes.- The addslashes filter adds slashes to all quotes (i.e., it escapes quotes).
The addslashes filter is useful when Django templates are used to export data to
other systems that require to escape quotes (e.g., CSV files). For example, if a variable
contains Today's news the filter statement {{variable|addslashes}} outputs
Today\'s news.

center.- The center filter center aligns a value and pads it with additional
whitespace characters until it reaches the given argument of characters. For example,
if a variable contains mocha the filter statement {{variable|center:"15"}} outputs.

"mocha". (i.e., 5 spaces to the left of mocha, 5 spaces for mocha, 5 spaces to the right
of mocha.

1just.- The 1just filter left aligns a value and pads it with additional whitespace
characters until it reaches the given argument of characters. For example, if a
variable contains mocha the filter statement {{variable|1ljust:"15"}} outputs.

"mocha".(i.e., 5 spaces for mocha, 10 space padding).

rjust.- The rjust filter right aligns a value and pads it with additional whitespace
characters until it reaches the given argument of characters. For example, if a
variable contains latte the filter statement {{variable|rjust:"10"}} outputs.

"latte"."(i.e., 5 space padding, 5 spaces for latte).

escape.- The escape filter escapes HTML characters from a value. Specifically
with the escape filter: < is converted to &1t; ,> is converted to 8gt; ," (single
quote) is converted to ' ," (double quote) is converted to " and & is
converted to &.

Tip

If you use the escape filter on contiguous variables, it's easier to wrap the variables with the

{% autoescape %]} tag to achieve the same results.

escapejs.- The escapejs filter escapes characters into Unicode strings that are
often used for JavaScript strings. Though the escapejs filter does not make a string
HTML safe, it does protect against syntax errors when using templates to generate
JavaScript/JSON. For example, if a variable contains "mocha\r\n \'price:2.25"
the filter statement {{variable|escapejs}} outputs \uo022mocha\uo0oD\u000A \
u0027price:2.25\u0022.

force_escape.- The force_escape filter escapes HTML characters from a value
just like the escape filter. The difference is force_escape is applied immediately
and returns a new and escaped string. This is useful when you need multiple
escaping or want to apply other filters to the escaped results. Normally, you'll use
the escape filter.

99

CHAPTER 3 © DJANGO TEMPLATES

e linebreaks.- The linebreaks filter replaces plain text line breaks with HTML tags,
a single newline becomes an HTML line break (
), and a new line followed by
a blank line becomes a paragraph break (</p>). For example, if a variable contains
385 Main\nSan Diego, CA the filter statement {{variable|linebreaks}} outputs
<p>385 Main
San Diego, CA</p>.

e linebreaksbr.- The linebreaksbr filter converts all text variable new lines to HTML
line breaks (
). For example, if a variable contains 385 Main\nSan Diego, CAthe
filter statement {{variable|linebreaksbr}} outputs 385 Main
San Diego, CA.

e striptags.- The striptags filter removes all HTML tags from a value. For example,
if a variable contains Coffeehouse, the <i>best</i> drinks</
span> the filter statement {{variable|striptags}} outputs Coffeehouse, the
best drinks.

Caution The striptags filter uses very basic logic to strip HTML tags. This means there’s a possibility
a convoluted piece of HTML isn’t fully stripped of tags. This is why content in variables passed through the
striptags filter is automatically escaped and should never be marked as safe.

e safe.- The safe filter marks a string as not requiring HTML escaping.

e safeseq.- The safeseq applies the safe filter to each element of a list. It's useful
in conjunction with other filters that operate on a list, such as the join filter (e.g.,
{{stores|safeseq|join:", "}}).Youwouldn't use the safe filter directly on list
variables, as it would first convert the variable to a string, rather than working with
the individual elements of a list.

e wordwrap.- The wordwrap filter wraps words at a given character line length
argument. Listing 3-17 illustrates an example of the wordwrap filter.

Listing 3-17. Django wordwrap filter
Variable definition
Coffeehouse started as a small store

Template definition with wordwrap filter for every 12 characters
{{variable|wordwrap:12}}

Output

Coffeehouse
started as a
small store

Development and Testing

e pprint.- The pprint filter is a wrapper for Python's pprint.pprint(). The pprint
filter is useful during development and testing because it outputs the formatted
representation of an object.

100

Urls

CHAPTER 3 * DJANGO TEMPLATES

iriencode.- The iriencode filter converts an Internationalized Resource
Identifier (IRI) to a string that is suitable for inclusion in a URL. This is necessary
if you're trying to use strings containing non-ASCII characters in a URL. For
example, if a variable contains ?type=cold&size=1arge the filter statement
{{variable|iriencode}} outputs ?type=coldamp;size=1arge.

urlencode.- The urlencode filter escapes a value for use in a URL. For example, if
avariable contains http://localhost/drinks?type=cold&size=1arge the filter
statement {{variable|urlencode}} outputs http%3A//localhost/drinks%3Ftype%
3Dcold%26size%3Dlarge. The urlenconde filter assumes the / character is safe. The
urlencode filter can accept an optional argument with the characters that should not
be escaped. An empty string can be provided when all characters should be escaped
(e.g., {{variable|urlencode:""}} outputs http%3A%2F%2Flocalhost%2Fdrinks%3Ft
ype%3Dcold%26size%3Dlarge).

urlize.- The urlize filter converts text URLs or email addresses into clickable HTML
links. This urlize filter works on links prefixed with http://, https://, or www.. Links
generated by the urlize filter have a rel="nofollow" attribute added to them. For
example, if a variable contains Visit http://localhost/drinks the filter statement
{{variable|urlize}} outputs Visit <a href="http://localhost/drinks"
rel="nofollow">http://localhost/drinks; if a variables contains Contact
support@coffeehouse.com the filter statement {{variable|urlize}} outputs
Contact support@coffeehouse.
com.

urlizetrunc.- The urlizetrunc filter converts text URLs and emails into
clickable HTML links - just like the urlize filter - except it truncates the url to
a given number of characters that include an ellipsis sequence. For example,
if a variable contains Visit http://localhost/drinks the filter statement
{{variable|urlizetrunc:20}} outputs Visit <a href="http://localhost/
drinks" rel="nofollow">http://localhost/....

Caution

The urlize and urlizetrunc filters should only be applied to variables with plain text. If applied to

variables with HTML links, the filter logic won’t work as expected.

Built-In Django Tags

Django offers several built-in tags that offer immediate access to elaborate operations on Django templates.
Unlike Django filters that operate on individual variables, tags are designed to produce results without a
variable or operate across template sections.

I'll classify each of these built-in tags into functional sections so it's easier to identify them. The
functional classes I'll use are Dates, forms, comparison operations, loops, Python and filter operations,
spacing and special characters, template structures, development and testing, and urls.

101

CHAPTER 3 © DJANGO TEMPLATES

Dates

e {% now %}.- The {% now %} tag offers access to the current system time. The {% now
%} tag accepts a second argument to format the system date. For example, if the
system date is 01/01/2015 for the statement {% now "F jS o" %} the tag output is
January 1st 2015. The string syntax for the {% now %} tagis based on Django date
characters described in Table 3-3. It's also possible to use the as keyword to reuse
the value through a variable(e.g. {% now "Y" as current_year %} and laterin the
template declare Copyright {{current year}}).

Tip The {% now %]} tag can accept Django date variables: {% now "DATE_FORMAT" %}, {% now
"DATETIME_FORMAT" %}, {% now "SHORT_DATE_FORMAT" %}, or {% now "SHORT_DATETIME_FORMAT"}.

The date variables in themselves are also composed of date strings. For example DATE_FORMAT default's to "N

i, Y" (e.g., Jan 1, 2015), DATETIME_FORMAT defaults to "N j, Y, P" (e.g., Jan 1, 2015, 12 a.m.), SHORT_DATE_
FORMAT defaults to "m/d/Y" (e.g., 01/01/2015) and SHORT_DATETIME_FORMAT defaults to "m/d/Y P" (e.g.,
01/01/2015 12 a.m.). Each date variable can be overridden with different date strings in a project's settings.py file.

Forms

o {% csrf _token %}.- The {% csrf token %} tagprovides a string to prevent cross
site scripting. The {% csrf _token %} tagis only intended to be used inside HTML
<formy tags. The data output of the {% csrf token %} tag allows Django to prevent
request forgeries (e.g., HI'TP POST requests) from form data submissions. More
details about the {% csrf token %} tagare provided in the Django form chapter.

Comparison Operations

o {% if %} with{% elif %} {% else %}.- The {% if %} tagis typically used in
conjunction with the {% elif %} and {% else %} tags to evaluate more than one
condition. An {% if %} tag with an argument variable evaluates to true if a variable
exists and is not empty or if the variable holds a True Boolean value. Listing 3-18
illustrates a series of {% if %} tag examples.

Listing 3-18. Django {% if %} tag with {% elif %} and {% else %}

{% if drinks %} {% if drinks %} {% if drinks %}
We have drinks! We have drinks We have drinks
{% endif %} {% else %} {% elif drinks_on_sale %}
No drinks,sorry We have drinks on sale!
{% endif %} {% else %}

No drinks, sorry
{% endif %}

Note A variable must both exist and not be empty to evaluate to true. A variable that just exists and is
empty evaluates to false.

102

CHAPTER 3 * DJANGO TEMPLATES

o {% if %} with and, or and not operators.- The {% if %} tagalso supports the and,
or, and not operators to create more elaborate conditions. These operators allow
you to compare if more than one variable is not empty (e.g., {% if drinks and
drinks_on_sale %}), if one or another variable is not empty (e.g., {% if drinks or
drinks on_sale %}), orif a variable is empty (e.g., {% if not drinks %}).

o {% if %} with ==, !5, <, >, <=and >= operators.- The {% if %} tagalso supports
equal, not equal, larger than and less than operators to create conditions that
compare variables to fixed strings or numbers. These operators allow you to compare
if a variable equals a string or number (e.g., {% if drink == "mocha" %}),ifa
variable does not equal a variable or number (e.g., {% if store.id != 2 %})orifa
variable is greater than or lesser than a number (e.g., {% if store.id > 5 %}).

o {% firstof %}.- The {% firstof %} tagis a shorthand tag to output the first
variable in a set of variables that's not empty. The same functionality of the {%
firstof %} tagisachieved by nesting {% if %} tags. Listing 3-19 illustrates a sample
of the {% firstof %} tag, aswell as an equivalent set of nested {% if %} tags.

Listing 3-19. Django {% firstof %} tag and equivalent {% if %}{% elif %}{% else %} tags

Firstof example
{% firstof vari var2 var3 %}

Equivalent of firstof example
{% if var1i %}
{{var1|safe}}
{% elif var2 %}
{{var2|safe}}
{% elif var3 %}
{{var3|safe}}
{% endif %}

Firstof example with a default value in case of no match (i.e, all variables are empty)
{% firstof vari var2 var3 "All vars are empty" %}

Assign the firstof result to another variable
{% firstof varl var2 var3 as resultof %}
resultof now contains result of firstof statement

o {% if <value> in %}and{% if <value> not in %}.- The {% if %} tagalso
supports the in and not in operators to verify the presence of a constant or variable.
For example {% if "mocha"™ in drinks %} tests if the value "mocha" is in the drinks
list variable or {% if 2 not in stores %} tests if the value 2 is not in the stores
list variable. Although the in and not in operators are commonly used to test list
variables, it's also possible to test the presence of characters on strings (e.g., {% if

m" in drink %}).In addition, it's also possible to compare if the value of one
variable is present in another variable (e.g., {% if order drink in drinks %}).

o {% if <value> is <value> %}and{% if <value> is not %}.- The {% if %} tag
also supports the is and is not operators to make object-level comparisons. For
example {% if target_drink is None %} tests if the value target_drinkis a None
objector {% if daily special is not True %} testsif the value daily specialis
not True.

103

CHAPTER 3 © DJANGO TEMPLATES

o {% if value|<filter> <condition> <value> %} .- The {% if %} tagalso
supports applying filters directly on a value and then performing an evaluation. For
example, {% if target drink list|random == user drink %}Congratulations
your drink just got selected!{% endif %} uses the random filter directly in a
condition.

PARENTHESES ARE NOT ALLOWED IN IF TAGS: OPERATOR
PRECEDENCE GOVERNS, USE NESTED IF TAGS TO ALTER
PRECEDENCE

Comparison operators are often aggregated into single statements (e.g., if...<...or...>...and...==...) and
follow a certain execution precedence. Django follows the same operator precedence as Python.5 So,
for example, the statement {% if drink in specials or drink == drink_of_the_day %]} gets evaluated as
((drink in specials) or (drink == drink_of_the_day)), where the internal parentheses operations are run
first, since in and == have higher precedence than or.

In Python you can alter this precedence by using explicit parentheses in comparison statements.
However, Django does not support the use of parentheses in {% if %} tags, you must either rely on
operator precedence or use nested {% if %} statements to declare the same logic produced by explicit
parentheses.

Loops

o {% for %}and{% for %} with {% empty %}.- The {% for %} tagiterates over items
on a dictionary, list, tuple, or string variable. The {% for %} tagsyntaxis{% for
<reference> in <variable> %}, where reference is assigned a new value from
variable on each iteration.

Depending on the nature of a variable there can be one or more references (e.g., for a list one reference
{% for item in list %}, for a dictionary two references {% for key,value in dict.items %}).In
addition, it’s also possible to invert the loop sequence with the reversed keyword (e.g., {% for item in
list reversed %}). The {% for %} tagalso supports the {% empty %} tag which is processed in case there
are no iterations in a loop (i.e., the main variable is empty). Listing 3-20 illustrates a {% for %} anda {% for
%} and {% empty %} loop example.

Listing 3-20. Django {% for %} tag and {% for %} with {% empty %}

{% for drink in drinks %} {% for storeid,store in stores %}

{{ drink.name }}</1i> {{store.name}}

</1i>

{% empty %} {% endfor %}

No drinks, sorry

{% endfor %}

https://docs.python.org/3/reference/expressions.html#evaluation-order

104

https://docs.python.org/3/reference/expressions.html#evaluation-order

The {%

CHAPTER 3 * DJANGO TEMPLATES

for %} tag also generates a series of variables to manage the iteration process, such as an

iteration counter, a first iteration flag, and a last iteration flag. These variables can be useful when you want
to create behaviors (e.g., formatting, additional processing) on a given iteration. Table 3-4 illustrates the
{% for %} tagvariables.

Table 3-4. Django {% for %} tag variables

Variable Description

forloop.counter The current iteration of the loop (1-indexed)

forloop.counter0 The current iteration of the loop (0-indexed)
forloop.revcounter The number of iterations from the end of the loop (1-indexed)
forloop.revcounter0 The number of iterations from the end of the loop (0-indexed)

forloop.first

forloop.last

True if it's the first time through the loop
True if it's the last time through the loop

forloop.parentloop For nested loops, this is the parent loop to the current one

{% ifchanged %}.- The {% ifchanged %} tagis a special logical tag used inside {%
for %} tags. Sometimes it's helpful to know if a loop reference has changed from one
iteration to the other (e.g., to insert a new title). The argument for the {% ifchanged
%} tag is the loop reference itself (e.g.{% ifchanged drink %}{{drink}} section{%
endifchanged %}) or a part of the reference (e.g., {% ifchanged store.name %}
Available in {{store.name}}{% endifchanged %}). The {% ifchanged %} tag
also support the use of {% else %} tag(e.g., {% ifchanged drink %}{{drink.
name}}{% else %}Same old {{drink.name}} as before{% endifchanged %}).

{% cycle %}.- The {% cycle %} tagisused inside {% for %} tags to iterate over a
given set of strings or variables. One of the primary uses of the {% cycle %} tagis

to define CSS classes so each iteration receives a different CSS class. For example, if
you want assign different CSS classes to a list so each line appears in different colors
(e.g., white, gray, white, gray) you can use <1i class="{% cycle 'white' 'grey'
%}">, in this manner on each loop iteration the class value alternates between white
and gray. The {% cycle %} tag can iterate sequentially over any number of strings or
variables (e.g., {% cycle varl var2 'red' %}).

By default, a {% cycle %} tag progresses through its values on the basis of its enclosing loop (i.e., one by
one). But under certain circumstances, you may need to use a {% cycle %} tag outside of a loop or explicitly
declare howa {% cycle %} tag advances. You can achieve this behavior by naming the {% cycle %} tagwith
the as keyword, as illustrated in Listing 3-21.

Listing 3-21. Django {% cycle %} with explicit control of progression

<1i class=

"{% cycle 'disc' 'circle' 'square' as bullettype %}">...</1i>

<1i class="{{bullettype}}">...</1i>
<1i class="{{bullettype}}">...</1i>

<1li class=

“{% cycle bullettype %}">...</1i>

<1li class="{{bullettype}}">...</1i>

<1i class=
Outputs

"{% cycle bullettype %}">...</1i>

105

CHAPTER 3 © DJANGO TEMPLATES

<1li class=
<1i class=
<1i class=
<1i class=
<1li class=
<1li class=

"disc">...</1i>
"disc">...</1i>
"disc">...</1i>
"circle">...</1i>
"circle">...</1i>
"square">...</1i>

Asyou can see in Listing 3-21, the {% cycle %} tag statement initially produces the first value and
afterwards you can continue using the cycle reference name to output the same value. In order to advance
to the next value in the cycle, you call the {% cycle %} once more with the cycle reference name. A minor
side effect of the {% cycle %} tagis that it outputs its initial value where it’s declared, something that can be
problematic if you plan to use the cycle as a placeholder or in nested loops. To circumvent this side effect,
you can use the silent keyword after the cycle reference name (e.g., {% cycle 'disc' 'circle' 'square’
as bullettype silent %}).

{% resetcycle %}.- The {% resetcycle %} tagisusedis to reinitiate a {% cycle %}
tag to its first element. A {% cycle %} tagalways loops over its entire set of values
before returning to its first one, something that can be problematic in the context

of nested loops. For example, if you want to assign three color codes (e.g.{% cycle
'red' 'orange' 'yellow' %}) to nested groups, the first group can consist of two
elements that use up the first two cycle values (e.g., 'red' 'orange'), which means

the second group starts on the third color code (e.g., 'yellow'). In order for the
second group to start with the first {% cycle %} element again, you can use the

{% resetcycle %} tagafter a nested loop iteration finishes so the {% cycle %} tag
returns to its first element.

{% regroup %}.- The {% regroup %} tagis used to rearrange the contents of a
dictionary variable into different groups. The {% regroup %} tag avoids the need to
create complex conditions inside a {% for %} tag to achieve the desired display. The
{% regroup %} tag arranges the contents of a dictionary beforehand, making the {%
for %} taglogic simpler. Listing 3-22 illustrates a dictionary with the use of the {%
regroup %} tag along with its output.

Listing 3-22. Django {% for %} tag and {% regroup %}

Dictionary definition

stores = [

{"name":
{"name":

{"name":

{"name":

{"name":

{"name":

]

Template
{% regroup

'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},
"Uptown', 'street': '231 Highland Avenue', 'city': 'San Diego'},
'Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
'Downtown', 'street': '639 Spring Street', 'city': 'Los Angeles'},
'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
'Downton’, ‘street': '50 1st Street', 'city': 'San Francisco'},

definition with regroup and for tags
stores by city as city list %}

{% for city in city list %}

<lix{{

{%

106

city.grouper }}

for item in city.list %}

{{ item.name }}: {{ item.street }}

{% endfor %}

</1i>
{% endfor %}

Output
San Diego
Downtown : 385 Main Street
Uptown : 231 Highland Avenue
Midtown : 85 Balboa Street
Los Angeles
Downtown: 639 Spring Street
Midtown: 1407 Broadway Street
San Francisco
Downtown: 50 1st Street

CHAPTER 3 * DJANGO TEMPLATES

Tip The {% regroup %} tag can also use filters or properties to achieve grouping results. For example, the
stores list in 3-22 is conveniently preordered by city making grouping by city automatic, but if the stores list
were not preordered, you would need to sort the list by city first to avoid fragmented groups, you can use a
dictsort filter directly (e.g., {% regroup storesldictsort:'city' by city as city_list %}). Another possibility of the
{% regroup %} tag is to use nested properties if the grouping object has them (e.qg., if city had a state property

{% regroup stores by city.state as state_list %}).

Python and Filter Operations

o {% filter %}.- The{% filter %} tagis used to apply Django filters to template
sections. If you declare {% filter lower %} the lower filter is applied to all
variables between this tag and the {% endfilter %} tag - note the filter lower
converts all content to lowercase. It’s also possible to apply multiple filters to the
same section using the same pipe technique to chain filters to variables (e.g., {%
filter lower|center:"s50" %}...variables to convert to lower case and

center...{% endfilter %}).

o {% with %}.- The {% with %} taglets you define variables in the context of Django
templates. It's useful when you need to create variables for values that aren't exposed
by a Django view method or when a variable is tied to a heavyweight operation. It’s
also possible to define multiple variables in the same {% with %} tag (e.g., {% with
drinkwithtax=drink.cost*1.07 drinkpromo=drink.cost*0.85 %}). Each variable
defined in a {% with %} tagis made available to the template until the {% endwith

%} tag is reached.

107

CHAPTER 3 © DJANGO TEMPLATES

PYTHON LOGIC ONLY ALLOWED BEHIND THE SCENES IN CUSTOM

DJANGO TAGS OR FILTERS

Django templates don't allow the inclusion of inline Python logic. In fact, the closest thing Django
templates allow to inline Python logic is through the {% with %} tag, which isn't very sophisticated.

The only way to make custom Python logic work in Django templates is to embed the code inside a

custom Django tag or filter. This way you can place a custom Django tag or filter on a template and the
Python logic runs behind the scenes. The next section describes how to create custom Django filters.

Spacing and Special Characters

{% autoescape %}.- The {% autoescape %} tagis used to escape HTML characters
from a template section. The {% autoescape %} accepts one of two arguments on
or off. With {% autoescape on %} all template content between this tag and the

{% endautoescape %} tagis HTML escaped and with {% autoescape off %} all
template content between this tag and the {% endautoescape %} tag is not escaped.

Tip

If you want to enable or disable auto-escaping globally (i.e., on all templates), it's easier to disable it
at the project level using the autoescape field in the OPTIONS variable in the TEMPLATES configuration, inside a

project's settings.py file, as described in the first section of this chapter.

If you want to enable or disable auto-escaping on individual variables, you can either use the safe filter to
disable auto-escaping on a single Django template variable or the escape filter to escape a single Django

template variable.

108

{% spaceless %}.- The {% spaceless %} tag removes whitespace between HTML
tags, including tab characters and newlines. Therefore all HTML content contained
within the {% spaceless %} and {% endspaceless %} becomes more compact.
Note the {% spaceless %} tagonly removes space between HTML tags, it does not
remove space between text and HTML tags (e.g., <p> my span
</p>, only the space between <p> and </p> tags is removed, the
space between tags that pads the myspan string remains).

{% templatetag %}.- The {% templatetag %} tagis used to output reserved Django
template characters. So if by any chance you want to display any of the characters

{% %}, {{, }}, {, }, {# or #} verbatim on a template you can. The {% templatetag %}
is used in conjunction with one of eight arguments to represent Django template
characters. {% templatetag openblock %} outputs {%, {% templatetag closeblock
%} outputs %}, {% templatetag openvariable %} outputs {{, {% templatetag
closevariable %} outputs }}, {% templatetag openbrace %} outputs {, {%
templatetag closebrace %} outputs }, {% templatetag opencomment %} outputs
{#and {% templatetag closecomment %} outputs#}. A simpler approach is to wrap
reserved Django characters with the {% verabtim %} tag.

CHAPTER 3 * DJANGO TEMPLATES

{% verbatim %}.- The {% verbatim %} tag is used to isolate template content from
being processed. Any content inside the {% verbatim %} tagand {% endverbatim
%} tag is bypassed by Django. This means special characters like {{ , variable
statements like {{drink}}, or JavaScript logic that uses special Django characters is
ignored and rendered verbatim. If you need to output individual special characters
use the {% templatetag %} tag.

{% widthratio %}.- The {% widthratio %} tagisused to calculate the ratio of
avalue to a maximum value. The {% widthratio %} tagis helpful for displaying
content that is fixed in width but requires to be scaled based on the amount of
available space, such as the case with images and charts. For example, given the
statement <img src="logo.gif" style="width:{% widthratio available width
image_width 100 %}%"/>,if the available_widthis 75 and image width is 150

it results in 0.50 multiplied by 100, which results in 50. This image's width ratio is
calculated based on the available space and image size, in this case the statement is
rendered as: .

{% lorem %}.- The {% lorem %} tagis used to display random Latin text, which is
useful for filler on templates. The {% lorem %} tag supports up to three parameters
{% lorem [count] [method] [random] %}. Where [count] is a number or variable
with the number of paragraphs or words to generate, if not provided the default
[count] is 1. Where [method] is either w for words, p for HTML paragraphs, or b for
plain-text paragraph blocks, if not provided the default [method] is b. And where the
word random (if given) outputs random Latin words, instead of a common pattern
(e.g., Lorem ipsum dolor sit amet...).

Template Structures

{% block %}.- The {% block %} tagisused to define page sections that can be
overridden on different Django templates. See the previous section in this chapter on
how to create reusable templates for examples of this tag.

{% comment "Optional explanation" %}.- The {% comment %} tagisused to

define comment sections on Django templates. Any content placed between the {%
comment %} and {% endcomment %} tagis bypassed by Django and doesn't appear in
the final rendered web page. Note the string argument in the opening {% comment %}
tag is optional, but helps clear up the purpose of the comment.

{# #}.- The {# #} syntax can be used for a single line comment on Django
templates. Any content placed between {# and #} in a single line is bypassed by
Django and doesn't appear in the final rendered web page. Note that if the comment
spans multiple lines you should use the {% comment %} tag.

{% extends %}.- The {% extends %} tagis used to reuse the layout of another
Django template. See the previous section in this chapter on creating reusable
templates for examples of this tag.

{% include %}.- The {% include %} tagis used to embed a Django template on
another Django template. See the previous section in this chapter on creating
reusable templates for examples of this tag.

{% load %}.- The {% load %} tagis used to load custom Django tags and filters. The
{% load %} tag requires one or multiple arguments to be the names of the custom
Django tags or filters. The next section of this chapter describes how to create custom
filters and how to use the {% load %} tag.

109

CHAPTER 3 © DJANGO TEMPLATES

Tip If you find yourself using the {% load %} tag on many templates, you may find it easier to register
Django tags and filters with the builtins option in TEMPLATES so they become accessible on all templates as if
they were built in. See the first section in this chapter on template configuration for more details.

Development and Testing

o {% debug %}.- The {% debug %} tag outputs debugging information that includes
template variables and imported modules. The {% debug %} tagis useful during
development and testing because it outputs 'behind the scenes' information used by
Django templates.

Urls

o {% url %}.- The {% url %} tagis used to build urls from predefined values in a
project's urls.py file. The {% url %} tagis useful because it avoids the need to
hard-code urls on templates, instead it inserts urls based on names. The {% url %}
tag accepts a url name as its first argument and url parameters as subsequent
arguments.

For example, if a url points to /drinks/index/ and is named drinks_main, you can use the {% url %} to
reference this url (e.g., Go to drinks home page);ifa url points
to /stores/1/ and is named stores_detail you can use the {% url %} with an argument to reference this url
(e.g., Go to {{store.name}} page).

The {% url %} tagalso supports the as keyword to define the result as a variable. This allows the result
to be used multiple times or at a point other than where the {% url %} tagis declared (e.g., {% url drink _
detail drink.name as drink on the day%}..later in the template
Drink of the day).Chapter 2 describes this process to name Django url's for easier management and
reverse matches in greater detail.

Custom Filters

On occasions, Django built-in filters fall short in terms of the logic or output they offer. In these
circumstances, the solution is to write a custom filter to achieve the outcome you require.

The logic behind Django filters is entirely written in Python, so whatever is achievable with Python &
Django (e.g., perform a database query, use a third-party REST service) can be integrated as part of the logic
or output generated by a custom filter.

Structure

The simplest custom Django filter only requires you to create a standard Python method and decorate it with
@register.filter() asillustrated in Listing 3-23.

110

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

CHAPTER 3 * DJANGO TEMPLATES

Listing 3-23. Django custom filter with no arguments

from django import template
register = template.Library()

@register.filter()

def boldcoffee(value):
""'Returns input wrapped in HTML tags'''
return '%s" % value

Listing 3-23 first imports the template package and creates a register reference to decorate the
boldcoffee method and tells Django to create a custom filter out of it.

By default, a filter receives the same name as the decorated method. So in this case, the boldcoffee
method creates a filter named boldcoffee. The method input value represents the input of the filter caller.
In this case, the method simply returns the input value wrapped in HTML tags, where the syntax used in
the return statement is a standard Python string format operation.

To apply this custom filter in a Django template you use the syntax {{byline|boldcoffee}}. The
byline variable is passed as the value argument to the filter method, so if the byline variable contains the
textOpen since 1965! the filter output is Open since 1965!.

Django custom filters also support the inclusion of arguments, as illustrated in Listing 3-24.

Listing 3-24. Django custom filter with arguments

@register.filter()

def coffee(value,arg="muted"):
""'Returns input wrapped in HTML tags with a CSS class'''
""'Defaults to CSS class 'muted' from Bootstrap'''
return '%s' % (arg,value)

The filter method in Listing 3-24 has two input arguments. The value argument that represents the
variable on which the filter is applied and a second argument arg="muted" where "muted" represents a
default value. If you look at the return statement you'll notice it uses the arg variable to define a class
attribute and the value variable is used to define the content inside a tag.

If you call the custom filter in Listing 3-24 with the same syntax as the first custom filter (e.g.,
{{byline|coffee}}) the output defaults to using "muted" for the arg variable and the final output is Open since 1965!.

However, you can also call the filter in Listing 3-24 using a parameter to override the arg variable.
Filter parameters are appended with :. For example, the filter statement {{byline|coffee:"lead muted"}}
assigns "lead muted" as the value for the arg variable and produces the output <span class="lead
muted">Open since 1965!.

Parameters provide more flexibility for custom filters because they can further influence the final output
with data that's different than the main input.

Tip Incase a filter requires two or more arguments, you can use a space-separated or CSV-type string
parameter in the filter definition (e.g., bylinelmymultifilter:"18,success,green,2em") and later parse the string
inside the filter method to access each parameter.

111

CHAPTER 3 © DJANGO TEMPLATES

Options: Naming, HTML, and What Comes In and Out

Although the two previous examples illustrate the core structure of custom filters, they are missing a series
of options that make custom filters more flexible and powerful. Table 3-5 illustrates a series of custom filter
options, along with their syntax and a description of what it is they do.

Table 3-5. Custom filter options.

Option syntax Values Description
@register.filter Astingtoname Assigns a filter name different from the filter method
(name=<method_name>) the filter name.
@register.filter(is_safe=False) True/False Defines how to treat a filter’s return value
(safe or with auto-escape).
@register.filter True/False Defines the need to access the auto-escaping status
(needs_autoescape=False) of the caller (i.e., whether the filter is called in a
template with or without auto-escaping).
@register.filter True/False If the filter is applied on a datetime value, it converts
(expects_localtime=False) the value to the project timezone, before running
the filter logic.
@register.filter() N/A Stand-alone decorator that casts input to string.
@stringfilter

Asyou can see in Table 3-5, with the exception of one option, all custom filter options are offered by
arguments of the @register.filter() decorator and include default values. So even if you declare an
empty @register.filter() decorator, four out of five options in Table 3-5 operate with default values. Note
it’s possible to add multiple options to the @register.filter () decorator separated by commas (e.g., @
register.filter(name="myfilter',is safe=True)).

Let’s talk about the name option in Table 3-5. By default and as you learned in the previous examples,
custom filters receive the same name as the method they decorate (i.e., if the backing method of a custom
filter is named coffee, the filter is also called coffee). The name option allows you to give a filter a different
name than the backing method name. Note that if use the name option and try to call the filter with the
method name, you'll get an error because the filter doesn't exist by method name anymore.

