
Beginning
Django

Web Application Development and
Deployment with Python
—
Covers 1.11 LTS, compatible with
Python 2 and 3
—
Daniel Rubio

Beginning Django
Web Application Development and

Deployment with Python

Daniel Rubio

Beginning Django: Web Application Development and Deployment with Python

Daniel Rubio				
F. Bahia, Ensenada, Baja California, Mexico				

ISBN-13 (pbk): 978-1-4842-2786-2			 ISBN-13 (electronic): 978-1-4842-2787-9
https://doi.org/10.1007/978-1-4842-2787-9

Library of Congress Control Number: 2017958633

Copyright © 2017 by Daniel Rubio

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com).

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Tri Phan
Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227862. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2787-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227862
http://www.apress.com/source-code

To Valentina, Nancy and all my immediate family

To my uncle Alfonso, whose Commodore 64 let me gain an affinity
for technology

v

Contents at a Glance

About the Author���xxi

About the Technical Reviewer���xxiii

Acknowledgments��xxv

Introduction��xxvii

■■Chapter 1: Introduction to the Django Framework��� 1

■■Chapter 2: Django Urls and Views�� 31

■■Chapter 3: Django Templates�� 73

■■Chapter 4: Jinja Templates in Django��� 117

■■Chapter 5: Django Application Management�� 163

■■Chapter 6: Django Forms�� 217

■■Chapter 7: Django Models�� 275

■■Chapter 8: Django Model Queries and Managers��� 341

■■Chapter 9: Django Model Forms and Class Views�� 403

■■Chapter 10: Django User Management��� 441

■■Chapter 11: Django admin Management�� 495

■■Chapter 12: REST Services with Django��� 549

■■Appendix A: Python Basics��� 567

Index�� 585

vii

Contents

About the Author���xxi

About the Technical Reviewer���xxiii

Acknowledgments��xxv

Introduction��xxvii

■■Chapter 1: Introduction to the Django Framework��� 1

Django Framework Design Principles��� 2

Don’t Repeat Yourself (DRY) Principle�� 2

Explicit Is Better Than Implicit��� 4

Loosely Coupled Architecture�� 5

Install Django�� 5

Install Python (Prerequisite)��� 6

Update or Install pip Package Manager (Prerequisite)�� 7

Install virtualenv (Optional Prerequisite)�� 8

Install Django��� 11

Install Django from Git��� 11

Start a Django Project��� 13

Set Up a Database for a Django Project�� 15

Install Python Database Packages��� 18

Test Django Database Connection and Build Django Base Tables��� 18

Set Up Content: Understand Urls, Templates, and Apps�� 19

Create and Configure Django Urls��� 20

Create and Configure Django Templates��� 21

Create and Configure Django Apps�� 22

■ Contents

viii

Set Up the Django admin Site��� 25

Configure and Install the Django admin site App��� 25

Configure and Install the Django admin site docs App�� 28

■■Chapter 2: Django Urls and Views�� 31

Url Regular Expressions�� 31

Precedence Rule: Granular Urls First, Broad Urls Last��� 31

Exact Url Patterns: Forgoing Broad Matching�� 32

Common Url Patterns�� 33

Url Parameters, Extra Options, and Query Strings��� 35

Url Consolidation and Modularization�� 38

Url Naming and Namespaces�� 40

View Method Requests�� 47

View Method Responses��� 49

Response Options for HTTP Status and Content-Type Headers��� 50

Built-In Response Shortcuts and Templates for Common HTTP Status: 404 (Not Found),
500 (Internal Server Error), 400 (Bad Request), and 403 (Forbidden)�� 51

Built-In Response Shortcuts for Inline and Streamed Content�� 55

View Method Middleware�� 57

Built-In Middleware Classes�� 57

Middleware Structure and Execution Process��� 60

Middleware Flash Messages in View Methods��� 64

Add Flash Messages�� 65

Access Flash Messages�� 67

Class-Based Views�� 68

Built-In Class-Based Views�� 69

Class-Based View Structure and Execution��� 69

■ Contents

ix

■■Chapter 3: Django Templates�� 73

Django Template Syntax�� 73

Auto-Escaping: HTML and Erring on the Safe Side�� 74

Django Template Configuration��� 75

Template Search Paths�� 76

Invalid Template Variables��� 78

Debug Output��� 80

Auto-Escape�� 81

File charset�� 82

Automatic Access to Custom Template tag/filter Modules�� 83

Template Loaders�� 84

Create Reusable Templates��� 85

Built-In Context Processors��� 87

Django debug context processor (django.template.context_processors.debug)����������������������������������� 88

Django request context processor (django.template.context_processors.request)������������������������������ 88

Django auth context processor (django.contrib.auth.context_processors.auth)����������������������������������� 88

Django messages context processor (django.contrib.messages.context_processors.messages)�������� 89

Other Built-In Django Context Processors: i18n, media, static, tz, and CSRF context Processors��������� 89

Custom Context Processors�� 90

Built-In Django Filters��� 91

Dates��� 91

Strings, Lists, and Numbers��� 94

Numbers�� 95

Strings��� 96

Lists and Dictionaries�� 98

Spacing and Special Characters�� 99

Development and Testing�� 100

Urls�� 101

Built-In Django Tags�� 101

Dates��� 102

Forms�� 102

■ Contents

x

Comparison Operations��� 102

Loops��� 104

Python and Filter Operations��� 107

Spacing and Special Characters�� 108

Template Structures�� 109

Development and Testing�� 110

Urls�� 110

Custom Filters��� 110

Structure�� 110

Options: Naming, HTML, and What Comes In and Out��� 112

Installation and Access�� 114

■■Chapter 4: Jinja Templates in Django��� 117

Jinja Advantages and Disadvantages�� 117

Transition to Jinja Templates from Django Templates��� 118

What Works the Same Way in Jinja and Django Templates��� 118

What Works Differently in Jinja Templates Compared to Django Templates��������������������������������������� 119

New Concepts and Features in Jinja Templates vs. Django Templates��� 121

Jinja Template Configuration in Django��� 123

Template Search Paths�� 123

Auto-Escaping Behavior�� 125

Auto-Reload Template Behavior and Caching�� 126

Invalid Template Variables��� 127

Template Loaders�� 128

Create Reusable Jinja Templates�� 128

Jinja Globals: Access Data on All Jinja Templates, Like Django Context Processors�������� 134

Jinja Built-In Statements/Tags and Functions (Like Django Template Tags)����������������� 135

Comparison Operations��� 136

Loops��� 137

■ Contents

xi

Python and Filter Operations��� 141

Spacing and Special Characters�� 142

Template Structures�� 145

Jinja Built-In Filters and Tests (Like Django Filters)�� 146

Strings, Lists, Dictionaries, Numbers, and Objects�� 147

Strings and Lists�� 148

Dictionaries and Objects�� 149

Strings��� 151

Numbers�� 152

Spacing and Special Characters�� 153

Development and Testing�� 155

Urls�� 155

Custom Filters and Tests in Jinja��� 156

Structure�� 156

Installation and Access�� 157

Jinja Extensions�� 158

Enable Jinja Extensions��� 159

Create Jinja Extensions��� 160

Jinja Policies��� 161

■■Chapter 5: Django Application Management�� 163

Django settings.py for the Real World��� 163

Switch DEBUG to False�� 163

Define ALLOWED_HOSTS��� 164

Be Careful with the SECRET_KEY Value��� 165

Define Administrators for ADMINS and MANAGERS�� 165

Use Dynamic Absolute Paths��� 166

Use Multiple Environments or Configuration Files for Django��� 168

Set Up Static Web Page Resources - Images, CSS, JavaScript������������������������������������� 173

Set Up Static Resources in a Development Environment (DEBUG=False)��� 173

Access Static Resources in Django Templates�� 176

■ Contents

xii

Access Static Resources in Jinja Templates��� 178

Set Up Static Resources in a Production Environment (DEBUG=True)�� 178

Django Logging��� 179

Python Core Logging Concepts�� 180

Django Default Logging��� 180

Create Log Messages�� 183

Custom Logging��� 185

Logging with Sentry�� 190

Django Email Service�� 193

Set Up a Default Connection to an Email Server��� 193

Set Up a Default Connection to Third-Party Email Providers��� 194

Built-In Helpers to Send Email��� 197

Custom Email: Attachments, Headers, CC, BCC, and More with EmailMessage���������������������������������� 199

Debug Django Applications��� 203

Django Shell: Python manage.py Shell�� 204

Django Debug Toolbar�� 204

Django pdb�� 206

Django Extensions��� 208

Django Management Commands�� 211

Custom Management Command Structure��� 212

Custom Management Command Installation��� 214

Management Command Automation��� 215

■■Chapter 6: Django Forms�� 217

Django Form Structure and Workflow��� 217

Functional Web Form Syntax for Django Forms�� 219

Django View Method to Process Form (POST Handling)�� 220

CSRF: What Is It and How Does It Work with Django?��� 222

Django Form Processing: Initialization, Field Access, Validation,
and Error Handling�� 224

Initialize Forms: Initial for Fields and Forms, __init__ method, label_suffix, auto_id,
field_order, and use_required_attribute�� 225

■ Contents

xiii

Accessing Form Values: request.POST and cleaned_data��� 229

Validating Form Values: is_valid(), validators, clean_<field>(), and clean()�� 230

Error Form Values: Errors��� 234

Django Form Field Types: Widgets, Options, and Validations��� 235

The Relationship between Widgets and Form Fields��� 245

Empty, Default, and Predetermined Values: Required, Initial, and Choices�� 246

Limiting Text Values: max_length, min_length, strip, and Validators��� 246

Limiting Number Values: max_value, min_value, max_digits, decimal_places, and Validators���������� 247

Error Messages: error_messages�� 247

Field Layout Values: label, label_suffix, help_text��� 248

Set Up the Layout for Django Forms in Templates�� 248

Output Form Fields: form.as_table, form.as_p, form.as_ul, and Granularly by Field�������������������������� 249

Output Field Order: field_order and order_fields��� 252

Output CSS Classes, Styles, and Field Attributes: error_css_class, required_css_class, Widget,
Customization, and Various Form Field Options�� 252

Output Form Field Errors: form.<field_name>.errors, form.errors, form.non_field_errors���������������� 254

Django Custom Form Fields and Widgets�� 255

Create Custom Form Fields��� 256

Customize Built-In Widgets��� 257

Create Custom Form Widgets�� 258

Custom Form Widget Configuration Options�� 260

Django Advanced Form Processing: Partial Forms, AJAX, and Files����������������������������� 261

Partial Forms��� 261

AJAX Form Submission��� 263

Files in Forms�� 265

Django Formsets��� 268

Formset Factory�� 270

Formset Management Form and Formset Processing�� 270

Formset Custom Validation and Formset Errors�� 272

■ Contents

xiv

■■Chapter 7: Django Models�� 275

Django Models and the Migrations Workflow�� 275

Create Django Models��� 276

Migrations and the Django Model Workflow�� 277

Django Model Data Types�� 280

Limiting Values: max_length, min_value, max_value, max_digits, and decimal_places��������������������� 287

Empty, Null and Not Null Values: Blank and Null�� 288

Predetermined Values: default, auto_now, auto_now_add, and choices�� 290

Unique values: unique, unique_for_date, unique_for_month and unique_for_year���������������������������� 293

Form Values: Editable, help_text, verbose_name, and error_messages��� 293

Database Definition Language (DDL) Values: db_column, db_index, db_tablespace, primary_key���� 294

Built-In and Custom Validators: Validators��� 295

Django Model Default and Custom Behaviors��� 296

Model Methods�� 296

Model Manager Field: Objects��� 304

Model Meta Class and Options�� 305

Relationships in Django Models�� 310

One to Many Relationships in Django Models��� 311

Many to Many Relationships in Django Models��� 311

One to One Relationships in Django Models�� 312

Options for Relationship Model Data Types��� 313

Django Model Transactions��� 317

Transaction per Request: ATOMIC_REQUESTS and Decorators��� 317

Context Manager and Callbacks: atomic() and on_commit()��� 318

Django Model Migrations�� 319

Migration File Creation�� 319

Migration File Renaming��� 320

Migration File Squashing��� 321

■ Contents

xv

Migration File Structure��� 322

Migration File Rollback�� 323

Django Model Database Tasks�� 323

Backup Data: Fixtures, dumpdata, loaddata, and inspectdb�� 324

Delete Data: Flush, sqlflush, and sqlsequencereset�� 324

Interact with Data: dbshell��� 325

Django Model Initial Data Setup�� 325

Hard-code predefined records in Python migration file�� 325

SQL script with SQL statements�� 326

Django fixture file�� 328

Django Model Signals�� 329

Built-In Django Model Signals��� 330

Listen for Django Model Signals�� 330

Emit Custom Signals in Django Model Signals�� 333

Django Models Outside of models.py�� 334

Django Models Inside Apps in the Models Folder�� 334

Django Models Inside Apps in Custom Folders�� 335

Django Models Outside Apps and Model Assignment to Other Apps��� 336

Django Models and Multiple Databases�� 336

Multiple Databases for Django Models: using��� 337

Multiple Databases for Django Tools: --database�� 337

Multiple Database Routers: DATABASE_ROUTERS setting��� 337

■■Chapter 8: Django Model Queries and Managers��� 341

CRUD Single Records in Django Models�� 341

Create a Single Record with save() or create()�� 341

Read a Single Record with get() or get_or_create()�� 343

Update a Single Record with save(), update(), update_or_create(), or refresh_from_db()������������������ 345

Delete a Single Record with delete()��� 347

■ Contents

xvi

CRUD Multiple Records in Django Models��� 348

Create Multiple Records with bulk_create()�� 349

Read Multiple Records with all(), filter(), exclude(), or in_bulk()�� 351

Understanding a QuerySet: Lazy Evaluation and Caching��� 353

Read Performance Methods: defer(), only(), values(), values_list(), iterator(), exists(), and none()������ 356

Update Multiple Records with update() or select_for_update()��� 359

Delete Multiple Records with delete()��� 361

CRUD Relationship Records Across Django Models�� 361

One to Many CRUD Operations�� 361

Many to Many CRUD Operations�� 365

One to One CRUD Operations��� 367

Read Performance Relationship Methods: select_related() and prefetch_related()���������������������������� 368

Model Queries by SQL Keyword�� 370

WHERE Queries: Django Field Lookups�� 370

DISTINCT Queries��� 377

ORDER Queries: order_by() and reverse()�� 379

LIMIT Queries��� 380

Merge Queries��� 381

Aggregation Queries�� 384

Expression and Function Queries�� 387

Model Queries with Raw (Open-Ended) SQL��� 392

SQL Queries with a Model Manager’s raw() Method��� 393

SQL Queries with Python’s DB API��� 395

Model Managers�� 396

Custom and Multiple Model Managers�� 397

Custom Model Managers and QuerySet Classes with Methods�� 398

Custom Reverse Model Managers for Related Models�� 401

■ Contents

xvii

■■Chapter 9: Django Model Forms and Class Views�� 403

Django Model Form Structure and Workflow�� 403

Create Django Model Forms�� 404

Django Model Form Options and Field Mapping��� 405

Model Form Required Options: Model and Fields or Exclude�� 405

Model Form Default Field Mapping��� 406

Model Form New and Custom Fields: Widgets, Labels, help_texts, error_messages,
field_classes, and localize_fields�� 408

Django Model Forms with Relationships��� 410

ModelChoiceField and ModelMultipleChoiceField Form Field Options: queryset, empty_label,
to_field_name, and label_from_instance�� 410

Django Model Form Processing�� 413

Model Form Initialization: Initial and Instance��� 413

Model Form Validation��� 414

Django Model Formsets�� 416

Model Formset Factory�� 416

Class-Based Views with Models��� 417

Create Model Records with the Class-Based View CreateView��� 418

CreateView Fields and Methods�� 420

Read Model Records with the Class-Based Views ListView and DetailView��������������������������������������� 426

ListView Fields and Methods��� 428

DetailView Fields and Methods��� 431

Update Model Records with the Class-Based View UpateView��� 433

UpdateView Fields and Methods��� 435

Delete Records with the Class-Bases View DeleteView�� 436

DeleteView Fields and Methods�� 437

Class-Based Views with Mixins��� 438

■ Contents

xviii

■■Chapter 10: Django User Management��� 441

Introduction to the Django User System�� 441

User Types, Subtypes, Groups, and Permissions��� 441

Create Users�� 442

Manage Users�� 445

Create and Manage Groups��� 450

Permission Types�� 452

User Permissions: Superuser, Staff, and Active��� 453

Model Permissions: Add, Change, Delete, and Custom�� 453

Permission Checks and Enforcement�� 455

View Method Permission Checks�� 455

URL Permission Checks��� 458

Template Permission Checks��� 459

Class-Based View Permission Checks��� 460

User Authentication and Auto-Management��� 462

Login and Logout Workflow��� 463

Password Change Workflow�� 464

Password Reset Workflow��� 464

User Signup Workflow��� 465

Custom User Model Fields��� 467

Custom Authentication Back Ends�� 469

User Management with Django allauth��� 471

Install and Set Up django-allauth�� 471

First Log In and Log Out with Superuser in Django allauth��� 473

User Signup with Django allauth��� 475

Password Reset and Change with Django allauth��� 475

Add and Change User Email with Django allauth�� 476

Change Templates for Django allauth�� 477

Models and Database Tables Behind Django allauth��� 477

■ Contents

xix

Social Authentication with Django allauth��� 478

Set Up Django allauth for Different Social Providers��� 478

Set Up Facebook with Django allauth�� 480

Set Up Google with Django allauth�� 486

Set Up Twitter with Django allauth�� 491

■■Chapter 11: Django admin Management�� 495

Set Up Django Models in the Django admin�� 495

Django admin Read Record Options�� 496

Record Display: list_display, format_html, empty_value_display��� 498

Record Order: admin_order_field and ordering��� 502

Record Links and Inline Edit: list_display_links and list_editable��� 503

Record Pagination: list_per_page, list_max_show_all, paginator��� 506

Record Search: search_fields, list_filter, show_full_result_count, preserve_filters��������������������������� 507

Record Dates: date_hierarchy��� 512

Record Actions: actions_on_top, actions_on_bottom, actions�� 514

Record Relationships��� 514

Django admin Create, Update, Delete Record Options��� 519

Record Forms: fields, readonly_fields, exclude, fieldsets, formfield_overrides, form,
prepopulated_fields��� 520

Actions, Links, and Positions: save_on_top, save_as(Clone records),
save_as_continue and view_on_site�� 527

Relationships: filter_horizontal, filter_vertical, radio_fields, raw_id_fields, inlines���������������������������� 529

Django admin Custom Page Layout, Data, and Behaviors��� 536

Django admin Custom Global Values for Default Templates�� 536

Django admin Custom Page Layout with Custom Templates�� 538

Django admin Custom Static Resources��� 540

Django admin Custom Data and Behaviors with admin Class Fields and Methods����������������������������� 541

Django admin CRUD Permissions�� 543

Multiple Django admin Sites��� 545

■ Contents

xx

■■Chapter 12: REST Services with Django��� 549

REST Services in Django��� 549

Standard View Method Designed as REST Service�� 550

Django REST Framework��� 554

Django Tastypie Framework�� 554

Django REST Framework Concepts and Introduction�� 555

Serializers and Views�� 555

Class-Based Views�� 558

Mixins and Generic Class-Based Views��� 559

View Sets and Routers�� 560

Django REST Framework Security�� 562

Set Up REST Framework Services Permissions�� 562

Set Up REST Framework Login Page��� 565

■■Appendix A: Python Basics��� 567

Strings, Unicode, and Other Annoying Text Behaviors��� 567

Methods Arguments: Default, optional, *args, and **kwargs�� 571

Classes and Subclasses�� 574

Loops, Iterators, and Generators��� 576

List Comprehensions, Generator Expressions, Maps, and Filters���������������������������������� 581

Lambda Keyword for Anonymous Methods��� 583

Index�� 585

xxi

About the Author

Daniel Rubio has worked in software development for over 15 years, in roles that include developer,
software architect, manager, consultant, and CTO. He has worked with startups, government agencies, as
well as corporations in industries that include banking, education, social media, and retail.

He has coauthored the best-selling Spring Recipes book and other titles for Apress (2010), in addition to
writing for various other online publications. Daniel’s expertise in the early part of his career was focused on
Java, Linux, and open source technology, whereas more recently he has focused on Python, JavaScript, and
Cloud technology.

xxiii

About the Technical Reviewer

Tri Phan is the founder of Programming Learning Channel on YouTube. He has over 7 years of experience
in the software industry. Specifically, he has worked in many outsourcing companies and has written many
applications of many fields in different programming languages such as PHP, Java, and C #. In addition, he
has over 6 years of experience in teaching at international and technological centers such as Aptech, NIIT,
and Kent College.

xxv

Acknowledgments

I want to thank the entire team at Apress for making this book a reality. In particular, Steve Anglin to whom I
first presented this book as an idea; Mark Powers who was there every step of the way coordinating the work;
as well as Matthew Moodie and Tri Phan, both of whom helped me maintain the technical accuracy of the
book.

I would also like to thank all the customers and colleagues with whom I’ve had the pleasure to work
with throughout the years. Without all their questions and problems they faced, I would have never
discovered many of the solutions and techniques described in this book.

Finally, I would like to thank the entire community behind the Django framework for putting together
one the best web application frameworks on the market. Without their endless amount of work, the Django
framework and this book would not have come to light.

xxvii

Introduction

The web framework market is an extremely competitive environment, with many programming languages
and framework design philosophies to choose from. But if you need to build web-based software with quick
turnaround times and a scripting language, there’s a high probability the Django framework – or something
built with it – will be your top choice.

Django has competitors, but even its nearest competitor in the Python ecosystem, the Flask framework
has about one-fourth the mind share of Django, based on the benchmark of worldwide Google searches
made for Django vs. Flask.1 Outside the Python ecosystem, but still in the scripting language segment, the
Ruby on Rails framework – which emerged along the same time as Django and follows a similar design
philosophy – has always maintained an almost equal mind share with Django, as it can also be proven by the
amount of worldwide Google search activity.

So what makes the Django framework such a strong choice for web development? It provides a rapid
development foundation to create complex web applications. A rapidness that is provided by a modular
and simple philosophy of not repeating constructs and logic throughout a project’s structure (a.k.a. the DRY
principle or Don’t Repeat Yourself principle).

And it’s this DRY principle, which has given way to a thriving community, as well as a multitude of
packages and other frameworks based on the Django framework. Over 10 years after its initial release, there’s
now a full-fledged CMS (Content Management System), a turn-key e-commerce platform and over 3000
packages, all built or designed to work with the Django framework. Not to mention, there are two annual
conferences in the United States and Europe to showcase Django innovations.

This book will walk you through the many core concepts associated with the Django framework. It will
help you learn standard and best practices that are essential to creating effective Django projects. And if and
when you use a Django-based package or framework, these same foundations will help you navigate the
more complex concepts and avoid any blind spots that are part of the core Django framework.

1https://g.co/trends/yXpSy

https://g.co/trends/yXpSy

1© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_1

CHAPTER 1

Introduction to the Django
Framework

The Django framework started in 2003, as a project done by Adrian Holovaty and Simon Willison at the
Journal-World newspaper in Lawrence, Kansas, in the United States. In 2005, Holovaty and Willison released
the first public version of the framework, naming it after the Belgian-French guitarist Django Reinhardt.

Fast forward to 2017 – the Django framework now operates under the guidance of the Django Software
Foundation (DSF), the framework core has over 1000 contributors with more than 15 release versions, and
there are over 3000 packages specifically designed to work with the Django framework.1

The Django framework has remained true to its origins as a Model-View-Controller (MVC)
server-side framework designed to operate with relational databases. Nevertheless, Django has stayed
up to date with most web development tendencies – via third-party packages – to operate alongside
technologies like non-relational databases (NoSQL), real-time Internet communication, and modern
JavaScript practices. All this to the point, the Django framework is now the web development framework
of choice for a wide array of organizations, including the photo sharing sites Instagram2 and Pinterest3;
the Public Broadcasting System(PBS)4; in the United States, National Geographic5; and with the help of
this book, your organization!

In this chapter you’ll learn about the Django framework design principles, which are key to
understanding the day-to-day aspects of working with the Django framework. Next, you’ll learn how to
install Django in various ways: as a tar.gz file, with pip, using git, and with virtualenv.

Once you install the Django framework, you’ll learn how to start a Django project and how to set it up
with a relational database. Next, you’ll learn about the core building blocks in the Django framework – urls,
templates, and apps – and how they work with one another to set up content. Finally, you’ll learn how to
set up the Django admin site, which is a web-based interface designed to access the relational database
connected to a Django project.

1https://djangopackages.org/
2https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-
technologies-adf2e22da2ad#.pui97g5jk
3https://www.quora.com/Pinterest/What-is-the-technology-stack-behind-Pinterest-1
4http://open.pbs.org/
5https://github.com/natgeo

https://doi.org/10.1007/978-1-4842-2787-9_1
https://djangopackages.org/
https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad#.pui97g5jk
https://engineering.instagram.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad#.pui97g5jk
https://www.quora.com/Pinterest/What-is-the-technology-stack-behind-Pinterest-1
http://open.pbs.org/
https://github.com/natgeo

Chapter 1 ■ Introduction to the Django Framework

2

Django Framework Design Principles
If you work long enough in web development, you’ll eventually come to the conclusion that you can produce
the same results with just about any web framework and programming language. But while you can, in
fact, produce identical results, what will vary drastically is the time you spend creating a solution: the time
creating a prototype, the time adding new features, the time doing testing, the time doing debugging, and the
time deploying to scale, among other things.

In this sense, the Django framework uses a set of design principles that produces one of the most
productive web development processes compared to many other web frameworks. Note, I’m not saying
Django is a silver bullet (e.g., the best at prototyping, the most scalable); I’m saying that at the end of the day,
the Django framework incorporates a set of design principles and trade-offs that make it one of the most
productive frameworks for building the features needed by most medium to large web applications.

Now, while you might think I’m biased – after all I’m writing an entire book about the topic – I’ll lay out
these design principles first, so you can gain a better understanding of what gives the Django framework this
edge.

Don’t Repeat Yourself (DRY) Principle
Repetition might be good to emphasize a point, but when it comes to web development, it just leads to
additional and time-consuming work. In fact, the very nature of web development, which operates across
multiple tiers interacting with one another (e.g., HTML templates, business logic methods, and databases),
lends itself to repetition.

The Django framework really tries to force you not to repeat yourself, so let’s see how Django enforces
not repeating yourself and why this is a good thing.

Let’s say you want to build a coffeehouse application to publish information about stores and also
have a contact form for customers. The first thing you’ll need to do is determine what kind of information is
required for stores and the contact form. Figure 1-1 illustrates a mock-up of two Django models for each of
these entities.

Notice how the Django models in Figure 1-1 each have different field names and a data type to restrict
values. For example, the statement name = models.CharField(max_length=30) tells Django a store name
should have a maximum of 30 characters, while the statement email = models.EmailField() tells Django
the contact entity should contain a valid email value. If the coffeehouse is like most web applications, you’ll
generally end up doing the following for the store and contact entities:

•	 Create relational database tables to save entity information.

•	 Create business logic to ensure the entities comply with requirements.

•	 Create HTML forms to allow data to be submitted for the entities.

Figure 1-1.  Django models for store and contact entities

Chapter 1 ■ Introduction to the Django Framework

3

•	 Create an interface to allow administrative users to access entities in the database.

•	 Create REST services to expose entities for a mobile app version.

The crux of doing this last task list is you have the potential of repeating dozens of similar pieces of
information (e.g., names, value limits) in database definition language (DDL), HTML forms, business
validation logic, and URLs, among other things – process that’s not only time consuming, but also error
prone.

Wouldn’t it be easier that based on a statement like models.CharField(max_length=30) you could
generate an HTML form input, a DDL statement, and automatically validate information to only contain 30
characters? This is exactly what Django’s DRY design principle does.

Figure 1-2 illustrates the same Django models from Figure 1-1 and the various constructs you can
generate from the same models without the need to repeat yourself.

As you can see in Figure 1-2, the entities that represent Django models are capable of generating HTML
forms to present to the public, an administrative interface to manage the entities, validation logic to enforce
entity values, as well as the DDL to generate database tables representing the entities.

Figure 1-2.  Django models create separate constructs based on DRY principle

Chapter 1 ■ Introduction to the Django Framework

4

While it’s a little premature to discuss the actual techniques to generate such constructs from
Django models, needless to say it’s much simpler than keeping track of multiple references of the same
thing (e.g., name, email) in HTML forms, DDL, validation logic, and other locations.

In this sense, Django really helps you define things in a single place and not have to repeat them
elsewhere. Note that it’s always possible to repeat yourself to obtain custom behaviors, but by default,
Django enforces DRY principles in nearly everything you do with it.

Explicit Is Better Than Implicit
Python, the programming language used by Django, has a mantra-like statement called “The Zen of Python”
defined as part of the language’s Python Enhancement Proposals (PEP), specifically PEP 20.6 One of the
statements in PEP 20 states “Explicit is better than implicit” and with Django being based on Python, this
principle is also taken to heart.

Being explicit leads to web applications that are easily understood and maintained by a greater number
of people. Adding new features or understanding the logic behind a web application can be hard enough for
someone that didn’t write it originally, but if you toss into the mix constructs that have implicit behaviors,
users only face greater frustration trying to figure out what’s being done implicitly. Explicit does require a
little more work typing, but it’s well worth it when you compare it to the potential effort you can face trying to
debug or solve a problem.

Let’s take a quick look at Django’s explicitness in a common web development construct used across
different MVC frameworks: a view method. A view method acts as the C(ontroller) in an MVC framework,
charged with handling incoming requests, applying business logic, and then routing requests with an
appropriate response.

To get a better feel for this explicitness, I’ll present a Django view method and an equivalent Ruby on
Rails view method that performs the same logic of fetching a store by a given id and routing the response to
a template. The following snippet is the Ruby on Rails version; note the lines with # that are comments and
indicate what’s happening.

class StoresController < ApplicationController
 def show
 # Automatic access to params, a ruby hash with request parameters and view parameters
 @store = Store.find(params[:id])
 # Instance variables like @store are automatically passed on to view template
 # Automatically uses template views/stores/show.html.erb
 end
end

Although very succinct, notice all the implicit behavior surrounding the process to access data, pass
data to a template, and assign a template. The following snippet is an equivalent Django view method.

Explicit request variable contains request parameters
Other view parameters must be explicitly passed to views
def detail(request, store_id):
 store = Store.objects.get(id=store_id)
 # Instance variables must be explicitly passed on to a view template
 # Explicit template must be assigned
 return render(request, 'stores/detail.html', {'store': store})

6https://www.python.org/dev/peps/pep-0020/

https://www.python.org/dev/peps/pep-0020/

Chapter 1 ■ Introduction to the Django Framework

5

Notice in this last snippet there’s no guessing where input parameters come from, they’re explicitly
declared as arguments in the view method. In addition, values are explicitly passed to a template, and the
template is also explicitly declared, so the logic is much more amicable to newcomers.

The implicitness of the Ruby on Rails view method is often called ‘magic’ and is even considered a
feature by many. It’s called ‘magic’ because certain behaviors are provided behind the scenes. However,
unless you know the framework and application down to a tee, it can be very difficult to pinpoint why certain
things are happening, making it more difficult to fix or update things. So even though ‘magic’ may be able to
save you a few minutes or hours in development time at the start, it can end up costing you hours or days in
maintenance later.

So just like in Python, the Django framework will always favor an explicit approach over any implicit
technique.

It’s important to point out explicit doesn’t equal verbose or redundant. While you’ll certainly end
up typing a little more code in Django vs. web frameworks that are implicitly driven (e.g., Rails), as it was
described in the prior DRY principle section, the Django framework goes to great lengths to avoid having to
introduce more code than necessary in a web application.

Finally, explicit also doesn’t mean no defaults. The Django framework does use reasonable defaults
where possible, it just doesn’t use default values where it isn’t obvious they’re being used. In essence, the
Django framework uses defaults, but avoids using defaults that produce ‘magical’ outcomes.

Loosely Coupled Architecture
The Django framework being an MVC framework operates across multiple tiers (e.g., HTML templates,
business logic methods, and databases). However, Django takes great care of maintaining a loosely couple
architecture across all the components that operate across these tiers.

Being loosely coupled means there are no rigid dependencies between the parts that make up a Django
application. For example, in Django it’s perfectly valid to serve content directly from an HTML template,
without the need to use business logic or set up database. Just like in Django it’s also perfectly valid to forgo
using an HTML template and return raw data directly from a business logic method (e.g., for a REST service).

A later section in this chapter entitled “Set Up Content: Understand URLs, Templates, and Apps” goes
into greater detail with examples on how Django’s loosely coupled architecture works.

Install Django
There are various ways to install the Django framework. You can download Django from its main site7 and
install it like a regular Python application. You can also download and install Django via an operating system
(OS) package administration tool such as apt-get - available on Linux distributions.

Yet another option is to install Django is to download it via the Python package manager pip. And yet
another alternative is to install Django directly from its source on github.8 The list of Django installation
options including their pros and cons is presented in Table 1-1.

7https://www.djangoproject.com/download/
8https://github.com/django/django/

https://www.djangoproject.com/download/
https://github.com/django/django/

Chapter 1 ■ Introduction to the Django Framework

6

As emphasized in Table 1-1, the recommended option to install Django is to use the Python pip
package manager because it provides the most flexibility. Next, I’ll describe each of the steps to install
Django using this approach and more importantly how to get up and running with pip.

Once I finish these steps, I’ll also describe the steps to install Django from a tar.gz file and from
git – using pip – which can be helpful if you want to try out the latest Django features.

Install Python (Prerequisite)
Since Django is built on Python, you first need to install Python to run Django. The latest Django long-term
release (LTS), which is the focus of this book, is version 1.11. Django 1.11 requires that you either have a
Python 2.7.x release or a Python 3.4 or higher release (3.5 or 3.6).

If this is the first time you use Python, it’s important to note Python 2 and Python 3 are considerably
different. But while it’s certainly true Python 3 is the future, be aware the future has been in the making since
2008 – when the first Python 3 release came to light – and Python 2 has remained stubbornly entrenched to
the point that Python 2.7.13 came out in December 2016.

So should you use Python 2 or Python 3 with Django? As far as Django’s core is concerned, it’s compatible
with both, so you can easily switch between Python 2 and Python 3. Where it gets a little more tricky is when it
comes to third-party Python packages and the Django Python code you plan to write yourself.

While many third-party Python packages have been upgraded to run on Python 3, this process has
been sluggish. As I already pointed out, Python 3 has been almost 10 years in the making, so be aware
that if you take the Python 3 route, you may encounter third-party Python packages that won’t work
with Python 3.

When it comes to your own Django application code, the ideal choice is to make your code both
Python 2 and Python 3 compatible – just like Django’s core – it isn’t that hard and I’ll use this technique
throughout the book. The sidebar contains more details on this topic of writing Python 2 and Python 3
compatible code.

Now, if want to stick to Python 2, just be aware Django 1.11 will be the last Django release to support
Python 2 – scheduled to be supported until around April 2020 – so if you eventually upgrade to something
higher than Django 1.11, you’ll also need to upgrade all your application code to Python 3 – which is why I
recommend the dual Python 2 and Python 3 compatibility technique. If you want to stick to Python 3, that’s
the future, just be aware that as described earlier, some third-party packages might not work with Python 3.

Table 1-1.  Django installation options - Pros and Cons

Approach Pros Cons

Download/install with pip
Python package manager.
(Recommended option)

Allows install on virtual Python
environment.
Dependencies are taken care of
automatically.

Latest version may not be available.

Download from main site as
tar.gz file.

Easiest access to latest Django
stable release.

Requires manual download and install.
Requires additional management of
Django dependencies (if not using
pip).

Download from Git. Access to the latest Django
features.

Can contain bugs.
Requires additional management of
Django dependencies (if not using pip).

Download/install from OS
package manager (apt-get).

Easy to install.
Dependencies are taken care of
automatically.

Latest version may not be available.
Installed on global Python
environment.

Chapter 1 ■ Introduction to the Django Framework

7

DJANGO COMPATIBILITY WITH PYTHON 2 AND PYTHON 3

Django uses Six9 to run Python 2 and Python 3 compatible logic. Six is a set of utilities that wraps over
the differences between Python 2 and Python 3, allowing that same logic to operate equally in either
Python 2 and Python 3. The Django framework’s internals – which you’ll rarely, if ever, need to inspect
or modify – already use this technique.

However, if you plan to write your Django application code to be compatible with both Python 2 and
Python 3, then you’ll need to be a little more aware of how you write it. Django publishes its own
guidelines on the various syntax and techniques you need to follow to make Django application code
work with both Python 2 and Python 3,10 techniques that are also used throughout the book.

If you use a Unix/Linux OS, Python is very likely installed on your system. If you type which python
on a Unix/Linux terminal and it returns a response (e.g., /usr/bin/python), it indicates the location of the
Python executable, if there is no response it indicates the Python executable is not available on the system.

If you don’t have Python on your system and you’re using a Debian or Ubuntu Linux distribution, you
can use the OS package manager apt-get to install Python by typing: apt-get install python. If you have
a Unix/Linux distribution that is not Debian or Ubuntu and you need to install Python, consult your Unix/
Linux documentation for available Python packages or download the Python sources from http://python.
org/download/ to do the installation.

If you have a system that runs on a Windows OS or macOS, Python installers are available for download
from http://python.org/download/.

Irrespective of your system’s OS, once you’ve finished the Python installation, ensure Python is installed
correctly and accessible from anywhere on your system. Open a terminal and type python, and you should
enter a Python interactive session like the one illustrated in Listing 1-1.

Listing 1-1.  Python interactive session

[user@~]$ python
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.

If you aren’t able to enter a Python interactive session, review the Python installation process because
you will not be able to continue with the following sections.

Update or Install pip Package Manager (Prerequisite)
To make Python package installation and management easier, Python uses a package manager called pip. If
you’re using Python 2.7.9 (or greater 2.x branch) or Python 3.4 (or a greater 3.x branch), pip comes installed
by default. Now let’s upgrade pip on your system as shown in Listing 1-2, if you don’t have pip on your
system, I’ll provide instructions shortly on how to get it.

9https://pythonhosted.org/six/
10https://docs.djangoproject.com/en/1.11/topics/python3/

http://python.org/download/
http://python.org/download/
http://python.org/download/
https://pythonhosted.org/six/
https://docs.djangoproject.com/en/1.11/topics/python3/

Chapter 1 ■ Introduction to the Django Framework

8

Listing 1-2.  Update pip package manager

[user@~]$ pip install --upgrade pip
Collecting pip
 Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)
Installing collected packages: pip
 Found existing installation: pip 8.1.1
Successfully installed pip-9.0.1

As you can see in Listing 1-2, to update pip you invoke the pip executable with the arguments install
--upgrade pip. Upon execution, pip searches for a package by the provided name - in this case pip itself -
downloads it and performs an upgrade in case it’s already installed. If the installation output on your system
is similar to the one in Listing 1-2 - without any errors - you have successfully updated pip.

If you see an error like The program ‘pip’ is currently not installed or pip not found, it means your Python
installation is not equipped with pip. In this case, you’ll need to install the pip executable by downloading
https://bootstrap.pypa.io/get-pip.py and then executing the downloaded file with the command:
python get-pip.py. Once the pip executable is installed, run the pip update procedure from Listing 1-2.

With pip on your system, you’re ready to move on to the next step.

Install virtualenv (Optional Prerequisite)
Virtualenv is not essential to develop Django applications, but I highly recommend you use it because it
allows you to create virtual Python environments on a single system. By using virtual Python environments,
applications can run in their own ‘sandbox’ in isolation of other Python applications. Initially virtualenv
can appear to be of little benefit, but it can be of tremendous help for tasks like replicating a development
environment to a production environment and avoiding version conflicts that can arise between different
applications.

Without virtualenv you can still proceed to install Django and any other Python package using pip,
but the issue is that all packages are installed under the global Python installation. Initially this can seem
convenient, because you only need to install packages once in the global Python installation. But it’s not that
convenient if you think about some of the following questions.

What happens if a new Django version is released after your first project and you want to start a second
project? Do you upgrade the first project to run on the new Django version or start the second project as if
the new Django version doesn’t exist? The first option requires additional work, while the second option
requires you to develop on an outdated Django version. By using virtual Python environments you avoid this
problem, because each project can run its own Django version in isolation.

If you consider this potential version conflict for any Python package, you’ll realize why I recommend
you use virtualenv. Many Python packages have specific version dependencies (e.g., package A depends
on package B version 2.3 and package C version 1.5). If you update a new package with specific cross-
dependency versions, it can be very easy to break a Python installation if you’re using a global Python
installation. With virtualenv you can have multiple Python installations without them interfering with one
another.

Now that I’ve explained the benefits of virtualenv, let’s install the virtualenv executable with pip, as
show in Listing 1-3.

Listing 1-3.  Install virtualenv with pip

[user@~]$ pip install virtualenv
Downloading/unpacking virtualenv
 Downloading virtualenv-15.1.0.tar.gz (1.8Mb): 1.8Mb downloaded
 Running setup.py egg_info for package virtualenv
 Installing collected packages: virtualenv

https://bootstrap.pypa.io/get-pip.py

Chapter 1 ■ Introduction to the Django Framework

9

 Running setup.py install for virtualenv
 Installing virtualenv script to /usr/local/bin
 Installing virtualenv-2.7 script to /usr/local/bin
Successfully installed virtualenv
Cleaning up...

As illustrated in Listing 1-3, pip automatically downloads and installs the requested package. Similar
to the pip executable, a virtualenv executable is also installed that should be accessible from anywhere
on your system. The virtualenv executable allows you to create virtual Python environments. Listing 1-4
illustrates how to create a virtual Python environment with virtualenv.

Listing 1-4.  Create virtual Python environment with virtualenv

[user@~]$ virtualenv --python=python3 mydjangosandbox
Already using interpreter /usr/bin/python3
Using base prefix '/usr'
New python executable in /mydjangosandbox/bin/python3
Also creating executable in /mydjangosandbox/bin/python
Installing setuptools, pkg_resources, pip, wheel...done.

The virtualenv executable accepts several parameters. The task in Listing 1-4 makes use of the
--python flag, which tells virtualenv to create a virtual Python based on the python3 executable, creating a
Python 3 virtual environment. This is a common option when you have multiple Python versions on an OS
(e.g., Python 2 and Python 3) and you need to specify the Python version with which to create the virtualenv.
You can omit the --python flag; just be aware that doing so the virtualenv is created with the default OS
python executable.

By default, virtualenv creates a pristine virtual Python environment like the one you had when
you made the initial Python global installation. Following virtualenv parameters, you only need to
specify an argument for the name of the virtual Python environment, which in the case of Listing 1-4 is
mydjangosandbox. Upon execution, virtualenv creates a directory with the virtual Python environment
whose contents are illustrated in Listing 1-5.

Listing 1-5.  Virtual Python environment directory structure

+<virtual_environment_name>
|
|
+---+-<bin>
| |
| +-activate
| +-easy_install
| +-pip
| +-python
 +-python-config
| +-wheel
|
+---+-<include>
|
+---+-<lib>
|
+---+-<local>†

|
+---+-<share>

Chapter 1 ■ Introduction to the Django Framework

10

■■ Tip  Depending on the Python version used to create the virtualenv, the bin directory can contain multiple
aliases or versions of the same command (e.g., In addition to python, python2.7, and python3; in addition to
activate, activate.csh, and activate_this.py).

■■ Note†  local folder is only included in a Python 2 virtualenv and links to top-level directories of the virtual
directory to simulate a Python installation.

As illustrated in Listing 1-5, a virtual Python environment has a similar directory structure to a global
Python installation. The bin directory contains executables for the virtual environment, the include
directory is linked to the global Python installation header files, the lib directory is a copy of the global
Python installation libraries and where packages for the virtual environment are installed, and the share
directory is used to place shared Python packages.

The most important part of the virtual environment is the executables under the bin directory. If you use any
of these executables, such as pip, easy_install, python, or wheel, they execute under the context of the virtual
Python environment. For example, the pip under the bin folder installs packages for the virtual environment.
Similarly, an application that runs on the python executable under the bin folder is only able to load packages
installed on the virtual Python environment. This is the ‘sandbox’ behavior I mentioned previously.

Even though access to different virtual Python environments and executables is a powerful feature,
having different pip and python executables for multiple virtual Python environments and the executables
of the global Python installation itself, can become confusing due to long access paths and relative paths.

For this reason, virtualenv has a mechanism to load virtual environments so that if you execute pip,
python, or any other executable from anywhere on your system, the executables from a selected virtual
environment are used (instead of the default global Python installation executables). This is achieved with
the activate executable inside the bin directory, a process illustrated in Listing 1-6.

Listing 1-6.  Activate virtual Python environment

[user@~]$ source ./bin/activate
[(mydjangosandbox)user@~] $
NOTE: source is a Unix/Linux specific command, for other OS just execute activate

Notice in Listing 1-6 how after invoking the activate executable, the command prompt adds the virtual
environment name between parentheses. This means the executables under the bin directory of the virtual
Python environment mydjangosandbox are used over those in the global Python installation. To exit a virtual
Python environment just type deactivate and you fall back to using the global Python installation executables.

As you’ve now learned, virtualenv works transparently allowing you to maintain different Python
installations each with its own set of executables like the main python interpreter and the pip package
manager. You only need to take care of switching between virtual environments so you install and run
Python applications in the appropriate virtual environment.

■■ Note  In future sections I won’t make any reference to virtualenv (e.g., mydjangosandbox) since it isn’t
directly related to Django. Though I recommend you use virtualenv, I’ll leave it up to you if you want to keep using
the global Python installation python and pip executables for everything or if you prefer to keep virtual Python
environments with their own executables to make Python application management easier. So when you see Python
executables referenced in the book, assume they are global or from a virtualenv, whichever you’re using.

Chapter 1 ■ Introduction to the Django Framework

11

Install Django
Once you have all the previous tools working on your system, the actual Django installation is very simple.
Listing 1-7 illustrates how to install Django using pip.

Listing 1-7.  Install Django with pip

[user@~]$ pip install Django==1.11
Downloading/unpacking Django==1.11
Collecting Django==1.11
 Downloading Django-1.11-py2.py3-none-any.whl (6.9MB)
 �100% |███████████████████| 6.9MB 95kB/s
Collecting pytz (from Django==1.11)
 Downloading pytz-2017.2-py2.py3-none-any.whl (484kB)
 �100% |███████████████████| 491kB 735kB/s
Installing collected packages: pytz, Django
Successfully installed Django-1.11 pytz-2017.2

The pip install task in Listing 1-7 uses the Django==1.11 syntax to tell pip to download and install the
Django 1.11 version. With this same syntax you can install any specific Django version. If you don’t specify a
package version, pip downloads and installs the most recent available version for the specified package.

Sometimes a Django release may take a few days to become available through pip, in which case you’ll
receive an error. In such cases you can download the release directly from the Django main site at https://
www.djangoproject.com/download/. Once you download the release file in tar.gz format, you can use pip to
make the installation as illustrated in Listing 1-8.

Listing 1-8.  Install Django from local tar.gz file with pip

[user@~]$ pip install /home/Downloads/Django-1.11.tar.gz
Processing /home/Downloads/Django-1.11.tar.gz
Collecting pytz (from Django==1.11)
 Using cached pytz-2017.2-py2.py3-none-any.whl
Building wheels for collected packages: Django
 Running setup.py bdist_wheel for Django ... done
 Stored in directory: /home/ubuntu/.cache/pip/wheels/56/bf/24/
f44162e115f4fe0cfeb4b0ae99b570fb55a741a8d090c9894d
Successfully built Django
Installing collected packages: pytz, Django
Successfully installed Django-1.11 pytz-2017.2

Notice in Listing 1-8 how pip is capable of installing Python packages directly from a compressed file on
the local file system.

Install Django from Git
If you want to use the most recent functionalities available in Django, then you’ll need to install Django from
its Git repository. The Git repository contains the latest changes made to Django. Even though the Django
Git version can be unstable, it’s the only way to develop with the newest Django features or get bug fixes for
problems that aren’t yet available in public releases.

https://www.djangoproject.com/download/
https://www.djangoproject.com/download/

Chapter 1 ■ Introduction to the Django Framework

12

■■ Note  You need to install Git to execute the following tasks. You can download Git for several OSes at
http://git-scm.com/

Just like the prior pip installation examples, pip is sufficiently flexible to make a Django installation
from Git. There are two alternatives to use pip with Git. You can provide the remote Django Git repository,
in which case pip clones the repository locally and discards it after the installation, as illustrated in Listing
1-9. Or you can clone the Django Git repository locally - where you’ll be able to make modifications at a later
time - and then run pip to do the installation, as illustrated in Listing 1-10.

Listing 1-9.  Install Django from remote Git with pip

[user@~]$ pip install git+https://github.com/django/django.git
Collecting git+https://github.com/django/django.git
 Cloning https://github.com/django/django.git to ./pip-31j_bcqa-build

Requirement already satisfied: pytz in /python/mydjangosandbox/lib/python3.5/site-packages
(from Django==2.0.dev20170408112615)
Installing collected packages: Django
 Successfully uninstalled Django-1.11
 Running setup.py install for Django ... done
Successfully installed Django-2.0.dev20170408112615

Listing 1-10.  Download Django from Git and install locally with pip

[user@~]$ git clone https://github.com/django/django.git
Cloning into django...
remote: Counting objects: 388550, done.
remote: Compressing objects: 100% (19/19), done.
remote: Total 388550 (delta 5), reused 0 (delta 0), pack-reused 388531
Receiving objects: 100% (388550/388550), 158.63 MiB | 968.00 KiB/s, done.
Resolving deltas: 100% (281856/281856), done.
Checking connectivity... done.

Assuming Django Git download made to /home/Downloads/django/
[user@~]$ pip install /home/Downloads/django/
Processing /home/Downloads/django
Collecting pytz (from Django==2.0.dev20170408112615)
 Using cached pytz-2017.2-py2.py3-none-any.whl
Installing collected packages: pytz, Django
 Running setup.py install for Django ... done
Successfully installed Django-2.0.dev20170408112615 pytz-2017.2

Notice in Listing 1-9 the syntax to download a remote Git repository is git+ followed by the remote Git
location. In this case https://github.com/django/django.git represents the Django Git repository. In
Listing 1-10 the Django Git repository is cloned locally first, and then pip is executed with the argument of
the local Git repository directory.

http://git-scm.com/
https://github.com/django/django.git

Chapter 1 ■ Introduction to the Django Framework

13

Start a Django Project
To start a Django project you must use the django-admin executable or django-admin.py script that
comes with Django. After you install Django, both this executable and script should be accessible from
any directory on your system (e.g., installed under /usr/bin/,/usr/local/bin/ or the /bin/ directory of
a virtualenv). Note that both the executable and script offer the same functionality; therefore I will use the
django-admin term interchangeably going forward.

The django-admin offers various subcommands you’ll use extensively for your daily work with Django
projects. But it’s the startproject subcommand you’ll use first, since it creates the initial structure of a
Django project. The startproject subcommand receives a single argument to indicate the name of project,
as illustrated in the following snippet.

#Create a project called coffeehouse
django-admin startproject coffeehouse
#Create a project called sportstats
django-admin startproject sportstats

A Django project name can be composed of numbers, letters, or underscores. A project name cannot
start with a number, it can only start with a letter or underscore. In addition, special characters, and spaces
are not allowed anywhere in a project name, mainly because Django project names serve as a naming
convention for directories and Python packages.

Upon executing django-admin startproject <project_name>, a directory called <project_name> is
created containing the default Django project structure. The default Django project structure is illustrated in
Listing 1-11.

Listing 1-11.  Django project structure

+<BASE_DIR_project_name>
|
+----manage.py
|
+---+-<PROJECT_DIR_project_name>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py

If you inspect the directory layout, you’ll notice there are two directories with the <project_name>
value. I will refer to the top-level Django project directory as BASE_DIR, which includes the manage.py file
and the other subdirectory based on the project name. And I will refer to the second-level subdirectory
- which includes the __init__.py, settings.py, urls.py, and wsgi.py files - as PROJECT_DIR. Next, I’ll
describe the purpose of each file in Listing 1-11.

•	 manage.py .- Runs project specific tasks. Just as django-admin is used to execute
system wide Django tasks, manage.py is used to execute project specific tasks.

•	 __init__.py .- Python file that allows Python packages to be imported from
directories where it’s present. Note __init__.py is not Django specific, it’s a generic
file used in almost all Python applications.

Chapter 1 ■ Introduction to the Django Framework

14

•	 settings.py .- Contains the configuration settings for the Django project.

•	 urls.py .- Contains URL patterns for the Django project.

•	 wsgi.py .- Contains WSGI configuration properties for the Django project. WSGI is
the recommended approach to deploy Django applications on production (i.e., to
the public). You don’t need to set up WSGI to develop Django applications.

■■ Tip  Rename a project’s BASE_DIR. Having two nested directories with the same name in a Django project
can lead to confusion, especially if you deal with Python package import issues. To save yourself trouble, I
recommend you rename the BASE_DIR to something different than the project name (e.g., rename, capitalize, or
shorten the name to make it different than the PROJECT_DIR).

■■ Caution  Do not rename the PROJECT_DIR. The PROJECT_DIR name is hard-coded into some project files
(e.g., settings.py and wsgi.py), so do not change its name. If you need to rename the PROJECT_DIR it’s
simpler to create another project with a new name.

Now that you’re familiar with the default Django project structure, let’s see the default Django project in
a browser. All Django projects have a built-in web server to observe an application in a browser as changes
are made to project files. Placed in the BASE_DIR of a Django project – where the manage.py file is - run the
command python manage.py runserver as shown in Listing 1-12.

Listing 1-12.  Start Django development web server provided by manage.py

[user@coffeehouse ~]$ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).

You have 13 unapplied migration(s). Your project may not work properly until you apply the
migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

May 23, 2017 - 22:41:20
Django version 1.11, using settings 'coffeehouse.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

As illustrated in Listing 1-12, the command python manage.py runserver starts a development
web server on http://127.0.0.1:8000/ - which is the local address on your system. Don’t worry
about the 'unapplied migration(s)' message for the moment, I’ll address it in the upcoming section
on setting up a database for a Django project. Next, if you open a browser and point it to the address
http://127.0.0.1:8000/ you should see the default home page for a Django project illustrated in
Figure 1-3.

Chapter 1 ■ Introduction to the Django Framework

15

Sometimes it’s convenient to alter the default address and port for Django’s development web server.
This can be due to the default port being busy by another service or the need to bind the web server to
a non-local address so someone on a remote machine can view the development server. This is easily
achieved by appending either the port or full address:port string to the python manage.py runserver
command, as shown in the various examples in Listing 1-13.

Listing 1-13.  Start Django development web server on different address and port

Run the development server on the local address and port 4345 (http://127.0.0.1:4345/)
python manage.py runserver 4345
Run the dev server on the 96.126.104.88 address and port 80 (http://96.126.104.88/)
python manage.py runserver 96.126.104.88:80
Run the dev server on the 192.168.0.2 address and port 8888 (http://192.168.0.2:8888/)
python manage.py runserver 192.168.0.2:8888

Set Up a Database for a Django Project
Django in its ‘out-of-the-box’ state is set up to communicate with SQLite - a lightweight relational database
included with the Python distribution. So by default, Django automatically creates a SQLite database for
your project.

In addition to SQLite, Django also has support for other popular databases that include PostgreSQL,
MySQL, and Oracle. The Django configuration to connect to a database is done inside the settting.py file
of a Django project in the DATABASES variable.

If you open the settings.py file of a Django project, you’ll notice the DATABASES variable has a default
Python dictionary with the values illustrated in Listing 1-14.

Figure 1-3.  Default home page for a Django project

Chapter 1 ■ Introduction to the Django Framework

16

Listing 1-14.  Default Django DATABASES dictionary

Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

■■ Tip  Use SQLite if you want the quickest database setup.

A database setup by itself can be time consuming. If you want the quickest setup to enable Django with
a database, leave the previous configuration as is. SQLite doesn’t require additional credentials or Python
packages to establish a Django database connection. Just be aware a SQLite database is a flat file and Django
creates the SQLite database based on the NAME variable value. In the case of Listing 1-14, under a Django
project’s BASE_DIR and as a flat file named db.sqlite3.

■■ Note  If you use SQLite, you can skip to the last step in this section “Test Django database connection and
build Django base tables.”

The Django DATABASES variable defines key-value pairs. Each key represents a database reference name
and the value is a Python dictionary with the database connection parameters. In Listing 1-14 you can
observe the default database reference. The default reference name is used to indicate that any database
related operation declared in a Django project be executed against this connection. This means that unless
otherwise specified, all database CRUD (Create-Read-Update-Delete) operations are done against the
database defined with the default key.

The database connection parameters for the default database in this case are the keys ENGINE and NAME,
which represent a database engine (i.e., brand) and the name of the database instance, respectively.

The most important parameter of a Django database connection is the ENGINE value. The Django
application logic associated with a database is platform neutral, which means that you always write database
CRUD operations in the same way irrespective of the database selection. Nevertheless, there are minor
differences between CRUD operations done against different databases, which need to be taken into account.

Django takes care of this issue by supporting different back ends or engines. Therefore, depending on
the database brand you plan to use for a Django application, the ENGINE value has to be one of the values
illustrated in Table 1-2.

Table 1-2.  Django ENGINE value for different databases

Database Django ENGINE value

MySQL django.db.backends.mysql

Oracle django.db.backends.oracle

PostgreSQL django.db.backends.postgresql_psycopg2

SQLite django.db.backends.sqlite3

Chapter 1 ■ Introduction to the Django Framework

17

The Django database connection parameter NAME is used to identify a database instance, and its value
convention can vary depending on the database brand. For example, for SQLite NAME indicates the location
of a flat file, whereas for MySQL it indicates the logical name of an instance.

The full set of Django database connection parameters is described in Table 1-3.

Table 1-3.  Django database connection parameters based on database brand

Django connection
parameter Default value Notes

ATOMIC_REQUESTS False Enforces (or not) a transaction for each view request. By
default set to False, because opening a transaction for every
view has additional overhead. The impact on performance
depends on the query patterns of an application and on how
well a database handles locking.

AUTOCOMMIT True By default set to True, because otherwise it would require
explicit transactions to perform commits.

CONN_MAX_AGE 0 The lifetime of a database connection in seconds. By default
0 which closes the database connection at the end of each
request. Use None for unlimited persistent connections.

ENGINE ''(Empty string) The database back end to use. See Table 1-2 for value options.

HOST ''(Empty string) Defines a database host, where an empty string means localhost.

For MySQL: If this value starts with a forward slash (‘/’),
MySQL will connect via a Unix socket to the specified socket
(e.g.,“HOST”: ‘/var/run/mysql’). If this value doesn’t start with a
forward slash, then this value is assumed to be the host.

For PostgreSQL: By default(’’), the connection to the database
is done through UNIX domain sockets (‘local’ lines in pg_hba.
conf). If the UNIX domain socket is not in the standard
location, use the same value of unix_socket_directory from
postgresql.conf. If you want to connect through TCP sockets,
set HOST to ‘localhost’ or ‘127.0.0.1’ (‘host’ lines in pg_hba.
conf). On Windows, you should always define HOST, as UNIX
domain sockets are not available.

NAME ''(Empty string) The name of the database to use. For SQLite, it’s the full path
to the database file. When specifying the path, always use
forward slashes, even on Windows (e.g., C:/www/STORE/
db.sqlite3).

OPTIONS {} (Empty dictionary) Extra parameters to use when connecting to the database.
Available parameters vary depending on database back end,
consult the back end module’s own documentation. For a list
of back-end modules see Table 1-2.

PASSWORD '' (Empty string) The password to use when connecting to the database. Not
used with SQLite.

PORT '' (Empty string) The port to use when connecting to the database. An empty
string means the default port. Not used with SQLite.

USER '' (Empty string) The username to use when connecting to the database. Not
used with SQLite.

Chapter 1 ■ Introduction to the Django Framework

18

Install Python Database Packages
Besides configuring Django to connect to a database, you’ll also need to install the necessary Python
packages to communicate with your database brand - the only exception to this is SQLite, which is included
in the Python distribution.

Each database relies on different packages, but the installation process is straightforward with the
pip package manager. If you don’t have the pip executable on your system, see the previous section in this
chapter “Install Django” in the “Install pip” subsection.

The Python packages for each database supported in Django in its ‘out-of-the-box’ state are
enumerated in Table 1-4. In addition, Table 1-4 also includes the pip command to install each package.

DATABASE DEVELOPMENT LIBRARIES

If you receive an error trying to install one of the Python database packages in Table 1-4, ensure the
database development libraries are installed on your system. Database development libraries are
necessary to build software that connects to a database.

Database development libraries are not related to Python or Django, so you’ll need to consult the
database vendor or operating system documentation (e.g., On a Debian Linux or Ubuntu Linux system
you can install the MySQL development libraries with the following apt-get task: apt-get install
libmysqlclient-dev).

Test Django Database Connection and Build Django Base Tables
Once you update the Django settings.py file with database credentials, you can test it to see if the Django
application can communicate with the database. There are several tasks you’ll do throughout a Django
project that will communicate with the database, but one of the most common tasks you can do right now to
test a database connection is to migrate the project’s data structures to the database.

The Django database migration process ensures all Django project logic associated with a database is
reflected in the database itself (e.g., the database has the necessary tables expected by a Django project).
When you start a Django project, there are a series of migrations Django requires that create tables to keep
track of administrators and sessions. This is always the first migration process a Django project runs against
a database. So to test the Django database connection, let’s run this first migration on the database to create
this set of base tables.

To run a migration on a Django project against a database, use the manage.py script in a project’s BASE_
DIR with the migrate argument (e.g., python manage.py migrate). The first time you execute this command
the output should be similar to Listing 1-15.

Table 1-4.  Python packages for different databases

Database Python package pip installation syntax

PostgreSQL psycopg2 pip install psycopg2

MySQL mysql-python pip install mysql-python

Oracle cx_Oracle pip install cx_Oracle

SQLite Included with Python 2.5+ N/A

Chapter 1 ■ Introduction to the Django Framework

19

Listing 1-15.  Run first Django migrate operation to create base database tables

[user@coffeehouse ~]$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying sessions.0001_initial... OK

As illustrated in Listing 1-15, if the connection to the database is successful, Django applies a series
of migrations that create database tables to manage users, groups, permissions, and sessions for a project.
For the moment, don’t worry too much about how these Django migrations work or where they are located
- I’ll provide details later - just be aware these migrations are needed by Django to provide some basic
functionality.

■■ Tip  Connect directly to the database. If you receive an error trying to connect to the database or migrating
the Django project to create the initial set of database tables, try to connect directly to the database using the
same Django parameters.

On many occasions a typo in the Django variables NAME, USER, PASSWORD, HOST, or PORT can cause the
process to fail or inclusively the credentials aren’t even valid to connect directly to the database.

Set Up Content: Understand Urls, Templates, and Apps
Content in Django projects works with three major building blocks: urls, templates, and apps. You create and
configure Django urls, templates, and apps separately, though you connect one to another to fulfill content
delivery, which is part of Django’s loosely coupled architecture design principles.

Urls define the entry points or where to access content. Templates define the end points that give form
to the final content. And apps serve as the middleware between urls and templates, altering or adding
content from a database or user interactions. To run static content you only need to create and configure
Django urls and templates. To run dynamic content - built from a database or user interactions - you need to
create and configure Django apps, in addition to urls and templates.

But before describing how to create and configure urls, templates, and apps, it’s very important you
understand how each of these parts works with one another. Figure 1-4 shows the Django workflow for user
requests and how they work with Django urls, templates, and apps.

Chapter 1 ■ Introduction to the Django Framework

20

As you can see in Figure 1-4, there are two separate pipelines to deliver either static or dynamic content.
More importantly, notice how each of the different Django layers is loosely coupled (e.g., you can forgo the
apps layer if it isn’t required and the urls layer and templates layer are still able to communicate with one
another).

Create and Configure Django Urls
The main entry point for Django urls is the urls.py file created when you start a project - if you’re unfamiliar
with a Django project structure, see Listing 1-11 earlier in the chapter. If you open the urls.py file, you’ll
notice it only has one active url to /admin/ that is the Django admin - I will discuss the Django admin in the
next and final section of this chapter.

Now that you’re familiar with the urls.py file syntax, let’s activate a url to view custom content on the
home page of a Django project.

Django urls use regular expressions to match incoming requests. The regular expression pattern to
match a home page is ^$ - the next chapter includes a dedicated section on the use of regular expression
in Django urls. In addition to the regular expression pattern, an action of what to do when a request is
intercepted for a matching pattern is also needed (e.g., send the content from a specific template).

Open the urls.py file and add line 3 - the one below django.contrib import admin - and line 9 - the
one below url(r'^admin/', admin.site.urls), - as illustrated in Listing 1-16.

Figure 1-4.  Django workflow for urls, templates, and apps

Chapter 1 ■ Introduction to the Django Framework

21

Listing 1-16.  Django url for home page to template

from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView
...
...

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 url(r'^$',TemplateView.as_view(template_name='homepage.html')),
]

As show in Listing 1-16, urlpatterns is a Python list of url() statements. The url method comes from
the django.conf.urls package. The url method you just added defines the pattern for the home page - the
regular expression ^$ - followed by the action TemplateView.as_view(template_name='homepage.html').
This last action is a helper method to direct the requesting party to a template that takes the argument
template_name='homepage.html'.

In summary, the url method you added in Listing 1-16 tells Django that requests for the home page
should return the content in the template homepage.html. The url method is very versatile and can accept
several variations, as I’ll describe shortly and extensively in the next chapter.

Now let’s test the home page. Start the development web server by executing python manage.
py runserver on the Django project’s BASE_DIR. Open a browser on the default address
http://127.0.0.1:8000/. What do you see? An error page with Exception Type: TemplateDoesNotExist
homepage.html. This error is caused because Django can’t locate the homepage.html template defined for
the url. In the next section, I’ll show you how to configure and create templates.

■■ Caution  If you receive the error OperationalError - no such table: django_session instead of
the TemplateDoesNotExist homepage.html error, this means the database for a Django project is still not
set up properly. You’ll need to run python manage.py migrate in a project’s BASE_DIR so Django creates the
necessary tables to keep track of sessions. See the previous section on setting up a database for more details.

Create and Configure Django Templates
By default, Django templates are interpreted as HTML. This means Django templates are expected to have a
standard HTML document structure and HTML tags (e.g., <html>, <body>). You can use a regular text editor
to create Django templates and save the files with an .html extension.

Lets create a template for the url in the past section. In a text editor, create a file named homepage.html
and place the contents of Listing 1-17 into it. Save the file on your system, in a subdirectory called templates
in your Django project’s PROJECT_DIR.

Listing 1-17.  Template homepage.html

<html>
 <body>
 <h4>Home page for Django</h4>
 </body>
</html>

Chapter 1 ■ Introduction to the Django Framework

22

Once you have a directory with Django templates, you need to configure a Django project so it can find
the templates in this directory. In the settings.py file of the Django project, you need to define the template
directory in the DIRS property of the TEMPLATES variable. The DIRS property is a list, so you can define
several directories to locate templates, though I recommend you only use a single directory with various
subdirectories for classification.

As I recommended previously, you should aim to keep Django templates inside a subdirectory – using
an obvious name like templates – in a Django project’s PROJECT_DIR. So for example, if the absolute path
to a Django project PROJECT_DIR is /www/STORE/coffeehouse/, the recommended location for a DIRS
value would be /www/STORE/coffeehouse/templates/. Listing 1-18 illustrates a sample DIRS definition in
settings.py using the PROJECT_DIR reference variable set dynamically at the top of settings.py.

Listing 1-18.  TEMPLATES and DIRS definition in settings.py

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

An important takeaway from Listing 1-18 is that it doesn’t use hard-coded directory paths; instead it
uses the PROJECT_DIR variable that is determined dynamically. This may seem trivial at the moment, but it’s
a good practice once the location of a Django project has a tendency to change (e.g., group development,
deployment to production).

Finally, start the Django development web server once again and open a browser on the default address
http://127.0.0.1:8000/. Instead of the error page you saw in the previous section, you should now see the
contents of the template homepage.html on the home page.

Create and Configure Django Apps
Django apps are used to group application functionality. If you want to work with content from a database or
user interactions you have to create and configure Django apps. A project can contain as many apps as you
need. For example, if you have a project for a coffeehouse, you can create an app for stores, another app for
menu items, another app for about information, and create additional apps as they’re needed. There’s no
hard rule to the number of apps in a project. Whether to make code management simpler or delegate app
work to a team, the purpose of Django apps is to group application functionality to make work easier.

Django apps are normally contained in subdirectories inside a project. This approach makes it easier to
use Python references and naming conventions. If the project name is coffeehouse, the functionality of an
app named stores is easily referred through Python packages as coffeehouse.stores.

Chapter 1 ■ Introduction to the Django Framework

23

Because apps provide a modular way to group application functionality, it’s common for other people
or groups to distribute Django apps with popular functionality. For example, if a Django project requires
forum functionality, instead of writing a forum app from scratch, you can leverage one of several Django
forum apps. The more general purpose the functionality you’re looking for, the more likely you’ll be able to
find a Django app created by a third party.

YOU ALREADY WORKED WITH DJANGO APPS!

You may not have realized it, but in the previous section when you set up a database for a Django
project, you already worked with Django apps when you invoked the migrate operation.

By default, all Django projects are enabled with six apps provided by the framework. These apps are
django.contrib.admin, django.contrib.auth, django.contrib.contenttypes, django.contrib.
sessions, django.contrib.messages, and django.contrib.staticfiles. When you triggered the
migrate operation, Django created the database models for these preinstalled apps.

Next, lets create a small Django app. Go to the PROJECT_DIR - where the urls.py and settings.
py files are - and execute the command django-admin startapp about to create an app called about.
A subdirectory named about is created containing the app. By default, upon creating an app its
subdirectory includes the following:

•	 __init__.py .- Python file to allow app packages to be imported from other
directories. Note __init__.py is not a Django specific file, it’s a generic file used in
almost all Python applications.

•	 migrations.- Directory that contains migrations applied to the app’s database
definitions (i.e., model classes).

•	 admin.py .- File with admin definitions for the app - such definitions are needed to
access model class instances from the Django admin.

•	 apps.py .- File with configuration parameters for the app.

•	 models.py .- File with database definitions (i.e., model classes) for the app.

•	 tests.py .- File with test definitions for the app.

•	 views.py .- File with view definitions (i.e., controller methods) for the app.

Next, open the views.py file and add the contents from Listing 1-19.

Listing 1-19.  Handler view method in views.py

from django.shortcuts import render

def contact(request):
 # Content from request or database extracted here
 # and passed to the template for display
 return render(request,'about/contact.html')

Chapter 1 ■ Introduction to the Django Framework

24

The contact method in Listing 1-19 - like all other methods in views.py files - is a controller method
with access to a user’s web request. Notice the input for the contact method is called request. Inside this
type of method you can access content from a web request (e.g., IP address, session) using the request
reference or access information from a database, so that toward the end you pass this information to a
template. If you look at the last line of the contact method, it finishes with a return statement to the Django
helper method render. In this case, the render method returns control to the about/contact.html template.

Because the contact method in Listing 1-19 returns control to the template about/contact.html, you’ll
also need to create a subdirectory called about with a template called contact.html inside your templates
directory (i.e., the one defined in the DIRS property of the TEMPLATES variable).

The contact method by itself does nothing, it needs to be called by a url. Listing 1-20 illustrates how to
add a url to the urls.py file linked to the contact method in Listing 1-19.

Listing 1-20.  Django url for view method

from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView

from coffeehouse.about import views as about_views

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 url(r'^$',TemplateView.as_view(template_name='homepage.html')),
 url(r'^about/', about_views.contact),
]

The first thing that’s declared in Listing 1-20 is an import statement to gain access to the contact
method in Listing 1-19. In this case, because the app is named about and it’s under the coffeehouse project
folder, it says from coffeehouse.about, followed by import views which gives us access to the app’s views.
py file where the contact method is located.

The import statement ends with as about_views to assign a unique qualifier, which is important if
you plan to work with multiple apps. For example, import statements without the as keyword, such as from
coffeehouse.about import views, from coffeehouse.items import views or from coffeehouse.stores
import views can import conflicting view method references (e.g., three methods named index), so the as
qualifier is a safeguard to ensure you don’t unintentionally use a method with the same name from another
app.

The new url definition in Listing 1-20 uses a regular expression to match requests on the about
url directory (e.g., http://127.0.0.1:8000/about/) and instead of directing the request to a template,
control is given to the about_views.contact method - where about_views refers to the imported reference
described in the previous paragraph.

Next, start the Django development web server and open a browser on the address
http://127.0.0.1:8000/about/. Notice how a request on the about url directory displays the underlying
about/contact.html template defined in the contact method in views.py.

Finally, although you can now access an app’s views.py methods, you also need to configure the app
inside a project’s settings.py file. This last step is important so Django can find other app constructs you
create later (e.g., database model definitions, static resources, custom template tags).

Open the Django project’s settings.py file and look for the INSTALLED_APPS variable. You’ll see a series
of apps already defined on the INSTALLED_APPS. Notice how the installed apps belong to the django.contrib
package, this means they’re provided by the Django framework itself. Add the coffeehouse.about app to the
list as illustrated in line 8 of Listing 1-21.

Chapter 1 ■ Introduction to the Django Framework

25

Listing 1-21.  Add app to INSTALLED_APPS in Django settings.py

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'coffeehouse.about',
]

As illustrated in line 8 of Listing 1-21, to add apps to a project you add the app package as a string to
the INSTALLED_APPS variable. Though the coffeehouse.about app is still practically empty, adding the
app to the INSTALLED_APPS variable is an important configuration step for future actions, such as database
operations and static resources associated with the app, among other things.

Set Up the Django admin Site
The Django admin site provides a web-based interface to access the database connected to a Django
project. Even for experienced technical administrators, doing database CRUD (Create-Read-Update-Delete)
operations directly on a database can be difficult and time consuming, given the need to issue raw SQL
commands and navigate database structures. For nontechnical users, doing database CRUD operations
directly on a database can be daunting, if not impossible. The Django admin site fixes this problem.

The Django admin site can expose all Django project-related data structures linked to a database, so
it’s easy for experts and novices alike to perform database CRUD operations. As a Django project grows,
the Django admin site can be a vital tool to administer the growing body of information in the database
connected to a Django project.

The Django admin site is built as a Django app; this means the only thing you need to do to set up the
Django admin site is configure and install the app as any other Django app. If you’re unfamiliar with the
term Django app, read the previous section “Set Up Content: Understand Urls, Templates, and Apps.”

The Django admin site requires that you previously configure a database and also install the Django
base tables. So if you still haven’t done this, see the prior section “Set Up a Database for a Django Project.”

Configure and Install the Django admin site App
By default, the Django admin is enabled on all Django projects. If you open a Django project’s urls.
py file, in the urlpatterns variable you’ll see the line url(r'^admin/', admin.site.urls). This last
regular expression pattern tells Django to enable the admin site app on the /admin url directory
(e.g., http://127.0.0.1:8000/admin/).

Next, if you open the project’s settings.py file and go to the INSTALLED_APPS variable, near the top of
this variable you’ll see the line django.contrib.admin that indicates the Django admin site app is enabled.

Start the development web server by executing python manage.py runserver on Django’s BASE_DIR.
Open a browser on the Django admin site http://127.0.0.1:8000/admin/. You’ll see a login screen like the
one in Figure 1-5.

Chapter 1 ■ Introduction to the Django Framework

26

Next, let’s create a Django superuser or administrator to access the Django admin via the interface in
Figure 1-5. To create a Django superuser you can use the createsuperuser command from manage.py as
illustrated in Listing 1-22.

Listing 1-22.  Create Django superuser for admin interface

[user@coffeehouse ~]$ python manage.py createsuperuser
Username (leave blank to use 'admin'):
Email address: admin@coffeehouse.com
Password:
Password (again):
The password is too similar to the email address.
This password is too short. It must contain at least 8 characters.
This password is too common.
Password:
Password (again):
Superuser created successfully.

■■ Caution  If you receive the error OperationalError - no such table: auth_user, this means the
database for a Django project is still not set up properly. You’ll need to run python manage.py migrate in a
project’s BASE_DIR so Django creates the necessary tables to keep track of users. See the previous section
“Set Up a Database for a Django Project” for more details.

Figure 1-5.  Django admin site login

Chapter 1 ■ Introduction to the Django Framework

27

■■ Tip  By default, Django enforces that user passwords comply with a minimum level of security. For
example, in Listing 1-22 you can see that after attempting to use the password coffee, Django rejects the
assignment with a series of error messages and forces a new attempt. You can modify these password
validation rules in the AUTH_PASSWORD_VALIDATORS variable in setttings.py.

This last process creates a superuser whose information is stored in the database connected to the
Django project, specifically in the auth_user table. Now you might be asking yourself, how do you update
this user’s name, password, or email? While you could go straight to the database table and perform updates,
this is a tortuous route; a better approach is to rely on the Django admin, which gives you a very friendly
view into the database tables present in your Django project.

Next, introduce the superuser username and password you just created into the interface from
Figure 1-5. Once you provide the superuser username and password on the admin site, you’ll access the
home page for the admin site illustrated in Figure 1-6.

On the home page of the Django admin site illustrated in Figure 1-6, click on the ‘Users’ link. You’ll see
a list of users with access to the Django project. At the moment, you’ll only see the superuser you created
in the past step. You can change this user’s credentials (e.g., password, email, username) or add new users
directly from this Django admin site screen.

This flexibility to modify or add records stored in a database that’s tied to a Django project is what
makes the Django admin site so powerful. For example, if you develop a coffeehouse project and add
apps like stores, drinks, or customers, Django admin authorized users can do CRUD operations on these
objects (e.g., create stores, update drinks, delete customers). This is tremendously powerful from a content
management point of view, particularly for nontechnical users. And most importantly it requires little to no
additional development work to enable the Django admin site on a project’s apps.

Figure 1-6.  Django admin site home page

Chapter 1 ■ Introduction to the Django Framework

28

The Django admin site tasks presented here are just the ‘tip of the iceberg’ in functionality; a future
chapter covers the Django admin site functionality in greater detail.

Configure and Install the Django admin site docs App
The Django admin site also has its own documentation app. The Django admin site documentation app
not only provides information about the operation of the admin site itself, but also includes other general
documentation about Django filters for Django templates. More importantly, the Django admin site
documentation app introspects the source code for all installed project apps to present documentation on
controller methods and model objects (i.e., documentation embedded in the source code of app models.py
and views.py files).

To install the Django admin site documentation app, you first need to install the docutils Python
package with the pip package manager executing the following command: pip install docutils. Once
you install the docutils package, you can proceed to install the Django admin site documentation app as any
other Django app.

Add the url to access the Django admin site documentation app. If you open the project’s urls.py file,
in the urlpatterns variable add the following line:

 url(r'^admin/doc/', include('django.contrib.admindocs.urls'))

Ensure you add this before the url(r'^admin/'… line to keep more general matching expressions
toward the bottom and more granular expressions on the same url path (e.g., /admin) toward the top. This
last regular expression pattern tells Django to enable the admin site documentation app on the /admin/doc/
url directory (e.g. http://127.0.0.1:8000/admin/doc/).

Next, open the project’s settings.py file and go to the INSTALLED_APPS variable. Near the final values in
this variable add the line django.contrib.admindocs to enable the Django admin site documentation app.

With the development web server running, open a browser on the address http://127.0.0.1:8000/
admin/doc/ and you should see a page like the one in Figure 1-7.

Figure 1-7.  Django admin site doc home page

Chapter 1 ■ Introduction to the Django Framework

29

If you logged off the Django admin site, you’ll need to log in again to access the documentation since
it also requires user authentication. Once you log in, you’ll be able to see the documentation home page
for the Django admin site - illustrated in Figure 1-7 - as well as the documentation on a project’s controller
methods and model objects.

31© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_2

CHAPTER 2

Django Urls and Views

In Chapter 1 you learned about the core building blocks in Django, inclduing what are views, models, and
urls. In this chapter, you’ll learn more about Django urls, which are the entry point into a Django application
workflow. You’ll learn how to create complex url regular expressions, how to use url values in view methods
and templates, how to structure and manage urls, and how to name urls.

After urls, Django views represent the next step in almost all Django workflows, where views are
charged with inspecting requests, executing business logic, querying a database and validating data, as well
as generating responses. In this chapter, you’ll learn how to create Django views with optional parameters,
the structure of view requests and responses, how to use middleware with views, and how to create
class-based views.

Url Regular Expressions
Regular expressions provide a powerful approach in all programming languages to determine patterns.
However, with power also comes complexity, to the point that there are entire books written on the topic of
regular expressions.1

Although most Django urls will never exceed a fraction of the complexity illustrated in many regular
expression books, it’s important that you understand some of the underlying behaviors and most common
patterns of regular expressions in Django urls.

Precedence Rule: Granular Urls First, Broad Urls Last
Django urls need to follow a certain order and syntax to work correctly. Broad url regular expressions should
be declared last and only after more granular url regular expressions.

This is because Django url regular expression matching doesn’t use short-circuiting behavior, like a
nested conditional statement (e.g., if/elif/elif/elif/else) where as soon as one condition is met, the remaining
options are ignored. In Django urls if there’s more than one matching regular expression for an incoming
url request, it will be the top-most one’s action that gets triggered. Precedence for matching url regular
expressions is given from top (i.e., first declared) to bottom (i.e., last declared).

You shouldn’t underestimate how easy it can be to introduce two url regular expressions that match
the same pattern, particularly if you’ve never done regular expressions since the syntax can be cryptic.
Listing 2-1 illustrates the right way to declare Django urls, with more granular regular expressions toward the
top and broad regular expressions toward the bottom.

1http://www.apress.com/la/book/9781590594414

https://doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_1
http://www.apress.com/la/book/9781590594414

Chapter 2 ■ Django Urls and Views

32

Listing 2-1.  Correct precedence for Django url regular expressions

from django.views.generic import TemplateVieww

urlpatterns = [
 url(r'^about/index/',TemplateView.as_view(template_name='index.html')),
 url(r'^about/',TemplateView.as_view(template_name='about.html')),
]

Based on Listing 2-1, let’s walk through what happens if Django receives a request for the url /about/
index/. Initially Django matches the last regular expression, which says ‘match ^about/’. Next, Django
continues upward inspecting the regular expressions and reaches ‘match ^about/index/' that is an exact
match to the request url /about/index/ and therefore triggers this action to send control to the index.html
template.

Now let’s walk through a request for the url /about/. Initially Django matches the last regular
expression that says ‘match ^about/’. Next, Django continues upward inspecting the regular expressions
for a potential match. Because no match is found - since ‘match ^about/index/' is a more granular regular
expression - Django triggers the first action to send control to the about.html template, which was the only
regular expression match.

As you can see, Listing 2-1 produces what can be said to be expected behavior. But now let’s invert the
order of the url regular expressions, as shown in Listing 2-2, and break down why declaring more granular
regular expressions toward the bottom is the wrong way to declare Django url regular expressions.