All custom filters operate on input provided by variables that can potentially be any Python type (string,
integer, datetime, list, dictionary, etc.). This creates a multitude of possibilities that must be handled in the
logic of a custom filter; otherwise errors are bound to be common (e.g., a call is made to a filter with an
integer variable, but the internal filter logic is designed for string variables). To alleviate these potential input
type issues, custom filters can use the last two options presented in Table 3-5.

The expects_localtime option in Table 3-5 is designed for filters that operate on datetime variables. If
you expect a datetime input, you can set the expects_localtime to True and this makes the datetime input
timezone aware based on your project settings.

The @stringfilter option in Table 3-5 - which is a stand-alone decorator, placed below the
@register.filter decorator - is designed to cast a filter input variable to a string. This is helpful because it
removes the need to perform input type checks and irrespective of what variable type a filter is called with
(e.g., string, integer, list, or dictionary variable) the filter logic can ensure it will always gets a string.

A subtle but default behavior of custom filters is the output that is not considered safe, due to the
is_safe option in Table 3-5 defaulting to False.

This default setting causes the custom filters from Listings 3-23 and 3-24 that contain HTML or
 tags to create verbatim output (i.e., you won't see the text rendered in bold, but rather Open since
1965! literally). Sometimes this is desired behavior, but sometimes it's not.

112

CHAPTER 3 * DJANGO TEMPLATES

Tip To make a Django template render HTML characters after applying a custom filter with default settings,
you can use the built-in safe filter (e.g., {{byline|coffee|safe}}) or surround the filter declaration with the
built-in {% autoescape %} tag (e.g., {% autoescape off %} {{byline|coffee}} {% endautoescape %}
tag). However, Django filters can also set the filter is_safe option to True to make the process automatic and
avoid the need to use an extra filter or tag.

You can set the is_safe option in a custom filter to True, to ensure the custom filter output is rendered
'asis' (e.g., the tag is rendered in bold) and HTML elements aren’t escaped .

This filter design approach though makes one big assumption: a custom filter will always be called
with variables containing safe content. What happens if the byline variable contains the text Open
since 1965 & serving > 1000 coffees day!. The variable now contains the unsafe characters & and
>, why are they unsafe? Because they have special meaning in HTML and have the potential to mangle
a page layout if they're not escaped (e.g., the > might mean 'more than' in this context, but in HTML it
also means a tag opening, which a browser can interpret as markup, in turn mangling the page because
it’s never closed).

To avoid this potential issue of marking unsafe input characters and marking them as safe on output,
you need to rely on the calling template telling the filter if the input is safe or unsafe, which takes us to the
last custom filter option in Table 3-5: needs_autoescape.

The needs_autoescape option - which defaults to False - is used to enable a filter to be informed of the
underlying auto-escaping setting in the template where the filter is called. Listing 3-25 shows a filter that
makes use of this option.

Listing 3-25. Django custom filter that detects autoescape setting

from django import template
from django.utils.html import escape
from django.utils.safestring import mark safe

register = template.library()

@register.filter(needs autoescape=True)
def smartcoffee(value, autoescape=True):
""'Returns input wrapped in HTML tags'''
""'and also detects surrounding autoescape on filter (if any) and escapes '
if autoescape:
value = escape(value)
result = '%s' % value
return mark safe(result)

The needs_autoescape parameter and the autoescape keyword argument of the filter method allow the
filter to know whether escaping is in effect when the filter is called. If auto-escaping is on, then the value is
passed through the escape method to escape all characters. Whether or not the content of value is escaped,
the filter passes the final result through the mark_safe method so the HTML tag is interpreted as bold in
the template.

This filter is more robust than a filter that uses the is_safe=True option - and marks everything as
'safe’ - because it can deal with unsafe input, as long as the template user makes the appropriate use of
auto-escape.

113

CHAPTER 3 © DJANGO TEMPLATES

Installation and Access
Django custom filters can be stored in one of two locations:

e Inside apps .- Stored in .py files located inside Django apps in a folder called
templatetags.

e Any project location.- Stored in .py files on any folder in a Django project, configured
through the libraries field in OPTIONS of the TEMPLATES variable in settings.py.

Listing 3-26 illustrates a project directory structure that exemplifies these two locations to store custom
filters.

Listing 3-26. Django custom filter directory structure

+-<PROJECT_DIR project name>
I

+-__init__.py

+-settings.py

+-urls.py

+-wsgi.py

I

+----common----+

| +--coffeehouse_filters.py

+----<app_one>---+

I

+-__init__.py

+-models.py

+-tests.py

+-views.py

R EEEEE <templatetags>---+
I
+-__ init_ .py
+-store_format_tf.py

_ —— Y

----<app_two>---+
I
+-__init_ .py
+-models.py
+-tests.py
+-views.py
R EEEEE <templatetags>---+

I
+-__init_ .py
+-tax_operations.py

Listing 3-26 shows two apps that contain Django custom filters in two different files - store_formay.
tf.py and tax_operations.py. Keep in mind you need to create the templatetags folder manually inside
a Django app folder and also create an __init__.py file so Python is able to import the modules from
this folder. In addition, remember apps need to be defined in Django's INSTALLED_APPS variable inside
settings.py for the custom filters to be loaded.

114

CHAPTER 3 * DJANGO TEMPLATES

In Listing 3-26 there's another .py file - coffeehouse_filters.py - that also contains Django custom
filters. This last custom filter file is different because it's located in a generic folder called common. In order
for Django to locate a custom filter file in a generic location, you must declare it as part of the 1ibraries
field in OPTIONS of the TEMPLATES variable in settings.py. See the first section in this chapter for detailed
instructions on using the libraries field.

Even though custom filters are generally placed into files and apps based on their functionality, this
does not restrict the usage of custom filters to certain templates. You can use custom filters on any Django
template irrespective of where custom filter are stored.

To make use of Django custom filters in Django templates you need to use of the {% load %} taginside
Django templates, as illustrated in Listing 3-27.

Listing 3-27. Configure Django template to load custom filters

{% load store format tf %}
{% load store format_t tax_operations %}
{% load undercoffee from store format tf %}

As shown in Listing 3-27 there are various ways you can use the {% load %} tag. You can make all the
filters present in a custom file available to a template - note the lack of .py in the {% load %} tag syntax - or
inclusively multiple custom files at once. In addition, you can also selectively load certain filters using the
Python-like syntax load filter from custom file.Keep in mind the {% load %} tagshould be declared at
the top of the template.

Tip If you find yourself using the {% load %]} tag extensively, you can make custom -filters available to all
templates using the builtins field. The builtins field is part of OPTIONS in the TEMPLATES variable in settings.
py. See the first section in this chapter on Django template configuration for detailed instructions on using the
builtins field.

115

CHAPTER 4

Jinja Templates in Django

In addition to Django templates, the Django framework also supports Jinja templates. Jinja is a stand-alone

template engine project’ that’s very similar to Django’s built-in template system.

However, the adoption and growth behind Jinja templates in Django projects is in part due to the design

limitations of Django templates, which have changed little to nothing since Django’s creation.

Jinja Advantages and Disadvantages

In order for you to gain a high-level perspective of Jinja templates and learn if they’re a good fit for your
Django projects, I'll first enumerate some of the main advantages and disadvantages of Jinja templates.
Let’s start with the advantages:

Speed and performance.- Jinja compiles template source code to Python byte-
code when it’s first loaded, so the template is only parsed once, resulting in better
runtime performance. In addition, Jinja also supports the option of ahead-of-time
compilation, which can also result in better performance.

Although speed and performance are some of the most debatable advantages

to Jinja templates, given the many factors affecting speed and performance
benchmarks (e.g., database queries/load, server configuration). Generally
speaking and all things being equal, a Jinja template that does exactly the same
thing as a Django template, the Jinja version will be faster than the Django version.

Note

It's only fair to mention Django templates also support custom loaders with caching to improve

speed and performance — as described in the previous chapter — but this requires further configuration effort

in Django.

Flexibility.- Jinja templates are very flexible in terms of what they can contain,
supporting concepts like macros and more Python-like constructs. While some of
these practices are discouraged in web templates, you'll come to appreciate some of
these features that are not available or severely constrained in Django templates.

'http://jinja.pocoo.org/

© Daniel Rubio 2017

D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_4

117

https://doi.org/10.1007/978-1-4842-2787-9_4
http://jinja.pocoo.org/

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

e Similar to Django templates.- Jinja is actually inspired by Django templates, so
there’s a lot of common ground between the two systems. Powerful features like
template inheritance and blocks work in the same way, so there’s a smaller learning
curve to use Jinja in Django projects than you might realize. In addition, security
features (e.g., auto-escaping) are also tightly integrated into Jinja, just like they are in
Django templates.

e Asynchronous execution.- Templates can sometimes load a lot of data or use
functions that take a long time to run, causing delays in templates that must ‘wait’
for backing tasks to finish (i.e., they’re synchronous). Jinja templates support
asynchronous execution, which allows backing tasks to run their course - without
holding-back templates - and later reconvene with templates when finished. Note
this feature requires the use of asynchronous generators,> which is only available in
Python 3.6 or newer releases.

And now some Jinja template disadvantages:

e Little to no third-party package support.- Because official Django support for Jinja
templates is relatively recent - since Django 1.8, the prior long-term-support(LTS)
version to Django 1.11 on which this book is based on - almost all third-party
packages (e.g., Django admin) are still designed with Django templates. This can
make it difficult to have a pure Jinja template Django project and require that Jinja
templates coexist alongside Django templates, which can in turn lead to difficulties
and confusion when template customization is required.

e New concepts.- If you're accustomed to Django templates, some Jinja features
require additional practice to understand and use correctly (e.g., Jinja macros, Jinja
filters). Although this shouldn’t be an issue if you're new to Django in general, as
every concept is new and will require some practice.

Transition to Jinja Templates from Django Templates

If you're accustomed to using Django templates, this section describes the finer details you need to be aware
of when using Jinja templates, such as what Django template knowledge you can leverage in Jinja templates,
what works differently in Jinja templates compared to Django templates, and what are new things you need
to learn that you'll come to appreciate in Jinja templates.

If you've never used Django templates, you can skip to the next section on Jinja template configuration
in Django, as most of what follows is intended for experienced Django template users.

What Works the Same Way in Jinja and Django Templates

Just because Jinja is an entirely different template engine doesn’t mean it’s radically different from Django’s
built-in template engine. You can expect to use the same approach for Variables and blocks, conditionals
and loops, comments, as well as spacing and special characters.

*https://www.python.org/dev/peps/pep-0525/

118

https://www.python.org/dev/peps/pep-0525/

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Variables and blocks

Curly braces {} are broadly used in Jinja templates just like they’re used in Django templates. To output
avariable in Jinja you use the same {{myvariable}} syntax. Similarly, you also name blocks to inherit
snippets between templates with the {% block footer %} {% endblock %} syntax.In addition, Jinja also
uses the same Django {% extends "base.html" %} syntax to create parent/child relationships between
templates.

Conditionals and loops

Jinja uses the same Django syntax to create conditionals: {% if variable %}{% elif othervariable %}
{% else %}{% endif %}.In addition, Jinja also uses the same for loop syntax as Django: {% for item in
listofitems %}{{item}}{% endfor %}.

Comments

Jinja also uses the same comment tag as Django: {# This is a template comment that isn't rendered #}.
However, note Jinja uses the {# #} tag for both single and multiline comments.

Spacing and special characters

Since Jinja templates were inspired from Django templates, Jinja uses a similar approach to dealing with
spacing and special characters. For example, things like spacing filters (e.g., center and wordwrap) and
special character handling (e.g., safe and escape filters) work the same way in Jinja templates as they do in
Django templates.

What Works Differently in Jinja Templates Compared to Django
Templates

However, not everything works the same way in Jinja templates; here are some Django template techniques
you'll need to relearn to work with Jinja templates.

Filters

Although Jinja uses the same pipe | symbol to apply filters to variables, Jinja filters are technically classified
into filters and tests. In Django templates there are just filters that perform tests (e.g., divisibleby), but

in Jinja these type constructs are called tests and use the conditional syntax {% if variable is test %}
instead of the standard pipe | symbol.

In addition, Jinja filters and tests are backed by standard methods. This has the advantage that passing
arguments to Jinja filters and tests is as simple as a method call (e.g., {{variable|filesizeformat(true)}})
vs. the unintuitive Django filter argument syntax of using a colon and even requiring arguments to be parsed
in custom Django filters (e.g., {{variable|get digit:"1"}}).

It’s also possible to create custom Jinja filters and tests - in addition to the built-in Jinja filters and tests
that are similar to Django built-in filters. However, unlike Django filters that are loaded into templates via
the {% load %} tag, Jinja custom filters and tests are registered globally and become accessible to all Jinja
templates like Django context processors.

119

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Context processors

Context processors give Django templates access to sets of variables across every template in a project, but in
Jinja this functionality is called global variables. This is one area where you'll likely miss the Django template
functionality of simply declaring context processors and getting access to sets of variables. However, it’s
relatively easy to create Jinja global variables to become accessible on all Jinja templates and act as Django
context processors.

No date elements like the {% now %]} tag and filters like time and timesince

Jinja in its out-of-the-box state provides no tags or filters to work with dates or times. Although Jinja does offer
the format filter that works just like Python’s standard method and can be used for date formatting, you'll
need to write your own custom filters and tags to deal with date and time elements in a more advanced way.

{% comment %]} tag not supported

Jinja uses the {# #} tag to define either single or multiline comments, so there’s no support for the
{% comment %}, which in Django templates is used for multiline comments.

{% load %} tag not supported

In Jinja the {% load %} tagto import custom tags and filters is not supported. In Jinja custom tags and filters
are registered globally and automatically become accessible to all Jinja templates.

Use {{super()}} instead of {{block.super}}

In Django templates you use the syntax {{ block.super }} to access the contents of a parent template’s
block. In Jinja you must use the {{super()}} syntax to gain access to the contents of a parent template’s block.

{% csrf_token %} tag not supported, instead use csrf_input
or csrf_token variables

In Django templates when you create a form that has an HTTP POST action, you place the {% csrf token %}
tag in its body to generate a special token that avoids XSS(‘Cross-site scripting’). To replicate this behavior

in Jinja you must use the csrf_input variable (e.g., {{csrf_input}} that generates a string like <input
type="hidden" name="csrfmiddlewaretoken" value="4565465747487">) or use the csrf_token variable that
contains the raw CSRF token (e.g., 4565465747487).

{% for %} loop variables

In Django templates the context of {% for %} loops offers access to a series of variables (e.g., counter,
first, and last iteration). Jinja templates offer a similar variable in the context of {% for %} but they are not
identical.

120

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

{% empty %]} tag not supported in loops, use the {% else %} tag

{% for %}loopsin Django templates support the {% empty %} clause as a last argument to generate logic or
amessage when an iteration is empty. In Jinja {% for %} loops you can use the {% else %} clause as alast
argument to generate logic or a message when an iteration is empty.

{% groupby %} tag not supported, use the groupby filter

Django templates support the {% groupby %} tag to rearrange dictionaries or objects based on different
attributes. In Jinja you can achieve the same functionality, but you must do it through the groupby filter as
described in the Jinja groupby filter.

{% cycle %} tag not supported, use the cycler function or the loop.cycle
variable in {% for %} loops

Django templates support the {% cycle %} tag to cycle over a list of values. In Jinja this functionality is
available in two forms. You can use the cycler method if you require the functionality outside of loops.
Or you can use the loop.cycle function available in all {% for %} loops.

{% lorem %} tag not supported, use the lipsum Function

Django templates support the {% lorem %} tag to generate random Latin text as filler content. In Jinja you
can achieve the same functionality with the lipsum function.

Other miscellaneous tags like {% static %}, {% trans %]}, {% blocktrans %},
and {% url %} not supported

A series of Django template tags like {% static %} and {% trans %} are simply not available in Jinja.
However, there are third-party projects that have ported these and many other Django template tags into
Jinja extensions. A later section in this chapter on Jinja extensions discusses these options.

New Concepts and Features in Jinja Templates vs. Django Templates

Now that you know what Django template knowledge you can leverage and what techniques you'll need
to relearn to effectively work with Jinja templates, let’s take a look at some concepts that only apply to Jinja
templates.

More useful built-in filters, tests, and more resemblance to a Python environment

Jinja templates offer a variety of built-in filters and tests that are sorely missing in Django templates. For
example, for something as simple as checking variable types (e.g., string, number, iterable, etc.), Jinja offers a
series of built-in tests for this purpose, where as in Django this requires creating custom filters.

Access and manipulation of complex data types (e.g., objects and dictionaries) is also vastly improved
in Jinja templates vs. Django templates. For example, Jinja offers filters such as reject, select, and map to
prune, filter, or alter data subsets on a template, a technique that although frowned upon by purists
(i-e., those who stand by only manipulating data in views) are a very common requirement in real and
time-constrained projects.

121

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Jinja templates also support syntax that is more in line with a standard Python environment. For
example, in Django something like accessing a dictionary key through a variable requires a custom
filter, where as in Jinja templates this works with standard Python syntax (e.g., if you have the variables
stores={"key1":"value1", "key2":"value2"}, and var="key1", Django template can’t do
stores.get(var), which is standard Python syntax, but in Jinja this works out of the box as expected of a

Python environment).

Global functions

Jinja also supports a series of global functions. For example, Jinja offers the range function that works

just like Python’s standard function that is useful in loops (e.g., {% for number in range(50 -
coffeeshops|count) %}).In addition, Jinja also offers the global functions 1ipsum to generate dummy
placeholder content, dict to generate dictionaries, cycler to generate a cycle over elements, and joiner to
join sections.

Flexible tag nesting, conditionals, and references

Jinja is very flexible in terms of nesting tags, particularly compared to what’s permissible in Django
templates. For example, in Jinja you can even conditionally apply the {% extends %} tag(e.g., {% if user
%% extends "base.html" %}{% else %}{% extends "signup base.html" %}{% endif %})oralso use
variable reference names with inline conditions (e.g., {% extends layout template if layout template
is defined else 'master.html' %}) - something that’s not possible in Django templates.

Macros

In Jinja, macros allow you to define function-like snippets with complex layouts that can be called from

any template with different instance values. Macros are particularly useful to limit the spread of complex
layouts across templates. With macros you define a complex layout once (i.e., as a macro) and invoke it with
different parameters to output the complex layout customized every single time, just as if were a function.

Flexible variable assignment in templates with less restrictive scope

In Jinja you can use the {% set %} tag to define variables to have a valid scope until the end of the template.
Although Jinja also supports the {% with %} tag - just like the Django template version - the {% with %}
tag can become cumbersome for multiple variable definitions because it requires closing the scope with {%
endwith %} every time. The {% set %} is a good alternative for global template variables because you only
require the initial definition and the scope propagates to the end of the template without having to worry
about closing the scope.

Line statements

Jinja supports the definition of logical statements in what it calls line statements. By default, a line statement
is preceded with the # symbol and can serve as an alternative to tag syntax. For example, the {% for %} tag
statement {% for item in items %} can use the equivalent line statement# for item in items, justas
the tag statement {% endfor %} can use the equivalent line statement # endfor. Line statements, more
than anything, give templates a Python feel to them that can make complex logic easier to decipher vs. using
tag statements that require the {% %} syntax.

122

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Jinja Template Configuration in Django

The first step to use Jinja in Django is to install the core package with the command pip install Jinja2.
Note the installation is for version 2 (i.e., Jinja2), which is the most recent version. While Jinja 1 is still
available, Django does not offer built-in support for version 1, so place special attention to make sure you
install version 2.

Next, you need to configure Jinja in a Django project inside the settings.py file. Listing 4-1 illustrates a
basic Jinja configuration for Django.

Listing 4-1. Jinja configuration in Django settings.py

import os
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_ file))

TEMPLATES = [
{
'BACKEND' : 'django.template.backends.jinja2.Jinja2",
'DIRS': ['%s/jinjatemplates/'% (PROJECT DIR),],
"APP_DIRS': True,
1

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],

"APP_DIRS': True,

"OPTIONS': {

"context_processors': [
'django.template.context_processors.debug',
"django.template.context_processors.request’,
"django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context_processors.messages',

)

1
1

Asyou can see in Listing 4-1, there are two configurations declared in TEMPLATES, a dictionary for
Jinja template configuration and another dictionary with the default Django template configuration. Since
Django templates are still used by things like the Django admin and many third-party packages, I highly
recommended you use the base configuration in Listing 4-1 since it keeps other things you don’t have
template control over from breaking.

The Jinja configuration in Listing 4-1 is one of the most basic possible. In this case, the BACKEND variable
uses the django.template.backends.jinja2.Jinja2 value to activate Jinja templates, and is followed
immediately with the DIRS and APP_DIRS variables, which tell Django where to locate Jinja templates.

Template Search Paths

The APP_DIRS variable permits the lookup of templates inside special app subdirectories named jinja2.
This is helpful if you wish to contain Jinja templates to apps, but be aware the template search path is not
aware of app namespaces. For example, if you have two apps that both rely on a template named index.html
- as illustrated in Listing 4-2 - and both apps have a method in views.py that returns control to the

123

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

index.html template (e.g., render (request, 'index.html")), both apps will use the index.html from the
topmost declared app in INSTALLED_APPS, so one app won't use the expected index.html.

Listing 4-2. Django apps with jinja2 dirs with potential conflict and namespace qualification

Templates directly under jinja2 folder can cause loading conflicts
+---+-<PROJECT_DIR project name_conflict>

+-index.html

+-__init_ .py
+-settings.py

+-urls.py

+-wsgi.py

I

+-about(app)-+

| +-__init_ .py
| +-models.py
| +-tests.py
| +-views.py
| +-jinja2-+
I |

|

+-

stores(app)-+
+-__init__.py
+-models.py
+-tests.py
+-views.py
+-jinja2-+
|

+-index.html

Templates classified with additional namespace avoid loading conflicts
+---+-<PROJECT_DIR_project_name_namespace>

+-__init__.py

+-settings.py

+-urls.py

+-wsgi.py

|

+-about(app)-+

| +-__init__.py

| +-models.py

| +-tests.py

| +-views.py

| +-jinja2-+

| |

| +-about-+

| |

| +-index.html

+-stores(app)-+
+-__init__.py
+-models.py
+-tests.py

124

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

+-views.py
+-jinja2-+
+-stores-+

+-index.html

To fix this potential conflict, the recommended practice is to add an additional subfolder to act

as a namespace inside each jinja2 directory as illustrated in the second set of folders in Listing 4-2.

In this manner, you can then redirect control to a template using this additional namespace subfolder

to avoid any ambiguity. So to send control to the about/index.html template you would declare

render (request, 'about/index.html") and to send control to the stores/index.html you would declare
render(request, 'about/index.html").

If you wish to disallow this behavior of allowing templates to be loaded from these internal app
subfolders, you can do so by setting APP_DIRS to FALSE.

A more common approach for Jinja templates is to have a single folder or various folders - that live
outside app structures - to hold Jinja templates. Django first looks for a matching Jinja template in the first
DIRS value and then in jinja2 folders in apps - if APP_DIRS is TRUE - until it either finds a matching template
or throws a TemplateDoesNotExist error.

For the case illustrated in Listing 4-1, the only DIRS value relies on a directory named jinjatemplates
relative to a path determined by the PROJECT_DIR variable. This variable technique is helpful when deploying
a Django project across different machines, because the path is relative to the top-level Django project
directory (i.e., where the settings.py and main urls.py file are) and adjusts dynamically irrespective of
where a Django project is installed (e.g., /var/www/, /opt/website, C://website/).

Similar to the Django template OPTIONS variable, Jinja also supports a series of customizations through
the OPTIONS variable. In the case of Jinja, the OPTIONS variable is a dictionary of key-values that correspond to
Jinja environment initialization parameters.*

By default, Django internally sets a series of Jinja environment initialization parameters to align Jinja’s
template behavior with that of Django templates. However, you can easily override these settings with the
OPTIONS variable. The next sections describe these important settings.

Auto-Escaping Behavior

Django enables Jinja template auto-escaping by default, a behavior that’s actually disabled in the Jinja
engine in its out-of-the-box state. The crux of auto-escaping is that, on the one hand it errs on the side of
precaution and security - limiting the possibility to mangle output or introduce XSS (Cross-site scripting)
vulnerabilities in HTML - but on the other hand, it also introduces extra processing in the template engine
that can cause performance problems.

By default, Django templates auto-escape all output from template variables - < is converted to &1t;, >
is converted to >, ' (single quote) is converted to ', " (double quote) is converted to " and & is
converted to & - unless you explicitly disable this behavior. Jinja in its out-of-the-box state doesn’t auto-
escape anything, and you need to explicitly tell it when you want to auto-escape something.

Because the Jinja template integration for Django was done by Django designers, Jinja auto-escaping is
enabled, to err on the side of security, just like it’s for Django templates. However, you can disable Jinja auto-
escaping with the autoescape parameter in OPTIONS as illustrated in Listing 4-3.

*http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

125

http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Listing 4-3. Jinja disable auto-escaping in Django

import os
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_ file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

TEMPLATES = [

{
'BACKEND' : 'django.template.backends.jinja2.Jinja2",
'DIRS": ['%s/jinjatemplates/'% (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
"autoescape': False
b
}

As you can see in Listing 4-3, autoescape is assigned False and with this change Jinja templates behave
just as Jinja designers intended (i.e., you need to explicitly check where auto-escaping is necessary vs. the
Django template way to check where auto-escaping isn’t necessary).

Auto-Reload Template Behavior and Caching

In its out-of-the-box state, Jinja's template loader checks every time a template is requested to see if the
source has changed; if it has changed, Jinja reloads the template. This can be helpful in development where
a template’s source changes constantly, but can also translate into a performance hit in production where a
template’s source rarely changes and the check incurs a delay.

By default, the Django framework Jinja integration takes a sensible approach and enables Jinja
template auto-reloading based on the DEBUG variable in settings.py. IfDEBUG=True - a common setting
in development - Jinja template auto-reloading is set to True and if DEBUG=False - a common setting in
production - Jinja template auto-reloading is set to False. Nevertheless, you can explicitly set Jinja’s
auto-loading behavior with the auto_reload parameter in OPTIONS.

The Jinja engine by default also caches up to 400 templates. This means that when template 401 is
loaded, Jinja cleans out the least recently used template, the latter of which must be reloaded from its origin
again if required at a later time. The Jinja cache limit can be adjusted with the cache_size parameter in
OPTIONS (e.g., cache_size=1000, to set a 1000 template cache). Setting cache_size to 0 (zero) disables
caching and setting cache_size to -1 enables unlimited caching.

Another caching mechanism available in Jinja templates is byte-code caching. When you create Python
source files (i.e., those with . py extensions), Python produces mirror-like files with . pyc extensions that
contain byte-code. Generating these byte-code files takes time, but they’re a natural part of Python’s runtime
process. Jinja templates being based on Python also need to be turned into byte-code, but it’s a process you
can customize with the bytecode_cache parameter in OPTIONS.

The bytecode_cache parameter can be assigned either a custom byte-cache* or one of Jinja’s built-in
byte-code caches, which include support for standard file-system caching or more specialized caching with
memcached.

*http://jinja.pocoo.org/docs/2.9/api/#bytecode-cache

126

http://jinja.pocoo.org/docs/2.9/api/#bytecode-cache

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Invalid Template Variables

You can set various behaviors when an invalid variable is encountered in Jinja templates. Django sets Jinja
with two default behaviors, one for when DEBUG=True - a common setting in development - and the other for
when DEBUG=False - a common setting in production.

If DEBUG=True and an invalid variable is set in a Jinja template, Jinja uses the jinja2.DebugUndefined
class to process it. The jinja2.DebugUndefined class outputs the variable verbatim for rendering (e.g., if
the template has the {{foo}} statement and the variable doesn't exist in the context, Jinja outputs {{foo}},
making it easier to spot an invalid variable).

If DEBUG=False and an invalid variable is set in a Jinja template, Jinja uses the jinja2.Undefined class
to process it. The jinja2.Undefined class outputs a blank space in the position of the variable for rendering
(e.g., if the template has the {{bar}} statement and the variable doesn’t exist in the context, Jinja outputs a
blank space). It's worth mentioning this last behavior aligns with the default behavior of invalid variables in
Django templates.

In addition to the jinja2.DebugUndefined and jinja2.Undefined classes, Jinja also supports the
jinja2.StrictUndefined class. The jinja2.StrictUndefined class is used to generate an immediate error
instead of proceeding with rendering, which is helpful for quicker diagnosis of invalid variables. However, be
aware this last class changes its behavior based on the DEBUG variable; it either generates a stack error with
the invalid variable name (i.e., when DEBUG=True) or it generates a standard HTTP 500 error page (i.e., when
DEBUG=False).

Listing 4-4 illustrates how to configure a Jinja class to handle invalid variables through the OPTIONS
parameter in settings.py.

Listing 4-4. Generate error for invalid variables in Jinja with jinja2.StrictUndefined

import os
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

import jinja2

TEMPLATES = [
{
'BACKEND" : "django.template.backends.jinja2.Jinja2",
'DIRS': ['%s/jinjatemplates/'% (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
'undefined' :jinja2.StrictUndefined

1

Asyou can see in Listing 4-4, we first declare import jinja2 to gain access to Jinja’s classes in
settings.py. Next, we declare the undefined key inside the OPTIONS parameter and assign it the Jinja class
to process invalid variables. In this case, we use the jinja2.StrictUndefined class to get errors when
invalid templates variables are encountered, but you could equally use any of the other two Jinja classes to
handle invalid variables (i.e., jinja2.DebugUndefined or jinja2.Undefined).

127

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Template Loaders

Jinja template loaders are Python classes that implement the actual logic required to search and load
templates. Earlier in the section “Template Search Paths,” I described how Jinja searches for templates using
the DIRS and APP_DIRS variables, which are part of Django’s template configuration. However, I intentionally
omitted a deeper aspect associated with this template search process: each search mechanism is backed by
a template loader.

In most circumstances, you won’t need to deal with Jinja template loaders, since Jinja loaders are taken
care of in the background by simply relying on the DIRS and APP_DIRS variables. But if you need to load Jinja
templates from somewhere else than these locations (e.g., from an in-memory structure or a database), you
can specify template loaders with the loader key inside the OPTIONS parameter.

Like Django template loaders, Jinja also offers the ability to create custom template loaders,® in addition
to using built-in Jinja template loaders similar to those offered by Django template (e.g., loading templates
from a Python dictionary).

Tip You can set custom values for any Jinja environment initialization parameter® in OPTIONS. The prior
sections are just four of the most common Jinja template parameters; later sections describe other available
OPTIONS.

Note OPTIONS is only intended for Jinja environment initialization parameters; other Jinja environment
settings require configuring a separate Jinja environment class (e.g., Jinja globals, Jinja custom filters and
tests, and Jinja policies).

Create Reusable Jinja Templates

Templates tend to have common sections that are equally used across multiple instances. For example,

the header and footer sections on all templates rarely change, whether a project has 5 or 100 templates.
Other template sections like menus and advertisements also fall into this category of content that’s constant
across multiple templates. All of this can lead to repetition over multiple templates, which can be avoided by
creating reusable templates.

With reusable Jinja templates you can define common sections on separate templates and reuse them
inside other templates. This process makes it easy to create and manage a project’s templates because a
single template update takes effect on all templates.

Reusable Jinja templates also allow you to define page blocks to override content on a page-by-page
basis. This process makes a project’s templates more modular because you define top-level blocks to
establish the overall layout and define content on a page-by-page basis.

*http://jinja.pocoo.org/docs/2.9/api/#loaders
*http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

128

http://jinja.pocoo.org/docs/2.9/api/#loaders
http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Let’s take the first step toward building reusable Jinja templates by exploring Jinja’s built-in {% block %}
tag. Listing 4-5 illustrates the first lines of a template called base.html with several {% block %} tags.

Listing 4-5. Jinja template with {% block %} tags

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>{% block title%}Default title{% endblock title %}</title>
<meta name="description" content="{% block metadescription%}{% endblock metadescription %}">
<meta name="keywords" content="{% block metakeywords%}{% endblock metakeywords %}">

Notice the syntax {% block <name>%}{% endblock <name>%} in Listing 4-5. Each {% block %} taghasa
reference name. The reference name is used by other Jinja templates to override the content for each block.
For example, the {% block title %} tag within the HTML <title> tags defines a web page title. If another
template reuses the template in Listing 4-5, it can define its own web page title by overriding the title block. If
a block is not overridden on a template, the block receives the default content within the block. For the title
block the default content is Default title, for the metadescription and metakeywords blocks the default
content is an empty string.

The same mechanism illustrated in Listing 4-5 can be used to define any number of blocks (e.g., content,
menu, header, footer). It's worth mentioning the <name> argument of {% endblock <name> %} is optional
and it’s valid to just use {% endblock %} to close a block statement; however, the former technique makes it
clearer where a block statement ends, which is especially helpful when a template has multiple blocks.

Although it’s possible to call the template in Listing 4-5 directly by a Django view method or url request,
the purpose of this kind of template is to use it as a base template for other templates. To reuse a Jinja
template you use the Jinja built-in {% extends %} tag.

The {% extends %} tag uses the syntax {% extends <name> %} to reuse the layout of another template.
This means that in order to reuse the layout in Listing 4-5 defined in a file base.html, you use the syntax {%
extends "base.html" %}, asillustrated in Listing 4-6.

Listing 4-6. Jinja template with {% extends %} and {% block %} tag

{% if user %}{% extends "base.html" %}{% else %}{% extends "signup base.html" %}{% endif %}
{% block title %}Coffeehouse home page{% endblock %}

Look how Listing 4-6 uses the {% extends "base.html" %} wrapped around the {% if user %}
statement. If the user variable is defined, Jinja extends the base.html template; otherwise it extends the
signup_base.html template. This conditional syntax is not possible in Django templates.

In addition, notice how Listing 4-6 defines the {% block title %} tag with the content Coffeehouse
home page. The block in Listing 4-6 overrides the title block from the base.html template. So where are the
HTML <title> tags in Listing 4-6? There aren’t any and you don’t need them. Jinja automatically reuses the
layout from either the base.html or signup_base.html templates and substitutes the blocks’ content where
necessary.

Jinja templates that reuse other templates tend to have limited layout elements (e.g., HTML tags) and
more Jinja block statements to override content. This is beneficial because, as I outlined previously, it lets
you establish the overall layout once and define content on a page-by-page basis.

The reusability of Jinja templates can occur multiple times. For example, you can have templates A, B,
and C, where B requires the reuse A, but C requires the reuse of parts of B. The only difference is template C
needs to use the {% extends "B" %} taginstead of the {% extends "A"%} tag. But since template B reuses A,
template C also has access to the same elements in template A.

129

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

When reusing Jinja templates, it’s also possible to access the block content from a parent template. Jinja
exposes the block content from a parent template through the super () method. Listing 4-7 illustrates three
templates that show this mechanism for a block containing web page paths or ‘breadcrumbs!

Listing 4-7. Jinja templates use of super() with three reusable templates

base.html template
<p>{% block breadcrumb %}Home{% endblock %}</p>

index.html template
{% extends "base.html" %}
{% block breadcrumb %}Main{% endblock %}

detail.html template
{% extends "index.html" %}
{% block breadcrumb %} {{super()}} : Detail {% endblock %}

The base.html template in Listing 4-7 defines the breadcrumb block with a default value of Home. Next,
the index.html template reuses the base.html template and overrides the breadcrumb block with a value of
Main. Finally, the detail.html template reuses the index.html template and overrides the breadcrumb block
value. However, notice the {{super() }} statement in the final block override. Since {{super()}} is inside
the breadcrumb block, {{super()}} tells Jinja to get the content from the parent template block.

Another reusability functionality supported by Jinja templates is the inclusion of a Jinja template inside
another Jinja template. Jinja supports this functionality through the {% include %} tag.

By default, the {% include %} tag expects the name of a template. For example,

{% include "footer.html" %} inserts the contents of the footer.html template in the position of the
template where it’s declared. The {% include %} tag also makes the underlying template aware of variables.
This means the footer.html template can have variable definitions (e.g., {{year}}) and if the calling
template has these variable definitions, the {% include %} tag automatically substitutes these values.

In addition, it’s possible to provide a list of templates as a fallback mechanism. For example,

{% include ['special sidebar.html', 'sidebar.html'] ignore missing %} tells Jinja to first
attempt to locate the special_sidebar.html template and if it isn’t found to attempt to locate the
sidebar.html template; if neither template is found the last argument ignore missing tells Jinja to render
nothing. Note the ignore missing argument can also be used in individual statements (e.g., {% include
"footer.html" ignore missing %}, as well as lists). In addition, if the ignore missing statement is not
used and Jinja can’t find a matching template declared in {% include %}, Jinja raises an exception.

The {% macro %} tag allows the definition of reusable content snippets across templates. For example,
if you need to incorporate elaborate markup to display elements that have common characteristics, you can
define the elaborate markup once in a {% macro %} statement and then reuse this {% macro %} to output the
markup customized to each element instance.

Macros are helpful because if you decide to change the markup, you only need to change it in a single
location and the changes propagate to other locations. Listing 4-8 illustrates the definition of a {% macro %}
statement and its usage in templates.

Listing 4-8. Jinja {% macro %} definition and use of {% import %}

base.html template
{% macro coffeestore(name, id=""', address='", city='San Diego', state='CA', email=None) -%}

<h4a>{{name}}</ha>
<p>{{address}} {{city}},{{state}}</p>
{% if email %}<p>{{email}}</p>{% endif %}
{%- endmacro %}

130

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

index.html template calls inherited macro directly
{% extends "base.html" %}
{{coffeestore('Downtown',1, 'Horton Plaza','San Diego','CA","'downtown@coffeehouse.com')}}

detail.html template with no extends, uses {% import %} to access macro in base.html
{% import 'base.html' as base %}
{{base.coffeestore('Downtown',1, 'Horton Plaza','San Diego','CA",'downtown@coffeehouse.com')}}

otherdetail.html template with no extends, uses {% from import %} to access macro in base.html
{% from 'base.html' import coffeestore as mycoffeestoremacro %}
{{mycoffeestoremacro('Downtown',1, 'Horton Plaza','San Diego','CA','downtown@coffeehouse.com')}}

The first thing that’s done in Listing 4-8 is the {% macro %} definition declared in the base.html
template. Notice that after the {% macro snippet, there’s what appears to be a regular method named
coffeestore, which corresponds to the name of the macro with six input arguments, five of which have
default values. Next, inside the {% macro %} and {% endmacro %} statements you can see some elaborate
HTML markup that makes use of the standard {{ }} syntax to output whatever variable values are passed on
a given instance of the macro.

Since the {% macro %} in Listing 4-8 is defined inside the base.html template, any other template that
uses the base.html template can access the macro and call the macro with an instance (e.g., {{coffeestore
('Downtown',1, "Horton Plaza','San Diego','CA",'downtown@coffeehouse.com')}} - hard-coded values
for simplicity) for Jinja to render the HTML markup customized with the instance values.

If you want to access a {% macro %} in other templates you have three alternatives that are also presented
in Listing 4-8. If a template extends another template (e.g., {% extends "base.html" %}) then by default it will
also gain access to the parent’s template {% macro %} definitions. It’s also possible to access another template’s
{% macro %} definitions with the {% import %} statement. For example, the statement {% import 'base.html’
as base %} imports the base.html definitions into another template with the base namespace, in which case
to invoke the {% macro %} called coffeestore youwould use the {{base.coffeestore(...}} syntax. Finally,
it’s also possible to selectively import a {% macro %} definition with the {% from import %} statement. For
example, the statement {% from 'base.html' import coffeestore as mycoffeestoremacro %} imports the
coffeestore definition from the base.html template and places it under the mycoffeestoremacro name, in
which case you would use the {{mycoffeehousemacro(...}} syntax to invoke the {% macro %}

The {% call %} tagis another option that, used in conjunction with the {% macro %} tags, favors the
reusability of macros themselves. The first usage scenario of the {% call %} tagis to invoke a {% macro %}
that requires a placeholder for content that’s defined until the invocation of the macro. Listing 4-9 illustrates
this basic scenario of the {% call %} tag along with a {% macro %}.

Listing 4-9. Jinja {% call %} and {% macro %} use

macro definition

{% macro contentlist(adcolumn_width=3,contentcolumn_width=6) -%}
<div class="col-md-{{adcolumn width}}">
Sidebar ads
</div>
<div class="col-md-{{contentcolumn width}}">

{{ callex() }}

</div>
<div class="col-md-{{adcolumn width}}">
Sidebar ads
</div>

{%- endmacro %}

131

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

macro call/invocation
{% call contentlist() %}

This is my list

{% endcall %}

rendering
<div class="col-md-3">
Sidebar ads
</div>
<div class="col-md-6">
<uly
<1i>This is my list</1i>

</divy>
<div class="col-md-3">
Sidebar ads
</div>

In Listing 4-9 we first define a {% macro %} with a similar structure to that of Listing 4-8; however, notice
inside the {% macro %} the {{ caller() }} statement. The caller() method inside {% macro %} serves as
placeholder to be substituted by the calling entity.

Next, in Listing 4-9 you can see the {% call %} statement is declared with the macro call - in this
case contentlist() - and the body of the {% call %} statement contains an HTML list. When Jinja
executes the {% call %} statement, the {% call %} contents are placed in the location of the {% macro %}
{{caller()}} declaration.

A more advanced scenario of the {% call %} tagwith a {% macro %} is for the caller() statement to
use references, a process that’s more natural to data that’s recursive in nature (i.e., a macro over a macro).
Listing 4-10 illustrates this recursive scenario of the {% call %} tagalong with a {% macro %}.

Listing 4-10. Jinja {% call %} and {% macro %} recursive calls

macro definition
{% macro contentlist(itemlist,adcolumn_width=3,contentcolumn_width=6) -%}
<div class="col-md-{{adcolumn width}}">
Sidebar ads
</div>
<div class="col-md-{{contentcolumn width}}">
{% for item in itemlist %}
{{ caller(item) }}
{% endfor %}
</div>
<div class="col-md-{{adcolumn width}}">
Sidebar ads
</div>
{%- endmacro %}

132

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

variable definition

{% set coffeestores=[{'id':0, "'name':'Corporate’, 'address':'624 Broadway','city':'San Diego',
"state':'CA",'email’: ' corporate@coffeehouse.com'},{ id":1, "name": 'Downtown’,'address’: 'Hort

on Plaza','city':'San Diego', 'state':'CA", "email’:'downtown@coffeehouse.com'},{"id":2, " "name

":'Uptown', 'address':'1240 University Ave','city':'San Diego','state':'CA','email’: 'uptown@

coffeehouse.com'},{'id":3, 'name"': 'Midtown', 'address':'784 W Washington St','city':'San Diego
','state':'CA', "email': 'midtown@coffeehouse.com'}] %}

macro call/invocation
{% call(item) contentlist(coffeestores) %}

<hg>{{item.name}}</h4>

<p>{{item.address}} {{item.city}},{{item.state}}</p>

{% if item.email %}<p>{{item.email}}</p>{% endif %}
{% endcall %}

rendering
<div class="col-md-3">
Sidebar ads
</div>
<div class="col-md-6">

<h4>Corporate</h4>
<p>624 Broadway San Diego,CA</p>
<p>corporate@coffeehouse.com</p>

<h4>Downtown</h4>
<p>Horton Plaza San Diego,CA</p>
<p>downtown@coffeehouse.com</p>

<h4>Uptown</h4>
<p>1240 University Ave San Diego,CA</p>
<p>uptown@coffeehouse.com</p>

<h4>Midtown</h4>
<p>784 W Washington St San Diego,CA</p>
<p>midtown@coffeehouse.com</p>
</div>
<div class="col-md-3">
Sidebar ads
</div>

As you can see in Listing 4-10, the {% macro %} definition now has an argument called itemlist on
which it creates an iteration and for each item it invokes {{caller(item)}}. Also notice in Listing 4-10 the
{% call %} statementis now {% call(item) contentlist(coffeestores) %}, where item represents the
callback item sent from the macro and contentlist(coffeestores) is the actual call to the macro named
contentlist along with its input coffeestores that’s a list of dictionaries. When Jinja executes the {% call
%} statement, the {% call %} contents are run recursively over each item, resulting in the output presented
at the bottom of Listing 4-10.

133

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Tip The built-in {% set %} statement — described in the Jinja built-in filters section — provides simpler
reuse functionality for static content blocks compared to {% macro %} statements that use variables. (e.g.,
{% set advertisement %}<div class="banner'></div>{% endset %} creates the advertisement
variable that can output the contents between {% set %} and {% endset %} anywhere in a template).

Jinja Globals: Access Data on All Jinja Templates, Like
Django Context Processors

Just like Django templates offer context processors to facilitate the access of data on all Django templates,
Jinja also offers its own version of the same feature that is called globals. Jinja in its out-of-the-box state
has no globals, but in its Django integrated mode includes three globals to mimic Django’s most common
context processors, these globals are request, csrf_input, and csrf_token.
This means you get access to three Django context processors like variables in all Jinja templates used in
Django projects. However, to set up additional global variables you need to work with Jinja’s environment.
To set up Jinja globals you need to access Jinja’s environment, which is where globals are stored, in a
variable properly called globals. By default, the Django-Jinja configuration uses Jinja’s built-in jinja2.
Environment environment. In order to access Jinja’s environment in Django and set globals, the easiest path
is to create your own Jinja environment and use it to initialize the Django-Jinja configuration. Listing 4-11
illustrates a custom Jinja environment class that sets the global variables named static and url.

Listing 4-11. Custom Jinja environment with global variable

from jinja2.environment import Environment
from django.contrib.staticfiles.storage import staticfiles storage
from django.core.urlresolvers import reverse

class JinjaEnvironment(Environment):
def _init_ (self,**kwargs):
super(JinjaEnvironment, self). init (**kwargs)
self.globals['static'] = staticfiles storage.url
self.globals['reverse'] = reverse

As you can see in Listing 4-11, the custom JinjaEnvironment class is a subclass of the jinja2.
Environment class; this is so the custom class inherits the bulk of its features from this base class provided by
Jinja. Next, you can see we use the __init__ method to initialize the base class.

Prior to exiting the initialization method of the class, you can also see we access the globals variable
of the instance. globals is composed of a dictionary, where the key-values correspond to the Jinja template
variable names and values, respectively. In this case, we create the static variable and assign it Django’s
django.contrib.staticfiles.storage.staticfiles_storage.url method. This gives the static global
variable the same behavior as Django’s staticfiles app, so that it’s possible to declare static resources just
like it's done in Django (e.g., Jinja can then do <img src="{{ static('images/background.png') }}"
alt="Background">) - a topic that is described in greater detail in Chapter 5 on static resource management,
but this is important to mention here due to the gap it fills in Jinja lacking functionality on this front.

The second global in Listing 4-11 creates the url variable and assigns it Django’s
django.core.urlresolvers.reverse method. This gives the url global variable the same behavior as
Django’s {% url %} tag, so thatit’s possible to resolve a URL based on a name - as described in Chapter 2 on
Django url management and reverse matches - just like it’s done in Django (e.g., Jinja can then do

134

http://dx.doi.org/10.1007/978-1-4842-2787-9_5
http://dx.doi.org/10.1007/978-1-4842-2787-9_2

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Go to homepage) - note this is another important gap to fill given
Jinja’s lack of functionality on this front.

Just as you can add these last two global variables to mimic the behavior of Django apps and tags that
are missing in Jinja templates, you can add more globals in the same manner or increase the complexity of a
Jinja global as needed.

Once the custom Jinja environment is ready, you need to set it up in Django’s settings.py file soit’s
used to initialize Jinja. Listing 4-12 illustrates how to set up a custom Jinja environment in Django.

Listing 4-12. Configure custom Jinja environment in Django setttings.py

TEMPLATES = [

{
'BACKEND' : 'django.template.backends.jinja2.Jinja2",

'DIRS': ['%s/templates/'% (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
"environment': 'coffeehouse.jinja.env.JinjaEnvironment'
}
b
]

The Jinja environment is set through the environment key, as part of the OPTIONS variable. The value
of the environment key is a string with dot notation that points to a custom Jinja environment class. In
this case, you can see the value corresponds to coffeehouse.jinja.env.JinjaEnvironment, where
JinjaEnvironment is the class, env is the file/module name, and coffeehouse. jinja is the directory path.
To better illustrate the location of the env.py file containing the custom Jinja environment, Listing 4-13
illustrates a directory structure with additional Django project files for reference.

Listing 4-13. Directory structure and location of custom Jinja environment

+---+-<PROJECT_DIR_coffeehouse>

I

+-__init_.py

+-settings.py

+-urls.py

+-wsgi.py

I

+-jinja-+
+-__init_ .py
+-env.py

Jinja Built-In Statements/Tags and Functions (Like Django
Template Tags)

Jinja offers several built-in statements/tags that offer immediate access to elaborate operations on Jinja
templates. I'll classify each of these built-in statements/tags and functions into sections so it’s easier

to identify them; note I'll add the reference (Function) to indicate it’s referring to a Jinja function. The
categories I'll use are Comparison operations, loops, Python and filter operations, spacing and special
characters, and template structures.

135

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Comparison Operations

o {% if %}with{% elif %} {% else %}.- The {% if %} statementis the primary
building block to evaluate conditions. The {% if %} statement is typically used in
conjunction with the {% elif %} and {% else %} statements to evaluate more than
one condition. An {% if %} statement with an argument variable evaluates to true
if a variable exists and is not empty or if the variable holds a True Boolean value.
Listing 4-14 illustrates a series of {% if %} statement examples.

Listing 4-14. Jinja {% if %} statement with {% elif %} and {% else %}

{% if drinks %} {% if drinks %} {% if drinks %}
We have drinks! We have drinks We have drinks
{% endif %} {% else %} {% elif drinks _on_sale %}
No drinks,sorry We have drinks on sale!
{% endif %} {% else %}

No drinks, sorry
{% endif %}

Note A variable must both exist and not be empty to match a condition. A variable that just exists and is
empty does not match a condition.

e {% if %} with and, or and not operators.- The {% if %} statement also supports
the and, or, and not operators to create more elaborate conditions. These operators
allow you to compare if more than one variable is not empty (e.g., {% if drinks and
drinks_on_sale %}), if one or another variable is not empty (e.g., {% if drinks or
drinks_on_sale %}) orif a variable is empty (e.g., {% if not drinks %}).

o {% if %} with==, !5 <, > <=and >= operators.- The {% if %} statement also
supports equal, not equal, larger than, and less than operators to create conditions
that compare variables to fixed strings or numbers. These operators allow you to
compare if a variable equals a string or number (e.g., {% if drink == "mocha" %}),
if a variable does not equal a variable or number (e.g.{% if store id != 2 %})orif
a variable is greater than or lesser than a number (e.g., {% if store_id > 5 %}).

o {% if <value> in %}and {% if <value> not in %}.- The {% if %} statement
also supports the in and not in operators to verify the presence of a constant or
variable. For example, {% if "mocha" in drinks %} tests if the value "mocha" is in
the drinks list variable or {% if 2 not in stores %} tests if the value 2 is not in the
stores list variable. Although the in and not in operators are commonly used to
test list variables, it’s also possible to test the presence of characters on strings (e.g.,
{% if "m" in drink %}).In addition, it’s also possible to compare if the value of
one variable is present in another variable (e.g., {% if order drink in drinks %}).

136

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Loops

o {% for %}and {% for %} with {% else %}.- The {% for %} statement iterates over
items on a dictionary, list, tuple, or string variable. The {% for %} statement syntax
is {% for <reference> in <variable> %}, where <reference> is assigned a new
value from <variable> on each iteration. Depending on the nature of a variable
there can be one or more references (e.g., for a list one reference, for a dictionary two
references).The {% for %} statement also supports the {% else %} statement which
is processed in case there are no iterations in a loop (i.e., the main variable is empty).
Listing 4-15 illustrates a {% for %} anda{% for %} and {% else %} loop example.

Listing 4-15. Jinja {% for %} statement and {% for %} with {% else %}

{% for drink in drinks %} {% for storeid,store in stores %}

{{ drink.name }}</1i> {{store.name}}

</1i>

{% else %} {% endfor %}

No drinks, sorry

{% endfor %}

The {% for %} statement also generates a series of variables to manage the iteration process such as an
iteration counter, a first iteration flag, and a last iteration flag. Table 4-1 illustrates the {% for %} statement
variables.

Table 4-1. Jinja {% for %} statement variables

Variable Description
loop.index The current iteration of the loop (1-indexed).
loop.index0 The current iteration of the loop (0-indexed).

loop.revindex The number of iterations from the end of the loop (1-indexed).

loop.revindex0 The number of iterations from the end of the loop (0-indexed).

loop first True if it's the first time through the loop.

loop.last True if it's the last time through the loop.

loop.length The number of items in the sequence.

loop.cycle A helper function to cycle between a list of sequences.

loop.depth Indicates how deep in a recursive loop the rendering currently is, starts at level 1
loop.depth0 Indicates how deep in a recursive loop the rendering currently is, starts at level 0.

137

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

NESTED JINJA LOOPS: USE REFERENCE VARIABLE
AND CYCLE VARIABLE

On certain occasions you may need to nest multiple {% for %} statements and access parent loop
items. In Django templates, this is easy because there’s a variable for just this purpose. However, Jinja
templates don’t have this variable as you can see in Table 4-1. A solution in Jinja templates is to define
a reference variable with {% set %} before entering the child loop to gain access to the parent loop, as
illustrated in the following snippet.

{% for chapter in chapters %}
{% set chapterloop = loop %}
{% for section in chapter %}
<1li> {{ chapterloop.index }}.{{ loop.index }}">{{ section }}</1i>
{% endfor %}
{% endfor %}

Another nested loop feature in Jinja templates is cycle, which does not exist in Django templates (as a
variable at least, it does exist as a tag). The primary use of cycle is to define CSS classes so that each
iteration receives a different CSS class and upon rendering each iteration is displayed in a different
color. The following snippet illustrates the use of the cycle variable.

{% for drink in drinks %}
<1i class="{{ loop.cycle('odd', 'even') }}">{{ drink.name }}</1i>
{% endfor %}

Note cycle can iterate sequentially over any number of strings or variables (e.g., {{ loop.cycle('red'
'white' 'blue') }}).

o {% for %} with if.- The {% for %} statement also supports the inclusion of if
statements to filter the iteration over a dictionary, list, tuple, or string variable. In
this manner you can limit the iteration to elements that pass or fail a certain criteria.
The {% for %} statement syntax with an if clauseis {% for <reference> in
<variable> if <test for reference>%} (e.g., {% for drink in drinks if drink
not in ['Cappuccino'] %})

o {% for %} with recursive keyword.- The {% for %} statement also supports
recursion over nested dictionaries, lists, tuples, or string variables. Instead of
creating multiple nested {% for %} statements, you can use recursion to reuse the
same layout over each of the nested structures. Listing 4-16 illustrates a sample of a
recursive loop in Jinja.

Listing 4-16. Jinja {% for %} statement with recursive keyword

Dictionary definition
coffees={
'espresso’:
{"'nothing else':'Espresso’,

138

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

'water': 'Americano',

"steamed milk': {'more steamed milk than milk foam': 'Latte',
"chocolate syrup': {'Whipped cream': 'Mocha'}

b

'more milk foam than steamed milk': 'Capuccino’

}

Template definition with for and recursive
{% for ingredient,result in coffees.iteritems() recursive %}
<1i>{{ ingredient }}
{% if result is mapping %}
{{ loop(result.iteritems()) }}
{% else %}
YOU GET: {{ result }}
{% endif %}</1i>
{% endfor %}

Output
espresso
water YOU GET: Americano
steamed milk
more steamed milk than milk foam YOU GET: Latte
chocolate syrup
Whipped cream YOU GET: Mocha
more milk foam than steamed milk YOU GET: Capuccino
nothing else YOU GET: Espresso

o {% break %}and{% continue %}.- The {% break %} and {% continue %}
statements are available inside {% for %} statements and allow you to break out of
the loop or continue to the next iteration, just like the same keywords available in
regular Python loops.

Note {% break %]} and {% continue %} require enabling the built-in jinja2.ext.loopcontrols extension. See
the second to last section in this chapter on how to enable Jinja extensions for more details.

e range (Function).- The range function works just like Python’s standard function
and is useful when you want to generate a loop over a given range of numbers from
ito j-1. For example, range(0, 5) generates the range [0,1,2,3,4]. In addition, the
range function also supports overriding the step count --- which defaults to 1 --- in
the third position (e.g., range (0,11, 2) generates [0,2,4,6,8,10]).

e cycler (Function)).- The cycler function lets you cycle among a series of values. It
works just like the loop. cycle variable available in {% for %} loops, except the cycler
function can be used outside loops. The cycler function uses its next () method
to advance one item, the reset () method to cycle to the first item and the current
attribute to return the current item. Listing 4-17 illustrates a cycler method definition
with CSS classes, which is then used over multiple {% for %} loops to define a list
where each item is assigned a different CSS class based on the cycle iteration.

139

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Listing 4-17. Jinja cycler function

{% set row class = cycler('white','lightgrey’, 'grey') %}

{% for item in items %}
<1i class="{{ row_class.next() }}">{{ item }}</1i>
{% endfor %}
{% for otheritem in moreitems %}
<1i class="{{ row_class.next() }}">{{ otheritem }}</1i>
{% endfor %}

Output

<1i class="white">Item 1</1i>
<1i class="lightgrey">Item 2 </1i>
<1i class="grey">Item 3
<1i class="white">Item 4</1i>
<1li class="lightgrey">Item 5¢</1i>
<li class="grey">Other item 1</1i>
<1i class="white">Other item 2</1i>

e joiner (Function).- The joiner function lets you join a series of disparate sections
and join them with a given separator, which defaults to a comma-space (", "). A
characteristic of the joiner function is that it returns the separator string every time
it’s called, except the first time to give the correct appearance in case sections are
dependent on a condition. Listing 4-18 illustrates a joiner method definition with a
slash-space ("/ ") as its separator, which is then used to join a list of sections.

Listing 4-18. Jinja joiner function

{% set slash joiner = joiner("/ ") %}

User: {% if username %} {{ slash_joiner() }}
{{username}}

{% endif %}

{% if alias %} {{ slash_joiner() }}
{{alias}}

{% endif %}

{% if nickname %} {{ slash_joiner() }}
{{nickname}}

{% endif %}

Output

If all variables are defined

User: username / alias / nickname

If only nickname is defined

User: nickname

If only username and alias is defined

User: username / alias

Etc, the joiner function avoids any unnecessary preceding slash because it doesn't print
anything the first time its called

140

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Python and Filter Operations

{% set %}.-The {% set %} statement lets you define variables in the context of Jinja
templates. It’s useful when you need to create variables for values that aren’t exposed
by a Django view method or when a variable is tied to a heavyweight operation. The
following is a sample statement of this statement {% set drinkwithtax=drink.
cost*1.07 %}. The scope of a variable defined in a {% set %} statement is from its
declaration until the end of the template.

The {% set %} statement can also define content blocks. For example, the statement
{% set advertisement %}<div class'banner'></div>

{% endset %}, creates the variable advertisement with the content enclosed
between {% set %} and {% endset %} that can later be reused in other parts of a
template (e.g., {{advertisement}}). The built-in {% macro %} statement - described
in the template structures section - provide more advanced reuse functionality for
content blocks.

{% do %} (This statement requires enabling the built-in jinja2.ext.do extension; see
the section Enable Jinja extensions for more details).- The {% do %} statement is
an expression evaluator that works like the {{ }} variable syntax, except it doesn’t
produce output. For example, to increment the value of a variable or add a new
element without producing any output, you can use the {% do %} statement
(e.g.{% do itemlist.append('Forgot to add this other item') %}).

Note

{% break %} and {% continue %]} require enabling the built-in jinja2.ext.loopcontrols extension. See
the second to last section in this chapter on how to enable Jinja extensions for more details.

{% with %}.- The {% with %} statement is similar to the {% set %} statement; the
only difference is the {% with %} statement limits the scope of a variable with the {%
endwith %} statement (e.g., {% with myvar=1 %}...{% endwith %} any elements
declared in ... have access to the myvar variable). It’s also valid to declare {% set %}
statements within {% with %} and {% endwith %} statements to limit the scope of
variables (e.g., {% with %}{% set myvar=1 %}...{% endwith %}).

Note

{% with %} requires enabling the built-in jinja2.ext.with_ extension. See the second to last section in
this chapter on how to enable Jinja extensions for more details.

{% filter %}.- The {% filter %} statement is used to apply Jinja filters to template
sections. By default, Jinja filters are applied individually to template variables, but
sometimes it can be helpful to apply Jinja filters to entire template sections. For
example, if you declare {% filter lower %} the lower filter is applied to all content
between this statement and the {% endfilter %} statement - note the lower filter
statement converts all content to lowercase; the next major section in this chapter
describes Jinja's built-in filters.

dict (Function).- The dict function offers an alternative to define dictionaries
without literals (e.g., {'id" :1} is equivalent to dict(id=1)).

141

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

Spacing and Special Characters

By default, Jinja keeps all spacing (e.g., tabs, spaces, newlines) unchanged from how they are defined in a
template. Figure 4-1 illustrates the default rendering of a template snippet in Jinja.

<div>
{% for drink in drinks %}
{{drink}}
{% endfor %}
</div>

<div> {% if drinks_on_sale %} Drinks on sale! {% endif %}

div=
Espresso
Capuccino
Mocha
</div=
div ~ Drinks on sale! </div

Figure 4-1. Default space rendering in Jinja template

As you can see in Figure 4-1, the spacing before, after, and by the {% for %} and {% if %} statements
themselves is generated as is. While this spacing is natural, it can be beneficial to create more compact
outputs with templates that handle a lot of data. The minus sign - appended to either the start or end of a

statement (e.g., {%- <statement> -%}) tells Jinja to strip the new line that follows it. This is best illustrated
with the examples presented in Figure 4-2 and Figure 4-3.

<div>
{% for drink in drinks -%}
{{drink}}
{% endfor %}
</div>

<div> {% if drinks_on_sale -%} Drinks on sale! {% endif %}

<div
Espresso
Capuccino
Mocha

/div
=div Drinks on sale! /div=

Figure 4-2. Space rendering in Jinja template with single -

142

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

<div>
{% for drink in drinks -%}
{{drink}}
{%- endfor %}
</div>
<div> {% if drinks_on_sale -%} Drinks on sale! {%- endif %}
div .
EspressoCapuccinoMocha
Jdiv
div Drinks on sale! /div

Figure 4-3. Space rendering in Jinja template with double -

Asyou can see in Figure 4-2, the - symbol before closing the {% for %} statement makes Jinja eliminate
the new line after each iteration. In the case of the {% if %} statement also in Figure 4-2, the - symbol has
no impact because there’s no newline associated with the statement. In Figure 4-3 you can see there’s
an additional - symbol at the start of the {% endfor %} statement which makes Jinja eliminate the
newline before the start of each iteration. In the case of the {% if %} statement also is Figure 4-3, the
additional - symbol has no impact because there’s no newline associated with the statement.

Because adding - symbols to every Jinja statement can become tiresome, you can configure Jinja so that
by default it uses this behavior (i.e., just as if you added -). To alter Jinja’s default spacing behavior, you can
use two Jinja environment parameters : trim_blocks and 1strip_blocks, both of which default to False.
Note that in Django you set up Jinja environment parameters as part of the OPTIONS variable in settings.py,
as described in the prior section on setting up Jinja template configuration in Django.

Figure 4-4 illustrates the rendering of a code snippet when trim blocks is set to True, whereas
Figure 4-5 illustrates the rendering of a code snippet when both trim_blocks and 1strip blocks are
setto True.