Listing 2-2.  Wrong precedence for Django url regular expressions

from django.views.generic import TemplateVieww

urlpatterns = [
 url(r'^about/',TemplateView.as_view(template_name='about.html')),
 url(r'^about/index/',TemplateView.as_view(template_name='index.html')),
]

The issue in Listing 2-2 comes when a request is made for the url /about/index/. Initially Django
matches the last regular expression, which says ‘match ^about/index/’. However, Django continues
inspecting the regular expressions and reaches ‘match ^about/' which is a broader match to the request
url /about/index/, but nevertheless a match! Therefore Django triggers this action and sends control to
the about.html template, instead of what was likely expected to be the index.html template from the first
match.

Exact Url Patterns: Forgoing Broad Matching
In the past section, I intentionally used regular expressions that allowed broad url matching. In my
experience, as a Django project grows you’ll eventually face the need to use this type of url regular
expression – but more on why this is so, shortly.

As it turns out, it’s possible to use exact url regular expressions. Exact url regular expressions remove
any ambiguity introduced by the order in which Django url regular expression are declared.

Let’s rework the url regular expressions from Listing 2-2 and make them exact regular expressions so
their order doesn’t matter. Listing 2-3 illustrates exact regular expressions on basis of those in Listing 2-2.

Chapter 2 ■ Django Urls and Views

33

Listing 2-3.  Exact regular expressions, where url order doesn’t matter

from django.views.generic import TemplateVieww

urlpatterns = [
 url(r'^about/$',TemplateView.as_view(template_name='about.html')),
 url(r'^about/index/$',TemplateView.as_view(template_name='index.html')),
]

Notice the regular expressions in Listing 2-3 end with the $ character. This is the regular expression
symbol for end of line, which means the regular expression urls only match an exact pattern.

For example, if Django receives a request for the url /about/index/ it will only match the last regular
expression in Listing 2-3, which says ‘match ^about/index/$’. However, it won’t match the higher-up ^/
about/$ regular expression because this regular expression says match about/ exactly with nothing else
after, since the $ indicates the end of the pattern.

However, as useful as the $ character is to make stricter url regular expressions, it’s important you
analyze its behavior. If you plan to use url Search Engine Optimization (SEO), A/B testing techniques, or
simply want to allow multiple urls to run the same action, stricter regular expressions with $ eventually
require more work.

For example, if you start to use urls like /about/index/, /about/email/,/about/address/ and
they all use the same template or view for processing, exact regular expressions just make the amount
of urls you declare larger. Similarly, if you use A/B testing or SEO where lengthier variations of the
same url are processed in the same way (e.g., /about/landing/a/, /about/landing/b/, /about/
the+coffeehouse+in+san+diego/) broad url matching is much simpler than declaring exact url patterns.

In the end, whether you opt to use exact url regular expression ending in $, I would still recommend you
maintain the practice of keeping finer-grained url regulars at the top and broader ones at the bottom, as this
avoids the unexpected behaviors described in Listing 2-2 when more than one regular expression matches a
url request.

Common Url Patterns
Although url regular expressions can have limitless variations – making it next to impossible to describe
each possibility – I’ll provide examples on some of the most common url patterns you’re more likely to use.
Table 2-1 shows individual regular expression characters for Django urls and Table 2-2 shows a series of
more concrete examples with url patterns.

Table 2-1.  Regular expression syntax for Django urls: Symbol (Meaning)

^ (Start of url) $ (End of url) \ (Escape for interpreted
values)

| (Or)

+ (1 or more
occurrences)

? (0 or 1 occurrences) {n} (n occurrences) {n,m} (Between n and m
occurrences)

[] (Character grouping) (?P<name>___) (Capture
occurrence that matches
regexp ___ and assign it
to name

. (Any character) \d+ (One or more digits).
Note escape, without
escape matches ‘d+’
literally.

\D+ (One or more
non-digits).Note
escape, without escape
matches ‘D+’ literally]

[a-zA-Z0-9_]+ (One or
more word characters,
letter lower or uppercase,
number, or underscore)

\w+ (One or more word
characters, equivalent
to [a-zA-Z0-9_]). Note
escape, without escape
matches ‘w+’ literally].

[-@\w]+ (One or more
word character, dash. or at
sign). Note no escape for
\w since it’s enclosed in
brackets (i.e., a grouping).

Chapter 2 ■ Django Urls and Views

34

Table 2-2.  Common Django url patterns and their regular expressions, with samples

Url regular expression Description Sample urls

url(r‘^$’,.....) Empty string (Home
page)

Matches:
http://127.0.0.1/

url(r‘^stores/’,.....) Any trailing characters Matches:
http://127.0.0.1/stores/
http://127.0.0.1/stores/long+stri
ng+with+anything+12345

url(r‘^about/contact/$’,.....) Exact, no trailing
characters

Matches: http://127.0.0.1/about/
contact/
Doesn’t match: http://127.0.0.1/
about/

url(r‘^stores/\d+/’,..…) Number Matches:
http://127.0.0.1/stores/2/
http://127.0.0.1/stores/34/
Doesn’t match: http://127.0.0.1/
stores/downtown/

url(r‘^drinks/\D+/’,.....) Non-digits Matches: http://127.0.0.1/drinks/
mocha/
Doesn’t match: http://127.0.0.1/
drinks/324/

url(r‘^drinks/mocha|espresso/’,.....) Word options, any
trailing characters

Matches: http://127.0.0.1/drinks/
mocha/ http://127.0.0.1/drinks/
mochaccino/ http://127.0.0.1/
drinks/espresso/
Doesn’t match: http://127.0.0.1/
drinks/soda/

url(r‘^drinks/mocha$|espresso/$’,.....) Word options exact, no
trailing characters

Matches: http://127.0.0.1/drinks/
mocha/
Doesn’t match: http://127.0.0.1/
drinks/mochaccino/
Matches: http://127.0.0.1/drinks/
espresso/
Doesn’t match: http://127.0.0.1/
drinks/espressomacchiato/

url(r‘^stores/\w+/’,.....) Word characters
(Any letter lower or
uppercase, number, or
underscore)

Matches: http://127.0.0.1/stores/
sandiego/
http://127.0.0.1/stores/LA/
http://127.0.0.1/stores/1/
Doesn’t match:
http://127.0.0.1/san-diego/

url(r‘^stores/[-\w]+/’,.....) Word characters or dash Matches:
http://127.0.0.1/san-diego/

url(r‘^state/[A-Z]{2}/’,.....) Two uppercase letters Matches:
http://127.0.0.1/CA/
Doesn’t match:
http://127.0.0.1/Ca/

http://127.0.0.1/stores/
http://127.0.0.1/stores/long+string+with+anything+12345
http://127.0.0.1/stores/long+string+with+anything+12345
http://127.0.0.1/about/contact/
http://127.0.0.1/about/contact/
http://127.0.0.1/about/
http://127.0.0.1/about/
http://127.0.0.1/stores/2/
http://127.0.0.1/stores/34/
http://127.0.0.1/stores/downtown/
http://127.0.0.1/stores/downtown/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/324/
http://127.0.0.1/drinks/324/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/soda/
http://127.0.0.1/drinks/soda/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mocha/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/mochaccino/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espresso/
http://127.0.0.1/drinks/espressomacchiato/
http://127.0.0.1/drinks/espressomacchiato/
http://127.0.0.1/stores/sandiego/
http://127.0.0.1/stores/sandiego/
http://127.0.0.1/stores/LA/
http://127.0.0.1/stores/1/
http://127.0.0.1/san-diego/
http://127.0.0.1/san-diego/
http://127.0.0.1/CA/
http://127.0.0.1/Ca/

Chapter 2 ■ Django Urls and Views

35

DJANGO URLS DON’T INSPECT URL QUERY STRINGS

On certain urls - those made by HTTP GET requests, common in HTML forms or REST services -
parameters are added to urls with ? followed by parameter_name=parameter_value separated by &
(e.g., /drinks/mocha/?type=cold&size=large). These set of values are known as query strings and
Django ignores them for the purpose of url pattern matching.

If you need to make use of these values as url parameters – a topic explored in the next section – you
can access these values in Django view methods through the request reference. Another alternative is
to change the url structure to accommodate regular expressions (e.g., /drinks/mocha/cold/large/
instead of /drinks/mocha/?type=cold&size=large).

Url Parameters, Extra Options, and Query Strings
You just learned how to use a wide variety of regular expressions to create urls for your Django applications.
However, if you look back at Listings 2-1, 2-2, and 2-3, you’ll notice the information provided on the urls is
discarded.

Sometimes it’s helpful or even necessary to pass url information to the processing construct as a
parameter. For example, if you have several urls like /drinks/mocha/, /drinks/espresso/, and /drinks/
latte/, the last part of the url represents a drink name. Therefore it can be helpful or necessary to relay this
url information to the processing template to display it or use it in some other way in a view (e.g., query a
database). To relay this information the url needs to treat this information as a parameter.

To handle url parameters Django uses Python’s standard regular expression syntax for named groups.2
Listing 2-4 shows a url that creates a parameter named drink_name.

Listing 2-4.  Django url parameter definition for access in templates

urlpatterns = [
 �url(r'^drinks/(?P<drink_name>\D+)/',TemplateView.as_view(template_name='drinks/index.

html')),
]

Notice the (?P<drink_name>\D+) syntax in Listing 2-4. The ?P<> syntax tells Django to treat this part of
the regular expression as a named group and assign the value to a parameter named drink_name declared
between <>. The final piece \D+ is a regular expression to determine the matching value; in this case the
matching value is one or more non-digit characters, as described in Table 2-1.

It’s very important you understand a parameter is only captured if the provided value matches the
specified regular expression (e.g., \D+ for non-digits). For example, for the url request /drinks/mocha/ the
value mocha is assigned to the drink_name parameter, but for a url like /drinks/123/ the regular expression
pattern doesn’t match - because 123 are digits - so no action is taken.

If a url match occurs in Listing 2-4, the request is sent directly to the template drinks/index.html.
Django provides access to all parameters defined in this manner through a Django template context variable
with the same name. Therefore to access the parameter you would use the parameter name drink_type
directly in the template. For example, to output the value of the drink_name parameter you would use the
standard {{}} Django template syntax (e.g., {{drink_name}}).

2https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups

https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups

Chapter 2 ■ Django Urls and Views

36

In addition to treating parts of a url as parameters, it’s also possible to define extra options in the url
definition to access them in Django templates as context variables. These extra options are defined inside a
dictionary declared as the last part of the url definition.

For example, look at the following modified url Django definition from Listing 2-4:

url(r'^drinks/(?P<drink_name>\D+)', TemplateView.as_view(template_name='drinks/index.html'),
{'onsale':True}),

Notice how a dictionary with key-values is added at the end of the url definition. In this manner, the
onsale key becomes a url extra option, which is passed to the underlying template as a context variable. Url
extra options are accessed like url parameters as template context variables. So to output the onsale extra
option you would use the {{onsale}} syntax.

Next, let’s take a look at another variation of url parameters illustrated in Listing 2-5, which sends
control to a Django view method.

Listing 2-5.  Django url parameter definition for access in view methods in main urls.py file

Project main urls.py
from coffeehouse.stores import views as stores_views

urlpatterns = patterns[
 url(r'^stores/(?P<store_id>\d+)/',stores_views.detail),
]

Notice the (?P<store_id>\d+) syntax in Listing 2-5 is pretty similar to the one in 2-4. The thing that
changes is the parameter is now named store_id and the regular expression is \d+ to match digits. So, for
example, if a request is made to the url /stores/1/ the value 1 is assigned to the store_id parameter and if
a request is made to a url like /stores/downtown/ the regular expression pattern doesn’t match - because
downtown are letters not digits - so no action is taken.

If a url match occurs for Listing 2-5, the request is sent directly to the Django view method
coffeehouse.stores.views.detail. Where coffeehouse.stores is the package name, views.py the
file inside the stores app and detail the name of the view method. Listing 2-6 illustrates the detail view
method to access the store_id parameter.

Listing 2-6.  Django view method in views.py to access url parameter

from django.shortcuts import render

def detail(request,store_id):
 # Access store_id with 'store_id' variable
 return render(request,'stores/detail.html')

Notice in Listing 2-6 how the detail method has two arguments. The first argument is a request object,
which is always the same for all Django view methods. The second argument is the parameter passed by the
url. It’s important to note the names of url parameters must match the names of the method arguments. In
this case, notice in Listing 2-5 the parameter name is store_id and in Listing 2-6 the method argument is
also named store_id.

With access to the url parameter via the view method argument, the method can execute logic with the
parameter (e.g., query a database) that can then be passed to a Django template for presentation.

Chapter 2 ■ Django Urls and Views

37

■■ Caution  Django url parameters are always treated as strings, irrespective of the regular expression. For
example, \d+ catches digits, but a value of one is treated as ‘1’ (String), not 1 (Integer). This is particularly
important if you plan to work with url parameters in view methods and do operations that require something
other than strings.

Another option available for url parameters handled by view methods is to make them optional, which
in turn allows you to leverage the same view method for multiple urls. Parameters can be made optional by
assigning a default value to a view method argument. Listing 2-7 shows a new url that calls the same view
method (coffeehouse.stores.views.detail) but doesn’t define a parameter.

Listing 2-7.  Django urls with optional parameters leveraging the same view method

from coffeehouse.stores import views as stores_views

urlpatterns = patterns[
 url(r'^stores/',stores_views.detail),
 url(r'^stores/(?P<store_id>\d+)/',stores_views.detail),
]

If you called the url /stores/ without modifying the detail method in Listing 2-6, you would get an
error. The error occurs because the detail view method expects a store_id argument, which isn’t provided
by the first url. To fix this problem, you can define a default value for the store_id in the view method, as
illustrated in Listing 2-8.

Listing 2-8.  Django view method in views.py with default value

from django.shortcuts import render

def detail(request,store_id='1'):
 # Access store_id with 'store_id' variable
 return render(request,'stores/detail.html')

Notice in Listing 2-8 how the store_id argument has the assignment ='1'. This means the argument
will have a default value of '1' in case the view method is called without store_id. This approach allows you
to leverage the same view method to handle multiple urls with optional parameters.

In addition to accessing url parameters inside view methods, it’s also possible to access extra options
from the url definition. These extra options are defined inside a dictionary declared as the last argument in
a url definition. After the view method declaration, you add a dictionary with the key-value pairs you wish
to access inside the view method. The following snippet illustrates a modified version of the url statement in
Listing 2-7.

url(r'^stores/',stores_views.detail,{'location':'headquarters'})

In this case, the location key becomes a url extra option that’s passed as a parameter to the view
method. Url extra options are accessed just like url parameters, so to access a url extra option inside a view
method you need to modify the method signature to accept an argument with the same name as the url
extra option. In this case, the method signature:

def detail(request,store_id='1'):

Chapter 2 ■ Django Urls and Views

38

needs to change to:

def detail(request,store_id='1',location=None):

Notice the location argument is made optional by assigning a default value of None.
Finally, it’s also possible to access url parameters separated by ? And & – technically known as a query

string – inside Django view methods. These type of parameters can be accessed inside a view method using
the request object.

Take, for example, the url /stores/1/?hours=sunday&map=flash, Listing 2-9 illustrates how to extract
the arguments from this url separated by ? and & using request.GET.

Listing 2-9.  Django view method extracting url parameters with request.GET

from django.shortcuts import render

def detail(request,store_id='1',location=None):
 # Access store_id param with 'store_id' variable and location param with 'location'
variable
 # Extract 'hours' or 'map' value appended to url as
 # ?hours=sunday&map=flash
 hours = request.GET.get('hours', '')
 map = request.GET.get('map', '')
 # 'hours' has value 'sunday' or '' if hours not in url
 # 'map' has value 'flash' or '' if map not in url
 return render(request,'stores/detail.html')

Listing 2-9 uses the syntax request.GET.get(<parameter>, ''). If the parameter is present in
request.GET it extracts the value and assigns it to a variable for further usage; if the parameter is not present
then the parameter variable is assigned a default empty value of ''– you could equally use None or any other
default value – as this is part of Python’s standard dictionary get() method syntax to obtain default values.

This last process is designed to extract parameters from an HTTP GET request; however, Django
also supports the syntax request.POST.get to extract parameters from an HTTP POST request, which is
described in greater detail in the chapter on Django forms and later in this chapter in the section on Django
view method requests.

Url Consolidation and Modularization
By default, Django looks up url definitions in the urls.py file inside a project’s main directory - it’s worth
mentioning this is on account of the ROOT_URLCONF variable in settings.py. However, once a project grows
beyond a couple of urls, it can become difficult to manage them inside this single file. For example, look at
the urls.py file illustrated in Listing 2-10.

Listing 2-10.  Django urls.py with no url consolidation

from django.conf.urls import url
from django.views.generic import TemplateView
from coffeehouse.about import views as about_views
from coffeehouse.stores import views as stores_views

Chapter 2 ■ Django Urls and Views

39

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html')),
 url(r'^about/',about_views.index),
 url(r'^about/contact/',about_views.contact),
 url(r'^stores/',stores_views.index),
 url(r'^stores/(?P<store_id>\d+)/',stores_views.detail,{'location':'headquarters'}),
]

As you can see in Listing 2-10, there are a couple of urls that have redundant roots - about/ and
stores/. Grouping these urls separately can be helpful because it keeps common urls in their own files and
avoids the difficulties of making changes to one big urls.py file.

Listing 2-11 shows an updated version of the urls.py file with the about/ and stores/ roots placed in
separate files.

Listing 2-11.  Django urls.py with include to consolidate urls

from django.conf.urls import include, url
from django.views.generic import TemplateView

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html')),
 url(r'^about/',include('coffeehouse.about.urls')),
 url(r'^stores/',include('coffeehouse.stores.urls'),{'location':'headquarters'}),
]

Listing 2-11 makes use of the include argument to load urls from completely separate files. In this
case, include('coffeehouse.about.urls') tells Django to load url definitions from the Python module
coffeehouse.about.urls, which parting from a Django base directory corresponds to the file route /
coffeehouse/about/urls.py. In this case, I kept using the urls.py file name and placed it under the
corresponding Django about app directory since it deals with about/ urls. However, you can use any file
name or path you like for url definitions (e.g., coffeehouse.allmyurl.resturls to load urls from a file route
/coffeehouse/allmyurls/resturls.py).

The second include statement in Listing 2-11 works just like the first one, where
include('coffeehouse.stores.urls') tells Django to load url definitions from the Python module
coffeehouse.stores.urls. However, notice this second statement appends an additional dictionary as a url
extra option, which means all the urls in the include statement will also receive this extra option.

Listing 2-12 illustrates the contents of the file /coffeehouse/about/urls.py linked via
include('coffeehouse.about.urls').

Listing 2-12.  Django /coffeehouse/about/urls.py loaded via include

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$',views.index),
 url(r'^contact/$',views.contact),
]

Chapter 2 ■ Django Urls and Views

40

A quick look at Listing 2-12 and you can see the structure is pretty similar to the main urls.py file;
however, there are some minor differences. While the url regular expression r'^$' can look like it matches
the home page, it isn’t. Because the file in Listing 2-12 is linked via include in the main urls.py file, Django
joins the url regular expression with the parent url regular expression. So the first url in Listing 2-12 actually
matches /about/ and the second url in Listing 2-12 actually matches /about/contact/. Also because the
urls.py file in Listing 2-12 is placed alongside the app’s views.py file, the import statement uses the relative
path from . import views syntax.

In addition to using the include option to reference a separate file with url definitions, the include
option can also accept url definitions as a Python list. In essence, this allows you to keep all url definitions in
the main urls.py file, but give it more modularity. This approach is illustrated in Listing 2-13.

Listing 2-13.  Django urls.py with inline include statements

from django.conf.urls import include, url
from django.views.generic import TemplateView

from coffeehouse.about import views as about_views
from coffeehouse.stores import views as stores_views

store_patterns = [
 url(r'^$',stores_views.index),
 url(r'^(?P<store_id>\d+)/$',stores_views.detail),
]

about_patterns = [
 url(r'^$',about_views.index),
 url(r'^contact/$',about_views.contact),
]

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html')),
 url(r'^about/',include(about_patterns)),
 url(r'^stores/',include(store_patterns),{'location':'headquarters'}),
]

The outcome of the url patterns in Listing 2-13 is the same as Listings 2-11 and 2-12. The difference is
Listing 2-13 uses the main urls.py file to declare multiple url lists, while Listings 2-11 and 2-12 rely on url
lists declared in different files.

Url Naming and Namespaces
A project’s internal links or url references (e.g., Home Page) tend to be hard-coded,
whether it’s in view methods to redirect users to certain locations or in templates to provide adequate user
navigation. Hard-coding links can present a serious maintenance problem as a project grows, because it
leads to links that are difficult to detect and fix. Django offers a way to name urls so it’s easy to reference
them in view methods and templates.

The most basic technique to name Django urls is to add the name attribute to url definitions in urls.
py. Listing 2-14 shows how to name a project’s home page, as well as how to reference this url from a view
method or template.

Chapter 2 ■ Django Urls and Views

41

Listing 2-14.  Django url using name

Definition in urls.py
url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage")

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 return HttpResponsePermanentRedirect(reverse('homepage'))

Definition in template
Back to home page

The url definition in Listing 2-14 uses the regular expression r'^$' that translates into / or the home
page, also known as the root directory. Notice the name attribute with the homepage value. By assigning the
url a name you can use this value as a reference in view methods and templates, which means any future
changes made to the url regular expression, automatically update all url definitions in view methods and
templates.

Next in Listing 2-14 you can see a view method example that redirects control to reverse('homepage').
The Django reverse method attempts to look up a url definition by the given name - in this case homepage -
and substitutes it accordingly. Similarly, the link sample Back to home
page in Listing 2-14 makes use of the Django {% url %} tag, which attempts to look up a url by its first
argument - in this case homepage - and substitute it accordingly.

This same naming and substitution process is available for more complex url definitions, such as those
with parameters. Listing 2-15 shows the process for a url with parameters.

Listing 2-15.  Django url with arguments using name

Definition in urls.py
url(r'^drinks/(?P<drink_name>\D+)/',TemplateView.as_view(template_name='drinks/index.
html'),name="drink"),

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 return HttpResponsePermanentRedirect(reverse('drink', args=(drink.name,)))

Definition in template
Drink on sale

Drink on sale

The url definition in Listing 2-15 uses a more complex regular expression with a parameter that
translates into urls in the form /drinks/latte/ or /drinks/espresso/. In this case, the url is given the
argument name drink_name.

Chapter 2 ■ Django Urls and Views

42

Because the url uses a parameter, the syntax for the reverse method and {% url %} tag are slightly
different. The reverse method requires the url parameters be provided as a tuple to the args variable
and the {% url %} tag requires the url arguments be provided as a list of values. Notice in Listing 2-15 the
parameters can equally be variables or hard-coded values, so long as it matches the url argument regular
expression type - which in this case is non-digits.

For url definitions with more than one argument, the approach to using reverse and {% url %} is
identical. For the reverse method you pass it a tuple with all the necessary parameters and for the {% url %}
tag you pass it a list of values.

■■ Caution  Beware of invalid url definitions with reverse and {% url %}. Django always checks at startup that
all reverse and {% url %} definitions are valid. This means that if you make an error in a reverse method or {%
url %} tag definition - like a typo in the url name or the arguments types don’t match the regular expression -
the application won’t start and throw an HTTP 500 internal error.

The error for this kind of situation is NoReverseMatch at....Reverse for 'urlname' with arguments '()'
and keyword arguments '{}' not found. X pattern(s) tried. If you look at the error stack you’ll be able
to pinpoint where this is happening and correct it. Just be aware this is a fatal error and if it is not isolated to
the view or page where it happens, it will stop the entire application at startup.

Sometimes the use of the name attribute by itself is not sufficient to classify urls. What happens if you
have two or three index pages? Or if you have two urls that qualify as details, but one is for stores and the
other for drinks?

A crude approach would be to use composite names (e.g., drink_details, store_details). However, the
use of composite names in this form can lead to difficult-to-remember naming conventions and sloppy
hierarchies. A cleaner approach supported by Django is through the namespace attribute.

The namespace attribute allows a group of urls to be identified with a unique qualifier. Because the
namespace attribute is associated with a group of urls, it’s used in conjunction with the include method
described earlier to consolidate urls.

Listing 2-16 illustrates a series of url definitions that make use of the namespace attribute with include.

Listing 2-16.  Django urls.py with namespace attribute

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage"),
 url(r'^about/',include('coffeehouse.about.urls',namespace="about")),
 url(r'^stores/',include('coffeehouse.stores.urls',namespace="stores")),
]

About urls.py
from . import views

urlpatterns = [
 url(r'^$',views.index,name="index"),
 url(r'^contact/$',views.contact,name="contact"),
]

Chapter 2 ■ Django Urls and Views

43

Stores urls.py
from . import views

urlpatterns = [
 url(r'^$',views.index,name="index"),
 url(r'^(?P<store_id>\d+)/$',views.detail,name="detail"),
)

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 return HttpResponsePermanentRedirect(reverse('about:index'))

Definition in template
Back to stores index

Listing 2-16 starts with a set of include definitions typical of a main Django urls.py file. Notice both
definitions use the namespace attribute. Next, you can see the urls.py files referenced in the main urls.
py file that make use of the name attribute described in the past example. Notice both the about and stores
urls.py files have a url with name='index'.

To qualify a url name with a namespace you use the syntax <namespace>:<name>. As you can see toward
the bottom of Listing 2-16, to reference the index in the about urls.py you use about:index and to reference
the index in the stores urls.py file you use stores:index.

The namespace attribute can also be nested to use the syntax <namespace1>:<namespace2>:<namespac
e3>:<name> to reference urls. Listing 2-17 shows an example of nested namespace attributes.

Listing 2-17.  Django urls.py with nested namespace attribute

Main urls.py
from django.conf.urls import include, url
from django.views.generic import TemplateView

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage"),
 url(r'^stores/',include('coffeehouse.stores.urls',namespace="stores")),
]

Stores urls.py
from . import views

urlpatterns = [
 url(r'^$',views.index,name="index"),
 url(r'^(?P<store_id>\d+)/$',views.detail,name="detail"),
 url(r'^(?P<store_id>\d+)/about/',include('coffeehouse.about.urls',namespace="about")),
]

About urls.py
from . import views

Chapter 2 ■ Django Urls and Views

44

urlpatterns = [
 url(r'^$',views.index,name="index"),
 url(r'^contact/$',views.contact,name="contact"),
]

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 return HttpResponsePermanentRedirect(reverse('stores:about:index', args=(store.id,)))

Definition in template
See about for {{store.name}}

The url structure in Listing 2-17 differs from Listing 2-16 in that it creates about urls for each store (e.g.,
/stores/1/about/) instead of having a generic about url (e.g., /about/). At the top of Listing 2-17 we use
namespace="stores" to qualify all urls in the stores urls.py file.

Next, inside the stores urls.py file notice there’s another include element with namespace="about" to
qualify all urls in the about urls.py. And finally inside the about urls.py file, there are urls that just use the
name attribute. In the last part of Listing 2-17, you can see how nested namespaces are used with the reverse
method and {% url %} tag using a : to separate namespaces.

In 99% of Django urls you can use the name and namespace parameters just as they been described.
However, the namespace parameter takes on special meaning when you deploy multiple instances of the
same Django app in the same project.

Since Django apps are self-contained units with url definitions, it raises an edge case even if Django
apps use url namespaces. What happens if a Django app uses namespace X, but you want to deploy the app
two or three times in the same project? How do you reference urls in each app, given they’re all written to
use namespace X? This is where the term instance namespace and the app_name attribute come into the
picture.

Let’s walk through a scenario that uses multiple instances of the same Django app to illustrate
this edge case associated with url namespaces. Let’s say you develop a Django app called banners to
display advertisements. The banners app is built in such a way that it has to run on different urls (e.g., /
coffeebanners/,/teabanners/,/foodbanners/) to simplify the selection of banners. In essence, you are
required to run multiple instances of the banners app in the same project, each one on different urls.

So what’s the problem of multiple app instances and url naming? It has to do with using named urls that
need to change dynamically based on the current app instance. This issue is easiest to understand with an
example, so let’s jump to the example in Listing 2-18.

Listing 2-18.  Django urls.py with multiple instances of the same app

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage"),
 url(r'^coffeebanners/',include('coffeehouse.banners.urls',namespace="coffee-banners")),
 url(r'^teabanners/',include('coffeehouse.banners.urls',namespace="tea-banners")),
 url(r'^foodbanners/',include('coffeehouse.banners.urls',namespace="food-banners")),
]

Chapter 2 ■ Django Urls and Views

45

Banners urls.py
from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$',views.index,name="index"),
]

Definition in view method
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 return HttpResponsePermanentRedirect(reverse('coffee-banners:index'))
 return HttpResponsePermanentRedirect(reverse('tea-banners:index'))
 return HttpResponsePermanentRedirect(reverse('food-banners:index'))

Definition in template
Coffee banners
Tea banners
Food banners

In Listing 2-18 you can see we have three urls that point to the same coffeehouse.banners.urls file
and each has its own unique namespace. Next, let’s take a look at the various reverse method and {% url
%} tag examples in Listing 2-18.

Both the reverse method and {% url %} tag examples in Listing 2-18 resolve to the three different url
names using the <namespace>:<name> syntax. So you can effectively deploy multiple instances of the same
Django app using just namespace and name.

However, by relying on just namespace and name the resolved url names cannot adapt dynamically to
the different app instances, which is an edge case associated with internal app logic that must be included to
support multiple instances of a Django app. Now let’s take a look at both a view and template scenario that
illustrates this scenario and how the app_name attribute solves this problem.

Suppose inside the banners app you want to redirect control to the app’s main index url (e.g., due to
an exception). Now put on an app designer hat, how would you resolve this problem? As an app designer
you don’t even know about the coffee-banners, tea-banners or food-banners namespaces, as these are
deployment namespaces. How would you internally integrate a redirect in the app that adapts to multiple
instances of the app being deployed? This is the purpose of the app_name parameter.

Listing 2-19 illustrates how to leverage the app_name attribute to dynamically determine where to make
a redirect.

Listing 2-19.  Django redirect that leverages app_name to determine url

Main urls.py
from django.conf.urls import include, url

urlpatterns = [
 url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage"),
 url(r'^coffeebanners/',include('coffeehouse.banners.urls',namespace="coffee-banners")),
 url(r'^teabanners/',include('coffeehouse.banners.urls',namespace="tea-banners")),
 url(r'^foodbanners/',include('coffeehouse.banners.urls',namespace="food-banners")),
]

Chapter 2 ■ Django Urls and Views

46

Banners urls.py
from django.conf.urls import url
from . import views

app_name = 'banners_adverts'
urlpatterns = [
 url(r'^$',views.index,name="index"),
]

Logic inside Banners app
from django.http import HttpResponsePermanentRedirect
from django.core.urlresolvers import reverse

def method(request):

 try:
 ...
 except:
 return HttpResponsePermanentRedirect(reverse('banners_adverts:index'))

Notice the urls.py file in Listing 2-19 of the banners app sets the app_name attribute before declaring
the urlpatterns value. Next, notice the reverse method in Listing 2-19 uses the banners_adverts:index
value, where banners_adverts represents the app_name. This is an important convention, because Django
relies on the same syntax to search for app_name or namespace matches.

So to what url do you think banners_adverts:index resolves to? It all depends on where the
navigation takes place, it’s dynamic! If a user is navigating through the coffee-banners app instance (i.e., url
coffeebanners) then Django resolves banners_adverts:index to the coffee-banners instance index, if a
user is navigating through the tea-banners app instance (i.e., url teabanners) then Django resolves banners_
adverts:index to the tea-banners instance index, and so on for any other number of instances. In case a
user is navigating outside of a banners app instance (i.e., there is no app instance) then Django defaults to
resolving banners_adverts:index to the last defined instance in urls.py, which would be food-banners.

In this manner and based on where the request path instance a user is coming from (e.g., if the user is on a
path with /coffeebanners/ or /teabanners/), the reverse method resolves banners_adverts:index dynamically
to one of the three url app instances vs. hard-coding specific url namespaces as shown in Listing 2-18.

Now let’s assume the banners app has an internal template with a link to the app’s main index url.
Similarly, how would you generate this link in the template to take into account the possibility of multiple
app instances? Relying on the same app_name parameter solves this problem for the template link illustrated
in Listing 2-20.

Listing 2-20.  Django template link that leverages app_name to determine url

template banners/index.html
{% url 'banners_adverts:index' %}

Notice the {% url %} tag in Listing 2-20 points to banners_adverts:index. The resolution process for the
banners_adverts:index is the same outlined in the previous method example that uses the reverse method.

If a user is navigating through the coffee-banners app instance (i.e., url coffeebanners) then Django
resolves banners_adverts:index to the coffee-banners instance index, if a user is navigating through
the tea-banners app instance (i.e., url teabanners) then Django resolves banners_adverts:index to the
tea-banners instance index, and so on for any other number of instances. In case a user is navigating
outside of a banners app instance (i.e., there is no app instance) then Django defaults to resolving banners_
adverts:index to the last defined instance in urls.py that would be food-banners.

Chapter 2 ■ Django Urls and Views

47

As you can see, the app_name attribute’s purpose is to give Django app designers an internal mechanism
by which to integrate logic for named urls that dynamically adapt to multiple instances of the same app. For
this reason, it’s not as widely used for url naming and can be generally foregone in most cases in favor of just
using the namespace and name attributes.

View Method Requests
So far you’ve worked with Django view methods and their input – a request object and parameters – as well
as their output, consisting of generating a direct response or relying on a template to generate a response.
However, now it’s time to take a deeper look at what’s available in view method requests and the various
alternatives to generate view method responses.

The request reference you’ve placed unquestionably in view methods up to this point, is an instance
of the django.http.request.HttpRequest class.3 This request object contains information set by entities
present before a view method: a user’s web browser, the web server that runs the application, or a Django
middleware class configured on the application.

The following list shows some of the most common attributes and methods available in a request
reference:

•	 request.method.- Contains the HTTP method used for the request (e.g., GET, POST).

•	 request.GET or request.POST.- Contains parameters added as part of a GET or
POST request, respectively. Parameters are enclosed as a django.http.request.
QueryDict4 instance.

•	 request.POST.get('name',default=None).- Gets the value of the name
parameter in a POST request or gets None if the parameter is not present. Note
default can be overridden with a custom value.

•	 request.GET.getlist('drink',default=None).- Gets a list of values for the
drink parameter in a GET request or gets an empty list None if the parameter is
not present. Note default can be overridden with a custom value.

•	 request.META.- Contains HTTP headers added by browsers or a web server as part of
the request. Parameters are enclosed in a standard Python dictionary where keys are
the HTTP header names – in uppercase and underscore (e.g., Content-Length as key
CONTENT_LENGTH).

•	 request.META['REMOTE_ADDR'].- Gets a user's remote IP address.

•	 request.user.- Contains information about a Django user (e.g., username, email)
linked to the request. Note user refers to the user in the django.contrib.auth
package and is set via Django middleware, described later in this chapter.

As you can attest from this brief list, the request reference contains a lot of actionable information to
fulfill business logic (e.g., you can respond with certain content based on geolocation information from
a user's IP address). There are well over 50 request options available between django.http.request.
HttpRequest and django.http.request.QueryDict attributes and methods, all of which are explained in
parts of the book where they’re pertinent – however you can review the full extent of request options in the
footnote links in the previous page.

3https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#HttpRequest
4https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#QueryDict

https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#HttpRequest
https://docs.djangoproject.com/en/1.11/_modules/django/http/request/#QueryDict

Chapter 2 ■ Django Urls and Views

48

Once you’re done extracting information from a request reference and doing related business logic
with it (e.g., querying a database, fetching data from a third-party REST service), you then need to set up data
in a view method to send it out as part of a response.

To set up data in a Django view method, you first need to declare it or extract it inside the method body.
You can declare strings, numbers, lists, tuples, dictionaries, or any other Python data structure.

Once you declare or extract the data inside a view method, you create a dictionary to make the data
accessible on Django templates. The dictionary keys represent the reference names for the template, while
the values are the data structures themselves. Listing 2-21 illustrates a view method that declares multiple
data structures and passes them to a Django template.

Listing 2-21.  Set up dictionary in Django view method for access in template

from django.shortcuts import render

def detail(request,store_id='1',location=None):
 # Create fixed data structures to pass to template
 # data could equally come from database queries
 # web services or social APIs
 STORE_NAME = 'Downtown'
 store_address = {'street':'Main #385','city':'San Diego','state':'CA'}
 store_amenities = ['WiFi','A/C']
 store_menu = ((0,''),(1,'Drinks'),(2,'Food'))
 values_for_template = {'store_name':STORE_NAME, 'store_address':store_address, 'store_
amenities':store_amenities, 'store_menu':store_menu}
 return render(request,'stores/detail.html', values_for_template)

Notice in Listing 2-21 how the render method includes the values_for_template dictionary. In
previous examples, the render method just included the request object and a template to handle the
request. In Listing 2-21, a dictionary is passed as the last render argument. By specifying a dictionary as the
last argument, the dictionary becomes available to the template - which in this case is stores/detail.html.

■■ Tip  If you plan to access the same data on multiple templates, instead of declaring it on multiple views,
you can use a context processor to declare it once and make it accessible on all project templates. The next
chapter on Django templates discusses this topic.

The dictionary in Listing 2-21 contains keys and values that are data structures declared in the method
body. The dictionary keys become references to access the values inside Django templates.

OUTPUT VIEW METHOD DICTIONARY IN DJANGO TEMPLATES

Although the next chapter covers Django templates in depth, the following snippet shows how to output
the dictionary values in Listing 2-21 using the {{}} syntax.

<h4>{{store_name}} store</h4>
<p>{{store_address.street}}</p>
<p>{{store_address.city}},{{store_address.state}}</p>
<hr/>
<p>We offer: {{store_amenities.0}} and {{store_amenities.1}}</p>
<p>Menu includes : {{store_menu.1.1}} and {{store_menu.2.1}}</p>

Chapter 2 ■ Django Urls and Views

49

The first declaration {{store_name}} uses the stand-alone key to display the Downtown value. The
other access declarations use dot(.) notation because the values themselves are composite data
structures.

The store_address key contains a dictionary, so to access the internal dictionary values you use
the internal dictionary key separated by a dot(.). store_address.street displays the street value,
store_address.city displays the city value, and store_address.state displays the state value.

The store_amenities key contains a list that uses a similar dot(.) notation to access internal values.
However, since Python lists don’t have keys you use the list index number. store_amenities.0
displays the first item in list store_amenities and store_amenities.1 displays the second item in list
store_amenities.

The store_menu key contains a tuple of tuples that also requires a number on account of the lack of
keys. {{store_menu.1.1}} displays the second tuple value of the second tuple value of store_menu
and {{store_menu.2.1}} displays the second tuple value of the third tuple of store_menu.

View Method Responses
The render() method to generate view method responses you’ve used up to this point is actually a shortcut.
You can see toward the top of Listing 2-21, the render() method is part of the django.shortcuts package.

This means there are other alternatives to the render() method to generate a view response, albeit the
render() method is the most common technique. For starters, there are three similar variations to generate
view method responses with data backed by a template, as illustrated in Listing 2-22.

Listing 2-22.  Django view method response alternatives

Option 1)
from django.shortcuts import render

def detail(request,store_id='1',location=None):
 ...
 return render(request,'stores/detail.html', values_for_template)

Option 2)
from django.template.response import TemplateResponse

def detail(request,store_id='1',location=None):
 ...
 return TemplateResponse(request, 'stores/detail.html', values_for_template)

Option 3)
from django.http import HttpResponse
from django.template import loader, Context

def detail(request,store_id='1',location=None):
 ...
 response = HttpResponse()
 t = loader.get_template('stores/detail.html')
 c = Context(values_for_template)
 return response.write(t.render(c))

Chapter 2 ■ Django Urls and Views

50

The first option in Listing 2-22 is the django.shortcuts.render() method that shows three arguments
to generate a response: the (required) request reference, a (required) template route and an (optional)
dictionary – also known as the context – with data to pass to the template.

There are three more (optional) arguments for the render() method that are not shown in Listing 2-22:
content_type that sets the HTTP Content-Type header for the response and which defaults to DEFAULT_
CONTENT_TYPE parameter in settings.py, which in itself defaults to text/html; status that sets the HTTP
Status code for the response that defaults to 200; and using to specify the template engine – either jinja2
or django – to generate the response. The next section on HTTP handling for the render() method describes
how to use content_type & status, while Chapters 3 and 4 talk about Django and Jinja template engines.

The second option in Listing 2-22 is the django.template.response.TemplateResponse() class, which
in terms of input is nearly identical to the render() method. The difference between the two variations is
that TemplateResponse() can alter a response once a view method is finished (e.g., via middleware), where
as the render() method is considered the last step in the life cycle after a view method finishes. You should
use TemplateResponse() when you foresee the need to modify view method responses in multiple view
methods after they finish their work, a technique that’s discussed in a later section in this chapter on view
method middleware.

There are four more (optional) arguments for the TemplateResponse() class that are not shown in
Listing 2-22: content_type that defaults to text/html; status that defaults to 200; charset that sets the
response encoding from the HTTP Content-Type header or DEFAULT_CHARSET in settings.py that in itself
defaults to utf-8; and using to indicate the template engine – either jinja2 or django – to generate the
response.

The third option in Listing 2-22 represents the longest, albeit the most flexible response creation
process. This process first creates a raw HTTPResponse instance, then loads a template with the django.
template.loader.get_template() method, creates a Context() class to load values into the template, and
finally writes a rendered template with its context to the HTTPResponse instance. Although this is the longest
of the three options, it’s the preferred choice when a view method response requires advanced options.
The upcoming section on built-in response shortcuts for inline and streamed content, has more details on
HTTPResponse response types.

Response Options for HTTP Status and Content-Type Headers
Browsers set HTTP headers in requests to tell applications to take into account certain characteristics for
processing. Similarly, applications set HTTP headers in responses to tell browsers to take into account
certain characteristics for the content being sent out. Among the most important HTTP headers set by
applications like Django are Status and Content-Type.

The HTTP Status header is a three-digit code number to indicate the response status for a given
request. Examples of Status values are 200, which is the standard response for successful HTTP requests
and 404, which is used to indicate a requested resource could not be found. The HTTP Content-Type header
is a MIME (Multipurpose Internet Mail Extensions) type string to indicate the type of content in a response.
Examples of Content-Type values are text/html, which is the standard for an HTML content response and
image/gif, which is used to indicate a response is a GIF image.

By default and unless there’s an error, all Django view methods that create a response with django.
shortcuts.render(), a TemplateResponse() class, or HttpResponse() class – illustrated in Listing 2-22
– create a response with the HTTP Status value set to 200 and the HTTP Content-Type set to text/html.
Although these default values are the most common, if you want to send a different kind of response (e.g., an
error or non-HTML content) it’s necessary to alter these values.

Overriding HTTP Status and Content-Type header values for any of the three options in Listing 2-22
is as simple as providing the additional arguments status and/or content_type. Listing 2-23 illustrates
various examples of this process.

http://dx.doi.org/10.1007/978-1-4842-2787-9_3
http://dx.doi.org/10.1007/978-1-4842-2787-9_4

Chapter 2 ■ Django Urls and Views

51

Listing 2-23.  HTTP Content-type and HTTP Status for Django view method responses

from django.shortcuts import render

No method body(s) and only render() example provided for simplicity

Returns content type text/plain, with default HTTP 200
return render(request,'stores/menu.csv', values_for_template, content_type='text/plain')

Returns HTTP 404, wtih default text/html
NOTE: Django has a built-in shortcut & template 404 response, described in the next
section
return render(request,'custom/notfound.html',status=404)

Returns HTTP 500, wtih default text/html
NOTE: Django has a built-in shortcut & template 500 response, described in the next
section
return render(request,'custom/internalerror.html',status=500)

Returns content type application/json, with default HTTP 200
NOTE: Django has a built-in shortcut JSON response, described in the next section
return render(request,'stores/menu.json', values_for_template, content_type='application/json')

The first example in Listing 2-23 is designed to return a response with plain text content. Notice the
render method content_type argument. The second and third examples in Listing 2-23 set the HTTP
Status code to 404 and 500. Because the HTTP Status 404 code is used for resources that are not found, the
render method uses a special template for this purpose. Similarly, because the HTTP Status 500 code is
used to indicate an error, the render method also uses a special template for this purpose.

■■ Tip  Django has built-in shortcuts and templates to deal with HTTP Status codes 404 and 500, as well as
a JSON short-cut response, all of which are described in the next section and that you can use instead of the
examples in Listing 2-23.

The fourth and last example in Listing 2-23 is designed to return a response with JavaScript Object
Notation(JSON) content. The HTTP Content-Type application/json is a common requirement for
requests made by browsers that consume JavaScript data via Asynchronous JavaScript (AJAX).

Built-In Response Shortcuts and Templates for Common HTTP
Status: 404 (Not Found), 500 (Internal Server Error), 400 (Bad
Request), and 403 (Forbidden)
Although Django automatically triggers an HTTP 404 Status (Not Found) response when a page is not found
and also triggers an HTTP 500 Status (Internal Server Error) response when an unhandled exception is
thrown in a view, it has built-in shortcuts and templates that are meant to be used explicitly in Django views
when you know end users should get them. Table 2-3 illustrates the different shortcuts to trigger certain
HTTP status responses.

Chapter 2 ■ Django Urls and Views

52

As you can see in the examples in Table 2-3, the shortcut syntax is straightforward. For example, you can
make evaluations in a Django view like if article_id < 100: or if unpayed_subscription: and based on
the result throw exceptions from Table 2-3 so end users get the proper HTTP status response.

So what is the actual content sent in a response besides the HTTP status when an exception from
Table 2-3 is triggered? The default for HTTP 400 (Bad Request) and HTTP 403 (Forbidden) is a single line
HTML page that says “Bad Request (400)” and “403 Forbidden”, respectively. For HTTP 404 (Not Found)
and HTTP 500 (Internal Server Error), it depends on the DEBUG value in settings.py.

If a Django project has DEBUG=True in settings.py, HTTP 404 (Not Found) generates a page with the
available urls - as illustrated in Figure 2-1 - and HTTP 500 (Internal Server Error) generates a page with
the detailed error - as illustrated in Figure 2-2. If a Django project has DEBUG=False in settings.py, HTTP
404 (Not Found) generates a single line HTML page that says “Not Found. The requested URL <url_
location> was not found on this server.” and HTTP 500 (Internal Server Error) generates a single line
HTML page that says “A server error occurred. Please contact the administrator".

Table 2-3.  Django shortcut exceptions to trigger HTTP statuses

HTTP status code Python code sample

404 (Not Found) from django.http import Http404
raise Http404

500 (Internal Server Error) raise Exception

400 (Bad Request) from django.core.exceptions import SuspiciousOperation
raise SuspiciousOperation

403 (Forbidden) from django.core.exceptions import PermissionDenied
raise PermissionDenied

*Django automatically handles not found pages raising HTTP 404 and unhandled exceptions raising HTTP 500

Figure 2-1.  HTTP 404 for Django project when DEBUG=True

Chapter 2 ■ Django Urls and Views

53

It’s also possible to override the default response page for all the previous HTTP codes with custom
templates. To use a custom response page, you need to create a template with the desired HTTP code and
.html extension. For example, for HTTP 403 you would create the 403.html template and for HTTP 500
you would create the 500.html template. All these custom HTTP response templates need to be placed in a
folder defined in the DIRS list of the TEMPLATES variable so Django finds them before it uses the default HTTP
response templates.

■■ Caution  Custom 404.html and 500.html pages only work when DEBUG=False.

If DEBUG=True, it doesn’t matter if you have 404.html or 500.html templates in the right location,
Django uses the default response behavior illustrated in Figure 2-1 and Figure 2-2, respectively. You need to
set DEBUG=False for the custom 404.html and 500.html templates to work.

On certain occasions, using custom HTTP response templates may not be enough. For example, if you
want to add context data to a custom template that handles an HTTP response, you need to customize the
built-in Django HTTP view methods themselves, because there’s no other way to pass data into this type
of template. To customize the built-in Django HTTP view methods you need to declare special handlers in
a project’s urls.py file. Listing 2-24 illustrates the urls.py file with custom handlers for Django’s built-in
HTTP Status view methods.

Listing 2-24.  Override built-in Django HTTP Status view methods in urls.py

Overrides the default 400 handler django.views.defaults.bad_request
handler400 = 'coffeehouse.utils.views.bad_request'
Overrides the default 403 handler django.views.defaults.permission_denied
handler403 = 'coffeehouse.utils.views.permission_denied'
Overrides the default 404 handler django.views.defaults.page_not_found

Figure 2-2.  HTTP 500 for Django project when DEBUG=True

Chapter 2 ■ Django Urls and Views

54

handler404 = 'coffeehouse.utils.views.page_not_found'
Overrides the default 500 handler django.views.defaults.server_error
handler500 = 'coffeehouse.utils.views.server_error'

urlpatterns = [....
]

■■ Caution  If DEBUG=True, the handler404 and handler500 handlers won’t work, Django keeps using the
built-in Django HTTP view methods. You need to set DEBUG=False for the handler404 and handler500 handlers
to work.

As you can see in Listing 2-24, there are a series of variables in urls.py right above the standard
urlpatterns variable. Each variable in Listing 2-24 represents an HTTP Status handler, with its value
corresponding to a custom Django view to process requests. For example, handler400 indicates that all
HTTP 400 requests should be handled by the Django view method coffeehouse.utils.views.bad_request
instead of the default django.views.defaults.bad_request. The same approach is taken for HTTP 403
requests using handler403, HTTP 404 requests using handler404 and HTTP 500 requests using handler500.

As far as the actual structure of custom Django view methods is concerned, they are identical to any
other Django view method. Listing 2-26 shows the structure of the custom view methods used in Listing 2-25.

Listing 2-25.  Custom views to override built-in Django HTTP view methods

from django.shortcuts import render

def page_not_found(request):
 # Dict to pass to template, data could come from DB query
 values_for_template = {}
 return render(request,'404.html',values_for_template,status=404)

def server_error(request):
 # Dict to pass to template, data could come from DB query
 values_for_template = {}
 return render(request,'500.html',values_for_template,status=500)

def bad_request(request):
 # Dict to pass to template, data could come from DB query
 values_for_template = {}
 return render(request,'400.html',values_for_template,status=400)

def permission_denied(request):
 # Dict to pass to template, data could come from DB query
 values_for_template = {}
 return render(request,'403.html',values_for_template,status=403)

As you can see in Listing 2-26, the custom HTTP view methods use the same render method from
django.shortcuts as the previous view method examples. The methods point to a template named by the
HTTP Status code, use a custom data dictionary that becomes accessible on the template and uses the
status argument to indicate the HTTP status code.

Chapter 2 ■ Django Urls and Views

55

Built-In Response Shortcuts for Inline and Streamed Content
All the prior view response examples have worked on the basis of content being structured through a
template. However, there can be times when using a template to output a response is unnecessary (e.g., a
one-line response that says “Nothing to see here”).

Other times it makes no sense for a response to use a template, such is the case for HTTP 301
(Permanent Redirect) or HTTP 302 (Redirect) where the response just requires a redirection url. Table 2-4
illustrates the different shortcuts to trigger HTTP redirects.

Both samples in Table 2-4 redirect to an application’s home page (i.e., "/"). However, you can also set the
redirection to any application url or even a full url on a different domain (e.g., http://maps.google.com/).

In addition to response redirection shortcuts, Django also offers a series of response shortcuts where
you can add inline responses. Table 2-5 illustrates the various other shortcuts for HTTP status codes with
inline content responses.

Table 2-4.  Django shortcuts for HTTP redirects

HTTP status code Python code sample

301 (Permanent Redirect) from django.http import HttpResponsePermanentRedirect
return HttpResponsePermanentRedirect(“/”)

302 (Redirect) from django.http import HttpResponseRedirect
return HttpResponseRedirect(“/”)

Table 2-5.  Django shortcuts for inline and streaming content responses

Purpose or HTTP Status code Python code sample

304 (NOT MODIFIED) from django.http import HttpResponseNotModified
return HttpResponseNotModified()*

400 (BAD REQUEST) from django.http import HttpResponseBadRequest
return HttpResponseBadRequest(“<h4>The request doesn’t
look right</h4>”)

404 (NOT FOUND) from django.http import HttpResponseNotFound
return HttpResponseNotFound(“<h4>Ups, we can’t find
that page</h4>”)

403 (FORBIDDEN) from django.http import HttpResponseForbidden
return HttpResponseForbidden(“Can’t look at anything
here”,content_type=“text/plain”)

405 (METHOD NOT ALLOWED) from django.http import HttpResponseNotAllowed
return HttpResponseNotAllowed(“<h4>Method not
allowed</h4>”)

410 (GONE) from django.http import HttpResponseGone
return HttpResponseGone(“No longer here”,content_
type=“text/plain”)

500 (INTERNAL SERVER ERROR) from django.http import HttpResponseServerError
return HttpResponseServerError(“<h4>Ups, that’s a mistake
on our part, sorry!</h4>”)

(continued)

http://maps.google.com/

Chapter 2 ■ Django Urls and Views

56

As you can see in the samples in Table 2-5, there are multiple shortcuts to generate different HTTP
Status responses with inline content and entirely forgo the need to use a template. In addition, you can see
the shortcuts in Table 2-5 can also accept the content_type argument if the content is something other than
HTML (i.e., content_type=text/html).

Since non-HTML responses have become quite common in web applications, you can see Table 2-5
also shows three Django built-in response shortcuts to output non-HTML content. The JsonResponse class
is used to transform an inline response into JavaScript Object Notation (JSON). Because this response
converts the payload to a JSON data structure, it automatically sets the content type to application/json.
The StreamingHttpResponse class is designed to stream a response without the need to have the entire
payload in-memory, a scenario that’s helpful for large payload responses. The FileResponse class – a
subclass of StreamingHttpResponse – is designed to stream binary data (e.g., PDF or image files).

This takes us to the last entry in Table 2-5, the HttpResponse class. As it turns out, all the shortcuts in
Table 2-5 are customized subclasses of the HttpResponse class, which I initially described in Listing 2-22 as
one of the most flexible techniques to create view responses.

The HttpResponse method is helpful to create responses for HTTP status codes that don’t have direct
shortcut methods (e.g., HTTP 408 [Request Timeout], HTTP 429 [Too Many Requests]) or to inclusively
harness a template to generate inline responses as illustrated in Listing 2-26.

Listing 2-26.  HttpResponse with template and custom CSV file download

from django.http import HttpResponse
from django.utils import timezone
from django.template import loader, Context

response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename=Users_%s.csv' % str(timezone.now().
today())
t = loader.get_template('dashboard/users_csvexport.html')
c = Context({'users': sorted_users,})
response.write(t.render(c))
return response

Purpose or HTTP Status code Python code sample

Inline response that serializes data to JSON
(Defaults to HTTP 200 and content type
application/json)

from django.http import JsonResponse
data_dict = {’name’:’Downtown’,’address’:’Main
#385’,’city’:’San Diego’,’state’:’CA’}
return JsonResponse(data_dict)

Inline response that stream data (Defaults
to HTTP 200 and streaming content, which
is an iterator of strings)

from django.http import StreamingHttpResponse
return StreamingHttpResponse(large_data_structure)

Inline response that stream binary files
(Defaults to HTTP 200 and streaming
content)

from django.http import FileResponse
return FileResponse(open(’Report.pdf’,’rb’))

Inline response with any HTTP status code
(Defaults to HTTP 200)

from django.http import HttpResponse
return HttpResponse(“<h4>Django inline response</h4>”)

* The HTTP 304 status code indicates a “Not Modified” response, so you can't send content in the response, it
should always be empty.

Table 2-5.  (continued)

Chapter 2 ■ Django Urls and Views

57

The HTTPResponse object in Listing 2-26 is generated with a text/csv content type to advise the
requesting party (e.g., browser) that it’s about to receive CSV content. Next, the Content-Disposition
header also tells the requesting party (e.g., browser) to attempt to download the content as a file named
Users_%s.csv where the %s is substituted with the current server date.

Next, using the loader module we use the get_template method to load the template users_
csvexport.html that will have a CSV-like structure with data placeholders. Then we create a Context object
to hold the data that will fill the template, which in this case it’s just a single variable named users. Next, we
call the template’s render method with the context object in order to fill in the template’s data placeholders
with the data. Finally, the rendered template is written to the response object via the write method and the
response object is returned.

The HttpResponse class offers over 20 options between attributes and methods,5 in addition to the
content_type and status parameters.

View Method Middleware
In most circumstances, data in requests and responses is added, removed, or updated in a piecemeal
fashion in view methods. However, sometimes it’s convenient to apply these changes on all requests and
responses.

For example, if you want to access certain data on all view methods, it’s easier to use a middleware
class to make this data accessible across all requests. Just as if you want to enforce a security check on all
responses, it’s easier to do so globally with a middleware class.

Since middleware is a rather abstract concept, before I describe the structure of a Django middleware
class, I’ll walk you through the various built-in Django middleware classes so you can get a firmer
understanding of where middleware is good design choice.

Built-In Middleware Classes
Django comes equipped with a series of middleware classes, some of which are enabled by default on all
Django projects. If you open a Django project’s settings.py file you’ll notice the MIDDLEWARE variable whose
default contents are shown in Listing 2-27.

Listing 2-27.  Default Django middleware classes in MIDDLEWARE

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

As you can see in Listing 2-27, Django projects in their out-of-the-box state come enabled with seven
middleware classes, so all requests and responses are set to run through these seven classes. If you plan
to leverage Django’s main features, I advise you not to remove any of these default middleware classes.
However, you can leave the MIDDLEWARE variable empty if you wish; just be aware doing so may break certain
Django functionalities.

5https://docs.djangoproject.com/en/1.11/ref/request-response/#django.http.HttpResponse

https://docs.djangoproject.com/en/1.10/ref/request-response/#django.http.HttpResponse

Chapter 2 ■ Django Urls and Views

58

To give you a better understanding of what the Django middleware classes in Listing 2-27 do and help
you make a more informed decision to disable them or not, Table 2-6 describes the functionality for each of
these middleware classes.

As you can see in Table 2-6, although the purpose of the various default middleware classes varies
considerably, their functionality applies to features that need to be applied across all requests or responses
in a project.

Another important factor of the middleware classes in Table 2-6 is that some are dependent on others.
For example, the AuthenticationMiddleware class is designed on the assumption it will have access to
functionality provided by the SessionMiddleware class. Such dependencies are important because it makes
the middleware class definition order relevant (i.e., certain middleware classes need to be defined before
others in MIDDLEWARE), a topic I’ll elaborate on more in the next section.

In addition to the default middleware classes presented in Table 2-6, Django also offers other
middleware classes. Table 2-7 illustrates the remaining set of Django middleware classes you can leverage in
your projects, which can be helpful so you don’t have to write middleware classes from scratch.

Table 2-6.  Django default middleware classes and functionality

Middleware class Functionality

django.middleware.security.
SecurityMiddleware

Provides security enhancements, such as:

• �SSL redirects based on the SECURE_SSL_REDIRECT and
SECURE_SSL_HOST settings.

• �Strict transport security through a variety of settings.

django.contrib.sessions.middleware.
SessionMiddleware

Enables session support.

django.middleware.common.
CommonMiddleware

Provides a common set of features, such as:

• �Forbidding access to user agents in the DISALLOWED_USER_
AGENTS setting, which can be a list of compiled regular
expression objects.

• �Performing url rewriting based on the APPEND_SLASH and
PREPEND_WWW settings in order to normalize urls.

• �Setting the HTTP Content-Length header for non-streaming
responses.

django.middleware.csrf.
CsrfViewMiddleware

Adds protection against Cross Site Request Forgeries by adding
hidden form fields to POST forms and checking requests for the
correct value.

django.contrib.auth.middleware.
AuthenticationMiddleware

Adds the user attribute, representing the currently logged-in user,
to every incoming HttpRequest object. NOTE: This middleware
class depends on functionality from the middleware django.
contrib.sessions.middleware. SessionMiddleware and must appear
after it.

django.contrib.messages.middleware.
MessageMiddleware

Enables cookie-based and session-based message support.
NOTE: This middleware class depends on functionality
from the middleware django.contrib.sessions.middleware.
SessionMiddleware and must appear after it.

django.middleware.clickjacking.
XFrameOptionsMiddleware

Provides clickjacking protection via the X-Frame-Options
header. For more details on what is clickjacking see: http://
en.wikipedia.org/wiki/Clickjacking.

http://en.wikipedia.org/wiki/Clickjacking
http://en.wikipedia.org/wiki/Clickjacking

Chapter 2 ■ Django Urls and Views

59

Table 2-7.  Other Django middleware classes and functionality

Middleware class Functionality

django.middleware.cache.
UpdateCacheMiddleware

Response-phase cache middleware that updates the cache if the
response is cacheable. NOTE: UpdateCacheMiddleware must be the
first piece of middleware in MIDDLEWARE so that it’ll get called last
during the response phase.

django.middleware.cache.
FetchFromCacheMiddleware

Request-phase cache middleware that fetches a page from the
cache. NOTE: FetchFromCacheMiddleware must be the last piece of
middleware in MIDDLEWARE so that it’ll get called last during the
request phase.

django.middleware.common.
BrokenLinkEmailsMiddleware

Sends broken link notification emails to MANAGERS.

django.middleware.
ExceptionMiddleware

Django uses this middleware regardless of whether or not you
include it in MIDDLEWARE; however, you may want to subclass if
your own middleware needs to transform the exceptions it handles
into the appropriate responses.

django.middleware.gzip.
GZipMiddleware

Compresses content for browsers that understand GZip
compression. NOTE: GZipMiddleware should be placed before any
other middleware that need to read or write the response body so
that compression happens afterward. Compression is only done by
this middleware if the request party sends gzip on the HTTP Accept-
Encoding header and if content is larger than 200 bytes and the
response hasn’t set the HTTP Content-Encoding header.

django.middleware.http.
ConditionalGetMiddleware

Handles conditional GET operations. If the response doesn’t have an
HTTP ETag header, one is added. If the response has an ETag or Last-
Modified header, and the request has If-None-Match or If-Modified-
Since, the response is replaced by an HttpNotModified.

django.middleware.locale.
LocaleMiddleware

Parses a request and decides what translation object to install in
the current thread context. This allows pages to be dynamically
translated to the language the user desires.

django.contrib.sites.middleware.
CurrentSiteMiddleware

Adds the site attribute representing the current site to every
incoming HttpRequest object.

django.contrib.auth.middleware.
PersistentRemoteUserMiddleware

Adds REMOTE_USER -- available in request.META -- via an external
source (e.g., web server) for the purpose of Django authentication.

django.contrib.auth.middleware.
RemoteUserMiddleware

Allows web-server-provided authentication. If request.user is
not authenticated, this middleware attempts to authenticate
the username passed in the REMOTE_USER request header. If
authentication is successful, the user is automatically logged in to
persist the user in the session.

django.contrib.
flatpages.middleware.
FlatpageFallbackMiddleware

Each time a Django application raises a 404 error, this middleware
checks the flatpages database for the requested url as a last resort.

django.contrib.
redirects.middleware.
RedirectFallbackMiddleware

Each time a Django application raises a 404 error, this middleware
checks the redirects database for the requested url as a last resort.

Chapter 2 ■ Django Urls and Views

60

Now that you know about Django’s built-in middleware classes and what they’re used for, let’s take a
look at the structure of middleware classes and their execution process.

Middleware Structure and Execution Process
A Django middleware class has two required methods and three optional methods that execute at different
points of the view request/response life cycle. Listing 2-28 illustrates a sample middleware class with its
various parts.

Listing 2-28.  Django middleware class structure

class CoffeehouseMiddleware(object):

 def __init__(self, get_response):
 self.get_response = get_response
 # One-time configuration and initialization on start-up

 def __call__(self, request):
 # Logic executed on a request before the view (and other middleware) is called.

 # get_response call triggers next phase
 response = self.get_response(request)

 # Logic executed on response after the view is called.

 # Return response to finish middleware sequence
 return response

 def process_view(self, request, view_func, view_args, view_kwargs):
 # Logic executed before a call to view
 # Gives access to the view itself & arguments

 def process_exception(self,request, exception):
 # Logic executed if an exception/error occurs in the view

 def process_template_response(self,request, response):
 # Logic executed after the view is called,
 # ONLY IF view response is TemplateResponse, see listing 2-22

In order for view methods to execute the Django middleware class in Listing 2-28, middleware classes
must be added to the MIDDLEWARE variable in settings.py. So for example, if the CoffeehouseMiddleware
class in Listing 2-28 is stored in a file/module named middleware.py under the coffeehouse/utils/ project
folders, you would add the coffeehouse.utils.middleware.CoffeeMiddleware statement to the list of
MIDDLEWARE values in settings.py.

Next, I’ll describe the two required methods in all Django middleware class shown in Listing 2-28:

•	 __init__.- Used in all Python classes to bootstrap object instances. The __init__
method in Django middleware classes only gets called once, when the web server
backing the Django application starts. The __init__ method in Django middleware
must declare a get_response input, which represents a reference to a prior
middleware class response. The get_response input is assigned to an instance

Chapter 2 ■ Django Urls and Views

61

variable – also named get_response – which is later used in the main processing
logic of the middleware class. The purpose of the get_response reference should
become clearer shortly when I expand on the Django middleware execution process.

•	 __call__.- Used in all Python classes to call an object instance as a function. The __
call__ method in Django middleware classes is called on every application request.
As you can see in Listing 2-28, the __call__ method declares a request input that
represents the same HttpRequest object used by view methods. The __call__
method goes through three phases:

•	 Before view method call.- Once the __call__ method is triggered, you get the
opportunity to alter the request reference before it’s passed to a view method. If
you want to add or modify something in request before it gets turned over to a
view method, this is the phase to do it in.

•	 Trigger view method call.- After you modify (or not) the original request, you
must turn over control to the view method in order for it to run. This phase is
triggered when you pass request to the self.get_response reference you set
in the __init__ method. This phase effectively says, “I’m done modifying the
request, go ahead and turn it over to the view method so it can run.”

•	 Post view method call.- Once a view method finishes, the results are assigned
to the response reference in __call__. In this phase, you have the opportunity
to perform logic after a view method finishes. You exit this phase by simply
returning the response reference from the view method (i.e., return response).

This is the core logic behind every Django middleware class performed by these two required methods.
Now let’s take a look at the three optional middleware class methods presented in Listing 2-28:

•	 process_view.- The required middleware methods – __init__ and __call__ – lack
any knowledge about the view method they’re working on. The process_view
method gives you access to a view method and its argument before the view method
is triggered. If present, the process_view middleware method is invoked right after
__call__ and before calling self.get_response(request), which triggers the view
method.

•	 process_exception.- If an error occurs in the logic of a view method, the process_
exception middleware method is invoked to give you the opportunity to perform
post-error clean-up logic.

•	 process_template_response.- After the self.get_response(request) is called and
a view method finishes, it can be necessary to alter the response itself to perform
additional logic on it (e.g., modify the context or template). If present, the process_
template_response middleware method is invoked after a view method finishes to
give you the opportunity to tinker with the response.

■■ Warning T he process_template_response middleware method is only triggered if a view method returns a
TemplateResponse. If a view method generates a response with render() the process_template_response is not
triggered. See Listing 2-22 for view method responses for more details.

Chapter 2 ■ Django Urls and Views

62

In summary, the execution process for a single middleware class is the following:

	 1.	 __init__ method triggered (On server startup).

	 2.	 __call__ method triggered (On every request).

	 3.	 If declared, process_view() method triggered.

	 4.	 View method starts with self.get_response(request) statement in __call__.

	 5.	 If declared, process_exception() method triggered when exception occurs in
view.

	 6.	 View method finishes.

	 7.	 If declared, process_template_response() triggered when view returns
TemplateResponse.

Although it’s important to understand the execution process of a single middleware class, a more
important aspect is to understand the execution process of multiple middleware classes. As I mentioned at
the outset of this section, Django projects are enabled with seven middleware classes shown in Listing 2-27,
so the execution of multiple middleware classes is more the norm rather than the exception.

Django middleware classes are executed back to back, but the view method represents an inflection point
in their execution order. The execution order for the default middleware classes in Listing 2-27 is the following:

Server start-up

__init__ on django.middleware.security.SecurityMiddleware called
__init__ on django.contrib.sessions.middleware.SessionMiddleware called
__init__ on django.middleware.common.CommonMiddleware called
__init__ on django.middleware.csrf.CsrfViewMiddleware called
__init__ on django.contrib.auth.middleware.AuthenticationMiddleware called
__init__ on django.contrib.messages.middleware.MessageMiddleware called
__init__ on django.middleware.clickjacking.XframeOptionsMiddleware called

request for index() view method

__call__ on django.middleware.security.SecurityMiddleware called
process_view on django.middleware.security.SecurityMiddleware called (if declared)
__call__ on django.contrib.sessions.middleware.SessionMiddleware called
process_view on django.contrib.sessions.middleware.SessionMiddleware called (if declared)
__call__ on django.middleware.common.CommonMiddleware called
process_view on django.middleware.common.CommonMiddleware called (if declared)
__call__ on django.middleware.csrf.CsrfViewMiddleware called
process_view on django.middleware.csrf.CsrfViewMiddleware called (if declared)
__call__ on django.contrib.auth.middleware.AuthenticationMiddleware called
process_view on django.contrib.auth.middleware.AuthenticationMiddleware called (if declared)
__call__ on django.contrib.messages.middleware.MessageMiddleware called
process_view on django.contrib.messages.middleware.MessageMiddleware called (if declared)
__call__ on django.middleware.clickjacking.XframeOptionsMiddleware called
process_view on django.middleware.clickjacking.XframeOptionsMiddleware called (if declared)

start index() view method logic

if an exception occurs in index() view
process_exception on django.middleware.clickjacking.XframeOptionsMiddleware called (if declared)
process_exception on django.contrib.messages.middleware.MessageMiddleware called (if declared)

Chapter 2 ■ Django Urls and Views

63

process_exception on django.contrib.auth.middleware.AuthenticationMiddleware called(if
declared)
process_exception on django.middleware.csrf.CsrfViewMiddleware called (if declared)
process_exception on django.middleware.common.CommonMiddleware called (if declared)
process_exception on django.contrib.sessions.middleware.SessionMiddleware called (if declared)
process_exception on django.middleware.security.SecurityMiddleware called (if declared)

if index() view returns TemplateResponse
process_template_response on django.middleware.clickjacking.XframeOptionsMiddleware called
(if declared)
process_template_response on django.contrib.messages.middleware.MessageMiddleware called (if
declared)
process_template_response on django.contrib.auth.middleware.AuthenticationMiddleware
called(if declared)
process_template_response on django.middleware.csrf.CsrfViewMiddleware called (if declared)
process_template_response on django.middleware.common.CommonMiddleware called (if declared)
process_template_response on django.contrib.sessions.middleware.SessionMiddleware called (if
declared)
process_template_response on django.middleware.security.SecurityMiddleware called (if declared)

Notice the execution order for middleware classes prior to entering the execution of the view method,
follows the declared order (i.e., first declared runs first, last declared last). But once the view method is
executed, the middleware execution order is inverted (i.e., last declared runs first, first declared last).

This behavior is similar to a corkscrew, where to get to the center (view method), you move in one
direction (1 to 7) and to move out you go in the opposite direction (7 to 1). Therefore the middleware
methods process_exception and process_template_response execute in the opposite order of __init__,
__call__ and process_view.

Visually the execution process for the default Django middleware classes in Listing 2-27 is illustrated in
Figure 2-3.

Figure 2-3.  Django middleware execution process

Chapter 2 ■ Django Urls and Views

64

Middleware Flash Messages in View Methods
Flash messages are typically used when users perform an action (e.g., submit a form) and it’s necessary to
tell them if the action was successful or if there was some kind of error. Other times flash messages are used
as one-time notifications on web pages to tell users about certain events (e.g., site maintenance or special
discounts). Figure 2-4 shows a set of sample flash messages.

DJANGO FLASH MESSAGES REQUIRE A DJANGO APP,
MIDDLEWARE, AND A TEMPLATE CONTEXT PROCESSOR

By default, all Django projects are enabled to support flash messages. However, if you tweaked your
project’s settings.py file you may have inadvertently disabled flash messages.

In order for Django flash messages to work you must ensure the following values are set in settings.py:
The variable INSTALLED_APPS has the django.contrib.messages value, the variable MIDDLEWARE has
the django.contrib.messages.middleware.MessageMiddleware value, and the context_processors list in
OPTIONS of the TEMPLATES variable has the django.contrib.messages.context_processors.messages value.

As you can see in Figure 2-4 there can be different types of flash messages, which are technically known
as levels. Django follows the standard Syslog standard severity levels and supports five built-in message
levels described in Table 2-8.

Table 2-8.  Django built-in flash messages

Level Constant Tag Value Purpose

DEBUG debug 10 Development-related messages that will be ignored (or
removed) in a production deployment.

INFO info 20 Informational messages for the user.

SUCCESS success 25 An action was successful, for example, “Contact info was sent
successfully.”

WARNING warning 30 A failure did not occur but may be imminent.

ERROR error 40 An action was not successful or some other failure occurred.

Figure 2-4.  Web page flash messages

Chapter 2 ■ Django Urls and Views

65

Add Flash Messages
Django flash messages are managed on a per request basis and are added in view methods, as this is the best
place to determine whether flash messages are warranted. To add messages you use the django.contrib.
messages package.

There are two techniques to add flash messages with the django.contrib.messages package: one is
the generic add_message() method, and the other is shortcuts methods for the different levels described in
Table 2-8. Listing 2-29 illustrates the different techniques.

Listing 2-29.  Techniques to add Django flash messages

from django.contrib import messages

Generic add_message method
messages.add_message(request, messages.DEBUG, 'The following SQL statements were executed:
%s' % sqlqueries) # Debug messages ignored by default
messages.add_message(request, messages.INFO, 'All items on this page have free shipping.')
messages.add_message(request, messages.SUCCESS, 'Email sent successfully.')
messages.add_message(request, messages.WARNING, 'You will need to change your password in
one week.')
messages.add_message(request, messages.ERROR, 'We could not process your request at this
time.')

Shortcut level methods
messages.debug(request, 'The following SQL statements were executed: %s' % sqlqueries) #
Debug messages ignored by default
messages.info(request, 'All items on this page have free shipping.')
messages.success(request, 'Email sent successfully.')
messages.warning(request, 'You will need to change your password in one week.')
messages.error(request, 'We could not process your request at this time.')

The first set of samples in Listing 2-29 uses the add_message() method, where as the second set uses
shortcut level methods. Both sets of samples in Listing 2-29 produce the same results.

If you look closely at Listing 2-29 you’ll notice both DEBUG level messages have the end-of-line comment
Ignored by default. The Django messages framework by default processes all messages above the INFO
level (inclusive), which means DEBUG messages – being a lower-level message threshold, as described in
Table 2-8 – are ignored even though they might be defined.

You can change the default Django message level threshold to include all message levels or inclusively
reduce the default INFO threshold. The default message level threshold can be changed in one of two ways:
globally (i.e., for the entire project) in settings.py with the MESSAGE_LEVEL variable as illustrated in
Listing 2-30 or on a per request basis with the set_level method of the django.contrib.messages package
as illustrated in Listing 2-31.

Listing 2-30.  Set default Django message level globally in settings.py

Reduce threshold to DEBUG level in settings.py
from django.contrib.messages import constants as message_constants
MESSAGE_LEVEL = message_constants.DEBUG

Increase threshold to WARNING level in setting.py
from django.contrib.messages import constants as message_constants
MESSAGE_LEVEL = message_constants.WARNING

Chapter 2 ■ Django Urls and Views

66

Listing 2-31.  Set default Django message level on a per request basis

Reduce threshold to DEBUG level per request
from django.contrib import messages
messages.set_level(request, messages.DEBUG)

Increase threshold to WARNING level per request
from django.contrib import messages
messages.set_level(request, messages.WARNING)

The first MESSAGE_LEVEL definition in Listing 2-30 changes the default message level to DEBUG, which
means all message level definitions get processed, since DEBUG is the lowest threshold. The second
MESSAGE_LEVEL definition in Listing 2-30 changes the default message level to WARNING, which means
message levels higher than WARNING (inclusive) are processed (i.e., WARNING and ERROR).

The first set_level definition in Listing 2-31 changes the default request message level to DEBUG, which
means all message level definitions get processed, since DEBUG is the lowest threshold. The second
set_level definition in Listing 2-31 changes the default message level to WARNING, which means message
levels higher than WARNING (inclusive) are processed (i.e., WARNING and ERROR).

If you define both default message level mechanisms at once, the default request message level
takes precedence over the default global message level definition (e.g., if you define messages.set_
level(request, messages.WARNING), message levels above WARNING (inclusive) are processed, even if
the global MESSAGE_LEVEL variable is set to MESSAGE_LEVEL = message_constants.DEBUG to include all
messages.

In addition to setting up flash messages and knowing about the built-in threshold mechanism that
ignores messages from a certain level, it’s also important you realize the message definitions in Listing 2-29
assume the Django messages framework prerequisites are declared in settings.py – as described in the
sidebar at the beginning of this section.

Because you can end up distributing a Django project to a third party and have no control over the
final deployment settings.py file, the Django messages framework offers the ability to silently ignore
message definitions in case the necessary prerequisites aren’t declared in settings.py. To silently ignore
message definitions if prerequisites aren’t declared, you can add the fail_silently=True attribute to either
technique that adds messages, as illustrated in Listing 2-32.

Listing 2-32.  Use of the fail_silently=True attribute to ignore errors in case Django messages framework not
installed

from django.contrib import messages

Generic add_message method, with fail_silently=True
messages.add_message(request, messages.INFO, 'All items on this page have free
shipping.',fail_silently=True)

Shortcut level method, with fail_silently=True
messages.info(request, 'All items on this page have free shipping.',fail_silently=True)

Now that you know how to add messages and the important aspects to keep in mind when adding
messages, let’s take a look at how to access messages.

Chapter 2 ■ Django Urls and Views

67

Access Flash Messages
The most common place you’ll access Django flash messages is in Django templates to display to end
users. As a shortcut and thanks to the context processor django.contrib.messages.context_processors.
messages Django flash messages are available on all templates through the messages variable. But before we
get to an actual template sample, let’s take a quick look at the structure of Django flash messages.

When you add a Django flash message with one of the techniques described in the previous section,
Django creates an instance of the storage.base.Message class. Table 2-9 describes the structure of the
storage.base.Message class.

As you can see in Table 2-9, there are several attributes that you can leverage to display in Django
templates. Listing 2-33 shows the boilerplate template code you can use to display all flash messages set in a
request.

Listing 2-33.  Boilerplate code to use in Django template to display Django flash messages

{% if messages %}
<ul class="messages">
 {% for msg in messages %}

 <div class="alert alert-{{msg.level_tag}}" role="alert">
 {{msg.message}}
 </div>

 {% endfor %}

{% endif %}

Listing 2-33 starts by checking if the messages variable exists - which contains all flash messages - if it
does, then an HTML list is started with . Next, a loop is made over all the elements in messages, where
each of these elements corresponds to a storage.base.Message instance. For each of these elements, a
list and section tag - and <div> - are created to output the level_tag attribute as a CSS class and the
message attribute as the <div> content.

You can modify the boilerplate code in Listing 2-33 as you see necessary, for example, to include
conditionals and output certain message levels or leverage some of the other storage.base.Message
attributes, among other things.

Table 2-9.  Django storage.base.Message structure

Attribute Description Example

message The actual text of the message. All items on this page have free
shipping.

level An integer describing the type of the message
(see Value column in Table 2-8).

20

tags A string combining all the message tags
(extra_tags and level_tag) separated by spaces.

info

extra_tags A string containing custom tags for this message,
separated by spaces.

Empty, by default.

level_tag The string representation of the level. info

Chapter 2 ■ Django Urls and Views

68

■■ Note  The HTML code in Listing 2-33 uses the CSS class class=“alert alert-{{msg.level_tag}}” that gets
rendered into class=“alert alert-info” or class=“alert alert-success”, depending on the level_tag attribute.These
CSS classes are part of the CSS bootstrap framework. In this manner, you can quickly format flash messages to
look like those presented in Figure 2-2.

Although you’ll commonly access Django flash messages in Django templates, this doesn’t mean you
can’t access them elsewhere, such as view methods. You can also gain access to Django flash messages
in a request through the get_messages() method of the django.contrib.messages package. Listing 2-34
illustrates a code snippet with the use of the get_messages() method.

Listing 2-34.  Use of get_messages() method to access Django flash messages

from django.contrib import messages

the_req_messages = messages.get_messages(request)
for msg in the_req_messages:
 do_something_with_the_flash_message(msg)

In Listing 2-34 the get_messages() method receives the request as input and assigns the result to the_
req_messages variable. Next, a loop is made over all the elements in the_req_messages, where each of these
elements corresponds to a storage.base.Message instance. For each of these elements, a call is made to the
method do_something_with_the_flash_message to do something with each flash message.

An important aspect to understand when accessing Django flash messages is the duration of the
messages themselves. Django flash messages are marked to be cleared when an iteration occurs on the main
messages instance and cleared when the response is processed.

For access in Django templates, this means that if you fail to make an iteration in a Django template
like the one in Listing 2-33 and flash messages are in the request, it can lead to stale or phantom messages
appearing elsewhere until an iteration is made and a response is processed. For access in Django view
methods (i.e., using get_messages()), this has no impact because even though you may make an iteration
over the main messages instance - therefore, marking messages to be cleared - a response is not processed
in a Django view method, so messages are never cleared, just marked to be cleared.

Class-Based Views
In Chapter 1 and at the start of this chapter – in Listing 2-1 – you saw how to define a Django url and make
it operate with a Django template without the need of a view method. This was possible due to the django.
views.generic.TemplateView class, which is called a class-based view.

Unlike Django view methods backed by standard Python methods that use a Django HttpRequest
input parameter and output a Django HttpResponse, class-based views offer their functionality through
full-fledged Python classes. This, in turn, allows Django views to operate with object-oriented programming
(OOP) principles (e.g., encapsulation, polymorphism, and inheritance) leading to greater reusability and
shorter implementation times.

Although Django class-based views represent a more powerful approach to create Django views,
they are simply an alternative to the view methods you’ve used up to this point. If you want to quickly
execute business logic on Django requests you can keep using view methods, but for more demanding
view requirements (e.g., form processing, boilerplate model queries) class-based views can save you
considerable time.

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 2 ■ Django Urls and Views

69

Built-In Class-Based Views
The functionality provided by the django.views.generic.TemplateView class-based view is really a time
saver. While it would have been possible to configure a url to execute on an empty view method and then
send control to a template, the TemplateView class allows this process to be done in one line.

In addition to the TemplateView class-based view, Django offers many other built-in class-based views
to shorten the creation process for common Django view operations using OOP-like principles. Table 2-10
illustrates Django’s built-in classes for views.

In the upcoming and final section of this chapter, I’ll explain the classes in the top half of Table 2-10 so
you can gain a better understanding of the structure and execution process of Django class-based views. The
class-based views in the bottom half of Table 2-10 that involve Django models are described in a separate
chapter on Django models.