<div>
{% for drink in drinks %}
{{drink}}
{% endfor %}
</div>

<div> {% if drinks_on_sale %} Drinks on sale! {% endif %}

div
Espresso
Capuccino
Mocha
/div
div Drinks on sale! </div

Figure 4-4. Space rendering in Jinja template with trim_blocks

143

CHAPTER 4 * JINJA TEMPLATES IN DJANGO

<div>
{% for drink in drinks %}
{{drink}}
{% endfor %}
</div>

<div> {% if drinks on sale %} Drinks on sale! {% endif %}

div>
Espresso
Capuccino
Mocha
/div
div> Drinks on sale! /div

Figure 4-5. Space rendering in Jinja template with both trim_blocks and Istrip_blocks set to True

As you can see in Figures 4-4 and 4-5, the rendering produced by changing the trim_blocks and
lstrip blocks Jinja environment variables is very similar to that of using - symbols to start and end Jinja
statements. It’s worth mentioning that if you set 1strip_blocks to True and want to omit its behavior for
certain sections, you can do so by adding the plus sign + to either the start or end of a statement - just like
you use the minus sign - to achieve its opposite behavior.

o {% raw %}.- The {% raw %} statement is used to output any Jinja reserved characters
verbatim until the {% endraw %} statement is reached. The {% raw %} statement is
ideal if you want to render large chunks of Jinja template code or if you have a lot of
text that includes special Jinja template characters (e.g., {{, {%).

Tip You can output special Jinja template characters individually by quoting them as part of a hard-coded
string variable (e.g., to output {{ use {{ '{{"' }}) vs. using a {% raw %]} statement.

o {% autoescape %} .- The {% autoescape %} statement lets you escape HTML
characters from a template section, effectively overriding Django’s Jinja default
auto-escaping behavior. The {% autoescape %} accepts one of two arguments true
or false. With {% autoescape true %} all template content between this statement
and the {% endautoescape %} statement is HTML escaped, with {% autoescape
false %} no template content between this statement and the {% endautoescape
%} statement is HTML escaped.

Note {% autoescape %} requires enabling the built-in jinja2.ext.auto-escape extension. See the second to
last section in this chapter on how to enable Jinja extensions for more details.

144

CHAPTER 4~ JINJA TEMPLATES IN DJANGO

lipsum (Function).- The 1ipsum function is used to display random Latin text, which
is useful for filler on templates. The 1ipsum function is called with four parameters:
lipsum(n=5, html=True, min=20, max=100). Where n is a number of paragraphs to
generate, if not provided the default n is 5; html defaults to True to return HTML or
you can set it to False to return regular text; and min and max represent the minimum
and maximum number of random words per paragraph. To use the lipsum function
you simply define a variable with it and the output to generate the random Latin

text (e.g., {% set latinblurb=1ipsum() %} and then {{latinblurb}} to output the
random Latin text).

Template Structures

{% block %}.- The {% block %} statement is used to define page sections that can
be overridden on different Jinja templates. See the previous section on creating
reusable Jinja templates for detailed examples of this statement.

{# #}.- The {# #} statement is used to enclose comments on Jinja templates. Any
content placed between {# and #} is bypassed by Jinja and doesn’t appear in the
final rendered web page.

{% extends %}.- The {% extends %} statement is used to reuse the layout of another
Jinja template. See the previous section on creating reusable Jinja templates for
detailed examples of this statement.

{% include %}.- The {% include %} statement is used to embed a Jinja template

in another Jinja template. Note that by default, the {% include %} statement gets
access to the current template instance values (i.e., its context). If you want to disable
access to a template’s context you can use the {% import %} statement or pass the
keyword without context to the end of the {% include %} statement (e.g., {% from
"footer.html' without context %}).In addition, the {% include %} statement
also accepts the ignore missing keyword, which tells Jinja to ignore the statement

if the template to be included does not exist. See the previous section on creating
reusable Jinja templates for detailed examples of this statement.

{% macro %}.- The {% macro %} statement is a template function designed to output
content. It's ideal for repetitive content snippets, where you define a {% macro %}
statement once and execute it multiple times with different variables - like a function
- on any template. See the previous section on creating reusable Jinja templates

for detailed examples of this statement. It’s also worth mentioning the built-in {%

set %} statement - described in the Python and filter operations section - provides
simpler reuse functionality for content blocks.

{% call %}.- The {% call %} statement is used in conjunction with the {% macro
%} statement to reference the caller () method within a {% macro %} statement. If
you define a {% macro %} statement with a caller() reference as part of its content,
you can rely on the {% call %} statement to invoke the {% macro %} and have the
contents of the {% call %} statement substituted in place of the caller() method.
See the previous section on creating reusable Jinja templates for detailed examples
of this statement.

145

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

o {% import %} and {% from ... import %}.- The {% import %} statement is used
to access elements from other templates. Similar to Python’s standard import, you
can also use the from and as keywords to limit or rename the elements imported
into a template. Note that by default and due to its caching behavior, the {% import
%} statement doesn'’t get access to the current template instance values (i.e., its
context), it just gets access to globals (e.g., variables and macros). If you want to
access a template’s context you can use the {% include %} statement or pass the
keyword with context to the end of the {% import %} statement to disable caching
and access a template’s context (e.g., {% from 'footer.html' with context %}).
See the previous section on creating reusable Jinja templates for detailed examples
of this statement.

Jinja Built-In Filters and Tests (Like Django Filters)

The Jinja documentation makes an explicit difference between what it calls filters and tests. The only
difference is that Jinja tests are used to evaluate conditions and Jinja filters are used to format or transform
values. In Django there is no such naming difference and an equivalent Jinja test in Django is simply called a
Django filter.

The syntax to apply Jinja filters to template variables is the vertical bar character |, also called a ‘pipe’ in
Unix environments (e.g., {{variable|filter}}). It's worth mentioning you can apply multiple filters to the
same variable (e.g., {{variable|filter|filter}}). The syntax to apply Jinja tests uses the is keyword along
with a regular conditional to evaluate the validity of a test (e.g., {% if variable is divisibleby 10 %}do
something{% endif %}).

In the upcoming sections, I'll add the reference (Test) to indicate it’s referring to a Jinja test vs. a Jinja
filter. I'll also classify each Django built-in filter and test into functional sections so they are easier to identify.
I'll define the broadest category ‘Strings, lists, dictionaries, numbers and objects’ for filters and tests that are
applicable for most scenarios and then more specialized sections for each data type, including ‘String and
lists, ‘Dictionaries and objects, Strings, Numbers, Spacing and special characters, Development and testing,
and Urls.

Strings, Lists, Dictionaries, Numbers, and Objects

e default or d.- The default or d filter is used to specify a default value if a variable
is undefined or is false (i.e., it doesn’t exist or is empty). For example, the filter
statement {{variable|default("no value")}} outputsno value only if the
variable is undefined; otherwise it outputs the variable value. If in addition you
want to provide a default value for a variable that evaluates to false, is None
or is an empty string, you have to add true as a second filter parameter (e.g.,
{{variable|default("no value",true)}} outputsno value if the variable is
undefined, false, is None, or is an empty string).

e defined (Test).- The defined testis used to check if a variable is defined, and if a
variable is defined this tests return true. Listing 4-19 illustrates an example of the
defined test.

146

CHAPTER 4~ JINJA TEMPLATES IN DJANGO

Listing 4-19. Jinja defined test

{% if variable is defined %}

value of variable: {{ variable }}
{% else %}

variable is not defined
{% endif %}

e none (Test).- The none test is used to check if a variable is none, and if a variable is
None this tests return true.

e length or count.- The length filter is used to obtain the length of a value. For
example, if a variable contains latte the filter statement {{variable|length}}
outputs 5. For a list variable that contains ['a", "e", "i"] the filter statement
{{variable|length}} outputs 3.

e equalto (Test).- The equalto test checks if an object has the same value as another
object. For example {% if coffee.price is equalto 1.99 %} coffee prices
equals 1.99 {% endif %}.This works just like the ==, but is more helpful when
used with other filters such as selectattr (e.g., {{ users|selectattr("email",
"equalto", "webmaster@coffeehouse.com") }}, gets users with email webmaster@
coffeehouse.com).

e string(Test).- The string test checks if a variable is a string (e.g., {% if variable
is string %}Yes, the variable is a string!{% endif %}).

e number (Test).- The number test returns true if a variable is a number.
e iterable (Test).- The iterable test checks if it's possible to iterate over an object.

e sequence (Test).- The sequence test checks if the object is a sequence (e.g., a
generator).

e mapping (Test).- The mapping test checks if the object is a mapping (e.g., a
dictionary).

e callable (Test).- The callable test verifies if an object is callable. In Python a
function, classes and object instances with a __call__ method are callables.

e sameas (Test).- The sameas test verifies if an object points to the same memory
address than another object.

Strings and Lists

e reverse.- Thereverse filter is used to get inverse representation of a value. For
example, if a variable contains latte the filter statement {{variable|reverse}}
generates ettal.

e first.- The first filter returns the first item in a list or string. For example,
for a list variable that contains ['a', 'e','i', 0", 'u'] the filter statement
{{variable|first}} outputs a.

e join.- The join filter joins a list with a string. The join filter works just like
Python’s str.join(list). For example, for a list variable that contains
['a','e","i",'0", "u'] thefilter statement {{variable|join("--)}} outputs a--
e--i--0--u. The join filter also supports joining certain attributes of an object
(e.g., {{ users|join(', ', attribute='username') }}).

147

CHAPTER 4

148

JINJA TEMPLATES IN DJANGO

last.- The last filter returns the last item in a list or string. For example,
for a list variable that contains ['a’,"'e','i","'0", "u"] the filter statement
{{variable|last}} outputs u.

map.- The map filter allows you to apply a filter or look up attributes, just like the
standard Python map method. For example, if you have list of users but are only
interested in outputting a list of usernames a map is helpful (e.g., {{ users|map
(attribute="username')|join(", ") }}).In addition, it’s also possible to invoke
a filter by passing the name of the filter and the arguments afterwards (e.g., {{
titles|map('lower')|join("', ') }} applies the lower filter to all the elements in
titles and then joins the items separated by a comma).

random.- The randonm filter returns a random item in a list. For example, for
a list variable that contains ['a',"'e","'i","'0", "u'] the filter statement
{{variable|random}} could output a, €, i, 0, or u.

reject.- The reject filter removes elements that pass a certain test - see bullets in
this chapter section marked as (Test) for acceptable values. For example, for a list
variable that contains [1,2,3,4,5] the loop statement with this filter {% for var
in variable|reject("odd") %}{{var}}{% endfor %} - where odd is the Jinja
test - rejects elements that are odd and thus its output is 2 and 4.

select.- The select filter selects elements that pass a certain test --see bullets in
this chapter section marked as (Test) for acceptable values. For example, for a list
variable that contains [1,2,3,4,5] the loop statement with this filter {% for var in
variable|select("odd") %}{{var}}{% endfor %} -- where odd is the Jinja test -
selects elements that are odd and thus its output is 1, 3, and 5.

slice.- The slice filter returns a slice of lists. For example, for a variable that
contains ["Capuccino"] the filter statement {% for var in variable|slice(4)
%H{{var}}{% endfor %} outputs['C', 'a', 'p']1,['u’, 'c'],['c', "i'],

['n", "o'].It'spossible to use the fill with as a second argument - which
defaults to None - so all segments contain the same number of elements filled with

a given value. For example, {% for var in variable|slice(4,'FILLER') %}
{{var}}{% endfor %}outputs:['C', 'a', 'p'],['u", 'c',"FILLER'],['c",
"i','FILLER'], ['n', 'o','FILLER'].

batch.- The batch filter returns a batch of lists. For example, a variable that contains
["Capuccino"] the filter statement {% for var in variable|batch(4) %}{{var}}
{% endfor %}outputs['C', 'a', 'p', 'u']l,['c', 'c', 'i', 'n'],['0'].1t’s
possible to use the fill with as a second argument - which defaults to None - so

all segments contain the same number of elements filled with a given value. For
example, {% for var in variable|slice(4,'FILLER') %}{{var}}{% endfor %}
outputs: ['C', 'a', 'p', 'u'l,['c’, 'c', 'i', 'n'],['o", 'FILLER', FILLER"
,'FILLER'].

sort.- The sort filter sorts elements by ascending order. For example, if a variable
contains ['e','u’,'a"','i"', '0o"'] the statement {{variable|sort}} outputs
['a','e',"i","0", "u'].It's possible to indicate descending order by setting the first
argument to true (e.g., {{variable|sort(true)}} outputs['u','o",'i",'e","a"]).
In addition, if a list is made up strings, a second argument can be used to indicate
case sensitiveness - which is disabled by default - to perform the sort operation (e.g.,
{{variable|sort(true,true)}}). Finally, if a list is composed of objects, it’s also
possible to specify the sort operation on a given attribute (e.g., variable|sort(attri
bute="date") to sort the elements based on the date attribute).

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Dictionaries and Objects

dictsort.- The dictsort filter sorts a dictionary by key, case insensitive.

For example, if a variable contains {'name" : 'Downtown', 'city':'San
Diego','state':'CA'} the filter {% with newdict=variable|dictsort %} the
newdict variable is assigned the dictionary {'city':'San Diego', 'name':'Dow
ntown', 'state':'CA'}. In addition, the dictsort can accept two arguments, for
case sensitive/insensitive order and sorting by key/value. The default behavior is
case insensitive sort by key (e.g., variable|dictsort), to use case sensitive sort by
key use true as the first argument (e.g., variable|dictsort(true)), to use sort by
value is value as the second argument (e.g., variable|dictsort(false, 'value')
performs a case insensitive sort by value).

attr.- The attr filter returns the attribute of an object (e.g., {{coffeehouse.city}}
outputs the city attribute value of the coffeehouse object). Note the attr filter only
attempts to look up an attribute and not an item (e.g., if coffeehouse is a dictionary
and city is a key item it won’t be found). Alternatively, you can just use the standard
Python syntax variable.name - which first attempts to locate an attribute called name
onvariable, then the name item on variable or if nothing matches an undefined
object is returned-- or variable['name"] - which first attempts to locate the name
item on variable, then an attribute called name on variable or if nothing matches
an undefined object is returned.

rejectattr.- The rejectattr filter removes objects that don’t contain an attribute
or objects for which a certain attribute doesn’t pass a test - see bullets in this chapter
section marked as (Test) for acceptable values. For example, {% for ch in coffee
houses|rejectattr("closedon") %} generates aloop for coffeehouse objects that
don’t have the closedon attribute or {% for u in users|rejectattr("email",
"none") %} generates a loop for user objects that don’t have email None - note the
second argument none represents the test.

selectattr.- The selectattr filter selects objects that contain an attribute or
objects for which a certain attribute passes a test - see bullets in this chapter
section marked as (Test) for acceptable values. For example, {% for u in
users|selectattr("superuser") %} generates aloop for user objects that have
the superuser attribute or {% for u in users|selectattr("email"”, "none") %}
generates a loop for user objects that have email None - note the second argument
none represents the test.

groupby.- The groupby filter is used to rearrange the contents of a list of dictionaries
or objects into different group object sequences by a common attribute. Listing 4-20
illustrates an example of the groupby filter.

Listing 4-20. Jinja groupby filter

Dictionary definition

stores = [
{"name

{"name":
{"name":
{"name":
{"name":

{"name

": 'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},

": 'Uptown', ‘'street': '231 Highland Avenue', 'city': 'San Diego'},
"Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
'Downtown’, 'street': '639 Spring Street', 'city': 'Los Angeles'},
'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
": 'Downton', 'street': '50 1st Street', 'city': 'San Francisco'},

149

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

{% for group in stores|groupby('city') %}
<1i>{{ group.grouper }}

{% for item in group.list %}
{{ item.name }}: {{ item.street }}</1i>
{% endfor %}

</1i>
{% endfor %}

Output
Los Angeles
Downtown: 639 Spring Street
Midtown: 1407 Broadway Street
San Diego
Downtown : 385 Main Street
Uptown : 231 Highland Avenue
Midtown : 85 Balboa Street
San Francisco
Downtown: 50 1st Street

Alternate shortcut syntax, produces same output

{% for grouper, list in stores|groupby('city') %}
<1li>{{ grouper }}

{% for item in list %}
{{ item.name }}: {{ item.street }}
{% endfor %}

</1i>
{% endfor %}

e tojson.- The tojson filter outputs data structures to JavaScript Object Notation(JSON)
(e.g.{{variable|tojson}}). The tojson filter accepts the indent argument - which is
set to None - to generate pretty output by a given number of spaces (e.g., {{variable|t
ojson(indent=2)}}) generates output indented with two spaces).

Tip You can globally set options for the tojson filter through Jinja policies, described in the last section of
this chapter.

150

Strings

CHAPTER 4~ JINJA TEMPLATES IN DJANGO

capitalize.- The capitalize filter capitalizes the first character of a string
variable. For example, if a variable contains hello world the filter statement
{{variable|capitalize}} outputs Hello world.

list.- The list filter is used to return a list of characters. For example, if a
variable contains latte the filter statement {{variable|list}} generates
[lll,lal,l_tl,l_tl,lel]‘

lower.- The lower filter converts all values of a string variable to lowercase. For

example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs hello world.

lower (Test).- The lower test returns true if a variable is lowercased. For example,
{% if variable is lower %}Yes, the variable is lowercase!{% endif %}
outputs the statement if variable is lowercased.

replace.- The replace filter works just like Python’s standard replace string.

The first argument is the substring that should be replaced, the second is the
replacement string. If the optional third argument amount is given, only this amount
of occurrences are replaced. For example {{ "Django 1.8"|replace("1.8",

"1.9") }} outputsDjango 1.9 and {{"oooh Django!"|replace("o", "",2) }}
outputs oh Django!.

string.- The string filter makes a string unicode if it isn’t already.

title.- The title filter converts all first character values of a string variable to
uppercase. For example, if a variable contains hello world the filter statement
{{variable|title}} outputs Hello World.

upper.- The upper filter converts all values of a string variable to uppercase. For
example, if a variable contains Hello World the filter statement {{variable |upper}}
outputs HELLO WORLD.

upper (Test).- The upper test returns true if a variable is uppercased. For example, {%
if variable is upper %}Yes, the variable is uppercase!{% endif %} outputs
the statement if variable is uppercase.

wordcount.- The wordcount filter counts the words in a string. For example, if a
variable contains Coffeehouse started as a small store the filter statement
{{variable|wordcount}} outputs 6.

Numbers

abs.- The abs return the absolute value of the number argument. For example, if a
variable contains -5 the filter statement {{variable|abs}} outputs 5.

filesizeformat.-The filesizeformat filter converts a number of bytes into a
friendly file size string. For example, if a variable contains 250 the filter statement
{{variable|filesizeformat}} outputs 250 Bytes, if it contains 2048 the output is
2 kB, if it contains 2000000000 the output is 2.0 GB. By default, decimal prefixes are
used (e.g., Giga, Mega, Kilo), if you pass an additional Boolean parameter with true
(e.g., {{variable|filesizeformat(true)}}) then binary prefixes are used (e.g.,
Gibi, Mebi, Kibi).

151

CHAPTER 4

JINJA TEMPLATES IN DJANGO

float.- The float filter converts a value into a floating-point number. If the
conversion doesn’t work it returns 0.0 or a custom value argument (e.g.,
variable|float("It didn't work") returns "It didn't work" if variable can’t
be converted to a floating-point number).

int.- The int filter converts a value into an integer. If the conversion doesn’t work it
returns 0 or a custom value specified as the first argument to the filter - just like the
float filter. You can also override the default base 10 with a second filter argument,
which handles input with prefixes such as 0b, 0o and 0x for bases 2, 8, and 16
respectively (e.g., {{'0b001111" |int(0,2)}} a base 2 number outputs 15.

round.- The round filter rounds a number to a given precision, where the first
argument is the precision - which defaults to 0 - and the second argument is a
rounding method - which defaults to ‘common’ rounding either up or down. For
example, {{ 33.55|round }} assumes ‘common’ rounding to output 34.0). In
addition to 'common; it’s also possible to use ‘ceil’ to always round up or ‘floor’ to
always round down (e.g., {{ 33.55|round(1, 'floor') }} outputs 33.5). Note that
even if rounded to the default 0 precision, a float is returned. If you need an integer
you can apply the int filter (e.g., {{ 33.55|round|int }} outputs 34).

sum.- The sum filter returns the sum of a sequence of numbers, plus the value
provided with the start parameter that defaults to 0. In addition, it’s also possible to
sum certain attributes of a list of objects {{ items|sum(attribute="price') }}.

divisibleby (Test).- The divisibleby test checks if a variable is divisible by a given
number. For example, if a variable contains 20 the filter statement {% if variable
is divisibleby(5) %}Variable is divisible by 5!{% endif %} outputs the
conditional statement.

even (Test).- The even test checks if a number is even.

odd (Test).- The odd test checks if a number is odd.

Spacing and Special Characters

152

center.- The center filter center aligns a value and pads it with additional
whitespace characters until it reaches the given argument of characters. For example,
if a variable contains mocha the filter statement {{variable|center(width="15")}}
outputs " mocha "

escape or e.- The escape or e filter escapes HTML characters from a value. Specifically
with the escape filter: < is converted to 81t ; , > is converted to >," (single quote) is
converted to 8#39;," (double quote) is converted to " ;, and & is converted to &.

escaped (Test).- The escaped test checks if a value is escaped.

forceescape.- The forceescape filter escapes HTML characters from a value just
like the escape filter. The difference between both filters is the forceescape filter is
applied immediately and returns a new and escaped string. This is useful in the rare
cases where you need multiple escaping or want to apply other filters to the escaped
results. Normally, you'll use the escape filter.

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

e format.- The format filter is used to apply Python string formatting to a variable.
For example, the statement {{ "%s and %s"|format("Python", "Django!") }}
outputs Python and Django!.

e indent.- The indent filter is used to output a string with each line except the
first one indented with four spaces. It’s possible to change the number of spaces
and the indentation of the first line with additional filter arguments (e.g., {{
textvariable|indent(2, true) }} the 2 indicates two spaces and true indicates to
indent the first line.

e safe.- The safe filter marks a string as not requiring further HTML escaping. When
this filter is used with an environment without automatic escaping it has no effect.

e striptags.- The striptags filter removes all HTML tags from a value. For example, if a
variable contains Coffeehouse, the <i>best</i> drinks the
filter statement {{variable|striptags}} outputs Coffeehouse, the best drinks.

e trim.- The trimfilter is used to strip leading and trailing whitespace just like
Python’s string strip () method.

e truncate.- The truncate filter truncates a string to a given number of characters
- defaulting to 255 characters - and appends an ellipsis sequence. For example, if
avariable contains Coffeehouse started as a small store the filter statement
{{variable|truncate(20)}} outputs Coffeehouse ..., keeping up until character
number 20 and then discarding the last full word, finally adding the ellipsis. You can
add true as a second argument so the string is cut at an exact length (e.g., {{vari
able|truncate(20,true)}} outputs Coffeehouse start... including the ellipsis
characters). It's possible to provide a different symbol than an ellipsis passing a
second parameter (e.g., {{variable|truncate(20,true,"!!!")}} would output
Ilinstead of an elipsis). And finally, the truncate filter accepts a fourth argument
leeway to specify a string tolerance in characters - which defaults to 5 - to avoid
truncating strings (e.g., this avoids truncating words with less than 5 characters).

Tip You can globally set the leeway value for the truncate filter through Jinja policies, described in the last
section of this chapter.

e wordwrap.- The wordwrap filter wraps words at a given character line length
argument. By default, the wrapping occurs after 79 characters, which can be
overridden providing a first argument with the number of characters. If you set
a second parameter to false, Jinja does not split words longer than the wrapping
character length. In addition, wrapping generates a newline character as defined in
the environment -- generally the \n character - but this can be changed by specifying
the wrapstring keyword argument (e.g., {{variable |wordwrap(40,true,'-") uses
a hyphen as the wrapping newline character). Listing 4-21 illustrates an example of
the wordwrap filter.

153

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Listing 4-21. Jinja wordwrap filter

Variable definition
Coffeehouse started as a small store

Template definition with wordwrap filter for every 12 characters
{{variable|wordwrap(12)}}

Output

Coffeehouse
started as a
small store

e xmlattr.- The xmlattr filter is used to create an SGML/XML attribute string based on
the items in a dictionary or object. Once you create a dictionary structure containing
attribute names and reference values, you pass it through the xmlattr filter to
generate the attribute string. By default, all values that are neither none or undefined
are automatically escaped, but you can override this behavior by passing false as the
first filter argument. Listing 4-22 illustrates an example of the xmlattr filter.

Listing 4-22. Django xmlattr filter

Variable definition

{% set stores = [
{'id"':123,"'name': 'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},
{'id':243,"'name"': 'Uptown', 'street': '231 Highland Avenue', 'city': 'San Diego'},
{'id':357, "'name': 'Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
{'id"':478,"'name': 'Downtown', 'street': '639 Spring Street', 'city': 'Los Angeles'},
{'id"':529, "'name': 'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
{'id':653,"'name': 'Downton', 'street': '50 1st Street', 'city': 'San Francisco'},

] %}

Template definition

{% for store in stores %}
<1i {{ {'id":'%d" |format(store.id), 'class':'%s"|format(store.city|lower|replace(' ','-"))
}Ixmlattr }}> {{store.city}} {{store.name}}</1i>
{% endfor %}

Output

<1i id="123" class="san-diego"> San Diego Downtown</1li>
<1i id="243" class="san-diego"> San Diego Uptown</1li>
<1i id="357" class="san-diego"> San Diego Midtown</1li>
<1i id="478" class="los-angeles"> Los Angeles Downtown</1i>
<1i id="529" class="los-angeles"> Los Angeles Midtown
<1i id="653" class="san-francisco"> San Francisco Downton</1i>

154

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Development and Testing

e pprint.- The pprint filter is a wrapper for Python's pprint.pprint(). The pprint
filter is useful during development and testing because it outputs the formatted
representation of an object. By default, the pprint filter is not verbose but you can
make it verbose passing it the true argument (e.g., {{variable|pprint(true)}}).

Urls

e urlencode.- The urlencode filter escapes a value for use in a URL. For example, if a
variable contains http://localhost/drinks?type=cold&size=large the filter statement
{{variable|urlencode}} outputs http%3A//localhost/drinks%3Ftype%3Dcold%26size
%3Dlarge.

e urlize.- The urlize filter converts text URLs into clickable HTML links. You can pass
the filter an additional integer to shorten the visible url (e.g., {{ variable|urlize(40)}}
links are shortened to 40 characters plus an ellipsis). It’s also possible to add a
second argument as a Boolean to make the urls "nofollow" (e.g., {{ variable|urlize(40,
true)}} links are shortened to 40 characters and defined with rel="nofollow").
Finally, it’s also possible to add the target argument to define a link target (e.g., {{
variable|urlize(40, target="_blank")}} links are shortened to 40 characters and open
in a new window).

Tip You can globally set rel and target values for the the urlize filter through Jinja policies, described in the
last section of this chapter.

Custom Filters and Tests in Jinja

Custom Jinja filters and tests are easy to create because they are backed by regular Python methods. For
custom Jinja filters a method should return the desired formatted value, and for Jinja tests a method should
contain the logic to return a Boolean value.

Structure

The backing method for a custom Jinja filter or test has arguments that correspond to the variable itself - as
the first argument - and any remaining values passed by the filter or test as other method arguments (e.g.,
variable|mycustomfilter("<div>") backed by a method like def mycustomfilter(variable,htmltag="
<p>"): -- note the htmltag argument has a default value in case the filter doesn’t specify this value with a
statement like variable |mycustomfilter).

The only Jinja specific logic you need to consider when creating backing Python methods is related to
character safety in Jinja filters. By default, if a backing method for a Jinja filter returns a string, it’s considered
unsafe and is therefore escaped (e.g., if the result of the filter returns <div>, Jinja renders the result as
&1t;div>) - which is the same behavior enforced by custom Django filters.

To mark the result as a safe string, the backing Python method used by a Jinja filter must return a
jinja2.Markup type, a process that’s illustrated in one of the sample filters in Listing 4-23. Listing 4-23
illustrates various backing methods for custom Jinja filters and tests.

155

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Listing 4-23. Backing Python methods for Jinja custom filters and tests.
import jinja2

def customcoffee(value,arg="muted"):
return jinja2.Markup('%s' % (arg,value))

import math

def squarerootintext(value):
return "The square root of %s is %s" % (value,math.sqrt(value))

def startswithvowel(value):
if value.lower().startswith(("a", "e", "i", "o","u")):
return True
else:
return False

The first method in Listing 4-23 returns the value argument wrapped in an HTML tag and
appends a CSS class with the arg argument - note the arg argument in the method definition defaults to the
muted value in case no value is provided. And also notice the customcoffee method returns a jinja2.Markup
type; this is done so Jinja renders the output as a safe string and interprets the tag as HTML.

The second method in Listing 4-23 calculates the square root of a given value and returns the standard
string "The square root of %s is %s" where the first %s represents the passed in value and the second
%s the calculated square root. The third method in Listing 4-23 takes the value argument, transforms it to
lowercase, and checks if value starts with a vowel; if it does it returns a Boolean True otherwise it returns a
Boolean False.

Installation and Access

Once you create the backing methods for custom Jinja filters and tests, you need to declare them as part of
the filters and/or tests variables on Jinja’s environment configuration, which is described in the next section.
Note that it’s assumed the backing methods in Listing 4-23 are placed in a file/module named filters under
the coffeehouse.jinja directory path.

To better illustrate the location of the filters. py file containing the custom Jinja extension, Listing 4-24
illustrates a directory structure with additional Django project files for reference.

Listing 4-24. Directory structure and location of custom Jinja filters and tests

+---+-<PROJECT_DIR coffeehouse>

I

+-__init__.py

+-settings.py

+-urls.py

+-wsgi.py

I

+-jinja-+
+-_ init_ .py
+-env.py
+-filters.py

156

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Jinja filters and tests are set up as part of Jinja’s environment configuration. Listing 4-25 illustrates a
custom Jinja environment definition that sets a series of custom Jinja filters through the variable named
filters and tests.

Listing 4-25. Custom Jinja environment with custom filters and tests

from jinja2.environment import Environment
from coffeehouse.jinja.filters import customcoffee, squarerootintext, startswithvowel

class JinjaEnvironment(Environment):
def _init (self,**kwargs):
super(JinjaEnvironment, self). init (**kwargs)
self.filters['customcoffee'] = customcoffee
self.filters['squarerootintext’'] = squarerootintext
self.filters['startswithvowel'] = startswithvowel
self.tests['startswithvowel'] = startswithvowel

Asyou can see in Listing 4-25, each backing Python method is first imported into the custom Jinja
environment. Next, to register custom Jinja filters you access self.filters and assign it a variable key name
- corresponding to the filter name - along with the backing method for the filter. And to register custom Jinja
tests you access self.tests and assign it a variable key name - corresponding to the test name - along with
the backing method for the test.

An interesting aspect of Listing 4-25 is the registration of startswithvowel as both a filter and test,
which means the same backing method - which returns True or False - can be used for both cases. This dual
registration allows startswithvowel to either use a pipe (i.e., as a filter {{variable|startwithvowel}}
to output True or False verbatim) or the is keyword in a conditional (i.e., as a test {% if variable is
startswithvowel %}variable starts with vowel{% endif %}).

Once a custom Jinja environment is created, you need to set it up as part of Django’s configuration in
the OPTIONS variable of settings.py, as illustrated in Listing 4-26.

Listing 4-26. Configure custom Jinja environment in Django setttings.py

TEMPLATES = [
{
'BACKEND' : 'django.template.backends.jinja2.Jinja2",
'DIRS': ['%s/templates/'% (PROJECT DIR),],
"APP_DIRS': True,
"OPTIONS': {
"environment': 'coffeehouse.jinja.env.JinjaEnvironment'
}
b
]

In this case, you can see in Listing 4-26 the environment value corresponds to coffeehouse.jinja.env.
JinjaEnvironment, where JinjaEnvironment is the class - in Listing 4-25 - env is the file/module name and
coffeehouse.jinja is the directory path. To better illustrate the location of the env. py file take a look at the
directory structure in Listing 4-24.

Once you finish this last registration step, all the declared custom Jinja filters and tests become available
on all Jinja templates just like the regular built-in filters and tags described in the previous section.

157

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Note The custom Jinja environment in Listing 4-25 for custom Jinja filters and tests is the same technique
used in Listing 4-11 to declare Jinja globals.

Jinja Extensions

AJinja extension is to Jinja templates what a library is for programming languages: a reusable set of features
contained in a specific format to not have to continuously ‘reinvent the wheel.

Jinja itself includes various extensions that need to be enabled to be used. In addition, there are also
various third-party Jinja extensions that you can find helpful in certain situations (e.g., Jinja statements that
emulate Django template tags). Table 4-2 contains a list of extensions including their technical name that’s
used to enable them.

Table 4-2. Jinja extensions with description and technical name

Extension functionality Description Technical name
{% break %} and {% continue Offers the ability to break and continue in jinja2.ext.loopcontrols
%} statements template loops, just like the standard break
and continue Python keywords.
{% do %} statement Offers the ability to evaluate an expression jinja2.ext.do
without producing output.
{% with %} statement Offers the ability to define variables and limit jinja2.ext.with_
their scope.

{% autoescape %} statement ~Offers the ability to enable/disable the escape jinja2.ext.autoescape
of HTML characters from a template section.

{% csrf_token %}, {% trans Offers the ability to use the equivalent *jdj_tags.extensions.

%}, {% blocktrans %}, {% functionality provided by Django tags with DjangoCompat (For

static %} and {% url %} the same name. all tags) See extension

statements documentation for more
granular statement import
names.

* All extensions with the exception of jdj_tags.extensions.DjangoCompat are part of Jinja itself, so they require
no additional installation. To install jdj tags.extensions.DjangoCompat use pip install jinja2-django-tags.

Asyou can see in Table 4-2, the functionality provided by each extension varies and if you do an
Internet search for ‘Jinja2 extensions, you are sure to find a few more options that can save you time and
work on various fronts.

To create a custom Jinja extension you need to reuse the functionality provided by Jinja’'s jinja2.ext.
Extension class, as well as use Jinja’s API to create the custom logic you're pursuing. Once you create a
custom Jinja extension and add it to your Django project, you must also enable it with the extensions key of
the OPTIONS variable in settings.py.

158

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Enable Jinja Extensions

Jinja extensions are set up as part of Jinja's environment configuration, which in Django is configured in
the OPTIONS variable of settings.py, as described in the previous section on configuring Jinja templates in
Django. Listing 4-27 illustrates a sample Django configuration that enables a series of Jinja extensions.

Listing 4-27. Jinja extension configuration in Django

TEMPLATES = [
{

'BACKEND' : 'django.template.backends.jinja2.Jinja2",

'DIRS': ['%s/templates/'% (PROJECT DIR),],

"APP_DIRS': True,

"OPTIONS': {

"extensions': |

'jinja2.ext.loopcontrols’,
'jdj_tags.extensions.DjangoCompat’,
'coffeehouse. jinja.extensions.DjangoNow",

1

Asyou can see in Listing 4-27, we use the Jinja extension’s name - as described in Table 4-2 - and add it to a
list that’s assigned to the extensions key of the OPTIONS variable, which itself is part of Jinja’s TEMPLATES Django
configuration in settings.py. Note that the third extension coffeehouse. jinja.extensions.DjangoNow in
Listing 4-27 is a custom Jinja extension that I'll create in the next and final section of this chapter.

This is all that’s necessary to enable a Jinja extension across all Jinja templates. Now that you know how
to enable Jinja extensions, the next section explores how to create custom Jinja extensions.

Create Jinja Extensions

Jinja has its own extension API, which is thoroughly documented” and tackles all the possible cases you
may need an extension for. I won't attempt to use all of the API's functionality, because it would be nearly
impossible to do so in a single example; instead I'll focus on creating a practical extension and in the process
illustrate the layout and deployment process for a custom Jinja extension.

In Django templates when you want to output the current date or time, there’s a tag named {% now %}
for just this purpose; Jinja has no such statement, so I'll create a Jinja extension to mimic the same behavior
as the Django template {% now %} tag. The Jinja {% now %} statement will function just like the Django
template version and accept a format string, as well as the possibility to use the as keyword to define a
variable with the value.

Listing 4-28 illustrates the source code for the custom Jinja extension that produces a Jinja {% now %}
statement.

"http://jinja.pocoo.org/docs/2.9/extensions/

159

http://jinja.pocoo.org/docs/2.9/extensions/

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Listing 4-28. Jinja custom extension for Jinja {% now %} statement

from jinja2 import lexer, nodes

from jinja2.ext import Extension

from django.utils import timezone

from django.template.defaultfilters import date
from django.conf import settings

from datetime import datetime

class DjangoNow(Extension):
tags = set(['now'])

def now(self, date format):
tzinfo = timezone.get_current_timezone() if settings.USE_TZ else None
formatted = date(datetime.now(tz=tzinfo),date format)
return formatted

def parse(self, parser):
lineno = next(parser.stream).lineno
token = parser.stream.expect(lexer.TOKEN STRING)
date_format = nodes.Const(token.value)
call = self.call method(' now', [date format], lineno=lineno)
token = parser.stream.current
if token.test('name:as'):
next(parser.stream)
as_var = parser.stream.expect(lexer.TOKEN_NAME)
as_var = nodes.Name(as_var.value, 'store', lineno=as_var.lineno)
return nodes.Assign(as_var, call, lineno=lineno)
else:
return nodes.Output([call], lineno=lineno)

After the various import statements in Listing 4-28, you can see we create the DjangoNow class that
inherits its behavior from the jinja2.ext.Extension class, the last of which is part of Jinja and used for
all custom extensions. Next, you can see we define the tags field with the set(['now']) value, which is
necessary to set up the statement/tag name. If you wanted the custom statement/tag to be called
{% mytimer %} thenyou would declare tags = set(["'mytimer']).

Next in Listing 4-28 you can see the _now and parse methods. The _now method performs the actual
current date or time calculation and checks the Django project’s timezone configuration in settings.
py - a process that’s just like Django’s {% now %} tag. The parse method represents the entry point that
executes the custom {% now %} statement/tag, where it uses the Jinja extension API to analyze the input
and depending on the {% now %} declaration (e.g.{% now "F jS o" %}, {% now "F jS o" as today %})
executes the _now method and returns a result.

Once you create the custom Jinja extension, you need to declare it as part of the extensions variable on
Jinja’s environment configuration, as illustrated in Listing 4-27.

To better illustrate the location of the extensions. py file containing the custom Jinja extension, Listing 4-29
illustrates a directory structure with additional Django project files for reference.

160

CHAPTER 4 = JINJA TEMPLATES IN DJANGO

Listing 4-29. Directory structure and location of custom Jinja extension

+---+-<PROJECT_DIR_coffeehouse>
I
+-__init_ .py
+-settings.py
+-urls.py
+-wsgi.py
I

+-jinja-+
+-__init__.py
+-extensions.py

Note that based on the statement to import the custom Jinja extension in Listing 4-27 - coffeehouse.
jinja.extensions.DjangoNow - it’s assumed the DjangoNow class in Listing 4-28 is placed in a file/module
named extensions.py under the coffeehouse. jinja directory path.

Jinja Policies
Jinja policies are used to set the global behavior of Jinja built-in filters and other template constructs. Jinja
policies are set in Jinja environments - just like Jinja globals in Listing 4-11 or custom Jinja filters and tests in
Listing 4-25.

For example, you can use Jinja policies to alter the way the json or urlize built-in filters operate by
default. Listing 4-30 illustrates a custom Jinja environment that alters the Jinja built-in truncate filter and
sets the leeway option to 0.

Listing 4-30. Custom Jinja environment with policies

from jinja2.environment import Environment
from coffeehouse.jinja.filters import customcoffee, squarerootintext, startswithvowel

class JinjaEnvironment(Environment):
def _init (self,**kwargs):
super(JinjaEnvironment, self). init_ (**kwargs)
self.policies['truncate.leeway'] = 0

As you can see in Listing 4-30, to register Jinja policies you access self.policies and assign it the
policy key name?® - in this case corresponding to truncate.leeway - along with the policy value - in this case
corresponding to 0. By setting the Jinja policy in Listing 4-30, anytime you use the truncate filter in Jinja
templates, the leeway is set to 0, instead of the default 5.

Shttp://jinja.pocoo.org/docs/2.9/api/#policies

161

http://jinja.pocoo.org/docs/2.9/api/#policies

CHAPTER 5

Django Application Management Y,

Django, like all modern application development frameworks, requires that you eventually manage tasks to
support the core operation of a project. This can range from efficiently setting up a Django application to run
in the real world, to managing an application’s static resources (e.g., CSS, JavaScript, image files).

In addition, other routine application management tasks can include the following: establishing
alogging strategy to enforce problem detection, setting up email delivery for application users and/or
administrators, as well as debugging tasks to inspect the outcome of complex operations. In this chapter,
you'll learn about these and other common topics associated with Django application management.

Django settings.py for the Real World

The settings.py is the central configuration for all Django projects. In previous chapters you already
worked with a series of variables in this file to configure things like Django applications, databases,
templates, and middleware, among other things.

Although the settings.py file uses reasonable default values for practically all variables, when a
Django application transitions into the real world, you need to take into account a series of adjustments, to
efficiently run the Django application, offer end users a streamlined experience, and keep potential rogue
attackers in check.

Switch DEBUG to False

One of the first things that’s necessary to launch a Django application into the real world is to change the
DEBUG variable to False. I've briefly mentioned in previous chapters how Django’s behavior changes when
switching DEBUG=False to DEBUG=True. All these behavioral changes associated with the DEBUG variable are
intended to enhance project security. Table 5-1 illustrates the differences between having a project run with
DEBUG=False and DEBUG=True.

© Daniel Rubio 2017 163
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_5

https://doi.org/10.1007/978-1-4842-2787-9_5

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Table 5-1. Django behavior differences between DEBUG=True and DEBUG=False

Functionality DEBUG=True behavior DEBUG=False behavior

Error handling and Displays full stack of Displays default ‘vanilla’ or custom error pages

notification errors on request pages without any stack details to limit security threats or
for quick analysis. embarrassments. Emails project administrators of

errors. (See the ‘Define administrators for ADMINS and
MANAGERS'’ section in this section for more details on
email notifications.)

Static resources Setup by defaultona Disables automatic setup to avoid security
project’s /static/ URL vulnerabilities and requires consolidation in a separate
for simplicity. directory to run static resources on a separate web

server. (See the Set up static web page resources -
Images, CSS, JavaScript - in the next section.)

Host/site qualifier Requests for all hosts/ It’s necessary to qualify for which hosts/sites a project
sites are accepted for ~ can handle requests. If a site/host is not qualified, all
processing. requests are denied. (See the ‘Define ALLOWED_HOSTS'

section in this section for more details.)

Asyou can see in Table 5-1, the changes enforced by changing DEBUG=True to DEBUG=False are intended
for publicly accessible applications (i.e., production environments). You may not like the hassle of adapting
to these changes, but they are enforced to maintain a heightened level of security on all Django projects that
run in the real world.

Define ALLOWED_HOSTS

By default, the ALLOWED_HOSTS variable in settings.py is empty. The purpose of ALLOWED_HOSTS is to
validate a request’s HTTP Host header. Validation is done to prevent rogue users from sending fake HTTP
Host headers that can potentially poison caches and password reset emails with links to malicious hosts.
Since this issue can only present itself under an uncontrolled user environment (i.e., public/production
servers), this validation is only done when DEBUG=False.

If you switch to DEBUG=False and ALLOWED_HOSTS is left empty, Django refuses to serve requests and
instead responds with HTTP 400 bad request pages, since it can’t validate incoming HTTP Host headers.
Listing 5-1 illustrates a sample definition of ALLOWED_HOSTS.

Listing 5-1. Django ALLOWED_HOSTS definition

ALLOWED_HOSTS = [
'.coffeehouse.com',
' .bestcoffeehouse.com',

Asyou can see in Listing 5-1, the ALLOWED_HOSTS value is a list of strings. In this case it defines t
wo host domains that allow bestcoffeehouse.comto act as an alias of coffeehouse.com. The leading .(dot)
for each domain indicates a subdomain is also an allowed host domain (e.g., static.coffeehouse.comor
shop.coffeehouse. comis valid for .coffeehouse.com).

164

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

If you wanted to accept a single and fully qualified domain (FQDN), you would define
ALLOWED HOSTS=['www.coffeehouse.com'], which would only accept requests with an HTTP Host
www . coffeehouse. com. In a similar fashion, if you wanted to accept any HTTP host - effectively bypassing the
verification - you would define ALLOWED _HOSTS=['*'], which indicates a wildcard.

Be Careful with the SECRET_KEY Value

The SECRET_KEY value in settings.py is another security-related variable like ALLOWED_HOSTS. However,
unlike ALLOWED _HOSTS, SECRET_KEY is assigned a default value and a very long value at that (e.g., ' oubrz5ado
3%+t (qurfqo_#uhn7*+q*#9b3gjen-yj7 tghronn").

The purpose of the SECRET_KEY value is to digitally sign certain data structures that are sensitive
to tampering. Specifically, Django by default uses the SECRET_KEY on sensitive data structures like
session identifiers, cookies, and password reset tokens. But you can rely on the SECRET_KEY value to
cryptographically protect any sensitive data structure in a Django project.

The one thing the default data structures signed with the SECRET_KEY have in common is they’re sent
to users on the wider Internet and are then sent back to the application to trigger actions on behalf of users.
It’s in this scenario we enter into a trust issue. Can the data sent back to the application be trusted? What if
a malicious user attempts to simulate another user’s cookie or session data to hijack his access? This is what
digitally signed data prevents.

Before Django sends any of these sensitive data structures to users on the Internet, it signs them with
aproject’s SECRET_KEY. When the data structures come back to fulfill an action, Django rechecks these
sensitive data structures against the SECRET_KEY again. If there was any tampering on the data structures, the
signature check fails and Django halts the process.

The only remote possibility a rogue user has to successfully pull an attack of this kind is if the
SECRET_KEY is compromised - since an attacker can potentially create an altered data structure that matches
aproject’s SECRET_KEY. Therefore you should be careful about exposing your project’s SECRET_KEY. If you
suspect for any reason a project’s SECRET_KEY has been compromised, you should replace it immediately
- only a few ephemeral data structures (i.e., sessions, cookies) become invalid with this change, until users
re-log in again and the new SECRET_KEY is used to regenerate these data structures.

Define Administrators for ADMINS and MANAGERS

Once a Django project is made accessible to end users, you'll want some way to receive notifications of
important events related to security or other critical factors. Django has two sets of administrative groups
defined in settings.py: ADMINS and MANAGERS. By default, both ADMINS and MANAGERS are empty. The values
assigned to both variables need to be tuples, where the first value of the tuple is a name and the second part
of the tuple is an email. Listing 5-2 shows a sample definition of ADMINS and MANAGERS.

Listing 5-2. Django ADMINS and MANAGERS definition

ADMINS = (('Webmaster','webmaster@coffeehouse.com"), ('Administrator','admin@coffeehouse.com'))

MANAGERS = ADMINS

Asyou can see in Listing 5-2, the ADMINS variable is assigned two tuples with different administrators.
Next, you can see the ADMINS value is assigned to the MANAGERS variable. You can, of course, define different
values for MANAGERS using the same syntax as ADMINS, but in this case I just gave both variables the same
values for simplicity.

'https://docs.djangoproject.com/en/1.11/topics/signing/

165

http://www.coffeehouse.com/
http://www.coffeehouse.com/
http://www.coffeehouse.com/
https://docs.djangoproject.com/en/1.11/topics/signing/

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

The purpose of having these two administrative groups in settings.py is for Django to send email
notifications of project events. By default, these events are limited and happen under certain circumstances.
After all, you don’t want to send administrators 10 email notifications every minute, 24/7.

By default, ADMINS are sent email notifications of errors associated with the django.request or
django.security packages, if and only if DEBUG=False. This is a pretty narrow criteria, as it’s intended to
notify only the most serious errors - for requests and security - and only for production environments, which
is when DEBUG=False. For no other events or conditions are the ADMINS notified by email.

By default, MANAGERS are sent email notifications of broken links (i.e., HTTP 404 page
requests), if and only if DEBUG=False and the Django middleware django.middleware.common.
BrokenLinkEmailsMiddleware is enabled. Because HTTP 404 page requests aren’t a serious problem,
by default BrokenLinkEmailsMiddleware is disabled. This is an even narrower criteria than for ADMINS,
because irrespective of a project being in development (DEBUG=True) or production (DEBUG=False), the
BrokenLinkEmailsMiddleware class needs to be added to MIDDLEWARE variable in settings.py for MANAGERS
to get notifications. For no other events or conditions are the MANAGERS notified by email.

Now that you know the purpose of ADMINS and MANAGERS, add users and emails as you see fit to your
project. Remember you can always leverage the values in ADMINS and MANAGERS for other custom logic in a
Django project (e.g., notify administrators of user signups).

MODIFY LOGGING TO STOP EMAIL NOTIFICATIONS TO ADMINS

By default, users in ADMINS start receiving error emails as soon as you switch to DEBUG=False - this is
unlike MANAGERS, which will never receive emails unless you add the BrokenLinkEmailsMiddleware to
MIDDLEWARE_CLASSES.

To stop email notifications to ADMINS even when DEBUG=False, you can modify Django’s logging
settings, which are described in the logging section in this chapter. You can also leave ADMINS
undefined so no emails are sent out, but that leaves your project with no ADMINS definitions that may
be useful for other purposes.

Use Dynamic Absolute Paths

There are some Django variables in settings.py that rely on directory locations, such is the case for
STATIC ROOT, which defines a consolidation directory for a project’s static files or the DIRS list of the
TEMPLATES variable that defines the location of a project’s templates, among other variables.

The problem with variables that rely on directory locations is that if you run the project on different
servers or share it with other users, it can be difficult to keep track or reserve the same directories across a
series of environments. To solve this issue you can define variables to dynamically determine the absolute
paths of a project. Listing 5-3 illustrates a Django project directory structure, deployed to the /www/ system
directory.

Listing 5-3. Django project structure deployed to /www/

+-/Www/+

I
+--STORE--+

+---manage. py

+---coffeestatic--+

| I
166

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

| +-(Consolidated static resources)

+---coffeehouse--+
|
+-_ init_ .py
+-settings.py
+-urls.py
+-wsgi.py
|

+---templates---+
+-app_base_template.html
+-app_header_template.html
+-app_footer template.html

Typically a Django settings.py file would define the values for STATIC_ROOT and DIRS in TEMPLATES as
illustrated in Listing 5-4.

Listing 5-4. Django settings.py with absolute path values

Other configuration variables omitted for brevity
STATIC_ROOT = '/www/STORE/coffeestatic/’

Other configuration variables omitted for brevity
TEMPLATES = [

{

'BACKEND': 'django.template.backends.django.DjangoTemplates’,
'DIRS': ['/www/STORE/coffeehouse/templates/',],

}

]

The issue with the setup in Listing 5-4 is it will require editing if you deploy the Django application to a
server where the /www/ directory isn’t available (e.g., due to restrictions or a Windows OS where directories
start with a leading letter C:/).

An easier approach illustrated in Listing 5-5 is to define variables to dynamically determine the absolute
paths of a project.

Listing 5-5. Django settings.py with dynamically determined absolute path

import os
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

Other configuration variables omitted for brevity
STATIC ROOT = '%s/coffeestatic/' % (BASE _DIR)

Other configuration variables omitted for brevity
TEMPLATES = [

{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/'% (PROJECT DIR),],

}

]

167

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

The variables defined at the top of Listing 5-5 rely on the Python os module to dynamically determine
the absolute system path relative to the settings.py file. The PROJECT_DIR=o0s.path.dirname(os.path.
abspath(_ file)) statement gets translated into the /www/STORE/coffeehouse/ value, which is the
absolute system directory of files like settings.py. And to access the parent of /www/STORE/coffeehouse/
you simply wrap the same statement with another call to os.path.dirname and define the BASE_DIR variable
so it gets translated into the /www/STORE/ value.

The remaining statements in Listing 5-5 use standard Python string substitution to use the PROJECT_DIR
and BASE_DIR to set the absolute paths in the STATIC_ROOT and TEMPLATE_DIRS variables. In this manner
you don’t need to hard-code the absolute paths for any Django configuration variable; the variables
automatically adjust to any absolute directory irrespective of the application deployment directory.

Use Multiple Environments or Configuration Files for Django

In every Django project you'll eventually come to the realization that you have to split settings.py into
multiple environments or files. This will be either because the values in settings.py need to change
between development and production servers, there are multiple people working on the same project with
different requirements (e.g., Windows and Linux), or you need to keep sensitive settings.py information
(e.g., passwords) in a local file that’s not shared with others.

In Django there is no best or standard way to split settings.py into multiple environments or files.
In fact, there are many techniques and libraries to make a Django project run with a split settings.py file.
Next, I'll present the three most popular options I've used in my projects. Depending on your needs you
may feel more comfortable using one option over another or inclusively mixing two or all three of these
techniques to achieve an end solution.

Option 1) Multiple environments in the same settings.py file with a control
variable

The settings.py file is treated as an ordinary Python file, so there’s no limitation to using Python libraries or
conditionals to obtain certain behaviors. This means you can easily introduce a control variable based on a
fixed value (e.g., server host name) to conditionally set up certain variable values.

For example, changing the DATABASES variable - because passwords and the database name change
between development and production - changing the EMAIL_BACKEND variable - since you don’t need to send
actual emails in development as you do in production - or changing the CACHES variable - since you don’t
need a cache to speed up performance in development as you need in production.

Listing 5-6 illustrates the setup of a control variable called DJANGO_HOST based on Python’s socket
module; the variable is then used to load different sets of Django variables based on a server’s host name.

Listing 5-6. Django settings.py with control variable with host name to load different sets of variables

Import socket to read host name
import socket
If the host name starts with 'live', DJANGO_HOST = "production”
if socket.gethostname().startswith('live'):
DJANGO_HOST = "production”
Else if host name starts with 'test', set DJANGO_HOST = "test"
elif socket.gethostname().startswith('test'):
DJANGO_HOST = "testing"
else:
If host doesn't match, assume it's a development server, set DJANGO_HOST = "development"
DJANGO_HOST = "development"

168

CHAPTER 5

Define general behavior variables for DJANGO HOST and all others
if DJANGO _HOST == "production":

DEBUG = False

STATIC_URL = 'http://static.coffeehouse.com/'
else:

DEBUG = True

STATIC_URL = '/static/'

Define DATABASES variable for DJANGO_HOST and all others
if DJANGO_HOST == "production":
Use mysql for live host
DATABASES = {
"default': {
"NAME': "housecoffee',
"ENGINE': 'django.db.backends.mysql',
'"USER': 'coffee',
"PASSWORD' : 'secretpass'
}
}

else:
Use sqlite for non live host
DATABASES = {
"default': {
"ENGINE': 'django.db.backends.sqlite3’,
"NAME': os.path.join(BASE DIR, 'coffee.sqlite3'),
}
}

Define EMAIL _BACKEND variable for DJANGO HOST
if DJANGO _HOST == "production":
Output to SMTP server on DJANGO_HOST production
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
elif DJANGO _HOST == "testing":
Nullify output on DJANGO HOST test
EMAIL BACKEND = 'django.core.mail.backends.dummy.EmailBackend'
else:
Output to console for all others

DJANGO APPLICATION MANAGEMENT

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Define CACHES variable for DJANGO_HOST production and all other hosts

if DJANGO HOST == "production":
Set cache
CACHES = {
"default’': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',

"LOCATION': '127.0.0.1:11211",
'TIMEOUT':'1800",

}
}
CACHE_MIDDLEWARE_SECONDS = 1800

169

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

else:
No cache for all other hosts
pass

The first line in Listing 5-6 imports the Python socket module to gain access to the host name. Next,
a series of conditionals are declared using socket.gethostname() to determine the value of the control
variable DJANGO_HOST. If the host name starts with the letters 1ive the DJANGO_HOST variable is set to
"production", if the host name starts with test then DJANGO_HOST is set to "testing", and if the host name
starts with neither of the previous options then DJANGO_HOST is set to "development".

In this scenario, the string method startswith is used to determine how to set the control variable
based on the host name. However, you can just as easily use any other Python library or even criteria
(e.g., IP address) to set the control variable. In addition, since the control variable is based on a string, you
can introduce as many configuration variations as needed. In this case we use three different variations to
set settings.py variables - "production"”,"testing" and "development"” - but you could easily define five
or a dozen variations if you require such an amount of different setups.

Option 2) Multiple environment files using configparser

Another variation to split settings.py is to rely on Python's built-in configparser module. configparser
allows Django to read configuration variables from files that use a data structure similar to the one used in
Microsoft Windows INI files. Listing 5-7 illustrates a sample configparser file.

Listing 5-7. Python configparser sample file production.cfg

[general]
DEBUG: false
STATIC_URL: http://static.coffeehouse.com/

[databases]

NAME: housecoffee

ENGINE: django.db.backends.mysql
USER: coffee

PASSWORD: secretpass

[security]
SECRET_KEY: %%ea)cjy@v9(7!b(20gl+4-6iur28dy=tcaf$-zbm-v=1t

Asyou can see in Listing 5-7, the format for a configparser file is structured in various sections declared
between brackets (e.g., [general], [databases]) and below each section are the different keys and values.
The variables in Listing 5-7 represents a production environment placed in a file named production.
cfg. Ichose the . cfg extension for this file, but you can use the .config or .ini extensions if you like; the
extension is irrelevant to Python - the only thing that matters is the data format in the file itself.

Similar to the contents in production.cfg, you can create other files with different variables for other
environments (e.g., testing.cfg, development.cfg). Once you have the configparser file or files, then you
can import them into a Django settings.py. Listing 5-8 shows a sample settings.py that uses values from
a configparser file.

170

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-8. Django settings.py with configparser import

import os

BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_file)))
PROJECT DIR = os.path.dirname(os.path.abspath(_file))

Access configparser to load variable values
from django.utils.six.moves import configparser
config = configparser.SafeConfigParser(allow no value=True)

Import socket to read host name
import socket
If the host name starts with 'live', load configparser from "production.cfg"
if socket.gethostname().startswith('live'):

config.read('%s/production.cfg’ % (PROJECT DIR))
Else if host name starts with 'test', load configparser from "testing.cfg"
elif socket.gethostname().startswith('test'):

config.read('%s/testing.cfg' % (PROJECT DIR))
else:
If host doesn't match, assume it's a development server, load configparser from
"development.cfg"

config.read('%s/development.cfg' % (PROJECT_DIR))

DEBUG = config.get('general', 'DEBUG")
STATIC_URL = config.get('general', 'STATIC URL')

DATABASES = {

"default': {
"NAME': config.get('databases', 'NAME'),
"ENGINE': config.get('databases', 'ENGINE'),
"USER': config.get('databases', 'USER'),
"PASSWORD ' : config.get('databases', 'PASSWORD')

}

}

SECRET_KEY = config.get('security', 'SECRET_KEY')

Note The configuration in Listing 5-8 assumes the host name starts with the name live in order to load
configparser production.cfg in Listing 5-7. Adjust conditionals at the start of Listing 5-8 to match the host name
and load the appropriate configparser file.

As you can see in Listing 5-8, configparser is loaded into Django via django.utils.six.moves, whichis a
utility to allow cross-imports between Python 2 and Python 3. In Python 2 the configparser package is actually
named ConfigParser, but this utility allows us to use the same import statement using either Python 2 or
Python 3. After the import, we use the SafeConfigParser class with the argument allow_no_value=True to
allow processing of empty values in configparser keys.

171

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Then we rely on the same prior technique using Python’s socket module to gain access to the host
name and determine which configparser file to load. The configparser file is loaded using the read method
of the SafeConfigParser instance. At this juncture all configparser variables are loaded and ready for access.
The remainder of Listing 5-8 shows a series of standard Django settings.py variables that are assigned their
value using the get method of the SafeConfigParser instance, where the first argument is the configparser
section and the second argument is the key variable.

So there you have another option on how to split the variables in settings.py into multiple
environments. Like I mentioned at the start, there’s no best or standard way of doing this. Some people like
configparser better because it splits values into separate files and avoids the many conditionals of option 1,
but other people can hate configparser because of the need to deal with the special syntax and separate files.
Choose whatever feels best for your project.

Option 3) Multiple settings.py files with different names for each environment

Finally, another option to split Django variables into multiple environments is to create multiple
settings.py files with different names. By default, Django looks for configuration variables in the
settings.py file in a project’s base directory.

However, it’s possible to tell Django to load a configuration file with a different name. Django uses the
operating system (OS) variable DJANGO SETTINGS MODULE for this purpose. By default, Django sets this OS
variable to <project_name>.settings in the manage.py file located in the base directory of any Django
project. And since the manage. py file is used to bootstrap Django applications, the DJANGO_SETTINGS_MODULE
value in this file guarantees configuration variables are always loaded from the settings.py file inside the
<project_name> subdirectory.

So let’s suppose you create different settings.py files for a Django application - placed in the same
directory as settings.py - named production.py, testing.py, and development.py. You have two options
to load these different files.

One option is to change the DJANGO_SETTINGS_MODULE definition in a project’s manage. py file
to the file with the desired configuration (e.g., 0s.environ.setdefault("DIJANGO_SETTINGS MODULE",
"coffeehouse.production") toload the production.py configuration file). However, hard-coding this value
is inflexible because you would need to constantly change the value in manage. py based on the
desired configuration. Here you could use a control variable in manage. py to dynamically determine the
DJANGO_SETTINGS MODULE value based on a host name - similar to the process described in the previous
option 1 for settings.py.

Another possibility to set DJANGO_SETTINGS_MODULE without altering manage.py is to define
DJANGO_SETTINGS_MODULE at the OS level so it overrides the definition in manage. py. Listing 5-9 illustrates
how to set the DJANGO_SETTINGS_MODULE variable on a Linux/Unix OS so that application variables in the
testing.py file are used instead of the settings.py file.

Listing 5-9. Override DJANGO_SETTINGS_MODULE to load application variables from a file called testing.
py and not the default settings.py

$ export DJANGO_SETTINGS_MODULE=coffeehouse.load_testing
$ python manage.py runserver
Validating models...

0 errors found

Django version 1.11, using settings 'coffeehouse.load _testing'
Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

172

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

In Listing 5-9 we use the standard Linux/Unix syntax export variable name=variable value to set
an environment variable. Once this is done, notice the Django application that uses the development server
displays the startup message "using settings 'coffeehouse.load testing'".

If you plan to override the DJANGO_SETTINGS_MODULE at the OS level to load different Django application
variables, be aware that by default OS variables aren’t permanent or inherited. This means you may need to
define the DJANGO_SETTINGS_MODULE for every shell from which you start Django and also define it as a local

variable for runtime environments (e.g., Apache).

Set Up Static Web Page Resources - Images, CSS, JavaScript

The setup process for static resources in Django projects varies considerably if a project runs with
DEBUG=True or DEBUG=False. This means static resource deployment depends on whether you're doing work
on a development environment - where you generally use DEBUG=True - or on a production environment -
where you generally use DEBUG=False.

Considering you'll always start a Django project in a development environment and later migrate to a
production environment, I'll describe the development set up process first and later describe the production
setup process.

Set Up Static Resources in a Development Environment (DEBUG=False)

By default when DEBUG=False, Django automatically sets up static resources from two major locations.
The first location is static folders in all Django apps and the second location is folders declared in the
STATICFILES DIR variable in settings.py

Although you'll need to manually create the static folder inside Django apps, it’s this easy to set
up static resources in a project. Because Django sets up all the static folders for every project app, it’s a
recommended practice to further add a subdirectory to the static folder (e.g., <app_folder>/static/<app_
name>/<static_files_here>) to qualify static resources and avoid potential naming conflicts. Listing 5-10
illustrates a sample directory structure for static resources.

Listing 5-10. Django app structure with static directories

+-<BASE_DIR_project_name>

+-manage.py

+-bootstrap-3.1.1-dist+
+-bootstrap.min.js

jquery-1-11-1-dist+
+jquery.min.js
+jquery-ui.min.js
website-static-default+

+-favicon.ico

I

I

+_

I

I
+-jquery-ui-1.10.4+
I

I

+_

I

| +-robots.txt
I

I

173

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

+---+-<PROJECT_DIR_project_name>

+-__init__.py
+-settings.py
+-urls.py
+-wsgi.py
|
+-about(app)-+
| +-__init__.py
| +-models.py
| +-tests.py
| +-views.py
| +-static-+
| |
| +-about-+
| +-img-+
| | +-logo.png
| |
| +-CSS-+
| +-custom.css
+-stores(app)-+

+-__init_ .py

+-models.py

+-tests.py

+-views.py

+-static-+

|
+-stores-+

+-img-+

| +-coffee.gif

+-CSS-+
+-custom.css

As illustrated in Listing 5-10, all Django app directories have a static subdirectory that contains static
resources. Anything under these static subdirectories is set up for access.