Class-Based View Structure and Execution
To create a class-based view you need to create a class that inherits from one of the classes in Table 2-10.
Listing 2-35 shows a class-based view with this inheritance technique, as well as the corresponding url
definition to execute a class-based view.

Listing 2-35.  Class-based view inherited from TemplateView with url definition

views.py
from django.views.generic import TemplateView

class AboutIndex(TemplateView):
 template_name = 'index.html'

Table 2-10.  Built-in classes for views

Class Description

django.views.generic.View Parent class of all class-based views, providing core
functionality.

django.views.generic.TemplateView Allows a url to return the contents of a template, without
the need of a view.

django.views.generic.RedirectView Allows a url to perform a redirect, without the need of a
view.

django.views.generic.ArchiveIndexView
django.views.generic.YearArchiveView
django.views.generic.MonthArchiveView
django.views.generic.WeekArchiveView
django.views.generic.DayArchiveView
django.views.generic.TodayArchiveView
django.views.generic.DateDetailView

Allows a view to return date-based object results, without
the need to explicitly perform Django model queries.

django.views.generic.CreateView
django.views.generic.DetailView
django.views.generic.UpdateView
django.views.generic.DeleteView
django.views.generic.ListView
django.views.generic.FormView

Allows a view to execute Create-Read-Update-Delete
(CRUD) operations , without the need to explicitly perform
Django model queries.

Chapter 2 ■ Django Urls and Views

70

 def get_context_data(self, **kwargs):
 # **kwargs contains keyword context initialization values (if any)
 # Call base implementation to get a context
 context = super(AboutIndex, self).get_context_data(**kwargs)
 # Add context data to pass to template
 context['aboutdata'] = 'Custom data'
 return context

#urls.py
from coffeehouse.about.views import AboutIndex

urlpatterns = [
 url(r'^about/index/',AboutIndex.as_view(),{'onsale':True}),
]

I chose to create a view that inherits from TemplateView first because of its simplicity and because you
already know the purpose of this class. The example in Listing 2-35 and the first example in this chapter from
Listing 2-1 produce nearly identical outcomes.

The difference is, Listing 2-1 declares a TemplateView class instance directly as part of the url (e.g.,
TemplateView.as_view(template_name='index.html'))), where as Listing 2-35 declares an instance of a
TemplateView subclass named AboutIndex. Comparing the two approaches, you can get the initial feel for
the OOP behavior of class-based views.

The first part in Listing 2-35 declares the AboutIndex class-based view, which inherits its behavior from
the TemplateView class. Notice the class declares the template_name attribute and the get_context_data()
method.

The template_name value in the AboutIndex class acts as a default template for the class-based view.
But in OOP fashion, this same value can be overridden by providing a value at instance creation (e.g.,
AboutIndex.as_view(template_name='other.html') to use the other.html template).

The get_context_data method in the AboutIndex class allows you to add context data to the class-
view template. Notice the signature of the get_context_data method uses **kwargs to gain access to
context initialization values (e.g., declared in the url or parent class-views) and invokes a parent’s class
get_context_data method using the Python super() method per standard OOP Python practice. Next,
the get_context_data method adds the additional context data with the aboutdata key and returns the
modified context reference.

In the second part of Listing 2-35, you can see how the AboutIndex class-based view is first imported
into a urls.py file and then hooked up to a url definition. Notice how the class-based view is declared on the
url definition using the as_view() method. In addition, notice how the url definition declares the url extra
option {'onsale':True} that gets passed as context data to the class-based view (i.e., in the **kwargs of the
get_context_data method).

■■ Tip  All class-based views use the as_view() method to integrate into url definitions.

Now that you have a basic understanding of Django class-based views, Listing 2-36 shows another
class-based view with different implementation details.

Listing 2-36.  Class-based view inherited from View with multiple HTTP handling

views.py
from django.views.generic import View
from django.http import HttpResponse
from django.shortcuts import render

Chapter 2 ■ Django Urls and Views

71

class ContactPage(View):
 mytemplate = 'contact.html'
 unsupported = 'Unsupported operation'

 def get(self, request):
 return render(request, self.mytemplate)

 def post(self, request):
 return HttpResponse(self.unsupported)

#urls.py
from coffeehouse.contact.views import ContactPage

urlpatterns = [
 url(r'^contact/$',ContactPage.as_view()),
]

The first difference in Listing 2-36 is the class-based view inherits its behavior from the general purpose
django.views.generic.View class. As outlined in Table 2-10, the View class provides the core functionality
for all class-based views. So in fact, the TemplateView class used in Listing 2-35 is a subclass of View,
meaning class-based views that use TemplateView have access to the same functionalities of class-based
views that use View.

The reason you would chose one class over another to implement class-based views is rooted in OOP
polymorphism principles. For example, in OOP you can have a class hierarchy Drink→ Coffee → Latte,
where a Drink class offers generic functionalities available to Drink, Coffee, and Latte instances; a Coffee
class offers more specific functionalities applicable to Coffee and Latter instances; and a Latte class offers the
most specific functionalities applicable to only Latte instances.

Therefore if you know beforehand you need a class-based view to relinquish control to a template
without applying elaborate business logic or custom request and response handling, the TemplateView class
offers the quickest path to a solution vs. the more generic View class. Expanding on this same principle, once
you start working with Django models and views, you’ll come to realize some of the more specialized class-
based views in Table 2-10 also offer quicker solutions than creating a class-based view that inherits from the
general purpose View class. Now that you know the reason why you would chose a View class-based view
over a more specialized class, let’s break down the functionality in Listing 2-36.

Notice the class-based view ContactPage declares two attributes: mytemplate and unsupported. These
are generic class attributes and I used the mytemplate name to illustrate there’s no relation to the template_
name attribute used in Listing 2-35 and TemplateView class-based views. Class-based views derived from a
TemplateView expect a template_name value and automatically use this template to generate a response.
However, class-based views derived from a View class don’t expect a specific template, but instead expect
you to implement how to generate a response, which is where the get and post methods in Listing 2-36
come into play.

The get method is used to handle HTTP GET requests on the view, while the post method is used to
HTTP POST requests on the view. This offers a much more modular approach to handle different HTTP
operations vs. standard view methods that require explicitly inspecting a request and creating conditionals
to handle different HTTP operations. For the moment, don’t worry about HTTP GET and HTTP POST view
handling; this is explored in greater detail in Django forms where the topic is of greater relevance.

Next, notice both the get and post methods declare a request input, which represents a Django
HttpRequest instance just like standard view methods. In both cases, the methods immediately return
a response, but it’s possible to inspect a request value or execute any business logic before generating a
response, just like it can be done in standard view methods.

Chapter 2 ■ Django Urls and Views

72

The get method generates a response with the django.shortcuts.render method and the post
method generates a response with the HttpResponse class, both of which are the same techniques used to
generate responses in standard view methods . The only minor difference in Listing 2-36 is both the render
method and HttpResponse class use instance attributes (e.g., self.mytemplate, self.unsupported) to
generate the response, but other than this, you’re free to return a Django HttpResponse with any of the
variations already explained in this chapter (e.g., Listing 2-22 response alternatives, Table 2-5 shortcut
responses).

Finally, the last part in Listing 2-36 shows how the ContactPage class-based view is imported into a
urls.py file and later hooked up to a url using the as_view() method.

To close out the discussion on class-based views and this chapter, we come to the django.views.
generic.RedirectView class. Similar to the TemplateView class-based view that allows you to quickly
generate a response without a view method, the RedirectView class-based view allows you to quickly
generate an HTTP redirect – like the ones described in Table 2-4 – without the need of a view method.

The RedirectView class supports four attributes described in the following list:

•	 permanent.- Defaults to False to perform a non-permanent redirect supported by
the HttpResponseRedirect class described in Table 2-4. If set to True, a permanent
redirect is made with the HttpResponsePermanentRedirect class described in
Table 2-4.

•	 url.- Defaults to None. Defines a url value to perform the redirect.

•	 pattern_name.- Defaults to None. Defines a url name to generate a redirect url via
the reverse method. Note the reverse method is explained in the url naming and
namespace section earlier in this chapter.

•	 query_string.- Defaults to False to append a query string to a redirect url. If
provided, the query_string value to the redirect url.

And with this we conclude our exploration into Django views and urls. In the next two chapters, you’ll
learn about Django templates and Jinja templates.

73© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_3

CHAPTER 3

Django Templates

Django templates define the layout and final formatting sent to end users after a view method is finished
processing a request. In this chapter, you’ll learn the syntax used by Django templates, the configuration
options available for Django templates, as well as the various Django template constructs (e.g., filters, tags,
context processors) that allow you to create elaborate layouts and apply formatting to the content presented
to end users.

Django Template Syntax
Although there are over 100 built-in constructs that help you build Django templates – all of which you’ll
learn as this chapter progresses – to start out, these are the most important syntax elements you need to
recognize:

•	 {{output_variable}}.- Values surrounded by double curly braces at the start and
end represent output for variables. Variables are passed by Django views, url options,
or context processors into templates. In a template, you can use {{}} to output the
contents of a variable, as well as use Python’s dot notation to output deeper elements
of a variable (e.g., fields, keys, methods). For example, {{store.name}} tells a Django
template to output the store variable’s name, where store can be an object and name
a field or store can be a dictionary and name a key.

•	 {% tag %}.- Values surrounded by curly braces wrapped with percentage signs are
called tags. Django tags offer complex formatting logic wrapped in a simple syntax
representation.

•	 variable|filter .- Values declared after a vertical bar | are called filters. Django
filters offer a way to apply formatting logic to individual variables.

Any other syntax in Django templates besides these three variations is treated 'as is'. This means that if
a template declares the Hypertext Markup Language(HTML) heading <h1>Welcome!</h1>, a user will get a
large HTML heading. It’s that simple.

But let’s take a look at one not so obvious Django template syntax behavior that’s important you
understand right away, since it’s a recurring theme in practically everything associated with Django
templates.

https://doi.org/10.1007/978-1-4842-2787-9_3

Chapter 3 ■ Django Templates

74

Auto-Escaping: HTML and Erring on the Safe Side
Django projects operate on the Web, so by default all templates are assumed to produce HTML. While this is
a reasonable assumption, it isn’t, until you face one of two things:

•	 You can’t ensure Django templates produce valid HTML and in fact may produce
dangerous markup.

•	 You want Django templates to produce non-HTML content, such as Comma
Separated Values (CSV), eXtensible Markup Language (XML), or JavaScript Object
Notation (JSON).

So how could you possibly introduce invalid HTML or even dangerous content into Django templates?
Well it’s the Internet, its content from other users or providers that can end up in your Django templates that
can cause problems (e.g., data submitted by users, third-party services, content from databases).

The issue isn’t content you place directly in Django templates – that’s given to be valid since you type
it in – the issue is dynamic content placed through variables, tags, filters, and context processors, which has
the potential to come from anywhere. Let’s analyze this further with the following variables:

store_legend = "Open since 1965!"
js_user_date = "<script>var user_date = new Date()</script>"

If variables with this content make it to Django templates and you attempt to output them, they are
output verbatim. The store_legend won’t be output as an HTML bold statement, but rather a statement
surrounded by and . Similarly, the js_user_date won’t produce a JavaScript variable with a user
browser local date, but rather output the <script> statement literally.

This happens because by default Django auto-escapes content present in dynamic constructs
(i.e., variables, tags, filters, and context processors). Table 3-1 illustrates the characters Django auto-escapes
by default.

As you can see in Table 3-1, Django auto-escaping consists of converting potentially conflicting and
even dangerous characters – in the context of HTML – to equivalent visual representations also known as
escape characters.1

This is done because malicious users or unchecked sources can easily produce content with the
characters on the left column of Table 3-1, which can mangle a user interface or execute malicious JavaScript
code. So Django errs on the safe side and auto-escapes the characters in Table 3-1 to equivalent visual
representations. While you can certainly disable the auto-escaping of characters from Table 3-1, this has to
be done explicitly, since it represents a security risk.

Table 3-1.  Characters Django auto-escapes by default

Original character Escaped to

< <

> >

'(single quote) '

" (double quote) "

& &

1https://en.wikipedia.org/wiki/Escape_character

https://en.wikipedia.org/wiki/Escape_character

Chapter 3 ■ Django Templates

75

While auto-escaping is a good security precaution for HTML output, this takes us to the second point
in assuming Django always produces HTML. What happens if a Django template has to output CSV, JSON,
or XML content, where characters like < , >, '(single quote), "(double quote), and &, have special meaning
to content consumers and can’t use equivalent visual representations? In such cases, you’ll also to need to
explicitly disable the default auto-escaping behavior enforced by Django.

So whether you want to output actual HTML through variables in Django templates or output CSV,
JSON, or XML without Django applying an HTML security practice to this content, you’ll need to deal with
Django auto-escaping.

There are various ways to control auto-escaping in Django templates (e.g., globally, individual variables,
individual filters), which you’ll learn as you progress through this chapter. But auto-escaping is a constant
theme in Django templates, along with these related terms:

•	 Safe.- If a Django template construct is marked as safe, it means no characters from
Table 3-1 are escaped. In other words, safe equals "I know what I'm doing" output the
content 'as is'.

•	 Escape.- If a Django template construct is marked to be escaped, it means characters
from Table 3-1 are escaped. In other words, escape equals "Ensure no potentially
dangerous HTML characters are output, use equivalent visual representations."

•	 Auto-escape on/ Auto-escape off (safe).- If a Django template uses auto-escape on,
it means Django template constructs in this scope should escape characters from
Table 3-1. If a Django template uses auto-escape off, it means Django template
constructs in this scope should be output 'as is' and not escape characters from
Table 3-1.

And with this we finish the conversation on this rather dry, yet important topic of Django auto-escaping.
Next, let’s explore the various configuration options for Django templates.

Django Template Configuration
By default, Django templates are enabled on all Django projects due to the TEMPLATES variable in settings.
py. Listing 3-1 illustrates the default TEMPLATES value in Django projects.

Listing 3-1.  Default Django template configuration in settings.py

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

Chapter 3 ■ Django Templates

76

The BACKEND variable indicates the project uses Django templates. The DIRS and APP_DIRS variables tell
Django where to locate Django templates and are explained in the next section. The context_processors
field inside OPTIONS tells Django which context processors to enable for a Django project. In short, a context
processor offers the ability to share data across all Django templates, without the need to define it in a
piecemeal fashion in Django views.

Later sections in this chapter describe what data is provided by default Django context processors and
how to write your own context processors to share custom data on all Django templates.

Template Search Paths
Django determines where to look for templates based on the values in the DIRS and APP_DIRS variables. As
you can see in Listing 3-1, Django defaults to an empty DIRS value and sets the APP_DIRS variable to True.

The APP_DIRS variable set to True tells Django to look for templates in Django app subfolders named
templates - if you've never heard of the Django app concept, look over Chapter 1, which describes this
concept.

The APP_DIRS behavior is helpful to contain an app's templates to an app's structure, but be aware the
template search path is not aware of an app's namespace. For example, if you have two apps that both rely
on a template named index.html and both app's have a method in views.py that returns control to the
index.html template(e.g., render(request,'index.html')), both apps will use the index.html from the
top-most declared app in INSTALLED_APPS, so only one app will use the expected index.html.

The first set of folders illustrated in Listing 3-2 shows two Django apps with this type of potential
template layout conflict.

Listing 3-2.  Django apps with templates dirs with potential conflict and namespace qualification

Templates directly under templates folder can cause loading conflicts
+---+-<PROJECT_DIR_project_name_conflict>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-templates-+
 | |
 | +-index.html
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-templates-+
 |
 +-index.html

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 3 ■ Django Templates

77

Templates classified with additional namespace avoid loading conflicts
+---+-<PROJECT_DIR_project_name_namespace>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-templates-+
 | |
 | +-about-+
 | |
 | +-index.html
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-templates-+
 |
 +-stores-+
 |
 +-index.html

To fix this potential template search conflict, the recommended practice is to add an additional subfolder
to act as a namespace inside each templates directory, as illustrated in the second set of folders in Listing 3-2.

In this manner, you can redirect control to a template using this additional namespace subfolder
to avoid any ambiguity. So to send control to the about/index.html template you would declare
render(request,'about/index.html') and to send control to the stores/index.html you would declare
render(request,'stores/index.html').

If you wish to disallow this behavior of allowing templates to be loaded from these internal app
subfolders, you can do so by setting APP_DIRS to FALSE.

A more common approach to define Django templates is to have a single folder or various folders that
live outside app structures to hold Django templates. In order for Django to find such templates, you use the
DIRS variable as illustrated in Listing 3-3.

Listing 3-3.  DIRS definition with relative path in settings.py

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),
 '%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {

Chapter 3 ■ Django Templates

78

 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

As you can see in Listing 3-3, you can declare various directories inside the DIRS variable. Django looks
for templates inside DIRS values and then in templates folder in apps – if APP_DIRS is TRUE – until it either
finds a matching template or throws a TemplateDoesNotExist error.

Also note the DIRS values in Listing 3-3 rely on a path determined dynamically by the PROJECT_DIR
variable. This approach is helpful when you deploy a Django project across different machines, because
the path is relative to the top-level Django project directory (i.e., where the settings.py and main urls.py
file are) and adjusts dynamically irrespective of where a Django project is installed (e.g., /var/www/, /opt/
website/, C://website/).

Invalid Template Variables
By default, Django templates do not throw an error when they contain invalid variables. This is due to design
choices associated with the Django admin that also uses Django templates.

While this is not a major issue in most cases, it can be frustrating for debugging tasks as Django
doesn't inform you of misspelled or undefined variables. For example, you could type {{datee}} instead of
{{date}} and Django ignores this by outputting an empty string '', you could also forget to pass a variable
value to a template in the view method and Django also silently outputs an empty string '' even though you
may have it defined in the template.

To enable Django to inform you when it encounters an invalid variable in Django templates, you can use
the string_if_invalid option. The first configuration option for string_if_invalid shown in Listing 3-4
outputs a visible string instead of an empty string ''.

Listing 3-4.  Output warning message for invalid template variables with string_if_invalid

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'string_if_invalid': "**** WARNING INVALID VARIABLE %s ****",
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

Chapter 3 ■ Django Templates

79

As you can see in Listing 3-4, string_if_invalid is assigned the string "**** WARNING INVALID
VARIABLE %s ****". When Django encounters an invalid variable, it replaces the occurrence with this
string, where the %s variable gets substituted with the invalid variable name, allowing you to easily locate
where and what variables are invalid.

Another configuration option for the string_if_invalid option is to perform more complex logic
when an invalid variable is encountered. For example, Listing 3-5 illustrates how you can raise an error so
the template fails to render in case an invalid variable is found.

Listing 3-5.  Error generation for invalid template variables with string_if_invalid

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

class InvalidTemplateVariable(str):
 def __mod__(self,other):
 from django.template.base import TemplateSyntaxError
 raise TemplateSyntaxError("Invalid variable : '%s'" % other)

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'string_if_invalid': InvalidTemplateVariable("%s"),
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

In Listing 3-5 string_if_invalid is assigned the InvalidTemplateVariable class that uses the %s input
variable, which represents the invalid variable name - just like the previous example in Listing 3-4.

The InvalidTemplateVariable class is interesting because it inherits its behavior from the
str(string) class and uses a Python __mod__ (modulo) magic method implementation. While the
__mod__ (modulo) magic method is proper of number operations, in this case, it's useful because
the passed in string uses the % (modulo) symbol, which makes the __mod__ method run. Inside the
__mod__ method we just raise the TemplateSyntaxError error with the invalid variable name to halt the
execution of the template.

Chapter 3 ■ Django Templates

80

■■ Caution  The Django admin might get mangled or broken with a custom string_if_invalid value.

The Django admin templates in particular rely heavily on the default string_if_invalid outputting empty
strings '', due to the level of complexity in certain displays. In fact, this string_if_invalid default behavior is
often considered a “feature,” as much as it's considered a “bug” or “annoyance.”

Therefore if you use one of the approaches in Listing 3-4 or Listing 3-5 to override string_if_invalid, be
aware you will most likely mangle or brake Django admin pages. If you rely on the Django admin, you should
only use these techniques to debug a project's templates.

Debug Output
When you run a Django project with the top-level DEBUG=True setting and an error occurs, Django templates
output a very detailed page to make the debugging process easier – see Chapter 5 for more details on the
DEBUG variable, specifically the section “Django settings.py for the Real World.”

By default, Django templates reuse the top-level DEBUG variable value to configure template debug
activity. Behind the scenes, this configuration is set through the debug field inside OPTIONS of the TEMPLATES
variable. Figure 3-1 illustrates what an error page looks when DEBUG=True.

As you can see in Figure 3-1, Django prints the location of the template, as well as a snippet of the
template itself to make it easier to locate an error. This template information is generated due to the
'debug':True option, which is set based on the top-level DEBUG variable. However, you can explicitly set the
debug option to False as illustrated in Listing 3-6, in which case the error page would result without any
template details and just the traceback information, as illustrated in Figure 3-2.

Figure 3-1.  Django error page when DEBUG=True automatically sets template OPTION to ‘debug’:True

http://dx.doi.org/10.1007/978-1-4842-2787-9_5

Chapter 3 ■ Django Templates

81

Listing 3-6.  Option with debug equals False omits template details

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'debug':False,
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

Auto-Escape
By default, Django templates use the security practice to auto-escape certain characters – described in
Table 3-1 – contained in dynamically generated constructs (e.g., variables, tags, filters). Auto-escaping
converts characters that can potentially mangle a user interface or produce dangerous outcomes into safe
representations, a process that was described in the first section of this chapter.

Figure 3-2.  Django error page when DEBUG=True and explicit OPTION ‘debug’:False

Chapter 3 ■ Django Templates

82

However, you can globally disable auto-escaping on all Django templates -- and knowingly render < as
<, > as >, etc... -- with the autoescape field in OPTIONS as shown in Listing 3-7.

Listing 3-7.  Option with auto-escape equals False omits auto-escaping on all Django templates

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'autoescape':False,
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

It's worth mentioning that an alternative to disabling auto-escaping on every Django template - as it's
done in Listing 3-7 - is to selectively disable auto-escaping. You can either use the {% autoescape off %}
tag to disable auto-escaping on a section of a Django template or the safe filter to disable auto-escaping on
a single Django template variable.

If you do decide to disable auto-escaping on all Django templates as illustrated in Listing 3-7 - which
I frankly wouldn't recommend if you plan to use just HTML, because of the potential security risk-- you
can also granularly enable auto-escaping again if required. You can either use the {% autoescape on %}
tag to enable auto-escaping on a section of a Django template or the escape filter to escape a single Django
template variable.

File charset
Files used in Python projects often declare an encoding value at the top (e.g., # -*- coding: utf-8 -*-)
based on the Python PEP-263 specification,2 which ensures the characters in the file are interpreted correctly.
In Django templates, you don't define the underlying file's encoding in this manner, but instead do it inside a
project's settings.py file.

There are two ways to declare the encoding character for Django templates: explicitly as part of the
file_charset field in OPTIONS inside the TEMPLATES variable or via the top-level FILE_CHARSET variable in
settings.py. The explicit declaration in file_charset within OPTIONS takes precedence over the FILE_
CHARSET assignment, but the value of file_charset defaults to FILE_CHARSET, which, in itself defaults to
utf-8 (Unicode) encoding.

2https://www.python.org/dev/peps/pep-0263/

https://www.python.org/dev/peps/pep-0263/

Chapter 3 ■ Django Templates

83

So by default, Django template encoding is assigned to utf-8 or Unicode, which is one of the most
widely used encodings in software. Nevertheless, in the event you decide to incorporate data into Django
templates that isn't utf-8 compatible (e.g., Spanish vowels with accents like á or é encoded as ISO-8859-
1 or Kanji characters like 漢 or 字 encoded as JIS) you must define the FILE_CHARSET value in a project's
settings.py file - or directly in the file_charset field in OPTIONS inside the TEMPLATES - so Django template
data is interpreted correctly.

Django templates can be assigned any encoding value from Python's standard encoding values.3

Automatic Access to Custom Template tag/filter Modules
Django templates have access to a series of built-in tags and filters that don't require any setup steps.
However, if you plan to use a third-party template tag/filter module or write your own template tag/filter
module, then you need to set up access on each Django template with the {% load %} tag (e.g., {% load
really_useful_tags_and_filters %}), a process that can get tiresome if you need to access a particular
tag/filter on dozens or hundreds of templates.

To automatically gain access to third-party template tags/filters or your own template tags/filters as if
they were built-in tags/filters (i.e., without requiring the {% load %} tag), you can use the builtins field in
OPTIONS as illustrated in Listing 3-8.

Listing 3-8.  Option with builtins to gain automatic access to tags/filters on all templates

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 'builtins': [
 'coffeehouse.builtins',
 'thirdpartyapp.customtags.really_useful_tags_and_filters',
],
 },
 },
]

As you can see in Listing 3-8, the builtins field accepts a list of modules that includes tags/filters for
built-in treatment. In this case, coffeehouse.builtins represents a builtins.py file - which includes the
custom tags/filters - under a project named coffeehouse. And the thirdpartyapp.customtags.really_
useful_tags_and_filters is a third-party package with tags/filters that we also want to access in Django
templates without the need to use the {% load %} tag.

3https://docs.python.org/3/library/codecs.html#standard-encodings

https://docs.python.org/3/library/codecs.html#standard-encodings

Chapter 3 ■ Django Templates

84

Another default behavior of third-party template tag/filter modules and custom template tag/filter
modules is they are required to use their original label/name for reference, while the latter also requires it to
be placed inside a folder named templatetags in a registered Django app. These two default behaviors can
be overridden with the libraries field in OPTIONS as illustrated in Listing 3-9.

Listing 3-9.  Option with libraries to register tags/filters with alternative label/name and under any project
directory

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': ['%s/templates/' % (PROJECT_DIR),'%s/dev_templates/' % (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 'libraries': {
 'coffeehouse_tags': 'coffeehouse.tags_filters.common',
 },
 },
 },
]

The libraries statement in Listing 3-9 'coffeehouse_tags': 'coffeehouse.tags_filters.common'
tells Django to load the common.py file - that includes the custom tags/filters - from the tags_filters folder
in the coffeehouse project and make it accessible to templates through the coffeehouse_tags reference
(e.g., {% load coffeehouse_tags %}). With the approach in Listing 3-9, you can place custom tag/filter
modules anywhere in a Django project, as well as assign custom tag/filter modules - or third-party tag/filter
modules - an alternative reference value instead of their original label/name.

Template Loaders
Earlier in the section “Template Search Paths,” I described how Django searches for templates using the
DIRS and APP_DIRS variables, which are part of Django’s template configuration. However, I intentionally
omitted a deeper aspect associated with this template search process: each search mechanism is backed by
a template loader.

A template loader is a Python class that implements the actual logic required to search and load
templates. Table 3-2 illustrates the built-in template loaders available in Django.

Chapter 3 ■ Django Templates

85

As you can see, two of the Django template loaders in Table 3-2 are automatically set up by the presence
of either the DIRS or APP_DIRS variables. Nevertheless, any of the template loaders in Table 3-2 can be set up
explicitly using the loaders field in OPTIONS inside TEMPLATES.

Create Reusable Templates
Templates tend to have common sections that are equally used across multiple instances. For example,
the header and footer sections on all templates rarely change, whether a project has 5 or 100 templates.
Other template sections like menus and advertisements also fall into this category of content that’s constant
across multiple templates. All of this can lead to repetition over multiple templates, which can be avoided by
creating reusable templates.

With reusable Django templates you can define common sections on separate templates and reuse
them inside other templates. This process makes it easy to create and manage a project's templates because
a single template update takes effect on all templates.

Reusable Django templates also allow you to define page blocks to override content on a page-by-
page basis. This process makes a project's templates more modular because you define top-level blocks to
establish the overall layout and define content on a page-by-page basis.

Lets take the first step toward building reusable Django templates exploring the Django built-in
{% block %} tag. Listing 3-10 illustrates the first lines of a template called base.html with several
{% block %} tags.

Listing 3-10.  Django template with {% block %} tags

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>{% block title%}Default title{% endblock title %}</title>
 <meta name="description" content="{% block metadescription%}{% endblock metadescription %}">
 <meta name="keywords" content="{% block metakeywords%}{% endblock metakeywords %}">

Table 3-2.  Built-in Django template loaders

Template loader class Description

django.template.loaders.filesystem.Loader Searches and loads templates in directories declared
in the DIRS variable. Enabled by default when DIRS
is not empty.

django.template.loaders.app_directories.Loader Searches and loads templates from subdirectories
named templates in all apps declared in
INSTALLED_APPS. Enabled by default when APP_
DIRS is True.

django.template.loaders.cached.Loader Searches for templates from an in-memory cache,
after loading templates from a file-system or app
directory loader.

django.template.loaders.locmem.Loader Searches for templates from an in-memory cache,
after loading templates from a Python dictionary.

Chapter 3 ■ Django Templates

86

Notice the syntax {% block <name>%}{% endblock <name> %} in Listing 3-10. Each {% block %} tag
has a reference name. The reference name is used by other Django templates to override the content for
each block.

For example, the {% block title %} tag within the HTML <title> tags defines a web page title. If
another template reuses the template in Listing 3-10, it can define its own web page title by overriding the
title block. If a block is not overridden on a template, the block receives the default content within the block.
For the title block the default content is Default title, for the metadescription and metakeywords
blocks the default content is an empty string.

The same mechanism illustrated in Listing 3-10 can be used to define any number of blocks (e.g.,
content, menu, header, footer). It’s worth mentioning the <name> argument of {% endblock <name> %} is
optional and it’s valid to just use {% endblock %} to close a block statement; however, the former technique
makes it clearer where a block statement ends, which is especially helpful when a template has multiple
blocks.

Although it’s possible to call the template in Listing 3-10 directly by a Django view method or url
request, the purpose of this kind of template is to use it as a base template for other templates. To reuse a
Django template you use the Django built-in {% extends %} tag.

The {% extends %} tag uses the syntax {% extends <name> %} to reuse the layout of another template.
This means that in order to reuse the layout in Listing 3-10 defined in a file base.html, you use the syntax
{% extends "base.html" %}. In addition, if you use the {% extends %} tag it has to be the first definition in
Django template, as illustrated in Listing 3-11.

Listing 3-11.  Django template with {% extends %} and {% block %} tag

{% extends "base.html" %}
{% block title %}Coffeehouse home page{% endblock title %}

■■ Tip  In an {% extend <name> %} tag statement, the <name> value can also use a relative path (e.g., "../
base.html"), as well as a variable passed by a view that can be a string (e.g., "master.html") or Template object
loaded in the view.

Notice in Listing 3-11 how the first template statement is {% extends "base.html" %}. In addition,
notice how Listing 3-11 defines the {% block title %} tag with the content Coffeehouse home page. The
block in Listing 3-11 overrides the title block from the base.html template. So where are the HTML <title>
tags in Listing 3-11? There aren't any and you don't need them. Django automatically reuses the layout from
the base.html template and substitutes the blocks content where necessary.

Django templates that reuse other templates tend to have limited layout elements (e.g., HTML tags) and
more Django block statements to override content. This is beneficial because as I outlined previously, it lets
you establish the overall layout once and define content on a page-by-page basis.

The reusability of Django templates can occur multiple times. For example, you can have templates A,
B, and C, where B requires to reuse A, but C requires to reuse parts of B. The only difference is template C
needs to use the {% extends "B" %} tag instead of the {% extends "A"%} tag. But since template B reuses A,
template C also has access to the same elements in template A.

When reusing Django templates, it's also possible to access the block content from a parent template.
Django exposes the block content from a parent template through the reference block.super. Listing 3-12
illustrates three templates that show this mechanism for a block containing web page paths or “breadcrumbs.”

Chapter 3 ■ Django Templates

87

Listing 3-12.  Django templates use of {{block.super}} with three reusable templates

base.html template
<p>{% block breadcrumb %}Home{% endblock breadcrumb %}</p>

index.html template
{% extends "base.html" %}
{% block breadcrumb %}Main{% endblock breadcrumb %}

detail.html template
{% extends "index.html" %}
{% block breadcrumb %} {{block.super}} : Detail {% endblock breadcrumb %}

The base.html template in Listing 3-12 defines the breadcrumb block with a default value of Home. Next,
the index.html template reuses the base.html template and overrides the breadcrumb block with a value of
Main. Finally, the detail.html template reuses the index.html template and overrides the breadcrumb block
value. However, notice the {{block.super}} statement in the final block override. Since {{block.super}}
is inside the breadcrumb block, {{block.super}} tells Django to get the content from the parent template
block.

Another reusability functionality in Django templates is the inclusion of a Django template inside
another Django template. Django supports this functionality through the {% include %} tag.

The {% include %} tag expects a template argument – similar to the {% extend %} tag – which can be
either a hard-coded string reference (e.g., {% include "footer.html" %}), a relative path to a template
(e.g., {% include "../header.html" %}), or a variable passed by a view that can be a string or Template
object loaded in the view.

Templates declared as part of {% include %} tags are made aware of context variables in the template
that declares them. This means if template A uses the {% include "footer.html" %} tag, template A
variables are automatically made available to the footer.html template.

Inclusively, it's possible to explicitly provide context variables to {% include %} statements using the
with keyword. For example, the statement {% include "footer.html" with year="2013" %} makes the
year variable accessible inside the footer.html template. The {% include %} tag also supports the ability
to pass multiple variables using the with notation (e.g., {% include "footer.html" with year="2013"
copyright="Creative Commons" %}).

Finally, if you want templates declared as part of {% include %} tags to have restricted access to context
variables from the template that declares them, you can use the only keyword. For example, if template B
uses the {% include "footer.html" with year="2013" only %} statement, the footer.html template
only gets access to the year variable, irrespective of the variables available in template B. Similarly, the {%
include "footer.html" only %} statement restricts the footer.html template to no variables, irrespective
of the variables available in the template that uses the statement.

Built-In Context Processors
By default, Django templates are enabled to have access to various variables. This eliminates the need to
constantly declare widely used variables in every single Django view methods or as url extra options. These
variables are made available through template context processors.

Django template context processors are explicitly defined in a project's settings.py file, in the
TEMPLATES variable inside the OPTIONS key. By default and as illustrated in Listing 3-1, Django projects are
enabled with four context processors built in to Django. Next, I'll describe the data variables made available
by each of these context processors.

Chapter 3 ■ Django Templates

88

Django debug context processor
(django.template.context_processors.debug)
The Django debug context processor exposes variables that are helpful for debugging. This context processor
makes the following variables available on all Django templates:

•	 debug.- Contains True or False, based on the DEBUG variable in the settings.py file.

•	 sql_queries.- Contains the database connection details (e.g., SQL statements) run
by the backing method view.

■■ Note  The Django debug context processor displays variable values only if the requesting IP address is
defined in the INTERNAL_IPS variable in settings.py. Even if the variables are declared in a template (e.g.,
{{debug}} or {{sql_queries}}) this restriction permits that only certain users view the debug messages in the
template, while other users won't view anything.

For example, to view the debug and sql_queries values on your local workstation, add INTERNAL_IPS =
['127.0.0.1'] to the settings.py file. This tells Django to display these variables values for requests made from
the IP address 127.0.0.1.

Django request context processor
(django.template.context_processors.request)
The Django request context processor exposes variables related to a request (i.e., HTTP request). This
context processor makes data available through a massive dictionary named request, which includes some
of the following key-values:

•	 request.GET.- Contains a request's HTTP GET parameters.

•	 request.POST.- Contains a request's HTTP POST parameters.

•	 request.COOKIES.- Contains a request's HTTP COOKIES.

•	 request.CONTENT_TYPE.- Contains a request's HTTP Content-type header.

•	 request.META.- Contains a request's HTTP META data.

•	 request.REMOTE_ADDR.- Contains a request's HTTP remote address.

Django auth context processor
(django.contrib.auth.context_processors.auth)
The Django auth context processor exposes variables related to authentication logic. This context processor
makes the following variables accessible in Django templates:

•	 user.- Contains user data (e.g., id, name, email, anonymous user).

•	 perms.- Contains user app permissions (e.g., True, False or explicit app permissions
a user has access to in a django.contrib.auth.context_processors.PermWrapper
object).

Chapter 3 ■ Django Templates

89

Django messages context processor
(django.contrib.messages.context_processors.messages)
The Django messages context processor exposes variables related to the Django messages framework,
introduced in Chapter 2. Messages are added in Django view methods to the message framework, which
are then exposed in Django templates. This context processor makes the following variables accessible in
Django templates:

•	 messages.- Contains the messages added through the Django messages framework
in Django view methods.

•	 DEFAULT_MESSAGE_LEVELS.- Contains a mapping of the message level names to their
numeric value (e.g., {'DEBUG': 10, 'INFO': 20, 'WARNING': 30, 'SUCCESS':
25, 'ERROR': 40}).

Other Built-In Django Context Processors: i18n, media, static, tz,
and CSRF context Processors
The previous context processors offer some of the most common data required across all Django project
templates, which is why they're enabled by default. However, this doesn't mean they are the only built-in
Django context processors. There are, in fact, five more built-in context processors you can use to access
certain data from all Django templates.

Django i18n context processor (django.template.context_processors.i18n)
The Django i18n context processor exposes variables related to internationalization logic. This context
processor makes the following variables accessible in Django templates:

•	 LANGUAGES.- Contains available languages for Django projects.

•	 LANGUAGE_CODE.-Contains the project language code, based on the LANGUAGE_CODE
variable in the settings.py file.

•	 LANGUAGE_BIDI.- Contains the current project language direction. It's set to False
for left-to-right languages (e.g., English, French, German) or True for right-to-left
languages (e.g., Hebrew, Arabic).

Django media context processor (django.template.context_processors.media)
The Django media context processor exposes a variable related to media resources. This context processor
makes the following variable accessible in Django templates:

•	 MEDIA_URL.- Contains the media url, based on the MEDIA_URL variable in the
settings.py file.

Django static context processor (django.template.context_processors.static)
The Django static context processor exposes a variable related to static resources. This context processor
makes the following variable accessible in Django templates:

•	 STATIC_URL.- Contains the static url, based on the STATIC_URL variable in the
settings.py file.

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 3 ■ Django Templates

90

■■ Tip  Even though the static context processor is accessible (i.e., it's not deprecated) its functionality is
outdated and should be avoided. You should use the staticfiles app instead. More details are provided in
Chapter 5 in the section on setting up static web page resources (Images, CSS, JavaScript).

Django tz context processor (django.template.context_processors.tz)
The Django tz context processor exposes a variable related to a project's time zone. This context processor
makes the following variable accessible in Django templates:

•	 TIME_ZONE.- Contains a project's time zone, based on the TIME_ZONE variable in the
settings.py file.

Django CSRF context Processor (django.template.context_processors.csrf)
The Cross Site Request Forgeries (CSRF) context processor adds the csrf_token variable to all requests. This
variable is used by the {% csrf_token %} template tag to protect against Cross Site Request Forgeries.

Although you can gain access to the csrf_token variable value in any Django template, you will have
little - if any - need to expose it directly, as it's used as a security mechanism to detect forged requests.
Chapter 6, covering the topic of Django forms, describes what it is and how CSRF works with Django.

Due to the security significance of having the csrf_token variable available on all requests, the CSRF
context processor is always enabled - irrespective of the context_processors list in OPTIONS - and cannot be
disabled.

Custom Context Processors
When you set up data in view methods or url extra options, you do so to access the data on individual Django
templates. Custom Django context processors allow you to set up data for access on all Django templates.

A Django custom context processor is structured just like a regular Python method with an HttpRequest
object argument that returns a dictionary. The returning dictionary keys of the context processor represent
template references and the dictionary values data objects (e.g., strings, lists, dictionaries) accessible in
templates. Listing 3-13 illustrates a custom Django context processor method.

Listing 3-13.  Custom Django context processor method

def onsale(request):
 # Create fixed data structures to pass to template
 # data could equally come from database queries
 # web services or social APIs
 sale_items = {'Monday':'Mocha 2x1','Tuesday':'Latte 2x1'}
 return {'SALE_ITEMS': sale_items}

As you can see in Listing 3-13, the onsale method has a request argument – representing an
HttpRequest object - and returns a dictionary. The dictionary in this case has a single key called SALE_ITEMS
and a value that is a hard-coded dictionary.

However, just as you can set up any type of data in a Django view method or url option to pass to a
template, a custom Django context processor method can also access data from the request argument
(e.g., cookie, remote IP address) or even query a database and make this data available to all templates.

http://dx.doi.org/10.1007/978-1-4842-2787-9_5
http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 3 ■ Django Templates

91

The custom context processor method can be placed inside any project file or directory. The location
and naming conventions are of little importance, because Django detects context processors through the
context_processors variable in OPTIONS of the TEMPLATES variable in a project's settings.py file. I’ll place
the context processor method in Listing 3-13 in a file called processors.py in the stores app subdirectory.

Once you save the custom context processor method, you have to configure Django to locate it.
Listing 3-14 shows the context_processors variable update to include the custom context processor
method from Listing 3-13.

Listing 3-14.  Django template context processor definitions in context_processors in OPTIONS of
TEMPLATES

'OPTIONS': {
 'context_processors': [
 'coffeehouse.stores.processors.onsale',
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
}

In Listing 3-14 you can see the coffeehouse.stores.processors.onsale declaration, where
coffeehouse.stores represents the package.app name, processors is the file that contains the custom
context processor (i.e., processors.py inside the stores app) and onsale is the actual method that contains
the custom context processor logic.

Once you declare the context processors on you project's settings.py file, the custom dictionary with
the SALE_ITEMS key from Listing 3-13 becomes available to all Django templates.

Built-In Django Filters
Django filters are designed to format template variables. The syntax to apply Django filters is the vertical bar
character | also known as “pipe” in Unix environments (e.g., {{variable|filter}}). It’s worth mentioning
that it’s possible to use multiple filters on the same variable (e.g., {{variable|filter|filter}}).

I'll classify each built-in Django filter into functional sections so it's easier to identify them. The
functional classes I'll use are Dates, Strings, Lists, Numbers, Dictionaries, Spacing and special characters,
Development, and Testing and Urls.

■■ Tip  You can apply Django filters to entire sections with the {% filter %} tag. If you have a group of variables
in the same section and want to apply the same filter to all of them, it’s easier to use the {% filter %} tag than to
individually declare the filter on each variable. The next section in this chapter on Django built-in tags provides
more details on the {% filter %} tag

Dates
•	 date.- The date filter formats Python datetime objects and only works if the variable

is this type of Python object. The date filter uses a string to specify a format. For
example, if a variable contains a datetime object with the date 01/01/2018, the filter
statement {{variable|date:"F jS o"}} outputs January 1st 2018. The string syntax
for the date filter is based on the characters described in Table 3-3.

Chapter 3 ■ Django Templates

92

■■ Tip  If you provide no string argument to the date filter (e.g., {{variable|date}}), it defaults to the "N j, Y"
string, which comes from the default value of DATE_FORMAT.

■■ Note  The date filter can also accept predefined date variables {{variable|date:"DATE_FORMAT"}},
{{variable|date:"DATETIME_FORMAT"}}, {{variable|date:"SHORT_DATE_FORMAT" %} or {{variable|date:
"SHORT_DATETIME_FORMAT"}}.

The predefined date variables in themselves are also composed of date strings based on the syntax in
Table 3-3. For example DATE_FORMAT default's to "N j, Y" (e.g., Jan 1, 2018), DATETIME_FORMAT defaults
to "N j, Y, P" (e.g., Jan 1, 2018, 12 a.m.), SHORT_DATE_FORMAT defaults to "m/d/Y" (e.g., 01/01/2018) and
SHORT_DATETIME_FORMAT defaults to "m/d/Y P" (e.g., 01/01/2018 12 a.m.). Each date variable can be
overridden with different date strings in a project's settings.py file.

Table 3-3.  Django date and time format characters

Standards based
characters

Description

c Outputs ISO 8601 format (e.g., 2015-01-02T10:30:00.000123+02:00 or 2015-01-
02T10:30:00.000123 if the datetime has no timezone [i.e.,naive datetime])

r Outputs RFC 2822 formatted date (e.g., 'Thu, 21 Dec 2000 16:01:07 +0200')

U Outputs seconds since Unix epoch date--January 1 1970 00:00:00 UTC

I (Uppercase i) Outputs whether daylight savings time is in effect (e.g., '1' or '0')

Hour based characters Description

a Outputs 'a.m.' or 'p.m.'

A Outputs 'AM' or 'PM'

f Outputs time, 12-hour hours and minutes, with minutes left off if they're zero
(e.g., '1', '1:30')

g Outputs hour, 12-hour format without leading zeros (e.g.'1' to '12')

G Outputs hour, 24-hour format without leading zeros (e.g., '0' to '23')

h Outputs hour, 12-hour format (e.g., '01' to '12')

H Outputs hour, 24-hour format (e.g., '00' to '23')

i Outputs minutes (e.g., '00' to '59')

P Outputs time, 12-hour hours, minutes and 'a.m.'/'p.m.', with minutes left off if
they're zero and the special-case strings 'midnight' and 'noon' if appropriate
(e.g., '1 a.m.', '1:30 p.m.', 'midnight', 'noon', '12:30 p.m.')

s Outputs seconds, 2 digits with leading zeros (e.g., '00' to '59')

u Outputs microseconds (e.g., 000000 to 999999)

Timezone characters Description

e Outputs timezone name. Can be in any format, or might return an empty
string, depending on datetime definition (e.g., '', 'GMT', '-500', 'US/Eastern')

(continued)

Chapter 3 ■ Django Templates

93

Table 3-3.  (continued)

Standards based
characters

Description

O Outputs difference in timezone to Greenwich time in hours (e.g., '+0200')

T Outputs datetime time zone (e.g., 'EST', 'MDT')

Z Outputs time zone offset in seconds. The offset for timezones west of UTC is
always negative, and for those east of UTC is always positive (e.g., -43200 to
43200)

Day and week characters Description

D Outputs day of the week, textual, 3 letters (e.g., 'Thu','Fri')

l (Lowercase L) Outputs day of the week, textual, long (e.g.,'Thursday','Friday')

S Outputs English ordinal suffix for day of the month, 2 characters (e.g., 'st', 'nd',
'rd' or 'th')

w Outputs day of the week, digits without leading zeros (e.g., '0' for Sunday to '6'
for Saturday)

z Outputs day of the year (e.g., 0 to 365)

W Outputs the week number of the year, with weeks starting on Monday based
on ISO-8601 (e.g., 1, 53)

o Outputs week-numbering year, corresponding to the ISO-8601 week number
(W)(e.g., '1999')

Month characters Description

b Outputs textual month, 3 letters, lowercase (e.g., 'jan','feb')

d Outputs day of the month, 2 digits with leading zeros (e.g., '01' to '31')

j Outputs day of the month without leading zeros (e.g., '1' to '31')

E Outputs month, locale specific alternative representation usually used for long
date representation (e.g., 'listopada' for Polish locale, as opposed to 'Listopad')

F Outputs month, textual, long (e.g., 'January','February')

m Outputs month, 2 digits with leading zeros (e.g., '01' to '12')

M Outputs month, textual, 3 letters (e.g.'Jan','Feb')

n Outputs month without leading zeros (e.g., '1' to '12')

N Outputs month abbreviation in Associated Press style (e.g., 'Jan', 'Feb', 'March',
'May')

t Outputs number of days in the given month (e.g., 28 to 31)

Year characters Description

L Outputs Boolean for whether it's a leap year (e.g., True or False)

y Outputs year, 2 digits (e.g., '99')

Y Outputs year, 4 digits (e.g., '1999')

To literally output a date character in a string statement you can use the backslash character (e.g., {{variable|
date:"jS \o\f F o"}} outputs 1st of January 2018, note the escaped \o\f)

Chapter 3 ■ Django Templates

94

•	 time.- The time filter formats the time component of a Python datetime object. The
time filter is similar to the date filter, which uses a string to specify a time format.
For example, if a variable contains a datetime object with a time of noon the filter
statement {{variable|time:"g:i"}} outputs 12:00. The time filter uses the same
format characters illustrated in Table 3-3 related to the time of day.

■■ Tip  If you provide no string argument to the date filter (e.g., {{variable|time}}), it defaults to the "P" string,
which comes from the default value of TIME_FORMAT.

■■ Note  The time filter can also accept a predefined time variable {{variable|date:"TIME FORMAT"}. The
predefined time is also composed of a time string based on the syntax in Table 3-3. For example, TIME_FORMAT
default's to "P" (e.g., 4 a.m.) and this can be overridden defining TIME_FORMAT in a project's settings.py file.

•	 timesince.- The timesince filter outputs the time that's passed between
a datetime object and the current time. The timesince filter output is expressed
in seconds, minutes, hours, days, or weeks. For example, if a variable contains the
datetime object 01/01/2018 12:00pm and the current time is 01/01/2018 3:30pm
the statement {{variable|timesince}} outputs 3 hours 30 minutes. The timesince
filter can also calculate the time that's passed between two datetime object variables
- instead of the default current time - by appending a second datetime object
argument (e.g., {{variable|timesince:othervariable}}).

•	 timeuntil.- The timeuntil filter outputs the time that needs to elapse from the
current time to a datetime object. The timeuntil filter output is expressed in
seconds, minutes, hours, days, or weeks. For example, if a variable contains the
datetime object 01/01/2018 10:00pm and the current time is 01/01/2018 9:00pm
the statement {{variable|timeuntil}} outputs 1 hour. The timeuntil filter can
also calculate the time that needs to elapse between two datetime object variables
- instead of the default current time - by appending a second datetime object
argument (e.g., {{variable|timeuntil:othervariable}}).

Strings, Lists, and Numbers
•	 add.- The add filter adds values. The add filter can add two variables or a hard-

coded value and a variable. For example, if a variable contains 5 the filter statement
{{variable|add:"3"}} outputs 8. If values can be coerced to integers - like the last
example - the add filter performs a sum, if not the add filter concatenates. For a string
variable that contains "Hello" the filter statement {{variable|add:" World"}}
outputs Hello World. For a list variable that contains ['a','e','i'] and another list
variable that contains ['o','u'] the filter statement {{variable|add:othervariable}}
outputs ['a','e','i','o','u'].

•	 default.- The default filter is used to specify a default value if a variable is false,
doesn't exist, or is empty. For example, if a variable doesn't exist in a template,
contains False or is an empty string ('') the filter statement {{variable|default:"no
value"}} outputs no value.

Chapter 3 ■ Django Templates

95

•	 default_if_none.- The default filter is used to specify a default value if a
variable is None. For example, if a variable contains None the filter statement
{{variable|default_if_none:"No value"}} outputs No value. Note if a variable
contains an empty string ('') this is not considered None and the default_if_none
filter does not output its argument value.

•	 length.- The length filter is used to obtain the length of a value. For example, if
a variable contains the string latte the filter statement {{variable|length}}
outputs 5. For a list variable that contains ['a','e','i'] the filter statement
{{variable|length}} outputs 3.

•	 length_is.- The length_is filter is used to evaluate if the length of a value is the
size of a given argument. For example, if a variable contains latte the tag and filter
statement {% if variable|length_is:"7" %} evaluates to false. For a list variable
that contains ['a','e','i'] the tag and filter statement {% if variable|length_
is:"3" %} evaluates to true.

•	 make_list.- The make_list filter creates a list from a string or number. For example,
for the filter and tag statement {% with mycharlist="mocha"|make_list %} the
mycharlist variable is assigned the list ['m', 'o', 'c', 'h', 'a']. For an integer variable that
contains 724 the filter and tag statement {% with myintlist=variable|make_list
%} the myintlist is assigned the list ['7', '2', '4'].

•	 yesno.- The yesno filter maps the value of a variable from True,False and None
to the strings yes,no,maybe. For example, if a variable evaluates to True the filter
statement {{variable|yesno}} outputs yes, if the variable evaluates to False the
same statement outputs no, and if the variable evaluates to None the same statement
outputs maybe. The yesno filter also accepts custom messages as arguments. For
example, if a variable evaluates to True the filter statement {{variable|yesno:"ye
a,nay,novote"}} outputs yea, if the variable evaluates to False the same statement
outputs nay, and if the variable evaluates to None the same statement outputs novote.

Numbers
•	 divisibleby.- The divisibleby filter returns a Boolean value if a variable is

divisible by a given value. For example, if a variable contains 20 the filter statement
{{variable|divisibleby:"5"}} returns True.

•	 filesizeformat.-The filesizeformat filter converts a number of bytes into a
friendly file size string. For example, if a variable contains 250 the filter statement
{{variable|filesizeformat}} outputs 250 bytes, if it contains 2048 the output is 2
KB, if it contains 2000000000 the output is 1.9 GB.

•	 floatformat.- The floatformat filter rounds a floating-point number variable.
The floatformat filter can accept a positive or negative integer argument to round
a variable a specific number of decimals. If no argument is used, the floatformat
filter rounds to one decimal place, as if the argument where -1. For example,
if a variable contains 9.33253 the filter statement {{variable|floatformat}}
outputs 9.3, for the same variable {{variable|floatformat:3}} outputs
9.333 and for {{variable|floatformat:-3}} the output is 9.333; if a variable
contains 9.00000 the filter statement {{variable|floatformat}} outputs 9,
{{variable|floatformat:3}} outputs 9.000 and {{variable|floatformat:-3}}
outputs 9; and if a variable contains 9.37000 the filter statement
{{variable|floatformat}} outputs 9.4, {{variable|floatformat:3}} outputs
9.370 and {{variable|floatformat:-3}} outputs 9.370.

Chapter 3 ■ Django Templates

96

•	 get_digit.- The get_digit filter outputs the digit of a number variable, where 1 is the
last digit, 2 is the second to last digit, and so on. For example, if a variable contains 10257,
the filter statement {{variable|get_digit:"1"}} outputs 7 and the filter statement
{{variable|get_digit:"3"}} outputs 2. If the variable or argument is not an integer or
if the argument is less than 1, the get_digit filter outputs the original variable value.

•	 phone2numeric.- The phone2numeric filter converts mnemonic letters in phone
numbers to digits. For example, if a variable contains 1-800-DJANGO the filter
statement {{variable|phone2numeric}} outputs 1-800-352646. A phone2numeric
filter value doesn't necessarily need to process valid phone numbers, the filter simply
converts letters to their equivalent telephone keypad numbers.

Strings
capfirst.- The capfirst filter capitalizes the first character of a string variable. For example, if a variable
contains hello world the filter statement {{variable|capfirst}} outputs Hello world.

•	 cut.- The cut filter removes all values of a given argument from a string
variable. For example, if a variable contains mocha latte the filter statement
{{variable|filter:"mocha"}} outputs latte. For the same variable the filter
statement is {{variable|filter:" "}} outputs mochalatte.

•	 linenumbers.- The linenumbers filter adds line numbers to each string value
separated by a new line. Listing 3-15 illustrates an example of the linenumbers filter.

Listing 3-15.  Django linenumbers filter

Variable definition
Downtown
Uptown
Midtown

Template definition with linenumbers filter
{{variable|linenumbers}}

Output
1.Downtown
2.Uptown
3.Midtown

•	 lower.- The lower filter converts all values of a string variable to lowercase. For
example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs hello world.

•	 stringformat.- The stringformat filter formats a value with Python string
formatting syntax.4 For example, if a variable contains 7 the filter statement {{var
iable|stringformat:"03d"}} outputs 007. Note the stringformat filter does not
require the leading % used in Python string formatting syntax.

4https://docs.python.org/3/library/stdtypes.html#old-string-formatting

https://docs.python.org/3/library/stdtypes.html#old-string-formatting

Chapter 3 ■ Django Templates

97

•	 pluralize.- The pluralize filter returns a plural suffix based on the value of an
argument. For example, if the variable drink_count contains 1 the filter statement
"You have {{drink_count}} drink{{pluralize|drink_count}}" outputs
"You have 1 drink", if the variable contains 2 the same filter statement outputs
"You have 2 drinks". By default, the pluralize filter uses the letter s which is
the most common plural suffix. However, you can specify different singular and
plural suffixes with additional arguments. For example, the filter statement "We
have {{store_count}} business{{store_count|pluralize:"es"}}" outputs
"We have 1 business" if store_count is 1 or "We have 5 businesses" if store_
count is 5. Another example is the filter statement "We have {{resp_number}}
responsibilit{{resp_number|pluralize:"y","ies"}}" that outputs "We have 1
responsibility" if resp_number is 1 or "We have 3 responsibilities" if resp_
number is 3.

•	 slugify.- The slugify filter converts a string to an ASCII-type string. This means a
string in converted to lowercase, removes non-word characters (alphanumerics and
underscores), strips leading and trailing whitespace, as well as converts spaces to
hyphens. For example, if a variable contains Welcome to the #1 Coffeehouse! the
filter statement {{variable|slugify}} outputs welcome-to-the-1-coffeehouse.
The slugify filter is typically used to normalize strings for urls and file paths.

•	 title.- The title filter converts all first character values of a string variable to
uppercase. For example, if a variable contains hello world the filter statement
{{variable|title}} outputs Hello World.

•	 truncatechars.- The truncatechars filter truncates a string to a given number
of characters and appends an ellipsis sequence. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatechars:20}} outputs Coffeehouse started....

•	 truncatechars_html.- The truncatechars_html filter is similar to the
truncatechars filter but is aware of HTML tags. This filter is designed for HTML
content, so content isn't left with open HTML tags. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncachars_html:20}} outputs Coffeehouse start....

•	 truncatewords.- The truncatewords filter truncates a string to a given
number of words and appends an ellipsis sequence. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatwords:3}} outputs Coffeehouse started as....

•	 truncatewords_html.- The truncatewords_html filter is similar to the
truncatewords filter but is aware of HTML tags. This filter is designed for HTML
content, so content isn't left with open HTML tags. For example, if a variable
contains Coffeehouse started as a small store the filter statement
{{variable|truncatwords_html:3}} outputs Coffeehouse started as....

•	 upper.- The upper filter converts all values of a string variable to uppercase. For
example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs HELLO WORLD.

•	 wordcount.- The wordcount filter counts the words in a string. For example, if a
variable contains Coffeehouse started as a small store the filter statement
{{variable|wordcount}} outputs 6.

Chapter 3 ■ Django Templates

98

Lists and Dictionaries
•	 dictsort.- The dictsort filter sorts a list of dictionaries and returns a new list sorted

by a given key argument. For example, if a variable contains [{'name':'Downtown','
city':'San Diego'}, {'name':'Uptown','city':'San Diego'},{'name':'Midto
wn','city':'San Diego'}] the filter and tag statement {% with newdict=variable
|dictsort:"name" %} the newdict variable is assigned the list [{'name':'Downtown
','city':'San Diego'},{'name':'Midtown','city':'San Diego'},{'name':'Up
town','city':'San Diego'}]. The dictsort filter can also operate on lists of tuples
or lists by specify an index number (e.g., {% with otherlist=listoftuples|dictso
rt:0 %}) to sort by the first element of each tuple in the list).

•	 dictsortreversed.- The dictsortreversed filter sorts a list of dictionaries and
returns a new list sorted in reverse by a given key argument. The dictsortreversed
filter works like dictsort except it returns the list in reverse order.

•	 join.- The join filter joins a list with a string. The join filter works just like Python's
str.join(list). For example, for a list variable that contains ['a','e','i','o','u'] the
filter statement {{variable|join:"--"}} outputs a--e--i--o--u.

•	 first.- The first filter returns the first item in a list. For example, for a list variable
that contains ['a','e','i','o','u'] the filter statement {{variable|first}} outputs a.

•	 last.- The last filter returns the last item in a list. For example, for a list variable that
contains ['a','e','i','o','u'] the filter statement {{variable|last}} outputs u.

•	 random.- The random filter returns a random item in a list. For example, for a list
variable that contains ['a','e','i','o','u'] the filter statement {{variable|random}}
could output a, e, i, o, or u.

•	 slice.- The slice filter returns the slice of a list. For example, for a list variable that
contains ['a','e','i','o','u'] the filter statement {{variable|slice:":3"}} outputs ['a','e','i'].

•	 unordered_list.- The unordered_list outputs an HTML unordered list from a list
variable. Listing 3-16 illustrates an example of the unordered_list filter.

Listing 3-16.  Django unordered_list filter

Variable definition
["Stores",["San Diego",["Downtown","Uptown","Midtown"]]]

Template definition with linenumbers filter
{{variable|unordered_list}}

Output
Stores

 San Diego

 Downtown
 Uptown
 Midtown

Chapter 3 ■ Django Templates

99

■■ Caution  The first level of the unordered_list filter does not include opening or closing HTML tags

Spacing and Special Characters
•	 addslashes.- The addslashes filter adds slashes to all quotes (i.e., it escapes quotes).

The addslashes filter is useful when Django templates are used to export data to
other systems that require to escape quotes (e.g., CSV files). For example, if a variable
contains Today's news the filter statement {{variable|addslashes}} outputs
Today\'s news.

•	 center.- The center filter center aligns a value and pads it with additional
whitespace characters until it reaches the given argument of characters. For example,
if a variable contains mocha the filter statement {{variable|center:"15"}} outputs.

•	 "mocha". (i.e., 5 spaces to the left of mocha, 5 spaces for mocha, 5 spaces to the right
of mocha.

•	 ljust.- The ljust filter left aligns a value and pads it with additional whitespace
characters until it reaches the given argument of characters. For example, if a
variable contains mocha the filter statement {{variable|ljust:"15"}} outputs.

•	 "mocha".(i.e., 5 spaces for mocha, 10 space padding).

•	 rjust.- The rjust filter right aligns a value and pads it with additional whitespace
characters until it reaches the given argument of characters. For example, if a
variable contains latte the filter statement {{variable|rjust:"10"}} outputs.

•	 "latte"."(i.e., 5 space padding, 5 spaces for latte).

•	 escape.- The escape filter escapes HTML characters from a value. Specifically
with the escape filter: < is converted to < ,> is converted to > ,' (single
quote) is converted to ' ," (double quote) is converted to " and & is
converted to &.

■■ Tip  If you use the escape filter on contiguous variables, it's easier to wrap the variables with the
{% autoescape %} tag to achieve the same results.

•	 escapejs.- The escapejs filter escapes characters into Unicode strings that are
often used for JavaScript strings. Though the escapejs filter does not make a string
HTML safe, it does protect against syntax errors when using templates to generate
JavaScript/JSON. For example, if a variable contains "mocha\r\n \'price:2.25"
the filter statement {{variable|escapejs}} outputs \u0022mocha\u000D\u000A \
u0027price:2.25\u0022.

•	 force_escape.- The force_escape filter escapes HTML characters from a value
just like the escape filter. The difference is force_escape is applied immediately
and returns a new and escaped string. This is useful when you need multiple
escaping or want to apply other filters to the escaped results. Normally, you'll use
the escape filter.

Chapter 3 ■ Django Templates

100

•	 linebreaks.- The linebreaks filter replaces plain text line breaks with HTML tags,
a single newline becomes an HTML line break (
), and a new line followed by
a blank line becomes a paragraph break (</p>). For example, if a variable contains
385 Main\nSan Diego, CA the filter statement {{variable|linebreaks}} outputs
<p>385 Main
San Diego, CA</p>.

•	 linebreaksbr.- The linebreaksbr filter converts all text variable new lines to HTML
line breaks (
). For example, if a variable contains 385 Main\nSan Diego, CA the
filter statement {{variable|linebreaksbr}} outputs 385 Main
San Diego, CA.

•	 striptags.- The striptags filter removes all HTML tags from a value. For example,
if a variable contains Coffeehouse, the <i>best</i> drinks</
span> the filter statement {{variable|striptags}} outputs Coffeehouse, the
best drinks.

■■ Caution  The striptags filter uses very basic logic to strip HTML tags. This means there’s a possibility
a convoluted piece of HTML isn’t fully stripped of tags. This is why content in variables passed through the
striptags filter is automatically escaped and should never be marked as safe.

•	 safe.- The safe filter marks a string as not requiring HTML escaping.

•	 safeseq.- The safeseq applies the safe filter to each element of a list. It's useful
in conjunction with other filters that operate on a list, such as the join filter (e.g.,
{{stores|safeseq|join:", "}}). You wouldn't use the safe filter directly on list
variables, as it would first convert the variable to a string, rather than working with
the individual elements of a list.

•	 wordwrap.- The wordwrap filter wraps words at a given character line length
argument. Listing 3-17 illustrates an example of the wordwrap filter.

Listing 3-17.  Django wordwrap filter

Variable definition

Coffeehouse started as a small store

Template definition with wordwrap filter for every 12 characters
{{variable|wordwrap:12}}

Output
Coffeehouse
started as a
small store

Development and Testing
•	 pprint.- The pprint filter is a wrapper for Python's pprint.pprint(). The pprint

filter is useful during development and testing because it outputs the formatted
representation of an object.

Chapter 3 ■ Django Templates

101

Urls
•	 iriencode.- The iriencode filter converts an Internationalized Resource

Identifier (IRI) to a string that is suitable for inclusion in a URL. This is necessary
if you're trying to use strings containing non-ASCII characters in a URL. For
example, if a variable contains ?type=cold&size=large the filter statement
{{variable|iriencode}} outputs ?type=cold&size=large.

•	 urlencode.- The urlencode filter escapes a value for use in a URL. For example, if
a variable contains http://localhost/drinks?type=cold&size=large the filter
statement {{variable|urlencode}} outputs http%3A//localhost/drinks%3Ftype%
3Dcold%26size%3Dlarge. The urlenconde filter assumes the / character is safe. The
urlencode filter can accept an optional argument with the characters that should not
be escaped. An empty string can be provided when all characters should be escaped
(e.g., {{variable|urlencode:""}} outputs http%3A%2F%2Flocalhost%2Fdrinks%3Ft
ype%3Dcold%26size%3Dlarge).

•	 urlize.- The urlize filter converts text URLs or email addresses into clickable HTML
links. This urlize filter works on links prefixed with http://, https://, or www.. Links
generated by the urlize filter have a rel="nofollow" attribute added to them. For
example, if a variable contains Visit http://localhost/drinks the filter statement
{{variable|urlize}} outputs Visit <a href="http://localhost/drinks"
rel="nofollow">http://localhost/drinks; if a variables contains Contact
support@coffeehouse.com the filter statement {{variable|urlize}} outputs
Contact support@coffeehouse.
com.

•	 urlizetrunc.- The urlizetrunc filter converts text URLs and emails into
clickable HTML links - just like the urlize filter - except it truncates the url to
a given number of characters that include an ellipsis sequence. For example,
if a variable contains Visit http://localhost/drinks the filter statement
{{variable|urlizetrunc:20}} outputs Visit <a href="http://localhost/
drinks" rel="nofollow">http://localhost/....

■■ Caution  The urlize and urlizetrunc filters should only be applied to variables with plain text. If applied to
variables with HTML links, the filter logic won’t work as expected.

Built-In Django Tags
Django offers several built-in tags that offer immediate access to elaborate operations on Django templates.
Unlike Django filters that operate on individual variables, tags are designed to produce results without a
variable or operate across template sections.

I'll classify each of these built-in tags into functional sections so it's easier to identify them. The
functional classes I'll use are Dates, forms, comparison operations, loops, Python and filter operations,
spacing and special characters, template structures, development and testing, and urls.

Chapter 3 ■ Django Templates

102

Dates
•	 {% now %}.- The {% now %} tag offers access to the current system time. The {% now

%} tag accepts a second argument to format the system date. For example, if the
system date is 01/01/2015 for the statement {% now "F jS o" %} the tag output is
January 1st 2015. The string syntax for the {% now %} tag is based on Django date
characters described in Table 3-3. It's also possible to use the as keyword to reuse
the value through a variable(e.g. {% now "Y" as current_year %} and later in the
template declare Copyright {{current_year}}).

■■ Tip  The {% now %} tag can accept Django date variables: {% now "DATE_FORMAT" %}, {% now
"DATETIME_FORMAT" %}, {% now "SHORT_DATE_FORMAT" %}, or {% now "SHORT_DATETIME_FORMAT"}.

The date variables in themselves are also composed of date strings. For example DATE_FORMAT default's to "N
j, Y" (e.g., Jan 1, 2015), DATETIME_FORMAT defaults to "N j, Y, P" (e.g., Jan 1, 2015, 12 a.m.), SHORT_DATE_
FORMAT defaults to "m/d/Y" (e.g., 01/01/2015) and SHORT_DATETIME_FORMAT defaults to "m/d/Y P" (e.g.,
01/01/2015 12 a.m.). Each date variable can be overridden with different date strings in a project's settings.py file.

Forms
•	 {% csrf_token %}.- The {% csrf_token %} tag provides a string to prevent cross

site scripting. The {% csrf_token %} tag is only intended to be used inside HTML
<form> tags. The data output of the {% csrf_token %} tag allows Django to prevent
request forgeries (e.g., HTTP POST requests) from form data submissions. More
details about the {% csrf_token %} tag are provided in the Django form chapter.

Comparison Operations
•	 {% if %} with {% elif %} {% else %}.- The {% if %} tag is typically used in

conjunction with the {% elif %} and {% else %} tags to evaluate more than one
condition. An {% if %} tag with an argument variable evaluates to true if a variable
exists and is not empty or if the variable holds a True Boolean value. Listing 3-18
illustrates a series of {% if %} tag examples.

Listing 3-18.  Django {% if %} tag with {% elif %} and {% else %}

{% if drinks %} {% if drinks %} {% if drinks %}
 We have drinks! We have drinks We have drinks
{% endif %} {% else %} {% elif drinks_on_sale %}
 No drinks,sorry We have drinks on sale!
 {% endif %} {% else %}
 No drinks, sorry
 {% endif %}

■■ Note  A variable must both exist and not be empty to evaluate to true. A variable that just exists and is
empty evaluates to false.

Chapter 3 ■ Django Templates

103

•	 {% if %} with and, or and not operators.- The {% if %} tag also supports the and,
or, and not operators to create more elaborate conditions. These operators allow
you to compare if more than one variable is not empty (e.g., {% if drinks and
drinks_on_sale %}), if one or another variable is not empty (e.g., {% if drinks or
drinks_on_sale %}), or if a variable is empty (e.g., {% if not drinks %}).

•	 {% if %} with ==, !=, <, >, <= and >= operators.- The {% if %} tag also supports
equal, not equal, larger than and less than operators to create conditions that
compare variables to fixed strings or numbers. These operators allow you to compare
if a variable equals a string or number (e.g., {% if drink == "mocha" %}), if a
variable does not equal a variable or number (e.g., {% if store.id != 2 %}) or if a
variable is greater than or lesser than a number (e.g., {% if store.id > 5 %}).

•	 {% firstof %}.- The {% firstof %} tag is a shorthand tag to output the first
variable in a set of variables that's not empty. The same functionality of the {%
firstof %} tag is achieved by nesting {% if %} tags. Listing 3-19 illustrates a sample
of the {% firstof %} tag, as well as an equivalent set of nested {% if %} tags.

Listing 3-19.  Django {% firstof %} tag and equivalent {% if %}{% elif %}{% else %} tags

Firstof example
{% firstof var1 var2 var3 %}

Equivalent of firstof example
{% if var1 %}
 {{var1|safe}}
{% elif var2 %}
 {{var2|safe}}
{% elif var3 %}
 {{var3|safe}}
{% endif %}

Firstof example with a default value in case of no match (i.e, all variables are empty)
{% firstof var1 var2 var3 "All vars are empty" %}

Assign the firstof result to another variable
{% firstof var1 var2 var3 as resultof %}
resultof now contains result of firstof statement

•	 {% if <value> in %} and {% if <value> not in %}.- The {% if %} tag also
supports the in and not in operators to verify the presence of a constant or variable.
For example {% if "mocha" in drinks %} tests if the value "mocha" is in the drinks
list variable or {% if 2 not in stores %} tests if the value 2 is not in the stores
list variable. Although the in and not in operators are commonly used to test list
variables, it's also possible to test the presence of characters on strings (e.g., {% if
"m" in drink %}). In addition, it's also possible to compare if the value of one
variable is present in another variable (e.g., {% if order_drink in drinks %}).

•	 {% if <value> is <value> %} and {% if <value> is not %}.- The {% if %} tag
also supports the is and is not operators to make object-level comparisons. For
example {% if target_drink is None %} tests if the value target_drink is a None
object or {% if daily_special is not True %} tests if the value daily_special is
not True.

Chapter 3 ■ Django Templates

104

•	 {% if value|<filter> <condition> <value> %} .- The {% if %} tag also
supports applying filters directly on a value and then performing an evaluation. For
example, {% if target_drink_list|random == user_drink %}Congratulations
your drink just got selected!{% endif %} uses the random filter directly in a
condition.

PARENTHESES ARE NOT ALLOWED IN IF TAGS: OPERATOR
PRECEDENCE GOVERNS, USE NESTED IF TAGS TO ALTER

PRECEDENCE

Comparison operators are often aggregated into single statements (e.g., if...<...or...>...and...==...) and
follow a certain execution precedence. Django follows the same operator precedence as Python.5 So,
for example, the statement {% if drink in specials or drink == drink_of_the_day %} gets evaluated as
((drink in specials) or (drink == drink_of_the_day)), where the internal parentheses operations are run
first, since in and == have higher precedence than or.

In Python you can alter this precedence by using explicit parentheses in comparison statements.
However, Django does not support the use of parentheses in {% if %} tags, you must either rely on
operator precedence or use nested {% if %} statements to declare the same logic produced by explicit
parentheses.

Loops
•	 {% for %} and {% for %} with {% empty %}.- The {% for %} tag iterates over items

on a dictionary, list, tuple, or string variable. The {% for %} tag syntax is {% for
<reference> in <variable> %}, where reference is assigned a new value from
variable on each iteration.

Depending on the nature of a variable there can be one or more references (e.g., for a list one reference
{% for item in list %}, for a dictionary two references {% for key,value in dict.items %}).In
addition, it’s also possible to invert the loop sequence with the reversed keyword (e.g., {% for item in
list reversed %}). The {% for %} tag also supports the {% empty %} tag which is processed in case there
are no iterations in a loop (i.e., the main variable is empty). Listing 3-20 illustrates a {% for %} and a {% for
%} and {% empty %} loop example.

Listing 3-20.  Django {% for %} tag and {% for %} with {% empty %}

{% for drink in drinks %} {% for storeid,store in stores %}
 {{ drink.name }} �{{store.name}}

{% empty %} {% endfor %}
 No drinks, sorry
{% endfor %}

5https://docs.python.org/3/reference/expressions.html#evaluation-order

https://docs.python.org/3/reference/expressions.html#evaluation-order

Chapter 3 ■ Django Templates

105

The {% for %} tag also generates a series of variables to manage the iteration process, such as an
iteration counter, a first iteration flag, and a last iteration flag. These variables can be useful when you want
to create behaviors (e.g., formatting, additional processing) on a given iteration. Table 3-4 illustrates the
{% for %} tag variables.

•	 {% ifchanged %}.- The {% ifchanged %} tag is a special logical tag used inside {%
for %} tags. Sometimes it's helpful to know if a loop reference has changed from one
iteration to the other (e.g., to insert a new title). The argument for the {% ifchanged
%} tag is the loop reference itself (e.g.{% ifchanged drink %}{{drink}} section{%
endifchanged %}) or a part of the reference (e.g., {% ifchanged store.name %}
Available in {{store.name}}{% endifchanged %}). The {% ifchanged %} tag
also support the use of {% else %} tag (e.g., {% ifchanged drink %}{{drink.
name}}{% else %}Same old {{drink.name}} as before{% endifchanged %}).

•	 {% cycle %}.- The {% cycle %} tag is used inside {% for %} tags to iterate over a
given set of strings or variables. One of the primary uses of the {% cycle %} tag is
to define CSS classes so each iteration receives a different CSS class. For example, if
you want assign different CSS classes to a list so each line appears in different colors
(e.g., white, gray, white, gray) you can use <li class="{% cycle 'white' 'grey'
%}">, in this manner on each loop iteration the class value alternates between white
and gray. The {% cycle %} tag can iterate sequentially over any number of strings or
variables (e.g., {% cycle var1 var2 'red' %}).

By default, a {% cycle %} tag progresses through its values on the basis of its enclosing loop (i.e., one by
one). But under certain circumstances, you may need to use a {% cycle %} tag outside of a loop or explicitly
declare how a {% cycle %} tag advances. You can achieve this behavior by naming the {% cycle %} tag with
the as keyword, as illustrated in Listing 3-21.

Listing 3-21.  Django {% cycle %} with explicit control of progression

<li class="{% cycle 'disc' 'circle' 'square' as bullettype %}">...
<li class="{{bullettype}}">...
<li class="{{bullettype}}">...
<li class="{% cycle bullettype %}">...
<li class="{{bullettype}}">...
<li class="{% cycle bullettype %}">...
Outputs

Table 3-4.  Django {% for %} tag variables

Variable Description

forloop.counter The current iteration of the loop (1-indexed)

forloop.counter0 The current iteration of the loop (0-indexed)

forloop.revcounter The number of iterations from the end of the loop (1-indexed)

forloop.revcounter0 The number of iterations from the end of the loop (0-indexed)

forloop.first True if it's the first time through the loop

forloop.last True if it's the last time through the loop

forloop.parentloop For nested loops, this is the parent loop to the current one

Chapter 3 ■ Django Templates

106

<li class="disc">...
<li class="disc">...
<li class="disc">...
<li class="circle">...
<li class="circle">...
<li class="square">...

As you can see in Listing 3-21, the {% cycle %} tag statement initially produces the first value and
afterwards you can continue using the cycle reference name to output the same value. In order to advance
to the next value in the cycle, you call the {% cycle %} once more with the cycle reference name. A minor
side effect of the {% cycle %} tag is that it outputs its initial value where it’s declared, something that can be
problematic if you plan to use the cycle as a placeholder or in nested loops. To circumvent this side effect,
you can use the silent keyword after the cycle reference name (e.g., {% cycle 'disc' 'circle' 'square'
as bullettype silent %}).

•	 {% resetcycle %}.- The {% resetcycle %} tag is used is to reinitiate a {% cycle %}
tag to its first element. A {% cycle %} tag always loops over its entire set of values
before returning to its first one, something that can be problematic in the context
of nested loops. For example, if you want to assign three color codes (e.g.{% cycle
'red' 'orange' 'yellow' %}) to nested groups, the first group can consist of two
elements that use up the first two cycle values (e.g., 'red' 'orange'), which means
the second group starts on the third color code (e.g., 'yellow'). In order for the
second group to start with the first {% cycle %} element again, you can use the
{% resetcycle %} tag after a nested loop iteration finishes so the {% cycle %} tag
returns to its first element.

•	 {% regroup %}.- The {% regroup %} tag is used to rearrange the contents of a
dictionary variable into different groups. The {% regroup %} tag avoids the need to
create complex conditions inside a {% for %} tag to achieve the desired display. The
{% regroup %} tag arranges the contents of a dictionary beforehand, making the {%
for %} tag logic simpler. Listing 3-22 illustrates a dictionary with the use of the {%
regroup %} tag along with its output.

Listing 3-22.  Django {% for %} tag and {% regroup %}

Dictionary definition
stores = [
 {'name': 'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},
 {'name': 'Uptown', 'street': '231 Highland Avenue', 'city': 'San Diego'},
 {'name': 'Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
 {'name': 'Downtown', 'street': '639 Spring Street', 'city': 'Los Angeles'},
 {'name': 'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
 {'name': 'Downton', 'street': '50 1st Street', 'city': 'San Francisco'},
]

Template definition with regroup and for tags
{% regroup stores by city as city_list %}

{% for city in city_list %}
 {{ city.grouper }}

 {% for item in city.list %}

Chapter 3 ■ Django Templates

107

 {{ item.name }}: {{ item.street }}
 {% endfor %}

{% endfor %}

Output
San Diego
 Downtown : 385 Main Street
 Uptown : 231 Highland Avenue
 Midtown : 85 Balboa Street
Los Angeles
 Downtown: 639 Spring Street
 Midtown: 1407 Broadway Street
San Francisco
 Downtown: 50 1st Street

■■ Tip  The {% regroup %} tag can also use filters or properties to achieve grouping results. For example, the
stores list in 3-22 is conveniently preordered by city making grouping by city automatic, but if the stores list
were not preordered, you would need to sort the list by city first to avoid fragmented groups, you can use a
dictsort filter directly (e.g., {% regroup stores|dictsort:'city' by city as city_list %}). Another possibility of the
{% regroup %} tag is to use nested properties if the grouping object has them (e.g., if city had a state property
{% regroup stores by city.state as state_list %}).

Python and Filter Operations
•	 {% filter %}.- The {% filter %} tag is used to apply Django filters to template

sections. If you declare {% filter lower %} the lower filter is applied to all
variables between this tag and the {% endfilter %} tag - note the filter lower
converts all content to lowercase. It’s also possible to apply multiple filters to the
same section using the same pipe technique to chain filters to variables (e.g., {%
filter lower|center:"50" %}...variables to convert to lower case and
center...{% endfilter %}).

•	 {% with %}.- The {% with %} tag lets you define variables in the context of Django
templates. It's useful when you need to create variables for values that aren't exposed
by a Django view method or when a variable is tied to a heavyweight operation. It’s
also possible to define multiple variables in the same {% with %} tag (e.g., {% with
drinkwithtax=drink.cost*1.07 drinkpromo=drink.cost*0.85 %}). Each variable
defined in a {% with %} tag is made available to the template until the {% endwith
%} tag is reached.

Chapter 3 ■ Django Templates

108

PYTHON LOGIC ONLY ALLOWED BEHIND THE SCENES IN CUSTOM
DJANGO TAGS OR FILTERS

Django templates don't allow the inclusion of inline Python logic. In fact, the closest thing Django
templates allow to inline Python logic is through the {% with %} tag, which isn't very sophisticated.

The only way to make custom Python logic work in Django templates is to embed the code inside a
custom Django tag or filter. This way you can place a custom Django tag or filter on a template and the
Python logic runs behind the scenes. The next section describes how to create custom Django filters.

Spacing and Special Characters
•	 {% autoescape %}.- The {% autoescape %} tag is used to escape HTML characters

from a template section. The {% autoescape %} accepts one of two arguments on
or off. With {% autoescape on %} all template content between this tag and the
{% endautoescape %} tag is HTML escaped and with {% autoescape off %} all
template content between this tag and the {% endautoescape %} tag is not escaped.

■■ Tip  If you want to enable or disable auto-escaping globally (i.e., on all templates), it's easier to disable it
at the project level using the autoescape field in the OPTIONS variable in the TEMPLATES configuration, inside a
project's settings.py file, as described in the first section of this chapter.

If you want to enable or disable auto-escaping on individual variables, you can either use the safe filter to
disable auto-escaping on a single Django template variable or the escape filter to escape a single Django
template variable.

•	 {% spaceless %}.- The {% spaceless %} tag removes whitespace between HTML
tags, including tab characters and newlines. Therefore all HTML content contained
within the {% spaceless %} and {% endspaceless %} becomes more compact.
Note the {% spaceless %} tag only removes space between HTML tags, it does not
remove space between text and HTML tags (e.g., <p> my span
</p>, only the space between <p> and </p> tags is removed, the
space between tags that pads the myspan string remains).