Also notice in Listing 5-10 the importance of the app name subdirectory within the static
subdirectories that acts as a namespace. If static resources were placed directly below the static folder in
all apps, in this scenario it would lead to two identical file paths named /static/css/custom.css, In which
case a call to load this static resource would lead to a conflict. Technically, Django always uses the first file it
finds, but will the first one be the right one? By using an app name subdirectory inside static it avoids any
potential conflict, with one static resource set up at /static/about/css/custom.css and the other at
/static/stores/css/custom.css.

Because there can be static resources that don’t necessarily belong to a specific project app, Django also
supports the ability to set up static resources stored on any subdirectory.

If you look again at Listing 5-10 in between the BASE_DIR and PROJECT_DIR, you'll see there are various
subfolders that contain popular static resource libraries - jquery, jquery-ui and bootstrap-- as well as a
subfolder website-static-default with a web site’s standard static resources - robots.txt & favicon.ico

In order to set up these additional static resources, you define the location of these directories in
the STATICFILES DIR variable in settings.py. Listing 5-11 illustrates an example of a STATICFILES DIR
definition.

174

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-11. Django STATICFILES_DIR definition with namespaces in settings.py
BASE DIR = os.path.dirname(os.path.dirname(os.path.abspath(_ file)))

STATICFILES DIRS = ('%s/website-static-default/'% (BASE DIR),
('bootstrap', '%s/bootstrap-3.1.1-dist/'% (BASE _DIR)),
('jquery', '%s/jquery-1-11-1-dist/'% (BASE_DIR)),
('jquery-ui', '%s/jquery-ui-1.10.4/'% (BASE DIR)),)

Asyou can see in Listing 5-11, STATICFILES_DIRS accepts a list of directories. In this case, all directories
are under a Django project’s BASE_DIR, so it’s using the BASE_DIR variable that dynamically determines
the parent directory. Another aspect of the directory list in Listing 5-11 is you can optionally declare a
namespace, similar to the approach used in an app’s static subdirectories.

The first directory definition in Listing 5-11 is a simple string (i.e., it has no namespace), which means
the static resources in website-static-default is set up with a direct access pattern. The remaining
directory definitions are tuples and not strings. By using a tuple, it defines the first part of the tuple as the
namespace and the second part as the directory with the static resources. Definitions with a namespace
mean that all static resources under a given directory will use a prefix namespace in their access pattern
(e.g., to access static resources on bootstrap-3.1.1-dist the access pattern should be prefixed with
bootstrap).

Now that you know where and how to set up all static resources, let’s take a quick look at how Django
visualizes these static resources to understand what the final access patterns for static resources look like.
Listing 5-12 shows a visualization of the static resources presented in the previous listings.

Listing 5-12. Django visualization of static resources in apps and STATICFILES_DIRS

+-favicon.ico
+-robots.txt

I

+-jquery+
+jquery.min.js

jquery-ui+
+jquery-ui.min.js

bootstrap+
+-bootstrap.css

|
I
4
I
I
+_
|
I
+-about-+
| +-img-+
| | +-logo.png
| |
| +-CSS-+
| +-custom.css
I
+-stores-+
+-img-+
| +-coffee.gif
|
+-CSS-+
+-custom.css

175

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

The files favicon.ico and robots.txt in Listing 5-12 are in the top level of the visualization because
their source directory - website-static-default - was defined without a namespace in STATICFILES DIRS.

The remainder of the static resources are all grouped in subfolders because we either defined a
namespace for them in STATICFILES_DIRS or defined a subfolder as a namespace within an app’s static
subdirectory.

Now that you understand how Django visualizes static resources as a group and how this determines the
final access pattern for static resources, let’s turn our attention to the STATIC_URL variable in settings.py.

The STATIC_URL is used to define a URL entry point into Django’s visualization of static resources
presented in Listing 5-12. By default, STATIC_URL is assigned the /static/ value. This means that if
STATIC_URL="/static/', the static resource robots.txt becomes accessible at the URL /static/robots.txt,
just like stores/img/coffee.gif becomes accessible at the URL /static/stores/img/coffee.gif.

This means you access static resources on the /static/ URL, or on a different URL if you change the
STATIC_URL value. However, don’t go and hard-code these static resources paths on templates! (e.g.,). You should use a variable so the final path is determined
dynamically in case STATIC_URL changes. The next section describes how to do this in Django templates.

Caution Automatic access to static resources only works with Django’s built-in web server and when
DEBUG=True.

The previous setup process for static resources has a little ‘behind the scenes’ help from Django. It only
works with Django’s built-in web server (i.e., python manage.py runserver) and only if DEBUG=True. As
soon as you change to a different web server or switch DEBUG=False even using Django’s built-in web server,
no static resource will be available as visualized in Listing 5-12.

The primary reason behind this behavior is because reserving and dispatching static resources from
an application’s main web server/URL structure (e.g., /static/) is very inefficient. So this just works as a
convenience in development using Django’s built-in web server and when DEBUG=True. Of course, you can
assign a full URL domain to STATIC_URL (e.g., http://static.coffeehouse.com/) but this assumes you've
already set up the project’s static resources on a production-like environment, something that I'll discuss
shortly once I describe how to access static resources in Django and Jinja templates.

Access Static Resources in Django Templates

The recommended approach to reference static resources in Django templates is through staticfiles app via
the {% static %} tag. Listing 5-13 illustrates various examples of the staticfiles app syntax.

Listing 5-13. Django {% static %} tag to reference static resources

{% load static %}

For static resource at about/img/logo.png

For static resource at bootstrap/bootstrap.css
<link href="{% static 'bootstrap/bootstrap.css' %}" rel="stylesheet">

For static resource at jquery/jquery.min.js
<script src="{% static 'jquery/jquery.min.js' %}"></script>

176

http://static.coffeehouse.com/

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Firstit’s important to note the {% load static %} tagin Listing 5-13 is available through the staticfiles
app, which is installed by default on all Django projects in the INSTALLED_APPS variable. If for some reason
you modified the default values in INSTALLED_APPS, make sure you have the django.contrib.staticfiles
value in the INSTALLED_APPS variable or none of what follows will work.

As you can see in Listing 5-13, at the top of the template you always declare the {% load static %}
statement. Once this is done, a template can use the {% static %} tag to generate dynamic paths for static
resources. In most circumstances, the {% static %} tagrelies on the STATIC_URL variable in settings.py to
generate an appropriate path to the static resources.

For more advanced cases, the {% static %} tag uses a combination of the same STATIC_URL variable
and the backing storage technology (e.g., CDN-‘Content Delivery Network’) configuration to generate an
appropriate path to the static resources.

For example, notice in Listing 5-13 how the {% static %} tagis always followed by a file path
identical to the Django visualization of static resources in Listing 5-12. Due to the STATIC_URL variable
having a value of /static/, it means the {% static %} statements in Listing 5-13 get substituted with this
value (e.g., {% static 'bootstrap/bootstrap.css’ %} becomes /static/bootstrap/bootstrap.css).

The cases where the {% static %} taggets substituted for something different than the STATIC_URL
variable are when a Django project uses a nonstandard back end to serve static resources - this last scenario
is briefly discussed in the sidebar below.

WHY USE THE STATICFILES {% STATIC %} TAG VS. USING THE
STATIC_URL VARIABLE DIRECTLY IN TEMPLATES?

In the early versions of Django, Django templates used the STATIC_URL variable directly in

templates (e.g.,). A trace of this remains in the fact that
you can still gain access to the STATIC_URL variable on all Django templates via the django.template.
context_processors.static context processor.

However, with the underlying technology to serve static resources becoming more sophisticated, the
STATIC_URL variable by itself proves insufficient. For example, static-serving technologies like CDNs
or Amazon S3 often use special tokens to enforce authentication or caching strategies. This means a
statement like needs to be converted into something
like or . And while it’s possible

to change the STATIC_URL variable to a full domain, what becomes difficult is to modify the static
resource’s path itself.

Rewriting a static resource’s path with a tag like {% static %} is easy. Because {% static %} can take
a static resource’s base string (e.g., about/img/logo.gif) and dynamically produce a full path with the
STATIC_URL variable and any special tokens required by the underlying static-serving technology. This
process is achieved by using a custom storage class — designed for the static-serving technology.

Granted not all projects require the use of advanced static-serving technologies. But by using the
{% static %} tag of the staticfiles app to declare static resources in Django templates, you ensure a
Django project is capable of using any static-serving technology, from the most basic to the most
advanced.

177

http://cdnprovider.com/about/img/logo.gif?token=e354534566
http://staticresources.com/about/img/logo32AzTB9r5.gif

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Access Static Resources in Jinja Templates

Jinja templates offer an alternative to Django’s own templates, as described in the previous chapter. But
unlike Django templates, you'll have to follow a different setup to use something like Django’s {% static %}
tag from the staticfiles app in Jinja templates.

To be able to use the same staticfiles app / {% static %} tag behavior in Jinja templates, you'll need
to set up a global variable named static that hooks into this functionality. In the previous chapter on
Jinja template, the section “Set Up Data for Access on All Jinja Templates in Django (like Django Context
Processors)” describes how to create a global variable with this functionality.

Set Up Static Resources in a Production Environment (DEBUG=True)

When you switch your Django project’s DEBUG variable to True or change to a different web server

(e.g., Apache, Nginx), you'll be surprised that none of the static resources in your project appear anymore.
Don’t be alarmed, this is by design. It isn’t too difficult to set up Django to serve static resources when
DEBUG=True with Django’s built-in web server or if you switch to a third-party web server.

Tip You can access static resources to make Django’s built-in web server serve static resources as if
DEBUG=False when it's actually set to DEBUG=True. Run the web server with the --insecure flag: python
manage.py runserver —insecure.

Caution Although the previous workaround is available, | recommend you don’t use it, in case the flag
name itself --insecure wasn’t enough to keep you from using it.

Django’s built-in web server (i.e., python manage.py runserver) is really a convenience tool to get up
and running quickly, which as part of this convenience also serves static resources when DEBUG=False.

However, it really is wasteful to allow the same web server process to handle both dynamic content
(Django web pages) and static resources (Images, CSS, JavaScript). The recommended approach is to use a
separate web server entirely to serve static resources, which is why Django goes to the extent of breaking this
convenience in its built-in web server when switching the DEBUG=True.

The first thing you need to do when DEBUG=True is create a directory to hold a copy of all the static resources
Django visualizes as static resources. Previously you learned that when DEBUG=False, Django visualizes static
resources from several locations and subdirectories in a single tree - illustrated in Listing 5-12. It's precisely this
single tree Django visualizes that you need to create a copy of to run on a production environment.

You'll need to define the STATIC_ROOT variable in settings.py. The value you assign to STATIC_ROOT
should be a directory and it will be where Django copies all of your project’s static resources - identical to
how Django visualizes them when DEBUG=True as illustrated in Listing 5-12. Note this directory should be
empty, as it’s overwritten constantly each time you perform a syncing process. The location of this directory
could be anywhere on your system depending on your needs. For simplicity, I'll keep the STATIC_ROOT
directory under the Django project’s BASE_DIR as STATIC ROOT = '%s/coffeestatic/'% (BASE_DIR).

To trigger the syncing process (i.e., copy all static resources to STATIC_ROOT), you'll need to use the
collectstatic command available in the manage. py script. Listing 5-14 illustrates the sample output of the
syncing process.

178

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-14. Django collectstatic command to copy all static resources

[user@coffeehouse ~]$ python manage.py collectstatic

You have requested to collect static files at the destination
location as specified in your settings:

/www/STORE/coffeestatic

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel: yes

yes

Copying '/www/STORE/website-static-default/sitemap.xml’
Copying '/www/STORE/website-static-default/robots.txt'
Copying '/www/STORE/website-static-default/favicon.ico'

Copying '/www/STORE/coffeehouse/about/static/css/custom.css’
732 static files copied to '/www/STORE/coffeestatic'.

Once you collect all your project’s static resources in a single folder - in this case /www/STORE/
coffeestatic - they're ready to be set up on a production server (e.g., Apache, Nginx, or AWS S3). Keep in
mind the directory/file structure generated by collectstatic is identical to the one visualized by Django in
the previous section illustrated in Listing 5-12.

The final step you need to do is update the STATIC_URL value in settings.py to reflect the new location
of the static resources. For example, if you mount the /www/STORE/coffeestatic/ directory on Apache or
Nginx under the http://static.coffeehouse.com/ domain, you would set STATIC_URL="http://static.
coffeehouse.com'. Similarly, if you copy the static resources in /www/STORE/coffeestatic/ to an Amazon
AWS S3 bucket named http://coffeehouse.s3.amazonaws . com, you would set STATIC URL="http://
coffeehouse.s3.amazonaws.com'

Once you make this last change, all the statements in your Django templates that use the {% static %}
tag get updated with this new full-domain URL, in which case a resource like /www/STORE/coffeestatic/
bootstrap/bootstrap.css becomes available at http://static.coffeehouse.com/bootstrap/bootstrap.
cssorhttp://coffeehouse.s3.amazonaws.com/bootstrap/bootstrap.css.

Django Logging

Logging is one of the most useful and also one of the most underused application management practices. If
you're still not using logging in your Django projects or are using Python print() statements to gain insight
into what an application is doing, you're missing out on a great of functionalities. Up next, you'll learn about
Python core logging concepts, how to set up Django custom logging, and how to use a monitoring service to
track log messages.

179

http://static.coffeehouse.com/
http://static.coffeehouse.com/
http://static.coffeehouse.com/
http://coffeehouse.s3.amazonaws.com/
http://coffeehouse.s3.amazonaws.com/
http://coffeehouse.s3.amazonaws.com/
http://static.coffeehouse.com/bootstrap/bootstrap.css
http://static.coffeehouse.com/bootstrap/bootstrap.css
http://coffeehouse.s3.amazonaws.com/bootstrap/bootstrap.css

CHAPTER 5

DJANGO APPLICATION MANAGEMENT

Python Core Logging Concepts

Django is built on top of Python’s logging package. The Python logging package provides a robust and
flexible way to set up application logging. In case you've never used Python’s logging package, I'll provide a
brief overview of its core concepts. There are four core concepts in Python logging:

Loggers.- Provide the initial entry point to group log messages. Generally, each
Python module (i.e., .py file) has a single logger to assign its log messages. However,
it's also possible to define multiple loggers in the same module (e.g., one logger for
business logic, another logger for database logic, etc.). In addition, it’s also possible
to use the same logger across multiple Python modules or .py files.

Handlers.- Are used to redirect log messages (created by loggers) to a destination.
Destinations can include flat files, a server’s console, an email or SMS messages,
among other destinations. It’s possible to use the same handler in multiple loggers,
just as it’s possible for a logger to use multiple handlers.

Filters.- Offer a way to apply rules on log messages. For example, you can use a filter
to send log messages generated by the same logger to different handlers.

Formatters.- Are used to specify the final format for log messages.

With this brief overview of Python logging concepts, let’s jump straight into exploring Django’s default

logging functionality.

Django Default Logging

The logging configuration for Django projects is defined in the LOGGING variable in settings.py. For the
moment, don’t even bother opening your project’s settings.py file because you won’t see LOGGING in it.
This variable isn’t hard-coded when you create a project, but it does have some logging values in effect if it
isn’t declared. Listing 5-15 shows the default LOGGING values if it isn’t declared in settings.py.

Listing 5-15. Default LOGGING in Django projects

LOGGING = {
'version': 1,
'disable_existing loggers': False,
"filters': {
'require_debug false': {

180

)

"()': 'django.utils.log.RequireDebugFalse"',

'require debug true': {

)

1

"()': 'django.utils.log.RequireDebugTrue',

"handlers': {
"console': {

'level': "INFO',
'filters': ['require_debug true'],
'class': 'logging.StreamHandler',

1
"null': {

'class': 'logging.NullHandler',
}s

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

'mail admins': {
"level': 'ERROR',
"filters': ['require_debug false'],
‘class': 'django.utils.log.AdminEmailHandler’

}
1
"loggers': {
"django’: {
"handlers': ['console'],
}
"django.request': {
"handlers': ['mail admins'],
"level': 'ERROR',
'propagate’: False,
'django.security': {
"handlers': ['mail admins'],
"level': "ERROR',
'propagate’: False,
1
'py.warnings': {
"handlers': ['console'],
1
}

In summary, the default Django logging settings illustrated in Listing 5-15 have the following logging
behaviors:

e Console logging or the console handler is only done when DEBUG=True, for log
messages worse than INFO (inclusive) and only for the Python package django - and
its children (e.g., django.request, django.contrib) - as well as the Python package
py.warnings.

e Adminlogging or themail admins handler - which sends emails to ADMINS - is only
done when DEBUG=False, for log messages worse than ERROR (inclusive), and only for
the Python packages django.request and django.security.

Let’s first break down the handlers section in Listing 5-14. Handlers define locations to send log
messages and there are three in Listing 5-14: console, null and mail_admins. The handler names by
themselves do nothing - they are simply reference names - the relevant actions are defined in the associated
properties dictionary. All the handlers have a class property that defines the backing Python class that does
the actual work.

The console handler is assigned the logging.StreamHandler class that is part of the core Python
logging package. This class sends logging output to streams such as standard input and standard error, and
as the handler name suggests, this is technically the system console or screen where Django runs.

The null handler is assigned the logging.NullHandler class, which is also part of the core Python
logging package and which generates no output.

Themail admins handler is assigned the django.utils.log.AdminEmailHandler class, which is
a Django custom handler utility that sends logging output as an email to people defined as ADMINS in
settings.py - see the previous section on setting up settings.py for the real world for more information on
the ADMINS variable.

181

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Another property in handlers is level, which defines the threshold level at which the handler must
accept log messages. There are five threshold levels for Python logging, from worst to least worst they are
CRITICAL, ERROR, WARNING, INFO, and DEBUG. The INFO level for the console handler indicates that all log
messages worse or equal to INFO - which is every level, except DEBUG - should be processed by the handler, a
reasonable setting as the console can handle many messages. The ERROR level for themail admins handler
indicates that only messages worse or equal to ERROR - which is just CRITICAL - should be processed by
the handler, a reasonable setting as only the two worst types of error messages should trigger emails to
administrators.

The other property in handlers is filters, which defines an additional layer to restrict log messages
for a handler. Handlers can accept multiple filters, which is why the filters property accepts a Python list.
The console handler has a single filter require_debug_true and themail admins handler has a single filter
require_debug_false.

Filters are defined in their own block as you can observe in Listing 5-15. The require_debug
false filter is backed by the django.utils.log.RequireDebugFalse class, which checks if a Django
project has DEBUG=False, whereas the require_debug_true filter is backed by the django.utils.log.
RequireDebugTrue class, which checks if a project has DEBUG=True. This means the console handler only
accepts log messages if a Django project has DEBUG=True and themail admins handler only accepts log
messages if a Django project has DEBUG=False.

Now that you understand handlers and filters, let’s take a look at the loggers section. Logger definitions
generally map directly to Python packages and have parent-child relationships. For example, Python
modules (i.e., .py files) that belong to a package named coffeehouse generally have a logger named
coffeehouse and Python modules that belong to the package coffeehouse.about generally have a logger
named coffeehouse.about. The dot notation in logger names also represents a parent-child relationship, so
the coffeehouse.about logger is considered the child of the coffeehouse logger.

In Listing 5-15 there are four loggers: django, django.request, django.security, and py.warnings.
The django logger indicates that all log messages associated with it and its children be processed by the
console handler.

The django.request logger indicates that all log messages associated with it and its children be
processed by themail admins handler. The django.request logger also has the 'level':'ERROR' property
to provide the threshold level at which the logger should accept log messages - a property that overrides
the handler level property. And in addition, the django.request logger also has the 'propagate’: 'False’
statement to indicate the logger should not propagate messages to parent loggers (e.g., django is the parent
of django.request).

Next, we have the django.security logger that is identical in functionality to the django.request
logger. And the py.warnings that indicate that all log messages associated with it and its children be
processed by the console handler.

Finally, there are the first two lines in Listing 5-15 that are associated with Python logging in
general. The version key identifies the configuration version as 1, which at present is the only Python
logging version. And the disable_existing loggers key is used to disable all existing Python loggers. If
disable existing loggers is False it keeps the preexisting logger values and if it’s set to True it disables
all preexisting loggers values. Note that even if you use 'disable existing loggers': False inyour own
LOGGING variable you can redefine/override some or all of the preexisting logger values.

Now that you have a firm understanding of what Django logging does in its default state, I'll describe
how to create log messages in a Django project and then describe how to create custom LOGGING
configurations.

182

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Create Log Messages

At the top of any Python module or . py file you can create loggers by using the getLogger method of the
Python logging package. The getLogger method receives the name of the logger as its input parameter.
Listing 5-16 illustrates the creation of two logger instances using __name__ and the hard-coded dba name.

Listing 5-16. Define loggers in a Python module

Python logging package
import logging

Standard instance of a logger with _ name__
stdlogger = logging.getLogger(_ name_)

Custom instance logging with explicit name
dbalogger = logging.getlogger('dba")

The Python __name__ syntax used for getLogger in Listing 5-16 automatically assigns the package name
as the logger name. This means that if the logger is defined in a module under the application directory
coffeehouse/about/views.py, the logger receives the name coffeehouse.about.views. So by relying on
the _name__ syntax, loggers are automatically created based on the origin of the log message.

Don’t worry about having dozens or hundreds of loggers in a Django project for each module or . py
file. As described in the past section, Python logging works with inheritance, so you can define a single
handler for a parent logger (e.g., coffeehouse) that handles all children loggers (e.g., coffeehouse.about,
coffeehouse.about.views,coffeehouse.drinks, coffeehouse.drinks.models).

Sometimes it’s convenient to define a logger with an explicit name to classify certain types of messages.
In Listing 5-16 you can see a logger named dba that’s used for messages related to databases issues. This way
database administrators can consult their own logging stream without the need to see log messages from
other parts of the application.

Once you have loggers in a module or . py file, you can define log messages with one of several methods
depending on the severity of a message that needs to be reported. These methods are illustrated in the
following list:

e <logger names>.critical().- Most severe logging level. Use it to report potentially
catastrophic application events (e.g., something that can halt or crash an
application).

e <logger_names>.error().- Second most severe logging level. Use it to report important
events (e.g., unexpected behaviors or conditions that cause end users to see an
error).

e <logger name>.warning().- Mid-level logging level. Use it to report relatively
important events (e.g., unexpected behaviors or conditions that shouldn’t happen,
yet don’t cause end users to notice the issue).

e <logger_name>.info().- Informative logging level. Use it to report informative events
in an application (e.g., application milestones or user activity).

e <logger_name>.debug().- Debug logging level. Use it to report step-by-step logic that
can be difficult to write (e.g., complex business logic or database queries).

e <logger_name>.log().- Use it to manually emit log messages with a specific log level.

e <logger_name>.exception().- Use it to create an error level logging message,
wrapped with the current exception stack.

183

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

What methods you use to log messages across your project depends entirely up to you. As far as the
logging levels are concerned, just try to be consistent with the selection criteria. You can always adjust the
runtime logging level to deactivate log messages of a certain level.

In addition, I would also recommend you use the most descriptive log messages possible to maximize
the benefits of logging. Listing 5-17 illustrates a series of examples using several logging methods and
messages.

Listing 5-17. Define log messages in a Python module

Python logging package
import logging

Standard instance of a logger with _ name__
stdlogger = logging.getlLogger(name)

Custom instance logging with explicit name
dbalogger = logging.getlogger('dba")

def index(request):
stdlogger.debug("Entering index method")

def contactform(request):
stdlogger.info("Call to contactform method")

try:
stdlogger.debug("Entering store id conditional block")
Logic to handle store_id

except Exception, e:
stdlogger.exception(e)

stdlogger.info("Starting search on DB")
try:
stdlogger.info("About to search db")
Loging to search db
except Exception, e:
stdlogger.error("Error in searchdb method")
dbalogger.error("Error in searchdb method, stack %s" % (e))

Asyou can see in Listing 5-17, there are various log messages of different levels using both loggers
described in Listing 5-16. The log messages are spread out depending on their level in either the method
body or inside try/except blocks.

If you place the loggers and logging statements like the ones in Listing 5-17 in a Django project, you'll
see that logging-wise nothing happens! In fact, what you'll see in the console are messages in the form ‘No
handlers could be found for logger ...<logger name>'.

This is because by default Django doesn’t know anything about your loggers! It only knows about the
default loggers described in Listing 5-15. In the next section, I'll describe how to create a custom LOGGING
configuration so you can see your project log messages.

184

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Custom Logging

Since there are four different components you can mix and match in Django logging (i.e., loggers,
handlers, filters, and formatters), there is an almost endless amount of variations to create custom logging
configurations.

In the following sections, I'll describe some of the most common custom logging configuration for
Django projects, which include overriding default Django logging behaviors (e.g., not sending emails),
customizing the format of log messages, and sending logging output to different loggers (e.g., files).

Listing 5-18 illustrates a custom LOGGING configuration you would place in a project’s settings.py file,
covering these common requirements. The sections that follow explain each configuration option.

Listing 5-18. Custom LOGGING Django configuration

LOGGING = {
'version': 1,
'disable_existing loggers': True,
"filters': {
'require_debug false': {
"()': 'django.utils.log.RequireDebugFalse',
1
'require_debug true': {
"()': 'django.utils.log.RequireDebugTrue',

)

1
"formatters': {
"simple': {
"format': '[%(asctime)s] %(levelname)s %(message)s',
"datefmt': '%Y-%m-%d %H:%M:%S'
1
'verbose': {
"format': '[%(asctime)s] %(levelname)s [%(name)s.%(funcName)s:%(1ineno)d]
%(message)s’,
"datefmt': "%Y-%m-%d %H:%M:%S'
b
1
"handlers': {

"console': {
"level': 'DEBUG',
'filters': ['require_debug true'],
‘class': 'logging.StreamHandler',
'formatter': 'simple’

1

"development logfile': {
'level': 'DEBUG',
'filters': ['require_debug true'],
'class': 'logging.FileHandler',
'filename': '/tmp/django_dev.log',
'formatter': 'verbose'

1

"production logfile': {
'level': "ERROR',
'filters': ['require debug false'],

185

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

'class': 'logging.handlers.RotatingFileHandler',
'filename': '/var/log/django/django_production.log',
'maxBytes' : 1024*1024*100, # 100MB
"backupCount’ : 5,
'formatter': 'simple’

1

"dba_logfile': {
"level': 'DEBUG',
'filters': ['require_debug false','require debug true'],
‘class': 'logging.handlers.WatchedFileHandler',
'filename': '/var/log/dba/django_dba.log',
'formatter': 'simple’

1
1
'root': {
'level': 'DEBUG',
"handlers': ['console'],
1
'loggers': {
'coffeehouse': {
"handlers': ['development logfile','production logfile'],
1
"dba’: {
"handlers': ['dba_logfile'],
1,
"django’: {
"handlers': ['development logfile', 'production logfile'],
b
'py.warnings': {
"handlers': ['development logfile'],
}s
}

Caution When using logging files, ensure the destination folder exists (e.g., /var/log/dba/) and the owner
of the Django process has file access permissions.

Disable default Django logging configuration

The 'disable existing loggers':True statement at the top of Listing 5-18 disables Django’s default logging
configuration from Listing 5-15. This guarantees no default logging behavior is applied to a Django project.

An alternative to disabling Django’s default logging behavior is to override the default logging
definitions on an individual basis, as any explicit LOGGING configuration in settings.py takes precedence
over Django defaults even when 'disable existing loggers':False. For example, to apply a different
behavior to the console logger (e.g., output messages for debug level, instead of default info level) you can
define a handler in settings.py for console with a debug level - as shown in Listing 5-18.

However, if you want to ensure no default logging configuration inadvertently ends up in a Django
project, you must set 'disable_existing loggers' to True. Because Listing 5-18 sets 'disable_existing_

186

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

loggers' : True, notice the same default filters from Listing 5-15 are re-declared, since the default filters are
lost on account of 'disable_existing loggers':True.

Logging formatters: Message output

By default, Django doesn’t define a logging formatters section as you can confirm in Listing 5-15. However,
Listing 5-18 declares a formatters section to generate log messages with either a simpler or more verbose

output.

By default, all Python log messages follow the format %(1levelname)s:%(name)s:%(message)s, which
means "Output the log message level, followed by the name of the logger and the log message itself."

However, there is a lot more information available through Python logging that can make log messages
more comprehensive. As you can see in Listing 5-18, the simple and verbose formatters use a special syntax
and a series of fields that are different from the default. Table 5-2 illustrates the different Python formatter
fields including their syntax and meaning.

Table 5-2. Python logging formatter fields

Field syntax Description

%(name)s Name of the logger (logging channel)

%(levelno)s Numeric logging level for the message (DEBUG, INFO,WARNING, ERROR,
CRITICAL)

%(levelname)s Text logging level for the message ("DEBUG", "INFO","WARNING", "ERROR",
"CRITICAL")

%(pathname)s Full pathname of the source file where the logging call was issued (if available)

%(filename)s Filename portion of pathname

%(module)s Module (name portion of filename)

%(lineno)d Source line number where the logging call was issued (if available)

%(funcName)s Function name

%(created)f Time when the log record was created (time.time() return value)

%(asctime)s Textual time when the log record was created

%(msecs)d Millisecond portion of the creation time

%(relativeCreated)d Time in milliseconds when the log record was created,relative to the time the
logging module was loaded (typically at application startup time)

%(thread)d Thread ID (if available)

%(threadName)s Thread name (if available)

%(process)d Process ID (if available)

%(message)s The result of record.getMessage(), computed just as the record is emitted

You can add or remove fields to the format field for each formatter based on the fields in Yable 5-2.
Besides the format field for each formatter, there’s also a datefmt field that allows you to customize the
output of the %(asctime)s format field in formatter(e.g., with the datefmt field set to %Y-%m-%d %H:%M:%S, if
alogging message occurs on midnight New Year’s 2018, %(asctime) outputs 2018-01-01 00:00:00).

187

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Note The syntax for the datefmt field follows Python’s strftime() format.2

Logging handlers: Locations, classes, filters, and logging thresholds

The first handler in Listing 5-18 is the console handler, which provides custom behavior over the default
console handler Listing 5-15. The console handler in Listing 5-18 raises the log level to the DEBUG level to
process all log messages irrespective of their level. In addition, the console handler uses the custom simple
formatter - described in the past section - and uses the same default console filters and class, which tells
Django to process log messages when DEBUG=True (i.e., 'filters': ['require debug true'])and send
logging output to a stream (i.e., ‘class': 'logging.StreamHandler").

In Listing 5-18, you can also see there are three different class values for each of the remaining
handlers: logging.FileHandler, which sends log messages to a standard file; logging.handlers.
RotatingFileHandler, which sends log messages to files that change based on a given threshold size; and
logging.handlers.WatchedFileHandler, which sends log messages to a file that’s managed by a third-party
utility (e.g., logrotate).

The development_logfile handler is configured to work for log messages worse than DEBUG (inclusive)
- which is technically all log messages - and only when DEBUG=True due to the require_debug_true filter. In
addition, the development_logfile handler is set to use the custom verbose formatter and send output to
the /tmp/django_dev. log file.

The production_logfile handler is configured to work for log messages worse than ERROR
(inclusive) - which is just ERROR and CRITICAL log messages - and only when DEBUG=False due to the
require_debug_false filter. In addition, the handler uses the custom simple formatter and is set to send
output to the file /var/log/django_production.log. The log file is rotated every time a log file
reaches 100 MB (i.e., maxBytes) and old log files are backed up to backupCount by appending a number
(e.g., django_production.log.1,django_production.log.2).

The dba_logfile is configured to work for log messages worse than DEBUG (inclusive) - which is
technically all log messages - and when DEBUG=True or DEBUG=False due to the require_debug_true and
require _debug false filters. In addition, the handler uses the custom simple formatter and is set to send
output to the file /var/log/django_dba.log.

The dba_logfile handler is managed by the WatchedFileHandler class, which has a little more
functionality than the basic FileHandler class used by the development_logfile handler. The
WatchedFileHandler class is designed to check if a file changes, if it changes a file is reopened; this in
turn allows a log file to be managed/changed by a Linux log utility like logrotate. The benefit of a log
utility like logrotate is that it allows Django to use more elaborate log file features (e.g., compression,
date rotation). Note that if you don’t use a third-party utility like logrotate to manage a logfile that uses
WatchedFileHandler, a log file grows indefinitely.

Caution/Tip The RotatingFileHandler logging handler class in Listing 5-18 is not safe for multi-process
applications. Use the ConcurrentLogHandler logging handler class® to run on multi-process applications.

*https://docs.python.org/3/1library/time.html#time.strftime
*https://pypi.python.org/pypi/ConcurrentLogHandler/0.9.1

188

https://docs.python.org/3/library/time.html#time.strftime
https://pypi.python.org/pypi/ConcurrentLogHandler/0.9.1

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Tip The core Python logging package includes many other logging handler classes to process messages
with things like Unix syslog, Email (SMTP), and HTTP.#

Logging loggers: Python packages to use logging

The loggers section in Listing 5-18 defines the handlers to attach to Python packages - technically the
attachment is done to logger names, but I used this term since loggers are generally named after Python
packages. I'll provide an exception to this ‘Python package=logger name’ shortly so you can gain a better
understanding of this concept.

The first logger coffeehouse tells Django to attach all the log messages for itself and its children (e.g.,
coffeehouse.about, coffeehouse.about.views and coffeehouse.drinks) to the development_logfile
and production_logfile handlers. By assigning two handlers, log messages from the coffeehouse logger
(and its children) are sent to two places.

Recall that by using Python's __name__ syntax to define loggers - see Listing 5-16 and 5-17 - the name of
the loggers end up being based on the Python package structure.

Next, you can see the dba logger links all its log messages to the dba_logfile handler. In this case, it’s an
exception to the rule that loggers are named after Python packages. As you can see in Listing 5-17, a logger
can be purposely named dba and forgo using __name__ or another convention related to Python packages.

Next, the django and py .warnings loggers are re-declared to obtain some of Django’s default behavior,
given Listing 5-18 uses 'disable existing loggers': True.The django logger links all its log messages to
the development _logfile and production _logfile handlers, since we want log messages associated with
the django package/logger and its children (e.g., django.request, django.security) to go to two log files.

Notice Listing 5-18 doesn’t declare explicit loggers for django.request and django.security unlike the
Django default’s in Listing 5-15. Because the django logger automatically handles its children and we don’t
need different handlers for each logger - like the default logging behavior - Listing 5-18 just declares the
django logger.

At the end of Listing 5-18, the py.warnings logger links all its log messages to the development_logfile
handler, to avoid any trace of py .warnings log messages in production logs.

Finally, there’s the root key in Listing 5-18, which although declared outside of the loggers section,
is actually the root logger for all loggers. The root key tells Django to process messages from all loggers -
whether declared or undeclared in the configuration - and handle them in a given in way. In this case, root
tells Django that all log messages - since the DEBUG level includes all messages - generated by any logger
(coffeehouse, dba, django, py.warnings or any other) be processed by the console handler.

Disable email to ADMINS on errors

You may be surprised Listing 5-18 makes no use of the mail_admins handler defined by default in Listing 5-15.
AsImentioned in the previous section on Django default logging, the mail_admins handler sends an email
error notification for log messages generated by django.request or django.security
packages/loggers.

While this can seem like an amazing feature at first - avoiding the hassle of looking through log
files - once a project starts to grow it can become extremely inconvenient. The problem with the default
logging email error notification mechanism ormail_admins handler is it sends out an email every single time
an error associated with django.request or django.security packages/loggers is triggered.

*https://docs.python.org/3/1library/logging.handlers.html

189

https://docs.python.org/3/library/logging.handlers.html

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

If you have 100 visitors per hour on a Django site and all of them hit the same error, it means 100 email
notifications are sent in the same hour. If you have 3 people in ADMINS, then it means at least 300 email
notifications per hour. All this can add up quickly, so a couple of different errors and a few thousand visitors
a day can lead to email overload. So as convenient as it can appear to get email log error notifications, you
should turn this feature off.

Irecommend you stick to the old method on inspecting log files on a constant basis or if you require the
same real-time log error notifications provided by email, that you instead use a dedicated reporting system
such as Sentry, which is described in the next section.

Logging with Sentry

As powerful a discovery mechanism as logging is, inspecting and making sense of log messages can be

an arduous task. Django and Python projects are no different in this area. As it was shown in the previous
section, relying on core logging packages still results in log messages being sent to either the application
console or files, where making sense of log messages (e.g., the most relevant or common log message) can
lead to hours of analysis.

Enter Sentry, a reporting and aggregation application. Sentry facilitates the inspection of log messages
through a web-based interface, where you can quickly determine the most relevant and common log
messages.

To use Sentry you need to follow two steps: set up Sentry to receive your project log messages, and set
up your Django project to send log messages to Sentry.

WHY SENTRY?

Although there are alternatives that offer similar log monitoring functionalities as Sentry (e.g., OverOps,
Airbrake, Raygun), what sets Sentry apart is that it’s built as a Django application!

Even though Sentry has evolved considerably to the point it’s now a very complex Django application,
the fact that Sentry is an open source project based on Django, makes it an almost natural option to
monitor Django projects, since you can install and extend it using your Django knowledge — albeit there
are software-as-service Sentry alternatives.

Set up Sentry the application

You can set up Sentry in two ways: install it yourself or use a software-as-service Sentry provider.

Sentry is a Django open source project, so the full source code is freely available to anyone.® But
before you go straight to download Sentry and proceed with the installation,® beware Sentry has grown
considerably from its Django roots. Sentry now requires a Docker environment, the relational Postgres
database, and the NoSQL Redis database. Unfortunately, Sentry evolved to support a wide variety of
programming languages and platforms, to the point it grew in complexity and is no longer a simple Django
app installation. So if you install Sentry from scratch, expect to invest a couple of hours setting it up.

*https://github.com/getsentry/sentry
*https://docs.sentry.io/server/installation/

190

https://github.com/getsentry/sentry
https://docs.sentry.io/server/installation/

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Tip Earlier Sentry releases (e.g., v. 5.07) don’t have such strict dependencies and can run like basic Django
applications (e.g., any Django relational database, no Docker, no NoSQL database). They represent a good
option for simple Sentry installations, albeit they require dated Django versions (e.g., v. Django 1.4).

The Sentry creators and maintainers run the software-as-a-service: https://sentry.io. The Sentry
software-as-a-service offers three different plans: a hobbyist plan that’s free for up to 10,000 events per
month and is designed for one user; a professional plan that’s $12 (USD) a month, which starts at 50,000
events per month and is designed for unlimited users; and an enterprise plan with custom pricing for
millions of events and unlimited users.

Since you can set up Sentry for free in a few minutes with just your email - and no credit card - the
Sentry software-as-a-service from https://sentry.io is a good option to try out Sentry. And even after
trying it out, at a cost of $12 (USD) per month for 50,000 events and $0.00034 per additional event, it
represents a good value - considering an application that generates 50,000 events per month should have a
considerable audience to justify the price.

Once you create a sentry.io account you'll enter into the main dashboard. Create a new Django project.
Take note of the client key or DSN, which is a long url that contains the @sentry.io snippet in it - this is
required to configure Django projects to send log messages to this particular Sentry Django project. If you
missed the project client key or DSN, click on the top right ‘Project Settings’ button illustrated in Figure 5-1,
and select the bottom left option ‘Client Keys (DSN)’ to consult the value.

C & secure | httpssentryio/ (NG 0 & O i
b ¢ StarProject || 1} Project Settings
Isswes Overview User Feedback Releases
Unresolved Issues ~ Sortby: LastSeen ~ | O isunresolved =
o Resolve * - P GRAPH Em o EVENTS USERS

Waiting for events...

Our error robot is waiting to deveur receive your first event.

Installation Instructions

Or see a sample Javascript event

Figure 5-1. Sentry SaaS project dashboard

"https://github.com/getsentry/sentry/releases/tag/5.0.21

191

https://sentry.io/
https://sentry.io/
https://github.com/getsentry/sentry/releases/tag/5.0.21

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Asyou can see in Figure 5-1, the Sentry SaaS project dashboard acts as a central repository to consult all
project logging activity. In Figure 5-1 you can also see the various action buttons, which allow log messages
to be sorted, searched, charted, as well as managed by different users. All of this creates a very efficient
environment in which to analyze any Django logging activity in real time.

Once you have Sentry set up, you can configure a Django project to send log messages to a Django project.

Set up a Django application to use Sentry

To use Sentry in a Django project you require a package called Raven to establish communication between
the two parties. Simply do pip install raven to install the latest Raven version.

Once you install Raven, you must declare it in the INSTALLED_APPS list of your project’s settings.py
file as illustrated in Listing 5-19. In addition, it’s also necessary to configure Raven to communicate with a
specific Sentry project via a DSN value, through the RAVEN_CONFIG variable also shown in Listing 5-19.

Listing 5-19. Django project configuration to communicate with Sentry via Raven

INSTALLED APPS = [

'raven.contrib.django.raven _compat’',

]

RAVEN_CONFIG = {
'dsn': '<your_dsn_value>@sentry.io/<your dsn value>',
}

As you can see in Listing 5-19, the RAVEN_CONFIG variable should declare a dsn key with a value
corresponding to the DSN value from the Sentry project that’s to receive the log messages.

After you set up this minimum Raven configuration, you can send a test message running the python
manage.py raven testcommand from a Django project’s command line. If the test is successful, you will
see a test message in the Sentry dashboard presented in Figure 5-1.

Once you confirm communication between your Django project and Sentry is successful, you
can set up Django logging to send log messages to Sentry. To Django’s logging mechanism, Sentry is seen as
any other handler (e.g., file, stream), so you must first declare Sentry as a logging handler using the
raven.contrib.django.handlers.SentryHandler class, as illustrated in Listing 5-20.

Listing 5-20. Django logging handler for Sentry/Raven
LOGGING = {
"handlers': {
"sentry': {
"level': 'ERROR',

'class': 'raven.contrib.django.handlers.SentryHandler',

1

192

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

The sentry handler in Listing 5-20 tells Django to handle log messages with an ERROR level through
Sentry. Once you have a Sentry handler, the last step is to use the sentry handler on loggers to assign which
packages/loggers get processed through Sentry (e.g., django.request or root logger, as described in the
earlier “Logging Loggers” section).

Django Email Service

Email has become a staple of practically all applications that live on the Web. Whether an application
requires sending email for signup purposes, notifications, or confirming a purchase, it’s hard to imagine a
web application that doesn’t require some kind of email functionality.

For Django projects, there are two main aspects associated with setting up email. The first step is setting
up the connection to an email server and the second is the composition of emails.

Set Up a Default Connection to an Email Server

Django supports connections to any email server and also offers various options to simulate email server
connections. Email simulation is particularly powerful during development and testing where sending out
real emails is unnecessary. The setup for an email server in Django is done in settings.py. Depending on
the email server connection, you may need to set up several variables in settings.py. Table 5-3 illustrates
various email server options for Django.

Table 5-3. Django email server configurations

Django email backend Configuration Description / Notes

For development (DEBUG=True)

Console Email

File Email

In memory Email

Nullify Email

Python Email Server
Simulator

EMAIL_BACKEND='django.core.mail.
backends.console.EmailBackend’

EMAIL_BACKEND='django.core.mail.
backends.filebased.EmailBackend’

EMAIL_FILE PATH='/tmp/django-email-dev’

EMAIL_BACKEND=‘django.core.mail.
backends.locmem.EmailBackend’

EMAIL_BACKEND='django.core.mail.
backends.dummy.EmailBackend’

EMAIL_BACKEND='django.core.mail.
backends.smtp.EmailBackend’
EMAIL_HOST=127.0.0.1
EMAIL_PORT=2525

Also needed is the Python command line
email server:

python -m smtpd -n -c DebuggingServer
localhost:2525

Sends all email output to the
console where Django is running.

Sends all email output to a flat file
specified in EMAIL_FILE_PATH.

Sends all email output to an in
memory attribute available at
django.core.mail.outbox.

Does nothing with all email
output.

Sends all email output to a Python
email server set up via command
line. This is similar to the Console
Email option, because the Python
email server outputs content to
the console.

(continued)

193

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Table 5-3. (continued)

Django email backend Configuration Description / Notes

For production (DEBUG=False)

SMTP Email Server EMAIL_BACKEND='django.core.mail. Sends all email output to a SMTP
(Standard) backends.smtp.EmailBackend’ email server.
'EMAIL_HOST=127.0.0.1
'EMAIL_PORT=25
EMAIL_HOST_USER=<smtp_user>
EMAIL_HOST_PASSWORD=<smtp_user_

pwd>
SMTP Email Server EMAIL_BACKEND='django.core.mail. Sends all email output to a secure
(‘Secure-TLS) backends.smtp.EmailBackend’ SMTP (TLS) email server.

'EMAIL_HOST=127.0.0.1
'EMAIL_PORT=587
EMAIL_HOST_USER=<smtp_user>
EMAIL_HOST_PASSWORD=<smtp_user_
pwd>

EMAIL_USE_TLS=True

SMTP Email Server EMAIL_BACKEND='django.core.mail. Sends all email output to a secure
(‘Secure-SSL) backends.smtp.EmailBackend’ SMTP (SSL) email server.
'EMAIL_HOST=127.0.0.1
'EMAIL_PORT=465
EMAIL_HOST_USER=<smtp_user>
EMAIL_HOST _PASSWORD=<smtp_user_pwd>
EMAIL_USE_SSL=True

! If the SMTP email server is running on a network or a different port than the default, adjust EMAIL_HOST
and EMAIL_PORT accordingly.

2 In today’s email, spam-infested Internet, nearly all SMTP email servers require authentication to send
email. If your SMTP server doesn’t require authentication you can omit EMAIL_HOST _USER and
EMAIL_HOST _PASSWORD.

" The terms SSL and TLS are often used interchangeably or in conjunction with each other (TLS/SSL). There
are differences, though, in terms of their underlying protocol. From a Django setup prescriptive, you only need
to ensure what type of secure email server you connect to, as they operate differently and on different ports.

Whichever email connection you set up from Table 5-3 in settings. py is considered a Django project’s
default and is used when doing any email-related task - unless you specify otherwise when doing an email task.

Set Up a Default Connection to Third-Party Email Providers

The previous section provided the most generic approach to set up a default connection to an email server
in Django. However, with the complexities involved in running email servers in today’s world - namely,
spam filtering and security issues - it can be easier and more practical to use a third-party service to relay
email from a Django project to the outside world.

Although you can use the previous section’s configurations to connect to any third-party email service,
there can be certain subtleties to set up configurations to third-party email services. In this section I'll
provide the Django configuration details for what I consider three of the most popular third-party email
services.

194

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

DJANGO WITH EXIM, POSTFIX, OR SENDMAIL

Although you can set up Django to deliver email to a local email application (i.e., running on 127.0.0.1)
such as Exim, Postfix, or Sendmail, which then deliver email to third-party providers. | personally would
not recommend this alternative as it adds another component to set up, maintain, and worry about.
Not to mention this is beyond the scope of Django, as it involves setting up different email apps with
third-party email services.

This following section describes how to set up Django to connect directly with third-party email
providers.

Email with Google Gmail/Google Apps

Google offers the ability to send out email through Gmail or Google Apps, the last of which is a Gmail version
for custom domains (e.g., coffeehouse.com). Once you have a Gmail or Google Apps account, you'll need to
set up the account’s username/password credentials in settings.py.

You will not be able to use Google’s email services without hard-coding your account credentials
somewhere in your app. If you are weary of hard-coding the username/password credentials in
settings.py, I suggest you create a separate account for this purpose to limit vulnerabilities, look into using
multiple environments or configuration files for Django to keep the username/password in a different file, or
set up a local email server with the credentials as described in the previous sidebar.

Listing 5-21 illustrates the configuration needed to set up Django to send email via a Gmail or Google
Apps account.

Listing 5-21. Django email configuration for Gmail or Google Apps account

EMAIL_BACKEND="django.core.mail.backends.smtp.EmailBackend’
EMAIL_HOST='"smtp.gmail.com'

EMAIL_PORT=587
EMAIL_HOST_USER="'username@gmail.com/OR/username@coffeehouse.com'
EMATL_HOST PASSWORD='password'

EMAIL USE_TLS=True

Asyou can see in Listing 5-21, the configuration parameters are pretty similar to those described in
Table 5-3. This is all you need to set up a default email connection to Gmail or Google Apps in Django.

Caution Beware of sending too much email with Google. Since Google’s email service is free, it's not
designed for relaying too many email messages. If your Django app sends out a couple of email messages
every hour you probably won’t have a problem, but if your app sends out email messages every second or
hundreds of email messages in the span of a few minutes, the account is likely to be blocked. If the account is
blocked, you will either need to wait a few hours or manually log into the account (i.e., via a browser) for it to
be unblocked. If the account is constantly blocked due to the email volume you send out, you should try another
email service provider.

195

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Note Google overwrites the From: email field with the Google account value, unless it’s added as an alias.
Django allows you to set an email’s From: field to any value you want and defaults to the EMAIL_HOST_USER
value in settings.py. However, to avoid spoofing, Google overwrites this field to the Google account email if the
From: email value is not an alias in the Gmail or Google App account. This means if you send an email message
in Django with From: support@coffeehouse.com and this email is not set up as an alias in the Gmail or Google
App account, the final email appears with From: set to the Google account’s main email.

Email with Amazon Simple Email Service (SES)

SES is another email service offered by AWS, which is run by Amazon.com. Unlike Google’s email service, SES
is a paid service with an average cost of 0.0001 cents per email (10 cents per 1000 emails). The easiest way to set
up Django with SES is through the Python library boto and a custom Django email back end called django-ses.
Listing 5-22 illustrates the pip requirements to install boto, which is a library to integrate multiple AWS services
using Python and django-ses, which is an open source project specifically designed to run SES with Django.

Listing 5-22. Python pip requirements for Amazon.com SES with Django

pip install boto
pip install django-ses

Once you install the Python packages in Listing 5-22 using pip, you can proceed to configure SES in
settings.py. Listing 5-23 illustrates the necessary variables to set up Django to use SES.

Listing 5-23. Django email configuration for Amazon.com SES

EMAIL_BACKEND = 'django_ses.SESBackend'
AWS_ACCESS KEY ID = 'FZINISSZ3542DPI032CQ"
AWS_SECRET_ACCESS_KEY = '3Nto4vknl+xeZR+1tF3L645EUy0S+zZy/uPJ1xN'

Asyou can see in Listing 5-23, the variable EMAIL_BACKEND is set to the custom class
django_ses.SESBackend, which provides all the necessary hooks to connect to SES.

To connect to SES you'll also need to provide the variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY, which are access credentials related to your AWS account. These last values are
provided in your AWS account..?

This is all you need to set up a default email connection to Amazon Simple Email Service (SES). There’s
no need to set up any other variable in settings.py, such as EMAIL_HOST or EMAIL_HOST USER - everything is
taken care of by the custom email back end.

Email with SparkPost

SparkPost is another third-party email service used by large companies like Twitter, Oracle, and PayPal.

Pricing wise SparkPost is a mix between the two previous services; it’s a free service for the first 100,000

emails per month, but after this volume it’s a paid service with an average cost of .0002 cents per email

(20 cents per next 1000 emails per month) and lower per email rates once you send 1 million emails a month.
The easiest way to set up Django with SparkPost is directly in settings.py. Listing 5-24 illustrates the

necessary variables to set up Django to use SparkPost.

8http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-
access-keys

196

http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-24. Django email configuration for SparkPost

EMAIL_BACKEND='django.core.mail.backends.smtp.EmailBackend'
EMAIL _HOST = 'smtp.sparkpostmail.com’

EMAIL_PORT = 587

EMAIL_HOST USER = 'SMTP Injection'

EMAIL_HOST PASSWORD = '<sparkpost_api_key>'

EMAIL USE_TLS = True

Asyou can see in Listing 5-24, the configuration parameters are pretty similar to those described in
Table 5-3 for a standard email connection. Just notice that in addition to the EMAIL_HOST_USER value being
SMTP_Injection - a SparkPost requirement - you'll also need to assign a SparkPost API key to the
EMAIL_HOST_PASSWORD. The SparkPost API key is created in your SparkPost account.?

Now that you understand the various ways to set up an email connection in a Django project, let’s
explore the actual composition of emails.

Built-In Helpers to Send Email

There can be many options and steps involved in sending an email. To simplify this process, Django offers
four shortcut methods you can leverage anywhere in an application (e.g., when a signup is made, when a
purchase is made, when a critical error occurs). Table 5-4 illustrates the various email shortcut methods.

Table 5-4. Django email shortcut methods

Shortcut method Shortcut method Argument descriptions and notes
and description with all arguments*

send_mail is the send_mail(subject, subject.- Email subject string.

most common message, from_ message.- Email message string.
option to send email=settings. from_email.- Email From: field. If not provided it's set to
email. DEFAULT _ DEFAULT_FROM_EMAIL from settings.py that by default is
FROM_EMAIL, webmaster@localhost.
recipient_list, recipient_list.- Email recipients as a list of strings.

fail_silently=False,
auth_user=None,
auth

password=None,
connection=None, auth_user.- Authentication user for the SMTP server. If provided it

html_ overrides the variable EMAIL_HOST_USER in settings.py.

message=None) auth_password.- Authentication password for the SMTP server. If
provided it overrides the variable EMAIL_HOST_PASSWORD in
settings.py.

fail_silently.- Offers the ability to bypass errors if email cannot be
sent. By default set to False, which means any error when attempting
to send email raises an smtplib.SMTPException exception.

connection.- Django emails back end to send the mail. If provided
it overrides the variable EMAIL_BACKEND in settings.py. See
Table 5-3 for options.

html_message.- An HTML string to send an HTML and text

email message. If provided, the resulting email is a
multipart/alternative email with message as the text/plain content
type and html_message as the text/html content type.

(continued)

*https://support.sparkpost.com/customer/portal/articles/1933377-create-api-keys
197

https://support.sparkpost.com/customer/portal/articles/1933377-create-api-keys

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Table 5-4. (continued)

Shortcut method
and description

Shortcut method
with all arguments*

Argument descriptions and notes

send_mass_mail is
more efficient than
the send_mail
method. This

is the preferred
choice when
sending multiple
emails because

it opens a single
connection to the
email server and
sends all messages
contained in

a tuple. Note
however send_
mass_mail does
not support HTML
messages like
send_mail.

mail_admins
sends email to
all users defined
in the ADMINS
variable in
settings.py.

mail_managers
sends email to all
users defined in
the MANAGERS
variable in
settings.py.

send_mass_
mail(datatuple,
fail_silently=False,
auth_user=None,
auth_
password=None,
connection=None)

mail_
admins(subject,
message, fail
silently=False,
connection=None,
html_
message=None)

mail_
managers(subject,
message, fail
silently=False,
connection=None,
html_
message=None)

datatuple.- Is a tuple that contains tuples representing an email
structure in the form (subject, message, from_email=settings.
DEFAULT_FROM_EMAIL, recipient_list).

Email is sent with a From: field set to the variable SERVER_
EMAIL in settings.py that by default is root@localhost. The email
subject is prefixed with the variable EMAIL_SUBJECT_PREFIX in
settings.py which by default is '[Django]'.

Email is sent with a From: field set to the variable SERVER_
EMAIL in settings.py which by default is root@localhost. The
email subject is prefixed with the variable EMAIL_SUBJECT _
PREFIX in settings.py which by default is '[Django]'.

* Method arguments without a default value (e.g. subject,message) must always be provided. Method
arguments with a default value (e.g. fail_silently=False, connection=None) are optional.

Note If you start to get emails with error messages once a project goes into production (i.e.DEBUG=False),
it’s because the mail_admins shortcut is automatically hooked-up for this purpose. This is due to the way
Django’s default logging works. To disable this behavior you will either need to clear all values from ADMINS in
settings.py or override the default logging behavior as described in the previous section on logging.

198

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Custom Email: Attachments, Headers, CC, BCC, and More with

EmailMessage

Although the previous email shortcut methods can be used under most circumstances, they do not support
things like attachments, CC, BCC, or other email headers. If you want total control for sending email
messages in Django, the previous shortcut methods won’t work.

Used ‘under-the-hood’ by the previous Django shortcut methods and offering the utmost flexibility for
sending email in Django is the Django EmailMessage class. The various parameters and methods supported
by the EmailMessage class are described in Table 5-5.

Table 5-5. Django EmailMessage class parameters and methods

Parameter and/or method

Description

subject
body

from_email

to

cc
bcc

connection

attachments

headers

send(fail_silently=False)

message()

recipients()

The subject line of the email.
The body text as a plain text message.

The sender's address. Both plain email (e.g., webmaster@coffeehouse.com)
and full name with email (e.g., Webmaster <webmaster@coffeehouse.com>)
format are acceptable. If omitted, the DEFAULT_FROM_EMAIL value from

settings.py is used.

Alist or tuple of recipient addresses.

Alist or tuple of recipient addresses used in the the email CC header when
sending the email.

Alist or tuple of addresses used as the email BCC header when sending the
email.

An email back-end instance. Use this parameter if you want to use the same
connection for multiple messages. If omitted, a new connection is created
when send() is called.

A list of attachments to put on the message. These can be either email.
MIMEBase.MIMEBase instances, or (filename, content, mimetype) triples.

A dictionary of extra headers to put on the message. The keys are the header
name, values are the header values. It's up to the caller to ensure header
names and values are in the correct format for an email message. The
corresponding attribute is extra_headers.

Sends the message. If a connection was specified when the email was
constructed, that connection is used. Otherwise, an instance of the default
backend is instantiated and used. If the keyword argument fail_silently is
True, exceptions raised while sending the message are omitted. An empty list
of recipients does not raise an exception.

Useful when extending the EmailMessage class to override and put the content
you want into the MIME object. Constructs a django.core.mail.SafeMIMEText
object (a subclass of Python's email. MIMEText. MIMEText class) or a django.
core.mail.SafeMIMEMultipart object holding the message to be sent.

Useful when extending the EmailMessage class because the SMTP server
needs to be told the full list of recipients when the message is sent. It returns a
list of all the recipients of the message, whether they're recorded in the to, cc,
or bec attributes.

(continued)

199

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Table 5-5. (continued)

Parameter and/or method Description

attach() Creates a file attachment and adds it to the message. There are two ways to
call attach(). You can pass it a single argument that is an email. MIMEBase.
MIMEBase instance that gets inserted directly into the resulting message
or you can passs it three arguments: filename, content, and mimetype (e.g.,
message.attach('menu.png’, img_data, 'image/png'), where filename is the
name of the file attachment as it will appear in the email, content is the data
that will be contained inside the attachment, and mimetype is the optional
MIME type for the attachment. If you omit mimetype, the MIME content
type is guessed from the filename of the attachment.

attach_file() Creates an attachment using a file from the filesystem. It can be called with
the path of the file to attach (e.g., message.attach_file('/images/menu.png’)
and optionally with the MIME type to use for the attachment (e.g., message.
attach_file('/images/menu.png','image/png’). If the MIME type is omitted,
it’s guessed from the filename.

With a clear idea of the functionalities provided by the EmailMessage classs in Table 5-5, let’s take a look
at some typical cases where you would use the EmailMessage class to send email.

Listing 5-25 provides a basic email example that uses options like CC, BCC. and the Reply-To header,
which aren’t support via the Django email shortcuts from the last section.

Listing 5-25. Send basic email with EmailMessage class

from django.core.mail.message import EmailMessage

Build message

email = EmailMessage(subject='Coffeehouse specials', body='We would like to let you know

about this week\'s specials....', from email='stores@coffeehouse.com',
to=["ilovecoffee@hotmail.com', 'officemgr@startups.com'], bcc=['marketing@
coffeehouse.com'], cc=["'ceo@coffeehouse.com']
headers = {'Reply-To': 'support@coffeehouse.com'})

Send message with built-in send() method
email.send()

Asyou can see in Listing 5-25, the EmailMessage instance is created specifying its various class
parameters. Once this is done, you just call the send() method to send the email. It’s as simple as that.
Because no connection values are provided in the EmailMessage instance in Listing 5-25, Django uses the
default back-end connection defined in settings.py.

One drawback of the EmailMessage send() method is that it opens a connection to the email server
every time it’s called. This can be inefficient if you send hundreds or thousands of emails at once. In the
spirit of the send_mass_mail() shortcut method from the last section, it’s also possible to open a single
connection to the email server and send multiple emails with EmailMessage. Listing 5-26 shows how to use a
single connection and send multiple emails with EmailMessage.

200

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-26. Send multiple emails in a single connection with EmailMessage class

from django.core import mail
connection = mail.get connection()

Manually open the connection
connection.open()

Build message
email = EmailMessage(subject='Coffeehouse specials', body='We would like to let you know
about this week\'s specials....', from email='stores@coffeehouse.com',

to=['ilovecoffee@hotmail.com', 'officemgr@startups.com'],

bcc=["marketing@coffeehouse.com'], cc=["ceo@coffeehouse.com']

headers = {'Reply-To': 'support@coffeehouse.com'})
Build message
email2 = EmailMessage(subject="Coffeehouse coupons', body="'New coupons for our best
customers....', from email="stores@coffeehouse.com',

to=['officemgr@startups.com', 'food@momandpopshop.com'],

bce=["marketing@coffeehouse.com'], cc=["ceo@coffeehouse.com']

headers = {'Reply-To': 'support@coffeehouse.com'})

Send the two emails in a single call

connection.send messages([email, email2])

The connection was already open so send messages() doesn't close it.
We need to manually close the connection.

connection.close()

In Listing 5-26 the first step is to create a connection to the email server using mail.get connection()
and then open the connection with the open() method. Next, you create the various EmailMessage
instances. Once the email instances are prepared, you call the connection's send_messages () method with
an argument list corresponding to each of the EmailMessage instances. Finally, once the emails are sent, you
call the connection's close() method to drop the connection to the email server.

Another common email scenario is to send HTML emails. Django provides the
EmailMultiAlternatives class for this purpose, which is a subclass of the EmailMessage class. By being
a subclass, it means you can leverage the same functionalities as EmailMessage (e.g., CC, BCC), but you
don’t need to do a lot of work as the subclass EmailMultiAlternatives is specifically designed to handle a
multiple types of messages. Listing 5-27 illustrates how to use the EmailMultiAlternatives class.

Listing 5-27. Send HTML (w/text) emails with EmailMultiAlternatives, a subclass of the EmailMessage class

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = 'Important support message', 'support@coffeehouse.com', 'ceo@
coffeehouse.com'

text_content = 'This is an important message.'

html_content = '

This is an important message.

201

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

msg = EmailMultiAlternatives(subject=subject, body=text content, from email=from email,
to=[to])

msg.attach_alternative(html content, "text/html")

msg.send()

Listing 5-27 first defines all the email fields, which include the text and HTML version of the email. Note
that having a text and HTML version of the email content is common practice, since there’s no guarantee
end users will allow or can read HTML email, so a text version is provided as a backup. Next, you define
an instance of the EmailMultiAlternatives class; notice the parameters are inline with those of the
EmailMessage class.

Next, in Listing 5-27 you can see a call to the attach_alternative method, which is specific to the
EmailMultiAlternatives class. The first argument to this method is the HTML content and the second is
the content type that corresponds to text/html. Finally, Listing 5-27 calls the send() method - part of the
EmailMessage class, but which is also automatically part of to EmailMultiAlternatives since it’s a subclass
- to send the actual email.

In controlled environments (e.g., corporate email) where it can be guaranteed that all end users are
capable of viewing HTML email, it can be practical to just send an HTML version of an email and bypass the
text version altogether. Under these circumstances, you can actually use the EmailMesssage class directly
with a minor tweak. Listing 5-28 illustrates how to send just HTML email with the EmailMessage class.