•	 {% templatetag %}.- The {% templatetag %} tag is used to output reserved Django
template characters. So if by any chance you want to display any of the characters
{%, %}, {{, }}, {, }, {# or #} verbatim on a template you can. The {% templatetag %}
is used in conjunction with one of eight arguments to represent Django template
characters. {% templatetag openblock %} outputs {%, {% templatetag closeblock
%} outputs %}, {% templatetag openvariable %} outputs {{, {% templatetag
closevariable %} outputs }}, {% templatetag openbrace %} outputs {, {%
templatetag closebrace %} outputs }, {% templatetag opencomment %} outputs
{# and {% templatetag closecomment %} outputs #}. A simpler approach is to wrap
reserved Django characters with the {% verabtim %} tag.

Chapter 3 ■ Django Templates

109

•	 {% verbatim %}.- The {% verbatim %} tag is used to isolate template content from
being processed. Any content inside the {% verbatim %} tag and {% endverbatim
%} tag is bypassed by Django. This means special characters like {{ , variable
statements like {{drink}}, or JavaScript logic that uses special Django characters is
ignored and rendered verbatim. If you need to output individual special characters
use the {% templatetag %} tag.

•	 {% widthratio %}.- The {% widthratio %} tag is used to calculate the ratio of
a value to a maximum value. The {% widthratio %} tag is helpful for displaying
content that is fixed in width but requires to be scaled based on the amount of
available space, such as the case with images and charts. For example, given the
statement <img src="logo.gif" style="width:{% widthratio available_width
image_width 100 %}%"/>, if the available_width is 75 and image_width is 150
it results in 0.50 multiplied by 100, which results in 50. This image's width ratio is
calculated based on the available space and image size, in this case the statement is
rendered as: .

•	 {% lorem %}.- The {% lorem %} tag is used to display random Latin text, which is
useful for filler on templates. The {% lorem %} tag supports up to three parameters
{% lorem [count] [method] [random] %}. Where [count] is a number or variable
with the number of paragraphs or words to generate, if not provided the default
[count] is 1. Where [method] is either w for words, p for HTML paragraphs, or b for
plain-text paragraph blocks, if not provided the default [method] is b. And where the
word random (if given) outputs random Latin words, instead of a common pattern
(e.g., Lorem ipsum dolor sit amet...).

Template Structures
•	 {% block %}.- The {% block %} tag is used to define page sections that can be

overridden on different Django templates. See the previous section in this chapter on
how to create reusable templates for examples of this tag.

•	 {% comment "Optional explanation" %}.- The {% comment %} tag is used to
define comment sections on Django templates. Any content placed between the {%
comment %} and {% endcomment %} tag is bypassed by Django and doesn't appear in
the final rendered web page. Note the string argument in the opening {% comment %}
tag is optional, but helps clear up the purpose of the comment.

•	 {# #}.- The {# #} syntax can be used for a single line comment on Django
templates. Any content placed between {# and #} in a single line is bypassed by
Django and doesn't appear in the final rendered web page. Note that if the comment
spans multiple lines you should use the {% comment %} tag.

•	 {% extends %}.- The {% extends %} tag is used to reuse the layout of another
Django template. See the previous section in this chapter on creating reusable
templates for examples of this tag.

•	 {% include %}.- The {% include %} tag is used to embed a Django template on
another Django template. See the previous section in this chapter on creating
reusable templates for examples of this tag.

•	 {% load %}.- The {% load %} tag is used to load custom Django tags and filters. The
{% load %} tag requires one or multiple arguments to be the names of the custom
Django tags or filters. The next section of this chapter describes how to create custom
filters and how to use the {% load %} tag.

Chapter 3 ■ Django Templates

110

■■ Tip  If you find yourself using the {% load %} tag on many templates, you may find it easier to register
Django tags and filters with the builtins option in TEMPLATES so they become accessible on all templates as if
they were built in. See the first section in this chapter on template configuration for more details.

Development and Testing
•	 {% debug %}.- The {% debug %} tag outputs debugging information that includes

template variables and imported modules. The {% debug %} tag is useful during
development and testing because it outputs 'behind the scenes' information used by
Django templates.

Urls
•	 {% url %}.- The {% url %} tag is used to build urls from predefined values in a

project's urls.py file. The {% url %} tag is useful because it avoids the need to
hard-code urls on templates, instead it inserts urls based on names. The {% url %}
tag accepts a url name as its first argument and url parameters as subsequent
arguments.

For example, if a url points to /drinks/index/ and is named drinks_main, you can use the {% url %} to
reference this url (e.g., Go to drinks home page); if a url points
to /stores/1/ and is named stores_detail you can use the {% url %} with an argument to reference this url
(e.g., Go to {{store.name}} page).

The {% url %} tag also supports the as keyword to define the result as a variable. This allows the result
to be used multiple times or at a point other than where the {% url %} tag is declared (e.g., {% url drink_
detail drink.name as drink_on_the_day%}...later in the template
Drink of the day). Chapter 2 describes this process to name Django url's for easier management and
reverse matches in greater detail.

Custom Filters
On occasions, Django built-in filters fall short in terms of the logic or output they offer. In these
circumstances, the solution is to write a custom filter to achieve the outcome you require.

The logic behind Django filters is entirely written in Python, so whatever is achievable with Python &
Django (e.g., perform a database query, use a third-party REST service) can be integrated as part of the logic
or output generated by a custom filter.

Structure
The simplest custom Django filter only requires you to create a standard Python method and decorate it with
@register.filter() as illustrated in Listing 3-23.

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 3 ■ Django Templates

111

Listing 3-23.  Django custom filter with no arguments

from django import template
register = template.Library()

@register.filter()
def boldcoffee(value):
 '''Returns input wrapped in HTML tags'''
 return '%s' % value

Listing 3-23 first imports the template package and creates a register reference to decorate the
boldcoffee method and tells Django to create a custom filter out of it.

By default, a filter receives the same name as the decorated method. So in this case, the boldcoffee
method creates a filter named boldcoffee. The method input value represents the input of the filter caller.
In this case, the method simply returns the input value wrapped in HTML tags, where the syntax used in
the return statement is a standard Python string format operation.

To apply this custom filter in a Django template you use the syntax {{byline|boldcoffee}}. The
byline variable is passed as the value argument to the filter method, so if the byline variable contains the
text Open since 1965! the filter output is Open since 1965!.

Django custom filters also support the inclusion of arguments, as illustrated in Listing 3-24.

Listing 3-24.  Django custom filter with arguments

@register.filter()
def coffee(value,arg="muted"):
 '''Returns input wrapped in HTML tags with a CSS class'''
 '''Defaults to CSS class 'muted' from Bootstrap'''
 return '%s' % (arg,value)

The filter method in Listing 3-24 has two input arguments. The value argument that represents the
variable on which the filter is applied and a second argument arg="muted" where "muted" represents a
default value. If you look at the return statement you'll notice it uses the arg variable to define a class
attribute and the value variable is used to define the content inside a tag.

If you call the custom filter in Listing 3-24 with the same syntax as the first custom filter (e.g.,
{{byline|coffee}}) the output defaults to using "muted" for the arg variable and the final output is <span
class="muted">Open since 1965!.

However, you can also call the filter in Listing 3-24 using a parameter to override the arg variable.
Filter parameters are appended with :. For example, the filter statement {{byline|coffee:"lead muted"}}
assigns "lead muted" as the value for the arg variable and produces the output <span class="lead
muted">Open since 1965!.

Parameters provide more flexibility for custom filters because they can further influence the final output
with data that's different than the main input.

■■ Tip  In case a filter requires two or more arguments, you can use a space-separated or CSV-type string
parameter in the filter definition (e.g., byline|mymultifilter:"18,success,green,2em") and later parse the string
inside the filter method to access each parameter.

Chapter 3 ■ Django Templates

112

Options: Naming, HTML, and What Comes In and Out
Although the two previous examples illustrate the core structure of custom filters, they are missing a series
of options that make custom filters more flexible and powerful. Table 3-5 illustrates a series of custom filter
options, along with their syntax and a description of what it is they do.

As you can see in Table 3-5, with the exception of one option, all custom filter options are offered by
arguments of the @register.filter() decorator and include default values. So even if you declare an
empty @register.filter() decorator, four out of five options in Table 3-5 operate with default values. Note
it’s possible to add multiple options to the @register.filter() decorator separated by commas (e.g., @
register.filter(name='myfilter',is_safe=True)).

Let’s talk about the name option in Table 3-5. By default and as you learned in the previous examples,
custom filters receive the same name as the method they decorate (i.e., if the backing method of a custom
filter is named coffee, the filter is also called coffee). The name option allows you to give a filter a different
name than the backing method name. Note that if use the name option and try to call the filter with the
method name, you'll get an error because the filter doesn't exist by method name anymore.

All custom filters operate on input provided by variables that can potentially be any Python type (string,
integer, datetime, list, dictionary, etc.). This creates a multitude of possibilities that must be handled in the
logic of a custom filter; otherwise errors are bound to be common (e.g., a call is made to a filter with an
integer variable, but the internal filter logic is designed for string variables). To alleviate these potential input
type issues, custom filters can use the last two options presented in Table 3-5.

The expects_localtime option in Table 3-5 is designed for filters that operate on datetime variables. If
you expect a datetime input, you can set the expects_localtime to True and this makes the datetime input
timezone aware based on your project settings.

The @stringfilter option in Table 3-5 – which is a stand-alone decorator, placed below the
@register.filter decorator – is designed to cast a filter input variable to a string. This is helpful because it
removes the need to perform input type checks and irrespective of what variable type a filter is called with
(e.g., string, integer, list, or dictionary variable) the filter logic can ensure it will always gets a string.

A subtle but default behavior of custom filters is the output that is not considered safe, due to the
is_safe option in Table 3-5 defaulting to False.

This default setting causes the custom filters from Listings 3-23 and 3-24 that contain HTML or
 tags to create verbatim output (i.e., you won't see the text rendered in bold, but rather Open since
1965! literally). Sometimes this is desired behavior, but sometimes it's not.

Table 3-5.  Custom filter options.

Option syntax Values Description

@register.filter
(name=<method_name>)

A sting to name
the filter

Assigns a filter name different from the filter method
name.

@register.filter(is_safe=False) True/False Defines how to treat a filter’s return value
(safe or with auto-escape).

@register.filter
(needs_autoescape=False)

True/False Defines the need to access the auto-escaping status
of the caller (i.e., whether the filter is called in a
template with or without auto-escaping).

@register.filter
(expects_localtime=False)

True/False If the filter is applied on a datetime value, it converts
the value to the project timezone, before running
the filter logic.

@register.filter()
@stringfilter

N/A Stand-alone decorator that casts input to string.

Chapter 3 ■ Django Templates

113

■■ Tip  To make a Django template render HTML characters after applying a custom filter with default settings,
you can use the built-in safe filter (e.g., {{byline|coffee|safe}}) or surround the filter declaration with the
built-in {% autoescape %} tag (e.g., {% autoescape off %} {{byline|coffee}} {% endautoescape %}
tag). However, Django filters can also set the filter is_safe option to True to make the process automatic and
avoid the need to use an extra filter or tag.

You can set the is_safe option in a custom filter to True, to ensure the custom filter output is rendered
'as is' (e.g., the tag is rendered in bold) and HTML elements aren’t escaped .

This filter design approach though makes one big assumption: a custom filter will always be called
with variables containing safe content. What happens if the byline variable contains the text Open
since 1965 & serving > 1000 coffees day!. The variable now contains the unsafe characters & and
> , why are they unsafe? Because they have special meaning in HTML and have the potential to mangle
a page layout if they’re not escaped (e.g., the > might mean 'more than' in this context, but in HTML it
also means a tag opening, which a browser can interpret as markup, in turn mangling the page because
it’s never closed).

To avoid this potential issue of marking unsafe input characters and marking them as safe on output,
you need to rely on the calling template telling the filter if the input is safe or unsafe, which takes us to the
last custom filter option in Table 3-5: needs_autoescape.

The needs_autoescape option – which defaults to False – is used to enable a filter to be informed of the
underlying auto-escaping setting in the template where the filter is called. Listing 3-25 shows a filter that
makes use of this option.

Listing 3-25.  Django custom filter that detects autoescape setting

from django import template
from django.utils.html import escape
from django.utils.safestring import mark_safe

register = template.Library()

@register.filter(needs_autoescape=True)
def smartcoffee(value, autoescape=True):
 '''Returns input wrapped in HTML tags'''
 '''and also detects surrounding autoescape on filter (if any) and escapes '''
 if autoescape:
 value = escape(value)
 result = '%s' % value
 return mark_safe(result)

The needs_autoescape parameter and the autoescape keyword argument of the filter method allow the
filter to know whether escaping is in effect when the filter is called. If auto-escaping is on, then the value is
passed through the escape method to escape all characters. Whether or not the content of value is escaped,
the filter passes the final result through the mark_safe method so the HTML tag is interpreted as bold in
the template.

This filter is more robust than a filter that uses the is_safe=True option - and marks everything as
'safe' - because it can deal with unsafe input, as long as the template user makes the appropriate use of
auto-escape.

Chapter 3 ■ Django Templates

114

Installation and Access
Django custom filters can be stored in one of two locations:

•	 Inside apps .- Stored in .py files located inside Django apps in a folder called
templatetags.

•	 Any project location.- Stored in .py files on any folder in a Django project, configured
through the libraries field in OPTIONS of the TEMPLATES variable in settings.py.

Listing 3-26 illustrates a project directory structure that exemplifies these two locations to store custom
filters.

Listing 3-26.  Django custom filter directory structure

+-<PROJECT_DIR_project_name>
|
+-__init__.py
+-settings.py
+-urls.py
+-wsgi.py
|
+----common----+
| |
| +--coffeehouse_filters.py
|
+----<app_one>---+
| |
| +-__init__.py
| +-models.py
| +-tests.py
| +-views.py
| +-----------<templatetags>---+
| |
| +-__init__.py
| +-store_format_tf.py
+----<app_two>---+
| |
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-----------<templatetags>---+
 |
 +-__init__.py
 +-tax_operations.py

Listing 3-26 shows two apps that contain Django custom filters in two different files - store_formay.
tf.py and tax_operations.py. Keep in mind you need to create the templatetags folder manually inside
a Django app folder and also create an __init__.py file so Python is able to import the modules from
this folder. In addition, remember apps need to be defined in Django's INSTALLED_APPS variable inside
settings.py for the custom filters to be loaded.

Chapter 3 ■ Django Templates

115

In Listing 3-26 there's another .py file - coffeehouse_filters.py - that also contains Django custom
filters. This last custom filter file is different because it's located in a generic folder called common. In order
for Django to locate a custom filter file in a generic location, you must declare it as part of the libraries
field in OPTIONS of the TEMPLATES variable in settings.py. See the first section in this chapter for detailed
instructions on using the libraries field.

Even though custom filters are generally placed into files and apps based on their functionality, this
does not restrict the usage of custom filters to certain templates. You can use custom filters on any Django
template irrespective of where custom filter are stored.

To make use of Django custom filters in Django templates you need to use of the {% load %} tag inside
Django templates, as illustrated in Listing 3-27.

Listing 3-27.  Configure Django template to load custom filters

{% load store_format_tf %}
{% load store_format_t tax_operations %}
{% load undercoffee from store_format_tf %}

As shown in Listing 3-27 there are various ways you can use the {% load %} tag. You can make all the
filters present in a custom file available to a template - note the lack of .py in the {% load %} tag syntax - or
inclusively multiple custom files at once. In addition, you can also selectively load certain filters using the
Python-like syntax load filter from custom_file. Keep in mind the {% load %} tag should be declared at
the top of the template.

■■ Tip  If you find yourself using the {% load %} tag extensively, you can make custom -filters available to all
templates using the builtins field. The builtins field is part of OPTIONS in the TEMPLATES variable in settings.
py. See the first section in this chapter on Django template configuration for detailed instructions on using the
builtins field.

117© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_4

CHAPTER 4

Jinja Templates in Django

In addition to Django templates, the Django framework also supports Jinja templates. Jinja is a stand-alone
template engine project1 that’s very similar to Django’s built-in template system.

However, the adoption and growth behind Jinja templates in Django projects is in part due to the design
limitations of Django templates, which have changed little to nothing since Django’s creation.

Jinja Advantages and Disadvantages
In order for you to gain a high-level perspective of Jinja templates and learn if they’re a good fit for your
Django projects, I’ll first enumerate some of the main advantages and disadvantages of Jinja templates.
Let’s start with the advantages:

•	 Speed and performance.- Jinja compiles template source code to Python byte-
code when it’s first loaded, so the template is only parsed once, resulting in better
runtime performance. In addition, Jinja also supports the option of ahead-of-time
compilation, which can also result in better performance.

Although speed and performance are some of the most debatable advantages
to Jinja templates, given the many factors affecting speed and performance
benchmarks (e.g., database queries/load, server configuration). Generally
speaking and all things being equal, a Jinja template that does exactly the same
thing as a Django template, the Jinja version will be faster than the Django version.

■■ Note  It’s only fair to mention Django templates also support custom loaders with caching to improve
speed and performance – as described in the previous chapter – but this requires further configuration effort
in Django.

•	 Flexibility.- Jinja templates are very flexible in terms of what they can contain,
supporting concepts like macros and more Python-like constructs. While some of
these practices are discouraged in web templates, you’ll come to appreciate some of
these features that are not available or severely constrained in Django templates.

1http://jinja.pocoo.org/

https://doi.org/10.1007/978-1-4842-2787-9_4
http://jinja.pocoo.org/

Chapter 4 ■ Jinja Templates in Django

118

•	 Similar to Django templates.- Jinja is actually inspired by Django templates, so
there’s a lot of common ground between the two systems. Powerful features like
template inheritance and blocks work in the same way, so there’s a smaller learning
curve to use Jinja in Django projects than you might realize. In addition, security
features (e.g., auto-escaping) are also tightly integrated into Jinja, just like they are in
Django templates.

•	 Asynchronous execution.- Templates can sometimes load a lot of data or use
functions that take a long time to run, causing delays in templates that must ‘wait’
for backing tasks to finish (i.e., they’re synchronous). Jinja templates support
asynchronous execution, which allows backing tasks to run their course – without
holding-back templates – and later reconvene with templates when finished. Note
this feature requires the use of asynchronous generators,2 which is only available in
Python 3.6 or newer releases.

And now some Jinja template disadvantages:

•	 Little to no third-party package support.- Because official Django support for Jinja
templates is relatively recent - since Django 1.8, the prior long-term-support(LTS)
version to Django 1.11 on which this book is based on - almost all third-party
packages (e.g., Django admin) are still designed with Django templates. This can
make it difficult to have a pure Jinja template Django project and require that Jinja
templates coexist alongside Django templates, which can in turn lead to difficulties
and confusion when template customization is required.

•	 New concepts.- If you’re accustomed to Django templates, some Jinja features
require additional practice to understand and use correctly (e.g., Jinja macros, Jinja
filters). Although this shouldn’t be an issue if you’re new to Django in general, as
every concept is new and will require some practice.

Transition to Jinja Templates from Django Templates
If you’re accustomed to using Django templates, this section describes the finer details you need to be aware
of when using Jinja templates, such as what Django template knowledge you can leverage in Jinja templates,
what works differently in Jinja templates compared to Django templates, and what are new things you need
to learn that you’ll come to appreciate in Jinja templates.

If you’ve never used Django templates, you can skip to the next section on Jinja template configuration
in Django, as most of what follows is intended for experienced Django template users.

What Works the Same Way in Jinja and Django Templates
Just because Jinja is an entirely different template engine doesn’t mean it’s radically different from Django’s
built-in template engine. You can expect to use the same approach for Variables and blocks, conditionals
and loops, comments, as well as spacing and special characters.

2https://www.python.org/dev/peps/pep-0525/

https://www.python.org/dev/peps/pep-0525/

Chapter 4 ■ Jinja Templates in Django

119

Variables and blocks
Curly braces {} are broadly used in Jinja templates just like they’re used in Django templates. To output
a variable in Jinja you use the same {{myvariable}} syntax. Similarly, you also name blocks to inherit
snippets between templates with the {% block footer %} {% endblock %} syntax. In addition, Jinja also
uses the same Django {% extends "base.html" %} syntax to create parent/child relationships between
templates.

Conditionals and loops
Jinja uses the same Django syntax to create conditionals: {% if variable %}{% elif othervariable %}
{% else %}{% endif %}. In addition, Jinja also uses the same for loop syntax as Django: {% for item in
listofitems %}{{item}}{% endfor %}.

Comments
Jinja also uses the same comment tag as Django: {# This is a template comment that isn't rendered #}.
However, note Jinja uses the {# #} tag for both single and multiline comments.

Spacing and special characters
Since Jinja templates were inspired from Django templates, Jinja uses a similar approach to dealing with
spacing and special characters. For example, things like spacing filters (e.g., center and wordwrap) and
special character handling (e.g., safe and escape filters) work the same way in Jinja templates as they do in
Django templates.

What Works Differently in Jinja Templates Compared to Django
Templates
However, not everything works the same way in Jinja templates; here are some Django template techniques
you’ll need to relearn to work with Jinja templates.

Filters
Although Jinja uses the same pipe | symbol to apply filters to variables, Jinja filters are technically classified
into filters and tests. In Django templates there are just filters that perform tests (e.g., divisibleby), but
in Jinja these type constructs are called tests and use the conditional syntax {% if variable is test %}
instead of the standard pipe | symbol.

In addition, Jinja filters and tests are backed by standard methods. This has the advantage that passing
arguments to Jinja filters and tests is as simple as a method call (e.g., {{variable|filesizeformat(true)}})
vs. the unintuitive Django filter argument syntax of using a colon and even requiring arguments to be parsed
in custom Django filters (e.g., {{variable|get_digit:"1"}}).

It’s also possible to create custom Jinja filters and tests - in addition to the built-in Jinja filters and tests
that are similar to Django built-in filters. However, unlike Django filters that are loaded into templates via
the {% load %} tag, Jinja custom filters and tests are registered globally and become accessible to all Jinja
templates like Django context processors.

Chapter 4 ■ Jinja Templates in Django

120

Context processors
Context processors give Django templates access to sets of variables across every template in a project, but in
Jinja this functionality is called global variables. This is one area where you’ll likely miss the Django template
functionality of simply declaring context processors and getting access to sets of variables. However, it’s
relatively easy to create Jinja global variables to become accessible on all Jinja templates and act as Django
context processors.

No date elements like the {% now %} tag and filters like time and timesince
Jinja in its out-of-the-box state provides no tags or filters to work with dates or times. Although Jinja does offer
the format filter that works just like Python’s standard method and can be used for date formatting, you’ll
need to write your own custom filters and tags to deal with date and time elements in a more advanced way.

{% comment %} tag not supported
Jinja uses the {# #} tag to define either single or multiline comments, so there’s no support for the
{% comment %}, which in Django templates is used for multiline comments.

{% load %} tag not supported
In Jinja the {% load %} tag to import custom tags and filters is not supported. In Jinja custom tags and filters
are registered globally and automatically become accessible to all Jinja templates.

Use {{super()}} instead of {{block.super}}
In Django templates you use the syntax {{ block.super }} to access the contents of a parent template’s
block. In Jinja you must use the {{super()}} syntax to gain access to the contents of a parent template’s block.

{% csrf_token %} tag not supported, instead use csrf_input
or csrf_token variables
In Django templates when you create a form that has an HTTP POST action, you place the {% csrf_token %}
tag in its body to generate a special token that avoids XSS(‘Cross-site scripting’). To replicate this behavior
in Jinja you must use the csrf_input variable (e.g., {{csrf_input}} that generates a string like <input
type="hidden" name="csrfmiddlewaretoken" value="4565465747487">) or use the csrf_token variable that
contains the raw CSRF token (e.g., 4565465747487).

{% for %} loop variables
In Django templates the context of {% for %} loops offers access to a series of variables (e.g., counter,
first, and last iteration). Jinja templates offer a similar variable in the context of {% for %} but they are not
identical.

Chapter 4 ■ Jinja Templates in Django

121

{% empty %} tag not supported in loops, use the {% else %} tag
{% for %} loops in Django templates support the {% empty %} clause as a last argument to generate logic or
a message when an iteration is empty. In Jinja {% for %} loops you can use the {% else %} clause as a last
argument to generate logic or a message when an iteration is empty.

{% groupby %} tag not supported, use the groupby filter
Django templates support the {% groupby %} tag to rearrange dictionaries or objects based on different
attributes. In Jinja you can achieve the same functionality, but you must do it through the groupby filter as
described in the Jinja groupby filter.

{% cycle %} tag not supported, use the cycler function or the loop.cycle
variable in {% for %} loops
Django templates support the {% cycle %} tag to cycle over a list of values. In Jinja this functionality is
available in two forms. You can use the cycler method if you require the functionality outside of loops.
Or you can use the loop.cycle function available in all {% for %} loops.

{% lorem %} tag not supported, use the lipsum Function
Django templates support the {% lorem %} tag to generate random Latin text as filler content. In Jinja you
can achieve the same functionality with the lipsum function.

Other miscellaneous tags like {% static %}, {% trans %}, {% blocktrans %},
and {% url %} not supported
A series of Django template tags like {% static %} and {% trans %} are simply not available in Jinja.
However, there are third-party projects that have ported these and many other Django template tags into
Jinja extensions. A later section in this chapter on Jinja extensions discusses these options.

New Concepts and Features in Jinja Templates vs. Django Templates
Now that you know what Django template knowledge you can leverage and what techniques you’ll need
to relearn to effectively work with Jinja templates, let’s take a look at some concepts that only apply to Jinja
templates.

More useful built-in filters, tests, and more resemblance to a Python environment
Jinja templates offer a variety of built-in filters and tests that are sorely missing in Django templates. For
example, for something as simple as checking variable types (e.g., string, number, iterable, etc.), Jinja offers a
series of built-in tests for this purpose, where as in Django this requires creating custom filters.

Access and manipulation of complex data types (e.g., objects and dictionaries) is also vastly improved
in Jinja templates vs. Django templates. For example, Jinja offers filters such as reject, select, and map to
prune, filter, or alter data subsets on a template, a technique that although frowned upon by purists
(i.e., those who stand by only manipulating data in views) are a very common requirement in real and
time-constrained projects.

Chapter 4 ■ Jinja Templates in Django

122

Jinja templates also support syntax that is more in line with a standard Python environment. For
example, in Django something like accessing a dictionary key through a variable requires a custom
filter, where as in Jinja templates this works with standard Python syntax (e.g., if you have the variables
stores={"key1":"value1", "key2":"value2"}, and var="key1", Django template can’t do
stores.get(var), which is standard Python syntax, but in Jinja this works out of the box as expected of a
Python environment).

Global functions
Jinja also supports a series of global functions. For example, Jinja offers the range function that works
just like Python’s standard function that is useful in loops (e.g., {% for number in range(50 -
coffeeshops|count) %}). In addition, Jinja also offers the global functions lipsum to generate dummy
placeholder content, dict to generate dictionaries, cycler to generate a cycle over elements, and joiner to
join sections.

Flexible tag nesting, conditionals, and references
Jinja is very flexible in terms of nesting tags, particularly compared to what’s permissible in Django
templates. For example, in Jinja you can even conditionally apply the {% extends %} tag (e.g., {% if user
%}{% extends "base.html" %}{% else %}{% extends "signup_base.html" %}{% endif %}) or also use
variable reference names with inline conditions (e.g., {% extends layout_template if layout_template
is defined else 'master.html' %}) - something that’s not possible in Django templates.

Macros
In Jinja, macros allow you to define function-like snippets with complex layouts that can be called from
any template with different instance values. Macros are particularly useful to limit the spread of complex
layouts across templates. With macros you define a complex layout once (i.e., as a macro) and invoke it with
different parameters to output the complex layout customized every single time, just as if were a function.

Flexible variable assignment in templates with less restrictive scope
In Jinja you can use the {% set %} tag to define variables to have a valid scope until the end of the template.
Although Jinja also supports the {% with %} tag – just like the Django template version - the {% with %}
tag can become cumbersome for multiple variable definitions because it requires closing the scope with {%
endwith %} every time. The {% set %} is a good alternative for global template variables because you only
require the initial definition and the scope propagates to the end of the template without having to worry
about closing the scope.

Line statements
Jinja supports the definition of logical statements in what it calls line statements. By default, a line statement
is preceded with the # symbol and can serve as an alternative to tag syntax. For example, the {% for %} tag
statement {% for item in items %} can use the equivalent line statement # for item in items, just as
the tag statement {% endfor %} can use the equivalent line statement # endfor. Line statements, more
than anything, give templates a Python feel to them that can make complex logic easier to decipher vs. using
tag statements that require the {% %} syntax.

Chapter 4 ■ Jinja Templates in Django

123

Jinja Template Configuration in Django
The first step to use Jinja in Django is to install the core package with the command pip install Jinja2.
Note the installation is for version 2 (i.e., Jinja2), which is the most recent version. While Jinja 1 is still
available, Django does not offer built-in support for version 1, so place special attention to make sure you
install version 2.

Next, you need to configure Jinja in a Django project inside the settings.py file. Listing 4-1 illustrates a
basic Jinja configuration for Django.

Listing 4-1.  Jinja configuration in Django settings.py

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/jinjatemplates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 },
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

As you can see in Listing 4-1, there are two configurations declared in TEMPLATES, a dictionary for
Jinja template configuration and another dictionary with the default Django template configuration. Since
Django templates are still used by things like the Django admin and many third-party packages, I highly
recommended you use the base configuration in Listing 4-1 since it keeps other things you don’t have
template control over from breaking.

The Jinja configuration in Listing 4-1 is one of the most basic possible. In this case, the BACKEND variable
uses the django.template.backends.jinja2.Jinja2 value to activate Jinja templates, and is followed
immediately with the DIRS and APP_DIRS variables, which tell Django where to locate Jinja templates.

Template Search Paths
The APP_DIRS variable permits the lookup of templates inside special app subdirectories named jinja2.
This is helpful if you wish to contain Jinja templates to apps, but be aware the template search path is not
aware of app namespaces. For example, if you have two apps that both rely on a template named index.html
- as illustrated in Listing 4-2 - and both apps have a method in views.py that returns control to the

Chapter 4 ■ Jinja Templates in Django

124

index.html template (e.g., render(request,'index.html')), both apps will use the index.html from the
topmost declared app in INSTALLED_APPS, so one app won’t use the expected index.html.

Listing 4-2.  Django apps with jinja2 dirs with potential conflict and namespace qualification

Templates directly under jinja2 folder can cause loading conflicts
+---+-<PROJECT_DIR_project_name_conflict>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-jinja2-+
 | |
 | +-index.html
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-jinja2-+
 |
 +-index.html

Templates classified with additional namespace avoid loading conflicts
+---+-<PROJECT_DIR_project_name_namespace>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-jinja2-+
 | |
 | +-about-+
 | |
 | +-index.html
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py

Chapter 4 ■ Jinja Templates in Django

125

 +-views.py
 +-jinja2-+
 |
 +-stores-+
 |
 +-index.html

To fix this potential conflict, the recommended practice is to add an additional subfolder to act
as a namespace inside each jinja2 directory as illustrated in the second set of folders in Listing 4-2.
In this manner, you can then redirect control to a template using this additional namespace subfolder
to avoid any ambiguity. So to send control to the about/index.html template you would declare
render(request,'about/index.html') and to send control to the stores/index.html you would declare
render(request,'about/index.html').

If you wish to disallow this behavior of allowing templates to be loaded from these internal app
subfolders, you can do so by setting APP_DIRS to FALSE.

A more common approach for Jinja templates is to have a single folder or various folders - that live
outside app structures - to hold Jinja templates. Django first looks for a matching Jinja template in the first
DIRS value and then in jinja2 folders in apps – if APP_DIRS is TRUE – until it either finds a matching template
or throws a TemplateDoesNotExist error.

For the case illustrated in Listing 4-1, the only DIRS value relies on a directory named jinjatemplates
relative to a path determined by the PROJECT_DIR variable. This variable technique is helpful when deploying
a Django project across different machines, because the path is relative to the top-level Django project
directory (i.e., where the settings.py and main urls.py file are) and adjusts dynamically irrespective of
where a Django project is installed (e.g., /var/www/, /opt/website, C://website/).

Similar to the Django template OPTIONS variable, Jinja also supports a series of customizations through
the OPTIONS variable. In the case of Jinja, the OPTIONS variable is a dictionary of key-values that correspond to
Jinja environment initialization parameters.3

By default, Django internally sets a series of Jinja environment initialization parameters to align Jinja’s
template behavior with that of Django templates. However, you can easily override these settings with the
OPTIONS variable. The next sections describe these important settings.

Auto-Escaping Behavior
Django enables Jinja template auto-escaping by default, a behavior that’s actually disabled in the Jinja
engine in its out-of-the-box state. The crux of auto-escaping is that, on the one hand it errs on the side of
precaution and security - limiting the possibility to mangle output or introduce XSS (Cross-site scripting)
vulnerabilities in HTML – but on the other hand, it also introduces extra processing in the template engine
that can cause performance problems.

By default, Django templates auto-escape all output from template variables – < is converted to <, >
is converted to >, ' (single quote) is converted to ', " (double quote) is converted to " and & is
converted to & – unless you explicitly disable this behavior. Jinja in its out-of-the-box state doesn’t auto-
escape anything, and you need to explicitly tell it when you want to auto-escape something.

Because the Jinja template integration for Django was done by Django designers, Jinja auto-escaping is
enabled, to err on the side of security, just like it’s for Django templates. However, you can disable Jinja auto-
escaping with the autoescape parameter in OPTIONS as illustrated in Listing 4-3.

3http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

Chapter 4 ■ Jinja Templates in Django

126

Listing 4-3.  Jinja disable auto-escaping in Django

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/jinjatemplates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'autoescape': False
 },
 }
]

As you can see in Listing 4-3, autoescape is assigned False and with this change Jinja templates behave
just as Jinja designers intended (i.e., you need to explicitly check where auto-escaping is necessary vs. the
Django template way to check where auto-escaping isn’t necessary).

Auto-Reload Template Behavior and Caching
In its out-of-the-box state, Jinja’s template loader checks every time a template is requested to see if the
source has changed; if it has changed, Jinja reloads the template. This can be helpful in development where
a template’s source changes constantly, but can also translate into a performance hit in production where a
template’s source rarely changes and the check incurs a delay.

By default, the Django framework Jinja integration takes a sensible approach and enables Jinja
template auto-reloading based on the DEBUG variable in settings.py. If DEBUG=True - a common setting
in development - Jinja template auto-reloading is set to True and if DEBUG=False - a common setting in
production - Jinja template auto-reloading is set to False. Nevertheless, you can explicitly set Jinja’s
auto-loading behavior with the auto_reload parameter in OPTIONS.

The Jinja engine by default also caches up to 400 templates. This means that when template 401 is
loaded, Jinja cleans out the least recently used template, the latter of which must be reloaded from its origin
again if required at a later time. The Jinja cache limit can be adjusted with the cache_size parameter in
OPTIONS (e.g., cache_size=1000, to set a 1000 template cache). Setting cache_size to 0 (zero) disables
caching and setting cache_size to -1 enables unlimited caching.

Another caching mechanism available in Jinja templates is byte-code caching. When you create Python
source files (i.e., those with .py extensions), Python produces mirror-like files with .pyc extensions that
contain byte-code. Generating these byte-code files takes time, but they’re a natural part of Python’s runtime
process. Jinja templates being based on Python also need to be turned into byte-code, but it’s a process you
can customize with the bytecode_cache parameter in OPTIONS.

The bytecode_cache parameter can be assigned either a custom byte-cache4 or one of Jinja’s built-in
byte-code caches, which include support for standard file-system caching or more specialized caching with
memcached.

4http://jinja.pocoo.org/docs/2.9/api/#bytecode-cache

http://jinja.pocoo.org/docs/2.9/api/#bytecode-cache

Chapter 4 ■ Jinja Templates in Django

127

Invalid Template Variables
You can set various behaviors when an invalid variable is encountered in Jinja templates. Django sets Jinja
with two default behaviors, one for when DEBUG=True - a common setting in development - and the other for
when DEBUG=False - a common setting in production.

If DEBUG=True and an invalid variable is set in a Jinja template, Jinja uses the jinja2.DebugUndefined
class to process it. The jinja2.DebugUndefined class outputs the variable verbatim for rendering (e.g., if
the template has the {{foo}} statement and the variable doesn’t exist in the context, Jinja outputs {{foo}},
making it easier to spot an invalid variable).

If DEBUG=False and an invalid variable is set in a Jinja template, Jinja uses the jinja2.Undefined class
to process it. The jinja2.Undefined class outputs a blank space in the position of the variable for rendering
(e.g., if the template has the {{bar}} statement and the variable doesn’t exist in the context, Jinja outputs a
blank space). It’s worth mentioning this last behavior aligns with the default behavior of invalid variables in
Django templates.

In addition to the jinja2.DebugUndefined and jinja2.Undefined classes, Jinja also supports the
jinja2.StrictUndefined class. The jinja2.StrictUndefined class is used to generate an immediate error
instead of proceeding with rendering, which is helpful for quicker diagnosis of invalid variables. However, be
aware this last class changes its behavior based on the DEBUG variable; it either generates a stack error with
the invalid variable name (i.e., when DEBUG=True) or it generates a standard HTTP 500 error page (i.e., when
DEBUG=False).

Listing 4-4 illustrates how to configure a Jinja class to handle invalid variables through the OPTIONS
parameter in settings.py.

Listing 4-4.  Generate error for invalid variables in Jinja with jinja2.StrictUndefined

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

import jinja2

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/jinjatemplates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'undefined':jinja2.StrictUndefined
 },
 }
]

As you can see in Listing 4-4, we first declare import jinja2 to gain access to Jinja’s classes in
settings.py. Next, we declare the undefined key inside the OPTIONS parameter and assign it the Jinja class
to process invalid variables. In this case, we use the jinja2.StrictUndefined class to get errors when
invalid templates variables are encountered, but you could equally use any of the other two Jinja classes to
handle invalid variables (i.e., jinja2.DebugUndefined or jinja2.Undefined).

Chapter 4 ■ Jinja Templates in Django

128

Template Loaders
Jinja template loaders are Python classes that implement the actual logic required to search and load
templates. Earlier in the section “Template Search Paths,” I described how Jinja searches for templates using
the DIRS and APP_DIRS variables, which are part of Django’s template configuration. However, I intentionally
omitted a deeper aspect associated with this template search process: each search mechanism is backed by
a template loader.

In most circumstances, you won’t need to deal with Jinja template loaders, since Jinja loaders are taken
care of in the background by simply relying on the DIRS and APP_DIRS variables. But if you need to load Jinja
templates from somewhere else than these locations (e.g., from an in-memory structure or a database), you
can specify template loaders with the loader key inside the OPTIONS parameter.

Like Django template loaders, Jinja also offers the ability to create custom template loaders,5 in addition
to using built-in Jinja template loaders similar to those offered by Django template (e.g., loading templates
from a Python dictionary).

■■ Tip  You can set custom values for any Jinja environment initialization parameter6 in OPTIONS. The prior
sections are just four of the most common Jinja template parameters; later sections describe other available
OPTIONS.

■■ Note  OPTIONS is only intended for Jinja environment initialization parameters; other Jinja environment
settings require configuring a separate Jinja environment class (e.g., Jinja globals, Jinja custom filters and
tests, and Jinja policies).

Create Reusable Jinja Templates
Templates tend to have common sections that are equally used across multiple instances. For example,
the header and footer sections on all templates rarely change, whether a project has 5 or 100 templates.
Other template sections like menus and advertisements also fall into this category of content that’s constant
across multiple templates. All of this can lead to repetition over multiple templates, which can be avoided by
creating reusable templates.

With reusable Jinja templates you can define common sections on separate templates and reuse them
inside other templates. This process makes it easy to create and manage a project’s templates because a
single template update takes effect on all templates.

Reusable Jinja templates also allow you to define page blocks to override content on a page-by-page
basis. This process makes a project’s templates more modular because you define top-level blocks to
establish the overall layout and define content on a page-by-page basis.

5http://jinja.pocoo.org/docs/2.9/api/#loaders
6http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

http://jinja.pocoo.org/docs/2.9/api/#loaders
http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

Chapter 4 ■ Jinja Templates in Django

129

Let’s take the first step toward building reusable Jinja templates by exploring Jinja’s built-in {% block %}
tag. Listing 4-5 illustrates the first lines of a template called base.html with several {% block %} tags.

Listing 4-5.  Jinja template with {% block %} tags

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>{% block title%}Default title{% endblock title %}</title>
 <meta name="description" content="{% block metadescription%}{% endblock metadescription %}">
 <meta name="keywords" content="{% block metakeywords%}{% endblock metakeywords %}">

Notice the syntax {% block <name>%}{% endblock <name>%} in Listing 4-5. Each {% block %} tag has a
reference name. The reference name is used by other Jinja templates to override the content for each block.
For example, the {% block title %} tag within the HTML <title> tags defines a web page title. If another
template reuses the template in Listing 4-5, it can define its own web page title by overriding the title block. If
a block is not overridden on a template, the block receives the default content within the block. For the title
block the default content is Default title, for the metadescription and metakeywords blocks the default
content is an empty string.

The same mechanism illustrated in Listing 4-5 can be used to define any number of blocks (e.g., content,
menu, header, footer). It’s worth mentioning the <name> argument of {% endblock <name> %} is optional
and it’s valid to just use {% endblock %} to close a block statement; however, the former technique makes it
clearer where a block statement ends, which is especially helpful when a template has multiple blocks.

Although it’s possible to call the template in Listing 4-5 directly by a Django view method or url request,
the purpose of this kind of template is to use it as a base template for other templates. To reuse a Jinja
template you use the Jinja built-in {% extends %} tag.

The {% extends %} tag uses the syntax {% extends <name> %} to reuse the layout of another template.
This means that in order to reuse the layout in Listing 4-5 defined in a file base.html, you use the syntax {%
extends "base.html" %}, as illustrated in Listing 4-6.

Listing 4-6.  Jinja template with {% extends %} and {% block %} tag

{% if user %}{% extends "base.html" %}{% else %}{% extends "signup_base.html" %}{% endif %}
{% block title %}Coffeehouse home page{% endblock %}

Look how Listing 4-6 uses the {% extends "base.html" %} wrapped around the {% if user %}
statement. If the user variable is defined, Jinja extends the base.html template; otherwise it extends the
signup_base.html template. This conditional syntax is not possible in Django templates.

In addition, notice how Listing 4-6 defines the {% block title %} tag with the content Coffeehouse
home page. The block in Listing 4-6 overrides the title block from the base.html template. So where are the
HTML <title> tags in Listing 4-6? There aren’t any and you don’t need them. Jinja automatically reuses the
layout from either the base.html or signup_base.html templates and substitutes the blocks’ content where
necessary.

Jinja templates that reuse other templates tend to have limited layout elements (e.g., HTML tags) and
more Jinja block statements to override content. This is beneficial because, as I outlined previously, it lets
you establish the overall layout once and define content on a page-by-page basis.

The reusability of Jinja templates can occur multiple times. For example, you can have templates A, B,
and C, where B requires the reuse A, but C requires the reuse of parts of B. The only difference is template C
needs to use the {% extends "B" %} tag instead of the {% extends "A"%} tag. But since template B reuses A,
template C also has access to the same elements in template A.

Chapter 4 ■ Jinja Templates in Django

130

When reusing Jinja templates, it’s also possible to access the block content from a parent template. Jinja
exposes the block content from a parent template through the super() method. Listing 4-7 illustrates three
templates that show this mechanism for a block containing web page paths or ‘breadcrumbs’.

Listing 4-7.  Jinja templates use of super() with three reusable templates

base.html template
<p>{% block breadcrumb %}Home{% endblock %}</p>

index.html template
{% extends "base.html" %}
{% block breadcrumb %}Main{% endblock %}

detail.html template
{% extends "index.html" %}
{% block breadcrumb %} {{super()}} : Detail {% endblock %}

The base.html template in Listing 4-7 defines the breadcrumb block with a default value of Home. Next,
the index.html template reuses the base.html template and overrides the breadcrumb block with a value of
Main. Finally, the detail.html template reuses the index.html template and overrides the breadcrumb block
value. However, notice the {{super()}} statement in the final block override. Since {{super()}} is inside
the breadcrumb block, {{super()}} tells Jinja to get the content from the parent template block.

Another reusability functionality supported by Jinja templates is the inclusion of a Jinja template inside
another Jinja template. Jinja supports this functionality through the {% include %} tag.

By default, the {% include %} tag expects the name of a template. For example,
{% include "footer.html" %} inserts the contents of the footer.html template in the position of the
template where it’s declared. The {% include %} tag also makes the underlying template aware of variables.
This means the footer.html template can have variable definitions (e.g., {{year}}) and if the calling
template has these variable definitions, the {% include %} tag automatically substitutes these values.

In addition, it’s possible to provide a list of templates as a fallback mechanism. For example,
{% include ['special_sidebar.html', 'sidebar.html'] ignore missing %} tells Jinja to first
attempt to locate the special_sidebar.html template and if it isn’t found to attempt to locate the
sidebar.html template; if neither template is found the last argument ignore missing tells Jinja to render
nothing. Note the ignore missing argument can also be used in individual statements (e.g., {% include
"footer.html" ignore missing %}, as well as lists). In addition, if the ignore missing statement is not
used and Jinja can’t find a matching template declared in {% include %}, Jinja raises an exception.

The {% macro %} tag allows the definition of reusable content snippets across templates. For example,
if you need to incorporate elaborate markup to display elements that have common characteristics, you can
define the elaborate markup once in a {% macro %} statement and then reuse this {% macro %} to output the
markup customized to each element instance.

Macros are helpful because if you decide to change the markup, you only need to change it in a single
location and the changes propagate to other locations. Listing 4-8 illustrates the definition of a {% macro %}
statement and its usage in templates.

Listing 4-8.  Jinja {% macro %} definition and use of {% import %}

base.html template
{% macro coffeestore(name, id='', address='', city='San Diego', state='CA', email=None) -%}

 <h4>{{name}}</h4>
 <p>{{address}} {{city}},{{state}}</p>
 {% if email %}<p>{{email}}</p>{% endif %}
{%- endmacro %}

Chapter 4 ■ Jinja Templates in Django

131

index.html template calls inherited macro directly
{% extends "base.html" %}
{{coffeestore('Downtown',1,'Horton Plaza','San Diego','CA','downtown@coffeehouse.com')}}

detail.html template with no extends, uses {% import %} to access macro in base.html
{% import 'base.html' as base %}
{{base.coffeestore('Downtown',1,'Horton Plaza','San Diego','CA','downtown@coffeehouse.com')}}

otherdetail.html template with no extends, uses {% from import %} to access macro in base.html
{% from 'base.html' import coffeestore as mycoffeestoremacro %}
{{mycoffeestoremacro('Downtown',1,'Horton Plaza','San Diego','CA','downtown@coffeehouse.com')}}

The first thing that’s done in Listing 4-8 is the {% macro %} definition declared in the base.html
template. Notice that after the {% macro snippet, there’s what appears to be a regular method named
coffeestore, which corresponds to the name of the macro with six input arguments, five of which have
default values. Next, inside the {% macro %} and {% endmacro %} statements you can see some elaborate
HTML markup that makes use of the standard {{ }} syntax to output whatever variable values are passed on
a given instance of the macro.

Since the {% macro %} in Listing 4-8 is defined inside the base.html template, any other template that
uses the base.html template can access the macro and call the macro with an instance (e.g., {{coffeestore
('Downtown',1,'Horton Plaza','San Diego','CA','downtown@coffeehouse.com')}} - hard-coded values
for simplicity) for Jinja to render the HTML markup customized with the instance values.

If you want to access a {% macro %} in other templates you have three alternatives that are also presented
in Listing 4-8. If a template extends another template (e.g., {% extends "base.html" %}) then by default it will
also gain access to the parent’s template {% macro %} definitions. It’s also possible to access another template’s
{% macro %} definitions with the {% import %} statement. For example, the statement {% import 'base.html'
as base %} imports the base.html definitions into another template with the base namespace, in which case
to invoke the {% macro %} called coffeestore you would use the {{base.coffeestore(...}} syntax. Finally,
it’s also possible to selectively import a {% macro %} definition with the {% from import %} statement. For
example, the statement {% from 'base.html' import coffeestore as mycoffeestoremacro %} imports the
coffeestore definition from the base.html template and places it under the mycoffeestoremacro name, in
which case you would use the {{mycoffeehousemacro(...}} syntax to invoke the {% macro %}.

The {% call %} tag is another option that, used in conjunction with the {% macro %} tags, favors the
reusability of macros themselves. The first usage scenario of the {% call %} tag is to invoke a {% macro %}
that requires a placeholder for content that’s defined until the invocation of the macro. Listing 4-9 illustrates
this basic scenario of the {% call %} tag along with a {% macro %}.

Listing 4-9.  Jinja {% call %} and {% macro %} use

macro definition
{% macro contentlist(adcolumn_width=3,contentcolumn_width=6) -%}
 <div class="col-md-{{adcolumn_width}}">
 Sidebar ads
 </div>
 <div class="col-md-{{contentcolumn_width}}">
 {{ caller() }}
 </div>
 <div class="col-md-{{adcolumn_width}}">
 Sidebar ads
 </div>
{%- endmacro %}

Chapter 4 ■ Jinja Templates in Django

132

macro call/invocation
{% call contentlist() %}

 This is my list

{% endcall %}

rendering
<div class="col-md-3">
 Sidebar ads
</div>
<div class="col-md-6">

 This is my list

</div>
<div class="col-md-3">
 Sidebar ads
</div>

In Listing 4-9 we first define a {% macro %} with a similar structure to that of Listing 4-8; however, notice
inside the {% macro %} the {{ caller() }} statement. The caller() method inside {% macro %} serves as
placeholder to be substituted by the calling entity.

Next, in Listing 4-9 you can see the {% call %} statement is declared with the macro call - in this
case contentlist() - and the body of the {% call %} statement contains an HTML list. When Jinja
executes the {% call %} statement, the {% call %} contents are placed in the location of the {% macro %}
{{caller()}} declaration.

A more advanced scenario of the {% call %} tag with a {% macro %} is for the caller() statement to
use references, a process that’s more natural to data that’s recursive in nature (i.e., a macro over a macro).
Listing 4-10 illustrates this recursive scenario of the {% call %} tag along with a {% macro %}.

Listing 4-10.  Jinja {% call %} and {% macro %} recursive calls

macro definition
{% macro contentlist(itemlist,adcolumn_width=3,contentcolumn_width=6) -%}
 <div class="col-md-{{adcolumn_width}}">
 Sidebar ads
 </div>
 <div class="col-md-{{contentcolumn_width}}">
 {% for item in itemlist %}
 {{ caller(item) }}
 {% endfor %}
 </div>
 <div class="col-md-{{adcolumn_width}}">
 Sidebar ads
 </div>
{%- endmacro %}

Chapter 4 ■ Jinja Templates in Django

133

variable definition
{% set coffeestores=[{'id':0,'name':'Corporate','address':'624 Broadway','city':'San Diego',
'state':'CA','email':'corporate@coffeehouse.com'},{'id':1,'name':'Downtown','address':'Hort
on Plaza','city':'San Diego','state':'CA','email':'downtown@coffeehouse.com'},{'id':2,'name
':'Uptown','address':'1240 University Ave','city':'San Diego','state':'CA','email':'uptown@
coffeehouse.com'},{'id':3,'name':'Midtown','address':'784 W Washington St','city':'San Diego
','state':'CA','email':'midtown@coffeehouse.com'}] %}

macro call/invocation
{% call(item) contentlist(coffeestores) %}

 <h4>{{item.name}}</h4>
 <p>{{item.address}} {{item.city}},{{item.state}}</p>
 {% if item.email %}<p>{{item.email}}</p>{% endif %}
{% endcall %}

rendering
<div class="col-md-3">
 Sidebar ads
</div>
<div class="col-md-6">

 <h4>Corporate</h4>
 <p>624 Broadway San Diego,CA</p>
 <p>corporate@coffeehouse.com</p>

 <h4>Downtown</h4>
 <p>Horton Plaza San Diego,CA</p>
 <p>downtown@coffeehouse.com</p>

 <h4>Uptown</h4>
 <p>1240 University Ave San Diego,CA</p>
 <p>uptown@coffeehouse.com</p>

 <h4>Midtown</h4>
 <p>784 W Washington St San Diego,CA</p>
 <p>midtown@coffeehouse.com</p>
</div>
<div class="col-md-3">
 Sidebar ads
</div>

As you can see in Listing 4-10, the {% macro %} definition now has an argument called itemlist on
which it creates an iteration and for each item it invokes {{caller(item)}}. Also notice in Listing 4-10 the
{% call %} statement is now {% call(item) contentlist(coffeestores) %}, where item represents the
callback item sent from the macro and contentlist(coffeestores) is the actual call to the macro named
contentlist along with its input coffeestores that’s a list of dictionaries. When Jinja executes the {% call
%} statement, the {% call %} contents are run recursively over each item, resulting in the output presented
at the bottom of Listing 4-10.

Chapter 4 ■ Jinja Templates in Django

134

■■ Tip  The built-in {% set %} statement – described in the Jinja built-in filters section – provides simpler
reuse functionality for static content blocks compared to {% macro %} statements that use variables. (e.g.,
{% set advertisement %}<div class='banner'></div>{% endset %} creates the advertisement
variable that can output the contents between {% set %} and {% endset %} anywhere in a template).

Jinja Globals: Access Data on All Jinja Templates, Like
Django Context Processors
Just like Django templates offer context processors to facilitate the access of data on all Django templates,
Jinja also offers its own version of the same feature that is called globals. Jinja in its out-of-the-box state
has no globals, but in its Django integrated mode includes three globals to mimic Django’s most common
context processors, these globals are request, csrf_input, and csrf_token.

This means you get access to three Django context processors like variables in all Jinja templates used in
Django projects. However, to set up additional global variables you need to work with Jinja’s environment.

To set up Jinja globals you need to access Jinja’s environment, which is where globals are stored, in a
variable properly called globals. By default, the Django-Jinja configuration uses Jinja’s built-in jinja2.
Environment environment. In order to access Jinja’s environment in Django and set globals, the easiest path
is to create your own Jinja environment and use it to initialize the Django-Jinja configuration. Listing 4-11
illustrates a custom Jinja environment class that sets the global variables named static and url.

Listing 4-11.  Custom Jinja environment with global variable

from jinja2.environment import Environment
from django.contrib.staticfiles.storage import staticfiles_storage
from django.core.urlresolvers import reverse

class JinjaEnvironment(Environment):
 def __init__(self,**kwargs):
 super(JinjaEnvironment, self).__init__(**kwargs)
 self.globals['static'] = staticfiles_storage.url
 self.globals['reverse'] = reverse

As you can see in Listing 4-11, the custom JinjaEnvironment class is a subclass of the jinja2.
Environment class; this is so the custom class inherits the bulk of its features from this base class provided by
Jinja. Next, you can see we use the __init__ method to initialize the base class.

Prior to exiting the initialization method of the class, you can also see we access the globals variable
of the instance. globals is composed of a dictionary, where the key-values correspond to the Jinja template
variable names and values, respectively. In this case, we create the static variable and assign it Django’s
django.contrib.staticfiles.storage.staticfiles_storage.url method. This gives the static global
variable the same behavior as Django’s staticfiles app, so that it’s possible to declare static resources just
like it’s done in Django (e.g., Jinja can then do <img src="{{ static('images/background.png') }}"
alt="Background">) – a topic that is described in greater detail in Chapter 5 on static resource management,
but this is important to mention here due to the gap it fills in Jinja lacking functionality on this front.

The second global in Listing 4-11 creates the url variable and assigns it Django’s
django.core.urlresolvers.reverse method. This gives the url global variable the same behavior as
Django’s {% url %} tag, so that it’s possible to resolve a URL based on a name - as described in Chapter 2 on
Django url management and reverse matches - just like it’s done in Django (e.g., Jinja can then do

http://dx.doi.org/10.1007/978-1-4842-2787-9_5
http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 4 ■ Jinja Templates in Django

135

Go to homepage) - note this is another important gap to fill given
Jinja’s lack of functionality on this front.

Just as you can add these last two global variables to mimic the behavior of Django apps and tags that
are missing in Jinja templates, you can add more globals in the same manner or increase the complexity of a
Jinja global as needed.

Once the custom Jinja environment is ready, you need to set it up in Django’s settings.py file so it’s
used to initialize Jinja. Listing 4-12 illustrates how to set up a custom Jinja environment in Django.

Listing 4-12.  Configure custom Jinja environment in Django setttings.py

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/templates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'environment': 'coffeehouse.jinja.env.JinjaEnvironment'
 }
 },
]

The Jinja environment is set through the environment key, as part of the OPTIONS variable. The value
of the environment key is a string with dot notation that points to a custom Jinja environment class. In
this case, you can see the value corresponds to coffeehouse.jinja.env.JinjaEnvironment, where
JinjaEnvironment is the class, env is the file/module name, and coffeehouse.jinja is the directory path.

To better illustrate the location of the env.py file containing the custom Jinja environment, Listing 4-13
illustrates a directory structure with additional Django project files for reference.

Listing 4-13.  Directory structure and location of custom Jinja environment

+---+-<PROJECT_DIR_coffeehouse>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-jinja-+
 +-__init__.py
 +-env.py

Jinja Built-In Statements/Tags and Functions (Like Django
Template Tags)
Jinja offers several built-in statements/tags that offer immediate access to elaborate operations on Jinja
templates. I’ll classify each of these built-in statements/tags and functions into sections so it’s easier
to identify them; note I’ll add the reference (Function) to indicate it’s referring to a Jinja function. The
categories I’ll use are Comparison operations, loops, Python and filter operations, spacing and special
characters, and template structures.

Chapter 4 ■ Jinja Templates in Django

136

Comparison Operations
•	 {% if %} with {% elif %} {% else %}.- The {% if %} statement is the primary

building block to evaluate conditions. The {% if %} statement is typically used in
conjunction with the {% elif %} and {% else %} statements to evaluate more than
one condition. An {% if %} statement with an argument variable evaluates to true
if a variable exists and is not empty or if the variable holds a True Boolean value.
Listing 4-14 illustrates a series of {% if %} statement examples.

Listing 4-14.  Jinja {% if %} statement with {% elif %} and {% else %}

{% if drinks %} {% if drinks %} {% if drinks %}
 We have drinks! We have drinks We have drinks
{% endif %} {% else %} {% elif drinks_on_sale %}
 No drinks,sorry We have drinks on sale!
 {% endif %} {% else %}
 No drinks, sorry
 {% endif %}

■■ Note  A variable must both exist and not be empty to match a condition. A variable that just exists and is
empty does not match a condition.

•	 {% if %} with and, or and not operators.- The {% if %} statement also supports
the and, or, and not operators to create more elaborate conditions. These operators
allow you to compare if more than one variable is not empty (e.g., {% if drinks and
drinks_on_sale %}), if one or another variable is not empty (e.g., {% if drinks or
drinks_on_sale %}) or if a variable is empty (e.g., {% if not drinks %}).

•	 {% if %} with ==, !=, <, >, <= and >= operators.- The {% if %} statement also
supports equal, not equal, larger than, and less than operators to create conditions
that compare variables to fixed strings or numbers. These operators allow you to
compare if a variable equals a string or number (e.g., {% if drink == "mocha" %}),
if a variable does not equal a variable or number (e.g.{% if store_id != 2 %}) or if
a variable is greater than or lesser than a number (e.g., {% if store_id > 5 %}).

•	 {% if <value> in %} and {% if <value> not in %}.- The {% if %} statement
also supports the in and not in operators to verify the presence of a constant or
variable. For example, {% if "mocha" in drinks %} tests if the value "mocha" is in
the drinks list variable or {% if 2 not in stores %} tests if the value 2 is not in the
stores list variable. Although the in and not in operators are commonly used to
test list variables, it’s also possible to test the presence of characters on strings (e.g.,
{% if "m" in drink %}). In addition, it’s also possible to compare if the value of
one variable is present in another variable (e.g., {% if order_drink in drinks %}).

Chapter 4 ■ Jinja Templates in Django

137

Loops
•	 {% for %} and {% for %} with {% else %}.- The {% for %} statement iterates over

items on a dictionary, list, tuple, or string variable. The {% for %} statement syntax
is {% for <reference> in <variable> %}, where <reference> is assigned a new
value from <variable> on each iteration. Depending on the nature of a variable
there can be one or more references (e.g., for a list one reference, for a dictionary two
references).The {% for %} statement also supports the {% else %} statement which
is processed in case there are no iterations in a loop (i.e., the main variable is empty).
Listing 4-15 illustrates a {% for %} and a {% for %} and {% else %} loop example.

Listing 4-15.  Jinja {% for %} statement and {% for %} with {% else %}

{% for drink in drinks %} {% for storeid,store in stores %}
 {{ drink.name }} �{{store.name}}

{% else %} {% endfor %}
 No drinks, sorry
{% endfor %}

The {% for %} statement also generates a series of variables to manage the iteration process such as an
iteration counter, a first iteration flag, and a last iteration flag. Table 4-1 illustrates the {% for %} statement
variables.

Table 4-1.  Jinja {% for %} statement variables

Variable Description

loop.index The current iteration of the loop (1-indexed).

loop.index0 The current iteration of the loop (0-indexed).

loop.revindex The number of iterations from the end of the loop (1-indexed).

loop.revindex0 The number of iterations from the end of the loop (0-indexed).

loop.first True if it's the first time through the loop.

loop.last True if it's the last time through the loop.

loop.length The number of items in the sequence.

loop.cycle A helper function to cycle between a list of sequences.

loop.depth Indicates how deep in a recursive loop the rendering currently is, starts at level 1

loop.depth0 Indicates how deep in a recursive loop the rendering currently is, starts at level 0.

Chapter 4 ■ Jinja Templates in Django

138

NESTED JINJA LOOPS: USE REFERENCE VARIABLE
AND CYCLE VARIABLE

On certain occasions you may need to nest multiple {% for %} statements and access parent loop
items. In Django templates, this is easy because there’s a variable for just this purpose. However, Jinja
templates don’t have this variable as you can see in Table 4-1. A solution in Jinja templates is to define
a reference variable with {% set %} before entering the child loop to gain access to the parent loop, as
illustrated in the following snippet.

{% for chapter in chapters %}
 {% set chapterloop = loop %}
 {% for section in chapter %}
 {{ chapterloop.index }}.{{ loop.index }}">{{ section }}
 {% endfor %}
{% endfor %}

Another nested loop feature in Jinja templates is cycle, which does not exist in Django templates (as a
variable at least, it does exist as a tag). The primary use of cycle is to define CSS classes so that each
iteration receives a different CSS class and upon rendering each iteration is displayed in a different
color. The following snippet illustrates the use of the cycle variable.

{% for drink in drinks %}
 <li class="{{ loop.cycle('odd', 'even') }}">{{ drink.name }}
{% endfor %}

Note cycle can iterate sequentially over any number of strings or variables (e.g., {{ loop.cycle('red'
'white' 'blue') }}).

•	 {% for %} with if.- The {% for %} statement also supports the inclusion of if
statements to filter the iteration over a dictionary, list, tuple, or string variable. In
this manner you can limit the iteration to elements that pass or fail a certain criteria.
The {% for %} statement syntax with an if clause is {% for <reference> in
<variable> if <test_for_reference>%} (e.g., {% for drink in drinks if drink
not in ['Cappuccino'] %})

•	 {% for %} with recursive keyword.- The {% for %} statement also supports
recursion over nested dictionaries, lists, tuples, or string variables. Instead of
creating multiple nested {% for %} statements, you can use recursion to reuse the
same layout over each of the nested structures. Listing 4-16 illustrates a sample of a
recursive loop in Jinja.

Listing 4-16.  Jinja {% for %} statement with recursive keyword

Dictionary definition
coffees={
 'espresso':
 {'nothing else':'Espresso',

Chapter 4 ■ Jinja Templates in Django

139

 'water': 'Americano',
 'steamed milk': {'more steamed milk than milk foam': 'Latte',
 'chocolate syrup': {'Whipped cream': 'Mocha'}
 },
 'more milk foam than steamed milk': 'Capuccino'
 }
}

Template definition with for and recursive
{% for ingredient,result in coffees.iteritems() recursive %}
 {{ ingredient }}
 {% if result is mapping %}
 {{ loop(result.iteritems()) }}
 {% else %}
 YOU GET: {{ result }}
 {% endif %}
{% endfor %}

Output
espresso
 water YOU GET: Americano
 steamed milk
 more steamed milk than milk foam YOU GET: Latte
 chocolate syrup
 Whipped cream YOU GET: Mocha
 more milk foam than steamed milk YOU GET: Capuccino
 nothing else YOU GET: Espresso

•	 {% break %} and {% continue %}.- The {% break %} and {% continue %}
statements are available inside {% for %} statements and allow you to break out of
the loop or continue to the next iteration, just like the same keywords available in
regular Python loops.

■■ Note  {% break %} and {% continue %} require enabling the built-in jinja2.ext.loopcontrols extension. See
the second to last section in this chapter on how to enable Jinja extensions for more details.

•	 range (Function).- The range function works just like Python’s standard function
and is useful when you want to generate a loop over a given range of numbers from
i to j-1. For example, range(0,5) generates the range [0,1,2,3,4]. In addition, the
range function also supports overriding the step count --- which defaults to 1 --- in
the third position (e.g., range(0,11,2) generates [0,2,4,6,8,10]).

•	 cycler (Function)).- The cycler function lets you cycle among a series of values. It
works just like the loop.cycle variable available in {% for %} loops, except the cycler
function can be used outside loops. The cycler function uses its next() method
to advance one item, the reset() method to cycle to the first item and the current
attribute to return the current item. Listing 4-17 illustrates a cycler method definition
with CSS classes, which is then used over multiple {% for %} loops to define a list
where each item is assigned a different CSS class based on the cycle iteration.

Chapter 4 ■ Jinja Templates in Django

140

Listing 4-17.  Jinja cycler function

{% set row_class = cycler('white','lightgrey','grey') %}

{% for item in items %}
 <li class="{{ row_class.next() }}">{{ item }}
{% endfor %}
{% for otheritem in moreitems %}
 <li class="{{ row_class.next() }}">{{ otheritem }}
{% endfor %}

Output

 <li class="white">Item 1
 <li class="lightgrey">Item 2
 <li class="grey">Item 3
 <li class="white">Item 4
 <li class="lightgrey">Item 5
 <li class="grey">Other item 1
 <li class="white">Other item 2

•	 joiner (Function).- The joiner function lets you join a series of disparate sections
and join them with a given separator, which defaults to a comma-space (", "). A
characteristic of the joiner function is that it returns the separator string every time
it’s called, except the first time to give the correct appearance in case sections are
dependent on a condition. Listing 4-18 illustrates a joiner method definition with a
slash-space ("/ ") as its separator, which is then used to join a list of sections.

Listing 4-18.  Jinja joiner function

{% set slash_joiner = joiner("/ ") %}

User: {% if username %} {{ slash_joiner() }}
 {{username}}
{% endif %}
{% if alias %} {{ slash_joiner() }}
 {{alias}}
{% endif %}
{% if nickname %} {{ slash_joiner() }}
 {{nickname}}
{% endif %}

Output
If all variables are defined
User: username / alias / nickname
If only nickname is defined
User: nickname
If only username and alias is defined
User: username / alias
Etc, the joiner function avoids any unnecessary preceding slash because it doesn't print
anything the first time its called

Chapter 4 ■ Jinja Templates in Django

141

Python and Filter Operations
•	 {% set %}.- The {% set %} statement lets you define variables in the context of Jinja

templates. It’s useful when you need to create variables for values that aren’t exposed
by a Django view method or when a variable is tied to a heavyweight operation. The
following is a sample statement of this statement {% set drinkwithtax=drink.
cost*1.07 %}. The scope of a variable defined in a {% set %} statement is from its
declaration until the end of the template.

The {% set %} statement can also define content blocks. For example, the statement
{% set advertisement %}<div class'banner'></div>
{% endset %}, creates the variable advertisement with the content enclosed
between {% set %} and {% endset %} that can later be reused in other parts of a
template (e.g., {{advertisement}}). The built-in {% macro %} statement – described
in the template structures section – provide more advanced reuse functionality for
content blocks.

•	 {% do %} (This statement requires enabling the built-in jinja2.ext.do extension; see
the section Enable Jinja extensions for more details).- The {% do %} statement is
an expression evaluator that works like the {{ }} variable syntax, except it doesn’t
produce output. For example, to increment the value of a variable or add a new
element without producing any output, you can use the {% do %} statement
(e.g.,{% do itemlist.append('Forgot to add this other item') %}).

■■ Note  {% break %} and {% continue %} require enabling the built-in jinja2.ext.loopcontrols extension. See
the second to last section in this chapter on how to enable Jinja extensions for more details.

•	 {% with %}.- The {% with %} statement is similar to the {% set %} statement; the
only difference is the {% with %} statement limits the scope of a variable with the {%
endwith %} statement (e.g., {% with myvar=1 %}...{% endwith %} any elements
declared in ... have access to the myvar variable). It’s also valid to declare {% set %}
statements within {% with %} and {% endwith %} statements to limit the scope of
variables (e.g., {% with %}{% set myvar=1 %}...{% endwith %}).

■■ Note  {% with %} requires enabling the built-in jinja2.ext.with_ extension. See the second to last section in
this chapter on how to enable Jinja extensions for more details.

•	 {% filter %}.- The {% filter %} statement is used to apply Jinja filters to template
sections. By default, Jinja filters are applied individually to template variables, but
sometimes it can be helpful to apply Jinja filters to entire template sections. For
example, if you declare {% filter lower %} the lower filter is applied to all content
between this statement and the {% endfilter %} statement - note the lower filter
statement converts all content to lowercase; the next major section in this chapter
describes Jinja's built-in filters.

•	 dict (Function).- The dict function offers an alternative to define dictionaries
without literals (e.g., {'id':1} is equivalent to dict(id=1)).

Chapter 4 ■ Jinja Templates in Django

142

Spacing and Special Characters
By default, Jinja keeps all spacing (e.g., tabs, spaces, newlines) unchanged from how they are defined in a
template. Figure 4-1 illustrates the default rendering of a template snippet in Jinja.

Figure 4-1.  Default space rendering in Jinja template

Figure 4-2.  Space rendering in Jinja template with single -

As you can see in Figure 4-1, the spacing before, after, and by the {% for %} and {% if %} statements
themselves is generated as is. While this spacing is natural, it can be beneficial to create more compact
outputs with templates that handle a lot of data. The minus sign - appended to either the start or end of a
statement (e.g., {%- <statement> -%}) tells Jinja to strip the new line that follows it. This is best illustrated
with the examples presented in Figure 4-2 and Figure 4-3.

Chapter 4 ■ Jinja Templates in Django

143

Figure 4-3.  Space rendering in Jinja template with double -

As you can see in Figure 4-2, the - symbol before closing the {% for %} statement makes Jinja eliminate
the new line after each iteration. In the case of the {% if %} statement also in Figure 4-2, the - symbol has
no impact because there’s no newline associated with the statement. In Figure 4-3 you can see there’s
an additional - symbol at the start of the {% endfor %} statement which makes Jinja eliminate the
newline before the start of each iteration. In the case of the {% if %} statement also is Figure 4-3, the
additional - symbol has no impact because there’s no newline associated with the statement.

Because adding - symbols to every Jinja statement can become tiresome, you can configure Jinja so that
by default it uses this behavior (i.e., just as if you added -). To alter Jinja’s default spacing behavior, you can
use two Jinja environment parameters : trim_blocks and lstrip_blocks, both of which default to False.
Note that in Django you set up Jinja environment parameters as part of the OPTIONS variable in settings.py,
as described in the prior section on setting up Jinja template configuration in Django.

Figure 4-4 illustrates the rendering of a code snippet when trim_blocks is set to True, whereas
Figure 4-5 illustrates the rendering of a code snippet when both trim_blocks and lstrip_blocks are
set to True.

Figure 4-4.  Space rendering in Jinja template with trim_blocks

Chapter 4 ■ Jinja Templates in Django

144

Figure 4-5.  Space rendering in Jinja template with both trim_blocks and lstrip_blocks set to True

As you can see in Figures 4-4 and 4-5, the rendering produced by changing the trim_blocks and
lstrip_blocks Jinja environment variables is very similar to that of using - symbols to start and end Jinja
statements. It’s worth mentioning that if you set lstrip_blocks to True and want to omit its behavior for
certain sections, you can do so by adding the plus sign + to either the start or end of a statement - just like
you use the minus sign - to achieve its opposite behavior.

•	 {% raw %}.- The {% raw %} statement is used to output any Jinja reserved characters
verbatim until the {% endraw %} statement is reached. The {% raw %} statement is
ideal if you want to render large chunks of Jinja template code or if you have a lot of
text that includes special Jinja template characters (e.g., {{, {%).

■■ Tip  You can output special Jinja template characters individually by quoting them as part of a hard-coded
string variable (e.g., to output {{ use {{ '{{' }}) vs. using a {% raw %} statement.

•	 {% autoescape %} .- The {% autoescape %} statement lets you escape HTML
characters from a template section, effectively overriding Django’s Jinja default
auto-escaping behavior. The {% autoescape %} accepts one of two arguments true
or false. With {% autoescape true %} all template content between this statement
and the {% endautoescape %} statement is HTML escaped, with {% autoescape
false %} no template content between this statement and the {% endautoescape
%} statement is HTML escaped.

■■ Note  {% autoescape %} requires enabling the built-in jinja2.ext.auto-escape extension. See the second to
last section in this chapter on how to enable Jinja extensions for more details.

Chapter 4 ■ Jinja Templates in Django

145

•	 lipsum (Function).- The lipsum function is used to display random Latin text, which
is useful for filler on templates. The lipsum function is called with four parameters:
lipsum(n=5, html=True, min=20, max=100). Where n is a number of paragraphs to
generate, if not provided the default n is 5; html defaults to True to return HTML or
you can set it to False to return regular text; and min and max represent the minimum
and maximum number of random words per paragraph. To use the lipsum function
you simply define a variable with it and the output to generate the random Latin
text (e.g., {% set latinblurb=lipsum() %} and then {{latinblurb}} to output the
random Latin text).

Template Structures
•	 {% block %}.- The {% block %} statement is used to define page sections that can

be overridden on different Jinja templates. See the previous section on creating
reusable Jinja templates for detailed examples of this statement.

•	 {# #}.- The {# #} statement is used to enclose comments on Jinja templates. Any
content placed between {# and #} is bypassed by Jinja and doesn’t appear in the
final rendered web page.

•	 {% extends %}.- The {% extends %} statement is used to reuse the layout of another
Jinja template. See the previous section on creating reusable Jinja templates for
detailed examples of this statement.

•	 {% include %}.- The {% include %} statement is used to embed a Jinja template
in another Jinja template. Note that by default, the {% include %} statement gets
access to the current template instance values (i.e., its context). If you want to disable
access to a template’s context you can use the {% import %} statement or pass the
keyword without context to the end of the {% include %} statement (e.g., {% from
'footer.html' without context %}). In addition, the {% include %} statement
also accepts the ignore missing keyword, which tells Jinja to ignore the statement
if the template to be included does not exist. See the previous section on creating
reusable Jinja templates for detailed examples of this statement.

•	 {% macro %}.- The {% macro %} statement is a template function designed to output
content. It’s ideal for repetitive content snippets, where you define a {% macro %}
statement once and execute it multiple times with different variables - like a function
- on any template. See the previous section on creating reusable Jinja templates
for detailed examples of this statement. It’s also worth mentioning the built-in {%
set %} statement – described in the Python and filter operations section – provides
simpler reuse functionality for content blocks.

•	 {% call %}.- The {% call %} statement is used in conjunction with the {% macro
%} statement to reference the caller() method within a {% macro %} statement. If
you define a {% macro %} statement with a caller() reference as part of its content,
you can rely on the {% call %} statement to invoke the {% macro %} and have the
contents of the {% call %} statement substituted in place of the caller() method.
See the previous section on creating reusable Jinja templates for detailed examples
of this statement.

Chapter 4 ■ Jinja Templates in Django

146

•	 {% import %} and {% from ... import %}.- The {% import %} statement is used
to access elements from other templates. Similar to Python’s standard import, you
can also use the from and as keywords to limit or rename the elements imported
into a template. Note that by default and due to its caching behavior, the {% import
%} statement doesn’t get access to the current template instance values (i.e., its
context), it just gets access to globals (e.g., variables and macros). If you want to
access a template’s context you can use the {% include %} statement or pass the
keyword with context to the end of the {% import %} statement to disable caching
and access a template’s context (e.g., {% from 'footer.html' with context %}).
See the previous section on creating reusable Jinja templates for detailed examples
of this statement.

Jinja Built-In Filters and Tests (Like Django Filters)
The Jinja documentation makes an explicit difference between what it calls filters and tests. The only
difference is that Jinja tests are used to evaluate conditions and Jinja filters are used to format or transform
values. In Django there is no such naming difference and an equivalent Jinja test in Django is simply called a
Django filter.

The syntax to apply Jinja filters to template variables is the vertical bar character |, also called a ‘pipe’ in
Unix environments (e.g., {{variable|filter}}). It’s worth mentioning you can apply multiple filters to the
same variable (e.g., {{variable|filter|filter}}). The syntax to apply Jinja tests uses the is keyword along
with a regular conditional to evaluate the validity of a test (e.g., {% if variable is divisibleby 10 %}do
something{% endif %}).

In the upcoming sections, I’ll add the reference (Test) to indicate it’s referring to a Jinja test vs. a Jinja
filter. I’ll also classify each Django built-in filter and test into functional sections so they are easier to identify.
I’ll define the broadest category ‘Strings, lists, dictionaries, numbers and objects’ for filters and tests that are
applicable for most scenarios and then more specialized sections for each data type, including ‘String and
lists’, ‘Dictionaries and objects’, Strings, Numbers, Spacing and special characters, Development and testing,
and Urls.

Strings, Lists, Dictionaries, Numbers, and Objects
•	 default or d.- The default or d filter is used to specify a default value if a variable

is undefined or is false (i.e., it doesn’t exist or is empty). For example, the filter
statement {{variable|default("no value")}} outputs no value only if the
variable is undefined; otherwise it outputs the variable value. If in addition you
want to provide a default value for a variable that evaluates to false, is None
or is an empty string, you have to add true as a second filter parameter (e.g.,
{{variable|default("no value",true)}} outputs no value if the variable is
undefined, false, is None, or is an empty string).

•	 defined (Test).- The defined test is used to check if a variable is defined, and if a
variable is defined this tests return true. Listing 4-19 illustrates an example of the
defined test.

Chapter 4 ■ Jinja Templates in Django

147

Listing 4-19.  Jinja defined test

{% if variable is defined %}
 value of variable: {{ variable }}
{% else %}
 variable is not defined
{% endif %}

•	 none (Test).- The none test is used to check if a variable is none, and if a variable is
None this tests return true.

•	 length or count.- The length filter is used to obtain the length of a value. For
example, if a variable contains latte the filter statement {{variable|length}}
outputs 5. For a list variable that contains ['a','e','i'] the filter statement
{{variable|length}} outputs 3.

•	 equalto (Test).- The equalto test checks if an object has the same value as another
object. For example {% if coffee.price is equalto 1.99 %} coffee prices
equals 1.99 {% endif %}. This works just like the ==, but is more helpful when
used with other filters such as selectattr (e.g., {{ users|selectattr("email",
"equalto", "webmaster@coffeehouse.com") }}, gets users with email webmaster@
coffeehouse.com).

•	 string (Test).- The string test checks if a variable is a string (e.g., {% if variable
is string %}Yes, the variable is a string!{% endif %}).

•	 number (Test).- The number test returns true if a variable is a number.

•	 iterable (Test).- The iterable test checks if it’s possible to iterate over an object.

•	 sequence (Test).- The sequence test checks if the object is a sequence (e.g., a
generator).

•	 mapping (Test).- The mapping test checks if the object is a mapping (e.g., a
dictionary).

•	 callable (Test).- The callable test verifies if an object is callable. In Python a
function, classes and object instances with a __call__ method are callables.

•	 sameas (Test).- The sameas test verifies if an object points to the same memory
address than another object.

Strings and Lists
•	 reverse.- The reverse filter is used to get inverse representation of a value. For

example, if a variable contains latte the filter statement {{variable|reverse}}
generates ettal.

•	 first.- The first filter returns the first item in a list or string. For example,
for a list variable that contains ['a','e','i','o','u'] the filter statement
{{variable|first}} outputs a.

•	 join.- The join filter joins a list with a string. The join filter works just like
Python’s str.join(list). For example, for a list variable that contains
['a','e','i','o','u'] the filter statement {{variable|join("--)}} outputs a--
e--i--o--u. The join filter also supports joining certain attributes of an object
(e.g., {{ users|join(', ', attribute='username') }}).

Chapter 4 ■ Jinja Templates in Django

148

•	 last.- The last filter returns the last item in a list or string. For example,
for a list variable that contains ['a','e','i','o','u'] the filter statement
{{variable|last}} outputs u.

•	 map.- The map filter allows you to apply a filter or look up attributes, just like the
standard Python map method. For example, if you have list of users but are only
interested in outputting a list of usernames a map is helpful (e.g., {{ users|map
(attribute='username')|join(', ') }}). In addition, it’s also possible to invoke
a filter by passing the name of the filter and the arguments afterwards (e.g., {{
titles|map('lower')|join(', ') }} applies the lower filter to all the elements in
titles and then joins the items separated by a comma).

•	 random.- The random filter returns a random item in a list. For example, for
a list variable that contains ['a','e','i','o','u'] the filter statement
{{variable|random}} could output a, e, i, o, or u.

•	 reject.- The reject filter removes elements that pass a certain test - see bullets in
this chapter section marked as (Test) for acceptable values. For example, for a list
variable that contains [1,2,3,4,5] the loop statement with this filter {% for var
in variable|reject("odd") %}{{var}}{% endfor %} - where odd is the Jinja
test – rejects elements that are odd and thus its output is 2 and 4.

•	 select.- The select filter selects elements that pass a certain test --see bullets in
this chapter section marked as (Test) for acceptable values. For example, for a list
variable that contains [1,2,3,4,5] the loop statement with this filter {% for var in
variable|select("odd") %}{{var}}{% endfor %} -- where odd is the Jinja test –
selects elements that are odd and thus its output is 1, 3, and 5.

•	 slice.- The slice filter returns a slice of lists. For example, for a variable that
contains ["Capuccino"] the filter statement {% for var in variable|slice(4)
%}{{var}}{% endfor %} outputs ['C', 'a', 'p'],['u', 'c'],['c', 'i'],
['n', 'o']. It's possible to use the fill_with as a second argument – which
defaults to None – so all segments contain the same number of elements filled with
a given value. For example, {% for var in variable|slice(4,'FILLER') %}
{{var}}{% endfor %} outputs: ['C', 'a', 'p'],['u', 'c','FILLER'],['c',
'i','FILLER'], ['n', 'o','FILLER'].