Listing 5-28. Send HTML emails with EmailMessage class

subject, from_email, to = 'Important support message', 'support@coffeehouse.com', 'ceo@
coffeehouse.com'

html content = '

This is an important message.

msg = EmailMessage(subject=subject, body=html_content, from_email=from_email, to=[to])
msg.content_subtype = "html" # Main content is now text/html
msg.send()

Listing 5-28 looks like a standard EmailMessage process definition; however, line four - msg.content_
subtype - is what makes Listing 5-28 different. If the HTML content were sent without line setting msg.
content_subtype, end users would receive a verbatim version of the HTML content (i.e., without the HTML
tags rendered). This is because by default the EmailMessage class specifies the content type as text. In
order to switch the default content type of an EmailMessage instance, in line four a call is made to set the
content_subtype to html. With this change the email content type is set to HTML and end users are capable
of viewing the content rendered as HTML.

202

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

BEWARE OF JUST SENDING HTML EMAIL VERSIONS TO THE PUBLIC

Although sending an HTML email version is quicker than sending a text and HTML email version, this
can be problematic if you can’t determine where end users read their email. There are certain users that
for security reasons disable the ability to view HTML emails, as well as certain email products that can’t
or aren’t very good at rendering HTML emails. So if you just send an HTML email version, there can be a
subset of end users that won’t be able to see the email content.

For this reason if you send email to end users where you can’t control their environment (i.e., email
reader), it is best you send a text and HTML email version - as illustrated in Listing 5-27 - than sending
an HTML email version illustrated in Listing 5-28.

Another common practice when sending emails is to attach files. Listing 5-29 illustrates how to attach a
PDF to an email.

Listing 5-29. Send email with PDF attachment with EmailMessage class

from django.core.mail.message import EmailMessage

Build message
email = EmailMessage(subject='Coffeehouse sales report', body='Attached is sales
report....', from email="stores@coffeehouse.com’,
to=["'ceo@coffeehouse.com', 'marketing@coffeehouse.com']
headers = {'Reply-To': 'sales@coffeehouse.com'})
Open PDF file
attachment = open('SalesReport.pdf', 'rb")
Attach PDF file
email.attach('SalesReport.pdf',attachment.read(), 'application/pdf")

Send message with built-in send() method
email.send()

As you can see in Listing 5-29, after creating an EmailMessage instance you just open the PDF file using
Python'’s standard open() method. Next, you use the attach() method from the EmailMessage that takes
three arguments: the file name, the file contents, and the file content type or MIME type. Finally, a call is
made to the send() method to send the email.

Debug Django Applications

The first steps to correct unexpected behavior in an application are generally to review what you believe are
the problematic sections of source code and the corresponding logs. Sometimes though these reviews are
fruitless, either because an application has grown in complexity or the unexpected behavior is originating in
a not so obvious location.

Under these circumstances, the next step is to start a debugging process with the help of tools to make it
easier to detect and fix the problem. In the upcoming sections, I'll describe some of the most popular tools to
debug Django applications.

203

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Django Shell: Python manage.py Shell

Just like Python’s CLI (‘Command Line Interface’) shell where you can evaluate expressions (e.g., 1+3,
mystring = ‘django’), Django offers its own shell version through the python manage.py shell
command - where manage.py is the top-level file in every Django project.

Django’s shell is helpful because it automatically loads a project’s dependencies and apps, so
you're able to evaluate expressions related to your Django project (e.g., queries, methods) without having
to go through a tedious setup process. Listing 5-30 illustrates a series of sample expressions run from
Django’s shell.

Listing 5-30. Django shell sample expressions

[user@coffeehouse ~]$ python manage.py shell

Python 2.7.3

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)

>>> from coffeehouse.items.models import *

>>> Drink.objects.filter(item price 1t=2).filter(caffeine 1t=100).count()

>>> from django.test import Client
>>> ¢ = Client()

>>> response = c.get('/stores/1/")
>>> response.content

"<IDOCTYPE html>\n<html....

<\html>

>>> c.get('/stores/5/")

Not Found: /stores/5/

<HttpResponseNotFound status_code=404, "text/html">

The first snippet in Listing 5-30 uses the from import syntax to gain access to a Django project’s model
classes, after which queries are made on the models to validate results. Note there’s no need to import
additional libraries or define database connections; all dependencies and configurations are loaded from
the Django project itself.

The second snippet in Listing 5-30 uses Django’s test library to simulate a client/browser request to the
/stores/1/ and /stores/5/ URLs, after which you can inspect the content response or the HTTP status
code (e.g., 404 Not Found). Here again note there’s no need to start a web server or open a browser; you can
quickly validate a Django project’s URLs and its responses from the Django shell.

Django Debug Toolbar

The Django debug toolbar offers a more visual experience to debug Django applications compared to the
Django shell. The Django debug toolbar offers per page information through a sliding sidebar related to
things like resource usage (i.e., time), Django settings, HTTP headers, SQL queries, cache, and logging,
among other things. Figures 5-2 and 5-3 illustrate a collapsed and non-collapsed screenshot of the Django
debug toolbar.

204

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

— localhost

- L&

Welcome to the Coffeehouse!

Open since 1965!

Stores Drinks Order online

View store details » View drink detadls = Crder online »

Coffechouse 2016

Figure 5-2. Django debug toolbar hidden

- 4 localhost:

* -

Welcome to the Coffeehouse!

Open since 1965!

Request

Stores Drinks Order online

Wiew store details » View diink details » Order online =

& Colfeehouse 2016

localhost:8000/3

Figure 5-3. Django debug toolbar collapsed

Asyou can see in Figure 5-2, the Django debug toolbar is accessible through a small tab in the top
right-hand side of every Django project page. Figure 5-3 illustrates a collapsed version of the Django
debug toolbar where you can see its various sections; clicking on any of the sections further brings up a
pop-window with detailed information about each section.

You can install the Django debug toolbar with the pip install django-debug-toolbar command.
Once you install the django-debug-toolbar, you'll also need to add the debug_toolbar line to the
INSTALLED_APPS variable in settings.py so Django enables the toolbar.

205

CHAPTER 5 © DJANGO APPLICATION MANAGEMENT

Note The Django debug toolbar only works when a project uses DEBUG=True.

In addition to the Ul toolbar, the Django debug toolbar also offers the debugsqlshell utility. This
utility works like Django’s standard shell, but it outputs the backing SQL associated with any Django model
operation, as illustrated in Listing 5-31.

Listing 5-31. Django debugsqlshell sample expressions

[user@coffeehouse ~]$ python manage.py debugsqlshell
Python 2.7.3
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from coffeehouse.items.models import *
>>> Drink.objects.filter(item price 1t=2).filter(caffeine 1t=100).count()
SELECT COUNT(*) AS " count"”
FROM "items_drink"
INNER JOIN "items item" ON ("items drink"."item id" = "items_item"."id")
WHERE ("items_item"."price" < 2.0
AND "items drink"."caffeine" < 100) [0.54ms]

Note The debugsqlshell is part of the Django debug toolbar; therefore it must be installed as described
in the previous paragraphs (e.g., pip install django-debug-toolbar and added as debug toolbar to the
INSTALLED APPS variable in settings.py).

As you can see in Listing 5-31, the debugsqlshell utility is available through the manage.py command
- just like Django’s built-in shell - and after you run a Django model operation, it also outputs the SQL query
for the operation.

For detailed information on customizing the Django debug toolbar, see its official documentation.'

Django pdb

pdb - short for "Python Debugger" - is a Python core package designed to interactively debug source code.
With Python pdb you can inspect the line-by- line execution of any Python application. To simplify the
process of Python pdb in the context of Django applications (e.g., debug request methods) you can use the
Django pdb package.

To install Python pdb run pip install django-pdb and then add django_pdb to the INSTALLED APPS
variable in settings.py in the first position - the position is important so other Django apps don’t override
Django pdb’s behaviors (e.g., override runserver and test commands). Be aware the Django pdb package
only works when DEBUG=True.

There are various way to run pdb with Django; the easiest is to append the ?pdb parameter to any
Django URL you want to analyze with pdb. For example, Listing 5-32 shows a debugging sequence for the
http://localhost:8000/drinks/mocha/?pdb URL.

®http://django-debug-toolbar.readthedocs.org/

206

http://django-debug-toolbar.readthedocs.org/

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Listing 5-32. Django pdb sequence

[user@coffeehouse ~]$ python manage.py runserver

INFO "GET /drinks/mocha/ HTTP/1.1" 200 11716

GET /drinks/mocha/?pdb

function "detail" in drinks/views.py:8

args: ()

kwargs: {'drink_type': u'mocha'}

0

> /python/djangodev/local/lib/python2.7/site-packages/django/core/handlers/base.py(79)make_
view_atomic()

-> non_atomic_requests = getattr(view, ' non_atomic_requests', set())

(Pdb) n

> /python/djangodev/local/lib/python2.7/site-packages/django/core/handlers/base.py(80)make
view atomic()

-> for db in connections.all():

--Call--

> /www/code/djangorecipes/5_django_settings/coffeehouse/drinks/views.py(8)detail()
-> def detail(request,drink_type):

(Pdb)

> /www/code/djangorecipes/5_django_settings/coffeehouse/drinks/views.py(9)detail()
(Pdb) ¢

You can see Listing 5-32 starts with Django’s built-in web server and immediately receives and
dispatches a response to the regular URL /drinks/mocha/. Up to this point everything is standard; however,
notice the next request to the URL /drinks/mocha/?pdb and the verbose output that follows.

The verbose output tells you where the request enters the application, including arguments, as well as
the initial entry point into Django’s core framework in the django.core.handlers.base.py package.

After the initial verbose output, the execution stops at the first (Pdb) instance. At this juncture you've
hit a breakpoint, so the console running runserver and the requesting client (i.e., browser) freeze until you
provide additional input on the console. In Listing 5-32 you can see the letter n for next is introduced and
the execution moves forward to another line, after which you'll be presented with another (Pdb) prompt or
breakpoint. At this point, you can just press the Enter key to re-invoke the previous command (i.e., n) and
move forward.

If you want to advance without hitting another breakpoint, you can type c for continue so the execution
continues normally, without pausing again.

Asyou can see, the power of pdb with Django lies in the fact that you can walk through the execution
cycle of any section in a very granular way, in addition to having the ability to analyze and set variables
interactively. Table 5-6 describes the most basic commands related to pdb.

207

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Table 5-6. Python pdb commands used at (Pdb) prompt

Pdb Command Description

(Enter) (key) Re-executes the previous command.

n Moves execution to the next breakpoint.

c Continues execution with no more breakpoints.

q Quits the execution immediately.

p <variable(s)> Print variable(s).

1 (L lowercase) Displays a list of source code at the current breakpoint, 11 lines worth: the breakpoint

line, 5 lines prior, and 5 lines after. Helpful to provide context.

S Enters a subroutine. In a non-method related breakpoint, s and n both move to the
next breakpoint. In a method related breakpoint, s enters the method or subroutine.

r Breaks out of a subroutine. Used after s to return to the main routine.

In addition to appending the ?pdb parameter to a URL to enter pdb in a Django application, there are
two more alternatives. You can append the - -pdb flag to runserver to enter pdb on every request made to
the application (e.g., python manage.py runserver --pdb).And you can also use the --pm flag to enter pdb
only when an exception is raised in a view (e.g., python manage.py runserver -pm).

For additional information on pdb itself, consult the official Python documentation at
https://docs.python.org/3/1ibrary/pdb.html. And for additional information on Django pdb, consult
the project’s documentation at https://github.com/tomchristie/django-pdb.

Django Extensions

Django extensions are a collection of tools designed for Django projects. As its name implies, it offers
extensions for a wide array of areas where Django’s standard tools level off in functionality. For debugging
purposes, Django extensions offers two tools that I believe are the most important to explore: runserver_plus
and runprofileserver.

To use Django extensions you'll first need to install it with pip install django-extensions and then
add django_extensions to INSTALLED_APPS in settings.py. Once you set up Django extensions, its various
tools become available through the python manage.py command just like Django’s standard tools.

The Django extensions runserver_plus command offers interactive and enhanced debugging for
Django projects. To use runserver_plus you'll first need to install the Werkzeug utility - pip install
Werkzeug. Once you install Werkzeug, simply start a Django application with python manage.py runserver plus
instead of Django’s standard python manage.py runserver. At first glance the runserver_plus command works
just like Django’s runserver ; however, if you happen to hit an exception you'll see error pages like the ones
in Figures 5-4 and 5-5.

208

https://docs.python.org/3/library/pdb.html
https://github.com/tomchristie/django-pdb

CHAPTER 5 DJANGO APPLICATION MANAGEMENT

- C O locathost20

NameError

NameErrar: global name ‘drin_type' is not defined

Fila " g

2 ey, e 63,0 call
return self.application(environ, start_response)

pesigh_djangoidjangardja andirewsgipy, ing 175, in __ call
response = self.get response(request)

File “Twwwicodelja

ipesigh_djangoidjangaidjangoicoremandiersibase. oy, line 231, in get_response
response = self.handle uncaught_exception(reguest, resolver, sys.exc_infoe()}
Filg " i i

i nandiersbase. oy, ine 290, in handle_uncaught_exception
return debug.technical 580 response{request, *exc infa)

File “Ipythongangodewiibipython2. Thsite-packages/ dango 1 6.1-py2.7 0ggango_exiensionsim
six.reraise(exc_type, exc_value, tb)

nrical_response py”, ine 8, innull_technical 588 response

File “wwwicode/gjangorecipesigh_djanguidjango/djangoicoremandiersibase.oy”, ine 150, in get_response
response = self.process exception by middleware{e, request)

Fie- 1gh_ ol nandiersbase. gy, ing 148, In get_response

response = wrapped callback{request, *callback args, **callback kwargs)

File “wwwicodeidjangonecipes’8_djange_settingsicoffeshouseidrinksiiews. oy, line 15, in detail
return render(request, 'drinks/detail.htal’ {'drink’:drin_type,‘drink description’':description})

NameEmor: global name “drin_type’ is not defined

The debugger caught an exception in your WSGI applicabon. You can now look at the traceback which led 1o the error,

Figure 5-4. Django extensions runserver_plus

L ¢ [localhostaD

File fjargy pesigit_djangoidjangaidjangolcarehandiersiwsgi py”, line 175,in__ eall
response = self.get_response(request)
File " sjangarecipeagit_dangaidjangaitjang andiersbase oy, line 231, in get_response

response = self.hand

uncaught_exception{request, resolver, sys.exc_info())

File “wwwicode/djanganecipesigit_djanguidjanga/djangaicaremandiersihase. my”, ine 230, in handle_uncaught_exception
return debug.technical 580_response(request, *exc_info)

File “/python/diangodewiitypython2. Tisite-package s diango_exiensions-1.6.1-py2.7.
six.reraise(exc_type, exc_value, tb)

wical_response py”. ine 6. n null_technical_568_response
File “Mwwicode/gjangarecipesigi_djangaidjango/dango/coremandiersbase. oy, ine 150, in gEt_response
response = self.process exception by middleware(e, request)

File “wwwicoga/ojangonecipes/git_django/dianga/diangoicoramandiersbase.oy”, ine 148, in gel_response
response = wrapped callback{request, *callback_args, **callback kwargs)

Filg " q % _django_seaingsicofeshousadrink Py, ling 15, in detail
return render({request, 'drinks/detail.htal’, {'drink’:drin_type, drink description’:description})
[console ready]
»>> print{drink_type)
latte
>»> print{drin_type}

File “ctiebugger=", line 1, in <module>
print{drin_type)

NameError: name 'diin_type' is not defined

NameEmor: global name “drin_type’ is not defined

Figure 5-5. Django extensions runserver_plus with interactive console

209

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

In Figure 5-4 you can see a slightly different Django exception page vs. Django’s default exception
page. This different layout is generated by Werkzeug, but the layout itself isn’t what'’s interesting about this
approach: if you hover over any section of the stack trace you can start an interactive debugging session, as
illustrated in Figure 5-5. This is a much simpler and powerful debugging approach because it’s done directly
in a browser!

Another powerful Django extensions tool is runprofileserver, which can create a Python cProfile for
a Django application page. A Python cProfile provides a set of statistics that describes how often and for
how long the various parts of a program are executed, which can be helpful to determine solutions for slow
loading and resource intensive Django application pages.

The first thing you'll need to do to use runprofileserver is to create a folder to hold the profile files
(e.g., mkdir /tmp/django-coffeehouse-profiles/). Next, simply start a Django application with python
manage.py runprofileserver --use-cprofile --prof-path=/tmp/django-coffeehouse-profiles/
instead of Django’s standard python manage.py server - note the --prof-path flag value points to the
directory that will hold the profile files.

Open up a browser, head over to the Django application. and navigate through it. If you
open the folder that holds the profile files, you'll see files like root.000037ms . 1459139463 . prof,
stores.000061ms.1459139465.prof, and stores.2.000050ms.1459139470. prof, where each file represents
a cProfile for each page hit.

Although it would go beyond the scope of the book to dive into cProfile analysis, not to mention there
are many tools available for this purpose, if you want a quick and easy tool to open Python cProfile files,
I'would suggest SnakeViz. Just do pip install snakeviz and thenrun snakeviz <file name>. Once you
run snakeviz on a file, you'll see Python cProfile details like the ones illustrated in Figures 5-6 and 5-7.

€ b € [127.0.0.1:8080/snakeviz/%2Ftmp%2Fmy-profile-data%2Froot.000037ms. 1459139463 prof v =
call Stack)
Style: ! Sunburst -
Depth: 5 v
Cutoff: 1/ 1eee
Search:
ncalls tottime v percall cumtime percall filename: lineno(function)
362 0.00178 4.917¢-06 0.002631 7.2680-06 posixpath.py:312(normpath) -

Figure 5-6. SnakeViz cProfile image

210

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

= € | [} 127.0.0.1:8080/snakeviz/%2Ftmp%2F my-profile-datad:

Search:

nealls tottime percall cumtime v percall filename:lineno(function)
1 Be-06 Ge-06 0.0377 0.0377 handlers.py-61(__call__)
1 3.6¢-05 3.6¢-05 0.03768 0.03768 wsgipy:153(__call_)
1 5.2¢-05 5.2¢-05 0.03714 0.03714 base.py:107(get_response)
1 7.9e-05 7.9e-05 0.02325 0.02325 idd . py:B5{process_res
2 Se-06 2.5¢-06 0.01937 0.009684 django.py:63(render)
an 2.1e-05 1.05e-05 0.01923 0.009663 base. py:200(render)
472 1.2e-05 Ge-06 0.01885 0009424 utils py:B8{instrumented_test_render)
1012 0.000589 00002945 0.01763 0.008813 base.py:976(render)

Figure 5-7. SnakeViz cProfile listing sorted by run time

As I mentioned at the start, Django extensions provide many tools in addition to runserver plus and
runprofileserver, which I believe are the most appropriate for debugging tasks. Nevertheless, I would
recommend you review the Django extensions documentation available at https://django-extensions.
readthedocs.org/en/latest/ to explore other tools that might be of use in your own projects (e.g., the
show_urls tool displays a Django project’s url routes and the graph_models tools generates graphs for a
Django project’s models).

Django Management Commands

Throughout the previous chapters - including this one - you've relied on management commands invoked
through the manage. py script included in all Django projects. For example, to start the development server
of a Django project you've used the runserver command (e.g., python manage.py runserver), and to
consolidate a project’s static resources you've used the collectstatic command (e.g., python manage.py
collectstatic).

Django management commands are included as part of Django apps and are designed to fulfill
repetitive or complex tasks through a one keyword command line instruction. Every Django management
command is backed by a script that contains the step-by-step Python logic to fulfill its duties. So when
you type python manage.py runserver, behind the scenes Django triggers a much more complex Python
routine.

If you type python manage.py (i.e., without a command) on a Django project, you'll see a list of Django
management commands classified by app (e.g., auth, django, staticfiles). From this list you can gain
insight into the various management commands available on all your Django apps.

I'll describe the purpose of Django management commands associated with core or third-party Django
apps as they come up in the book, just as I've done up to this point (e.g., static file management commands
in static file topics, model management commands in model topics).

What I'll do next is describe how to create custom management commands in your Django apps, so you
can simplify the execution of routine or complex tasks through a single instruction.

211

https://django-extensions.readthedocs.org/en/latest/
https://django-extensions.readthedocs.org/en/latest/

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Custom Management Command Structure

Custom management commands are structured as Python classes that inherit their behavior from the
Django django.core.management.base.BaseCommand class. This last class provides the necessary structure
to execute any Python logic (e.g., file system, database, or Django specific) and at the same time process
arguments typically used with Django management commands. Listing 5-33 illustrates one of the most
Django management commands possible.

Listing 5-33. Django management command class with no arguments

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

class Command(BaseCommand):
help = 'Send test emails'

def handle(self, *args, **options):
for admin_name,email in settings.ADMINS:

try:
self.stdout.write(self.style.WARNING("About to send email to %s" % (email)))
Logic to send email here
Any other Python logic can also go here
self.stdout.write(self.style.SUCCESS('Successfully sent email to "%s"' % email))
raise Exception

except Exception:
raise CommandError('Failed to send test email')

Notice in Listing 5-33, the management command class must be named Command and inherit its
behavior from the Django BaseCommand class. Next, there’s a help attribute to describe the purpose of the
management command. If you type python manage.py help <task file name> or python manage.py
<task_file name> --help Django outputs the value of the help attribute.

The handle method contains the core command logic and is automatically run when invoking the
command. Notice the handle method declares three input argument: self to reference the class instance;
*args to reference arguments of the method itself; and **options to reference arguments passed as part
of the management command. The task logic in Listing 5-33 only uses the self reference. The other task
management example - in Listing 5-34 - illustrates how to use arguments.

The task logic in Listing 5-33 is limited to looping over the ADMINS value in settings.py and outputting
the task results. However, there’s no limit to the logic you can execute inside the handle method, so long as
it’s valid Python.

Although standard Python try/except blocks work as expected inside Django management tasks, there
are two syntax particularities you need to be aware of when creating Django management tasks: outputting
messages and error handling.

To send output messages while executing task logic - success or informative - you can see Listing 5-33
uses the self.stdout.write reference, which represents the standard output channel where management
tasks run. In addition, you can see self.stdout.write uses both the self.style.WARNING and self.
style.SUCCESS to declare the actual messages to output. The wrapping of messages inside self.style.*is
optional, but outputs colored formatted messages (e.g., SUCCESS in green font, WARNING in yellow font) in
accordance with Django syntax coloring roles."

"https://docs.djangoproject.com/en/1.11/ref/django-admin/#syntax-coloring

212

https://docs.djangoproject.com/en/1.11/ref/django-admin/#syntax-coloring

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

To send error messages while executing task logic, you can use the self.stderr.write reference,
which represents the standard error channel where management tasks run. And to terminate the execution
of a management task due to an error, you can raise the django.core.management.base.CommandExrror
exception - as it’s done in Listing 5-33 - which accepts an error message, which gets sent to the self.
stderr.write channel.

In most circumstances, it’s rare to have a fixed Django management command like the one in Listing 5-33
that uses no arguments to alter its logical workflow. For example, the Django runserver command accepts
argument like addrport and - -nothreading to influence how a web server is launched.

Django management commands can use two types of arguments: positional arguments - where the
order in which they’re declared gives them their meaning; or named arguments - which are preceded by
names with two dashes -- (a.k.a.flags) to give them their meaning.

Although the **options argument of the handle() method - as shown in Listing 5-33 - provides access
to a management command’s arguments to alter the logical workflow, in order to use arguments in a custom
Django management command, you must also declare the add_arguments () method.

The add_arguments() method must define a management task’s arguments, including their
type - positional or named - default value, choice values, and help message, among other things. In essence,
the add_arguments () method works as a pre-processor to command arguments, which are then made
available in the **options argument of the handle() method.

The parser reference of the add_arguments(self,parser) signature is an argument parser based on
the standard Python argparse package'? designed to easily process command-line arguments for Python
scripts.

To add command arguments inside the add_arguments () method you do so via the
parser.add_argument() method, as illustrated in Listing 5-34.

Listing 5-34. Django management task class with arguments

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

class Command(BaseCommand):
help = 'Clean up stores'

def add_arguments(self, parser):
Positional arguments are standalone name
parser.add_argument('store id')

Named (optional) arguments start with --
parser.add_argument(

'--delete’,

default=False,

help="Delete store instead of cleaning it up',

)

def handle(self, *args, **options):
Access arguments inside **options dictionary
#options={'store id': '1', 'settings': None, 'pythonpath': None,
'verbosity': 1, 'traceback': False, 'no_color': False, 'delete': False}

Zhttps://docs.python.org/3/1library/argparse.html

213

https://docs.python.org/3/library/argparse.html

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

The management command in Listing 5-34 declares both a positional and a named argument.

Notice both arguments are added with the parser.add_argument() method. The difference being, named
arguments use leading dashes - and If omitted an argument is assumed to be positional.

Positional arguments by definition are required. So in the case of Listing 5-34, the store_id argument is
expected (e.g., python manage.py cleanupstores 1, where 1isthe store_id), otherwise Django throws a
‘too few arguments’ error.

Named arguments are always optional. And because named arguments are optional, you can see in
Listing 5-34 the --delete argument declares a default=False value, ensuring the argument always receives
a default value to run the logic inside the handle() method.

The --delete argument in Listing 5-34 also uses the help attribute to define a descriptive text about the
purpose of the argument. In addition to default and help, the parser.add argument() method supports a
wide variety of attributes, based on the Python argparse package - see the previous footnote to consult some
of the arguments support by this method.

Finally, you can see in Listing 5-34 the handle() method gets access to the command arguments via the
**options dictionary, where the values can then be used toward the structuring of the command logic. Note
the additional arguments available in **options - settings, pythonpath,etc. - are inherited by default due
to the BaseCommand class

Custom Management Command Installation

All Django management tasks are placed inside individual Python files (i.e., one command per file) and
stored inside an app directory structure under the /management/commands/ folder. Listing 5-35 shows the
folder structure for a couple of apps with custom management tasks.

Listing 5-35. Django management task folder structure and location

+-<BASE_DIR_project_name>
I

+-manage.py
I

|
+---+-<PROJECT_DIR_project_name>

+-__init_ .py
+-settings.py
+-urls.py
+-wsgi.py
about (app)-+
+-_ init__.py
+-models.py
+-tests.py
+-views.py
+-__init__.py
+-commands-+

+-__init_ .py
|

-
|

|

|

|

| +-management-+
|

|

|

|

| +-sendtestemails.py
|

214

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

+-stores(app)-+

+-__init__.py

+-models.py

+-tests.py

+-views.py

+-management-+
+-__init_ .py
+-commands-+

+-__init__.py
|
|

+-cleanupstores.py
+-updatemenus.py

As you can see in Listing 5-35, the about app has a single management command inside the
/management/commands/ folder and the stores app has two management commands nested inside its own
/management/commands/ folder.

Caution To ensure the visibility of an app’s management commands, don’t forget to add the
empty __init__.py files to the /management/ and /commands/ folders as shown in Listing 5-35 and declare the
apps as part of INSTALLED_APPS in a project’s settings.py file.

Management Command Automation

Django management commands are typically run from the command line, requiring human intervention.
However, there can be times when it’s helpful or necessary to automate the execution of management
commands from other locations (e.g., a Django view method or shell).

For example, if a user uploads an image in a Django application and you want the image to become
publicly accessible, you'll need to run the collectstatic command so the image makes its way to the public
and consolidation location (STATIC_ROOT). Similarly, you may want to run a cleanuprofile command every
time a user logs in.

To automate the execution of management commands, Django offers the django.core.management.
call command() method. Listing 5-36 illustrates the various ways in which you can use the call_command()
method.

Listing 5-36. Django management automation with call_command()

from django.core import management

Option 1, no arguments
management.call command('sendtestemails")

Option 2, no pause to wait for input
management.call command('collectstatic', interactive=False)

215

CHAPTER 5 * DJANGO APPLICATION MANAGEMENT

Option 3, command input with Command()
from django.core.management.commands import loaddata
management.call command(loaddata.Command(), 'stores', verbosity=0)

Option 4, positional and named command arguments
management.call command('cleanupdatastores', 1, delete=True)

The first option in Listing 5-35 executes a management without any arguments. The second option
in Listing 5-35 uses the interactive=False argument to indicate the command must not pause for
user input (e.g., collectstatic always asks if you're sure if you want to overwrite preexisting files, the
interactive=False argument avoids this pause and need for input).

The third option in Listing 5-35 invokes the management command by first importing it and then
invoking its Command () class directly vs. using the command string value. And finally, the fourth option - just
like the third - in Listing 5-35, uses a positional argument - declared as a stand-alone value (e.g., 'stores', 1)
and a named argument - declared as a key=value (e.g., verbosity=0, delete=True).

216

CHAPTER 6

Django Forms

Forms are the standard way that users input or edit data in web applications. At their lowest level, forms are
made up of HTML tags with special meaning. While you can directly add HTML form tags to Django or Jinja
templates, you really want to avoid this and use Django’s built-in form support to make form processing easier.

In this chapter you'll learn how to structure Django forms and the workflow that forms undergo. You'll
also learn the various field types and widgets supported by Django forms, how to validate form data and
manage its errors, as well as how to lay out forms and their errors in templates.

Once you have a firm understanding of the basics behind Django forms, you'll learn how to create
custom form fields and widgets. Finally, you'll learn more complex Django form processing techniques, such
as partial form processing, form processing with AJAX, how to process files sent through Django forms, and
how to process multiple forms on the same page with Django formsets.

Django Form Structure and Workflow

Django has a special forms package that offers a comprehensive way to work with forms. Among this
package’s features are the ability to define form functionality in a single location, data validation, and tight
integration with Django models, among other things. Let’s take a first look at a stand-alone Django form
class in Listing 6-1 that is used to back a contact form.

Listing 6-1. Django form class definition

forms.py in app named 'contact’
from django import forms

class ContactForm(forms.Form):
name = forms.CharField(required=False)
email = forms.EmailField(label="Your email")
comment = forms.CharField(widget=forms.Textarea)

Note There’s no specific location Django expects forms to be in. You can equally place Django form
classes in their own file inside an app (e.g., forms.py) or place them inside other app files (e.g., models.py,
views.py). You can later import Django form classes to where they’re needed, just like Django views or Python
packages.

© Daniel Rubio 2017 217
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_6

https://doi.org/10.1007/978-1-4842-2787-9_6

CHAPTER 6 = DJANGO FORMS

The first important aspect to note in Listing 6-1 is a Django form definition is a subclass of the forms.
Form class, so it automatically has all the base functionality of this parent class. Next, you can see the form
class has three attributes, two of the type forms.CharField and one of the type forms.EmailField. These
form field definitions restrict input to certain characteristics.

For example, forms.CharField indicates the input should be a set of characters and forms.EmailField
indicates the input should be an email. In addition, you can see each form field includes properties (e.g.,
required) to further restrict the type of input. For the moment this should be enough detail about Django
form field type;, the next section on Django form field types goes into greater detail on just this topic.

Next, let’s integrate the Django form in Listing 6-1 to a Django view method so it can then be passed and
rendered in a Django template. Listing 6-2 illustrates the initial iteration of this view method.

Listing 6-2. Django view method that uses a Django form

views.py in app named 'contact’
from django.shortcuts import render
from .forms import ContactForm

def contact(request):
form = ContactForm()
return render(request, 'about/contact.html’,{'form':form})

The view method in Listing 6-2 first instantiates the ContactForm form class and assigns it to the
form reference. This form reference is then passed as an argument to be made available inside the about/
contact.html template.

Next, inside the Django template you can output a Django form as a regular variable. Listing 6-3
illustrates how the Django form is rendered if you use the standard template syntax {{form.as_table}}.

Listing 6-3. Django form instance rendered in template as HTML

<tr><th><label for="id name">Name:</label></th><td><input id="id name" name="name"
type="text" /></td></tr>

<tr><th><label for="id email">Your email:</label></th><td><input id="id_email" required
name="email" type="email" /></td></tr>

<tr><th><label for="id comment">Comment:</label></th><td><textarea cols=