•	 batch.- The batch filter returns a batch of lists. For example, a variable that contains
["Capuccino"] the filter statement {% for var in variable|batch(4) %}{{var}}
{% endfor %} outputs ['C', 'a', 'p', 'u'],['c', 'c', 'i', 'n'],['o']. It’s
possible to use the fill_with as a second argument – which defaults to None – so
all segments contain the same number of elements filled with a given value. For
example, {% for var in variable|slice(4,'FILLER') %}{{var}}{% endfor %}
outputs: ['C', 'a', 'p', 'u'],['c', 'c', 'i', 'n'],['o','FILLER','FILLER'
,'FILLER'].

•	 sort.- The sort filter sorts elements by ascending order. For example, if a variable
contains ['e','u','a','i','o'] the statement {{variable|sort}} outputs
['a','e','i','o','u']. It’s possible to indicate descending order by setting the first
argument to true (e.g., {{variable|sort(true)}} outputs ['u','o','i','e','a']).
In addition, if a list is made up strings, a second argument can be used to indicate
case sensitiveness - which is disabled by default - to perform the sort operation (e.g.,
{{variable|sort(true,true)}}). Finally, if a list is composed of objects, it’s also
possible to specify the sort operation on a given attribute (e.g., variable|sort(attri
bute='date') to sort the elements based on the date attribute).

Chapter 4 ■ Jinja Templates in Django

149

Dictionaries and Objects
•	 dictsort.- The dictsort filter sorts a dictionary by key, case insensitive.

For example, if a variable contains {'name':'Downtown','city':'San
Diego','state':'CA'} the filter {% with newdict=variable|dictsort %} the
newdict variable is assigned the dictionary {'city':'San Diego','name':'Dow
ntown','state':'CA'}. In addition, the dictsort can accept two arguments, for
case sensitive/insensitive order and sorting by key/value. The default behavior is
case insensitive sort by key (e.g., variable|dictsort), to use case sensitive sort by
key use true as the first argument (e.g., variable|dictsort(true)), to use sort by
value is value as the second argument (e.g., variable|dictsort(false,'value')
performs a case insensitive sort by value).

•	 attr.- The attr filter returns the attribute of an object (e.g., {{coffeehouse.city}}
outputs the city attribute value of the coffeehouse object). Note the attr filter only
attempts to look up an attribute and not an item (e.g., if coffeehouse is a dictionary
and city is a key item it won’t be found). Alternatively, you can just use the standard
Python syntax variable.name - which first attempts to locate an attribute called name
on variable, then the name item on variable or if nothing matches an undefined
object is returned-- or variable['name'] - which first attempts to locate the name
item on variable, then an attribute called name on variable or if nothing matches
an undefined object is returned.

•	 rejectattr.- The rejectattr filter removes objects that don’t contain an attribute
or objects for which a certain attribute doesn’t pass a test – see bullets in this chapter
section marked as (Test) for acceptable values. For example, {% for ch in coffee
houses|rejectattr("closedon") %} generates a loop for coffeehouse objects that
don’t have the closedon attribute or {% for u in users|rejectattr("email",
"none") %} generates a loop for user objects that don’t have email None - note the
second argument none represents the test.

•	 selectattr.- The selectattr filter selects objects that contain an attribute or
objects for which a certain attribute passes a test – see bullets in this chapter
section marked as (Test) for acceptable values. For example, {% for u in
users|selectattr("superuser") %} generates a loop for user objects that have
the superuser attribute or {% for u in users|selectattr("email", "none") %}
generates a loop for user objects that have email None - note the second argument
none represents the test.

•	 groupby.- The groupby filter is used to rearrange the contents of a list of dictionaries
or objects into different group object sequences by a common attribute. Listing 4-20
illustrates an example of the groupby filter.

Listing 4-20.  Jinja groupby filter

Dictionary definition
stores = [
 {'name': 'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},
 {'name': 'Uptown', 'street': '231 Highland Avenue', 'city': 'San Diego'},
 {'name': 'Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
 {'name': 'Downtown', 'street': '639 Spring Street', 'city': 'Los Angeles'},
 {'name': 'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
 {'name': 'Downton', 'street': '50 1st Street', 'city': 'San Francisco'},
]

Chapter 4 ■ Jinja Templates in Django

150

{% for group in stores|groupby('city') %}
 {{ group.grouper }}

 {% for item in group.list %}
 {{ item.name }}: {{ item.street }}
 {% endfor %}

{% endfor %}

Output
Los Angeles
 Downtown: 639 Spring Street
 Midtown: 1407 Broadway Street
San Diego
 Downtown : 385 Main Street
 Uptown : 231 Highland Avenue
 Midtown : 85 Balboa Street
San Francisco
 Downtown: 50 1st Street

Alternate shortcut syntax, produces same output

{% for grouper, list in stores|groupby('city') %}
 {{ grouper }}

 {% for item in list %}
 {{ item.name }}: {{ item.street }}
 {% endfor %}

{% endfor %}

•	 tojson.- The tojson filter outputs data structures to JavaScript Object Notation(JSON)
(e.g.{{variable|tojson}}). The tojson filter accepts the indent argument – which is
set to None – to generate pretty output by a given number of spaces (e.g., {{variable|t
ojson(indent=2)}}) generates output indented with two spaces).

■■ Tip  You can globally set options for the tojson filter through Jinja policies, described in the last section of
this chapter.

Chapter 4 ■ Jinja Templates in Django

151

Strings
•	 capitalize.- The capitalize filter capitalizes the first character of a string

variable. For example, if a variable contains hello world the filter statement
{{variable|capitalize}} outputs Hello world.

•	 list.- The list filter is used to return a list of characters. For example, if a
variable contains latte the filter statement {{variable|list}} generates
['l','a','t','t','e'].

•	 lower.- The lower filter converts all values of a string variable to lowercase. For
example, if a variable contains Hello World the filter statement {{variable|lower}}
outputs hello world.

•	 lower (Test).- The lower test returns true if a variable is lowercased. For example,
{% if variable is lower %}Yes, the variable is lowercase!{% endif %}
outputs the statement if variable is lowercased.

•	 replace.- The replace filter works just like Python’s standard replace string.
The first argument is the substring that should be replaced, the second is the
replacement string. If the optional third argument amount is given, only this amount
of occurrences are replaced. For example {{ "Django 1.8"|replace("1.8",
"1.9") }} outputs Django 1.9 and {{"oooh Django!"|replace("o", "",2) }}
outputs oh Django!.

•	 string.- The string filter makes a string unicode if it isn’t already.

•	 title.- The title filter converts all first character values of a string variable to
uppercase. For example, if a variable contains hello world the filter statement
{{variable|title}} outputs Hello World.

•	 upper.- The upper filter converts all values of a string variable to uppercase. For
example, if a variable contains Hello World the filter statement {{variable|upper}}
outputs HELLO WORLD.

•	 upper (Test).- The upper test returns true if a variable is uppercased. For example, {%
if variable is upper %}Yes, the variable is uppercase!{% endif %} outputs
the statement if variable is uppercase.

•	 wordcount.- The wordcount filter counts the words in a string. For example, if a
variable contains Coffeehouse started as a small store the filter statement
{{variable|wordcount}} outputs 6.

Numbers
•	 abs.- The abs return the absolute value of the number argument. For example, if a

variable contains -5 the filter statement {{variable|abs}} outputs 5.

•	 filesizeformat.-The filesizeformat filter converts a number of bytes into a
friendly file size string. For example, if a variable contains 250 the filter statement
{{variable|filesizeformat}} outputs 250 Bytes, if it contains 2048 the output is
2 kB, if it contains 2000000000 the output is 2.0 GB. By default, decimal prefixes are
used (e.g., Giga, Mega, Kilo), if you pass an additional Boolean parameter with true
(e.g., {{variable|filesizeformat(true)}}) then binary prefixes are used (e.g.,
Gibi, Mebi, Kibi).

Chapter 4 ■ Jinja Templates in Django

152

•	 float.- The float filter converts a value into a floating-point number. If the
conversion doesn’t work it returns 0.0 or a custom value argument (e.g.,
variable|float("It didn't work") returns "It didn't work" if variable can’t
be converted to a floating-point number).

•	 int.- The int filter converts a value into an integer. If the conversion doesn’t work it
returns 0 or a custom value specified as the first argument to the filter – just like the
float filter. You can also override the default base 10 with a second filter argument,
which handles input with prefixes such as 0b, 0o and 0x for bases 2, 8, and 16
respectively (e.g., {{'0b001111'|int(0,2)}} a base 2 number outputs 15.

•	 round.- The round filter rounds a number to a given precision, where the first
argument is the precision - which defaults to 0 - and the second argument is a
rounding method - which defaults to ‘common’ rounding either up or down. For
example, {{ 33.55|round }} assumes ‘common’ rounding to output 34.0). In
addition to 'common’, it’s also possible to use ‘ceil’ to always round up or ‘floor’ to
always round down (e.g., {{ 33.55|round(1,'floor') }} outputs 33.5). Note that
even if rounded to the default 0 precision, a float is returned. If you need an integer
you can apply the int filter (e.g., {{ 33.55|round|int }} outputs 34).

•	 sum.- The sum filter returns the sum of a sequence of numbers, plus the value
provided with the start parameter that defaults to 0. In addition, it’s also possible to
sum certain attributes of a list of objects {{ items|sum(attribute='price') }}.

•	 divisibleby (Test).- The divisibleby test checks if a variable is divisible by a given
number. For example, if a variable contains 20 the filter statement {% if variable
is divisibleby(5) %}Variable is divisible by 5!{% endif %} outputs the
conditional statement.

•	 even (Test).- The even test checks if a number is even.

•	 odd (Test).- The odd test checks if a number is odd.

Spacing and Special Characters
•	 center.- The center filter center aligns a value and pads it with additional

whitespace characters until it reaches the given argument of characters. For example,
if a variable contains mocha the filter statement {{variable|center(width="15")}}
outputs " mocha ".

•	 escape or e.- The escape or e filter escapes HTML characters from a value. Specifically
with the escape filter: < is converted to <,> is converted to >,' (single quote) is
converted to '," (double quote) is converted to ", and & is converted to &.

•	 escaped (Test).- The escaped test checks if a value is escaped.

•	 forceescape.- The forceescape filter escapes HTML characters from a value just
like the escape filter. The difference between both filters is the forceescape filter is
applied immediately and returns a new and escaped string. This is useful in the rare
cases where you need multiple escaping or want to apply other filters to the escaped
results. Normally, you’ll use the escape filter.

Chapter 4 ■ Jinja Templates in Django

153

•	 format.- The format filter is used to apply Python string formatting to a variable.
For example, the statement {{ "%s and %s"|format("Python", "Django!") }}
outputs Python and Django!.

•	 indent.- The indent filter is used to output a string with each line except the
first one indented with four spaces. It’s possible to change the number of spaces
and the indentation of the first line with additional filter arguments (e.g., {{
textvariable|indent(2, true) }} the 2 indicates two spaces and true indicates to
indent the first line.

•	 safe.- The safe filter marks a string as not requiring further HTML escaping. When
this filter is used with an environment without automatic escaping it has no effect.

•	 striptags.- The striptags filter removes all HTML tags from a value. For example, if a
variable contains Coffeehouse, the <i>best</i> drinks the
filter statement {{variable|striptags}} outputs Coffeehouse, the best drinks.

•	 trim.- The trim filter is used to strip leading and trailing whitespace just like
Python’s string strip() method.

•	 truncate.- The truncate filter truncates a string to a given number of characters
- defaulting to 255 characters - and appends an ellipsis sequence. For example, if
a variable contains Coffeehouse started as a small store the filter statement
{{variable|truncate(20)}} outputs Coffeehouse ..., keeping up until character
number 20 and then discarding the last full word, finally adding the ellipsis. You can
add true as a second argument so the string is cut at an exact length (e.g., {{vari
able|truncate(20,true)}} outputs Coffeehouse start... including the ellipsis
characters). It’s possible to provide a different symbol than an ellipsis passing a
second parameter (e.g., {{variable|truncate(20,true,"!!!")}} would output
!!! instead of an elipsis). And finally, the truncate filter accepts a fourth argument
leeway to specify a string tolerance in characters – which defaults to 5 – to avoid
truncating strings (e.g., this avoids truncating words with less than 5 characters).

■■ Tip  You can globally set the leeway value for the truncate filter through Jinja policies, described in the last
section of this chapter.

•	 wordwrap.- The wordwrap filter wraps words at a given character line length
argument. By default, the wrapping occurs after 79 characters, which can be
overridden providing a first argument with the number of characters. If you set
a second parameter to false, Jinja does not split words longer than the wrapping
character length. In addition, wrapping generates a newline character as defined in
the environment -- generally the \n character - but this can be changed by specifying
the wrapstring keyword argument (e.g., {{variable|wordwrap(40,true,'-') uses
a hyphen as the wrapping newline character). Listing 4-21 illustrates an example of
the wordwrap filter.

Chapter 4 ■ Jinja Templates in Django

154

Listing 4-21.  Jinja wordwrap filter

Variable definition
Coffeehouse started as a small store

Template definition with wordwrap filter for every 12 characters
{{variable|wordwrap(12)}}

Output
Coffeehouse
started as a
small store

•	 xmlattr.- The xmlattr filter is used to create an SGML/XML attribute string based on
the items in a dictionary or object. Once you create a dictionary structure containing
attribute names and reference values, you pass it through the xmlattr filter to
generate the attribute string. By default, all values that are neither none or undefined
are automatically escaped, but you can override this behavior by passing false as the
first filter argument. Listing 4-22 illustrates an example of the xmlattr filter.

Listing 4-22.  Django xmlattr filter

Variable definition
{% set stores = [
 {'id':123,'name': 'Downtown', 'street': '385 Main Street', 'city': 'San Diego'},
 {'id':243,'name': 'Uptown', 'street': '231 Highland Avenue', 'city': 'San Diego'},
 {'id':357,'name': 'Midtown', 'street': '85 Balboa Street', 'city': 'San Diego'},
 {'id':478,'name': 'Downtown', 'street': '639 Spring Street', 'city': 'Los Angeles'},
 {'id':529,'name': 'Midtown', 'street': '1407 Broadway Street', 'city': 'Los Angeles'},
 {'id':653,'name': 'Downton', 'street': '50 1st Street', 'city': 'San Francisco'},
] %}

Template definition

{% for store in stores %}
 <li {{ {'id':'%d'|format(store.id),'class':'%s'|format(store.city|lower|replace(' ','-'))
}|xmlattr }}> {{store.city}} {{store.name}}
{% endfor %}

Output

 <li id="123" class="san-diego"> San Diego Downtown
 <li id="243" class="san-diego"> San Diego Uptown
 <li id="357" class="san-diego"> San Diego Midtown
 <li id="478" class="los-angeles"> Los Angeles Downtown
 <li id="529" class="los-angeles"> Los Angeles Midtown
 <li id="653" class="san-francisco"> San Francisco Downton

Chapter 4 ■ Jinja Templates in Django

155

Development and Testing
•	 pprint.- The pprint filter is a wrapper for Python's pprint.pprint(). The pprint

filter is useful during development and testing because it outputs the formatted
representation of an object. By default, the pprint filter is not verbose but you can
make it verbose passing it the true argument (e.g., {{variable|pprint(true)}}).

Urls
•	 urlencode.- The urlencode filter escapes a value for use in a URL. For example, if a

variable contains http://localhost/drinks?type=cold&size=large the filter statement
{{variable|urlencode}} outputs http%3A//localhost/drinks%3Ftype%3Dcold%26size
%3Dlarge.

•	 urlize.- The urlize filter converts text URLs into clickable HTML links. You can pass
the filter an additional integer to shorten the visible url (e.g., {{ variable|urlize(40)}}
links are shortened to 40 characters plus an ellipsis). It’s also possible to add a
second argument as a Boolean to make the urls "nofollow" (e.g., {{ variable|urlize(40,
true)}} links are shortened to 40 characters and defined with rel="nofollow").
Finally, it’s also possible to add the target argument to define a link target (e.g., {{
variable|urlize(40, target="_blank")}} links are shortened to 40 characters and open
in a new window).

■■ Tip  You can globally set rel and target values for the the urlize filter through Jinja policies, described in the
last section of this chapter.

Custom Filters and Tests in Jinja
Custom Jinja filters and tests are easy to create because they are backed by regular Python methods. For
custom Jinja filters a method should return the desired formatted value, and for Jinja tests a method should
contain the logic to return a Boolean value.

Structure
The backing method for a custom Jinja filter or test has arguments that correspond to the variable itself - as
the first argument - and any remaining values passed by the filter or test as other method arguments (e.g.,
variable|mycustomfilter("<div>") backed by a method like def mycustomfilter(variable,htmltag="
<p>"): -- note the htmltag argument has a default value in case the filter doesn’t specify this value with a
statement like variable|mycustomfilter).

The only Jinja specific logic you need to consider when creating backing Python methods is related to
character safety in Jinja filters. By default, if a backing method for a Jinja filter returns a string, it’s considered
unsafe and is therefore escaped (e.g., if the result of the filter returns <div>, Jinja renders the result as
<div>) – which is the same behavior enforced by custom Django filters.

To mark the result as a safe string, the backing Python method used by a Jinja filter must return a
jinja2.Markup type, a process that’s illustrated in one of the sample filters in Listing 4-23. Listing 4-23
illustrates various backing methods for custom Jinja filters and tests.

Chapter 4 ■ Jinja Templates in Django

156

Listing 4-23.  Backing Python methods for Jinja custom filters and tests.

import jinja2

def customcoffee(value,arg="muted"):
 return jinja2.Markup('%s' % (arg,value))

import math

def squarerootintext(value):
 return "The square root of %s is %s" % (value,math.sqrt(value))

def startswithvowel(value):
 if value.lower().startswith(("a", "e", "i", "o","u")):
 return True
 else:
 return False

The first method in Listing 4-23 returns the value argument wrapped in an HTML tag and
appends a CSS class with the arg argument - note the arg argument in the method definition defaults to the
muted value in case no value is provided. And also notice the customcoffee method returns a jinja2.Markup
type; this is done so Jinja renders the output as a safe string and interprets the tag as HTML.

The second method in Listing 4-23 calculates the square root of a given value and returns the standard
string "The square root of %s is %s" where the first %s represents the passed in value and the second
%s the calculated square root. The third method in Listing 4-23 takes the value argument, transforms it to
lowercase, and checks if value starts with a vowel; if it does it returns a Boolean True otherwise it returns a
Boolean False.

Installation and Access
Once you create the backing methods for custom Jinja filters and tests, you need to declare them as part of
the filters and/or tests variables on Jinja’s environment configuration, which is described in the next section.
Note that it’s assumed the backing methods in Listing 4-23 are placed in a file/module named filters under
the coffeehouse.jinja directory path.

To better illustrate the location of the filters.py file containing the custom Jinja extension, Listing 4-24
illustrates a directory structure with additional Django project files for reference.

Listing 4-24.  Directory structure and location of custom Jinja filters and tests

+---+-<PROJECT_DIR_coffeehouse>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-jinja-+
 +-__init__.py
 +-env.py
 +-filters.py

Chapter 4 ■ Jinja Templates in Django

157

Jinja filters and tests are set up as part of Jinja’s environment configuration. Listing 4-25 illustrates a
custom Jinja environment definition that sets a series of custom Jinja filters through the variable named
filters and tests.

Listing 4-25.  Custom Jinja environment with custom filters and tests

from jinja2.environment import Environment
from coffeehouse.jinja.filters import customcoffee, squarerootintext, startswithvowel

class JinjaEnvironment(Environment):
 def __init__(self,**kwargs):
 super(JinjaEnvironment, self).__init__(**kwargs)
 self.filters['customcoffee'] = customcoffee
 self.filters['squarerootintext'] = squarerootintext
 self.filters['startswithvowel'] = startswithvowel
 self.tests['startswithvowel'] = startswithvowel

As you can see in Listing 4-25, each backing Python method is first imported into the custom Jinja
environment. Next, to register custom Jinja filters you access self.filters and assign it a variable key name
- corresponding to the filter name - along with the backing method for the filter. And to register custom Jinja
tests you access self.tests and assign it a variable key name - corresponding to the test name - along with
the backing method for the test.

An interesting aspect of Listing 4-25 is the registration of startswithvowel as both a filter and test,
which means the same backing method - which returns True or False - can be used for both cases. This dual
registration allows startswithvowel to either use a pipe (i.e., as a filter {{variable|startwithvowel}}
to output True or False verbatim) or the is keyword in a conditional (i.e., as a test {% if variable is
startswithvowel %}variable starts with vowel{% endif %}).

Once a custom Jinja environment is created, you need to set it up as part of Django’s configuration in
the OPTIONS variable of settings.py, as illustrated in Listing 4-26.

Listing 4-26.  Configure custom Jinja environment in Django setttings.py

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/templates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'environment': 'coffeehouse.jinja.env.JinjaEnvironment'
 }
 },
]

In this case, you can see in Listing 4-26 the environment value corresponds to coffeehouse.jinja.env.
JinjaEnvironment, where JinjaEnvironment is the class - in Listing 4-25 - env is the file/module name and
coffeehouse.jinja is the directory path. To better illustrate the location of the env.py file take a look at the
directory structure in Listing 4-24.

Once you finish this last registration step, all the declared custom Jinja filters and tests become available
on all Jinja templates just like the regular built-in filters and tags described in the previous section.

Chapter 4 ■ Jinja Templates in Django

158

■■ Note  The custom Jinja environment in Listing 4-25 for custom Jinja filters and tests is the same technique
used in Listing 4-11 to declare Jinja globals.

Jinja Extensions
A Jinja extension is to Jinja templates what a library is for programming languages: a reusable set of features
contained in a specific format to not have to continuously ‘reinvent the wheel’.

Jinja itself includes various extensions that need to be enabled to be used. In addition, there are also
various third-party Jinja extensions that you can find helpful in certain situations (e.g., Jinja statements that
emulate Django template tags). Table 4-2 contains a list of extensions including their technical name that’s
used to enable them.

As you can see in Table 4-2, the functionality provided by each extension varies and if you do an
Internet search for ‘Jinja2 extensions’, you are sure to find a few more options that can save you time and
work on various fronts.

To create a custom Jinja extension you need to reuse the functionality provided by Jinja’s jinja2.ext.
Extension class, as well as use Jinja’s API to create the custom logic you’re pursuing. Once you create a
custom Jinja extension and add it to your Django project, you must also enable it with the extensions key of
the OPTIONS variable in settings.py.

Table 4-2.  Jinja extensions with description and technical name

Extension functionality Description Technical name

{% break %} and {% continue
%} statements

Offers the ability to break and continue in
template loops, just like the standard break
and continue Python keywords.

jinja2.ext.loopcontrols

{% do %} statement Offers the ability to evaluate an expression
without producing output.

jinja2.ext.do

{% with %} statement Offers the ability to define variables and limit
their scope.

jinja2.ext.with_

{% autoescape %} statement Offers the ability to enable/disable the escape
of HTML characters from a template section.

jinja2.ext.autoescape

{% csrf_token %}, {% trans
%}, {% blocktrans %}, {%
static %} and {% url %}
statements

Offers the ability to use the equivalent
functionality provided by Django tags with
the same name.

*jdj_tags.extensions.
DjangoCompat (For
all tags) See extension
documentation for more
granular statement import
names.

* All extensions with the exception of jdj_tags.extensions.DjangoCompat are part of Jinja itself, so they require
no additional installation. To install jdj_tags.extensions.DjangoCompat use pip install jinja2-django-tags.

Chapter 4 ■ Jinja Templates in Django

159

Enable Jinja Extensions
Jinja extensions are set up as part of Jinja’s environment configuration, which in Django is configured in
the OPTIONS variable of settings.py, as described in the previous section on configuring Jinja templates in
Django. Listing 4-27 illustrates a sample Django configuration that enables a series of Jinja extensions.

Listing 4-27.  Jinja extension configuration in Django

TEMPLATES = [
 {
 'BACKEND':'django.template.backends.jinja2.Jinja2',
 'DIRS': ['%s/templates/'% (PROJECT_DIR),],
 'APP_DIRS': True,
 'OPTIONS': {
 'extensions': [
 'jinja2.ext.loopcontrols',
 'jdj_tags.extensions.DjangoCompat',
 'coffeehouse.jinja.extensions.DjangoNow',
],
 }
 }
]

As you can see in Listing 4-27, we use the Jinja extension’s name - as described in Table 4-2 - and add it to a
list that’s assigned to the extensions key of the OPTIONS variable, which itself is part of Jinja’s TEMPLATES Django
configuration in settings.py. Note that the third extension coffeehouse.jinja.extensions.DjangoNow in
Listing 4-27 is a custom Jinja extension that I’ll create in the next and final section of this chapter.

This is all that’s necessary to enable a Jinja extension across all Jinja templates. Now that you know how
to enable Jinja extensions, the next section explores how to create custom Jinja extensions.

Create Jinja Extensions
Jinja has its own extension API, which is thoroughly documented7 and tackles all the possible cases you
may need an extension for. I won’t attempt to use all of the API’s functionality, because it would be nearly
impossible to do so in a single example; instead I’ll focus on creating a practical extension and in the process
illustrate the layout and deployment process for a custom Jinja extension.

In Django templates when you want to output the current date or time, there’s a tag named {% now %}
for just this purpose; Jinja has no such statement, so I’ll create a Jinja extension to mimic the same behavior
as the Django template {% now %} tag. The Jinja {% now %} statement will function just like the Django
template version and accept a format string, as well as the possibility to use the as keyword to define a
variable with the value.

Listing 4-28 illustrates the source code for the custom Jinja extension that produces a Jinja {% now %}
statement.

7http://jinja.pocoo.org/docs/2.9/extensions/

http://jinja.pocoo.org/docs/2.9/extensions/

Chapter 4 ■ Jinja Templates in Django

160

Listing 4-28.  Jinja custom extension for Jinja {% now %} statement

from jinja2 import lexer, nodes
from jinja2.ext import Extension
from django.utils import timezone
from django.template.defaultfilters import date
from django.conf import settings
from datetime import datetime

class DjangoNow(Extension):
 tags = set(['now'])

 def _now(self, date_format):
 tzinfo = timezone.get_current_timezone() if settings.USE_TZ else None
 formatted = date(datetime.now(tz=tzinfo),date_format)
 return formatted

 def parse(self, parser):
 lineno = next(parser.stream).lineno
 token = parser.stream.expect(lexer.TOKEN_STRING)
 date_format = nodes.Const(token.value)
 call = self.call_method('_now', [date_format], lineno=lineno)
 token = parser.stream.current
 if token.test('name:as'):
 next(parser.stream)
 as_var = parser.stream.expect(lexer.TOKEN_NAME)
 as_var = nodes.Name(as_var.value, 'store', lineno=as_var.lineno)
 return nodes.Assign(as_var, call, lineno=lineno)
 else:
 return nodes.Output([call], lineno=lineno)

After the various import statements in Listing 4-28, you can see we create the DjangoNow class that
inherits its behavior from the jinja2.ext.Extension class, the last of which is part of Jinja and used for
all custom extensions. Next, you can see we define the tags field with the set(['now']) value, which is
necessary to set up the statement/tag name. If you wanted the custom statement/tag to be called
{% mytimer %} then you would declare tags = set(['mytimer']).

Next in Listing 4-28 you can see the _now and parse methods. The _now method performs the actual
current date or time calculation and checks the Django project’s timezone configuration in settings.
py - a process that’s just like Django’s {% now %} tag. The parse method represents the entry point that
executes the custom {% now %} statement/tag, where it uses the Jinja extension API to analyze the input
and depending on the {% now %} declaration (e.g.{% now "F jS o" %}, {% now "F jS o" as today %})
executes the _now method and returns a result.

Once you create the custom Jinja extension, you need to declare it as part of the extensions variable on
Jinja’s environment configuration, as illustrated in Listing 4-27.

To better illustrate the location of the extensions.py file containing the custom Jinja extension, Listing 4-29
illustrates a directory structure with additional Django project files for reference.

Chapter 4 ■ Jinja Templates in Django

161

Listing 4-29.  Directory structure and location of custom Jinja extension

+---+-<PROJECT_DIR_coffeehouse>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-jinja-+
 +-__init__.py
 +-extensions.py

Note that based on the statement to import the custom Jinja extension in Listing 4-27 - coffeehouse.
jinja.extensions.DjangoNow - it’s assumed the DjangoNow class in Listing 4-28 is placed in a file/module
named extensions.py under the coffeehouse.jinja directory path.

Jinja Policies
Jinja policies are used to set the global behavior of Jinja built-in filters and other template constructs. Jinja
policies are set in Jinja environments – just like Jinja globals in Listing 4-11 or custom Jinja filters and tests in
Listing 4-25.

For example, you can use Jinja policies to alter the way the json or urlize built-in filters operate by
default. Listing 4-30 illustrates a custom Jinja environment that alters the Jinja built-in truncate filter and
sets the leeway option to 0.

Listing 4-30.  Custom Jinja environment with policies

from jinja2.environment import Environment
from coffeehouse.jinja.filters import customcoffee, squarerootintext, startswithvowel

class JinjaEnvironment(Environment):
 def __init__(self,**kwargs):
 super(JinjaEnvironment, self).__init__(**kwargs)
 self.policies['truncate.leeway'] = 0

As you can see in Listing 4-30, to register Jinja policies you access self.policies and assign it the
policy key name8 – in this case corresponding to truncate.leeway - along with the policy value – in this case
corresponding to 0. By setting the Jinja policy in Listing 4-30, anytime you use the truncate filter in Jinja
templates, the leeway is set to 0, instead of the default 5.

8http://jinja.pocoo.org/docs/2.9/api/#policies

http://jinja.pocoo.org/docs/2.9/api/#policies

163© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_5

CHAPTER 5

Django Application Management

Django, like all modern application development frameworks, requires that you eventually manage tasks to
support the core operation of a project. This can range from efficiently setting up a Django application to run
in the real world, to managing an application’s static resources (e.g., CSS, JavaScript, image files).

In addition, other routine application management tasks can include the following: establishing
a logging strategy to enforce problem detection, setting up email delivery for application users and/or
administrators, as well as debugging tasks to inspect the outcome of complex operations. In this chapter,
you’ll learn about these and other common topics associated with Django application management.

Django settings.py for the Real World
The settings.py is the central configuration for all Django projects. In previous chapters you already
worked with a series of variables in this file to configure things like Django applications, databases,
templates, and middleware, among other things.

Although the settings.py file uses reasonable default values for practically all variables, when a
Django application transitions into the real world, you need to take into account a series of adjustments, to
efficiently run the Django application, offer end users a streamlined experience, and keep potential rogue
attackers in check.

Switch DEBUG to False
One of the first things that’s necessary to launch a Django application into the real world is to change the
DEBUG variable to False. I’ve briefly mentioned in previous chapters how Django’s behavior changes when
switching DEBUG=False to DEBUG=True. All these behavioral changes associated with the DEBUG variable are
intended to enhance project security. Table 5-1 illustrates the differences between having a project run with
DEBUG=False and DEBUG=True.

https://doi.org/10.1007/978-1-4842-2787-9_5

Chapter 5 ■ Django Application Management

164

As you can see in Table 5-1, the changes enforced by changing DEBUG=True to DEBUG=False are intended
for publicly accessible applications (i.e., production environments). You may not like the hassle of adapting
to these changes, but they are enforced to maintain a heightened level of security on all Django projects that
run in the real world.

Define ALLOWED_HOSTS
By default, the ALLOWED_HOSTS variable in settings.py is empty. The purpose of ALLOWED_HOSTS is to
validate a request’s HTTP Host header. Validation is done to prevent rogue users from sending fake HTTP
Host headers that can potentially poison caches and password reset emails with links to malicious hosts.
Since this issue can only present itself under an uncontrolled user environment (i.e., public/production
servers), this validation is only done when DEBUG=False.

If you switch to DEBUG=False and ALLOWED_HOSTS is left empty, Django refuses to serve requests and
instead responds with HTTP 400 bad request pages, since it can’t validate incoming HTTP Host headers.
Listing 5-1 illustrates a sample definition of ALLOWED_HOSTS.

Listing 5-1.  Django ALLOWED_HOSTS definition

ALLOWED_HOSTS = [
 '.coffeehouse.com',
 '.bestcoffeehouse.com',
]

As you can see in Listing 5-1, the ALLOWED_HOSTS value is a list of strings. In this case it defines t
wo host domains that allow bestcoffeehouse.com to act as an alias of coffeehouse.com. The leading .(dot)
for each domain indicates a subdomain is also an allowed host domain (e.g., static.coffeehouse.com or
shop.coffeehouse.com is valid for .coffeehouse.com).

Table 5-1.  Django behavior differences between DEBUG=True and DEBUG=False

Functionality DEBUG=True behavior DEBUG=False behavior

Error handling and
notification

Displays full stack of
errors on request pages
for quick analysis.

Displays default ‘vanilla’ or custom error pages
without any stack details to limit security threats or
embarrassments. Emails project administrators of
errors. (See the ‘Define administrators for ADMINS and
MANAGERS’ section in this section for more details on
email notifications.)

Static resources Set up by default on a
project’s /static/ URL
for simplicity.

Disables automatic setup to avoid security
vulnerabilities and requires consolidation in a separate
directory to run static resources on a separate web
server. (See the Set up static web page resources -
Images, CSS, JavaScript – in the next section.)

Host/site qualifier Requests for all hosts/
sites are accepted for
processing.

It’s necessary to qualify for which hosts/sites a project
can handle requests. If a site/host is not qualified, all
requests are denied. (See the ‘Define ALLOWED_HOSTS’
section in this section for more details.)

Chapter 5 ■ Django Application Management

165

If you wanted to accept a single and fully qualified domain (FQDN), you would define
ALLOWED_HOSTS=['www.coffeehouse.com'], which would only accept requests with an HTTP Host
www.coffeehouse.com. In a similar fashion, if you wanted to accept any HTTP host - effectively bypassing the
verification - you would define ALLOWED_HOSTS=['*'], which indicates a wildcard.

Be Careful with the SECRET_KEY Value
The SECRET_KEY value in settings.py is another security-related variable like ALLOWED_HOSTS. However,
unlike ALLOWED_HOSTS, SECRET_KEY is assigned a default value and a very long value at that (e.g., 'oubrz5ado
&%+t(qu^fqo_#uhn7*+q*#9b3gje0-yj7^#g#ronn').

The purpose of the SECRET_KEY value is to digitally sign certain data structures that are sensitive
to tampering. Specifically, Django by default uses the SECRET_KEY on sensitive data structures like
session identifiers, cookies, and password reset tokens. But you can rely on the SECRET_KEY value to
cryptographically protect any sensitive data structure in a Django project.1

The one thing the default data structures signed with the SECRET_KEY have in common is they’re sent
to users on the wider Internet and are then sent back to the application to trigger actions on behalf of users.
It’s in this scenario we enter into a trust issue. Can the data sent back to the application be trusted? What if
a malicious user attempts to simulate another user’s cookie or session data to hijack his access? This is what
digitally signed data prevents.

Before Django sends any of these sensitive data structures to users on the Internet, it signs them with
a project’s SECRET_KEY. When the data structures come back to fulfill an action, Django rechecks these
sensitive data structures against the SECRET_KEY again. If there was any tampering on the data structures, the
signature check fails and Django halts the process.

The only remote possibility a rogue user has to successfully pull an attack of this kind is if the
SECRET_KEY is compromised - since an attacker can potentially create an altered data structure that matches
a project’s SECRET_KEY. Therefore you should be careful about exposing your project’s SECRET_KEY. If you
suspect for any reason a project’s SECRET_KEY has been compromised, you should replace it immediately
- only a few ephemeral data structures (i.e., sessions, cookies) become invalid with this change, until users
re-log in again and the new SECRET_KEY is used to regenerate these data structures.

Define Administrators for ADMINS and MANAGERS
Once a Django project is made accessible to end users, you’ll want some way to receive notifications of
important events related to security or other critical factors. Django has two sets of administrative groups
defined in settings.py: ADMINS and MANAGERS. By default, both ADMINS and MANAGERS are empty. The values
assigned to both variables need to be tuples, where the first value of the tuple is a name and the second part
of the tuple is an email. Listing 5-2 shows a sample definition of ADMINS and MANAGERS.

Listing 5-2.  Django ADMINS and MANAGERS definition

ADMINS = (('Webmaster','webmaster@coffeehouse.com'),('Administrator','admin@coffeehouse.com'))

MANAGERS = ADMINS

As you can see in Listing 5-2, the ADMINS variable is assigned two tuples with different administrators.
Next, you can see the ADMINS value is assigned to the MANAGERS variable. You can, of course, define different
values for MANAGERS using the same syntax as ADMINS, but in this case I just gave both variables the same
values for simplicity.

1https://docs.djangoproject.com/en/1.11/topics/signing/

http://www.coffeehouse.com/
http://www.coffeehouse.com/
http://www.coffeehouse.com/
https://docs.djangoproject.com/en/1.11/topics/signing/

Chapter 5 ■ Django Application Management

166

The purpose of having these two administrative groups in settings.py is for Django to send email
notifications of project events. By default, these events are limited and happen under certain circumstances.
After all, you don’t want to send administrators 10 email notifications every minute, 24/7.

By default, ADMINS are sent email notifications of errors associated with the django.request or
django.security packages, if and only if DEBUG=False. This is a pretty narrow criteria, as it’s intended to
notify only the most serious errors - for requests and security - and only for production environments, which
is when DEBUG=False. For no other events or conditions are the ADMINS notified by email.

By default, MANAGERS are sent email notifications of broken links (i.e., HTTP 404 page
requests), if and only if DEBUG=False and the Django middleware django.middleware.common.
BrokenLinkEmailsMiddleware is enabled. Because HTTP 404 page requests aren’t a serious problem,
by default BrokenLinkEmailsMiddleware is disabled. This is an even narrower criteria than for ADMINS,
because irrespective of a project being in development (DEBUG=True) or production (DEBUG=False), the
BrokenLinkEmailsMiddleware class needs to be added to MIDDLEWARE variable in settings.py for MANAGERS
to get notifications. For no other events or conditions are the MANAGERS notified by email.

Now that you know the purpose of ADMINS and MANAGERS, add users and emails as you see fit to your
project. Remember you can always leverage the values in ADMINS and MANAGERS for other custom logic in a
Django project (e.g., notify administrators of user signups).

MODIFY LOGGING TO STOP EMAIL NOTIFICATIONS TO ADMINS

By default, users in ADMINS start receiving error emails as soon as you switch to DEBUG=False - this is
unlike MANAGERS, which will never receive emails unless you add the BrokenLinkEmailsMiddleware to
MIDDLEWARE_CLASSES.

To stop email notifications to ADMINS even when DEBUG=False, you can modify Django’s logging
settings, which are described in the logging section in this chapter. You can also leave ADMINS
undefined so no emails are sent out, but that leaves your project with no ADMINS definitions that may
be useful for other purposes.

Use Dynamic Absolute Paths
There are some Django variables in settings.py that rely on directory locations, such is the case for
STATIC_ROOT, which defines a consolidation directory for a project’s static files or the DIRS list of the
TEMPLATES variable that defines the location of a project’s templates, among other variables.

The problem with variables that rely on directory locations is that if you run the project on different
servers or share it with other users, it can be difficult to keep track or reserve the same directories across a
series of environments. To solve this issue you can define variables to dynamically determine the absolute
paths of a project. Listing 5-3 illustrates a Django project directory structure, deployed to the /www/ system
directory.

Listing 5-3.  Django project structure deployed to /www/

+-/www/+
 |
 +--STORE--+
 |
 +---manage.py
 |
 +---coffeestatic--+
 | |

Chapter 5 ■ Django Application Management

167

 | +-(Consolidated static resources)
 |
 +---coffeehouse--+
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +---templates---+
 +-app_base_template.html
 +-app_header_template.html
 +-app_footer_template.html

Typically a Django settings.py file would define the values for STATIC_ROOT and DIRS in TEMPLATES as
illustrated in Listing 5-4.

Listing 5-4.  Django settings.py with absolute path values

Other configuration variables omitted for brevity
STATIC_ROOT = '/www/STORE/coffeestatic/'

Other configuration variables omitted for brevity
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['/www/STORE/coffeehouse/templates/',],
}
]

The issue with the setup in Listing 5-4 is it will require editing if you deploy the Django application to a
server where the /www/ directory isn’t available (e.g., due to restrictions or a Windows OS where directories
start with a leading letter C:/).

An easier approach illustrated in Listing 5-5 is to define variables to dynamically determine the absolute
paths of a project.

Listing 5-5.  Django settings.py with dynamically determined absolute path

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

Other configuration variables omitted for brevity
STATIC_ROOT = '%s/coffeestatic/' % (BASE_DIR)

Other configuration variables omitted for brevity
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['%s/templates/'% (PROJECT_DIR),],
}
]

Chapter 5 ■ Django Application Management

168

The variables defined at the top of Listing 5-5 rely on the Python os module to dynamically determine
the absolute system path relative to the settings.py file. The PROJECT_DIR=os.path.dirname(os.path.
abspath(__file__)) statement gets translated into the /www/STORE/coffeehouse/ value, which is the
absolute system directory of files like settings.py. And to access the parent of /www/STORE/coffeehouse/
you simply wrap the same statement with another call to os.path.dirname and define the BASE_DIR variable
so it gets translated into the /www/STORE/ value.

The remaining statements in Listing 5-5 use standard Python string substitution to use the PROJECT_DIR
and BASE_DIR to set the absolute paths in the STATIC_ROOT and TEMPLATE_DIRS variables. In this manner
you don’t need to hard-code the absolute paths for any Django configuration variable; the variables
automatically adjust to any absolute directory irrespective of the application deployment directory.

Use Multiple Environments or Configuration Files for Django
In every Django project you’ll eventually come to the realization that you have to split settings.py into
multiple environments or files. This will be either because the values in settings.py need to change
between development and production servers, there are multiple people working on the same project with
different requirements (e.g., Windows and Linux), or you need to keep sensitive settings.py information
(e.g., passwords) in a local file that’s not shared with others.

In Django there is no best or standard way to split settings.py into multiple environments or files.
In fact, there are many techniques and libraries to make a Django project run with a split settings.py file.
Next, I’ll present the three most popular options I’ve used in my projects. Depending on your needs you
may feel more comfortable using one option over another or inclusively mixing two or all three of these
techniques to achieve an end solution.

Option 1) Multiple environments in the same settings.py file with a control
variable
The settings.py file is treated as an ordinary Python file, so there’s no limitation to using Python libraries or
conditionals to obtain certain behaviors. This means you can easily introduce a control variable based on a
fixed value (e.g., server host name) to conditionally set up certain variable values.

For example, changing the DATABASES variable - because passwords and the database name change
between development and production - changing the EMAIL_BACKEND variable - since you don’t need to send
actual emails in development as you do in production - or changing the CACHES variable - since you don’t
need a cache to speed up performance in development as you need in production.

Listing 5-6 illustrates the setup of a control variable called DJANGO_HOST based on Python’s socket
module; the variable is then used to load different sets of Django variables based on a server’s host name.

Listing 5-6.  Django settings.py with control variable with host name to load different sets of variables

Import socket to read host name
import socket
If the host name starts with 'live', DJANGO_HOST = "production"
if socket.gethostname().startswith('live'):
 DJANGO_HOST = "production"
Else if host name starts with 'test', set DJANGO_HOST = "test"
elif socket.gethostname().startswith('test'):
 DJANGO_HOST = "testing"
else:
If host doesn't match, assume it's a development server, set DJANGO_HOST = "development"
 DJANGO_HOST = "development"

Chapter 5 ■ Django Application Management

169

Define general behavior variables for DJANGO_HOST and all others
if DJANGO_HOST == "production":
 DEBUG = False
 STATIC_URL = 'http://static.coffeehouse.com/'
else:
 DEBUG = True
 STATIC_URL = '/static/'

Define DATABASES variable for DJANGO_HOST and all others
if DJANGO_HOST == "production":
 # Use mysql for live host
 DATABASES = {
 'default': {
 'NAME': 'housecoffee',
 'ENGINE': 'django.db.backends.mysql',
 'USER': 'coffee',
 'PASSWORD': 'secretpass'
 }
 }
else:
 # Use sqlite for non live host
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'coffee.sqlite3'),
 }
 }

Define EMAIL_BACKEND variable for DJANGO_HOST
if DJANGO_HOST == "production":
 # Output to SMTP server on DJANGO_HOST production
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
elif DJANGO_HOST == "testing":
 # Nullify output on DJANGO_HOST test
 EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'
else:
 # Output to console for all others
 EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Define CACHES variable for DJANGO_HOST production and all other hosts
if DJANGO_HOST == "production":
 # Set cache
 CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 'TIMEOUT':'1800',
 }
 }
 CACHE_MIDDLEWARE_SECONDS = 1800

Chapter 5 ■ Django Application Management

170

else:
 # No cache for all other hosts
 pass

The first line in Listing 5-6 imports the Python socket module to gain access to the host name. Next,
a series of conditionals are declared using socket.gethostname() to determine the value of the control
variable DJANGO_HOST. If the host name starts with the letters live the DJANGO_HOST variable is set to
"production", if the host name starts with test then DJANGO_HOST is set to "testing", and if the host name
starts with neither of the previous options then DJANGO_HOST is set to "development".

In this scenario, the string method startswith is used to determine how to set the control variable
based on the host name. However, you can just as easily use any other Python library or even criteria
(e.g., IP address) to set the control variable. In addition, since the control variable is based on a string, you
can introduce as many configuration variations as needed. In this case we use three different variations to
set settings.py variables - "production","testing" and "development" - but you could easily define five
or a dozen variations if you require such an amount of different setups.

Option 2) Multiple environment files using configparser
Another variation to split settings.py is to rely on Python's built-in configparser module. configparser
allows Django to read configuration variables from files that use a data structure similar to the one used in
Microsoft Windows INI files. Listing 5-7 illustrates a sample configparser file.

Listing 5-7.  Python configparser sample file production.cfg

[general]
DEBUG: false
STATIC_URL: http://static.coffeehouse.com/

[databases]
NAME: housecoffee
ENGINE: django.db.backends.mysql
USER: coffee
PASSWORD: secretpass

[security]
SECRET_KEY: %%ea)cjy@v9(7!b(20gl+4-6iur28dy=tc4f$-zbm-v=!t

As you can see in Listing 5-7, the format for a configparser file is structured in various sections declared
between brackets (e.g., [general], [databases]) and below each section are the different keys and values.
The variables in Listing 5-7 represents a production environment placed in a file named production.
cfg. I chose the .cfg extension for this file, but you can use the .config or .ini extensions if you like; the
extension is irrelevant to Python – the only thing that matters is the data format in the file itself.

Similar to the contents in production.cfg, you can create other files with different variables for other
environments (e.g., testing.cfg, development.cfg). Once you have the configparser file or files, then you
can import them into a Django settings.py. Listing 5-8 shows a sample settings.py that uses values from
a configparser file.

Chapter 5 ■ Django Application Management

171

Listing 5-8.  Django settings.py with configparser import

import os

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

Access configparser to load variable values
from django.utils.six.moves import configparser
config = configparser.SafeConfigParser(allow_no_value=True)

Import socket to read host name
import socket
If the host name starts with 'live', load configparser from "production.cfg"
if socket.gethostname().startswith('live'):
 config.read('%s/production.cfg' % (PROJECT_DIR))
Else if host name starts with 'test', load configparser from "testing.cfg"
elif socket.gethostname().startswith('test'):
 config.read('%s/testing.cfg' % (PROJECT_DIR))
else:
If host doesn't match, assume it's a development server, load configparser from
"development.cfg"
 config.read('%s/development.cfg' % (PROJECT_DIR))

DEBUG = config.get('general', 'DEBUG')
STATIC_URL = config.get('general', 'STATIC_URL')

DATABASES = {
 'default': {
 'NAME': config.get('databases', 'NAME'),
 'ENGINE': config.get('databases', 'ENGINE'),
 'USER': config.get('databases', 'USER'),
 'PASSWORD': config.get('databases', 'PASSWORD')
 }
 }

SECRET_KEY = config.get('security', 'SECRET_KEY')

■■ Note  The configuration in Listing 5-8 assumes the host name starts with the name live in order to load
configparser production.cfg in Listing 5-7. Adjust conditionals at the start of Listing 5-8 to match the host name
and load the appropriate configparser file.

As you can see in Listing 5-8, configparser is loaded into Django via django.utils.six.moves, which is a
utility to allow cross-imports between Python 2 and Python 3. In Python 2 the configparser package is actually
named ConfigParser, but this utility allows us to use the same import statement using either Python 2 or
Python 3. After the import, we use the SafeConfigParser class with the argument allow_no_value=True to
allow processing of empty values in configparser keys.

Chapter 5 ■ Django Application Management

172

Then we rely on the same prior technique using Python’s socket module to gain access to the host
name and determine which configparser file to load. The configparser file is loaded using the read method
of the SafeConfigParser instance. At this juncture all configparser variables are loaded and ready for access.
The remainder of Listing 5-8 shows a series of standard Django settings.py variables that are assigned their
value using the get method of the SafeConfigParser instance, where the first argument is the configparser
section and the second argument is the key variable.

So there you have another option on how to split the variables in settings.py into multiple
environments. Like I mentioned at the start, there’s no best or standard way of doing this. Some people like
configparser better because it splits values into separate files and avoids the many conditionals of option 1,
but other people can hate configparser because of the need to deal with the special syntax and separate files.
Choose whatever feels best for your project.

Option 3) Multiple settings.py files with different names for each environment
Finally, another option to split Django variables into multiple environments is to create multiple
settings.py files with different names. By default, Django looks for configuration variables in the
settings.py file in a project’s base directory.

However, it’s possible to tell Django to load a configuration file with a different name. Django uses the
operating system (OS) variable DJANGO_SETTINGS_MODULE for this purpose. By default, Django sets this OS
variable to <project_name>.settings in the manage.py file located in the base directory of any Django
project. And since the manage.py file is used to bootstrap Django applications, the DJANGO_SETTINGS_MODULE
value in this file guarantees configuration variables are always loaded from the settings.py file inside the
<project_name> subdirectory.

So let’s suppose you create different settings.py files for a Django application - placed in the same
directory as settings.py - named production.py, testing.py, and development.py. You have two options
to load these different files.

One option is to change the DJANGO_SETTINGS_MODULE definition in a project’s manage.py file
to the file with the desired configuration (e.g., os.environ.setdefault("DJANGO_SETTINGS_MODULE",
"coffeehouse.production") to load the production.py configuration file). However, hard-coding this value
is inflexible because you would need to constantly change the value in manage.py based on the
desired configuration. Here you could use a control variable in manage.py to dynamically determine the
DJANGO_SETTINGS_MODULE value based on a host name - similar to the process described in the previous
option 1 for settings.py.

Another possibility to set DJANGO_SETTINGS_MODULE without altering manage.py is to define
DJANGO_SETTINGS_MODULE at the OS level so it overrides the definition in manage.py. Listing 5-9 illustrates
how to set the DJANGO_SETTINGS_MODULE variable on a Linux/Unix OS so that application variables in the
testing.py file are used instead of the settings.py file.

Listing 5-9.  Override DJANGO_SETTINGS_MODULE to load application variables from a file called testing.
py and not the default settings.py

$ export DJANGO_SETTINGS_MODULE=coffeehouse.load_testing
$ python manage.py runserver
Validating models...

0 errors found
Django version 1.11, using settings 'coffeehouse.load_testing'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Chapter 5 ■ Django Application Management

173

In Listing 5-9 we use the standard Linux/Unix syntax export variable_name=variable_value to set
an environment variable. Once this is done, notice the Django application that uses the development server
displays the startup message "using settings 'coffeehouse.load_testing'".

If you plan to override the DJANGO_SETTINGS_MODULE at the OS level to load different Django application
variables, be aware that by default OS variables aren’t permanent or inherited. This means you may need to
define the DJANGO_SETTINGS_MODULE for every shell from which you start Django and also define it as a local
variable for runtime environments (e.g., Apache).

Set Up Static Web Page Resources - Images, CSS, JavaScript
The setup process for static resources in Django projects varies considerably if a project runs with
DEBUG=True or DEBUG=False. This means static resource deployment depends on whether you’re doing work
on a development environment - where you generally use DEBUG=True - or on a production environment -
where you generally use DEBUG=False.

Considering you’ll always start a Django project in a development environment and later migrate to a
production environment, I’ll describe the development set up process first and later describe the production
setup process.

Set Up Static Resources in a Development Environment (DEBUG=False)
By default when DEBUG=False, Django automatically sets up static resources from two major locations.
The first location is static folders in all Django apps and the second location is folders declared in the
STATICFILES_DIR variable in settings.py.

Although you’ll need to manually create the static folder inside Django apps, it’s this easy to set
up static resources in a project. Because Django sets up all the static folders for every project app, it’s a
recommended practice to further add a subdirectory to the static folder (e.g., <app_folder>/static/<app_
name>/<static_files_here>) to qualify static resources and avoid potential naming conflicts. Listing 5-10
illustrates a sample directory structure for static resources.

Listing 5-10.  Django app structure with static directories

+-<BASE_DIR_project_name>
|
+-manage.py
|
+-bootstrap-3.1.1-dist+
| +-bootstrap.min.js
|
+-jquery-1-11-1-dist+
| +jquery.min.js
|
+-jquery-ui-1.10.4+
| +jquery-ui.min.js
|
+-website-static-default+
| +-favicon.ico
| +-robots.txt
|
|

Chapter 5 ■ Django Application Management

174

+---+-<PROJECT_DIR_project_name>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-static-+
 | |
 | +-about-+
 | +-img-+
 | | +-logo.png
 | |
 | +-css-+
 | +-custom.css
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-static-+
 |
 +-stores-+
 +-img-+
 | +-coffee.gif
 |
 +-css-+
 +-custom.css

As illustrated in Listing 5-10, all Django app directories have a static subdirectory that contains static
resources. Anything under these static subdirectories is set up for access.

Also notice in Listing 5-10 the importance of the app name subdirectory within the static
subdirectories that acts as a namespace. If static resources were placed directly below the static folder in
all apps, in this scenario it would lead to two identical file paths named /static/css/custom.css, In which
case a call to load this static resource would lead to a conflict. Technically, Django always uses the first file it
finds, but will the first one be the right one? By using an app name subdirectory inside static it avoids any
potential conflict, with one static resource set up at /static/about/css/custom.css and the other at
/static/stores/css/custom.css.

Because there can be static resources that don’t necessarily belong to a specific project app, Django also
supports the ability to set up static resources stored on any subdirectory.

If you look again at Listing 5-10 in between the BASE_DIR and PROJECT_DIR, you’ll see there are various
subfolders that contain popular static resource libraries - jquery, jquery-ui and bootstrap-- as well as a
subfolder website-static-default with a web site’s standard static resources – robots.txt & favicon.ico.

In order to set up these additional static resources, you define the location of these directories in
the STATICFILES_DIR variable in settings.py. Listing 5-11 illustrates an example of a STATICFILES_DIR
definition.

Chapter 5 ■ Django Application Management

175

Listing 5-11.  Django STATICFILES_DIR definition with namespaces in settings.py

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

STATICFILES_DIRS = ('%s/website-static-default/'% (BASE_DIR),
 ('bootstrap','%s/bootstrap-3.1.1-dist/'% (BASE_DIR)),
 ('jquery','%s/jquery-1-11-1-dist/'% (BASE_DIR)),
 ('jquery-ui','%s/jquery-ui-1.10.4/'% (BASE_DIR)),)

As you can see in Listing 5-11, STATICFILES_DIRS accepts a list of directories. In this case, all directories
are under a Django project’s BASE_DIR, so it’s using the BASE_DIR variable that dynamically determines
the parent directory. Another aspect of the directory list in Listing 5-11 is you can optionally declare a
namespace, similar to the approach used in an app’s static subdirectories.

The first directory definition in Listing 5-11 is a simple string (i.e., it has no namespace), which means
the static resources in website-static-default is set up with a direct access pattern. The remaining
directory definitions are tuples and not strings. By using a tuple, it defines the first part of the tuple as the
namespace and the second part as the directory with the static resources. Definitions with a namespace
mean that all static resources under a given directory will use a prefix namespace in their access pattern
(e.g., to access static resources on bootstrap-3.1.1-dist the access pattern should be prefixed with
bootstrap).

Now that you know where and how to set up all static resources, let’s take a quick look at how Django
visualizes these static resources to understand what the final access patterns for static resources look like.
Listing 5-12 shows a visualization of the static resources presented in the previous listings.

Listing 5-12.  Django visualization of static resources in apps and STATICFILES_DIRS

+-favicon.ico
+-robots.txt
|
+-jquery+
| +jquery.min.js
|
+-jquery-ui+
| +jquery-ui.min.js
|
+-bootstrap+
| +-bootstrap.css
|
+-about-+
| +-img-+
| | +-logo.png
| |
| +-css-+
| +-custom.css
|
+-stores-+
 +-img-+
 | +-coffee.gif
 |
 +-css-+
 +-custom.css

Chapter 5 ■ Django Application Management

176

The files favicon.ico and robots.txt in Listing 5-12 are in the top level of the visualization because
their source directory - website-static-default - was defined without a namespace in STATICFILES_DIRS.

The remainder of the static resources are all grouped in subfolders because we either defined a
namespace for them in STATICFILES_DIRS or defined a subfolder as a namespace within an app’s static
subdirectory.

Now that you understand how Django visualizes static resources as a group and how this determines the
final access pattern for static resources, let’s turn our attention to the STATIC_URL variable in settings.py.

The STATIC_URL is used to define a URL entry point into Django’s visualization of static resources
presented in Listing 5-12. By default, STATIC_URL is assigned the /static/ value. This means that if
STATIC_URL='/static/', the static resource robots.txt becomes accessible at the URL /static/robots.txt,
just like stores/img/coffee.gif becomes accessible at the URL /static/stores/img/coffee.gif.

This means you access static resources on the /static/ URL, or on a different URL if you change the
STATIC_URL value. However, don’t go and hard-code these static resources paths on templates! (e.g., <img
src="/static/stores/img/coffee.gif"/>). You should use a variable so the final path is determined
dynamically in case STATIC_URL changes. The next section describes how to do this in Django templates.

■■ Caution  Automatic access to static resources only works with Django’s built-in web server and when
DEBUG=True.

The previous setup process for static resources has a little ‘behind the scenes’ help from Django. It only
works with Django’s built-in web server (i.e., python manage.py runserver) and only if DEBUG=True. As
soon as you change to a different web server or switch DEBUG=False even using Django’s built-in web server,
no static resource will be available as visualized in Listing 5-12.

The primary reason behind this behavior is because reserving and dispatching static resources from
an application’s main web server/URL structure (e.g., /static/) is very inefficient. So this just works as a
convenience in development using Django’s built-in web server and when DEBUG=True. Of course, you can
assign a full URL domain to STATIC_URL (e.g., http://static.coffeehouse.com/) but this assumes you’ve
already set up the project’s static resources on a production-like environment, something that I’ll discuss
shortly once I describe how to access static resources in Django and Jinja templates.

Access Static Resources in Django Templates
The recommended approach to reference static resources in Django templates is through staticfiles app via
the {% static %} tag. Listing 5-13 illustrates various examples of the staticfiles app syntax.

Listing 5-13.  Django {% static %} tag to reference static resources

{% load static %}

For static resource at about/img/logo.png

For static resource at bootstrap/bootstrap.css
<link href="{% static 'bootstrap/bootstrap.css' %}" rel="stylesheet">

For static resource at jquery/jquery.min.js
<script src="{% static 'jquery/jquery.min.js' %}"></script>

http://static.coffeehouse.com/

Chapter 5 ■ Django Application Management

177

First it’s important to note the {% load static %} tag in Listing 5-13 is available through the staticfiles
app, which is installed by default on all Django projects in the INSTALLED_APPS variable. If for some reason
you modified the default values in INSTALLED_APPS, make sure you have the django.contrib.staticfiles
value in the INSTALLED_APPS variable or none of what follows will work.

As you can see in Listing 5-13, at the top of the template you always declare the {% load static %}
statement. Once this is done, a template can use the {% static %} tag to generate dynamic paths for static
resources. In most circumstances, the {% static %} tag relies on the STATIC_URL variable in settings.py to
generate an appropriate path to the static resources.

For more advanced cases, the {% static %} tag uses a combination of the same STATIC_URL variable
and the backing storage technology (e.g., CDN-‘Content Delivery Network’) configuration to generate an
appropriate path to the static resources.

For example, notice in Listing 5-13 how the {% static %} tag is always followed by a file path
identical to the Django visualization of static resources in Listing 5-12. Due to the STATIC_URL variable
having a value of /static/, it means the {% static %} statements in Listing 5-13 get substituted with this
value (e.g., {% static 'bootstrap/bootstrap.css' %} becomes /static/bootstrap/bootstrap.css).

The cases where the {% static %} tag gets substituted for something different than the STATIC_URL
variable are when a Django project uses a nonstandard back end to serve static resources - this last scenario
is briefly discussed in the sidebar below.

WHY USE THE STATICFILES {% STATIC %} TAG VS. USING THE
STATIC_URL VARIABLE DIRECTLY IN TEMPLATES?

In the early versions of Django, Django templates used the STATIC_URL variable directly in
templates (e.g.,). A trace of this remains in the fact that
you can still gain access to the STATIC_URL variable on all Django templates via the django.template.
context_processors.static context processor.

However, with the underlying technology to serve static resources becoming more sophisticated, the
STATIC_URL variable by itself proves insufficient. For example, static-serving technologies like CDNs
or Amazon S3 often use special tokens to enforce authentication or caching strategies. This means a
statement like needs to be converted into something
like or <img
src="http://staticresources.com/about/img/logo32AzTB9r5.gif">. And while it’s possible
to change the STATIC_URL variable to a full domain, what becomes difficult is to modify the static
resource’s path itself.

Rewriting a static resource’s path with a tag like {% static %} is easy. Because {% static %} can take
a static resource’s base string (e.g., about/img/logo.gif) and dynamically produce a full path with the
STATIC_URL variable and any special tokens required by the underlying static-serving technology. This
process is achieved by using a custom storage class – designed for the static-serving technology.

Granted not all projects require the use of advanced static-serving technologies. But by using the
{% static %} tag of the staticfiles app to declare static resources in Django templates, you ensure a
Django project is capable of using any static-serving technology, from the most basic to the most
advanced.

http://cdnprovider.com/about/img/logo.gif?token=e354534566
http://staticresources.com/about/img/logo32AzTB9r5.gif

Chapter 5 ■ Django Application Management

178

Access Static Resources in Jinja Templates
Jinja templates offer an alternative to Django’s own templates, as described in the previous chapter. But
unlike Django templates, you’ll have to follow a different setup to use something like Django’s {% static %}
tag from the staticfiles app in Jinja templates.

To be able to use the same staticfiles app / {% static %} tag behavior in Jinja templates, you’ll need
to set up a global variable named static that hooks into this functionality. In the previous chapter on
Jinja template, the section “Set Up Data for Access on All Jinja Templates in Django (like Django Context
Processors)” describes how to create a global variable with this functionality.

Set Up Static Resources in a Production Environment (DEBUG=True)
When you switch your Django project’s DEBUG variable to True or change to a different web server
(e.g., Apache, Nginx), you’ll be surprised that none of the static resources in your project appear anymore.
Don’t be alarmed, this is by design. It isn’t too difficult to set up Django to serve static resources when
DEBUG=True with Django’s built-in web server or if you switch to a third-party web server.

■■ Tip  You can access static resources to make Django’s built-in web server serve static resources as if
DEBUG=False when it’s actually set to DEBUG=True. Run the web server with the --insecure flag: python
manage.py runserver –insecure.

■■ Caution  Although the previous workaround is available, I recommend you don’t use it, in case the flag
name itself --insecure wasn’t enough to keep you from using it.

Django’s built-in web server (i.e., python manage.py runserver) is really a convenience tool to get up
and running quickly, which as part of this convenience also serves static resources when DEBUG=False.

However, it really is wasteful to allow the same web server process to handle both dynamic content
(Django web pages) and static resources (Images, CSS, JavaScript). The recommended approach is to use a
separate web server entirely to serve static resources, which is why Django goes to the extent of breaking this
convenience in its built-in web server when switching the DEBUG=True.

The first thing you need to do when DEBUG=True is create a directory to hold a copy of all the static resources
Django visualizes as static resources. Previously you learned that when DEBUG=False, Django visualizes static
resources from several locations and subdirectories in a single tree - illustrated in Listing 5-12. It’s precisely this
single tree Django visualizes that you need to create a copy of to run on a production environment.

You’ll need to define the STATIC_ROOT variable in settings.py. The value you assign to STATIC_ROOT
should be a directory and it will be where Django copies all of your project’s static resources - identical to
how Django visualizes them when DEBUG=True as illustrated in Listing 5-12. Note this directory should be
empty, as it’s overwritten constantly each time you perform a syncing process. The location of this directory
could be anywhere on your system depending on your needs. For simplicity, I’ll keep the STATIC_ROOT
directory under the Django project’s BASE_DIR as STATIC_ROOT = '%s/coffeestatic/'% (BASE_DIR).

To trigger the syncing process (i.e., copy all static resources to STATIC_ROOT), you’ll need to use the
collectstatic command available in the manage.py script. Listing 5-14 illustrates the sample output of the
syncing process.

Chapter 5 ■ Django Application Management

179

Listing 5-14.  Django collectstatic command to copy all static resources

[user@coffeehouse ~]$ python manage.py collectstatic

You have requested to collect static files at the destination
location as specified in your settings:

 /www/STORE/coffeestatic

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel: yes
yes
Copying '/www/STORE/website-static-default/sitemap.xml'
Copying '/www/STORE/website-static-default/robots.txt'
Copying '/www/STORE/website-static-default/favicon.ico'
....
....
....
Copying '/www/STORE/coffeehouse/about/static/css/custom.css'

732 static files copied to '/www/STORE/coffeestatic'.

Once you collect all your project’s static resources in a single folder - in this case /www/STORE/
coffeestatic - they’re ready to be set up on a production server (e.g., Apache, Nginx, or AWS S3). Keep in
mind the directory/file structure generated by collectstatic is identical to the one visualized by Django in
the previous section illustrated in Listing 5-12.

The final step you need to do is update the STATIC_URL value in settings.py to reflect the new location
of the static resources. For example, if you mount the /www/STORE/coffeestatic/ directory on Apache or
Nginx under the http://static.coffeehouse.com/ domain, you would set STATIC_URL='http://static.
coffeehouse.com'. Similarly, if you copy the static resources in /www/STORE/coffeestatic/ to an Amazon
AWS S3 bucket named http://coffeehouse.s3.amazonaws.com, you would set STATIC_URL='http://
coffeehouse.s3.amazonaws.com'

Once you make this last change, all the statements in your Django templates that use the {% static %}
tag get updated with this new full-domain URL, in which case a resource like /www/STORE/coffeestatic/
bootstrap/bootstrap.css becomes available at http://static.coffeehouse.com/bootstrap/bootstrap.
css or http://coffeehouse.s3.amazonaws.com/bootstrap/bootstrap.css.

Django Logging
Logging is one of the most useful and also one of the most underused application management practices. If
you’re still not using logging in your Django projects or are using Python print() statements to gain insight
into what an application is doing, you’re missing out on a great of functionalities. Up next, you’ll learn about
Python core logging concepts, how to set up Django custom logging, and how to use a monitoring service to
track log messages.

http://static.coffeehouse.com/
http://static.coffeehouse.com/
http://static.coffeehouse.com/
http://coffeehouse.s3.amazonaws.com/
http://coffeehouse.s3.amazonaws.com/
http://coffeehouse.s3.amazonaws.com/
http://static.coffeehouse.com/bootstrap/bootstrap.css
http://static.coffeehouse.com/bootstrap/bootstrap.css
http://coffeehouse.s3.amazonaws.com/bootstrap/bootstrap.css

Chapter 5 ■ Django Application Management

180

Python Core Logging Concepts
Django is built on top of Python’s logging package. The Python logging package provides a robust and
flexible way to set up application logging. In case you’ve never used Python’s logging package, I’ll provide a
brief overview of its core concepts. There are four core concepts in Python logging:

•	 Loggers.- Provide the initial entry point to group log messages. Generally, each
Python module (i.e., .py file) has a single logger to assign its log messages. However,
it’s also possible to define multiple loggers in the same module (e.g., one logger for
business logic, another logger for database logic, etc.). In addition, it’s also possible
to use the same logger across multiple Python modules or .py files.

•	 Handlers.- Are used to redirect log messages (created by loggers) to a destination.
Destinations can include flat files, a server’s console, an email or SMS messages,
among other destinations. It’s possible to use the same handler in multiple loggers,
just as it’s possible for a logger to use multiple handlers.

•	 Filters.- Offer a way to apply rules on log messages. For example, you can use a filter
to send log messages generated by the same logger to different handlers.

•	 Formatters.- Are used to specify the final format for log messages.

With this brief overview of Python logging concepts, let’s jump straight into exploring Django’s default
logging functionality.

Django Default Logging
The logging configuration for Django projects is defined in the LOGGING variable in settings.py. For the
moment, don’t even bother opening your project’s settings.py file because you won’t see LOGGING in it.
This variable isn’t hard-coded when you create a project, but it does have some logging values in effect if it
isn’t declared. Listing 5-15 shows the default LOGGING values if it isn’t declared in settings.py.

Listing 5-15.  Default LOGGING in Django projects

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse',
 },
 'require_debug_true': {
 '()': 'django.utils.log.RequireDebugTrue',
 },
 },
 'handlers': {
 'console': {
 'level': 'INFO',
 'filters': ['require_debug_true'],
 'class': 'logging.StreamHandler',
 },
 'null': {
 'class': 'logging.NullHandler',
 },

Chapter 5 ■ Django Application Management

181

 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler'
 }
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 'django.request': {
 'handlers': ['mail_admins'],
 'level': 'ERROR',
 'propagate': False,
 },
 'django.security': {
 'handlers': ['mail_admins'],
 'level': 'ERROR',
 'propagate': False,
 },
 'py.warnings': {
 'handlers': ['console'],
 },
 }
}

In summary, the default Django logging settings illustrated in Listing 5-15 have the following logging
behaviors:

•	 Console logging or the console handler is only done when DEBUG=True, for log
messages worse than INFO (inclusive) and only for the Python package django - and
its children (e.g., django.request, django.contrib) - as well as the Python package
py.warnings.

•	 Admin logging or the mail_admins handler - which sends emails to ADMINS – is only
done when DEBUG=False, for log messages worse than ERROR (inclusive), and only for
the Python packages django.request and django.security.

Let’s first break down the handlers section in Listing 5-14. Handlers define locations to send log
messages and there are three in Listing 5-14: console, null and mail_admins. The handler names by
themselves do nothing - they are simply reference names - the relevant actions are defined in the associated
properties dictionary. All the handlers have a class property that defines the backing Python class that does
the actual work.

The console handler is assigned the logging.StreamHandler class that is part of the core Python
logging package. This class sends logging output to streams such as standard input and standard error, and
as the handler name suggests, this is technically the system console or screen where Django runs.

The null handler is assigned the logging.NullHandler class, which is also part of the core Python
logging package and which generates no output.

The mail_admins handler is assigned the django.utils.log.AdminEmailHandler class, which is
a Django custom handler utility that sends logging output as an email to people defined as ADMINS in
settings.py - see the previous section on setting up settings.py for the real world for more information on
the ADMINS variable.

Chapter 5 ■ Django Application Management

182

Another property in handlers is level, which defines the threshold level at which the handler must
accept log messages. There are five threshold levels for Python logging, from worst to least worst they are
CRITICAL, ERROR, WARNING, INFO, and DEBUG. The INFO level for the console handler indicates that all log
messages worse or equal to INFO – which is every level, except DEBUG – should be processed by the handler, a
reasonable setting as the console can handle many messages. The ERROR level for the mail_admins handler
indicates that only messages worse or equal to ERROR – which is just CRITICAL – should be processed by
the handler, a reasonable setting as only the two worst types of error messages should trigger emails to
administrators.

The other property in handlers is filters, which defines an additional layer to restrict log messages
for a handler. Handlers can accept multiple filters, which is why the filters property accepts a Python list.
The console handler has a single filter require_debug_true and the mail_admins handler has a single filter
require_debug_false.

Filters are defined in their own block as you can observe in Listing 5-15. The require_debug_
false filter is backed by the django.utils.log.RequireDebugFalse class, which checks if a Django
project has DEBUG=False, whereas the require_debug_true filter is backed by the django.utils.log.
RequireDebugTrue class, which checks if a project has DEBUG=True. This means the console handler only
accepts log messages if a Django project has DEBUG=True and the mail_admins handler only accepts log
messages if a Django project has DEBUG=False.

Now that you understand handlers and filters, let’s take a look at the loggers section. Logger definitions
generally map directly to Python packages and have parent-child relationships. For example, Python
modules (i.e., .py files) that belong to a package named coffeehouse generally have a logger named
coffeehouse and Python modules that belong to the package coffeehouse.about generally have a logger
named coffeehouse.about. The dot notation in logger names also represents a parent-child relationship, so
the coffeehouse.about logger is considered the child of the coffeehouse logger.

In Listing 5-15 there are four loggers: django, django.request, django.security, and py.warnings.
The django logger indicates that all log messages associated with it and its children be processed by the
console handler.

The django.request logger indicates that all log messages associated with it and its children be
processed by the mail_admins handler. The django.request logger also has the 'level':'ERROR' property
to provide the threshold level at which the logger should accept log messages - a property that overrides
the handler level property. And in addition, the django.request logger also has the 'propagate':'False'
statement to indicate the logger should not propagate messages to parent loggers (e.g., django is the parent
of django.request).

Next, we have the django.security logger that is identical in functionality to the django.request
logger. And the py.warnings that indicate that all log messages associated with it and its children be
processed by the console handler.

Finally, there are the first two lines in Listing 5-15 that are associated with Python logging in
general. The version key identifies the configuration version as 1, which at present is the only Python
logging version. And the disable_existing_loggers key is used to disable all existing Python loggers. If
disable_existing_loggers is False it keeps the preexisting logger values and if it’s set to True it disables
all preexisting loggers values. Note that even if you use 'disable_existing_loggers': False in your own
LOGGING variable you can redefine/override some or all of the preexisting logger values.

Now that you have a firm understanding of what Django logging does in its default state, I’ll describe
how to create log messages in a Django project and then describe how to create custom LOGGING
configurations.

Chapter 5 ■ Django Application Management

183

Create Log Messages
At the top of any Python module or .py file you can create loggers by using the getLogger method of the
Python logging package. The getLogger method receives the name of the logger as its input parameter.
Listing 5-16 illustrates the creation of two logger instances using __name__ and the hard-coded dba name.

Listing 5-16.  Define loggers in a Python module

Python logging package
import logging

Standard instance of a logger with __name__
stdlogger = logging.getLogger(__name__)

Custom instance logging with explicit name
dbalogger = logging.getLogger('dba')

The Python __name__ syntax used for getLogger in Listing 5-16 automatically assigns the package name
as the logger name. This means that if the logger is defined in a module under the application directory
coffeehouse/about/views.py, the logger receives the name coffeehouse.about.views. So by relying on
the __name__ syntax, loggers are automatically created based on the origin of the log message.

Don’t worry about having dozens or hundreds of loggers in a Django project for each module or .py
file. As described in the past section, Python logging works with inheritance, so you can define a single
handler for a parent logger (e.g., coffeehouse) that handles all children loggers (e.g., coffeehouse.about,
coffeehouse.about.views,coffeehouse.drinks, coffeehouse.drinks.models).

Sometimes it’s convenient to define a logger with an explicit name to classify certain types of messages.
In Listing 5-16 you can see a logger named dba that’s used for messages related to databases issues. This way
database administrators can consult their own logging stream without the need to see log messages from
other parts of the application.

Once you have loggers in a module or .py file, you can define log messages with one of several methods
depending on the severity of a message that needs to be reported. These methods are illustrated in the
following list:

•	 <logger_name>.critical().- Most severe logging level. Use it to report potentially
catastrophic application events (e.g., something that can halt or crash an
application).

•	 <logger_name>.error().- Second most severe logging level. Use it to report important
events (e.g., unexpected behaviors or conditions that cause end users to see an
error).

•	 <logger_name>.warning().- Mid-level logging level. Use it to report relatively
important events (e.g., unexpected behaviors or conditions that shouldn’t happen,
yet don’t cause end users to notice the issue).

•	 <logger_name>.info().- Informative logging level. Use it to report informative events
in an application (e.g., application milestones or user activity).

•	 <logger_name>.debug().- Debug logging level. Use it to report step-by-step logic that
can be difficult to write (e.g., complex business logic or database queries).

•	 <logger_name>.log().- Use it to manually emit log messages with a specific log level.

•	 <logger_name>.exception().- Use it to create an error level logging message,
wrapped with the current exception stack.

Chapter 5 ■ Django Application Management

184

What methods you use to log messages across your project depends entirely up to you. As far as the
logging levels are concerned, just try to be consistent with the selection criteria. You can always adjust the
runtime logging level to deactivate log messages of a certain level.

In addition, I would also recommend you use the most descriptive log messages possible to maximize
the benefits of logging. Listing 5-17 illustrates a series of examples using several logging methods and
messages.

Listing 5-17.  Define log messages in a Python module

Python logging package
import logging

Standard instance of a logger with __name__
stdlogger = logging.getLogger(__name__)

Custom instance logging with explicit name
dbalogger = logging.getLogger('dba')

def index(request):
 stdlogger.debug("Entering index method")

def contactform(request):
 stdlogger.info("Call to contactform method")

 try:
 stdlogger.debug("Entering store_id conditional block")
 # Logic to handle store_id
 except Exception, e:
 stdlogger.exception(e)

 stdlogger.info("Starting search on DB")
 try:
 stdlogger.info("About to search db")
 # Loging to search db
 except Exception, e:
 stdlogger.error("Error in searchdb method")
 dbalogger.error("Error in searchdb method, stack %s" % (e))

As you can see in Listing 5-17, there are various log messages of different levels using both loggers
described in Listing 5-16. The log messages are spread out depending on their level in either the method
body or inside try/except blocks.

If you place the loggers and logging statements like the ones in Listing 5-17 in a Django project, you’ll
see that logging-wise nothing happens! In fact, what you’ll see in the console are messages in the form 'No
handlers could be found for logger ...<logger_name>'.

This is because by default Django doesn’t know anything about your loggers! It only knows about the
default loggers described in Listing 5-15. In the next section, I’ll describe how to create a custom LOGGING
configuration so you can see your project log messages.

Chapter 5 ■ Django Application Management

185

Custom Logging
Since there are four different components you can mix and match in Django logging (i.e., loggers,
handlers, filters, and formatters), there is an almost endless amount of variations to create custom logging
configurations.

In the following sections, I’ll describe some of the most common custom logging configuration for
Django projects, which include overriding default Django logging behaviors (e.g., not sending emails),
customizing the format of log messages, and sending logging output to different loggers (e.g., files).

Listing 5-18 illustrates a custom LOGGING configuration you would place in a project’s settings.py file,
covering these common requirements. The sections that follow explain each configuration option.

Listing 5-18.  Custom LOGGING Django configuration

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse',
 },
 'require_debug_true': {
 '()': 'django.utils.log.RequireDebugTrue',
 },
 },
 'formatters': {
 'simple': {
 'format': '[%(asctime)s] %(levelname)s %(message)s',
 'datefmt': '%Y-%m-%d %H:%M:%S'
 },
 'verbose': {
 �'format': '[%(asctime)s] %(levelname)s [%(name)s.%(funcName)s:%(lineno)d]

%(message)s',
 'datefmt': '%Y-%m-%d %H:%M:%S'
 },
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'filters': ['require_debug_true'],
 'class': 'logging.StreamHandler',
 'formatter': 'simple'
 },
 'development_logfile': {
 'level': 'DEBUG',
 'filters': ['require_debug_true'],
 'class': 'logging.FileHandler',
 'filename': '/tmp/django_dev.log',
 'formatter': 'verbose'
 },
 'production_logfile': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],

Chapter 5 ■ Django Application Management

186

 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/var/log/django/django_production.log',
 'maxBytes' : 1024*1024*100, # 100MB
 'backupCount' : 5,
 'formatter': 'simple'
 },
 'dba_logfile': {
 'level': 'DEBUG',
 'filters': ['require_debug_false','require_debug_true'],
 'class': 'logging.handlers.WatchedFileHandler',
 'filename': '/var/log/dba/django_dba.log',
 'formatter': 'simple'
 },
 },
 'root': {
 'level': 'DEBUG',
 'handlers': ['console'],
 },
 'loggers': {
 'coffeehouse': {
 'handlers': ['development_logfile','production_logfile'],
 },
 'dba': {
 'handlers': ['dba_logfile'],
 },
 'django': {
 'handlers': ['development_logfile','production_logfile'],
 },
 'py.warnings': {
 'handlers': ['development_logfile'],
 },
 }
}

■■ Caution  When using logging files, ensure the destination folder exists (e.g., /var/log/dba/) and the owner
of the Django process has file access permissions.

Disable default Django logging configuration
The 'disable_existing_loggers':True statement at the top of Listing 5-18 disables Django’s default logging
configuration from Listing 5-15. This guarantees no default logging behavior is applied to a Django project.

An alternative to disabling Django’s default logging behavior is to override the default logging
definitions on an individual basis, as any explicit LOGGING configuration in settings.py takes precedence
over Django defaults even when 'disable_existing_loggers':False. For example, to apply a different
behavior to the console logger (e.g., output messages for debug level, instead of default info level) you can
define a handler in settings.py for console with a debug level – as shown in Listing 5-18.

However, if you want to ensure no default logging configuration inadvertently ends up in a Django
project, you must set 'disable_existing_loggers' to True. Because Listing 5-18 sets 'disable_existing_

Chapter 5 ■ Django Application Management

187

loggers':True, notice the same default filters from Listing 5-15 are re-declared, since the default filters are
lost on account of 'disable_existing_loggers':True.

Logging formatters: Message output
By default, Django doesn’t define a logging formatters section as you can confirm in Listing 5-15. However,
Listing 5-18 declares a formatters section to generate log messages with either a simpler or more verbose
output.

By default, all Python log messages follow the format %(levelname)s:%(name)s:%(message)s, which
means "Output the log message level, followed by the name of the logger and the log message itself."

However, there is a lot more information available through Python logging that can make log messages
more comprehensive. As you can see in Listing 5-18, the simple and verbose formatters use a special syntax
and a series of fields that are different from the default. Table 5-2 illustrates the different Python formatter
fields including their syntax and meaning.

Table 5-2.  Python logging formatter fields

Field syntax Description

%(name)s Name of the logger (logging channel)

%(levelno)s Numeric logging level for the message (DEBUG, INFO,WARNING, ERROR,
CRITICAL)

%(levelname)s Text logging level for the message ("DEBUG", "INFO","WARNING", "ERROR",
"CRITICAL")

%(pathname)s Full pathname of the source file where the logging call was issued (if available)

%(filename)s Filename portion of pathname

%(module)s Module (name portion of filename)

%(lineno)d Source line number where the logging call was issued (if available)

%(funcName)s Function name

%(created)f Time when the log record was created (time.time() return value)

%(asctime)s Textual time when the log record was created

%(msecs)d Millisecond portion of the creation time

%(relativeCreated)d Time in milliseconds when the log record was created,relative to the time the
logging module was loaded (typically at application startup time)

%(thread)d Thread ID (if available)

%(threadName)s Thread name (if available)

%(process)d Process ID (if available)

%(message)s The result of record.getMessage(), computed just as the record is emitted

You can add or remove fields to the format field for each formatter based on the fields in Yable 5-2.
Besides the format field for each formatter, there’s also a datefmt field that allows you to customize the
output of the %(asctime)s format field in formatter(e.g., with the datefmt field set to %Y-%m-%d %H:%M:%S, if
a logging message occurs on midnight New Year’s 2018, %(asctime) outputs 2018-01-01 00:00:00).

Chapter 5 ■ Django Application Management

188

■■ Note  The syntax for the datefmt field follows Python’s strftime() format.2

Logging handlers: Locations, classes, filters, and logging thresholds
The first handler in Listing 5-18 is the console handler, which provides custom behavior over the default
console handler Listing 5-15. The console handler in Listing 5-18 raises the log level to the DEBUG level to
process all log messages irrespective of their level. In addition, the console handler uses the custom simple
formatter – described in the past section – and uses the same default console filters and class, which tells
Django to process log messages when DEBUG=True (i.e., 'filters': ['require_debug_true']) and send
logging output to a stream (i.e., 'class': 'logging.StreamHandler').

In Listing 5-18, you can also see there are three different class values for each of the remaining
handlers: logging.FileHandler, which sends log messages to a standard file; logging.handlers.
RotatingFileHandler, which sends log messages to files that change based on a given threshold size; and
logging.handlers.WatchedFileHandler, which sends log messages to a file that’s managed by a third-party
utility (e.g., logrotate).

The development_logfile handler is configured to work for log messages worse than DEBUG (inclusive)
- which is technically all log messages - and only when DEBUG=True due to the require_debug_true filter. In
addition, the development_logfile handler is set to use the custom verbose formatter and send output to
the /tmp/django_dev.log file.

The production_logfile handler is configured to work for log messages worse than ERROR
(inclusive) - which is just ERROR and CRITICAL log messages - and only when DEBUG=False due to the
require_debug_false filter. In addition, the handler uses the custom simple formatter and is set to send
output to the file /var/log/django_production.log. The log file is rotated every time a log file
reaches 100 MB (i.e., maxBytes) and old log files are backed up to backupCount by appending a number
(e.g., django_production.log.1,django_production.log.2).

The dba_logfile is configured to work for log messages worse than DEBUG (inclusive) - which is
technically all log messages - and when DEBUG=True or DEBUG=False due to the require_debug_true and
require_debug_false filters. In addition, the handler uses the custom simple formatter and is set to send
output to the file /var/log/django_dba.log.

The dba_logfile handler is managed by the WatchedFileHandler class, which has a little more
functionality than the basic FileHandler class used by the development_logfile handler. The
WatchedFileHandler class is designed to check if a file changes, if it changes a file is reopened; this in
turn allows a log file to be managed/changed by a Linux log utility like logrotate. The benefit of a log
utility like logrotate is that it allows Django to use more elaborate log file features (e.g., compression,
date rotation). Note that if you don’t use a third-party utility like logrotate to manage a logfile that uses
WatchedFileHandler, a log file grows indefinitely.

■■ Caution/Tip  The RotatingFileHandler logging handler class in Listing 5-18 is not safe for multi-process
applications. Use the ConcurrentLogHandler logging handler class3 to run on multi-process applications.

2https://docs.python.org/3/library/time.html#time.strftime
3https://pypi.python.org/pypi/ConcurrentLogHandler/0.9.1

https://docs.python.org/3/library/time.html#time.strftime
https://pypi.python.org/pypi/ConcurrentLogHandler/0.9.1

Chapter 5 ■ Django Application Management

189

■■ Tip  The core Python logging package includes many other logging handler classes to process messages
with things like Unix syslog, Email (SMTP), and HTTP.4

Logging loggers: Python packages to use logging
The loggers section in Listing 5-18 defines the handlers to attach to Python packages – technically the
attachment is done to logger names, but I used this term since loggers are generally named after Python
packages. I’ll provide an exception to this ‘Python package=logger name’ shortly so you can gain a better
understanding of this concept.

The first logger coffeehouse tells Django to attach all the log messages for itself and its children (e.g.,
coffeehouse.about, coffeehouse.about.views and coffeehouse.drinks) to the development_logfile
and production_logfile handlers. By assigning two handlers, log messages from the coffeehouse logger
(and its children) are sent to two places.

Recall that by using Python's __name__ syntax to define loggers – see Listing 5-16 and 5-17 – the name of
the loggers end up being based on the Python package structure.

Next, you can see the dba logger links all its log messages to the dba_logfile handler. In this case, it’s an
exception to the rule that loggers are named after Python packages. As you can see in Listing 5-17, a logger
can be purposely named dba and forgo using __name__ or another convention related to Python packages.

Next, the django and py.warnings loggers are re-declared to obtain some of Django’s default behavior,
given Listing 5-18 uses 'disable_existing_loggers': True. The django logger links all its log messages to
the development_logfile and production_logfile handlers, since we want log messages associated with
the django package/logger and its children (e.g., django.request, django.security) to go to two log files.

Notice Listing 5-18 doesn’t declare explicit loggers for django.request and django.security unlike the
Django default’s in Listing 5-15. Because the django logger automatically handles its children and we don’t
need different handlers for each logger – like the default logging behavior – Listing 5-18 just declares the
django logger.

At the end of Listing 5-18, the py.warnings logger links all its log messages to the development_logfile
handler, to avoid any trace of py.warnings log messages in production logs.

Finally, there’s the root key in Listing 5-18, which although declared outside of the loggers section,
is actually the root logger for all loggers. The root key tells Django to process messages from all loggers –
whether declared or undeclared in the configuration – and handle them in a given in way. In this case, root
tells Django that all log messages – since the DEBUG level includes all messages – generated by any logger
(coffeehouse, dba, django, py.warnings or any other) be processed by the console handler.

Disable email to ADMINS on errors
You may be surprised Listing 5-18 makes no use of the mail_admins handler defined by default in Listing 5-15.
As I mentioned in the previous section on Django default logging, the mail_admins handler sends an email
error notification for log messages generated by django.request or django.security
packages/loggers.

While this can seem like an amazing feature at first – avoiding the hassle of looking through log
files - once a project starts to grow it can become extremely inconvenient. The problem with the default
logging email error notification mechanism or mail_admins handler is it sends out an email every single time
an error associated with django.request or django.security packages/loggers is triggered.

4https://docs.python.org/3/library/logging.handlers.html

https://docs.python.org/3/library/logging.handlers.html

Chapter 5 ■ Django Application Management

190

If you have 100 visitors per hour on a Django site and all of them hit the same error, it means 100 email
notifications are sent in the same hour. If you have 3 people in ADMINS, then it means at least 300 email
notifications per hour. All this can add up quickly, so a couple of different errors and a few thousand visitors
a day can lead to email overload. So as convenient as it can appear to get email log error notifications, you
should turn this feature off.

I recommend you stick to the old method on inspecting log files on a constant basis or if you require the
same real-time log error notifications provided by email, that you instead use a dedicated reporting system
such as Sentry, which is described in the next section.

Logging with Sentry
As powerful a discovery mechanism as logging is, inspecting and making sense of log messages can be
an arduous task. Django and Python projects are no different in this area. As it was shown in the previous
section, relying on core logging packages still results in log messages being sent to either the application
console or files, where making sense of log messages (e.g., the most relevant or common log message) can
lead to hours of analysis.

Enter Sentry, a reporting and aggregation application. Sentry facilitates the inspection of log messages
through a web-based interface, where you can quickly determine the most relevant and common log
messages.

To use Sentry you need to follow two steps: set up Sentry to receive your project log messages, and set
up your Django project to send log messages to Sentry.

WHY SENTRY?

Although there are alternatives that offer similar log monitoring functionalities as Sentry (e.g., OverOps,
Airbrake, Raygun), what sets Sentry apart is that it’s built as a Django application!

Even though Sentry has evolved considerably to the point it’s now a very complex Django application,
the fact that Sentry is an open source project based on Django, makes it an almost natural option to
monitor Django projects, since you can install and extend it using your Django knowledge – albeit there
are software-as-service Sentry alternatives.

Set up Sentry the application
You can set up Sentry in two ways: install it yourself or use a software-as-service Sentry provider.

Sentry is a Django open source project, so the full source code is freely available to anyone.5 But
before you go straight to download Sentry and proceed with the installation,6 beware Sentry has grown
considerably from its Django roots. Sentry now requires a Docker environment, the relational Postgres
database, and the NoSQL Redis database. Unfortunately, Sentry evolved to support a wide variety of
programming languages and platforms, to the point it grew in complexity and is no longer a simple Django
app installation. So if you install Sentry from scratch, expect to invest a couple of hours setting it up.

5https://github.com/getsentry/sentry
6https://docs.sentry.io/server/installation/

https://github.com/getsentry/sentry
https://docs.sentry.io/server/installation/

Chapter 5 ■ Django Application Management

191

■■ Tip  Earlier Sentry releases (e.g., v. 5.07) don’t have such strict dependencies and can run like basic Django
applications (e.g., any Django relational database, no Docker, no NoSQL database). They represent a good
option for simple Sentry installations, albeit they require dated Django versions (e.g., v. Django 1.4).

The Sentry creators and maintainers run the software-as-a-service: https://sentry.io. The Sentry
software-as-a-service offers three different plans: a hobbyist plan that’s free for up to 10,000 events per
month and is designed for one user; a professional plan that’s $12 (USD) a month, which starts at 50,000
events per month and is designed for unlimited users; and an enterprise plan with custom pricing for
millions of events and unlimited users.

Since you can set up Sentry for free in a few minutes with just your email – and no credit card – the
Sentry software-as-a-service from https://sentry.io is a good option to try out Sentry. And even after
trying it out, at a cost of $12 (USD) per month for 50,000 events and $0.00034 per additional event, it
represents a good value – considering an application that generates 50,000 events per month should have a
considerable audience to justify the price.

Once you create a sentry.io account you’ll enter into the main dashboard. Create a new Django project.
Take note of the client key or DSN, which is a long url that contains the @sentry.io snippet in it – this is
required to configure Django projects to send log messages to this particular Sentry Django project. If you
missed the project client key or DSN, click on the top right ‘Project Settings’ button illustrated in Figure 5-1,
and select the bottom left option ‘Client Keys (DSN)’ to consult the value.

Figure 5-1.  Sentry SaaS project dashboard

7https://github.com/getsentry/sentry/releases/tag/5.0.21

https://sentry.io/
https://sentry.io/
https://github.com/getsentry/sentry/releases/tag/5.0.21

Chapter 5 ■ Django Application Management

192

As you can see in Figure 5-1, the Sentry SaaS project dashboard acts as a central repository to consult all
project logging activity. In Figure 5-1 you can also see the various action buttons, which allow log messages
to be sorted, searched, charted, as well as managed by different users. All of this creates a very efficient
environment in which to analyze any Django logging activity in real time.

Once you have Sentry set up, you can configure a Django project to send log messages to a Django project.

Set up a Django application to use Sentry
To use Sentry in a Django project you require a package called Raven to establish communication between
the two parties. Simply do pip install raven to install the latest Raven version.

Once you install Raven, you must declare it in the INSTALLED_APPS list of your project’s settings.py
file as illustrated in Listing 5-19. In addition, it’s also necessary to configure Raven to communicate with a
specific Sentry project via a DSN value, through the RAVEN_CONFIG variable also shown in Listing 5-19.

Listing 5-19.  Django project configuration to communicate with Sentry via Raven

INSTALLED_APPS = [
 ...
 'raven.contrib.django.raven_compat',
 ...
]

RAVEN_CONFIG = {
 'dsn': '<your_dsn_value>@sentry.io/<your_dsn_value>',
}

As you can see in Listing 5-19, the RAVEN_CONFIG variable should declare a dsn key with a value
corresponding to the DSN value from the Sentry project that’s to receive the log messages.

After you set up this minimum Raven configuration, you can send a test message running the python
manage.py raven test command from a Django project’s command line. If the test is successful, you will
see a test message in the Sentry dashboard presented in Figure 5-1.

Once you confirm communication between your Django project and Sentry is successful, you
can set up Django logging to send log messages to Sentry. To Django’s logging mechanism, Sentry is seen as
any other handler (e.g., file, stream), so you must first declare Sentry as a logging handler using the
raven.contrib.django.handlers.SentryHandler class, as illustrated in Listing 5-20.

Listing 5-20.  Django logging handler for Sentry/Raven

LOGGING = {
...
 'handlers': {

 'sentry': {
 'level': 'ERROR',
 'class': 'raven.contrib.django.handlers.SentryHandler',
 },
 ...
 }

Chapter 5 ■ Django Application Management

193

Table 5-3.  Django email server configurations

Django email backend Configuration Description / Notes

For development (DEBUG=True)

Console Email EMAIL_BACKEND=‘django.core.mail.
backends.console.EmailBackend’

Sends all email output to the
console where Django is running.

File Email EMAIL_BACKEND=‘django.core.mail.
backends.filebased.EmailBackend’
EMAIL_FILE_PATH=‘/tmp/django-email-dev’

Sends all email output to a flat file
specified in EMAIL_FILE_PATH.

In memory Email EMAIL_BACKEND=‘django.core.mail.
backends.locmem.EmailBackend’

Sends all email output to an in
memory attribute available at
django.core.mail.outbox.

Nullify Email EMAIL_BACKEND=‘django.core.mail.
backends.dummy.EmailBackend’

Does nothing with all email
output.

Python Email Server
Simulator

EMAIL_BACKEND=‘django.core.mail.
backends.smtp.EmailBackend’
EMAIL_HOST=127.0.0.1
EMAIL_PORT=2525
Also needed is the Python command line
email server:
python -m smtpd -n -c DebuggingServer
localhost:2525

Sends all email output to a Python
email server set up via command
line. This is similar to the Console
Email option, because the Python
email server outputs content to
the console.

The sentry handler in Listing 5-20 tells Django to handle log messages with an ERROR level through
Sentry. Once you have a Sentry handler, the last step is to use the sentry handler on loggers to assign which
packages/loggers get processed through Sentry (e.g., django.request or root logger, as described in the
earlier “Logging Loggers” section).

Django Email Service
Email has become a staple of practically all applications that live on the Web. Whether an application
requires sending email for signup purposes, notifications, or confirming a purchase, it’s hard to imagine a
web application that doesn’t require some kind of email functionality.

For Django projects, there are two main aspects associated with setting up email. The first step is setting
up the connection to an email server and the second is the composition of emails.

Set Up a Default Connection to an Email Server
Django supports connections to any email server and also offers various options to simulate email server
connections. Email simulation is particularly powerful during development and testing where sending out
real emails is unnecessary. The setup for an email server in Django is done in settings.py. Depending on
the email server connection, you may need to set up several variables in settings.py. Table 5-3 illustrates
various email server options for Django.

(continued)

Chapter 5 ■ Django Application Management

194

Table 5-3.  (continued)

Django email backend Configuration Description / Notes

For production (DEBUG=False)

SMTP Email Server
(Standard)

EMAIL_BACKEND=‘django.core.mail.
backends.smtp.EmailBackend’
1EMAIL_HOST=127.0.0.1
1EMAIL_PORT=25
2EMAIL_HOST_USER=<smtp_user>
2EMAIL_HOST_PASSWORD=<smtp_user_
pwd>

Sends all email output to a SMTP
email server.

SMTP Email Server
(*Secure-TLS)

EMAIL_BACKEND=‘django.core.mail.
backends.smtp.EmailBackend’
1EMAIL_HOST=127.0.0.1
1EMAIL_PORT=587
2EMAIL_HOST_USER=<smtp_user>
2EMAIL_HOST_PASSWORD=<smtp_user_
pwd>
EMAIL_USE_TLS=True

Sends all email output to a secure
SMTP (TLS) email server.

SMTP Email Server
(*Secure-SSL)

EMAIL_BACKEND=‘django.core.mail.
backends.smtp.EmailBackend’
1EMAIL_HOST=127.0.0.1
1EMAIL_PORT=465
2EMAIL_HOST_USER=<smtp_user>
2EMAIL_HOST_PASSWORD=<smtp_user_pwd>
EMAIL_USE_SSL=True

Sends all email output to a secure
SMTP (SSL) email server.

1 If the SMTP email server is running on a network or a different port than the default, adjust EMAIL_HOST
and EMAIL_PORT accordingly.
2 In today’s email, spam-infested Internet, nearly all SMTP email servers require authentication to send
email. If your SMTP server doesn’t require authentication you can omit EMAIL_HOST_USER and
EMAIL_HOST_PASSWORD.
* The terms SSL and TLS are often used interchangeably or in conjunction with each other (TLS/SSL). There
are differences, though, in terms of their underlying protocol. From a Django setup prescriptive, you only need
to ensure what type of secure email server you connect to, as they operate differently and on different ports.

Whichever email connection you set up from Table 5-3 in settings.py is considered a Django project’s
default and is used when doing any email-related task – unless you specify otherwise when doing an email task.

Set Up a Default Connection to Third-Party Email Providers
The previous section provided the most generic approach to set up a default connection to an email server
in Django. However, with the complexities involved in running email servers in today’s world – namely,
spam filtering and security issues - it can be easier and more practical to use a third-party service to relay
email from a Django project to the outside world.

Although you can use the previous section’s configurations to connect to any third-party email service,
there can be certain subtleties to set up configurations to third-party email services. In this section I’ll
provide the Django configuration details for what I consider three of the most popular third-party email
services.

Chapter 5 ■ Django Application Management

195

DJANGO WITH EXIM, POSTFIX, OR SENDMAIL

Although you can set up Django to deliver email to a local email application (i.e., running on 127.0.0.1)
such as Exim, Postfix, or Sendmail, which then deliver email to third-party providers. I personally would
not recommend this alternative as it adds another component to set up, maintain, and worry about.
Not to mention this is beyond the scope of Django, as it involves setting up different email apps with
third-party email services.

This following section describes how to set up Django to connect directly with third-party email
providers.

Email with Google Gmail/Google Apps
Google offers the ability to send out email through Gmail or Google Apps, the last of which is a Gmail version
for custom domains (e.g., coffeehouse.com). Once you have a Gmail or Google Apps account, you’ll need to
set up the account’s username/password credentials in settings.py.

You will not be able to use Google’s email services without hard-coding your account credentials
somewhere in your app. If you are weary of hard-coding the username/password credentials in
settings.py, I suggest you create a separate account for this purpose to limit vulnerabilities, look into using
multiple environments or configuration files for Django to keep the username/password in a different file, or
set up a local email server with the credentials as described in the previous sidebar.

Listing 5-21 illustrates the configuration needed to set up Django to send email via a Gmail or Google
Apps account.

Listing 5-21.  Django email configuration for Gmail or Google Apps account

EMAIL_BACKEND='django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST='smtp.gmail.com'
EMAIL_PORT=587
EMAIL_HOST_USER='username@gmail.com/OR/username@coffeehouse.com'
EMAIL_HOST_PASSWORD='password'
EMAIL_USE_TLS=True

As you can see in Listing 5-21, the configuration parameters are pretty similar to those described in
Table 5-3. This is all you need to set up a default email connection to Gmail or Google Apps in Django.

■■ Caution  Beware of sending too much email with Google. Since Google’s email service is free, it’s not
designed for relaying too many email messages. If your Django app sends out a couple of email messages
every hour you probably won’t have a problem, but if your app sends out email messages every second or
hundreds of email messages in the span of a few minutes, the account is likely to be blocked. If the account is
blocked, you will either need to wait a few hours or manually log into the account (i.e., via a browser) for it to
be unblocked. If the account is constantly blocked due to the email volume you send out, you should try another
email service provider.

Chapter 5 ■ Django Application Management

196

■■ Note  Google overwrites the From: email field with the Google account value, unless it’s added as an alias.
Django allows you to set an email’s From: field to any value you want and defaults to the EMAIL_HOST_USER
value in settings.py. However, to avoid spoofing, Google overwrites this field to the Google account email if the
From: email value is not an alias in the Gmail or Google App account. This means if you send an email message
in Django with From: support@coffeehouse.com and this email is not set up as an alias in the Gmail or Google
App account, the final email appears with From: set to the Google account’s main email.

Email with Amazon Simple Email Service (SES)
SES is another email service offered by AWS, which is run by Amazon.com. Unlike Google’s email service, SES
is a paid service with an average cost of 0.0001 cents per email (10 cents per 1000 emails). The easiest way to set
up Django with SES is through the Python library boto and a custom Django email back end called django-ses.

Listing 5-22 illustrates the pip requirements to install boto, which is a library to integrate multiple AWS services
using Python and django-ses, which is an open source project specifically designed to run SES with Django.

Listing 5-22.  Python pip requirements for Amazon.com SES with Django

pip install boto
pip install django-ses

Once you install the Python packages in Listing 5-22 using pip, you can proceed to configure SES in
settings.py. Listing 5-23 illustrates the necessary variables to set up Django to use SES.

Listing 5-23.  Django email configuration for Amazon.com SES

EMAIL_BACKEND = 'django_ses.SESBackend'
AWS_ACCESS_KEY_ID = 'FZINISSZ3542DPIO32CQ'
AWS_SECRET_ACCESS_KEY = '3Nto4vknl+xeZR+1tF3L645EUyOS+zZy/uPJ1rN'

As you can see in Listing 5-23, the variable EMAIL_BACKEND is set to the custom class
django_ses.SESBackend, which provides all the necessary hooks to connect to SES.

To connect to SES you’ll also need to provide the variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY, which are access credentials related to your AWS account. These last values are
provided in your AWS account..8

This is all you need to set up a default email connection to Amazon Simple Email Service (SES). There’s
no need to set up any other variable in settings.py, such as EMAIL_HOST or EMAIL_HOST_USER – everything is
taken care of by the custom email back end.

Email with SparkPost
SparkPost is another third-party email service used by large companies like Twitter, Oracle, and PayPal.
Pricing wise SparkPost is a mix between the two previous services; it’s a free service for the first 100,000
emails per month, but after this volume it’s a paid service with an average cost of .0002 cents per email
(20 cents per next 1000 emails per month) and lower per email rates once you send 1 million emails a month.

The easiest way to set up Django with SparkPost is directly in settings.py. Listing 5-24 illustrates the
necessary variables to set up Django to use SparkPost.

8http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-
access-keys

http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

Chapter 5 ■ Django Application Management

197

Listing 5-24.  Django email configuration for SparkPost

EMAIL_BACKEND='django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.sparkpostmail.com'
EMAIL_PORT = 587
EMAIL_HOST_USER = 'SMTP_Injection'
EMAIL_HOST_PASSWORD = '<sparkpost_api_key>'
EMAIL_USE_TLS = True

As you can see in Listing 5-24, the configuration parameters are pretty similar to those described in
Table 5-3 for a standard email connection. Just notice that in addition to the EMAIL_HOST_USER value being
SMTP_Injection – a SparkPost requirement – you’ll also need to assign a SparkPost API key to the
EMAIL_HOST_PASSWORD. The SparkPost API key is created in your SparkPost account.9

Now that you understand the various ways to set up an email connection in a Django project, let’s
explore the actual composition of emails.

Built-In Helpers to Send Email
There can be many options and steps involved in sending an email. To simplify this process, Django offers
four shortcut methods you can leverage anywhere in an application (e.g., when a signup is made, when a
purchase is made, when a critical error occurs). Table 5-4 illustrates the various email shortcut methods.

Table 5-4.  Django email shortcut methods

Shortcut method
and description

Shortcut method
with all arguments*

Argument descriptions and notes

send_mail is the
most common
option to send
email.

send_mail(subject,
message, from_
email=settings.
DEFAULT_
FROM_EMAIL,
recipient_list,
fail_silently=False,
auth_user=None,
auth_
password=None,
connection=None,
html_
message=None)

subject.- Email subject string.
message.- Email message string.
from_email.- Email From: field. If not provided it's set to
DEFAULT_FROM_EMAIL from settings.py that by default is
webmaster@localhost.

recipient_list.- Email recipients as a list of strings.

fail_silently.- Offers the ability to bypass errors if email cannot be
sent. By default set to False, which means any error when attempting
to send email raises an smtplib.SMTPException exception.

auth_user.- Authentication user for the SMTP server. If provided it
overrides the variable EMAIL_HOST_USER in settings.py.

auth_password.- Authentication password for the SMTP server. If
provided it overrides the variable EMAIL_HOST_PASSWORD in
settings.py.

connection.- Django emails back end to send the mail. If provided
it overrides the variable EMAIL_BACKEND in settings.py. See
Table 5-3 for options.

html_message.- An HTML string to send an HTML and text
email message. If provided, the resulting email is a
multipart/alternative email with message as the text/plain content
type and html_message as the text/html content type.

(continued)

9https://support.sparkpost.com/customer/portal/articles/1933377-create-api-keys

https://support.sparkpost.com/customer/portal/articles/1933377-create-api-keys

Chapter 5 ■ Django Application Management

198

Table 5-4.  (continued)

Shortcut method
and description

Shortcut method
with all arguments*

Argument descriptions and notes

send_mass_mail is
more efficient than
the send_mail
method. This
is the preferred
choice when
sending multiple
emails because
it opens a single
connection to the
email server and
sends all messages
contained in
a tuple. Note
however send_
mass_mail does
not support HTML
messages like
send_mail.

send_mass_
mail(datatuple,
fail_silently=False,
auth_user=None,
auth_
password=None,
connection=None)

datatuple.- Is a tuple that contains tuples representing an email
structure in the form (subject, message, from_email=settings.
DEFAULT_FROM_EMAIL, recipient_list).

mail_admins
sends email to
all users defined
in the ADMINS
variable in
settings.py.

mail_
admins(subject,
message, fail_
silently=False,
connection=None,
html_
message=None)

Email is sent with a From: field set to the variable SERVER_
EMAIL in settings.py that by default is root@localhost. The email
subject is prefixed with the variable EMAIL_SUBJECT_PREFIX in
settings.py which by default is '[Django]'.

mail_managers
sends email to all
users defined in
the MANAGERS
variable in
settings.py.

mail_
managers(subject,
message, fail_
silently=False,
connection=None,
html_
message=None)

Email is sent with a From: field set to the variable SERVER_
EMAIL in settings.py which by default is root@localhost. The
email subject is prefixed with the variable EMAIL_SUBJECT_
PREFIX in settings.py which by default is '[Django]'.

* Method arguments without a default value (e.g. subject,message) must always be provided. Method
arguments with a default value (e.g. fail_silently=False, connection=None) are optional.

■■ Note I f you start to get emails with error messages once a project goes into production (i.e.DEBUG=False),
it’s because the mail_admins shortcut is automatically hooked-up for this purpose. This is due to the way
Django’s default logging works. To disable this behavior you will either need to clear all values from ADMINS in
settings.py or override the default logging behavior as described in the previous section on logging.

Chapter 5 ■ Django Application Management

199

Table 5-5.  Django EmailMessage class parameters and methods

Parameter and/or method Description

subject The subject line of the email.

body The body text as a plain text message.

from_email The sender's address. Both plain email (e.g., webmaster@coffeehouse.com)
and full name with email (e.g., Webmaster <webmaster@coffeehouse.com>)
format are acceptable. If omitted, the DEFAULT_FROM_EMAIL value from
settings.py is used.

to A list or tuple of recipient addresses.

cc A list or tuple of recipient addresses used in the the email CC header when
sending the email.

bcc A list or tuple of addresses used as the email BCC header when sending the
email.

connection An email back-end instance. Use this parameter if you want to use the same
connection for multiple messages. If omitted, a new connection is created
when send() is called.

attachments A list of attachments to put on the message. These can be either email.
MIMEBase.MIMEBase instances, or (filename, content, mimetype) triples.

headers A dictionary of extra headers to put on the message. The keys are the header
name, values are the header values. It's up to the caller to ensure header
names and values are in the correct format for an email message. The
corresponding attribute is extra_headers.

send(fail_silently=False) Sends the message. If a connection was specified when the email was
constructed, that connection is used. Otherwise, an instance of the default
backend is instantiated and used. If the keyword argument fail_silently is
True, exceptions raised while sending the message are omitted. An empty list
of recipients does not raise an exception.

message() Useful when extending the EmailMessage class to override and put the content
you want into the MIME object. Constructs a django.core.mail.SafeMIMEText
object (a subclass of Python's email.MIMEText.MIMEText class) or a django.
core.mail.SafeMIMEMultipart object holding the message to be sent.

recipients() Useful when extending the EmailMessage class because the SMTP server
needs to be told the full list of recipients when the message is sent. It returns a
list of all the recipients of the message, whether they're recorded in the to, cc,
or bcc attributes.

Custom Email: Attachments, Headers, CC, BCC, and More with
EmailMessage
Although the previous email shortcut methods can be used under most circumstances, they do not support
things like attachments, CC, BCC, or other email headers. If you want total control for sending email
messages in Django, the previous shortcut methods won’t work.

Used ‘under-the-hood’ by the previous Django shortcut methods and offering the utmost flexibility for
sending email in Django is the Django EmailMessage class. The various parameters and methods supported
by the EmailMessage class are described in Table 5-5.

(continued)

Chapter 5 ■ Django Application Management

200

With a clear idea of the functionalities provided by the EmailMessage classs in Table 5-5, let’s take a look
at some typical cases where you would use the EmailMessage class to send email.

Listing 5-25 provides a basic email example that uses options like CC, BCC. and the Reply-To header,
which aren’t support via the Django email shortcuts from the last section.

Listing 5-25.  Send basic email with EmailMessage class

from django.core.mail.message import EmailMessage

Build message
email = EmailMessage(subject='Coffeehouse specials', body='We would like to let you know
about this week\'s specials....', from_email='stores@coffeehouse.com',
 �to=['ilovecoffee@hotmail.com', 'officemgr@startups.com'], bcc=['marketing@

coffeehouse.com'], cc=['ceo@coffeehouse.com']
 headers = {'Reply-To': 'support@coffeehouse.com'})

Send message with built-in send() method
email.send()

As you can see in Listing 5-25, the EmailMessage instance is created specifying its various class
parameters. Once this is done, you just call the send() method to send the email. It’s as simple as that.
Because no connection values are provided in the EmailMessage instance in Listing 5-25, Django uses the
default back-end connection defined in settings.py.

One drawback of the EmailMessage send() method is that it opens a connection to the email server
every time it’s called. This can be inefficient if you send hundreds or thousands of emails at once. In the
spirit of the send_mass_mail() shortcut method from the last section, it’s also possible to open a single
connection to the email server and send multiple emails with EmailMessage. Listing 5-26 shows how to use a
single connection and send multiple emails with EmailMessage.

Table 5-5.  (continued)

Parameter and/or method Description

attach() Creates a file attachment and adds it to the message. There are two ways to
call attach(). You can pass it a single argument that is an email.MIMEBase.
MIMEBase instance that gets inserted directly into the resulting message
or you can passs it three arguments: filename, content, and mimetype (e.g.,
message.attach('menu.png', img_data, 'image/png'), where filename is the
name of the file attachment as it will appear in the email, content is the data
that will be contained inside the attachment, and mimetype is the optional
MIME type for the attachment. If you omit mimetype, the MIME content
type is guessed from the filename of the attachment.

attach_file() Creates an attachment using a file from the filesystem. It can be called with
the path of the file to attach (e.g., message.attach_file('/images/menu.png')
and optionally with the MIME type to use for the attachment (e.g., message.
attach_file('/images/menu.png','image/png'). If the MIME type is omitted,
it’s guessed from the filename.

Chapter 5 ■ Django Application Management

201

Listing 5-26.  Send multiple emails in a single connection with EmailMessage class

from django.core import mail
connection = mail.get_connection()

Manually open the connection
connection.open()

Build message
email = EmailMessage(subject='Coffeehouse specials', body='We would like to let you know
about this week\'s specials....', from_email='stores@coffeehouse.com',
 �to=['ilovecoffee@hotmail.com', 'officemgr@startups.com'],

bcc=['marketing@coffeehouse.com'], cc=['ceo@coffeehouse.com']
 headers = {'Reply-To': 'support@coffeehouse.com'})
Build message
email2 = EmailMessage(subject='Coffeehouse coupons', body='New coupons for our best
customers....', from_email='stores@coffeehouse.com',
 �to=['officemgr@startups.com','food@momandpopshop.com'],

bcc=['marketing@coffeehouse.com'], cc=['ceo@coffeehouse.com']
 headers = {'Reply-To': 'support@coffeehouse.com'})

Send the two emails in a single call
connection.send_messages([email, email2])
The connection was already open so send_messages() doesn't close it.
We need to manually close the connection.
connection.close()

In Listing 5-26 the first step is to create a connection to the email server using mail.get_connection()
and then open the connection with the open() method. Next, you create the various EmailMessage
instances. Once the email instances are prepared, you call the connection's send_messages() method with
an argument list corresponding to each of the EmailMessage instances. Finally, once the emails are sent, you
call the connection's close() method to drop the connection to the email server.

Another common email scenario is to send HTML emails. Django provides the
EmailMultiAlternatives class for this purpose, which is a subclass of the EmailMessage class. By being
a subclass, it means you can leverage the same functionalities as EmailMessage (e.g., CC, BCC), but you
don’t need to do a lot of work as the subclass EmailMultiAlternatives is specifically designed to handle a
multiple types of messages. Listing 5-27 illustrates how to use the EmailMultiAlternatives class.

Listing 5-27.  Send HTML (w/text) emails with EmailMultiAlternatives, a subclass of the EmailMessage class

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = 'Important support message', 'support@coffeehouse.com', 'ceo@
coffeehouse.com'
text_content = 'This is an important message.'
html_content = '
This is an important message.

Chapter 5 ■ Django Application Management

202

'
msg = EmailMultiAlternatives(subject=subject, body=text_content, from_email=from_email,
to=[to])
msg.attach_alternative(html_content, "text/html")
msg.send()

Listing 5-27 first defines all the email fields, which include the text and HTML version of the email. Note
that having a text and HTML version of the email content is common practice, since there’s no guarantee
end users will allow or can read HTML email, so a text version is provided as a backup. Next, you define
an instance of the EmailMultiAlternatives class; notice the parameters are inline with those of the
EmailMessage class.

Next, in Listing 5-27 you can see a call to the attach_alternative method, which is specific to the
EmailMultiAlternatives class. The first argument to this method is the HTML content and the second is
the content type that corresponds to text/html. Finally, Listing 5-27 calls the send() method - part of the
EmailMessage class, but which is also automatically part of to EmailMultiAlternatives since it’s a subclass
- to send the actual email.

In controlled environments (e.g., corporate email) where it can be guaranteed that all end users are
capable of viewing HTML email, it can be practical to just send an HTML version of an email and bypass the
text version altogether. Under these circumstances, you can actually use the EmailMesssage class directly
with a minor tweak. Listing 5-28 illustrates how to send just HTML email with the EmailMessage class.

Listing 5-28.  Send HTML emails with EmailMessage class

subject, from_email, to = 'Important support message', 'support@coffeehouse.com', 'ceo@
coffeehouse.com'
html_content = '
This is an important message.

'
msg = EmailMessage(subject=subject, body=html_content, from_email=from_email, to=[to])
msg.content_subtype = "html" # Main content is now text/html
msg.send()

Listing 5-28 looks like a standard EmailMessage process definition; however, line four – msg.content_
subtype – is what makes Listing 5-28 different. If the HTML content were sent without line setting msg.
content_subtype, end users would receive a verbatim version of the HTML content (i.e., without the HTML
tags rendered). This is because by default the EmailMessage class specifies the content type as text. In
order to switch the default content type of an EmailMessage instance, in line four a call is made to set the
content_subtype to html. With this change the email content type is set to HTML and end users are capable
of viewing the content rendered as HTML.

Chapter 5 ■ Django Application Management

203

BEWARE OF JUST SENDING HTML EMAIL VERSIONS TO THE PUBLIC

Although sending an HTML email version is quicker than sending a text and HTML email version, this
can be problematic if you can’t determine where end users read their email. There are certain users that
for security reasons disable the ability to view HTML emails, as well as certain email products that can’t
or aren’t very good at rendering HTML emails. So if you just send an HTML email version, there can be a
subset of end users that won’t be able to see the email content.

For this reason if you send email to end users where you can’t control their environment (i.e., email
reader), it is best you send a text and HTML email version - as illustrated in Listing 5-27 - than sending
an HTML email version illustrated in Listing 5-28.

Another common practice when sending emails is to attach files. Listing 5-29 illustrates how to attach a
PDF to an email.

Listing 5-29.  Send email with PDF attachment with EmailMessage class

from django.core.mail.message import EmailMessage

Build message
email = EmailMessage(subject='Coffeehouse sales report', body='Attached is sales
report....', from_email='stores@coffeehouse.com',
 to=['ceo@coffeehouse.com', 'marketing@coffeehouse.com']
 headers = {'Reply-To': 'sales@coffeehouse.com'})
Open PDF file
attachment = open('SalesReport.pdf', 'rb')
Attach PDF file
email.attach('SalesReport.pdf',attachment.read(),'application/pdf')

Send message with built-in send() method
email.send()

As you can see in Listing 5-29, after creating an EmailMessage instance you just open the PDF file using
Python’s standard open() method. Next, you use the attach() method from the EmailMessage that takes
three arguments: the file name, the file contents, and the file content type or MIME type. Finally, a call is
made to the send() method to send the email.

Debug Django Applications
The first steps to correct unexpected behavior in an application are generally to review what you believe are
the problematic sections of source code and the corresponding logs. Sometimes though these reviews are
fruitless, either because an application has grown in complexity or the unexpected behavior is originating in
a not so obvious location.

Under these circumstances, the next step is to start a debugging process with the help of tools to make it
easier to detect and fix the problem. In the upcoming sections, I’ll describe some of the most popular tools to
debug Django applications.

Chapter 5 ■ Django Application Management

204

Django Shell: Python manage.py Shell
Just like Python’s CLI (‘Command Line Interface’) shell where you can evaluate expressions (e.g., 1+3,
mystring = ‘django’), Django offers its own shell version through the python manage.py shell
command - where manage.py is the top-level file in every Django project.

Django’s shell is helpful because it automatically loads a project’s dependencies and apps, so
you’re able to evaluate expressions related to your Django project (e.g., queries, methods) without having
to go through a tedious setup process. Listing 5-30 illustrates a series of sample expressions run from
Django’s shell.

Listing 5-30.  Django shell sample expressions

[user@coffeehouse ~]$ python manage.py shell
Python 2.7.3
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from coffeehouse.items.models import *
>>> Drink.objects.filter(item__price__lt=2).filter(caffeine__lt=100).count()
2
>>> from django.test import Client
>>> c = Client()
>>> response = c.get('/stores/1/')
>>> response.content
'<!DOCTYPE html>\n<html....
....
....
<\html>
>>> c.get('/stores/5/')
Not Found: /stores/5/
<HttpResponseNotFound status_code=404, "text/html">

The first snippet in Listing 5-30 uses the from import syntax to gain access to a Django project’s model
classes, after which queries are made on the models to validate results. Note there’s no need to import
additional libraries or define database connections; all dependencies and configurations are loaded from
the Django project itself.

The second snippet in Listing 5-30 uses Django’s test library to simulate a client/browser request to the
/stores/1/ and /stores/5/ URLs, after which you can inspect the content response or the HTTP status
code (e.g., 404 Not Found). Here again note there’s no need to start a web server or open a browser; you can
quickly validate a Django project’s URLs and its responses from the Django shell.

Django Debug Toolbar
The Django debug toolbar offers a more visual experience to debug Django applications compared to the
Django shell. The Django debug toolbar offers per page information through a sliding sidebar related to
things like resource usage (i.e., time), Django settings, HTTP headers, SQL queries, cache, and logging,
among other things. Figures 5-2 and 5-3 illustrate a collapsed and non-collapsed screenshot of the Django
debug toolbar.

Chapter 5 ■ Django Application Management

205

As you can see in Figure 5-2, the Django debug toolbar is accessible through a small tab in the top
right-hand side of every Django project page. Figure 5-3 illustrates a collapsed version of the Django
debug toolbar where you can see its various sections; clicking on any of the sections further brings up a
pop-window with detailed information about each section.

You can install the Django debug toolbar with the pip install django-debug-toolbar command.
Once you install the django-debug-toolbar, you’ll also need to add the debug_toolbar line to the
INSTALLED_APPS variable in settings.py so Django enables the toolbar.

Figure 5-2.  Django debug toolbar hidden

Figure 5-3.  Django debug toolbar collapsed

Chapter 5 ■ Django Application Management

206

■■ Note  The Django debug toolbar only works when a project uses DEBUG=True.

In addition to the UI toolbar, the Django debug toolbar also offers the debugsqlshell utility. This
utility works like Django’s standard shell, but it outputs the backing SQL associated with any Django model
operation, as illustrated in Listing 5-31.

Listing 5-31.  Django debugsqlshell sample expressions

[user@coffeehouse ~]$ python manage.py debugsqlshell
Python 2.7.3
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from coffeehouse.items.models import *
>>> Drink.objects.filter(item__price__lt=2).filter(caffeine__lt=100).count()
SELECT COUNT(*) AS "__count"
FROM "items_drink"
INNER JOIN "items_item" ON ("items_drink"."item_id" = "items_item"."id")
WHERE ("items_item"."price" < 2.0
 AND "items_drink"."caffeine" < 100) [0.54ms]

■■ Note  The debugsqlshell is part of the Django debug toolbar; therefore it must be installed as described
in the previous paragraphs (e.g., pip install django-debug-toolbar and added as debug_toolbar to the
INSTALLED_APPS variable in settings.py).

As you can see in Listing 5-31, the debugsqlshell utility is available through the manage.py command
- just like Django’s built-in shell - and after you run a Django model operation, it also outputs the SQL query
for the operation.

For detailed information on customizing the Django debug toolbar, see its official documentation.10

Django pdb
pdb - short for "Python Debugger" - is a Python core package designed to interactively debug source code.
With Python pdb you can inspect the line-by- line execution of any Python application. To simplify the
process of Python pdb in the context of Django applications (e.g., debug request methods) you can use the
Django pdb package.

To install Python pdb run pip install django-pdb and then add django_pdb to the INSTALLED_APPS
variable in settings.py in the first position - the position is important so other Django apps don’t override
Django pdb’s behaviors (e.g., override runserver and test commands). Be aware the Django pdb package
only works when DEBUG=True.

There are various way to run pdb with Django; the easiest is to append the ?pdb parameter to any
Django URL you want to analyze with pdb. For example, Listing 5-32 shows a debugging sequence for the
http://localhost:8000/drinks/mocha/?pdb URL.

10http://django-debug-toolbar.readthedocs.org/

http://django-debug-toolbar.readthedocs.org/

Chapter 5 ■ Django Application Management

207

Listing 5-32.  Django pdb sequence

[user@coffeehouse ~]$ python manage.py runserver
INFO "GET /drinks/mocha/ HTTP/1.1" 200 11716
GET /drinks/mocha/?pdb
function "detail" in drinks/views.py:8
args: ()
kwargs: {'drink_type': u'mocha'}
()
> /python/djangodev/local/lib/python2.7/site-packages/django/core/handlers/base.py(79)make_
view_atomic()
-> non_atomic_requests = getattr(view, '_non_atomic_requests', set())
(Pdb) n
> /python/djangodev/local/lib/python2.7/site-packages/django/core/handlers/base.py(80)make_
view_atomic()
-> for db in connections.all():
...
...
...
--Call--
> /www/code/djangorecipes/5_django_settings/coffeehouse/drinks/views.py(8)detail()
-> def detail(request,drink_type):
(Pdb)
> /www/code/djangorecipes/5_django_settings/coffeehouse/drinks/views.py(9)detail()
(Pdb) c

You can see Listing 5-32 starts with Django’s built-in web server and immediately receives and
dispatches a response to the regular URL /drinks/mocha/. Up to this point everything is standard; however,
notice the next request to the URL /drinks/mocha/?pdb and the verbose output that follows.

The verbose output tells you where the request enters the application, including arguments, as well as
the initial entry point into Django’s core framework in the django.core.handlers.base.py package.

After the initial verbose output, the execution stops at the first (Pdb) instance. At this juncture you’ve
hit a breakpoint, so the console running runserver and the requesting client (i.e., browser) freeze until you
provide additional input on the console. In Listing 5-32 you can see the letter n for next is introduced and
the execution moves forward to another line, after which you’ll be presented with another (Pdb) prompt or
breakpoint. At this point, you can just press the Enter key to re-invoke the previous command (i.e., n) and
move forward.

If you want to advance without hitting another breakpoint, you can type c for continue so the execution
continues normally, without pausing again.

As you can see, the power of pdb with Django lies in the fact that you can walk through the execution
cycle of any section in a very granular way, in addition to having the ability to analyze and set variables
interactively. Table 5-6 describes the most basic commands related to pdb.

Chapter 5 ■ Django Application Management

208

In addition to appending the ?pdb parameter to a URL to enter pdb in a Django application, there are
two more alternatives. You can append the --pdb flag to runserver to enter pdb on every request made to
the application (e.g., python manage.py runserver --pdb). And you can also use the --pm flag to enter pdb
only when an exception is raised in a view (e.g., python manage.py runserver –pm).

For additional information on pdb itself, consult the official Python documentation at
https://docs.python.org/3/library/pdb.html. And for additional information on Django pdb, consult
the project’s documentation at https://github.com/tomchristie/django-pdb.

Django Extensions
Django extensions are a collection of tools designed for Django projects. As its name implies, it offers
extensions for a wide array of areas where Django’s standard tools level off in functionality. For debugging
purposes, Django extensions offers two tools that I believe are the most important to explore: runserver_plus
and runprofileserver.

To use Django extensions you’ll first need to install it with pip install django-extensions and then
add django_extensions to INSTALLED_APPS in settings.py. Once you set up Django extensions, its various
tools become available through the python manage.py command just like Django’s standard tools.

The Django extensions runserver_plus command offers interactive and enhanced debugging for
Django projects. To use runserver_plus you’ll first need to install the Werkzeug utility - pip install
Werkzeug. Once you install Werkzeug, simply start a Django application with python manage.py runserver_plus
instead of Django’s standard python manage.py runserver. At first glance the runserver_plus command works
just like Django’s runserver ; however, if you happen to hit an exception you’ll see error pages like the ones
in Figures 5-4 and 5-5.

Table 5-6.  Python pdb commands used at (Pdb) prompt

Pdb Command Description

(Enter) (key) Re-executes the previous command.

n Moves execution to the next breakpoint.

c Continues execution with no more breakpoints.

q Quits the execution immediately.

p <variable(s)> Print variable(s).

l (L lowercase) Displays a list of source code at the current breakpoint, 11 lines worth: the breakpoint
line, 5 lines prior, and 5 lines after. Helpful to provide context.

s Enters a subroutine. In a non-method related breakpoint, s and n both move to the
next breakpoint. In a method related breakpoint, s enters the method or subroutine.

r Breaks out of a subroutine. Used after s to return to the main routine.

https://docs.python.org/3/library/pdb.html
https://github.com/tomchristie/django-pdb

Chapter 5 ■ Django Application Management

209

Figure 5-4.  Django extensions runserver_plus

Figure 5-5.  Django extensions runserver_plus with interactive console

Chapter 5 ■ Django Application Management

210

In Figure 5-4 you can see a slightly different Django exception page vs. Django’s default exception
page. This different layout is generated by Werkzeug, but the layout itself isn’t what’s interesting about this
approach: if you hover over any section of the stack trace you can start an interactive debugging session, as
illustrated in Figure 5-5. This is a much simpler and powerful debugging approach because it’s done directly
in a browser!

Another powerful Django extensions tool is runprofileserver, which can create a Python cProfile for
a Django application page. A Python cProfile provides a set of statistics that describes how often and for
how long the various parts of a program are executed, which can be helpful to determine solutions for slow
loading and resource intensive Django application pages.

The first thing you’ll need to do to use runprofileserver is to create a folder to hold the profile files
(e.g., mkdir /tmp/django-coffeehouse-profiles/). Next, simply start a Django application with python
manage.py runprofileserver --use-cprofile --prof-path=/tmp/django-coffeehouse-profiles/
instead of Django’s standard python manage.py server - note the --prof-path flag value points to the
directory that will hold the profile files.

Open up a browser, head over to the Django application. and navigate through it. If you
open the folder that holds the profile files, you’ll see files like root.000037ms.1459139463.prof,
stores.000061ms.1459139465.prof, and stores.2.000050ms.1459139470.prof, where each file represents
a cProfile for each page hit.

Although it would go beyond the scope of the book to dive into cProfile analysis, not to mention there
are many tools available for this purpose, if you want a quick and easy tool to open Python cProfile files,
I would suggest SnakeViz. Just do pip install snakeviz and then run snakeviz <file_name>. Once you
run snakeviz on a file, you’ll see Python cProfile details like the ones illustrated in Figures 5-6 and 5-7.

Figure 5-6.  SnakeViz cProfile image

Chapter 5 ■ Django Application Management

211

As I mentioned at the start, Django extensions provide many tools in addition to runserver_plus and
runprofileserver, which I believe are the most appropriate for debugging tasks. Nevertheless, I would
recommend you review the Django extensions documentation available at https://django-extensions.
readthedocs.org/en/latest/ to explore other tools that might be of use in your own projects (e.g., the
show_urls tool displays a Django project’s url routes and the graph_models tools generates graphs for a
Django project’s models).

Django Management Commands
Throughout the previous chapters – including this one – you’ve relied on management commands invoked
through the manage.py script included in all Django projects. For example, to start the development server
of a Django project you’ve used the runserver command (e.g., python manage.py runserver), and to
consolidate a project’s static resources you’ve used the collectstatic command (e.g., python manage.py
collectstatic).

Django management commands are included as part of Django apps and are designed to fulfill
repetitive or complex tasks through a one keyword command line instruction. Every Django management
command is backed by a script that contains the step-by-step Python logic to fulfill its duties. So when
you type python manage.py runserver, behind the scenes Django triggers a much more complex Python
routine.

If you type python manage.py (i.e., without a command) on a Django project, you’ll see a list of Django
management commands classified by app (e.g., auth, django, staticfiles). From this list you can gain
insight into the various management commands available on all your Django apps.

I’ll describe the purpose of Django management commands associated with core or third-party Django
apps as they come up in the book, just as I’ve done up to this point (e.g., static file management commands
in static file topics, model management commands in model topics).

What I’ll do next is describe how to create custom management commands in your Django apps, so you
can simplify the execution of routine or complex tasks through a single instruction.

Figure 5-7.  SnakeViz cProfile listing sorted by run time

https://django-extensions.readthedocs.org/en/latest/
https://django-extensions.readthedocs.org/en/latest/

Chapter 5 ■ Django Application Management

212

Custom Management Command Structure
Custom management commands are structured as Python classes that inherit their behavior from the
Django django.core.management.base.BaseCommand class. This last class provides the necessary structure
to execute any Python logic (e.g., file system, database, or Django specific) and at the same time process
arguments typically used with Django management commands. Listing 5-33 illustrates one of the most
Django management commands possible.

Listing 5-33.  Django management command class with no arguments

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

class Command(BaseCommand):
 help = 'Send test emails'

 def handle(self, *args, **options):
 for admin_name,email in settings.ADMINS:
 try:
 self.stdout.write(self.style.WARNING("About to send email to %s" % (email)))
 # Logic to send email here
 # Any other Python logic can also go here
 self.stdout.write(self.style.SUCCESS('Successfully sent email to "%s"' % email))
 raise Exception
 except Exception:
 raise CommandError('Failed to send test email')

Notice in Listing 5-33, the management command class must be named Command and inherit its
behavior from the Django BaseCommand class. Next, there’s a help attribute to describe the purpose of the
management command. If you type python manage.py help <task_file_name> or python manage.py
<task_file_name> --help Django outputs the value of the help attribute.

The handle method contains the core command logic and is automatically run when invoking the
command. Notice the handle method declares three input argument: self to reference the class instance;
*args to reference arguments of the method itself; and **options to reference arguments passed as part
of the management command. The task logic in Listing 5-33 only uses the self reference. The other task
management example – in Listing 5-34 – illustrates how to use arguments.

The task logic in Listing 5-33 is limited to looping over the ADMINS value in settings.py and outputting
the task results. However, there’s no limit to the logic you can execute inside the handle method, so long as
it’s valid Python.

Although standard Python try/except blocks work as expected inside Django management tasks, there
are two syntax particularities you need to be aware of when creating Django management tasks: outputting
messages and error handling.

To send output messages while executing task logic – success or informative – you can see Listing 5-33
uses the self.stdout.write reference, which represents the standard output channel where management
tasks run. In addition, you can see self.stdout.write uses both the self.style.WARNING and self.
style.SUCCESS to declare the actual messages to output. The wrapping of messages inside self.style.* is
optional, but outputs colored formatted messages (e.g., SUCCESS in green font, WARNING in yellow font) in
accordance with Django syntax coloring roles.11

11https://docs.djangoproject.com/en/1.11/ref/django-admin/#syntax-coloring

https://docs.djangoproject.com/en/1.11/ref/django-admin/#syntax-coloring

Chapter 5 ■ Django Application Management

213

To send error messages while executing task logic, you can use the self.stderr.write reference,
which represents the standard error channel where management tasks run. And to terminate the execution
of a management task due to an error, you can raise the django.core.management.base.CommandError
exception – as it’s done in Listing 5-33 – which accepts an error message, which gets sent to the self.
stderr.write channel.

In most circumstances, it’s rare to have a fixed Django management command like the one in Listing 5-33
that uses no arguments to alter its logical workflow. For example, the Django runserver command accepts
argument like addrport and --nothreading to influence how a web server is launched.

Django management commands can use two types of arguments: positional arguments – where the
order in which they’re declared gives them their meaning; or named arguments – which are preceded by
names with two dashes -- (a.k.a.flags) to give them their meaning.

Although the **options argument of the handle() method – as shown in Listing 5-33 – provides access
to a management command’s arguments to alter the logical workflow, in order to use arguments in a custom
Django management command, you must also declare the add_arguments() method.

The add_arguments() method must define a management task’s arguments, including their
type – positional or named – default value, choice values, and help message, among other things. In essence,
the add_arguments() method works as a pre-processor to command arguments, which are then made
available in the **options argument of the handle() method.

The parser reference of the add_arguments(self,parser) signature is an argument parser based on
the standard Python argparse package12 designed to easily process command-line arguments for Python
scripts.

To add command arguments inside the add_arguments() method you do so via the
parser.add_argument() method, as illustrated in Listing 5-34.

Listing 5-34.  Django management task class with arguments

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

class Command(BaseCommand):
 help = 'Clean up stores'

 def add_arguments(self, parser):
 # Positional arguments are standalone name
 parser.add_argument('store_id')

 # Named (optional) arguments start with --
 parser.add_argument(
 '--delete',
 default=False,
 help='Delete store instead of cleaning it up',
)

 def handle(self, *args, **options):
 # Access arguments inside **options dictionary
 #options={'store_id': '1', 'settings': None, 'pythonpath': None,
 # 'verbosity': 1, 'traceback': False, 'no_color': False, 'delete': False}

12https://docs.python.org/3/library/argparse.html

https://docs.python.org/3/library/argparse.html

Chapter 5 ■ Django Application Management

214

The management command in Listing 5-34 declares both a positional and a named argument.
Notice both arguments are added with the parser.add_argument() method. The difference being, named
arguments use leading dashes - and If omitted an argument is assumed to be positional.

Positional arguments by definition are required. So in the case of Listing 5-34, the store_id argument is
expected (e.g., python manage.py cleanupstores 1, where 1 is the store_id), otherwise Django throws a
‘too few arguments’ error.

Named arguments are always optional. And because named arguments are optional, you can see in
Listing 5-34 the --delete argument declares a default=False value, ensuring the argument always receives
a default value to run the logic inside the handle() method.

The --delete argument in Listing 5-34 also uses the help attribute to define a descriptive text about the
purpose of the argument. In addition to default and help, the parser.add_argument() method supports a
wide variety of attributes, based on the Python argparse package – see the previous footnote to consult some
of the arguments support by this method.

Finally, you can see in Listing 5-34 the handle() method gets access to the command arguments via the
**options dictionary, where the values can then be used toward the structuring of the command logic. Note
the additional arguments available in **options – settings, pythonpath,etc. – are inherited by default due
to the BaseCommand class.

Custom Management Command Installation
All Django management tasks are placed inside individual Python files (i.e., one command per file) and
stored inside an app directory structure under the /management/commands/ folder. Listing 5-35 shows the
folder structure for a couple of apps with custom management tasks.

Listing 5-35.  Django management task folder structure and location

+-<BASE_DIR_project_name>
|
+-manage.py
|
|
+---+-<PROJECT_DIR_project_name>
 |
 +-__init__.py
 +-settings.py
 +-urls.py
 +-wsgi.py
 |
 +-about(app)-+
 | +-__init__.py
 | +-models.py
 | +-tests.py
 | +-views.py
 | +-management-+
 | +-__init__.py
 | +-commands-+
 | +-__init__.py
 | |
 | |
 | +-sendtestemails.py
 |

Chapter 5 ■ Django Application Management

215

 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-management-+
 +-__init__.py
 +-commands-+
 +-__init__.py
 |
 |
 +-cleanupstores.py
 +-updatemenus.py

As you can see in Listing 5-35, the about app has a single management command inside the
/management/commands/ folder and the stores app has two management commands nested inside its own
/management/commands/ folder.

■■ Caution  To ensure the visibility of an app’s management commands, don’t forget to add the
empty __init__.py files to the /management/ and /commands/ folders as shown in Listing 5-35 and declare the
apps as part of INSTALLED_APPS in a project’s settings.py file.

Management Command Automation
Django management commands are typically run from the command line, requiring human intervention.
However, there can be times when it’s helpful or necessary to automate the execution of management
commands from other locations (e.g., a Django view method or shell).

For example, if a user uploads an image in a Django application and you want the image to become
publicly accessible, you’ll need to run the collectstatic command so the image makes its way to the public
and consolidation location (STATIC_ROOT). Similarly, you may want to run a cleanuprofile command every
time a user logs in.

To automate the execution of management commands, Django offers the django.core.management.
call_command() method. Listing 5-36 illustrates the various ways in which you can use the call_command()
method.

Listing 5-36.  Django management automation with call_command()

from django.core import management

Option 1, no arguments
management.call_command('sendtestemails')

Option 2, no pause to wait for input
management.call_command('collectstatic', interactive=False)

Chapter 5 ■ Django Application Management

216

Option 3, command input with Command()
from django.core.management.commands import loaddata
management.call_command(loaddata.Command(), 'stores', verbosity=0)

Option 4, positional and named command arguments
management.call_command('cleanupdatastores', 1, delete=True)

The first option in Listing 5-35 executes a management without any arguments. The second option
in Listing 5-35 uses the interactive=False argument to indicate the command must not pause for
user input (e.g., collectstatic always asks if you’re sure if you want to overwrite preexisting files, the
interactive=False argument avoids this pause and need for input).

The third option in Listing 5-35 invokes the management command by first importing it and then
invoking its Command() class directly vs. using the command string value. And finally, the fourth option – just
like the third – in Listing 5-35, uses a positional argument – declared as a stand-alone value (e.g., 'stores', 1)
and a named argument – declared as a key=value (e.g., verbosity=0, delete=True).

217© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_6

CHAPTER 6

Django Forms

Forms are the standard way that users input or edit data in web applications. At their lowest level, forms are
made up of HTML tags with special meaning. While you can directly add HTML form tags to Django or Jinja
templates, you really want to avoid this and use Django’s built-in form support to make form processing easier.

In this chapter you’ll learn how to structure Django forms and the workflow that forms undergo. You’ll
also learn the various field types and widgets supported by Django forms, how to validate form data and
manage its errors, as well as how to lay out forms and their errors in templates.

Once you have a firm understanding of the basics behind Django forms, you’ll learn how to create
custom form fields and widgets. Finally, you’ll learn more complex Django form processing techniques, such
as partial form processing, form processing with AJAX, how to process files sent through Django forms, and
how to process multiple forms on the same page with Django formsets.

Django Form Structure and Workflow
Django has a special forms package that offers a comprehensive way to work with forms. Among this
package’s features are the ability to define form functionality in a single location, data validation, and tight
integration with Django models, among other things. Let’s take a first look at a stand-alone Django form
class in Listing 6-1 that is used to back a contact form.

Listing 6-1.  Django form class definition

forms.py in app named 'contact'
from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

■■ Note  There’s no specific location Django expects forms to be in. You can equally place Django form
classes in their own file inside an app (e.g., forms.py) or place them inside other app files (e.g., models.py,
views.py). You can later import Django form classes to where they’re needed, just like Django views or Python
packages.

https://doi.org/10.1007/978-1-4842-2787-9_6

Chapter 6 ■ Django Forms

218

The first important aspect to note in Listing 6-1 is a Django form definition is a subclass of the forms.
Form class, so it automatically has all the base functionality of this parent class. Next, you can see the form
class has three attributes, two of the type forms.CharField and one of the type forms.EmailField. These
form field definitions restrict input to certain characteristics.

For example, forms.CharField indicates the input should be a set of characters and forms.EmailField
indicates the input should be an email. In addition, you can see each form field includes properties (e.g.,
required) to further restrict the type of input. For the moment this should be enough detail about Django
form field type;, the next section on Django form field types goes into greater detail on just this topic.

Next, let’s integrate the Django form in Listing 6-1 to a Django view method so it can then be passed and
rendered in a Django template. Listing 6-2 illustrates the initial iteration of this view method.

Listing 6-2.  Django view method that uses a Django form

views.py in app named 'contact'
from django.shortcuts import render
from .forms import ContactForm

def contact(request):
 form = ContactForm()
 return render(request,'about/contact.html',{'form':form})

The view method in Listing 6-2 first instantiates the ContactForm form class and assigns it to the
form reference. This form reference is then passed as an argument to be made available inside the about/
contact.html template.

Next, inside the Django template you can output a Django form as a regular variable. Listing 6-3
illustrates how the Django form is rendered if you use the standard template syntax {{form.as_table}}.

Listing 6-3.  Django form instance rendered in template as HTML

<tr><th><label for="id_name">Name:</label></th><td><input id="id_name" name="name"
type="text" /></td></tr>
<tr><th><label for="id_email">Your email:</label></th><td><input id="id_email" required
name="email" type="email" /></td></tr>
<tr><th><label for="id_comment">Comment:</label></th><td><textarea cols="40" id="id_comment"
required name="comment" rows="10">
</textarea></td></tr>

In Listing 6-3 you can see how the Django form is translated into HTML tags! Notice how the Django
form produces the appropriate HTML <input> tags for each form field (e.g., forms.EmailField(label='Your
email') creates the specified <label> and an HTML 5 type="email" to enforce client-side validation of an
email). In addition, notice the name field lacks the HTML 5 required attribute due to the required=False
statement used in the form field in Listing 6-1.

If you look closely at Listing 6-3, the HTML output for the Django form instance are just inner HTML
table tags (i.e., <tr>,<th>,<td>). The output is missing an HTML <table> wrapper tag and supporting HTML
form tags (i.e., <form> tag and action attribute to indicate where to send the form, as well as a submit
button). This means you’ll need to add the missing HTML form tags to the template to create a working web
form - a process that’s described shortly in Listing 6-4.

In addition, if you don’t want to output the entire form fields surrounded by HTML table elements
like Listing 6-3, there are many other syntax variations to output form fields granularly and stripped of
HTML tags. In this case, the {{form.as_table}} reference in the template is used to simplify things, but
the upcoming section “Set Up the Layout for Django Forms in Templates” in this chapter elaborates on the
different syntax variations to output Django forms in templates.

Chapter 6 ■ Django Forms

219

Next, let’s take a look at Figure 6-1, which shows a Django form’s workflow to better illustrate how
Django forms work from start to finish.

The first two steps of the workflow in Figure 6-1 is what I’ve described up to this point. It consists of a
user hitting a URL that’s processed by a view method that returns an empty form based on the Django form
class definition. Listing 6-3 shows the raw HTML output of the Django form, but as I already mentioned, the
form is missing elements in order to become a functional web form; next I’ll describe the elements you need
to add to get a functional web form.

Functional Web Form Syntax for Django Forms
So far you’ve learned how a Django form class definition can quickly be turned into an HTML form. But this
automatic HTML generation is only part of the benefit of using Django form class definitions; you can also
validate form values and present errors to end users much more quickly.

To perform these last actions, it’s first necessary to have a functional web form. Listing 6-4 illustrates the
template syntax to create a functional web form from a Django form.

Figure 6-1.  Django forms workflow

Chapter 6 ■ Django Forms

220

Listing 6-4.  Django form template declaration for functional web form

<form method="POST">
 {% csrf_token %}

<table>
{{form.as_table}}
</table>
<input type="submit" value="Submit form">
</form>

The first thing to notice about Listing 6-4 is the form is wrapped around the HTML <form> tag that
is standard for all web forms. The reason Django forces you to explicitly set the <form> tag is because its
attributes dictate much of a web form’s behavior and can vary depending on the purpose of the form.

In Listing 6-4, the method attribute tells a web browser that when the form is submitted it POSTs the
data to the server. The POST method value is standard practice in web forms that process user data - an
alternative method option value is GET, but it’s not a typical choice for transferring user-provided data. The
use of the POST method should become clearer shortly, but for more background on form method attributes,
you can consult many Internet references on HTTP request methods.1

Another important <form> attribute - which is actually missing in Listing 6-4 - is action, which tells
a web browser where to submit the form (i.e., what URL is tasked with processing the form). In this case,
because Listing 6-4 has no action attribute, a browser’s behavior is to POST the data to the same URL where
it’s currently on, meaning if the browser got the form from the /contact/ URL, it will POST the data to the
same /contact/ URL. If you wanted to POST the form to a separate URL, then you would add the action
attribute (e.g., action="/urltoprocessform/") to the <form> tag.

Keep in mind that because the same URL delivers the initial form - via a GET request - and must also
process the form data - via a POST request - the backing view method of the URL must be designed to handle
both cases. I’ll describe a modified version of Listing 6-2 – which just handles the GET request case – to also
handle the POST case in the next section.

The {% csrf_token %} statement in Listing 6-4 is a Django tag. {% csrf_token %} is a special tag
reserved for cases when a web form is submitted via POST and processed by Django. The csrf initials mean
Cross-Site Request Forgery, which is a default security mechanism enforced by Django. While it’s possible
to disable CSRF and not include the {% csrf_token %} Django tag in forms, I would advise against it and
recommend you keep adding the {% csrf_token %} Django tag to all forms with POST, as CSRF works as
a safeguard and mostly behind the scenes. The last subsection in this first section describes the reasoning
behind CSRF and how it works in Django in greater detail.

Next in Listing 6-4 is the {{form.as_table}} snippet wrapped in an <table> tag, which represents the
Django form instance and outputs the HTML output illustrated in Listing 6-3. Finally, there’s the <input
type="submit"> tag, which generates the form’s submit button - that when clicked on by a user submits the
form - and the closing </form> tag.

Django View Method to Process Form (POST Handling)
Once you have a functional web form in Django, it’s necessary to create a view method to process it. In
the previous section, I mentioned how the same URL and, by extension, view method, would both handle
generating the blank HTML form, as well as process the HTML form with data. Listing 6-5 illustrates a
modified version of the view method in Listing 6-2 that does exactly this.

1https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Chapter 6 ■ Django Forms

221

Listing 6-5.  Django view method that sends and processes Django form

from django.shortcuts import render
from django.http import HttpResponseRedirect
from .forms import ContactForm

def contact(request):
 if request.method == 'POST':
 # POST, generate form with data from the request
 form = ContactForm(request.POST)
 # check if it's valid:
 if form.is_valid():
 # process data, insert into DB, generate email,etc
 # redirect to a new URL:
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 # GET, generate blank form
 form = ContactForm()
 return render(request,'about/contact.html',{'form':form})

The most important construct in the view method of Listing 6-5 is the if/else condition that checks
the request method type. If the request method type is POST (i.e., data submission or step 3 in Figure 6-1),
the form’s data is processed, but if the request method type is anything else (i.e., initial request or step 1
in Figure 6-1) an empty form is generated to produce the same behavior as Listing 6-2. Notice the last line
in Listing 6-5 is a return statement that assigns the form instance - whether empty (a.k.a. unbound) or
populated (a.k.a. bound) - and returns it to a template for rendering.

Now let’s take a closer look at the POST logic in Listing 6-5. If the request method type is POST it means
there’s incoming user data, so we access the incoming data with the request.POST reference and initialize
the Django form with it. But notice how there’s no need to access individual form fields or make piecemeal
assignments - although you could if you wanted to and this process is described in a later section in this
chapter – using request.POST as the argument of a Django form class is sufficient to populate a Django form
instance with user data; it’s that simple! It’s worth mentioning that a Django form instance created in this
manner (i.e., with user-provided data) is known as a bound form instance.

At this point, we still don’t know if a user-provided valid data with respect to a Django form’s field
definitions (e.g., if values are text or a valid email). To validate a form’s data, you must use the is_valid()
helper method on the bound form instance. If form.is_valid() is True the data is processed and
subsequent action is taken; in Listing 6-5 this additional action consists of redirecting control to the /about/
contact/thankyou URL. If form.is_valid() is False it means the form data has errors, after which point
control falls to the last return statement that now passes a bound form instance to render the template.
By using a bound form instance in this last case, the user gets a rendered form filled with his initial data
submission and errors so he’s able to correct the data without reintroducing values from scratch.

I purposely didn’t mention anymore details about the is_valid() helper method or error message
displays, because Django form processing can get a little complex. The subsequent section “Django Form
Processing: Initialization, Field Access, Validation, and Error Handling” covers all you need to know about
Django form processing so it doesn’t interfere in this introductory section.

Chapter 6 ■ Django Forms

222

CSRF: What Is It and How Does It Work with Django?
CSRF or Cross-Site Request Forgery is a technique used by cyber-criminals to force users into executing
unwanted actions on a web application. When users interact with web forms, they make all kinds of
state-changing tasks that range from making orders (e.g., products, money transfers) to changing their
data (e.g. name, email, address). Most users tend to feel a heightened sense of security when they interact
with web forms because they see an HTTPS/SSL security symbol or they’ve used a username/password
prior to interacting with a web form, all of which leads to a feeling there’s no way a cyber-criminal could
eavesdrop, guess, or interfere with their actions.

A CSRF attack relies for the most part on social engineering and lax application security on a web
application, so the attack vector is open irrespective of other security measures (e.g., HTTPS/SSL, strong
password). Figure 6-2 illustrates a CSRF vulnerable scenario on a web application.

After user “X” interacts with web application “A” (e.g., making an order, updating his email) he simply
navigates away and goes to other sites. Like most web applications, web application “A” maintains valid user
sessions for hours or days, in case users come back and decide to do other things without having to sign in
again. Meanwhile, a cyber-criminal has also used site “A” and knows exactly where and how all of its web
forms work (e.g., URLs, input parameters such as email, credit card).

Next, a cyber-criminal creates links or pages that mimic the submission of web forms on web
application “A.” For example, this could be a form that changes a user’s email in order to overtake an account
or transfers money from a user’s account to steal funds. The cyber-criminal then seeds the Internet with
these links or pages through email, social media, or other web sites with enticing or frightening headlines:
“Get a $100 coupon from site ‘A’”, “Urgent: Change your password on site ‘A’ because of a security risk’.
In reality, these links or pages don’t do what they advertise, but instead in a single click mimic web form
submissions from site “A” (e.g., change a user’s email or transfer funds).

Now let’s turn our attention to unsuspecting user “X” that visited site “A” hours or days earlier. He
catches a glimpse of these last advertisements and thinks “Wow, I can’t pass this up.” Thinking what harm
can a click do, he clicks on the bogus advertisement, the user is then sent to a legitimate site ‘A’ page as a

Figure 6-2.  Web application with no CSRF protection

Chapter 6 ■ Django Forms

223

façade or the click ‘appears’ to have done nothing. User “X” thinks nothing of it and goes back to some other
task. If site ‘A’ did not have web forms with CSRF protection, then user “X” just inadvertently - in a single
click - performed an action on site “A” he wasn’t aware of.

As you can see, in order to perform a CSRF attack, all that’s needed is for a user to have an active session
on a given site and a cyber-criminal crafty enough to trick a user into clicking on a link or page that performs
actions on said site. Hence the term’s name: “Cross-Site,” because the request doesn’t come from the original
site, and “Request Forgery” because it’s a forged request by a cyber-criminal.

To protect against web form CSRF attacks, it’s isn’t sufficient for web applications to trust authenticated
users, because as I’ve just described, authenticated users could have inadvertently triggered actions they
weren’t aware of. Web forms must be equipped with a unique identifier - often called a CSRF token - that’s
unique to a user and has an expiration time, similar to a session identifier. In this manner, if a request is
made by an authenticated user to a site, only requests that match his CSRF token are considered valid and all
other requests are discarded, as illustrated in Figure 6-3.

Figure 6-3.  Web application with CSRF protection

As you can see in Figure 6-3, the inclusion of a CSRF token in a web form makes it very difficult to forge
a user’s request.

In Django, a CSRF token is generated in web forms with the {% csrf token %} tag that generates an
HTML tag in the form <input type="hidden" name="csrfmiddlewaretoken" value="32_character_
string">, where the 32-character string value varies by user. In this manner, if a Django application makes
a POST request - like those made by web forms - it will only accept the request if the CSRF token is present
and valid for a given user; otherwise it will generate a ‘403 Forbidden’ page error.

Be aware CSRF is enabled by default on all Django applications thanks to its out-of-the-box middleware
settings that include the django.middleware.csrf.CsrfViewMiddleware class charged with enforcing
CSRF functionality. If you wish to disable the CSRF support in a Django application completely, you can
just remove the django.middleware.csrf.CsrfViewMiddleware class from the MIDDLEWARE variable in
settings.py.

If you wish to enable or disable CSRF on certain web forms, you can selectively use the @csrf_exempt()
and @csrf_protect decorators on the view methods that process a web form’s POST request.

Chapter 6 ■ Django Forms

224

To enable CSRF on all web forms and disable CSRF behavior on certain web forms, keep the django.
middleware.csrf.CsrfViewMiddleware class in MIDDLEWARE and decorate the view methods you don’t want
as CSRF validation on with the @csrf_exempt() decorator, as illustrated in Listing 6-6.

Listing 6-6.  Django view method decorated with @csrf_exempt() to bypass CSRF enforcement

from django.views.decorators.csrf import csrf_exempt

@csrf_exempt
def contact(request):
 # Any POST-processing inside view method
 # ignores if there is or isn't a CSRF token

To disable CSRF on all web forms and enable CSRF behavior on certain web forms, remove the django.
middleware.csrf.CsrfViewMiddleware class from MIDDLEWARE and decorate the view methods you want
CSRF validation on with the @csrf_protect() decorator, as illustrated in Listing 6-7.

Listing 6-7.  Django view method decorated with @csrf_protect() to enforce CSRF when CSRF is disabled at
the project level

from django.views.decorators.csrf import csrf_protect

@csrf_protect
def contact(request):
 # Any POST processing inside view method
 # checks for the presence of a CSRF token
 # even when CsrfViewMiddleware is removed

Django Form Processing: Initialization, Field Access,
Validation, and Error Handling
Because Django form processing can have a great deal of variations, I’ll start the discussion from the same
form and view method explained in the previous section, now consolidated in Listing 6-8.

Listing 6-8.  Django form class with backing processing view method

from django import forms
from django.shortcuts import render

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

def contact(request):
 if request.method == 'POST':
 # POST, generate form with data from the request
 form = ContactForm(request.POST)

Chapter 6 ■ Django Forms

225

 # Reference is now a bound instance with user data sent in POST
 # process data, insert into DB, generate email, redirect to a new URL,etc
 else:
 # GET, generate blank form
 form = ContactForm()
 # Reference is now an unbound (empty) form
 # Reference form instance (bound/unbound) is sent to template for rendering
 return render(request,'about/contact.html',{'form':form})

Initialize Forms: Initial for Fields and Forms, __init__ method,
label_suffix, auto_id, field_order, and use_required_attribute
When users request a page backed by a Django form they’re sent an empty form (a.k.a. unbound form) -
represented by the GET section and ContactForm() instance in Listing 6-8. Although the form is always
empty from a user data perspective, the form can contain data from as part of its initialization sequence
(e.g., a pre-filled form with a user’s email or name).

To perform this kind of Django form initialization you have three options. The first technique consists
of initializing the form with a dictionary of values via the initial argument directly on the form instance
declared in the view method. Listing 6-9 shows this technique.

Listing 6-9.  Django form instance with initial argument declared in view method

def contact(request):

 else:
 # GET, generate blank form
 form = ContactForm(initial={'email':'johndoe@coffeehouse.com','name':'John Doe'})
 # Form is now initialized for first presentation to display these values
 # Reference form instance (bound/unbound) is sent to template for rendering
 return render(request,'about/contact.html',{'form':form})

The ContactForm() now uses initial={'email':'johndoe@coffeehouse.com','name':'John Doe'}
to generate a pre-filled form instance with values for the email and name fields so end users don’t have to go
to the trouble of typing these values from scratch themselves.

The technique in Listing 6-9 is intended for one-time or instance-specific initialization values. If you
want to constantly provide the same value for a given form field, a more suitable technique is to use the
same initial argument directly on a form field, as show in Listing 6-10.

Listing 6-10.  Django form fields with initial argument

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False,initial='Please provide your name')
 email = forms.EmailField(label='Your email', initial='We need your email')
 comment = forms.CharField(widget=forms.Textarea)

Chapter 6 ■ Django Forms

226

def contact(request):

 else:
 # GET, generate blank form
 form = ContactForm()
 # �Form is now initialized for first presentation and is filled with initial values

in form definition
 # Reference form instance (bound/unbound) is sent to template for rendering
 return render(request,'about/contact.html',{'form':form})

Notice in Listing 6-10 how it’s now the form fields in the form class equipped with the initial
argument. It’s worth mentioning that if you use the initial argument on both the form instance and form
fields, form instance values take precedence over any form field (e.g., if you combine the statements from
Listing 6-9 and Listing 6-10, the form will always be pre-filled with email='johndoe@coffeehouse.com'
and name='John Doe' from Listing 6-9).

One of the drawbacks of using the initial argument in form fields like Listing 6-10 is that values can’t
change dynamically at runtime (i.e., you can’t personalize the initial values based on who calls the form
like Listing 6-9). To solve this and provide the utmost flexibility for the most complex form initialization
scenarios is a third technique using the __init__ method of a form class illustrated in Listing 6-11.

Listing 6-11.  Django form initialized with __init__ method

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

 def __init__(self, *args, **kwargs):
 # Get 'initial' argument if any
 initial_arguments = kwargs.get('initial', None)
 updated_initial = {}
 if initial_arguments:
 # We have initial arguments, fetch 'user' placeholder variable if any
 user = initial_arguments.get('user',None)
 # Now update the form's initial values if user
 if user:
 updated_initial['name'] = getattr(user, 'first_name', None)
 updated_initial['email'] = getattr(user, 'email', None)
 # You can also initialize form fields with hardcoded values
 # or perform complex DB logic here to then perform initialization
 updated_initial['comment'] = 'Please provide a comment'
 # Finally update the kwargs initial reference
 kwargs.update(initial=updated_initial)
 super(ContactForm, self).__init__(*args, **kwargs)

def contact(request):

 else:

Chapter 6 ■ Django Forms

227

 # GET, generate blank form
 form = ContactForm(initial={'user':request.user,'otherstuff':'otherstuff'})
 # Form is now initialized via the form's __init__ method
 # Reference form instance (bound/unbound) is sent to template for rendering
 return render(request,'about/contact.html',{'form':form})

The first important aspect in Listing 6-11 is how the form is initialized in the view method; notice it uses
the same initial argument but the dictionary values are now {'user':request.user,'otherstuff':'oth
erstuff'}. Do these values look strange? The form doesn’t even have fields named user or otherstuff, so
what’s happening?

These last values are perfectly valid and in other circumstances would be ignored because the
Django form does indeed have no fields by these names, but since we’ll be manipulating the guts of
form initialization process in the __init__ method, we can access these placeholder values for indirect
initialization purposes. More importantly, using these placeholder values illustrates how it’s possible to use
context data or unrelated form data to initialize Django form fields.

Next, let’s turn our attention to the Django form’s __init__ method, which is invoked when you create
a form instance. The __init__ method’s arguments *args, **kwargs are standard Python syntax – if you’ve
never seen this last syntax check out the appendix on Python Basics: Methods: Default, Optional, *args &
**kwargs Arguments.

The first step in __init__ checks for an initial value and creates a reference to hold the new values to
initialize the form. If an initial value is present, a check is made for a user value to use these values for the
form’s actual name and email fields. Next, irrespective of any passed in values, a direct assignment is made
on the form’s comment field.

Finally, the form’s initial reference is updated with a new set of values that reflect the form’s actual
fields, leading to the form’s initialization using data outside the context of a form (e.g., request data, database
query, etc.). As a last step in the __init__ method, a call is made to the super() method so that the base/
parent class initialization process takes place.

ALWAYS USE THE INITIAL ARGUMENT OR __INIT__ METHOD
TO POPULATE FORMS WITH INITIALIZATION DATA AND KEEP

THEM UNBOUND.

It’s important to note all the previous initialization techniques keep a form unbound, which is a term
used to describe form instances that haven’t been populated with user data. The term bound is reserved
for when a form’s field values are populated with user data. This subtle difference between bound and
unbound is really important when you enter the validation phase of Django forms described in the next
section.

This also means the syntax ContactForm(initial={‘email’:‘johndoe@coffeehouse.com’,‘name’:‘John
Doe’}) is not equivalent to ContactForm({‘email’:‘johndoe@coffeehouse.com’,‘name’:‘John Doe’}). The
first variation uses the initial argument to create an unbound form instance, while the second variation
creates a bound form instance by passing the values directly without any argument.

In addition to initializing the first set of data loaded on a Django form, there are four other initialization
options for Django forms that influence a form’s layout in templates: label_suffix, auto_id, field_order,
and use_required_attribute.

When you generate the output for a Django form in a template - a topic that’s described in detail later in
this chapter in “Set Up the Layout for Django Forms in Templates” - form fields are generally accompanied
by what’s called a field label, which is another name for a human-friendly descriptor. For example, if

Chapter 6 ■ Django Forms

228

you have fields called name and email, their default labels are Your name and Your email, respectively.
To separate field labels from a field’s HTML markup (e.g., <input type="text">) Django defines a label
suffix, which defaults to : (the colon symbol) to produce output with the pattern <field_label>:<input
type="<field_type>">. Through the label_suffix you can define a custom label suffix symbol to separate
every form field from its label. So, for example, the ContactForm(label_suffix='...') syntax outputs every
form field label separated by ... (e.g., Your email...<input type="text">).

■■ Tip  Individual form fields can also use the label_suffix attribute; see the Django form field types section. If
label_suffix is declared in both a form field and form initialization, the former takes precedence.

Another initialization option for Django forms is auto_id that automatically generates an id and label
for every form field. By default, a Django form is always set to auto_id=True so you’ll always get auto-
generated HTML ids and labels when outputting a form with form.as_table(), as illustrated in the first part
of Listing 6-12.

Listing 6-12.  Django form with automatic ids (default auto_id=True option) and no automatic ids auto_
id=False option

<!-- Option 1, default auto_id=True -->
<tr><th><label for="id_name">Name:</label></th><td><input id="id_name" name="name"
type="text" /></td></tr>
<tr><th><label for="id_email">Your email:</label></th><td><input id="id_email" name="email"
type="email" /></td></tr>
<tr><th><label for="id_comment">Comment:</label></th><td><textarea cols="40" id="id_comment"
name="comment" rows="10">
</textarea></td></tr>

<!-- Option 2 auto_id=False -->
<tr><th>Name:</th><td><input name="name" type="text" /></td></tr>
<tr><th>Your email:</th><td><input name="email" type="email" /></td></tr>
<tr><th>Comment:</th><td><textarea cols="40" name="comment" rows="10">\r\n</textarea>
</td></tr>

Notice how the field labels in the top output of Listing 6-12 are wrapped around <label for="id_
field_name"> <label> and the fields HTML tags include the id="id_field_name" attribute. In most cases
this is a desirable output as it allows fields to be easily referenced for purposes of attaching JavaScript events
or CSS classes. However, for other circumstances auto_id=True can produce very verbose output and
inclusively conflicting HTML tags (e.g., if you have two form instances of the same type on the same page,
there will be two identical ids).

To turn off the auto-generation of ids and labels you can initialize a form with the auto_id=False
option. For example, the ContactForm(auto_id=False) syntax generates the output presented in the second
half of Listing 6-12.

Another initialization option for unbound form instances that influences a form’s layout is the field_
order option. By default, form fields are output in the order they’re declared, so the form definition in Listing
6-10 follows the output order: name, email, comment. You can override this default field output by using the
field_order option, which accepts a list of field names with the desired output order. The field_order
option can be declared as part of the initialization process or inclusively as if it were a form field.

For example, the ContactForm(field_order=['email','comment','name']) syntax ensures the email
field is output first, followed by comment and name. It’s worth mentioning the field_order option can accept
an incomplete field list, such as ContactForm(field_order=['email']), which outputs the email field

Chapter 6 ■ Django Forms

229

followed by the remaining form fields in their declared order, in this case name and then comment. If you’re
constantly setting field_order to initialize a form’s field order, a quicker solution is to set a default field_
order as part of the form itself:

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)
 field_order = ['email','comment','name'] # Sets order email,comment,name

If you declare field_order as part of the form itself, on initialization, the initialization field_order
takes precedence. The upcoming section “Set Up the Layout for Django Forms in Templates” contains more
details on the practical use of field_order in templates.

Finally, the use_required_attribute option allows you to set the overall use of the HTML 5 required
attribute. By default use_required_attribute=True, which means all required form fields are output
with the HTML 5 required attribute, ensuring browsers enforces these form fields are always provided.
You can disable the use of this HTML 5 client-side validation required attribute by initializing a form with
use_required_attribute=False. Note that setting use_required_attribute=False does not influence the
Django server-side validation of a form field (e.g., if a form field is required, Django server-side validation
still catches fields that aren’t provided, irrespective of the use_required_attribute option).

Accessing Form Values: request.POST and cleaned_data
Once a user fills out a Django form, the form is sent back to the server to be processed and performs an
action with the user data (e.g., creates an order, send an email, saves the data to the database) – a step that is
represented in the POST section in Listing 6-8.

One of the key advantages of Django form processing is you can use the request.POST variable to create
a bound form instance. But although the request.POST variable is the initial access point to populate a
Django form with user data, you shouldn’t use this data beyond initializing a form instance, as the data in
request.POST is too raw for direct access.

For example, in request.POST you still don’t know if the user-provided data is valid. In addition, the
data in request.POST is still treated as strings, so if your Django form happens to have an IntegerField() or
DateField() it still needs to be converted manually to the expected data type (e.g., ‘6’ to 6 integer, ‘2017-01-01’
to 2017-01-01 datetime), which is just unnecessary work that another another part of Django forms deals with.

Once you have a bound form generated with the request.POST variable, you can then access each of
the form’s field values through the cleaned_data dictionary. For example, if the bound form has a form field
called name you can use the syntax form.cleaned_data['name'] to access the user-provided name value.
More importantly, if the form field is an IntegerField() named age the syntax form.cleaned_data['age']
produces an integer value, a formatting behavior that also applies to other form fields with non-string data
types (e.g. DateField()).

■■ Caution  You can’t access cleaned_data until is_valid() is called on the form.

By design, it isn’t possible to access a form instance’s cleaned_data dictionary unless you first call
the is_valid() method. If you try to access cleaned_data before calling is_valid() you’ll get the error
AttributeError: 'form_reference' object has no attribute 'cleaned_data'.

If you think about this for a second it’s good practice, after all, why would you want to access data that
hasn’t been validated? The next section describes the is_valid() method.

Chapter 6 ■ Django Forms

230

Validating Form Values: is_valid(), validators, clean_<field>(),
and clean()
The is_valid() method is one of the more important parts of Django form processing. Once you create
a bound form with request.POST, you call the is_valid() method on the instance to determine if the
included values comply with a form’s field definitions (e.g., if an EmailField() value is a valid email).
Although the is_valid() method returns a Boolean True or False value, it has two important side effects:

Calling is_valid() also creates the cleaned_data dictionary on the form instance to hold the form field
values that passed validation rules.

•	 Calling is_valid() also creates the errors dictionary on the form instance to hold
the form errors for each of the fields that didn’t pass the validation rules.

Listing 6-13 illustrates a modified version of Listing 6-8 with the is_valid() method.

Listing 6-13.  Django form is_valid() method for form processing

from django.http import HttpResponseRedirect

def contact(request):
 if request.method == 'POST':
 # POST, generate form with data from the request
 form = ContactForm(request.POST)
 # Reference is now a bound instance with user data sent in POST
 # Call is_valid() to validate data and create cleaned_data and errors dict
 if form.is_valid():
 # �Form data is valid, you can now access validated values in the cleaned_data dict
 # e.g. form.cleaned_data['email']
 # process data, insert into DB, generate email
 # Redirect to a new URL
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 pass # Not needed
 # is_valid() method created errors dict, so form reference now contains errors
 # this form reference drops to the last return statement where errors
 # can then be presented accessing form.errors in a template
 else:
 # GET, generate blank form
 form = ContactForm()
 # Reference is now an unbound (empty) form
 # Reference form instance (bound/unbound) is sent to template for rendering
 return render(request,'about/contact.html',{'form':form})

Notice in Listing 6-13 that right after a bound form instance is created, a call is made to the is_valid()
method. If all the form field values comply against the form field data types, we enter a conditional where it’s
possible to access the form values through the cleaned_data dictionary, perform whatever business logic is
necessary, and relinquish control to another page, which in Listing 6-13 is to perform redirect.

If any of the form field values fails to pass a rule, then is_valid() returns False and in the process
creates an errors dictionary with details about the values that failed to pass their rules. Because of this last
automatic creation of errors, all that’s needed after is_valid() returns False is to return the same form
instance in order to display the errors dictionary to an end user so he can correct his mistakes.

Chapter 6 ■ Django Forms

231

But as important as the is_valid() method is to Django form processing, its validation is just done against
a form field’s data type. For example, is_valid() can validate if a value is left empty, if a value matches a given
number range, or even if a value is a valid date: in essence anything supported by Django form field types.

But what if you want to perform more sophisticated validation after is_valid() ? Like checking a value
against a database before deeming it valid or checking two values against one another (e.g., a provided zip
code value against a provided city value). While you can add these validation checks directly after the is_
valid() call, Django offers three more efficient ways to enforce advanced rules by adding them to the form
field or form class definition.

If you want a reusable validation mechanism you can use across multiple Django form fields, the best
choice is a validator assigned through a form field’s validators option. The validators form field option
expects a list of methods designed to raise a forms.ValidationError error in case a value doesn’t comply
with expected rules. Listing 6-14 illustrates a Django form with one of its fields using a custom validator
method via the validators option.

Listing 6-14.  Django form field validators option with custom validator method for form processing

from django import forms
import re

def validate_comment_word_count(value):
 count = len(value.split())
 if count < 30:
 �raise forms.ValidationError(('Please provide at least a 30 word message,

%(count)s words is not descriptive enough'), params={'count': count},)

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea,validators=[validate_comment_word_count])

The first section in Listing 6-14 shows the custom validate_command_word_count()method, which
(rudimentarly) checks if message has at least 30 words. If the method’s input is not at least 30 words, Django’s
forms.ValidationError error is raised to indicate a rule violation.

In the bottom half of Listing 6-14 you can see a modified ContactForm where the comment field uses the
validators=[validate_csv] option. This tells Django that after is_valid() is run and all the form fields
have been checked for errors against their data types, it should also run the validate_comment_word_count
validator method against the value provided for the comment field. If the comment value does not comply
with this rule, then a ValidatioError error is raised, which is added to the form errors dictionary – the
same one described in the past section that is used to check field values against their data types.

As you can see from the example in Listing 6-14, you can equally reuse the custom validate_comment_word_
count() method on any other form field in the same form or in another Django form through the validators
option. In addition, you can also apply multiple validators to a field since the validators option accepts a list of
validators. Finally, it’s worth mentioning the django.core.validators package contains a series of validators you
can also reuse2 and which are used behind by the scenes by certain form field data types.

In addition to the form field validators option, it’s also possible to add validation form rules
through the clean_<field>() and clean() methods, which are created as part of a Django form class -
just like __init__() described earlier. Just like methods specified in the form field validators option,
clean_<field>() and clean() methods are automatically invoked when the is_valid() method is run.
Listing 6-15 illustrates the use of two clean_<field>() methods.

2https://docs.djangoproject.com/en/1.11/ref/validators/#built-in-validators

https://docs.djangoproject.com/en/1.11/ref/validators/#built-in-validators

Chapter 6 ■ Django Forms

232

Listing 6-15.  Django form field validation with clean_<field>() methods

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

 def clean_name(self):
 # Get the field value from cleaned_data dict
 value = self.cleaned_data['name']
 # Check if the value is all upper case
 if value.isupper():
 # Value is all upper case, raise an error
 �raise forms.ValidationError("Please don't use all upper case for your name, use

lower case",code='uppercase')
 # Always return value
 return value

 def clean_email(self):
 # Get the field value from cleaned_data dict
 value = self.cleaned_data['email']
 # Check if the value end in @hotmail.com
 if value.endswith('@hotmail.com'):
 # Value ends in @hotmail.com, raise an error
 �raise forms.ValidationError("Please don't use a hotmail email, we simply don't

like it",code='hotmail')
 # Always return value
 return value

In Listing 6-15 there are two clean_<field>() methods to add validation rules for the name and email
fields. Django automatically searches for form methods prefixed with clean_ and attempts to match a form’s
field names to the remaining name, to enforce validation on the field in question. This means you can have
as many clean_<field>() methods as form fields.

The logic inside each clean_<field>() method follows a similar pattern to validators methods. First
you extract a field’s value from the form’s cleaned_data dictionary via the self reference that represents
the form instance. Next, you run whatever rule or logic you want against the field value, and if you deem
the value doesn’t comply you raise a forms.ValidationError, which adds the error to the form instance.
Finally, and this is only different to validators methods, you must return the field value irrespective of
raising an error or changing its value.

Sometimes it’s necessary to apply a rule that doesn’t necessarily belong to a specific field, in which
case the generic clean() method is the preferred approach vs. a clean_<field>() method. Listing 6-16
illustrates the use of the clean() method.

Listing 6-16.  Django form field validation with clean() method

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

Chapter 6 ■ Django Forms

233

 def clean(self):
 # Call clean() method to ensure base class validation
 super(ContactForm, self).clean()

 # Get the field values from cleaned_data dict
 name = self.cleaned_data.get('name','')
 email = self.cleaned_data.get('email','')

 # Check if the name is part of the email
 if name.lower() not in email:
 # Name is not in email, raise an error
 �raise forms.ValidationError("Please provide an email that contains your name,

or viceversa")

In Listing 6-16 you can see a similar approach to the previous clean_<field>() methods in Listing 6-15.
But because the clean() method is a class-wide method and you’re overriding it yourself, it differs from
clean_<field>() methods in that you must first explicitly call the clean() method of the base/parent form
class (i.e., super(...).clean()) to ensure the base class validation is applied. Form field value extraction
is also done through the cleaned_data data dictionary, as is the validation logic and raising of forms.
ValidationError to indicate a rule violation. Finally, the clean() method differs from clean_<field>()
methods in that it doesn’t return a value.

Functionally the clean() method is different because it’s called after all the methods in the validators
options and clean_<field>() methods, a behavior that’s important because all these methods rely on
data in the cleaned_data dictionary. This means if a validators or clean_<field>() method raises a
ValidationError error it won’t return any value and the cleaned_data dictionary won’t contain a value for
this field. So by the time the clean() method is run, the cleaned_data dictionary may not necessarily have
all the form field values if one was short-circuited in a validators or clean_<field>() method, which is the
reason why the clean() method uses the safer dictionary access syntax cleaned_data.get('<field>','')
to assign a default value in case the cleaned_data dictionary doesn’t have a given field.

Another important behavioral difference between the clean() method, clean_<field>() and
validators methods is how they treat forms.ValidationError. When a forms.ValidationError is raised
in a validators or clean_<field>() method, the error is assigned to the <field> in question in the form’s
errors dictionary - which is important for display purposes. But when a forms.ValidationError is raised
in the clean() method, the error is assigned to a special placeholder field named __all__ – also known as
“non-field errors” – which is also placed in the form’s errors dictionary.

If you want to assign an error in the clean() method to a specific form field you can use the add_error()
method as illustrated in Listing 6-17.

Listing 6-17.  Django form field error assignment with add_error() in clean() method

def clean(self):
 # Call clean() method to ensure base class validation
 super(ContactForm, self).clean()

 # Get the field values from cleaned_data dict
 name = self.cleaned_data.get('name','')

 # Check if the name is part of the email
 if name.lower() not in email:
 # Name is not in email, raise an error
 message = "Please provide an email that contains your name, or viceversa"
 self.add_error('name', message)
 self.add_error('email', forms.ValidationError(message))
 self.add_error(None, message)

Chapter 6 ■ Django Forms

234

Notice how Listing 6-17 uses the add_error() method on the form instance instead of the raise
forms.ValidationError() syntax. The add_error() method accepts two arguments: the first one the form
field name on which to assign the error and the second can be either an error message string or an instance
of the ValidationError class.

The first two add_error() methods in Listing 6-17 assign the error to the name and email fields,
respectively. And the third add_error() method with the None key assigns the error to the __all__ placeholder
making it equivalent to raise forms.ValidationError() from Listing 6-16.

Error Form Values: Errors
Form errors as its been described in the previous sections are automatically added to a form instance in
the errors dictionary after calling the is_valid() method. Inclusively, it’s possible to access the errors
dictionary directly without calling the is_valid() method, unlike the cleaned_data dictionary.

The errors dictionary is important because all form errors end up on it. Whether the errors are raised
because a value doesn’t comply with a form field data type or with raise forms.ValidationError() in the
clean() method, clean_<field>() methods, validators methods or the add_error() method in the
clean() method, all errors end up in a form’s errors dictionary.

The errors dictionary follows the pattern {'<field_name>':'<error_message>'} that makes it easy
to identify form errors in either a view method or in a template for display purposes. The only exception
to this last pattern occurs when a form error isn’t field specific (e.g., such as those created in the clean()
method) in which case a form error is assigned to a special key named __all__, errors which are also
called non-field errors.

Although you can access the errors dictionary as any other Python dictionary, Django provides a series
of methods described in Table 6-1 to make working with errors much easier.

Table 6-1.  Django form errors methods

Method Description

form.errors Gives you access to the raw errors dictionary.

form.errors.as_data() Outputs a dictionary with the original ValidationError instances. For example,
if errors outputs {’email’:[’This field is required’]}, then errors.as_data() outputs
{’email’:[ValidationError([’This field is required’])]}.

form.errors.as_json
(escape_html=False)

Outputs a JSON structure with the contents of the errors dictionary. For example,
if errors outputs {’email’:[’This field is required’]}, then errors.as_json() outputs
{’email’:[{’message’:’This field is required’,’code’:’required’}]}. Note that by default
as_json() does not escape its output, if you want errors to be escaped use the
escape_html flag (e.g., as_json(escape_html=True)).

form.add_error
field,message)

Associates an error message to a given form field. Although typically used in the
clean() method, it can be used in a view method if necessary. Note that if field is
not specified the error message goes on to form part of the __all__ placeholder
key in errors which are deemed non-field errors.

form.has_error
(field, code=None)

Returns a True or False value if a given field has an error. Note that by default
has_error returns True if any error type is associated with a field. To perform the
evaluation against a particular error type you can use the code keyword (e.g.,
form.has_error(’email’,code=’required’)). To check if a form has non-field errors
you can use NON_FIELD_ERRORS as the field value.

form.non_field_errors() Returns a list of non-form errors associated with a form (i.e., the __all__
placeholder key). These errors are typically created in the clean() clean method
via ValidationError or add_error(None,’message’).

Chapter 6 ■ Django Forms

235

You may have noticed the ValidationError class instances created in all the previous examples use
different arguments, meaning there are multiple ways to create ValidationError instances. For example,
some ValidationError instances use a simple string, but it’s also possible to create a ValidationError
instance with a list of ValidationError instances, as well as specify a code attribute to further classify an
error type. Listing 6-18 illustrates a series of ValidationError class instances using these variations.

Listing 6-18.  Django form ValidationError instance creation

from django import forms

Placed inside def clean_email(self):
raise forms.ValidationError("Please don't use a hotmail email, we simply don't like
it",code='hotmail')

Placed inside def clean(self):
raise forms.ValidationError([
 �forms.ValidationError("Please provide an email that matches your name, or

viceversa",code='custom'),
 �forms.ValidationError("Please provide your professional email, %(value)s doesn't look

professional ",code='required',params={'value':self.cleaned_data.get('email') })

The ValidationError instance variations presented in Listing 6-18 are all optional, but can become
powerful when it comes time to display or filter error messages on a template, a process that’s described in
detail in the “Set Up the Layout for Django Forms in Templates” section later in this chapter.

Django Form Field Types: Widgets, Options, and Validations
Because of the uncontrolled nature of the Internet - with its many types of devices, browsers, and user-
experience levels - it creates all kinds of demands on web forms regarding the types of data they must
handle, as well as endless variations of how data must be sanitized to comply with the original purpose
of a web form.

When you create web forms for Django applications you rely on Django form classes, which are
composed of form fields. Each Django form field is important because it dictates a small piece of
functionality that eventually composes the bulk of a web form’s overall behavior.

Django form fields define two types of functionality, a form field’s HTML markup and its server-side
validation facilities. For example, a Django form field translates into the actual HTML form markup (e.g., an
<input>, <select> or <textarea> tag), the HTML markup attributes (e.g., length, whether a field can be left
blank, or if a field must be disabled), as well as the necessary hooks to easily perform server-side validation
on a form field’s data.

Django form fields define these two types of web form functionality out of necessity. Although browsers
have progressed tremendously with technologies like HTML5 to provide out-of-the-box form field validation
through the HTML markup itself – without JavaScript – a browser is still in full control of an end user that
with sufficient knowledge can bypass and feed whatever data he wants to a form. Therefore, it’s standard
practice to further inspect form field data once it’s submitted by users to see if it complies with a form’s rules,
a process that’s made very easy thanks to the use of Django form fields.

Table 6-2 illustrates the various Django forms fields, including their type, the HTML they produce, their
default widget, and their validation behavior.

Chapter 6 ■ Django Forms

236

Ta
bl

e
6-

2.
 D

ja
n

go
 fo

rm
 fi

el
d

ty
pe

s,
 g

en
er

at
ed

 H
T

M
L

, d
ef

au
lt

 w
id

ge
t,

an
d

va
li

da
ti

on
 b

eh
av

io
r

Fi
el

d
ty

pe
D

ja
ng

o
fo

rm
 fi

el
d

ty
pe

H
TM

L
ou

tp
ut

D
ef

au
lt

D
ja

ng
o

w
id

ge
t

Va
lid

at
io

n
be

ha
vi

or

B
oo

le
an

fo
rm

s.
B

oo
le

an
Fi

el
d

()
<i

n
p

u
t t

yp
e=

’c
h

ec
kb

ox
’ .

..>
fo

rm
s.

w
id

ge
ts

.
C

h
ec

kb
ox

In
p

u
t(

)
G

en
er

at
es

 H
T

M
L

ch
ec

k
b

ox

in
p

u
t m

ar
ku

p
 to

 o
b

ta
in

 a

B
oo

le
an

 T
ru

e
or

 F
al

se
 v

al
u

e;

re
tu

rn
s

Fa
ls

e
w

h
en

 th
e

ch
ec

k
b

ox
 is

 u
n

ch
ec

ke
d

, T
ru

e
w

h
en

th

e
ch

ec
k

b
ox

 is
 c

h
ec

ke
d

.

B
oo

le
an

fo
rm

s.
N

u
llB

oo
le

an
Fi

el
d

()
<s

el
ec

t>
<o

p
ti

on
 v

al
u

e=
“1

”
se

le
ct

ed
=“

se
le

ct
ed

”>
U

n
kn

ow
n

</

op
ti

on
><

op
ti

on
 v

al
u

e=
“2

”>
Ye

s
</

op
ti

on
><

op
ti

on
 v

al
u

e=
“3

”>
N

o
</

op
ti

on
><

/s
el

ec
t>

fo
rm

s.
w

id
ge

ts
.

N
u

llB
oo

le
an

Se
le

ct
()

W
or

ks
 ju

st
 li

ke
 B

oo
le

an
Fi

el
d

bu

t a
ls

o
al

lo
w

s
“U

n
kn

ow
n

”
va

lu
e;

 re
tu

rn
s

N
on

e
w

h
en

 th
e

U
n

kn
ow

n
(1

) v
al

u
e

is
 s

el
ec

te
d,

T

ru
e

w
h

en
 th

e
Ye

s(
2)

 v
al

u
e

is

se
le

ct
ed

 a
n

d
Fa

ls
e

w
h

en
 th

e
N

o(
3)

 v
al

u
e

is
 s

el
ec

te
d.

Te
xt

fo
rm

s.
C

h
ar

Fi
el

d
()

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
G

en
er

at
es

 H
T

M
L

te
xt

 in
p

u
t

m
ar

ku
p.

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

E
m

ai
lF

ie
ld

()
<i

n
p

u
t t

yp
e=

“e
m

ai
l”

 ..
.>

fo
rm

s.
w

id
ge

ts
.E

m
ai

lI
n

p
u

t(
)

G
en

er
at

es
 H

T
M

L
em

ai
l i

n
p

u
t

m
ar

ku
p.

 N
ot

e
th

is
 H

T
M

L5

m
ar

ku
p

 is
 fo

r
cl

ie
n

t-
si

d
e

em
ai

l v
al

id
at

io
n

 a
n

d
 o

n
ly

w

or
ks

 if
 a

 b
ro

w
se

r
su

p
p

or
ts

H

T
M

L5
. I

f a
 b

ro
w

se
r

d
oe

sn
’t

su

p
p

or
t H

T
M

L5
, t

h
en

 it

tr
ea

ts
 th

is
 m

ar
ku

p
 a

s
a

re
gu

la
r

te
xt

 in
p

u
t.

D
ja

n
go

se

rv
er

-s
id

e
fo

rm
 v

al
id

at
io

n
 is

d

on
e

fo
r

em
ai

l i
rr

es
p

ec
ti

ve
 o

f
H

T
M

L5
 s

u
p

p
or

t.

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

G
en

er
ic

IP
A

d
d

re
ss

Fi
el

d
()

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

,
bu

t s
er

ve
r-

si
d

e
D

ja
n

go

va
lid

at
es

 th
e

(t
ex

t)
 v

al
u

e
ca

n

b
e

co
n

ve
rt

ed
 to

 a
n

 IP
v4

 o
r

IP
v6

 a
d

d
re

ss
 (e

.g
.,

19
2.

46
.3

.2
,

20
01

:0
d

b
8:

85
a3

:0
00

0:
00

00
:8

a
2e

:0
37

0:
73

34
).

Chapter 6 ■ Django Forms

237

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

R
eg

ex
Fi

el
d

(r

eg
ex

=‘
re

gu
la

r_
ex

p
re

ss
io

n
’)

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

, b
u

t
se

rv
er

-s
id

e
D

ja
n

go
 v

al
id

at
es

th

e
(t

ex
t)

 v
al

u
e

co
m

p
lie

s
w

it
h

 th
e

re
gu

la
r

ex
p

re
ss

io
n

d

ef
in

ed
 in

 r
eg

ex
. N

ot
e

re
ge

x
ca

n
 b

e
ei

th
er

 a
 s

tr
in

g
th

at
 r

ep
re

se
n

ts
 a

 r
eg

u
la

r
ex

p
re

ss
io

n
 (e

.g
.,

\.
co

m
$

fo
r

a
st

ri
n

g
th

at
 e

n
d

s
in

 .c
om

)
or

a

co
m

p
ile

d
 P

yt
h

on
 r

eg
u

la
r

ex
p

re
ss

io
n

 fr
om

 P
yt

h
on

’s
 r

e
p

ac
ka

ge
 (e

.g
.,

re
.c

om
p

ile

(’
\.

co
m

$’
))

.

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

Sl
u

gF
ie

ld
()

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

,
bu

t s
er

ve
r-

si
d

e
D

ja
n

go

va
lid

at
es

 th
e

(t
ex

t)
 v

al
u

e
ca

n
 b

e
co

n
ve

rt
ed

 to
 s

lu
g.

In

 D
ja

n
go

 a
 ‘s

lu
g’

 is
 a

 v
al

u
e

th
at

 c
on

ta
in

s
on

ly
 lo

w
er

ca
se

le

tt
er

s,
 n

u
m

b
er

s,
 u

n
d

er
sc

or
es

an

d
 h

yp
h

en
s,

 w
h

ic
h

 is

ty
p

ic
al

ly
 u

se
d

 to
 s

an
it

iz
e

U
R

Ls
 a

n
d

 fi
le

 n
am

es
 (e

.g
.,

th
e

sl
u

g
re

p
re

se
n

ta
ti

on
 o

f ‘
W

h
at

is

 a
 S

lu
g?

! A
 s

an
it

iz
ed

-s
tr

in
g’

is

 w
h

at
-i

s-
a-

sl
u

g-
a-

sa
n

it
iz

ed
-

st
ri

n
g.

(c
on

ti
n

u
ed

)

Chapter 6 ■ Django Forms

238

Ta
bl

e
6-

2.
 (

co
n

ti
n

u
ed

)

Fi
el

d
ty

pe
D

ja
ng

o
fo

rm
 fi

el
d

ty
pe

H
TM

L
ou

tp
ut

D
ef

au
lt

D
ja

ng
o

w
id

ge
t

Va
lid

at
io

n
be

ha
vi

or

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

U
R

LF
ie

ld
()

<i
n

p
u

t t
yp

e=
“u

rl
”

...
>

fo
rm

s.
w

id
ge

ts
.U

R
LI

n
p

u
t(

)
G

en
er

at
es

 H
T

M
L

u
rl

 in
p

u
t

m
ar

ku
p.

 N
ot

e
th

is
 H

T
M

L5

m
ar

ku
p

 is
 fo

r
cl

ie
n

t-
si

d
e

u
rl

va

lid
at

io
n

 a
n

d
 o

n
ly

 w
or

ks

if
 th

e
b

ro
w

se
r

su
p

p
or

ts

H
T

M
L5

. I
f a

 b
ro

w
se

r
d

oe
sn

’t

su
p

p
or

t H
T

M
L5

 th
en

 it
 tr

ea
ts

th

is
 m

ar
ku

p
 a

s
re

gu
la

r
te

xt

in
p

u
t.

D
ja

n
go

 s
er

ve
r-

si
d

e
fo

rm
 v

al
id

at
io

n
 is

 d
on

e
fo

r
a

u
rl

 ir
re

sp
ec

ti
ve

 o
f H

T
M

L5

su
p

p
or

t.

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

U
U

ID
Fi

el
d

()
<i

n
p

u
t t

yp
e=

“t
ex

t”
 ..

.>
fo

rm
s.

w
id

ge
ts

.T
ex

tI
n

p
u

t(
)

W
or

ks
 ju

st
 li

ke
 C

h
ar

Fi
el

d
, b

u
t

se
rv

er
-s

id
e

D
ja

n
go

 v
al

id
at

es

th
e

(t
ex

t)
 v

al
u

e
is

 c
on

ve
rt

ab
le

to

 a
 U

U
ID

 (
U

n
iv

er
sa

lly

u
n

iq
u

e
id

en
ti

fi
er

).

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

C
om

b
oF

ie
ld

(f
ie

ld
s=

[f
ie

ld
_

ty
p

e1
,fi

el
d

_t
yp

e1
])

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

, b
u

t
se

rv
er

-s
id

e
D

ja
n

go
 e

n
fo

rc
es

th

e
d

at
a

p
as

s
ru

le
s

fo
r

a
lis

t o
f

D
ja

n
go

 fo
rm

 fi
el

d
s

(e
.g

.,
C

om
b

oF
ie

ld
(f

ie
ld

s=
[C

h
ar

Fi
el

d
(m

ax
_l

en
gt

h
=5

0)
, S

lu
gF

ie
ld

()
])

en

fo
rc

es
 th

e
d

at
a

b
e

a
sl

u
g

fi
el

d
 w

it
h

 a
 m

ax
im

u
m

 le
n

gt
h

of

 5
0

ch
ar

ac
te

rs
).

Chapter 6 ■ Django Forms

239

Te
xt

 (
Sp

ec
ia

liz
ed

)
fo

rm
s.

M
u

lt
iV

al
u

eF
ie

ld

(f
ie

ld
s=

[f
ie

ld
_t

yp
e1

,
fi

el
d

_t
yp

e1
])

V
ar

ie
s

de
pe

n
di

n
g

on
 fi

el
d

li
st

(e

.g
. f

or
 th

re
e

C
ha

rF
ie

ld
 :

<i
n

pu
t

ty
pe

="
te

xt
"

...
><

in
pu

t t
yp

e=
"t

ex
t"

...

><
in

pu
t t

yp
e=

"t
ex

t"
 ..

.>
; f

or
 tw

o
C

ha
rF

ie
ld

: <
in

pu
t t

yp
e=

"t
ex

t"

...
><

in
pu

t t
yp

e=
"t

ex
t"

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
D

es
ig

n
ed

 to
 c

re
at

e
cu

st
om

fo

rm
 fi

el
d

s
m

ad
e

u
p

 o
f

m
u

lt
ip

le
 p

re
ex

is
ti

n
g

fo
rm

fi

el
d

s
(e

.g
.,

So
ci

al
 S

ec
u

ri
ty

fo

rm
 fi

el
d

 m
ad

e
u

p
 o

f t
h

re
e

C
h

ar
Fi

el
d

()
).

 It
 r

eq
u

ir
es

 a

su
b

cl
as

s
im

p
le

m
en

ta
ti

on

(e
.g

.,
cl

as
s

So
ci

al
Se

cu
ri

ty

Fi
el

d
(M

u
lt

iV
al

u
eF

ie
ld

):
)

to

in
cl

u
d

e
th

e
b

as
e

fo
rm

 fi
el

d
s

an
d

 v
al

id
at

io
n

 lo
gi

c
of

 th
e

n
ew

 fi
el

d
.

Te
xt

 (
Sp

ec
ia

liz
ed

)
/

Fi
le

s
fo

rm
s.

Fi
le

Pa
th

Fi
el

d

(p
at

h
=’

d
ir

ec
to

ry
’)

<s
el

ec
t >

<o
p

ti
on

 v
al

u
e=

“d
ir

ec
to

ry
/

fi
le

_1
”>

fi
le

_1
</

op
ti

on
><

op
ti

on

va
lu

e=
“d

ir
ec

to
ry

/f
ile

_2
”>

fi
le

_2

</
op

ti
on

><
op

ti
on

va

lu
e=

“d
ir

ec
to

ry
/f

ile
_2

”>
fi

le
_2

</

op
ti

on
><

/s
el

ec
t>

fo
rm

s.
w

id
ge

ts
.S

el
ec

t(
)

G
en

er
at

es
 a

n
 H

T
M

L
se

le
ct

lis

t f
ro

m
 fi

le
s

lo
ca

te
d

 o
n

 a

se
rv

er
-s

id
e

p
at

h
 d

ir
ec

to
ry

.
N

ot
e

va
lu

e
is

 c
om

p
os

ed

of
 p

at
h

+f
ile

n
am

e
an

d
 ju

st

d
is

p
la

ys
 fi

le
n

am
e.

Fi
le

s
fo

rm
s.

Fi
le

Fi
el

d
()

<i
n

p
u

t t
yp

e=
“f

ile
”

...
>

fo
rm

s.
w

id
ge

ts
.

C
le

ar
ab

le
Fi

le
In

p
u

t(
)

G
en

er
at

es
 H

T
M

L
fil

e
in

pu
t

m
ar

ku
p

so
 a

n
 e

n
d

us
er

 is
 a

bl
e

to
 s

el
ec

t a
 fi

le
 th

ro
ug

h
hi

s
w

eb
 b

ro
w

se
r.

In
 a

dd
iti

on
, i

t
pr

ov
id

es
 v

ar
io

us
 u

til
iti

es
 to

ha

n
dl

e
po

st
-p

ro
ce

ss
in

g
of

 fi
le

s.

Fi
le

s
(S

p
ec

ia
liz

ed
)

fo
rm

s.
Im

ag
eF

ie
ld

()
<i

n
p

u
t t

yp
e=

“f
ile

”
...

>
fo

rm
s.

w
id

ge
ts

.
C

le
ar

ab
le

Fi
le

In
p

u
t(

)
G

en
er

at
es

 H
T

M
L

fi
le

 in
p

u
t

m
ar

ku
p

 s
o

an
 e

n
d

 u
se

r
is

ab

le
 to

 s
el

ec
t a

n
 im

ag
e

fi
le

th

ro
u

gh
 h

is
 w

eb
 b

ro
w

se
r.

W
or

ks
 ju

st
 li

ke
 F

ile
Fi

el
d

 b
u

t
p

ro
vi

d
es

 a
d

d
it

io
n

al
 u

ti
lit

ie
s

to
 h

an
d

le
 p

os
t-

p
ro

ce
ss

in
g

of
 im

ag
es

 u
si

n
g

th
e

P
ill

ow

p
ac

ka
ge

. N
ot

e
th

is
 fi

el
d

fo

rc
es

 y
ou

 to
 in

st
al

l P
ill

ow

(e
.g

.,
p

ip
 in

st
al

l P
ill

ow
).

(c
on

ti
n

u
ed

)

Chapter 6 ■ Django Forms

240

D
at

e/
ti

m
e

fo
rm

s.
D

at
eF

ie
ld

()
<i

n
p

u
t t

yp
e=

“t
ex

t”
 ..

.>
fo

rm
s.

w
id

ge
ts

.D
at

eI
n

p
u

t(
)

W
or

ks
 ju

st
 li

ke
 C

h
ar

Fi
el

d
, b

u
t

se
rv

er
-s

id
e

D
ja

n
go

 v
al

id
at

es

th
e

(t
ex

t)
 v

al
u

e
ca

n
 b

e
co

n
ve

rt
ed

 to
 a

 d
at

et
im

e.
d

at
e,

d

at
et

im
e.

d
at

et
im

e,
 o

r
st

ri
n

g
fo

rm
at

te
d

 in
 a

 p
ar

ti
cu

la
r

d
at

e
fo

rm
at

 (e
.g

. 2
01

7-
12

-2
5,

11

/2
5/

17
).

D
at

e/
ti

m
e

fo
rm

s.T
im

eF
ie

ld
()

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
ha

rF
ie

ld
,

bu
t s

er
ve

r-
si

de
 D

ja
n

go

va
lid

at
es

 th
e

(t
ex

t)
 v

al
ue

 c
an

be

 c
on

ve
rt

ed
 to

 a
 d

at
et

im
e.

tim
e

or
 s

tr
in

g
fo

rm
at

te
d

in
 a

pa

rt
ic

ul
ar

 ti
m

e
fo

rm
at

 (e
.g

.,
15

:4
0:

33
, 1

7:
44

).

D
at

e/
ti

m
e

fo
rm

s.
D

at
eT

im
eF

ie
ld

()
<i

n
p

u
t t

yp
e=

“t
ex

t”
 ..

.>
fo

rm
s.

w
id

ge
ts

.
D

at
eT

im
eI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

,
bu

t s
er

ve
r-

si
d

e
D

ja
n

go

va
lid

at
es

 th
e

(t
ex

t)
 v

al
u

e
ca

n

b
e

co
n

ve
rt

ed
 to

 a
 d

at
et

im
e.

d
at

et
im

e,
 d

at
et

im
e.

d
at

e,

or
 s

tr
in

g
fo

rm
at

te
d

 in
 a

p

ar
ti

cu
la

r
d

at
et

im
e

fo
rm

at

(e
.g

. 2
01

7-
12

-2
5

14
:3

0:
59

,
11

/2
5/

17
 1

4:
30

).

D
at

e/
ti

m
e

fo
rm

s.
D

u
ra

ti
on

Fi
el

d
()

<i
n

p
u

t t
yp

e=
“t

ex
t”

 ..
.>

fo
rm

s.
w

id
ge

ts
.T

ex
tI

n
p

u
t(

)
W

or
ks

 ju
st

 li
ke

 C
ha

rF
ie

ld
, b

ut

se
rv

er
-s

id
e

D
ja

n
go

 v
al

id
at

es

th
e

(t
ex

t)
 v

al
ue

 c
an

 b
e

co
nv

er
te

d
to

 a
 ti

m
ed

el
ta

. N
ot

e
D

ja
n

go
 u

se
s

th
e

dj
an

go
.u

til
s.

da
te

pa
rs

e.
pa

rs
e_

du
ra

tio
n

()

m
et

ho
d

as
 a

 h
el

pe
r,

w
hi

ch

m
ea

n
s

th
e

st
ri

n
g

m
us

t m
at

ch

th
e

fo
rm

at
 D

D
 H

H
:M

M
:S

S.
uu

uu
uu

 (e
.g

.,
2

1:
10

:2
0

fo
r a

tim

ed
el

ta
 o

f 2
 d

ay
s,

 1
 h

ou
r,

10

m
in

ut
es

, 2
0

se
co

n
ds

).

Ta
bl

e
6-

2.
 (

co
n

ti
n

u
ed

)

Fi
el

d
ty

pe
D

ja
ng

o
fo

rm
 fi

el
d

ty
pe

H
TM

L
ou

tp
ut

D
ef

au
lt

D
ja

ng
o

w
id

ge
t

Va
lid

at
io

n
be

ha
vi

or

Chapter 6 ■ Django Forms

241

D
at

e/
ti

m
e

fo
rm

s.
Sp

lit
D

at
eT

im
eF

ie
ld

()
<i

n
p

u
t t

yp
e=

“t
ex

t”
 n

am
e=

“_
0”

 ..
.>

<i

n
p

u
t t

yp
e=

“t
ex

t”
 n

am
e=

“_
1”

 ..
.>

fo
rm

s.
w

id
ge

ts
.

Sp
lit

D
at

eT
im

eW
id

ge
t

W
or

ks
 s

im
ila

r t
o

D
at

eT
im

eF
ie

ld
 b

u
t g

en
er

at
es

tw

o
se

pa
ra

te
 te

xt
 in

pu
ts

fo

r d
at

e
an

d
ti

m
e,

 u
n

lik
e

D
at

eT
im

eF
ie

ld
 w

h
ic

h
 e

xp
ec

ts

a
si

n
gl

e
st

ri
n

g
w

it
h

 d
at

e
an

d

ti
m

e.
 V

al
id

at
io

n
-w

is
e

D
ja

n
go

en

fo
rc

es
 th

e
da

te
 in

pu
t c

an
 b

e
co

n
ve

rt
ed

 to
 a

 d
at

et
im

e.
da

te

an
d

th
e

ti
m

e
in

pu
t c

an
 b

e
co

n
ve

rt
ed

 to
 a

 d
at

et
im

e.
ti

m
e.

N
u

m
b

er
fo

rm
s.

In
te

ge
rF

ie
ld

()
<i

n
p

u
t t

yp
e=

“n
u

m
b

er
”

...
>

fo
rm

s.
w

id
ge

ts
.

N
u

m
b

er
In

p
u

t(
)

G
en

er
at

es
 a

n
 H

T
M

L
nu

m
be

r
in

pu
t m

ar
ku

p.
 N

ot
e

th
is

H

T
M

L5
 m

ar
ku

p
is

 fo
r c

lie
nt

-
si

de
 n

um
be

r v
al

id
at

io
n

 a
n

d

on
ly

 w
or

ks
 if

 th
e

br
ow

se
r

su
pp

or
ts

 H
T

M
L5

. I
f a

 b
ro

w
se

r
do

es
n

’t
su

pp
or

t H
T

M
L5

 th
en

 it

tr
ea

ts
 th

is
 m

ar
ku

p
as

 a
 re

gu
la

r
te

xt
 in

pu
t.

D
ja

n
go

 s
er

ve
r-

si
de

fo

rm
 v

al
id

at
io

n
 is

 d
on

e
fo

r a
n

in

te
ge

r n
um

be
r i

rr
es

pe
ct

iv
e

of

H
T

M
L5

 s
up

po
rt

.

N
u

m
b

er
fo

rm
s.

D
ec

im
al

Fi
el

d
()

<i
n

p
u

t t
yp

e=
“n

u
m

b
er

”
...

>
fo

rm
s.

w
id

ge
ts

.
N

u
m

b
er

In
p

u
t(

)
G

en
er

at
es

 a
n

 H
T

M
L

nu
m

be
r

in
pu

t m
ar

ku
p.

 N
ot

e
th

is

H
T

M
L5

 m
ar

ku
p

is
 fo

r c
lie

nt
-

si
de

 n
um

be
r v

al
id

at
io

n

an
d

on
ly

 w
or

ks
 if

 a
 b

ro
w

se
r

su
pp

or
ts

 H
T

M
L5

. I
f a

 b
ro

w
se

r
do

es
n

’t
su

pp
or

t H
T

M
L5

 th
en

 it

tr
ea

ts
 th

is
 m

ar
ku

p
as

 a
 re

gu
la

r
te

xt
 in

pu
t.

D
ja

n
go

 s
er

ve
r-

si
de

fo

rm
 v

al
id

at
io

n
 is

 d
on

e
fo

r a

de
ci

m
al

 n
um

be
r i

rr
es

pe
ct

iv
e

of
 H

T
M

L5
 s

up
po

rt
. (c

on
ti

n
u

ed
)

Chapter 6 ■ Django Forms

242

N
u

m
b

er
fo

rm
s.

Fl
oa

tF
ie

ld
()

<i
n

p
u

t t
yp

e=
“n

u
m

b
er

”
...

>
fo

rm
s.

w
id

ge
ts

.
N

u
m

b
er

In
p

u
t(

)
G

en
er

at
es

 a
n

 H
T

M
L

n
u

m
b

er
 in

p
u

t m
ar

ku
p.

N

ot
e

th
is

 H
T

M
L5

 m
ar

ku
p

is

 fo
r

cl
ie

n
t-

si
d

e
n

u
m

b
er

va

lid
at

io
n

 a
n

d
 o

n
ly

 w
or

ks
 if

a

b
ro

w
se

r
su

p
p

or
ts

 H
T

M
L5

.
If

 a
 b

ro
w

se
r

d
oe

sn
’t

 s
u

p
p

or
t

H
T

M
L5

 th
en

 it
 tr

ea
ts

 th
is

m

ar
ku

p
 a

s
a

re
gu

la
r

te
xt

in

p
u

t.
D

ja
n

go
 s

er
ve

r-
si

d
e

fo
rm

 v
al

id
at

io
n

 is
 d

on
e

fo
r

a
flo

at
 n

u
m

b
er

 ir
re

sp
ec

ti
ve

 o
f

H
T

M
L5

 s
u

p
p

or
t.

P
re

d
ef

in
ed

 v
al

u
es

fo
rm

s.
C

h
oi

ce
Fi

el
d

(c

h
oi

ce
s=

tu
p

le
_o

f_
tu

p
le

s)
<s

el
ec

t>
<o

p
ti

on
 v

al
u

e=
“t

u
p

le
1_

1”

se
le

ct
ed

=“
se

le
ct

ed
”>

tu
p

le
1_

2
</

op
ti

on
><

op
ti

on

va
lu

e=
“t

u
p

le
_2

_1
”>

tu
p

le
_2

_2

</
op

ti
on

><
op

ti
on

va

lu
e=

“t
u

p
le

_3
_1

”>
tu

p
le

_3
_2

</

op
ti

on
><

/s
el

ec
t>

fo
rm

s.
w

id
ge

ts
.S

el
ec

t(
)

G
en

er
at

es
 a

n
 H

T
M

L
se

le
ct

lis

t f
ro

m
 a

 tu
p

le
 o

f t
u

p
le

s
d

ef
in

ed
 th

ro
u

gh
 c

h
oi

ce
s

(e
.g

.,
((

1,
’U

n
it

ed
 S

ta
te

s’
),

(
2,

’C
an

ad
a’

),
(3

,’M
ex

ic
o’

))
).

N

ot
e

w
it

h
 C

h
oi

ce
Fi

el
d

 if
 n

o
va

lu
e

is
 s

el
ec

te
d

 a
n

 e
m

p
ty

st

ri
n

g
‘’

is
 p

as
se

d
 fo

r
p

os
t-

p
ro

ce
ss

in
g

an
d

 if
 a

 v
al

u
e

lik
e

‘2
’ i

s
se

le
ct

ed
 a

 li
te

ra
l s

tr
in

g
is

 p
as

se
d

 fo
r

p
os

t-
p

ro
ce

ss
in

g,

ir
re

sp
ec

ti
ve

 o
f t

h
e

or
ig

in
al

d

at
a

re
p

re
se

n
ta

ti
on

. S
ee

T

yp
eC

h
oi

ce
Fi

el
d

 o
r

cl
ea

n

fo
rm

 m
et

h
od

s
to

 o
ve

rr
id

e
th

es
e

la
st

 b
eh

av
io

rs
 fo

r
em

p
ty

 v
al

u
es

 a
n

d
 s

tr
in

g
h

an
d

lin
g.

Ta
bl

e
6-

2.
 (

co
n

ti
n

u
ed

)

Fi
el

d
ty

pe
D

ja
ng

o
fo

rm
 fi

el
d

ty
pe

H
TM

L
ou

tp
ut

D
ef

au
lt

D
ja

ng
o

w
id

ge
t

Va
lid

at
io

n
be

ha
vi

or

Chapter 6 ■ Django Forms

243

P
re

d
ef

in
ed

 v
al

u
es

fo
rm

s.T
yp

eC
h

oi
ce

Fi
el

d

(c
h

oi
ce

s=
tu

p
le

_o
f_

tu
p

le
s,

co

er
ce

=c
oe

rc
e_

fu
n

ct
io

n
,

em
p

ty
_v

al
u

e=
N

on
e)

<s
el

ec
t>

<o
p

ti
on

 v
al

u
e=

“t
u

p
le

1_
1”

se

le
ct

ed
=“

se
le

ct
ed

”>
tu

p
le

1_
2

</
op

ti
on

><
op

ti
on

va

lu
e=

“t
u

p
le

_2
_1

”>
tu

p
le

_2
_2

</

op
ti

on
><

op
ti

on

va
lu

e=
“t

u
p

le
_3

_1
”>

tu
p

le
_3

_2

</
op

ti
on

><
/s

el
ec

t>

fo
rm

s.
w

id
ge

ts
.S

el
ec

t(
)

W
or

ks
 ju

st
 li

ke
 C

h
oi

ce
Fi

el
d

bu

t p
ro

vi
d

es
 e

xt
ra

 p
os

t-
p

ro
ce

ss
in

g
fu

n
ct

io
n

al
it

y
w

it
h

th

e
co

er
ce

 a
n

d
 e

m
p

ty
_v

al
u

e
ar

gu
m

en
ts

. F
or

 e
xa

m
p

le
,

w
it

h
 T

yp
eC

h
oi

ce
Fi

el
d

 y
ou

ca

n
 d

ef
in

e
a

d
if

fe
re

n
t d

ef
au

lt

va
lu

e
w

it
h

 th
e

em
p

ty
_v

al
u

e
ar

gu
em

en
t (

e.
g.

em
p

ty
_

va
lu

e=
N

on
e)

 a
n

d
 y

ou
 c

an

d
ef

in
e

a
co

er
ci

on
 m

et
h

od

w
it

h
 th

e
co

er
ce

 a
rg

u
m

en
t

so
 th

e
se

le
ct

ed
 v

al
u

e
is

co

n
ve

rt
ed

 fr
om

 it
s

st
ri

n
g

re
p

re
se

n
ta

ti
on

 (e
.g

.,
w

it
h

co

er
ce

=i
n

t a
 v

al
u

e
lik

e
‘2

’
ge

ts
 c

on
ve

rt
ed

 to
 2

 (
in

te
ge

r)

th
ro

u
gh

 th
e

bu
ilt

-i
n

 in
t

fu
n

ct
io

n
).

P
re

d
ef

in
ed

 v
al

u
es

fo
rm

s.
M

u
lt

ip
le

C
h

oi
ce

Fi
el

d

(c
h

oi
ce

s=
tu

p
le

_o
f_

tu
p

le
s)

<s
el

ec
t

m
u

lt
ip

le
=’

m
u

lt
ip

le
’>

<o
p

ti
on

va

lu
e=

“t
u

p
le

1_
1”

se

le
ct

ed
=“

se
le

ct
ed

”>
tu

p
le

1_
2

</
op

ti
on

><
op

ti
on

va

lu
e=

“t
u

p
le

_2
_1

”>
tu

p
le

_2
_2

</

op
ti

on
><

op
ti

on

va
lu

e=
“t

u
p

le
_3

_1
”>

tu
p

le
_3

_2

</
op

ti
on

><
/s

el
ec

t>

fo
rm

s.
w

id
ge

ts
.

Se
le

ct
M

u
lt

ip
le

()
G

en
er

at
es

 a
n

 H
T

M
L

se
le

ct
 li

st

fo
r

m
u

lt
ip

le
 v

al
u

es
 fr

om
 tu

p
le

of

 tu
p

le
s

d
ef

in
ed

 th
ro

u
gh

ch

oi
ce

s
(e

.g
.,

((
1,

’U
n

it
ed

 S
ta

te
s’

),
(2

,’C
an

ad
a’

),
(3

,’M
ex

ic
o’

))
)

. I
t w

or
ks

 ju
st

 li
ke

 C
h

oi
ce

Fi
el

d

bu
t a

llo
w

s
m

u
lt

ip
le

 v
al

u
es

 to

b
e

se
le

ct
ed

, w
h

ic
h

 b
ec

om
e

av
ai

la
bl

e
as

 a
 li

st
 in

 p
os

t-
p

ro
ce

ss
in

g.

(c
on

ti
n

u
ed

)

Chapter 6 ■ Django Forms

244

P
re

d
ef

in
ed

 v
al

u
es

fo
rm

s.T
yp

ed
M

ul
tip

le

C
ho

ic
eF

ie
ld

(c
ho

ic
es

=
tu

pl
e_

of
_t

up
le

s,

co
er

ce
=c

oe
rc

e_
fu

n
ct

io
n

,
em

pt
y_

va
lu

e=
N

on
e)

<s
el

ec
t

m
u

lt
ip

le
=’

m
u

lt
ip

le
’>

<o
p

ti
on

va

lu
e=

“t
u

p
le

1_
1”

se

le
ct

ed
=“

se
le

ct
ed

”>
tu

p
le

1_
2

</
op

ti
on

><
op

ti
on

va

lu
e=

“t
u

p
le

_2
_1

”>
tu

p
le

_2
_2

</

op
ti

on
><

op
ti

on

va
lu

e=
“t

u
p

le
_3

_1
”>

tu
p

le
_3

_2

</
op

ti
on

><
/s

el
ec

t>

fo
rm

s.
w

id
ge

ts
.S

el
ec

t(
)

W
or

ks
 ju

st
 li

ke

M
u

lt
ip

le
C

h
oi

ce
Fi

el
d

bu

t p
ro

vi
d

es
 e

xt
ra

 p
os

t-
p

ro
ce

ss
in

g
fu

n
ct

io
n

al
it

y
w

it
h

th

e
co

er
ce

 a
n

d
 e

m
p

ty
_v

al
u

e
ar

gu
m

en
ts

. F
or

 e
xa

m
p

le
, w

it
h

T

yp
ed

M
u

lt
ip

le
C

h
oi

ce
Fi

el
d

yo

u
 c

an
 d

ef
in

e
a

d
if

fe
re

n
t

d
ef

au
lt

 v
al

u
e

w
it

h
 th

e
em

p
ty

_v
al

u
e

ar
gu

m
en

t (
e.

g.
,

em
p

ty
_v

al
u

e=
N

on
e)

 a
n

d

yo
u

 c
an

 d
ef

in
e

a
co

er
ci

on

m
et

h
od

 w
it

h
 th

e
co

er
ce

ar

gu
m

en
t s

o
th

e
se

le
ct

ed

va
lu

e
is

 c
on

ve
rt

ed
 fr

om
 it

s
st

ri
n

g
re

p
re

se
n

ta
ti

on
 (e

.g
.,

w
it

h
 c

oe
rc

e=
in

t a
 v

al
u

e
lik

e
‘2

’ g
et

s
co

n
ve

rt
ed

 to
 2

(i

n
te

ge
r)

 th
ro

u
gh

 th
e

bu
ilt

-i
n

in

t f
u

n
ct

io
n

).

Ta
bl

e
6-

2.
 (

co
n

ti
n

u
ed

)

Fi
el

d
ty

pe
D

ja
ng

o
fo

rm
 fi

el
d

ty
pe

H
TM

L
ou

tp
ut

D
ef

au
lt

D
ja

ng
o

w
id

ge
t

Va
lid

at
io

n
be

ha
vi

or

Chapter 6 ■ Django Forms

245

As you can see in Table 6-2, the Django form fields provided out-of-the-box support for the generation
of practically every HTML form input in existence, as well as provided the necessary server-side validation
for a wide array of data types. For example, you can use the CharField() form field type to capture standard
text or the more specialized EmailField() form field type to ensure the captured value is a valid email. Just
as you can use ChoiceField() to generate a form list with predefined values or DateField() to enforce a
form value is a valid date.

The Relationship between Widgets and Form Fields
In Table 6-2 you can see that besides the actual Django form field syntax (e.g., forms.CharField(), forms.
ImageField()) each form field is associated with a default widget. Django widgets for the most part go
unnoticed and are often mixed together with the functionality of a form field itself (e.g., if you want an HTML
text input <input type="text"..> you use forms.CharField()). However, when you require changes to the
HTML produced by a form field or the way a form field’s data is initially processed, you’ll need to work with
widgets.

To make matters a little more confusing, there are many options you specify on form fields that end up
being used as part of a widget. For example, the form field forms.CharField(max_length=25) tells Django to
limit a value to a maximum of 25 characters upon processing, but this same max_length option is passed to
the forms.widgets.TextInput() widget to generate the HTML <input type="text" maxlength="25"...>
to enforce the same rule on the browser via the HTML maxlength="25" attribute. So in this case, you can
actually change the HTML output through a form field option, without even knowing about widgets!

So do you really need to work with widgets to change the HTML produced by a form field? The answer
is it depends. A lot of form fields options are automatically passed to a widget behind the scenes in effect
altering the generated HTML, but make no mistake about it, it’s a widget that’s tasked with generating the
HTML and not a form field. For cases when a form field’s options can’t achieve a desired HTML output, then
it becomes necessary to change a form field’s widget to achieve a custom HTML output.

In upcoming sections in this chapter, I’ll expand on the topic of Django widgets and describe how to
override and customize a Django form field’s default widget. Now that you know about the existence of
Django widgets and their relationship with Django form fields, I’ll continue on the topic of Django form
fields and explain the various Django form field options and their validation behavior.

DJANGO ‘HIDDEN’ BUILT-IN WIDGETS

Table 6-2 shows all the built-in form fields in Django, which can mislead you to believe the same table
also shows all Django built-in form widgets. This is not the case. The widget column in Table 6-2 only
shows the default widgets assigned to all built-in form fields. There are a few more Django built-in
widgets you can use that are also included in the forms.widgets. package:

•	 PasswordInput.- Widget for password field (e.g., displays **** as a user types text). Also
supports re-display of a field value after validation error.

•	 HiddenInput.- Widget for hidden field (e.g., <input type=‘hidden’...>.

•	 MultipleHiddenInput.- Like HiddenInput but for multiple values (i.e., a list).

•	 Textarea.- Widget for text area field (e.g., <textarea></textarea>).

RadioSelect.- Like the Select widget, but generates a list of radio buttons (e.g., <input
type="radio">..).

Chapter 6 ■ Django Forms

246

CheckboxSelectMultiple.- Like the SelectMultiple widget, but generates a list of check boxes (e.g.,
<input type="checkbox">..).

TimeInput.- Like the DateTimeInput widget, but for time input only (e.g., 13:54, 13:54:59).

SelectDateWidget.- Widget to generate three Select widgets for date (e.g., select widget for day, select
widget for month, select widget for year).

SplitHiddenDateTimeWidget.- Like the SplitDateTimeWidget widget, but uses Hidden input for date and
time.

FileInput.- Like the ClearableFileInput widget, but without a check box input to clear the field’s value.

Future sections in this chapter that describe a form field’s widget argument and how to customize
Django widgets, provide more context on how and when to use these additional built-in widgets.

Empty, Default, and Predetermined Values: Required, Initial, and
Choices
By default, all Django form fields are marked as required, which means every field must contain a value
to pass validation. The required argument is valid on all Django form fields described in Table 6-2 and in
addition to enforcing a value is not empty on the server-side, the HTML 5 required attribute is also assigned
to a form field so a user’s browser also enforces validation.

■■ Tip  You can initialize a form with use_required_field=False to forgo the use of the HTML 5 required
attribute. See the previous subsection entitled “Initialize Forms.”

If you want to allow a field value to be left empty - None or empty string '' -- then a field must be
assigned the required=False argument.

You can also assign a default value to a field through the initial argument. The initial argument is
equally valid across all Django form fields described in Table 6-2 and is described in detail in the previous
subsection “Initialize forms.”

For cases in which you don’t want to allow a user the ability to introduce open-ended values for a field
you can restrict a field’s values to a predetermined set of values through the choices argument. If you want
to use the choices attribute you must use a form field data type designed to generate an HTML <select>
list such as forms.ChoiceField(), forms.MultipleChoiceField, or forms.FielPathField(). The choices
argument cannot be used on data types like forms.CharField() designed for open-ended input.

Limiting Text Values: max_length, min_length, strip, and Validators
Form field data types that accept text such as CharField(), EmailField(), and others described in Table 6-2,
can accept both the max_length and min_length arguments to restrict a field’s value to a maximum and
minimum character length, respectively.

The strip argument is used to apply Python’s strip() method - which strips all trailing and leading
whitespace - to a field’s value. The strip argument can only be used on two Django field data types,
CharField() that defaults to strip=True, and RegexField() that defaults to strip=False.

Chapter 6 ■ Django Forms

247

To apply more advanced limitation rules on fields that accept text values, see the previous subsection
on “Validating Form Values,” which describes validators and other techniques to limit field values.

Limiting Number Values: max_value, min_value, max_digits,
decimal_places, and Validators
Form field data types that accept numbers such as IntegerField(), DecimalField(), and FloatField()
can accept both the max_value and min_value arguments to restrict the upper and lower bounds of a field’s
number value, respectively.

In addition, the DecimalField() data type, which accepts more elaborate number types, can use the
max_digits argument to restrict the maximum number of digits in a value or the decimal_places argument
to specify the maximum number of decimal places in a value.

To apply more advanced limitation rules on fields that accept number values, see the previous
subsection on “Validating Form Values,” which describes validators and other techniques to limit field
values.

Error Messages: error_messages
Every Django field data type has built-in error messages. For example, when a field data type is required
and no value is added by a user, Django assigns the error message This field is required to the field, as
part of a form’s errors dictionary. Similarly, if a field data type uses the max_length argument and the value
provided by a user exceeds this threshold, Django creates the error message Ensure this value has at
most X characters (it has X).

As described earlier in Listing 6-18, Django error messages are typically given a message error code
in addition to the error message itself. And it’s these message error codes that are used to assign custom
messages via the error_messages argument.

The error_messages argument expects a dictionary where each key is the message error code and its
value a custom error message. For example, to provide a custom message for the required code you would
use the syntax forms.CharField(error_messages={"required":"Please, pretty please provide a
comment"}).Similarly, if you expect a form field to violate its max_length value, you would assign a custom
error message through the max_length code (e.g., error_messages={"max_length":"This value exceeds
its max length value"}).

Error codes generally map directly to the rule they violate (e.g., if a forms.IntegerField violates its
max_value, Django uses the max_value code to assign a default error message, which you can override
by using this code). However, there are over two dozen built-in error message codes (e.g., 'missing',
'contradiction'), some of which are not too obvious. For example, a forms.ImageField can generate
the error message 'Upload a valid image. The file you uploaded was either not an image or a
corrupted image.', which uses the 'invalid_image' error code, meaning that to override this default error
message you would need to know the error code beforehand to declare it as part of error_messages.

For the most part, customizing error messages for some of the more esoteric error codes is rarely
needed. But if you’re having trouble customizing error messages for a given field because you can’t
determine its error code, a little logging debugging on a form errors dictionary (e.g., form.errors.as_json()
or some of the other methods in Table 6-1) can quickly net you a form’s error codes to override the messages
with the error_messages argument.

Chapter 6 ■ Django Forms

248

Field Layout Values: label, label_suffix, help_text
When you output a form field in a template besides the essential HTML form field markup (e.g., <input
type="text">) it’s almost always accompanied by a human-friendly descriptor to indicate what a field is
for (e.g., Email: <input type="text">). This human-friendly descriptor is called a label and by default in
Django it’s assigned the same value as the field name.

To customize a form field’s label you can use the label argument. For example, to provide a more
descriptive label for a field named email you can use the syntax email = EmailField(label="Please
provide your email"). By default, all labels on a form are accompanied by the : symbol, which functions
as a suffix. You can further customize the output of field labels with the label_suffix argument on
individual form fields or the form instance itself.

For example, the syntax email = EmailField(label_suffix='-->') overrides the default suffix label
on the email field for the --> symbol.

■■ Tip  The label_suffix can also be used to initialize a form (e.g., form = ContactForm(label_
suffix='-->')) so all fields receive a label suffix, instead of doing it field by field. See the “Initialize
Forms” section earlier for more details.

In certain circumstances it can be helpful to add more explicit instructions to a form field; for such
cases you can use the help_text argument. Depending on the template layout you use, the help_text value
is added right next to the HTML form field markup.

For example, the syntax comment = CharField(help_text="Please be as specific as possible
to receive a quick response") generates the given html_text value right next to the comment input field
(e.g., Please be as specific as possible to receive a quick response <input type="text">). The
next section “Set Up the Layout for Django Forms in Templates” goes into greater detail on the use of help_
text and other form layout properties.

Set Up the Layout for Django Forms in Templates
When you pass a Django form - unbound or bound - to a template there are many options to generate its
layout. You can use one of Django’s pre-built HTML helpers to quickly generate a form’s output or granularly
output each field to create an advanced form layout (e.g., responsive design3).In addition, there can also
be many ways to output form errors (e.g., besides the fields themselves or at the top of a form). Up next, I’ll
describe the various options to output Django forms in templates.

Listing 6-19 shows the Django form I’ll use throughout the remaining layout sections – which is the
same form used throughout this chapter.

Listing 6-19.  Django form class definition

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)

3https://en.wikipedia.org/wiki/Responsive_web_design

https://en.wikipedia.org/wiki/Responsive_web_design

Chapter 6 ■ Django Forms

249

Output Form Fields: form.as_table, form.as_p, form.as_ul, and
Granularly by Field
Django forms offer three helper methods to simplify the output of all form fields. The syntax form.as_table
outputs a form’s fields to accommodate an HTML <table> as illustrated in Listing 6-20. The syntax form.as_p
outputs a form’s fields with HTML <p> tags as illustrated in Listing 6-21. Where as the syntax form.as_ul outputs
a form’s fields to accommodate an HTML list tag, as illustrated in Listing 6-22.

■■ Caution  If you use form.as_table, form.as_p, form.as_ul you must declare opening/closing HTML tags, a
wrapping <form> tag, a Django {% csrf_token %} tag and an <input type="submit"> button, as described in
the initial section of this chapter “Functional web form syntax for Django forms”.

Listing 6-20.  Django form output with form.as_table

<tr>
 <th><label for="id_name">Name:</label></th>
 <td><input id="id_name" name="name" type="text" /></td>
</tr>\n
<tr>
 <th><label for="id_email">Your email:</label></th>
 <td><input id="id_email" name="email" type="email" required/></td>
</tr>\n
<tr>
 <th><label for="id_comment">Comment:</label></th>
 �<td><textarea cols="40" id="id_comment" name="comment" rows="10" required>\r\n</

textarea></td>
</tr>

Listing 6-21.  Django form output with form.as_p

<p>
 <label for="id_name">Name:</label> <input id="id_name" name="name" type="text" />
</p>\n
<p>
 �<label for="id_email">Your email:</label> <input id="id_email" name="email" type="email"

required/>
</p>\n
<p>
 �<label for="id_comment">Comment:</label> <textarea cols="40" id="id_comment"

name="comment" rows="10" required>\r\n</textarea>
</p>'

Listing 6-22.  Django form output with form.as_ul

 <label for="id_name">Name:</label> <input id="id_name" name="name" type="text" />
\n

Chapter 6 ■ Django Forms

250

 �<label for="id_email">Your email:</label> <input id="id_email" name="email" type="email"
required/>

\n
 �<label for="id_comment">Comment:</label> <textarea cols="40" id="id_comment"

name="comment" rows="10" required>\r\n</textarea>

■■ Tip  The form.as_table, form.as_p & form.as_ul output can be made less verbose - omitting label tags
and id attributes - by initializing the form with auto_id=False. In addition, you can also change the symbol
that separates label names (by default :) with another symbol by initializing the form with the label_suffix
variable. It’s also possible to use the field_order option to alter the output field order.

Under certain circumstances, none of the previous helper methods may be sufficient to achieve
certain form layouts. For example, to create a responsive design you’ll need to output each field manually
to accommodate specific layout requirements (e.g., Bootstrap CSS grid columns). To achieve the custom
output of fields, every form instance permits access to its fields through the form.<field_name> syntax using
the attributes in Table 6-3.

Table 6-3.  Django form field attributes accessible in templates

Attribute name Description

{{form.<field_name>}} (i.e. No
attribute, just the field name by
itself)

Outputs the HTML form tag - technically known as the Django
widget - associated with the field (e.g., <input type=“text”>.)

{{form.<field_name>.name}} Outputs the name of a field, as defined in the form class.

{{form.<field_name>.value}} Outputs the value of the field assigned with initial or user-provided
data. Useful if you need to separately output the HTML form
tag’s value attribute (e.g., for <input type=“text” name=“name”
value=“John Doe”>, {{form.name.value}} outputs John Doe).

{{form.<field_name>.label}} Outputs the label of a field, which by default uses the syntax “Your
<field_name>” (e.g., for the email field, {{form.email.label}} outputs
Your email).

{{form.<field_name>.id_for_label}} Outputs the label id of a field, which by default uses the syntax
id_<field_name> (e.g., for the email field, {{form.email.id_for_label}}
outputs id_email).

{{form.<field_name>.auto_id}} Outputs the auto id of a field, which by default uses the syntax
id_<field_name> (e.g., for the email field, {{form.email.auto_id}}
outputs id_email).

{{form.<field_name>.label_tag}} Helper method to output the HTML <label> tag along with id_for_
label and label(e.g., for the email field, {{form.email.label_tag}}
outputs <label for=“id_email”>Your email:</label>).

{{form.<field_name>.help_text}} Outputs the help text associated with a field.

{{form.<field_name>.errors}} Outputs the errors associated with a field.

{{form.<field_name>.css_classes}} Outputs the CSS classes associated with a field.

(continued)

Chapter 6 ■ Django Forms

251

■■ Tip  You can override the default output for {{form.<field_name>.label}}, the suffix for
{{form.<field_name>.label_tag}}, and the default output for {{form.<field_name>.help_text}} in
Table 6-4, by using the label, label_suffix, and help_text options on form fields. This process is described
in the previous section on “Django Form Field Types: Widgets, Options, and Validations.”

As you can see in Table 6-4, there are many field attributes available to customize the layout of a form.
Just be careful that if you output form fields granularly you don’t miss a field, because if you do miss a field,
the most likely outcome is Django won’t be able to process the form as it won’t receive values from missing
fields.

Listing 6-23 illustrates a standard {% for %} loop that ensures you don’t miss any field and provides
more flexibility than the previous form.as_table, form.as_p & form.as_ul methods.

Listing 6-23.  Django form {% for %} loop over all fields

{% for field in form %}
 <div class="row">
 <div class="col-md-2">
 {{ field.label_tag }}
 {% if field.help_text %}
 ^{{{ field.help_text }}}
 {% endif %}
 {{ field.errors }}
 </div><div class="col-md-10 pull-left">
 {{ field }}
 </div>
 </div>
 {% endfor %}

In Listing 6-23, a loop is created over the form reference to ensure no fields are missed. If you want to
avoid presenting a field in certain form layouts, then I recommend you use the {{field.as_hidden}} vs.
{{field}}, as this ensures the field still forms part of the form for validation purposes and is simply hidden
from a user – more details about this scenario are provided in the upcoming section on advanced form
processing and partial forms.

Table 6-3.  (continued)

Attribute name Description

{{form.<field_name>.as_hidden}} Outputs the HTML of a field as a hidden HTML field (e.g., <input
type=“hidden” >).

{{form.<field_name>.is_hidden}} Boolean result of a field’s hidden status.

{{form.<field_name>.as_text}} Outputs the HTML of a field as a text HTML field (e.g., <input
type=“text”>).

{{form.<field_name>.as_textarea}} Outputs the HTML of a field as a textarea HTML field (e.g.,
<textarea></textarea>).

{{form.<field_name>.as_widget}} Outputs the Django widget associated with a field; technically
produces the same output as calling the stand-alone field with the
syntax {{form.<field_name>}} – shown at the top of this table.

Chapter 6 ■ Django Forms

252

Output Field Order: field_order and order_fields
If you use any of the techniques presented in Listings 6-20, 6-21, 6-22, or 6-23, the form fields are output in
the same order as they’re declared in the form class in Listing 6-19 (i.e., name, email, comment). However,
you can use several techniques to alter the order in which form fields are output.

The first and obvious approach is to change the form field order directly in the form class definition.
Because this last technique requires altering a form’s source code, Django also offers the field_order
option. The field_order option accepts a list of form field names in the order you want them output (e.g.,
field_order=['email','name','comment'] outputs the email field first, followed by name and comment).
The field_order option is flexible enough that you can provide a partial list of form fields (e.g., field_
order=['email'] outputs the email field first and the remaining form fields in their declared order) as well
as declare nonexistent field names that are ignored and is helpful when using form inheritance.

The field_order option can be declared in two locations. First, it can be declared as part of a form class
definition, as illustrated in Listing 6-24.

Listing 6-24.  Django form field_order option to enforce field order

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)
 field_order = ['email','comment','name']

As you can see in Listing 6-24, field_order is declared as any other form field and assigned a list of field
names to ensure the fields are output in the order: email, comment, and name. It’s also possible to use the
field_order option as part of a form’s initialization processes - described in detail in the form processing
section. It’s worth mentioning that if you use the field_order option on both the class definition - as shown
in Listing 6-24 - and form instance initialization, the latter value takes precedence over the former.

In addition to the field_order option, Django also offers order_fields that also expects a list of
field names to alter a form’s output field order. But unlike the field_order option that must be declared
in a form class or as part of the initialization of a form instance, order_fields can be called directly on
a form instance, which makes it a good option to use in a view method or template (e.g., form.order_
fields(['email'])).

Output CSS Classes, Styles, and Field Attributes: error_css_class,
required_css_class, Widget, Customization, and Various Form Field
Options
By default, when you output form fields and labels there are no CSS classes or styles associated with them.
Django offers several mechanisms to associate CSS classes with form fields. The first two approaches are
the error_css_class and required_css_class fields, which are declared directly in a Django form, as
illustrated in Listing 6-25.

Chapter 6 ■ Django Forms

253

Listing 6-25.  Django form error_css_class and required_css_class fields to apply CSS formatting

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 email = forms.EmailField(label='Your email')
 comment = forms.CharField(widget=forms.Textarea)
 error_css_class = 'error'
 required_css_class = 'bold'

As you can see in Listing 6-25, the error_css_class and required_css_class fields are added just
like regular form fields. When a field associated with a form instance of this kind is rendered on a template,
Django adds the error CSS class to all fields marked with an error and adds the bold CSS class to all fields
marked as required.

For example, all form fields are treated as required except when they explicitly use required=False.
This means if you output an unbound form instance from Listing 6-25 using form.as_p, the comment field is
output as <p class="bold">Comment: <textarea cols="40" name="comment" rows="10" required>\r\n
</textarea></p> -- note the class in the <p> tag. Similarly, if a field associated with a bound form instance
from Listing 6-25 raises an error, Django adds the error CSS class to the field (e.g., if the email field value
is not valid, the email field is output as <p class="bold error">Your email: <input name="email"
type="email" value="aninvalidemail" required /></p>, note the bold CSS class remains because the
form field is also required).

As helpful as the error_css_class and required_css_class fields are, they still offer limited CSS
formatting functionality. To gain full control over CSS class output, you’ll need to either use some of the
more granular output options for fields in Table 6-4 or customize a form field’s widget as illustrated in
Listing 6-26.

Listing 6-26.  Django form with inline widget definition to add custom CSS class

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(required=False)
 �email = forms.EmailField(label='Your email', widget=forms.TextInput(attrs={'class' :

'myemailclass'}))
 comment = forms.CharField(widget=forms.Textarea)

Notice in Listing 6-26 how the email field is declared with the widget=forms.
TextInput(attrs={'class' : 'myemailclass'}) argument. This last statement tells Django that when it
outputs the email field, it use the custom forms.TextInput widget, which declares the CSS class attribute
with the myemailclass value.

By using the form definition in Listing 6-26, the email field is output as <input class="myemailclass"
type="text"...>. If you don’t know what a Django widget is, see the earlier section entitled “The
Relationship between Widgets and Form Fields.”

The approach presented in Listing 6-26 is a powerful technique, because just as you can declare the
CSS class attribute, you can also declare any other form field HTML attribute. For example, if you wanted
to declare custom HTML attributes - such as those used by frameworks like jQuery or Bootstrap -- you can
easily use this same technique (e.g., widget=forms.TextInput(attrs={'role' : 'dialog'}) would output
<input role="dialog" type="text"...>).

Chapter 6 ■ Django Forms

254

However, a word of caution now that you know how easy it is to output any HTML attribute alongside
a Django form field. Be aware that nearly all Django form field data types come with built-in options that
get translated into HTML attributes. For example, the forms.CharField(max_length=25) statement gets
output to <input type="text" maxlength="25"...>, which means the form field max_length option
automatically generates the HTML maxlength="25" attribute. So be careful to start adding HTML attributes
indiscriminately using the approach in Listing 6-26, as they may already be supported through built-in data
type options. See the previous section on “Django Form Field Types: Widgets, Options and Validations” for
more details on these built-in data type options.

Output Form Field Errors: form.<field_name>.errors, form.errors,
form.non_field_errors
Just as form fields can be output in different ways, form field errors can also be output in different ways.
Toward the end of the first section in Listing 6-23, you can see how we use the {{field.errors}} syntax
to output errors associated with a particular field. However, an important thing to keep in mind when
outputting a field’s errors value in this manner is the output is generated as an HTML formatted list:

<ul class="errorlist">
 Name is required.

As you can see in Listing 6-27, the {{fields.errors}} value is list with the errorlist CSS class - which
allows you to provide CSS behaviors like a background color or borders - and the values are pre-wrapped as
list elements.

If you want to strip these wrapping HTML list tags to gain more control over the error layout (e.g.,
creating a responsive design or CSV list) you can do so creating a loop on each field.errors as illustrated
in Listing 6-27.

Listing 6-27.  Django loop over form.<field_name>.errors

 {% for field in form %}
 <div class="row">
 <div class="col-md-2">
 {{ field.label_tag }}
 {% if field.help_text %}
 ^{{{ field.help_text }}}
 {% endif %}
 {% for error in field.errors %}
 <div class="row">
 <div class="alert alert-danger">{{error}}</div>
 </div>
 {% endfor %}
 </div><div class="col-md-10 pull-left">
 {{ field }}
 </div>
 </div>
 {% endfor %}

You can see in Listing 6-27 that inside the loop for each field, another loop is made on the field.errors
reference to granularly output and assign custom markup to each field error.

Chapter 6 ■ Django Forms

255

As granular as the error output in Listing 6-27 is, this type of layout assumes you want to display a form’s
error messages besides each field, in addition to requiring a loop over a form’s fields. But what if you want
to display a form’s errors at the top or besides the main form? Or if you want to keep using Django’s shortcut
methods (i.e., form.as_table, form.as_p & form.as_ul) and still display errors?

Besides the form.<field_name>.errors syntax in Listing 6-27 to access field errors, Django also can
output form’s errors with the errors and non_field_errors dictionaries as illustrated in Listing 6-28.

Listing 6-28.  Django form.errors and form.non_field_errors with custom HTML output

<!-- Field errors -->
 {% if form.errors %}
 <div class="row">
 {% for field_with_error,error_messages in form.errors.items %}
 <div class="alert alert-danger">{{field_with_error}} {{error_messages}}</div>
 {% endfor %}
 </div>
 {% endif %}

<!-- Non-field errors -->
 {% if form.non_field_errors %}
 <div class="row">
 {% for error in form.non_field_errors %}
 <div class="alert alert-danger">{{error}}</div>
 {% endfor %}
 </div>
 {% endif %}

As you can see in Listing 6-28, the form.errors dictionary provides an aggregated version of all the
form.<field_name>.errors, where each dictionary key represents the form field name and the value is
a list of error messages with error code (e.g., required) to further filter the error list. If you want to output
every form error at the top of a form/page, require error filtering by code type or want to keep using Django’s
shortcut output form methods (e.g., form.as_table) and obtain form errors, then using form.errors on a
template is the way to go.

In addition, notice toward the top of Listing 6-28 the loop over the form.non_field_errors dictionary.
The form.non_field_errors contains errors that don’t belong to a specific form field – as discussed earlier
in the “Error Form Values: Errors” section and the special error placeholder field named __all__. Because
non-field errors don’t apply to a specific form field, it’s common to output these type of errors at the top of a
form accessing the non_field_errors dictionary.

Be aware that if you use form.errors or form.non_field_errors to output errors, by default the error
reference – {{error_messages}} and {{error}} in Listing 6-28 – are wrapped as an HTML formatted list
(e.g., <ul class="errorlist">...) but you can add an additional for loop to the error
list - as in Listing 6-27 - to create a custom HTML error layout.

Finally, it’s worth mentioning there are a series of auxiliary methods designed to facilitate error output
(e.g., in JSON format); Table 6-1 in the Django form processing section describes these methods.

Django Custom Form Fields and Widgets
In Table 6-2 you saw the wide variety of built-in Django form fields, from basic text and number types,
to more specialized text types (e.g., CSV, predefined options), including file and directory types. But as
extensive as these built-in form fields are, in certain circumstances it can be necessary to build custom
form fields.

Chapter 6 ■ Django Forms

256

Similarly, in Table 6-2 you learned how all Django forms fields are linked to Django widgets that define
the HTML produced by a form field. While in previous sections (e.g., Listings 6-25 and 6-26) you learned
how it’s possible to use a form field’s widget property to override its default widget with custom properties
(e.g., a CSS class attribute) or assign it a different widget altogether (e.g., a forms.Textarea widget to a
forms.CharField field), in certain circumstances, playing around with Django’s built-in widgets (i.e., adding
attributes or switching one built-in widget for another) can be insufficient for complex HTML form inputs.

Up next, you’ll learn how to customize both Django form fields and widgets.

CUSTOMIZE DJANGO FORM FIELDS, WIDGETS, OR BOTH?

As you’ve learned throughout this chapter, there’s a fuzzy relationship between a form field and a form
widget, which can make it hard to determine which one to customize when built-in options become
insufficient.

As a rule of thumb, if you need to constantly change a form field’s data or validation logic, you should
use a custom form field. If you need to constantly change a form field’s HTML output (e.g., form tags,
CSS classes, JavaScript events), you should use a custom widget.

Create Custom Form Fields
The good news about creating custom form fields is you don’t have to write everything from scratch,
compared to other custom Django constructs (e.g., a custom template filter or context processor). Since
Django’s built-in form fields are subclasses that inherit their behavior from the forms.Form class, you can
further subclass a built-in form field into a more specialized form field. Therefore, a custom form field can
start with a basic set of functionalities present in a built-in form field, which you can then customize as
required.

For example, if you find yourself creating forms with the built-in forms.FileField and constantly
customizing it in a certain way (e.g., for certain file sizes or types), you can create a custom form field
(e.g., PdfFileField, MySpecialFileField) that inherits the behavior from forms.FileField, customize it,
and use the custom form field directly in your forms.

Listing 6-29 illustrates a custom form field that inherits its behavior from the built-in forms.
ChoiceField form field.

Listing 6-29.  Django custom form field inherits behavior from forms.ChoiceField

class GenderField(forms.ChoiceField):
 def __init__(self, *args, **kwargs):
 super(GenderField, self).__init__(*args, **kwargs)
 self.error_messages = {"required":"Please select a gender, it's required"}
 self.choices = ((None,'Select gender'),('M','Male'),('F','Female'))

As you can see in Listing 6-29, the GenderField class inherits its behavior from the built-in forms.
ChoiceField field class, giving it automatic access to the same behaviors and features as this latter class.
Next, the __init__ method – used to initialize instances of the class – a call to super() is made to ensure the
initialization process of the parent class (i.e., forms.ChoiceField) is made and immediately after values are
assigned to the error_messages and choices fields.

Chapter 6 ■ Django Forms

257

The error_messages and choices fields in Listing 6-29 might look familiar because they’re arguments
typically used in the built-in forms.ChoiceField and are part of Django’s standard form field arguments
described earlier in this chapter. You can similarly add any other argument supported by form fields
(e.g., self.required, self.widget) so the custom form field is created with behaviors set by form field
arguments.

Once you have a custom form field like the one in Listing 6-29, you can use it to declare a form
field in a Django form class (e.g., gender = <pkg_location>.GenderField() vs. gender = forms.
ChoiceField(error_messages={...},choices=...)). As you can see, custom form fields are a great choice
if you’re doing repetitive customizations on built-in form fields.

Customize Built-In Widgets
In Listings 6-25 and 6-26 you already explored some customizations associated with Django’s built-in
widgets. For example, in Listing 6-25 you saw how it’s possible to customize the default built-in widget
assigned to form fields, while in Listing 6-26 you saw how it’s possible to add custom attributes to built-in
widgets. In this section you’ll learn how to globally customize built-in widgets.

Looking back at Table 6-2, you can see, for example, the forms.widget.TextInput() widget produces
an HTML output like <input type="text" ...> and similarly all the other widgets in Table 6-2 produce
their own specific HTML output.

Given the high expectations set forth by many front-end designs, producing this type of basic
boilerplate HTML output can be a non-starter for a lot of Django projects. For example, if you want to tightly
integrate JavaScript jQuery or ReactJS logic into HTML forms, customizing the default HTML produced
by Django’s built-in widgets can be a necessity. In these circumstances, the ideal approach is to produce
custom HTML for Django’s built-in widgets, forgoing the use of the default markup defined by Django in its
out-of-the-box state.

The first thing you need to know about customizing Django’s built-in widgets is where Django keeps its
default built-in widgets. Django builds the HTML output for its built-in widgets from the Django templates
located inside the django/forms/templates/django/forms/widgets/ directory in the main Django
distribution (e.g., if your Python installation is located at /python/coffeehouse/lib/python3.5/site-
packages/, append this directory path to locate the widget templates).

If you look inside this last directory, you’ll find templates (e.g., input.html, radio.html) for each
built-in Django widget. Be aware all these widgets templates don’t use plain HTML, but instead use Django
template syntax (e.g., {% include %} tags, {% if %} conditionals) to favor code reuse. If you’re unfamiliar
with Django template syntax, look over Chapter 3.

Now, while you could directly modify the templates in this location to alter the HTML output produced
by each widget, don’t do this. The recommended approach to customize the output for each built-in widget
is to include custom built-in widgets on a project basis. Therefore the first step to customize Django’s built-in
widgets is to build custom built-in widgets and make them part of a Django project.

■■ Tip  Copy all the built-in widgets in the Django distribution (i.e., the templates inside django/forms/
templates/django/forms/widgets/) to your project and modify them as needed.

Since built-in widgets are Django templates, and they need to be placed in a project directory where
they can be discovered. This means custom built-in widgets must be placed in a project directory that’s
part of the DIRS list declared in the TEMPLATES variable in settings.py. In most cases, a project declares a
directory named templates – as part of DIRS – that also contains a project’s templates – but you can use any
directory so long as it’s declared as part of DIRS – see the section “Template Search Paths” in Chapter 3 for
more details on DIRS.

http://dx.doi.org/10.1007/978-1-4842-2787-9_3
http://dx.doi.org/10.1007/978-1-4842-2787-9_3

Chapter 6 ■ Django Forms

258

Besides using a directory that’s part of the DIRS list to locate widget templates, Django also expects to
locate custom built-in widgets in the same path it uses for its default built-in widgets (i.e., those included in
the Django distribution).

Therefore, if you have a project directory named templates as part of the DIRS list, inside this templates
directory you’ll need to create the same directory path django/forms/widgets/ and inside this last widgets
subdirectory place the custom built-in widgets (e.g., to customize the built-in input.html widget located in
the Django distribution at django/forms/templates/django/forms/widgets/input.html you would create
a project version at <project_dir>/templates/django/forms/widgets/input.html, this way the latter
input.html template takes precedence over the default built-in distribution template).

Once you have the custom built-in widgets set up in your project, you need to make two configuration
changes to your project’s settings.py. The first configuration requires you add the FORM_RENDERER variable,
as follows:

FORM_RENDERER = 'django.forms.renderers.TemplatesSetting'

By default, Django built-in widgets are loaded through a stand-alone Django template renderer –
django.forms.renderers.DjangoTemplates – which is unrelated to a project’s main TEMPLATES configuration
containing the DIRS list with a project’s templates. Because you now placed custom built-in widgets inside
a directory declared as part of the DIRS list, you need to configure Django to use a project’s main TEMPLATES
configuration as part of the form-rendering process. By setting the FORM_RENDERER variable to django.
forms.renderers.TemplatesSetting, Django also inspects paths in the DIRS list of the main TEMPLATES
configuration for built-in widgets. The last subsection on widgets provides additional details on the FORM_
RENDERER variable.

Finally, because you’re overriding the django.forms package in a project to get custom built-in widgets,
you must also declare the django.forms package as part of the INSTALLED_APPS list in settings.py.

Create Custom Form Widgets
Custom form widgets are used for cases where you need to keep Django’s built-in widget functionality as is,
but still need to customize the HTML output produced by widgets.

■■ Tip  Before creating custom form widgets, look closely at the built-in widgets in Table 6-2 and the widgets
in the sidebar “Django Hidden Built-In Widgets.” You may be able to find what you’re looking for without the
need to create custom widgets.

Similar to custom form fields, custom form widgets have the advantage of being class based and
can therefore inherit their behavior from built-in widgets. For example, if you find yourself constantly
customizing the built-in forms.widgets.TextInput widget in a certain way (e.g., HTML attributes or
JavaScript events), you can create a custom widget (e.g., CustomerWidget, EmployeeWidget) that inherits its
behavior from forms.widgets.TextInput, customize it, and use the custom widget directly in form fields.

For example, let’s say you’re constantly modifying Django text widgets to include the HTML 5
placeholder attribute – used to give end users a hint about the purpose of an input form field and which
goes away when a user focuses on a field. Listing 6-30 illustrates a custom form widget that generates the
HTML 5 placeholder attribute based on the field name attribute assigned to a widget.

Chapter 6 ■ Django Forms

259

Listing 6-30.  Django custom form widget inherits behavior from forms.widgets.Input

class PlaceholderInput(forms.widgets.Input):
 template_name = 'about/placeholder.html'
 input_type = 'text'
 def get_context(self, name, value, attrs):
 context = super(PlaceholderInput, self).get_context(name, value, attrs)
 context['widget']['attrs']['maxlength'] = 50
 context['widget']['attrs']['placeholder'] = name.title()
 return context

■■ Note  The forms.widgets.Input widget is a more general purpose widget than forms.widgets.
TextInput and does not include text input behaviors; hence it’s often the preferred choice to build custom
widgets due to its basic feature set. It’s worth mentioning forms.widgets.Input is the parent widget of forms.
widgets.TextInput, forms.widgets.NumberInput, forms.widgets.EmailInput and other input widgets
described in Table 6-2.

As you can see in Listing 6-30, the PlaceholderInput class inherits its behavior from the built-in forms.
widgets.Input widget class, giving it access to the same behaviors and features as this latter class.

Next are two class fields. The template_name field defines the backing template for the custom widget
which points to 'about/placeholder.html'– note that if you omit the template_name field, the parent class
template is used (i.e., for the forms.widgets.Input widget the template is django/forms/widgets/input.
html). The input_type field is a requirement for forms.widgets.Input subclasses and is used to assign the
HTML input type attribute, values can include: text, number, email, url, password, or any other valid HTML
input type value.

Inside the custom widget class is the get_context() method, which is used to set the context for the
backing widget template – just like standard Django templates. In this case, a call is made to super() to
ensure the context for the parent widget class template (i.e., forms.widgets.Input) is set and immediately
after a pair of attributes – maxlength and placeholder – are set on the widget context in the ['widget']
['attrs'] dictionary for use inside the widget template. Note the value for maxlength is fixed and the value
for placeholder is taken from the field name attribute and converted to a title with Python’s standard title
method. Finally, the get_context() method returns the updated context reference to pass it to the widget
template.

Now let’s take a look at the widget template 'about/placeholder.html' in Listing 6-31.

Listing 6-31.  Django custom form widget inherits behavior from forms.widgets.Input

about/placeholder.html
<input type="{{ widget.type }}" name="{{ widget.name }}"{% if widget.value != None %}
value="{{ widget.value }}"{% endif %}{% include "django/forms/widgets/attrs.html" %} />

django/forms/widgets/attrs.html
{% for name, value in widget.attrs.items %}{% if value is not False %} {{ name }}{% if value
is not True %}="{{ value }}"{% endif %}{% endif %}{% endfor %}

You can see in Listing 6-31 the HTML input tag is generated with values from the widget dictionary set
through the get_context method. The values for widget.type, widget.name, and widget.value are all set
behind the scenes in the parent class (i.e., forms.widgets.Input). In addition, notice the HTML input tag
uses the built-in widget template django/forms/widgets/attrs.html shown at the bottom of Listing 6-31.

Chapter 6 ■ Django Forms

260

As you can see in Table 6-4, there’s even a Jinja template renderer to allow you to customize widgets
backed by Jinja templates, in addition to other renderers used in the previous sections.

This last widget template loops over all the elements in the widgets.attrs context dictionary and generates
the input attributes. Since the widgets.attrs context dictionary is modified in Listing 6-30 to include the
maxlength and placeholder attributes, the input tag is generated with these additional attributes (e.g.,
<input type="text" name="email" maxlength="50" placeholder="Email">).

Now let’s take a step back to discuss the location of the 'about/placeholder.html' widget template.
By default, Django custom widgets are only searched for inside the templates folders in all Django apps
defined in INSTALLED_APPS. This means that in order for Django to find the custom 'about/placeholder.
html' widget template, it must be placed inside any project app’s templates folder (e.g., given a project app
named about, the custom widget should be located under templates/about/placeholder.html, where the
templates folder is at the same level of an app’s models.py and views.py files). It’s possible to define custom
widgets on a global directory, but I’ll discuss this in the last subsection on widgets.

Finally, once you define the custom widget in the right location, you can use it as part of a Django form
field (e.g., email=forms.EmailField(widget=<pkg_location>.PlaceholderInput)) to generate an HTML
input tag with a default placeholder attribute.

Custom Form Widget Configuration Options
In the previous two sections on customizing form widgets, I didn’t mention a variety of configuration
options in order to avoid getting sidetracked from the main task at hand. But now that you know how to
customize Django’s built-in widgets and how to create custom form widgets, I can provide you with these
additional details.

The first topic is related to finding and loading custom widget templates. Django defines a form
renderer through the FORM_RENDERER variable in settings.py. Table 6-4 describes the three different values
supported by the FORM_RENDERER variable.

Table 6-4.  FORM_RENDERER values that influence finding and loading custom widget templates

Form renderer class Description

django.forms.renderers.DjangoTemplates (Default) Searches and loads widget templates from the
built-in django/forms/templates/ directory (i.e., the
distribution).
Searches and loads widget templates from all
the templates directories inside apps declared in
INSTALLED_APPS.

django.forms.renderers.JinjaTemplates Searches and loads widget templates from the
built-in django/forms/jinja2/ directory (i.e., the
distribution).
Searches and loads widget templates from all
the jinja2 directories inside apps declared in
INSTALLED_APPS.

django.forms.renderers.TemplatesSetting Searches and loads widget templates based on a
project’s TEMPLATES configuration (e.g., its DIRS
values).
NOTE: This renderer requires you declare the
django.forms package as part of INSTALLED_APPS.

Chapter 6 ■ Django Forms

261

In Listing 6-30 you learned how custom widget classes use fields (e.g., template_name, input_type)
to specify certain behaviors. Fields in widgets classes are highly dependent on the parent widget class. For
example, although template_name is valid for all built-in widgets, more specialized built-in widgets can
accept additional fields. If in doubt, consult the fields supported for the built-in widget4 used as a widget’s
parent class.

In Listing 6-30 you also learned how to access and modify a widget’s template context through
the get_context() method. Although in Listing 6-30 you only added a couple of widget attributes to
the context['widget']['attrs'] dictionary, the parent context['widget'] dictionary is a large data
structure that stores all data associated with a widget, where you can inclusively update a widget’s field
values. The following snippet illustrates the contents of the context['widget'] for a form field using the
PlaceholderInput widget class from Listing 6-30.

{'widget': {'attrs': {'placeholder': 'Email', 'maxlength': 50}, 'name': 'email', 'is_
hidden': False, 'type': 'text', 'value': None, 'template_name': 'about/placeholder.html',
'required': True}}

As you can see, in addition to the HTML input attributes stored under the attrs key, there are other
widget field keys (e.g., name, is_hidden) that are made available in a template to render the final output.
This also means there’s nothing limiting you from adding custom data keys to the context['widget']
dictionary inside the get_context() method to integrate them as part of the final template layout (e.g.,
'react':{<react_data>}, 'jquery':{<jquery_data>}).

Django Advanced Form Processing: Partial Forms, AJAX,
and Files
In most cases, Django form processing adheres to the steps and code sequences outlined in the first section
of this chapter, shown in Figure 6-1. However, Django form processing can require small adjustments for
certain scenarios, like those involving partial form processing, AJAX forms, and file uploads.

Partial Forms
On occasions you may find yourself with the need to use a partial form based on a preexisting Django form. For
example, you get a request to add a similar form to the ContactForm used up to this point – in Listing 6-25 – but
without requiring the name and email fields. Since the ContactForm is tried and tested, including the necessary
post-processing logic (e.g., adding the form data to a CRM [Customer Relationship Management] system), it’s a
worthwhile idea to reuse the ContactForm class. But how do you go about using a Django form partially?

The first alternative to achieve partial forms is to hide the unneeded form fields from a user, allowing the
original form class to remain intact while not requiring a new subclass. This is the least invasive approach, but
you need to be careful with two aspects. The first aspect is the form template layout, shown in Listing 6-32.

Listing 6-32.  Django form with fields marked as hidden

<form method="POST">
 {% csrf_token %}
 <div class="row">
 <div class="col-md-2">
 {{ form.comment.label_tag }}
 {% if form.comment.help_text %}

4https://docs.djangoproject.com/en/1.11/ref/forms/widgets/#built-in-widgets

https://docs.djangoproject.com/en/1.11/ref/forms/widgets/#built-in-widgets

Chapter 6 ■ Django Forms

262

 ^{{{ form.comment.help_text }}}
 {% endif %}
 {% for error in form.comment.errors %}
 <div class="row">
 <div class="alert alert-danger">{{error}}</div>
 </div>
 {% endfor %}
 </div><div class="col-md-10 pull-left">
 {{ form.comment }}
 </div>
 </div>
 {{form.name.as_hiddden}}
 {{form.email.as_hidden}}
<input type="submit" value="Submit form" class="btn btn-primary">
</form>

First notice in Listing 6-32 the form fields are output individually and do not use a shortcut method (e.g.,
form.as_table) or loop like some of the previous form layout examples. The reason is, the last form fields are
explicitly output as hidden through the as_hidden method – described earlier in Table 6-4. The as_hidden
method generates a form field as a hidden HTML input (e.g., <input type="hidden"...>), irrespective of its form
field data type. This mechanism effectively hides fields from end users, but keeps the fields as part of the form.

Why is it important to keep fields as part of the form and not just remove them? Validation. Remember
the form instance hasn’t changed, only the requirements; you may not need the name and email data on
this template page, but the form instance and validation logic doesn’t know that. All of which takes us to the
second aspect you need to take care of: required values.

If you publish the template in Listing 6-32 without taking care of this second aspect, you might be
surprised when you realize the form never passes validation! Why? The underlying ContactForm class treats
the email field as required, therefore it must be given a value, but since the field is now hidden from an end
user, you must take care of giving the email field a value yourself – note the name field doesn’t present this
problem because it’s configured with required=False. Therefore, in order for the template in Listing 6-32 to
work, the form must be initialized with a value like the following snippet:

form = ContactForm(initial={'email':'anonymous@gmail.com'})

By initializing the form in this manner, the email form field is given this initial value as a hidden input.
So once a user submits the form, the email value is transferred back to Django as part of the form, where
validation passes since the post-processing logic gets all its expected values. Of course, if a form’s fields are
all optional (i.e., they’re marked with required=False), this initialization process is unnecessary, since the
validation won’t be expecting any value anyway.

A second alternative to achieve partial forms is to create a subclass from a form class and delete the
unneeded fields. This is a little more straightforward approach, but it does require creating a form subclass,
which may be overkill for certain scenarios. Listing 6-33 shows how to subclass a Django form class and
remove some of its parent’s fields.

Listing 6-33.  Django form subclass with removed parent fields

from coffeehouse.about.forms import ContactForm

class ContactCommentOnlyForm(ContactForm):
 def __init__(self, *args, **kwargs):
 super(ContactCommentOnlyForm, self).__init__(*args, **kwargs)
 del self.fields['name']
 del self.fields['email']

Chapter 6 ■ Django Forms

263

As you can see in Listing 6-33, the ContactCommentOnlyForm form inherits its behavior from the
ContactForm class. Next, inside the form class __init__ method, a call is made to the parent’s __init__ class
via super() and two calls are made on self.fields using Python’s del to remove both the name and email
fields from this form subclass.

Once you have the form subclass from Listing 6-33, you can generate an unbound instance form in a
view method and pass it to a template for rendering. Since this last subclass removes the name and email
fields, upon validation you won’t face previously described problem of missing values for hidden fields,
since the ContactCommentOnlyForm form now only has a single field.

AJAX Form Submission
AJAX is a technique where JavaScript on a web page communicates with a server-side application, re-
renders the web page with the result of this communication, all without a web page transition. Django forms
are often designed to submit their data via AJAX to create a smoother workflow (i.e., without changing the
original web page with a web form)

The workflow for a form that uses AJAX as far as the initial form delivery is concerned – steps 1 an 2 in
Figure 6-1 – is identical to that of a regular Django non-AJAX form: you create an unbound form instance in a
view method, which is passed to a template for rendering into a web page that’s delivered to an end user.

The first difference in Django forms that submit their data via AJAX, is the web page on which the
unbound form is delivered, must also contain the necessary JavaScript logic to send the form data to the
server-side application and also process the server-side response. Listing 6-34 illustrates this JavaScript logic
using the jQuery library to submit a Django form via AJAX.

Listing 6-34.  JavaScript jQuery logic to submit Django form via AJAX

NOTE: The following is only the Django (HTML) template with AJAX logic
See Listing 6-35 for AJAX processing views.py and urls.py
<h4>Feedback</h4>
<div class="row">
 <div id="feedbackmessage"</div>
</div>
<form method="POST" id="feedbackform" action="{% url 'stores:feedback' %}">
 {% csrf_token %}
 <div class="row">
 <div class="col-md-12 pull-left">
 {{ form.comment }}
 </div>
 </div>
 {{form.name.as_hiddden}}
 {{form.email.as_hidden}}
<input type="submit" value="Submit feedback" class="btn btn-primary">
</form>

<script>
$(document).ready(function() {
 $("#feedbackform").submit(function(event) {
 event.preventDefault();
 $.ajax({ data: $(this).serialize(),
 type: $(this).attr('method'),
 url: $(this).attr('action'),
 success: function(response) {

Chapter 6 ■ Django Forms

264

 console.log(response);
 if(response['success']) {
 �$("#feedbackmessage").html("<div class='alert alert-success'>

Succesfully sent feedback, thank you!</div>");
 $("#feedbackform").addClass("hidden");
 }
 if(response['error']) {
 �$("#feedbackmessage").html("<div class='alert alert-danger'>" +

response['error']['comment'] +"</div>");
 }
 },
 error: function (request, status, error) {
 console.log(request.responseText);
 }
 });
 });
})
</script>

The first part of Listing 6-34 is a standard Django form layout. However, notice the <form> tag includes
the action attribute. In previous Django forms, the action attribute was not used because the serving
url – GET request – and processing url – POST request – was the same one. In Listing 6-34, the action
attribute explicitly tells the browser the url where it should send the POST request – in this case {% url
'stores:feedback' %} is a Django template tag that gets translated into a url (e.g., /stores/feedback/).
Different urls are necessary in this case, because Django view methods that handle AJAX requests/responses
are different from Django view methods that handle standard web requests/responses.

Now let’s turn our attention to the bottom half of Listing 6-34 and the JavaScript logic enclosed in
<script> tags. In brief – as it would go beyond the scope of our discussion to describe jQuery syntax – the
web page awaits a click on the #feedbackform form’s submit button. Once this click is detected, an AJAX
POST request using the form’s data is sent to the url defined in the form’s action attribute. Upon completion
of the AJAX request (i.e., when the server side sends a response back), the response – in JSON format – is
analyzed. If the AJAX response contains a success message, the message is output at the top of the form
and the form is hidden to avoid multiple submissions. If the AJAX response contains an error message, the
message is output at the top of the form.

Now that you know how Django form data is submitted to the server side via AJAX, Listing 6-35
illustrates the Django view method necessary to handle this AJAX request payload.

Listing 6-35.  Django view method to process Django form via AJAX

urls.py (Main)
urlpatterns = [
 url(r'^stores/',include('coffeehouse.stores.urls',namespace="stores"))
]

urls.py (App stores)
urlpatterns = [
 url(r'^$',views.index,name="index"),
 url(r'^feedback/$',views.feedback,name="feedback"),
]

views.py (App stores)
from django.http import HttpResponse, JsonResponse
from coffeehouse.about.forms import ContactForm

Chapter 6 ■ Django Forms

265

def feedback(request):
 if request.POST:
 form = ContactForm(request.POST)
 if form.is_valid():
 return JsonResponse({'success':True})
 else:
 return JsonResponse({'error':form.errors})
 return HttpResponse("Hello from feedback!")

The first important point about the view method in Listing 6-35 is that it only handles POST requests.
Notice that in case the if request.POST: statement isn’t true, the view method always responds with the
Hello from feedback! string.

Next, inside the request.POST segment, the process starts out pretty similar to a standard Django form
processing sequence (i.e., a bound form instance is created and a call is made to the form’s is_valid()
method to validate the user-provided data). However, notice the responses for both valid and invalid form
data use JsonResponse(). Since the AJAX form submission operates in a JavaScript context, the JSON format
response is a common format to use to send a response back to the browser.

If you turn your attention back to Listing 6-34, you can see the JavaScript logic is designed to handle and
output either JSON response (success or error) returned by the view method in Listing 6-35.

Files in Forms
Django offers a couple of form fields to capture files through forms – forms.ImageField() and forms.
ImageField() described in Table 6-2. However, although these form fields generate the necessary HTML
and validation logic to enforce files are submitted via forms, there are a couple of subtleties related to
processing files in forms.

The first issue is the HTML <form> tag for forms that transfer files must explicitly set the encoding type
to enctype="multipart/form-data", in addition to using method=POST. The second issue is the contents of
files are placed in the Django request object under the special FILES dictionary key. Listing 6-36 illustrates a
form with file fields, its corresponding view method, and its template layout.

Listing 6-36.  Django form with file fields, corresponding view method, and template layout

forms.py
from django import forms

class SharingForm(forms.Form):
 # NOTE: forms.PhotoField requires Python PIL & other operating system libraries,
 # so generic FileField is used instead
 video = forms.FileField()
 photo = forms.FileField(widget=forms.ClearableFileInput(attrs={'multiple': True}))

views.py
def index(request):
 if request.method == 'POST':
 # POST, generate form with data from the request
 form = SharingForm(request.POST,request.FILES)
 # check if it's valid:
 if form.is_valid():
 # Process file data in request.FILES
 # Process data, insert into DB, generate email,etc

Chapter 6 ■ Django Forms

266

 # redirect to a new URL:
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 # GET, generate blank form
 form = SharingForm()
 return render(request,'social/index.html',{'form':form})

social/index.html
<form method="post" enctype="multipart/form-data">
 {% csrf_token %}

 {{form.as_ul}}

 <input type="submit" value="Submit photo" class="btn btn-primary">
</form>

Notice how the HTML <form> tag declares the required attributes and in addition notice how the
request.FILES reference is used to create a bound form – along with the standard request.POST. The
remaining form structures in Listing 6-36 are identical to regular non-file forms (e.g., unbound form
creation, call to is_valid()).

But similar to regular Django form processing, once a form is valid – if is_valid() returns True – you’ll
want do something with the contents of the form data; therefore in this case, you’ll need to access request.
FILES to do something with the files uploaded by a user.

But before describing how to process the contents of files in request.FILES it’s important you
understand the possible contents of the request.FILES dictionary:

Option 1) request.FILES = �{'photo': [<InMemoryUploadedFile>,<TemporaryUploadedFile>],
'video': [<InMemoryUploadedFile>]}

Option 2) request.FILES = �{'photo': [<TemporaryUploadedFile>],'video':
[<InMemoryUploadedFile>]}

The request.FILES dictionary contains keys corresponding to file field names. In this case, you can see
the photo and video keys correspond to the form fields names declared in Listing 6-36 that represent files.
Next, notice the value for each key is a list, irrespective if the file form field can accept multiple files – like photo
due to the overridden widget with the 'multiple': True attribute – or a single file – in the case of video.

Now let’s analyze the contents of the lists assigned to each file form field key. Each of the list elements
represents an uploaded file. But notice how the files are represented by either the InMemoryUploadedFile
or TemporaryUploadedFile class – both of which are subclasses of the django.core.files.uploadedfile.
UploadedFile class. The reason uploaded files are represented by either an InMemoryUploadedFile or
TemporaryUploadedFile instance class, is dependent on the size of an uploaded file.

As it turns out, before you even decide how to handle uploaded files, Django must decide what to
do and where to place uploaded files. To do this, Django relies on upload handlers. By default and unless
explicitly overridden in the FILE_UPLOAD_HANDLERS variable in settings.py,Django uses the following two
file upload handlers:

FILE_UPLOAD_HANDLERS= [
 'django.core.files.uploadhandler.MemoryFileUploadHandler',
 'django.core.files.uploadhandler.TemporaryFileUploadHandler',
]

By default, if a file is less than 2.5 MB, Django uses MemoryFileUploadHandler to place the contents of
an uploaded file into memory; if a file is larger than 2.5 MB, Django uses TemporaryFileUploadHandler to
place the contents of an uploaded file in a temporary file (e.g., /tmp/Af534.upload).

Chapter 6 ■ Django Forms

267

You can define FILE_UPLOAD_HANDLERS in settings.py to only include the file upload handler you
desire (e.g., if you wish to save memory resources remove MemoryFileUploadHandler). However, note a
file upload handler must always be active in order for file uploads to work. If you don’t like the behavior of
Django’s built-in file upload handlers, then you’ll need to write your own file upload handler.5

In addition to defining FILE_UPLOAD_HANDLERS in settings.py, there are two other parameters you can
declare in settings.py to influence the behavior of file upload handlers. The FILE_UPLOAD_MAX_MEMORY_
SIZE variable sets the threshold size at which files are held in memory vs. handled as temporary files,
defaulting to 2621440 bytes (or 2.5 MB). And the FILE_UPLOAD_TEMP_DIR variable sets the directory to which
temporary uploaded files must be saved, defaulting to None, meaning an operating system’s temporary file
directory is used (e.g., on Linux OS /tmp/).

Now that you know where and how Django stores uploaded files even before you decide how to handle
them, let’s take a look at how to process the contents of request.FILES. Listing 6-37 shows the continuation
of Listing 6-36 with the relevant snippets necessary to process uploaded files.

Listing 6-37.  Django form file processing with save procedure to MEDIA_ROOT

views.py
from django.conf import settings

def save_uploaded_file_to_media_root(f):
 with open('%s%s' % (settings.MEDIA_ROOT,f.name), 'wb+') as destination:
 for chunk in f.chunks():
 destination.write(chunk)

def index(request):
 if request.method == 'POST':
 # POST, generate form with data from the request
 form = SharingForm(request.POST,request.FILES)
 # check if it's valid:
 if form.is_valid():
 for field in request.FILES.keys():
 for formfile in request.FILES.getlist(field):
 save_uploaded_file_to_media_root(formfile)
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 # GET, generate blank form
 form = SharingForm()
 return render(request,'social/index.html',{'form':form})

After the form is_valid() method, you know each of the keys in the request.FILES dictionary are file
form fields, so a loop is created to get each file field (i.e., video, photo). Next, using the getlist() method
of the request.FILES dictionary, you obtain the list of file instances (i.e., InMemoryUploadedFile,Temporar
yUploadedFile) for each file field and loop over each element to get file instances. Finally, you execute the
save_uploaded_file_to_media_root() method on each file instance.

Each file instance – represented as the formfile reference in Listing 6-37 – is either a InMemoryUploadedFile
or TemporaryUploadedFile instance type. But as I mentioned earlier, these classes are derived from the parent
class django.core.files.uploadedfile.UploadedFile, which means file instances are also UploadedFile
instances.

5https://docs.djangoproject.com/en/1.11/ref/files/uploads/#custom-upload-handlers

https://docs.djangoproject.com/en/1.11/ref/files/uploads/#custom-upload-handlers

Chapter 6 ■ Django Forms

268

By design, the Django django.core.files.uploadedfile.UploadedFile class has a series of methods
and fields, specifically made to easily handle the contents of uploaded files, some of which include the
following:

<file_instance>.name.- Outputs the name of the file, as was on a user’s computer.

•	 <file_instance>.size.- Outputs the size of the file, in bytes.

•	 <file_instance>.content_type.- Outputs the HTTP Content-Type header assigned
to the file (e.g., text/html, application/zip).

•	 <file_instance>.chunks().- A generator method to efficiently output contents of a
file in chunks.

With the use of these UploadedFile fields and methods, you can see toward the top of Listing 6-37 the
save_uploaded_file_to_media_root() method logic includes saving the uploaded file with its original
name – using Python’s standard with...open syntax – and then using the chunks() method to efficiently
write all the pieces of the uploaded file to the file system.

■■ Note  The uploaded files in Listing 6-37 are saved under the settings.MEDIA_ROOT folder. Although you
can save files to any location you want, the standard practice for user uploaded files in Django is to save them
under the MEDIA_ROOT folder defined in settings.py.

Django Formsets
Because Django forms represent the primary means by which users introduce data into Django projects,
it’s not uncommon for Django forms to be used as a data-capturing mechanism. This, however, can lead to
an efficiency problem, relying on one Django form per web page. Django formsets allow you to integrate
multiple forms of the same type into a template – with all the necessary validation and layout facilities – to
simplify data capturing by means of multiple forms.

The good news is that all you’ve learned about Django forms up to this point – form fields, validation
workflow, template layouts, widgets, and all the other topics – applies equally to Django formsets. This
means the learning curve for formsets is rather simple, albeit you will have to learn some new concepts.

Formset initialization.- Although formsets are initialized as a group of regular Django forms, formset
initialization requires parameters specific to formsets.

•	 Formset management form.- To keep track of multiple Django forms on the same
page, formsets also use a special form called a ‘management form’.

Let’s assume you’re in the process of adding online ordering capabilities to your coffehouse application.
You already have a drink form so users can place an order for a drink, but want to add the ability for users to
order multiple drinks, so you need multiple drink forms on the same page or a drink formset.

Listing 6-38 illustrates the stand-alone DrinkForm class, the corresponding view method that generates
an empty formset, and the template layout used to display the formset.

Listing 6-38.  Django formset factory initialization and template layout

forms.py
from django import forms

DRINKS = ((None,'Please select a drink type'),(1,'Mocha'),(2,'Espresso'),(3,'Latte'))
SIZES = ((None,'Please select a drink size'),('s','Small'),('m','Medium'),('l','Large'))

Chapter 6 ■ Django Forms

269

class DrinkForm(forms.Form):
 name = forms.ChoiceField(choices=DRINKS,initial=0)
 size = forms.ChoiceField(choices=SIZES,initial=0)
 �amount = forms.ChoiceField(choices=[(None,'Amount of drinks')]+[(i, i) for i in

range(1,10)])

views.py
from django.forms import formset_factory

def index(request):
 DrinkFormSet = formset_factory(DrinkForm, extra=2, max_num=20)
 if request.method == 'POST':
 # TODO
 else:
 formset = DrinkFormSet(initial=[{'name': 1,'size': 'm','amount':1}])
 return render(request,'online/index.html',{'formset':formset})

online/index.html
<form method="post">
 {% csrf_token %}
 {{ formset.management_form }}
 <table>
 {% for form in formset %}
 <tr><td><ul class="list-inline">{{ form.as_ul }}</td></tr>
 {% endfor %}
 </table>
 <input type="submit" value="Submit order" class="btn btn-primary">
</form>

The DrinkForm class in Listing 6-38 uses standard Django form syntax, so there’s nothing new there.
However, the index view method starts by using the django.forms.formset_factory method. The formset_
factory is used to generate a FormSet class from a given form class. In this case, notice the formset_factory
uses the DrinkForm argument – representing the form class – to generate a DrinkForm formset. I’ll provide
details about the additional formset_factory arguments shortly.

Next, in Listing 6-38 you can see an unbound DrinkFormSet() instance is created with an initial value
– similar to how stand-alone unbound forms are created and use the initial argument. However, notice
the initial value is a list, unlike a stand-alone dictionary used in standard forms. Because a formset is a
group of forms, a formset’s initial value is a group of dictionaries, where each dictionary represents the
initial values for each form. In the case of Listing 6-38, one of the formset’s forms is set to initialize with the
{'name': 1,'size': 'm','amount':1} values.

Toward the bottom of Listing 6-38 you can see the template for the formset. The first difference
between a stand-alone form template, is the {{ formset.management_form }} statement to output the
management form. The second difference is the loop over the formset reference outputs the various forms.
In this case, each formset form is output in its entirety with {{form.as_ul}} as a inline form, but you can
equally use any Django form template layout technique to output each form instance in a custom manner
(e.g., remove field id values).

Chapter 6 ■ Django Forms

270

Formset Factory
The formset_factory() method used in Listing 6-38 is one of the centerpieces to working with formsets.
Although the example in Listing 6-38 only uses three arguments, the formset_factory() method can accept
up to nine arguments. The following snippet illustrates the names and default values for each argument in
the formset_factory() method.

formset_factory(form, formset=BaseFormSet, extra=1, can_order=False, can_delete=False,
 max_num=None, min_num=None, validate_max=False, validate_min=False)

As you can confirm in this snippet, the only required argument (i.e., that doesn’t have a default value)
for the formset_factory() method is form. The meaning for each argument is the following:

form.- Defines the form class on which to create a formset.
formset.- Defines the formset base class, defaults to django.forms.formsets.BaseFormSet. Changes

when you require a custom formset for cases like custom formset validation.
extra.- Defines the amount of empty forms added to a formset. If a formset’s forms are all empty

(i.e., they’re not initialized) a formset contains an extra number of forms. If a formset’s forms contain data
(i.e., they’re initialized) a formset contains the number of initialized forms + extra (empty forms).

can_order.- Adds the ORDER field (as a forms.IntegerField) to every form in a formset, with the
purpose to alter the form order in a formset. Defaults to False.

can_delete.- Adds the DELETE field (as a forms.BooleanField) to every form in a formset, with the
purpose to mark a form in a formset for deletion. Defaults to False.

max_num.- Defines the maximum number of forms to display in a formset. Defaults to None, to indicate
up to 1000 forms instances be displayed.

min_num.- Defines the minimum number of forms to display in a formset. Defaults to None, to indicate a
minimum 0 form instances be displayed.

validate_max.- Used in conjunction with max_num to ensure validation is enforced and the form
instances never exceed max_num. Defaults to False.

validate_min.- Used in conjunction with min_num to ensure validation is enforced and the form
instances are never less than min_num. Defaults to False.

Now that you’re aware of the various formset_factory() method options, let’s turn out attention back
to the method used in Listing 6-38:

formset_factory(DrinkForm, extra=2, max_num=20)

This formset_factory method creates a formset with the DrinkForm class; the extra=2 indicates to
always include 2 empty DrinkForm instances; this means that because the formset was initialized with one
DrinkForm instance in Listing 6-38, the total number of forms in the formset will be one, plus two empty
forms on account of extra=2; the max_num=20 argument indicates the formset should contain a maximum
20 DrinkForm instances.

Formset Management Form and Formset Processing
To understand the purpose of a formset’s management form, it’s easiest to look at what this form contains.
Listing 6-39 illustrates the contents of the formset management form based on the example from Listing 6-38.

Listing 6-39.  Django formset management form contents and fields

<input type="hidden" name="form-TOTAL_FORMS" value="3" id="id_form-TOTAL_FORMS" />
<input type="hidden" name="form-INITIAL_FORMS" value="1" id="id_form-INITIAL_FORMS" />
<input type="hidden" name="form-MIN_NUM_FORMS" value="0" id="id_form-MIN_NUM_FORMS" />
<input type="hidden" name="form-MAX_NUM_FORMS" value="20" id="id_form-MAX_NUM_FORMS" />

Chapter 6 ■ Django Forms

271

As you can see in Listing 6-39, the contents of a formset management form (i.e., the {{formset.
management_form}} statement from Listing 6-38) are four hidden input variables. The form-TOTAL_FORMS
field indicates the total amount of forms in a formset; the form-INITIAL_FORMS fields indicates the total
amount of initialized forms in a formset; the form-MIN_NUM_FORMS field indicates the minimum number
of forms in a formset; and the form-MAX_NUM_FORMS field indicates the maximum number of forms in the
formset.

At first glance the variables in Listing 6-39 can appear unimportant, but they provide an important role
in formsets once the various forms in a formset enter the processing and rendering phase. To better illustrate
the relevance of these formset management fields, let’s modify the formset in Listing 6-38 to allow users to
add more drink forms so they can grow their order as needed.

Listing 6-40.  Django formset designed to add extra forms by user

#views.py
def index(request):
 extra_forms = 2
 DrinkFormSet = formset_factory(DrinkForm, extra=extra_forms, max_num=20)
 if request.method == 'POST':
 if 'additems' in request.POST and request.POST['additems'] == 'true':
 formset_dictionary_copy = request.POST.copy()
 �formset_dictionary_copy['form-TOTAL_FORMS'] = int(formset_dictionary_copy

['form-TOTAL_FORMS']) + extra_forms
 formset = DrinkFormSet(formset_dictionary_copy)
 else:
 formset = DrinkFormSet(request.POST)
 if formset.is_valid():
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 formset = DrinkFormSet(initial=[{'name': 1,'size': 'm','amount':1}])
 return render(request,'online/index.html',{'formset':formset})

online/index.html
<form method="post">
 {% csrf_token %}
 {{ formset.management_form }}
 <table>
 {% for form in formset %}
 <tr><td>{{ form }}</td></tr>
 {% endfor %}
 </table>
 <input type="hidden" value="false" name="additems" id="additems">
 <button class="btn btn-primary" id="additemsbutton">Add items to order</button>
 <input type="submit" value="Submit order" class="btn btn-primary">
</form>

<script>
$(document).ready(function() {
 $("#additemsbutton").on('click',function(event) {
 $("#additems").val("true");
 });
});
</script>

Chapter 6 ■ Django Forms

272

The first important modification in Listing 6-40 comes in the formset template. Notice how the form
declares a hidden input field named additems set to false, as well as a button that when clicked changes
the value of this hidden input field to true. This mechanism is a simple control variable to keep track when a
user wants to add more items to an order (i.e., add more drink forms to the formset).

Now let’s turn to the view method in Listing 6-40 that processes the formset. First, notice the formset
uses the extra_forms variable set to two to define a formset’s extra value, so the initial formset factory
contain two extra forms, just like in Listing 6-38.

Next comes the request.POST processing formset section that has two possible outcomes. If request.
POST contains the additems field and it’s set to true, it indicates a user clicked on the button to add more
forms to the formset. If request.POST does not contain the additems field or it’s set to false, it indicates the
user clicked on the standard submit button, so a bound formset set is created and a call to is_valid() is
made on the formset. Now, let’s break down the logic behind each possible outcome.

When a user adds more forms to the formset, a copy of the request.POST is made – the copy() method
is necessary because request.POST is immutable. Next, the formset’s management form field form-TOTAL_
FORMS is modified to reflect additional forms by adding the extra_forms variables. Finally, the DrinkFormSet
is re-bound with this new modified request.POST dictionary – with an altered form-TOTAL_FORMS. When
the re-bound formset is sent back to a user, the formset will now contain two additional empty forms due to
simply modifying the form-TOTAL_FORMS management formset field.

If the formset falls to the standard POST processing and validation section in Listing 6-40, here is what
happens. First, a bound formset is created using request.POST – just like it’s done with regular bound
forms – next, the is_valid() method is called on the formset – also just like it’s done in regular bound
forms. If is_valid() returns true (i.e., there are no errors in the formset or individual forms) a redirect
is made to the success page. If is_valid() returns false (i.e., there are errors in the formset or individual
forms) an errors dictionary is attached to the formset reference and control falls to the last line – return
render(request,'online/index.html',{'formset':formset}) – which sends the formset instance with
errors for display on the template – a process that again is almost identical to standard form validation and
error management.

As you can see, with this minor modification to one of the fields in a Django formset’s management
form, it’s possible to dynamically alter the amount of forms in a formset. Note that in most cases, it isn’t
necessary to manipulate a formset’s management form fields directly, more often Django uses these values
behind the scenes to keep track of processing and rendering tasks. Albeit once you create more advanced
formset behavior (e.g., ordering forms, deleting forms), the remaining management formsets fields take on
an equally important role and may need to be manipulated directly.

Formset Custom Validation and Formset Errors
All the forms in a formset are validated against the form validation rules explained in the previous section (e.g.,
validators, clean_<field>() methods). However, sometimes it can be necessary enforce inter-form rules in a
formset, in which case you’ll need to build a custom formset class like the one illustrated in Listing 6-41.

Listing 6-41.  Django custom formset with custom validation

from django.forms import BaseFormSet

class BaseDrinkFormSet(BaseFormSet):
 def clean(self):
 �# Check errors dictionary first, if there are any error, no point in validating

further
 if any(self.errors):
 return
 name_size_tuples = []

Chapter 6 ■ Django Forms

273

 for form in self.forms:
 name_size = (form.cleaned_data['name'],form.cleaned_data['size'])
 if name_size in name_size_tuples:
 �raise forms.ValidationError("Ups! You have multiple %s %s items in your

order, keep one and increase the amount" % (dict(SIZES)
[name_size[1]],dict(DRINKS)[int(name_size[0])]))

 name_size_tuples.append(name_size)

First, notice the class in Listing 6-41 inherits its behavior from the django.forms.BaseFormSet class,
giving it all the basic functionalities of a Django formset. Next, the custom formset class defines a clean()
method, which serves the same purpose of the clean() method in a standard Django forms: to enforce
validation rules on the whole (i.e., formset) and not its individual parts (i.e., forms). The validation logic
inside the clean() method enforces that if two forms from the formset have the same name and size, an
error is raised.

Notice in Listing 6-41 how the validation error creation also uses the same forms.ValidationError()
class used in standard forms. In the event the clean() method raises a validation error, the error is assigned
to a special field called non_form_errors in a formset’s errors dictionary. Listing 6-42 shows an updated
version of the formset template in Listing 6-38 illustrating how to out a formset’s non-form errors.

Listing 6-42.  Django custom formset to display non_form_errors

<form method="post">
 {% csrf_token %}
 {{ formset.management_form }}
 {% if formset.non_form_errors %}
 <div class="alert alertdanger">{{formset.non_form_errors}}</div>
 {% endif %}
 {{ formset.management_form }}
 <table>
 {% for form in formset %}
 <tr><td><ul class="list-inline">{{ form.as_ul }}</td></tr>
 {% endfor %}
 </table>
</form>

You can see below the {{formset.management_form}} statement in Listing 6-42 a conditional loop is
made to output any errors placed in the non_forms_errors key of the formset’s errors dictionary. Although
different in name, the purpose of the formset.non_form_errors is the same as the form.non_field_errors
for regular Django forms, to display errors not associated with a specific part. Because formsets use form
constructs the error variable is called non_forms_errors and because forms use field constructs the variable
is called non_field_errors.

Note that if any errors are present in a formset’s forms, they are placed in a form’s error dictionary just
like they are in regular forms, so you can use the techniques outlined in Listing 6-28 to customize the output
of individual form errors in a formset.

Chapter 6 ■ Django Forms

274

DJANGO FORM TOOLS AND DJANGO CRISPY FORMS

In addition to the Django built-in form functionalities you’ve learned in this chapter, there are a couple
of third-party Django apps worth mentioning that are designed to solve more advanced Django form
problems.

The Django form tools package6 supports the creation of form review processes and form wizards.
A form review process forces a preview after a Django form’s data has been validated, a procedure
that’s helpful when you want end users to double-check their form data before the form life cycle ends
(e.g., reservation or purchase order). A form wizard consists of grouping forms in different pages as
part of a sequence (e.g., signup or questionnaire). The benefit of the Django form tools package is it
implements all the ‘lower level’ logic needed to support these types of Django form workflows.

Django crispy forms7 is another third-party Django app focused on advanced form layouts. Django crispy
forms is a popular choice for Django forms integrated with the Bootstrap library and forms requiring
sophisticated widget and template layouts (e.g., inline and horizontal forms).

6https://django-formtools.readthedocs.io/
7http://django-crispy-forms.readthedocs.io/

https://django-formtools.readthedocs.io/
http://django-crispy-forms.readthedocs.io/

275© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_7

CHAPTER 7

Django Models

The typical way for Django applications to interact with data is through Django models. A Django model is
an object-oriented Python class that represents the characteristics of an entity. For example, an entity can be
a person, a company, a product, or some other concept used by an application.

Because data is at the center of modern applications and the Django framework enforces the DRY
(Don’t Repeat Yourself) principle, Django models often serve as the building blocks for Django projects.
Once you have a set of Django models representing an application’s entities, Django models can also serve
as the basis to simplify the creation of other Django constructs that operate with data (e.g., forms, class-
based views, REST services, Django admin pages), hence the importance of Django models as a whole.

In this chapter you’ll learn about the core behaviors of Django models, including how to create models
and how to use migrations, which are central to working effectively with models. Next, you’ll learn about the
default behaviors of Django models and how to override them with custom behaviors. In addition, you’ll
learn about the different data types available to create Django models, the different relationships available
for Django models, and how to manage database transactions with Django models.

Next, you’ll learn more about migration files, including the various ways to create migration files, how
to rename migration files, how to squash multiple migration files into a single migration file, the meaning
behind each migration file element so you can edit migration files with confidence, and the procedure to roll
back migration files.

In addition, you’ll learn about the various Django tools designed to ease the work between Django
models and databases, such backing up and loading model data with fixture files, including how to load
initial data into Django models. Next, you’ll learn about Django signals that support the software observer
pattern in Django models. Finally, you’ll finish the chapter learning how to declare Django models outside
of their default location, as well as how to configure multiple databases and use them with Django models.

This chapter assumes you've already set up a database for a Django project. If you haven't set up a
database, see Chapter 1 on setting up a database for a Django project.

Django Models and the Migrations Workflow
Django’s primary storage technology is relational (i.e., out of the box it can connect to SQLite, Postgres,
MySQL, or Oracle), so a Django model is designed to map directly to a relational database table. This means
instances of a Django model are stored as rows of a relational table named after the model.

For example, for a Django model class named Store, by default Django performs database CRUD
(Create, Read, Update, and Delete) operations on a database table called <app_name>_store, where each of
the model’s Store instances represent database rows and a model’s fields (e.g., name, address, city, state)
map to database table columns.

https://doi.org/10.1007/978-1-4842-2787-9_7
http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 7 ■ Django Models

276

Because Django models revolve around data, they are prone to change. For example, a Django model
named Store can suddenly require the modification of its original fields due to business requirements
(e.g., the addition of a new field like email or the removal of a field that’s no longer needed like telephone).
Maintaining these Django models changes throughout time is also an important aspect of Django models
and is managed through the use migration files.

Create Django Models
Django models are stored in models.py files located inside Django apps. As soon as you create a Django app,
an empty models.py file is added to the app for future use. If you’re unfamiliar with the term Django app, see
the Chapter 1 section on setting up content. Listing 7-1 illustrates a sample Django model definition.

■■ Tip  Remember the book’s code is at https://github.com/drubio/beginningdjango, if you find it easier
to follow along with a pre-typed and structured application.

Listing 7-1.  Django model class definition in models.py

from __future__ import unicode_literals
from django.utils.encoding import python_2_unicode_compatible

from django.db import models

@python_2_unicode_compatible
class Store(models.Model):
 #id = models.AutoField(primary_key=True)# Added by default, not required explicitly
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 #objects = models.Manager()# Added by default, to required explicitly
 def __str__(self):
 return "%s (%s,%s)" % (self.name, self.city, self.state)

The first two lines in Listing 7-1 import the functionality required to run Python classes in Django using
both Python 2 and Python 3. If your Django project will just run on Python 3, you can omit these import
statements. The third line in Listing 7-1 imports the django.db.models package, which is necessary to
access Django model functionality in the class definition. Next, you can see the class Store(models.Model)
statement. The @python_2_unicode_compatible annotation is required to run the class on Python 2, but if
you just use Python 3 you can omit this annotation.

After the main class definition in Listing 7-1, you can see four fields with the models.CharField data
type that qualify the fields as character strings. Further restricting the acceptable values for each field is the
max_length argument for models.CharField (e.g., max_length=30 indicates the maximum length for the
character field is 30 characters).

For the moment, don’t worry about the models.CharField field definitions. There are many other data
types and arguments supported by Django’s models package, I’ll describe all of these options in the next
section on Django model data types.

In addition, notice the Django model in Listing 7-1 has the id and objects fields. In this case, I
commented them out with # because you don’t need to explicitly declare them; both are automatically
added to all Django models, but I put them there so you know they exist.

http://dx.doi.org/10.1007/978-1-4842-2787-9_1
https://github.com/drubio/beginningdjango

Chapter 7 ■ Django Models

277

The id field is a Django AutoField data type, which behind the scenes creates an integer table column
that increments automatically. For example, when you create the first Store record, the id field is set to 1
by the database, for the second Store record the database sets the id field to 2, and so on. The intent of the
id field is to make record searches easier and more efficient. Because the id represents a unique number to
identify a record, it’s used as a reference, which is also used as a database table’s primary key and as an index
to speed up record access. While you can override various behaviors of this default id field (e.g., change the
field name), I’ll leave the details of this for a later section.

The objects field is Django model’s default model manager, charged with managing all the query
operations associated with a Django model. Future sections in this chapter and the following chapter
describe the use of Django model managers.

■■ Tip  If you want to know more about the id field added by default to all Django models, Table 7-1 describes
the AutoField data type, which is the basis for the id field; the section “Django Model Data Types” later in
this chapter describes the purpose of the primary_key attribute used by the id field; and the save() method
described in the “Model Methods” section later in this chapter describes the practical aspects of the id field.

Finally, in Listing 7-1 you can see the class method definition for __str__ that is a standard Python
method - part of what are called ‘magic methods’ - that are helpful when attempting to view or print instances
of Django models. The __str__ method defines a human readable representation of a class instance
(e.g., a Store model instance based on Listing 7-1 is output by its name, city, and state field values).

Django model definitions even when placed in an app’s models.py file still aren’t discoverable by
Django. In order for Django to discover model definitions in models.py files, it’s necessary to declare apps as
part of the INSTALLED_APPS variable in settings.py. Listing 7-2 illustrates an INSTALLED_APPS definition to
discover Django models in the coffeehouse.stores app.

Listing 7-2.  Add app to INSTALLED_APPS in Django settings.py to detect models.py definitions

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'coffeehouse.stores',
)

As you can see in Listing 7-2, in addition to the default apps declared in INSTALLED_APPS the
coffeehouse.stores app is added at the end. This tells Django to inspect the models.py file in the
coffeehouse.stores app to take into account any Django model definitions in it.

After the previous steps, an app’s Django model definitions in models.py are ready for use. In the next
section, I’ll describe Django model migrations and the workflow associated with models in models.py files.

Migrations and the Django Model Workflow
Let’s start with an illustration of how the Django models workflow operates with migrations thrown into the
mix. Figure 7-1 shows the Django models workflow with migrations.

Chapter 7 ■ Django Models

278

Illustrated on the top-left side of Figure 7-1, the workflow starts when you add or modify Django models
on a models.py file. Once you deem the changes made to a models.py file are considerable or want them
reflected on a database, you need to create a migration file. Migration files provide a step-by-step snapshot of
the changes made to a models.py file, whether you add, remove, or modify content from the models.py file.

In order to create migration files you use the makemigrations management command. When you
run this command, Django scans the models.py files for all Django apps declared in INSTALLED_APPS,
and if Django detects a change to a models.py file, it creates a new migration file for the app. This process

Figure 7-1.  Django workflow for models with migrations

Chapter 7 ■ Django Models

279

functions like a version control system, where migration files reflect changes made to models.py from a prior
a migration file, and the entire series of migration files tells the whole evolution of an app’s models.py file.

As you can see in Figure 7-1, migration files are stored in a /migrations/ subdirectory inside an app,
alongside the models.py file they track. And by default, migration files use the naming convention <number_
shortdescription> so it’s easy to track in what order they were created and what it is they contain.

Next, let’s run makemigrations on the Django model you created in the last section. Listing 7-3
illustrates this sequence and adds the stores argument to limit the migration process to the stores app - if
you run makemigrations without any argument, Django inspects the models.py for every app in defined in
the INSTALLED_APPS variable in settings.py.

Listing 7-3.  Django makemigrations command to create migration file for changes made to models.py

[user@coffeehouse ~]$ python manage.py makemigrations stores
Migrations for 'stores':
 0001_initial.py:
 - Create model Store

After running makemigrations stores in Listing 7-3, you can see the migration file 0001_initial.py.
The file is given this name because it’s the first migration parting from an empty models.py. Future changes
to the models.py generate migration files named 0002.,0003...

Turning our attention back the workflow in Figure 7-1, migration files by themselves are just a first step
in the Django models workflow. Next, you can either preview or apply these migration files so the models
become part of a database.

To preview the actual SQL statements for a migration before they’re applied to a database, you run the
sqlmigrate <app_name> <migration_name> command. Listing 7-4 illustrates the sqlmigrate sequence for
the migration file from the last step.

Listing 7-4.  Django sqlmigrate command to preview SQL generated by migration file

[user@coffeehouse ~]$ python manage.py sqlmigrate stores 0001
BEGIN;
CREATE TABLE "stores_store" ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "name"
varchar(30) NOT NULL, "address" varchar(30) NOT NULL, "city" varchar(30) NOT NULL, "state"
varchar(2) NOT NULL);

COMMIT;

As you can see in Listing 7-4, the migration file 0001_initial.py for the stores app is set to run an
SQL statement that creates a database table named stores_store with field names that correspond to the
Django model from Listing 7-1.

■■ Tip  You can change a Django model’s default database table name with the db_table Meta class option;
the ‘Model Meta Class’ section describes this in detail.

Previewing the SQL statements generated by a migration file might not seem too exciting at this stage,
but it can be very helpful in other circumstances. For example, if you make complex changes to a Django
model or your database is relatively large, it’s beneficial to preview the SQL before applying the migration file
directly to a database.

Finally, the last step in the workflow for Django models is to apply the migration files to a database
with the migrate command. Listing 7-5 illustrates this sequence and adds the stores argument to limit the
process to the stores app - if you run migrate without any argument, Django processes the migration files for
every app in a project.

Chapter 7 ■ Django Models

280

Listing 7-5.  Django migrate command to execute migration files on database

[user@coffeehouse ~]$ python manage.py migrate stores
Operations to perform:
 Apply all migrations: stores
Running migrations:
 Applying stores.0001_initial... OK

In Listing 7-5 the stores.0001_initial migration is run against the database. This means the SQL
presented in Listing 7-4 is executed against the database.

■■ Caution  Be careful manipulating the database directly without applying the same changes via Django
migrations, as this can lead to inconsistencies and errors.

■■ Tip  If you don’t want a Django model to use migrations, you can use the managed Meta class option; see
the “Django Meta Class” section for details.

To keep track of applied migrations, on the bottom-left side of Figure 7-1 you can see the use of
the showmigrations management command. The showmigrations command outputs a list of project
migrations, with an X besides those migration files that have been applied to a database. It’s worth
mentioning the showmigrations command obtains its data by inspecting migration files in migration
folders and the django_migrations database table that keeps track of applied migrations.

Django Model Data Types
Data needs to conform to certain rules for it to be useful in any application. If it weren’t for rules, then you
can easily end up with ZIP code numbers where you expect address information or extensive text where you
expect a maximum 10-character input. Django models can use several data types to enforce model data fit
certain rules (e.g., text, number, email).

It’s important to understand Django model data types operate on two layers: at the database layer
and the Django/Python layer. When you define a Django model with its data types and create its initial
migration, Django generates and executes a model’s DDL (Data definition language) to create a database
table, and this DDL contains rules that reflect a Django model’s fields (e.g., a Django IntegerField model
field gets translated into an INTEGER DB column to enforce integer values). This means that if you change
this type of Django model field (e.g., changing an integer field to a text field), it requires generating a new
migration in order for the database table to also reflect any new rule.

In addition to this rule enforcement created at the outset by a Django model at the database layer,
Django model fields also enforce data rules at the Django/Python layer (i.e., prior to inserting/updating data
in the database). For example, Django model field parameters like choices enforce a field’s values conform
to a set of choices; this type of rule is enforced when you attempt to create, save, or update Django model
records and is done irrespective of the database table rules. This means you can simply change a Django
model field associated with this type of rule and not have to create a new migration to alter the underlying
database table – in this case, changing the Python code is enough to change validation behavior.

Always keep this subtly in mind for Django model field data types: some Django model changes require
creating a migration, while others can simply take effect changing the Django model field code. Table 7-1
illustrates the various Django model fields and the DDL they produce for all of the four main relational
database supported by Django: SQLite, MySQL, PostgreSQL, and Oracle.

Chapter 7 ■ Django Models

281

Ta
bl

e
7-

1.
 D

ja
n

go
 m

od
el

 d
at

a
ty

pe
s

an
d

ge
n

er
at

ed
 D

D
L

by
 d

at
ab

as
e

D
at

a
ty

pe
D

ja
ng

o
m

od
el

 ty
pe

D
at

ab
as

e
D

D
L

D
es

cr
ip

tio
n

- V
al

id
at

io
n

- N
ot

es

SQ
Li

te
M

yS
Q

L
Po

st
gr

eS
Q

L
O

ra
cl

e

B
in

ar
y

m
od

el
s.

B
in

ar
yF

ie
ld

()
B

LO
B

 N
O

T
 N

U
LL

lo
n

gb
lo

b
 N

O
T

N

U
LL

by
te

a
N

O
T

N

U
LL

B
LO

B
 N

U
LL

C
re

at
es

 a
 b

lo
b

 fi
el

d
 to

st

or
e

b
in

ar
y

d
at

a
(e

.g
.,

im
ag

es
, a

u
d

io
 o

r
ot

h
er

m

u
lt

im
ed

ia
 o

b
je

ct
s)

.

B
oo

le
an

m
od

el
s.

B
oo

le
an

Fi
el

d
()

b
oo

l N
O

T
 N

U
LL

b
oo

l N
O

T
 N

U
LL

b
oo

le
an

 N
O

T

N
U

LL
N

U
M

B
E

R
(1

)
N

O
T

N

U
LL

 C
H

E
C

K
 (

“V
A

R
”

IN
 (

0,
1)

)

C
re

at
es

 a
 B

oo
le

an
 fi

el
d

to

 s
to

re
 T

ru
e/

Fa
ls

e
(o

r
0/

1)
 v

al
u

es
.

B
oo

le
an

m
od

el
s.

N
u

llB
oo

le
an

Fi
el

d
()

b
oo

l N
U

LL
b

oo
l N

U
LL

b
oo

le
an

 N
U

LL
N

U
M

B
E

R
(1

)
N

U
LL

C

H
E

C
K

 (
(“

V
A

R
”

IN

(0
,1

))
 O

R
 (

“V
A

R
”

IS

N
U

LL
))

W
or

ks
 ju

st
 li

ke

B
oo

le
an

Fi
el

d
 b

u
t a

ls
o

al
lo

w
s

N
U

LL
 v

al
u

es
.

D
at

e/
ti

m
e

m
od

el
s.

D
at

eF
ie

ld
()

d
at

e
N

O
T

 N
U

LL
d

at
e

N
O

T
 N

U
LL

d
at

e
N

O
T

 N
U

LL
D

A
T

E
 N

O
T

 N
U

LL
C

re
at

es
 a

 d
at

e
fi

el
d

 to

st
or

e
d

at
es

.

D
at

e/
ti

m
e

m
od

el
s.T

im
eF

ie
ld

()
ti

m
e

N
O

T
 N

U
LL

ti
m

e
N

O
T

N

U
LL

ti
m

e
N

O
T

N

U
LL

T
IM

E
ST

A
M

P
 N

O
T

N

U
LL

C
re

at
es

 a
 ti

m
e

fi
el

d
 to

st

or
e

ti
m

es
.

D
at

e/
ti

m
e

m
od

el
s.

D
at

eT
im

eF
ie

ld
()

d
at

et
im

e
N

O
T

 N
U

LL
d

at
et

im
e

N
O

T

N
U

LL
ti

m
es

ta
m

p
 w

it
h

ti

m
e

zo
n

e
N

O
T

N

U
LL

T
IM

E
ST

A
M

P
 N

O
T

N

U
LL

C
re

at
es

 a
 d

at
et

im
e

fi
el

d

to
 s

to
re

 d
at

es
 w

it
h

 ti
m

es
.

D
at

e/
ti

m
e

m
od

el
s.

D
u

ra
ti

on
Fi

el
d

()
b

ig
in

t N
O

T
 N

U
LL

b
ig

in
t N

O
T

N

U
LL

in
te

rv
al

 N
O

T

N
U

LL
IN

T
E

R
V

A
L

D
A

Y
(9

)
T

O
 S

E
C

O
N

D
(6

)
N

O
T

N

U
LL

C
re

at
es

 a
 fi

el
d

 to
 s

to
re

p

er
io

d
s

of
 ti

m
e.

N
u

m
b

er
m

od
el

s.
A

u
to

Fi
el

d
()

in
te

ge
r

N
O

T
 N

U
LL

A

U
T

O
IN

C
R

E
M

E
N

T
in

te
ge

r
A

U
T

O
_

IN
C

R
E

M
E

N
T

N

O
T

 N
U

LL

se
ri

al
 N

O
T

N

U
LL

N
U

M
B

E
R

(1
1)

 N
O

T

N
U

LL
 &

 a
ls

o
cr

ea
te

s
a

SE
Q

U
E

N
C

E
 a

n
d

T

R
IG

G
E

R
 to

 in
cr

ea
se

th

e
fi

el
d

C
re

at
es

 a
n

 in
te

ge
r

th
at

 a
u

to
in

cr
em

en
ts

,
p

ri
m

ar
ily

 u
se

d
 fo

r
cu

st
om

 p
ri

m
ar

y
ke

ys
.

(c
on

ti
n

u
ed

)

Chapter 7 ■ Django Models

282

N
u

m
b

er
m

od
el

s.
B

ig
In

te
ge

r
Fi

el
d

()
b

ig
in

t N
O

T
 N

U
LL

b
ig

in
t N

O
T

N

U
LL

b
ig

in
t N

O
T

N

U
LL

N
U

M
B

E
R

(1
9)

 N
O

T

N
U

LL
C

re
at

e
a

bi
g

in
te

ge
r

to

fit
 n

u
m

b
er

s
b

et
w

ee
n

-9

22
33

72
03

68
54

77
58

08

to
 9

22
33

72
03

68
54

77
58

07
.

T
h

is
 ra

n
ge

 m
ay

 v
ar

y
d

ep
en

d
in

g
on

 th
e

D
B

br

an
d

.

N
u

m
b

er
m

od
el

s.
D

ec
im

al
Fi

el
d

(
d

ec
im

al
_p

la
ce

s=
X

,
m

ax
_d

ig
it

s=
Y

)

d
ec

im
al

 N
O

T
 N

U
LL

n
u

m
er

ic
(X

, Y
)

N
O

T
 N

U
LL

n
u

m
er

ic
(X

, Y
)

N
O

T
 N

U
LL

N
U

M
B

E
R

(1
0,

 3
)

N
O

T

N
U

LL
E

n
fo

rc
es

 a
 n

u
m

b
er

 h
av

e
a

m
ax

im
u

m
 X

 d
ig

it
s

an
d

 Y
 d

ec
im

al
 p

oi
n

ts
.

C
re

at
es

 a
 d

ec
im

al

fi
el

d
 to

 s
to

re
 d

ec
im

al

n
u

m
b

er
s.

 N
ot

e
b

ot
h

 X

an
d

 Y
 a

rg
u

m
en

ts
 a

re

re
q

u
ir

ed
, w

h
er

e
th

e
X

ar

gu
m

en
t r

ep
re

se
n

ts

th
e

m
ax

im
u

m
 n

u
m

b
er

of

 d
ig

it
s

to
 s

to
re

 a
n

d
 th

e
Y

 a
rg

u
m

en
t r

ep
re

se
n

ts

th
e

n
u

m
b

er
 o

f d
ec

im
al

p

la
ce

s
to

 s
to

re
.

N
u

m
b

er
m

od
el

s.
Fl

oa
tF

ie
ld

()
re

al
 N

O
T

 N
U

LL
d

ou
b

le

p
re

ci
si

on
 N

O
T

N

U
LL

d
ou

b
le

p

re
ci

si
on

 N
O

T

N
U

LL

D
O

U
B

LE
 P

R
E

C
IS

IO
N

N

O
T

 N
U

LL
C

re
at

es
 a

 c
ol

u
m

n
 to

 s
to

re

flo
at

in
g-

p
oi

n
t n

u
m

b
er

s.

N
u

m
b

er
m

od
el

s.
In

te
ge

rF
ie

ld
()

in
te

ge
r

N
O

T
 N

U
LL

in
te

ge
r

N
O

T

N
U

LL
in

te
ge

r
N

O
T

N

U
LL

N
U

M
B

E
R

(1
1)

 N
O

T

N
U

LL
C

re
at

es
 a

 c
ol

u
m

n
 to

st

or
e

in
te

ge
r

n
u

m
b

er
s.

N
u

m
b

er
m

od
el

s.
P

os
it

iv
eI

n
te

ge
rF

ie
ld

()
in

te
ge

r
u

n
si

gn
ed

N

O
T

 N
U

LL
in

te
ge

r
U

N
SI

G
N

E
D

N

O
T

 N
U

LL

in
te

ge
r

N
O

T

N
U

LL
 C

H
E

C
K

(“

V
A

R
”

>=
 0

)

N
U

M
B

E
R

(1
1)

 N
O

T

N
U

LL
 C

H
E

C
K

(“

V
A

R
”

>=
 0

)

E
n

fo
rc

es
 v

al
u

es
 fr

om
 0

to

 2
14

74
83

64
7.

 W
or

ks

ju
st

 li
ke

 In
te

ge
rF

ie
ld

 b
u

t
lim

it
s

va
lu

es
 to

 p
os

it
iv

e
n

u
m

b
er

s.

Ta
bl

e
7-

1.
 (

co
n

ti
n

u
ed

)

D
at

a
ty

pe
D

ja
ng

o
m

od
el

 ty
pe

D
at

ab
as

e
D

D
L

D
es

cr
ip

tio
n

- V
al

id
at

io
n

- N
ot

es

SQ
Li

te
M

yS
Q

L
Po

st
gr

eS
Q

L
O

ra
cl

e

Chapter 7 ■ Django Models

283

N
u

m
b

er
m

od
el

s.
P

os
it

iv
eS

m
al

l
In

te
ge

rF
ie

ld
()

sm
al

lin
t u

n
si

gn
ed

N

O
T

 N
U

LL
sm

al
lin

t
U

N
SI

G
N

E
D

N

O
T

 N
U

LL

sm
al

lin
t N

O
T

N

U
LL

 C
H

E
C

K

(“
V

A
R

”
>=

 0
)

N
U

M
B

E
R

(1
1)

 N
O

T

N
U

LL
 C

H
E

C
K

 (
“V

A
R

”
>=

 0
)

E
n

fo
rc

es
 v

al
u

es
 fr

om

0
to

 3
27

67
. W

or
ks

ju

st
 li

ke
 In

te
ge

rF
ie

ld

an
d

 th
e

sp
ec

ia
liz

ed

P
os

it
iv

eI
n

te
ge

rF
ie

ld

bu
t l

im
it

s
n

u
m

b
er

s
to

 a

sm
al

le
r

p
os

it
iv

e
ra

n
ge

.

N
u

m
b

er
op

ti
on

s.
Sm

al
l

In
te

ge
rF

ie
ld

()
sm

al
lin

t N
O

T
 N

U
LL

sm
al

lin
t N

O
T

N

U
LL

sm
al

lin
t N

O
T

N

U
LL

N
U

M
B

E
R

(1
1)

 N
O

T

N
U

LL
E

n
fo

rc
es

 a
 n

u
m

b
er

 is
 in

th

e
ra

n
ge

 fr
om

 -
32

76
8

to
 3

27
67

. W
or

ks
 ju

st
 li

ke

In
te

ge
rF

ie
ld

 b
u

t i
n

 a

sm
al

le
r

in
te

ge
r

ra
n

ge
.

Te
xt

m
od

el
s.

C
h

ar
Fi

el
d

(
m

ax
_l

en
gt

h
=N

)
va

rc
h

ar
(N

)
N

O
T

N

U
LL

va
rc

h
ar

(5
0)

N

O
T

 N
U

LL
va

rc
h

ar
(5

0)

N
O

T
 N

U
LL

N
V

A
R

C
H

A
R

2(
50

)
N

U
LL

C
re

at
es

 a
 te

xt
 c

ol
u

m
n

,
w

h
er

e
th

e
m

ax
_l

en
gt

h

ar
gu

m
en

t i
s

re
q

u
ir

ed
 to

sp

ec
if

y
th

e
m

ax
im

u
m

le

n
gt

h
 in

 c
h

ar
ac

te
rs

.

Te
xt

m
od

el
s.T

ex
tF

ie
ld

()
te

xt
 N

O
T

 N
U

LL
lo

n
gt

ex
t N

O
T

N

U
LL

te
xt

 N
O

T
 N

U
LL

N
C

LO
B

 N
U

LL
C

re
at

es
 a

 te
xt

 fi
el

d
 to

st

or
e

te
xt

.

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

C
om

m
aS

ep
ar

at
ed

In

te
ge

rF
ie

ld
(

m
ax

_l
en

gt
h

=5
0)

va
rc

h
ar

(N
)

N
O

T

N
U

LL
va

rc
h

ar
(N

)
N

O
T

 N
U

LL
va

rc
h

ar
(N

)
N

O
T

 N
U

LL
N

V
A

R
C

H
A

R
2(

N
)

N
U

LL
E

n
fo

rc
es

 th
e

st
ri

n
g

a
C

SV
 o

f i
n

te
ge

rs
. W

or
ks

ju

st
 li

ke
 C

h
ar

Fi
el

d

ex
ce

p
t D

ja
n

go
 e

n
fo

rc
es

th

e
st

ri
n

g
b

e
a

co
m

m
a

se
p

ar
at

ed
 v

al
u

e
of

in

te
ge

rs
 p

ri
or

 to

in
te

ra
ct

in
g

w
it

h
 th

e
d

at
ab

as
e

(e
.g

.,
3,

54
,

54
,6

64
,6

5)
.

(c
on

ti
n

u
ed

)

Chapter 7 ■ Django Models

284

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

E
m

ai
lF

ie
ld

()
va

rc
h

ar
(2

54
)

N

O
T

 N
U

LL
va

rc
h

ar
(2

54
)

N
O

T
 N

U
LL

va
rc

h
ar

(2
54

)
N

O
T

 N
U

LL
N

V
A

R
C

H
A

R
2(

25
4)

N

U
LL

E
n

fo
rc

es
 th

e
te

xt
 is

a

va
lid

 e
m

ai
l w

it
h

th

e
in

te
rn

al
 D

ja
n

go

E
m

ai
lV

al
id

at
or

 to

d
et

er
m

in
e

w
h

at
 is

 a
n

d

is
n

't
a

va
lid

. W
or

ks
 ju

st

lik
e

C
h

ar
Fi

el
d

 d
ef

au
lt

in
g

to
 a

 m
ax

_l
en

gt
h

 o
f 2

54

ch
ar

ac
te

rs
 a

n
d

 a
ls

o
en

fo
rc

es
 th

e
st

ri
n

g
is

 a

va
lid

 e
m

ai
l.

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

Fi
le

Fi
el

d
()

va
rc

h
ar

(1
00

)

N
O

T
 N

U
LL

va
rc

h
ar

(1
00

)
N

O
T

 N
U

LL
va

rc
h

ar
(1

00
)

N
O

T
 N

U
LL

N
V

A
R

C
H

A
R

2(
10

0)

N
U

LL
E

n
fo

rc
es

 a
n

d
 p

ro
vi

d
es

va

ri
ou

s
u

ti
lit

ie
s

to

h
an

d
le

 fi
le

s
(e

.g
.,

op
en

in
g/

cl
os

in
g

fi
le

,
u

p
lo

ad
 lo

ca
ti

on
,e

tc
.)

.
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

d

ef
au

lt
in

g
to

 a
 m

ax
_

le
n

gt
h

 o
f 1

00
 c

h
ar

ac
te

rs

an
d

 a
ls

o
en

fo
rc

es
 th

e
st

ri
n

g
is

 a
 v

al
id

 fi
le

.

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

Fi
le

Pa
th

Fi
el

d
()

va
rc

h
ar

(1
00

)

N
O

T
 N

U
LL

va
rc

h
ar

(1
00

)
N

O
T

 N
U

LL
va

rc
h

ar
(1

00
)

N
O

T
 N

U
LL

N
V

A
R

C
H

A
R

2(
10

0)

N
U

LL
E

n
fo

rc
es

 a
n

d
 p

ro
vi

d
es

va

ri
ou

s
u

ti
lit

ie
s

to
 li

m
it

ch

oi
ce

s
of

 fi
le

n
am

es

in
 c

er
ta

in
 fi

le
sy

st
em

d

ir
ec

to
ri

es
. W

or
ks

 ju
st

lik

e
C

h
ar

Fi
el

d
 d

ef
au

lt
in

g
to

 a
 m

ax
_l

en
gt

h
 o

f 1
00

ch

ar
ac

te
rs

 a
n

d
 a

ls
o

en
fo

rc
es

 th
e

st
ri

n
g

is
 a

va

lid
 fi

le
 in

 a
 fi

le
sy

st
em

d

ir
ec

to
ry

.

Ta
bl

e
7-

1.
 (

co
n

ti
n

u
ed

)

D
at

a
ty

pe
D

ja
ng

o
m

od
el

 ty
pe

D
at

ab
as

e
D

D
L

D
es

cr
ip

tio
n

- V
al

id
at

io
n

- N
ot

es

SQ
Li

te
M

yS
Q

L
Po

st
gr

eS
Q

L
O

ra
cl

e

Chapter 7 ■ Django Models

285

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

Im
ag

eF
ie

ld
()

va
rc

h
ar

(1
00

)

N
O

T
 N

U
LL

va
rc

h
ar

(1
00

)
N

O
T

 N
U

LL
va

rc
h

ar
(1

00
)

N
O

T
 N

U
LL

N
V

A
R

C
H

A
R

2(
10

0)

N
U

LL
E

n
fo

rc
es

 a
n

d
pr

ov
id

es

va
ri

ou
s

u
ti

lit
ie

s
to

 h
an

dl
e

im
ag

e
fil

es
 (e

.g
. g

et
ti

n
g

th
e

h
ei

gh
t &

 w
id

th
).

W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

an

d
th

e
sp

ec
ia

liz
ed

Fi

le
Fi

el
d

de
fa

u
lt

in
g

to

a
m

ax
_l

en
gt

h
 o

f 1
00

ch

ar
ac

te
rs

 a
n

d
al

so

en
fo

rc
es

 th
e

st
ri

n
g

is

a
va

lid
 im

ag
e.

 N
ot

e
th

is
 fi

el
d

re
qu

ir
es

 th
e

pr
es

en
ce

 o
f t

h
e

P
ill

ow

P
yt

h
on

 li
br

ar
y

(e
.g

.,
pi

p

in
st

al
l P

ill
ow

).

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

G
en

er
ic

IP
A

d
d

re
ss

Fi

el
d

()

ch
ar

(3
9)

 N
O

T

N
U

LL
ch

ar
(3

9)
 N

O
T

N

U
LL

in
et

 N
O

T
 N

U
LL

V
A

R
C

H
A

R
2(

39
)

N
U

LL
E

n
fo

rc
es

 a
n

d
 p

ro
vi

d
es

va

ri
ou

s
u

ti
lit

ie
s

to

on
ly

 a
cc

ep
t v

al
id

 IP
v4

or

 IP
v6

 a
d

d
re

ss
es

(e

.g
.,

19
8.

10
.2

2.
64

 a
n

d

FE
80

::0
20

2:
B

3F
F.

:F
E

1E
:8

32
9,

 a
s

w
el

l a
s

u
ti

lit
ie

s
lik

e
u

n
p

ac
k_

ip
v4

an

d
 p

ro
to

co
l)

. W
or

ks
 ju

st

lik
e

C
h

ar
Fi

el
d

 d
ef

au
lt

in
g

to
 a

 m
ax

_l
en

gt
h

 o
f 3

9
ch

ar
ac

te
rs

 a
n

d
 e

n
fo

rc
es

th

e
st

ri
n

g
is

 a
 v

al
id

 IP

ad
d

re
ss

.

(c
on

ti
n

u
ed

)

Chapter 7 ■ Django Models

286

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

Sl
u

gF
ie

ld
()

va
rc

h
ar

(5
0)

N

O
T

 N
U

LL
va

rc
h

ar
(5

0)

N
O

T
 N

U
LL

va
rc

h
ar

(5
0)

N

O
T

 N
U

LL
N

V
A

R
C

H
A

R
2(

50
)

N
U

LL
E

n
fo

rc
es

 a
 s

tr
in

g
is

 a
 s

lu
g

st
ri

n
g,

 w
h

ic
h

 is
 a

 s
tr

in
g

th
at

 o
n

ly
 c

on
ta

in
s

le
tt

er
s,

n

u
m

b
er

s,
 u

n
d

er
sc

or
es

or

 h
yp

h
en

s.
 W

or
ks

 ju
st

lik

e
C

h
ar

Fi
el

d
 d

ef
au

lt
in

g
to

 a
 m

ax
_l

en
gt

h
 o

f 5
0

ch
ar

ac
te

rs
 a

n
d

 e
n

su
re

th

e
p

ro
vi

d
ed

 s
tr

in
g

is
 a

 s
lu

g
-

a
co

n
ce

p
t

th
at

's
 ty

p
ic

al
ly

 u
se

d

to
 c

le
an

se
 U

R
L

st
ri

n
gs

th

at
 c

on
ta

in
 s

p
ac

es
 a

n
d

ot

h
er

 p
ot

en
ti

al
ly

 in
va

lid

ch
ar

ac
te

r
lik

e
le

tt
er

 w
it

h

ac
ce

n
ts

.

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

U
R

LF
ie

ld
()

va
rc

h
ar

(2
00

)

N
O

T
 N

U
LL

va
rc

h
ar

(2
00

)
N

O
T

 N
U

LL
va

rc
h

ar
(2

00
)

N
O

T
 N

U
LL

N
V

A
R

C
H

A
R

2(
20

0)

N
U

LL
E

n
fo

rc
es

 th
e

p
ro

vi
d

ed

te
xt

 v
al

u
e

is
 a

 v
al

id
 U

R
L

.
W

or
ks

 ju
st

 li
ke

 C
h

ar
Fi

el
d

d

ef
au

lt
in

g
to

 a
 m

ax
_

le
n

gt
h

 o
f 2

00
 c

h
ar

ac
te

rs

an
d

 e
n

fo
rc

es
 th

e
st

ri
n

g
is

a

va
lid

 U
R

L
.

Te
xt

(S

p
ec

ia
liz

ed
)

m
od

el
s.

U
U

ID
Fi

el
d

()
ch

ar
(3

2)
 N

O
T

N

U
LL

ch
ar

(3
2)

 N
O

T

N
U

LL
u

u
id

 N
O

T

N
U

LL
V

A
R

C
H

A
R

2(
32

)
N

O
T

N

U
LL

E
n

fo
rc

es
 th

e
p

ro
vi

d
ed

te

xt
 is

 a
 U

n
iv

er
sa

lly

u
n

iq
u

e
id

en
ti

fi
er

s
(U

U
ID

)
W

or
ks

 ju
st

 li
ke

C

h
ar

Fi
el

d
 d

ef
au

lt
in

g
to

 a
 m

ax
_l

en
gt

h
 o

f 3
2

ch
ar

ac
te

rs
 a

n
d

 e
n

fo
rc

es

th
e

va
lu

e
is

 a
 U

U
ID

.

Ta
bl

e
7-

1.
 (

co
n

ti
n

u
ed

)

D
at

a
ty

pe
D

ja
ng

o
m

od
el

 ty
pe

D
at

ab
as

e
D

D
L

D
es

cr
ip

tio
n

- V
al

id
at

io
n

- N
ot

es

SQ
Li

te
M

yS
Q

L
Po

st
gr

eS
Q

L
O

ra
cl

e

Chapter 7 ■ Django Models

287

ORACLE NOT NULL CONSIDERED HARMFUL

If you look closely at some of the DDL generated for the different Django model fields in Table 7-1
(e.g., models.CharField(), models.FileField()), you’ll notice Oracle generates DB columns with the
NULL constraint, whereas the other three database brands generate DB columns with the NOT NULL
constraint; this is neither a typo or a bug, it’s by design due to the way Oracle works.

Even though Oracle does support the NOT NULL constraint as the other database brands do, Oracle
comes with the side effect that it also treats empty strings ‘’ as NOT NULL values. This means that if
Django attempts to store an empty string ‘’ (e.g., on a CharField() or FieldField()) in an Oracle database,
the operation would be rejected if the NOT NULL constraint were present - an operation that’s perfectly
valid in other databases even with the NOT NULL constraint. So to maintain uniformity across databases
and to avoid this Oracle specific edge-case, Django opts to not use the NOT NULL constraint for certain
scenarios.

Note this is a well-known Oracle ‘feature’ or ‘quirk’ - depending on your perspective - that’s been
known for years: how to insert an empty string (zero-length) in a non-nullable column? A: You can’t.
Oracle states this fact in their docs and also mentions this behavior may change in the future to become
standard compliant (ANSI), but as of the latest version Oracle 12c, this behavior remains the same.
I’ll provide some Django-specific details related to working with NULL, NOT NULL, and empty string ‘’
issues in the next section.

As you can see in Table 7-1, Django model fields produce slightly different DDL depending on the
database brand, albeit the end behavior for all back ends maps as close as possible to one another, with
Django/Python rule enforcement filling in the gaps.

For example, for a Django model field like models.DurationField(), SQLite and MySQL use the bigint
data type, whereas PostgreSQL and Oracle use the more specialized interval data type. Similarly for Django
model fields like models.CommaSeparatedIntegerField() and models.EmailField(), at the database level
these are represented as basic character varchar data types - or NVARCHAR2 in Oracle - and it’s Django/
Python that enforces that the text representation is a valid CSV of integers or email, respectively.

With knowledge of the initial DDL generated by each Django model field, in the next sections I’ll
present the various Django model field options and their behavior associated with the original DDL and
Django/Python validation.

Limiting Values: max_length, min_value, max_value, max_digits, and
decimal_places
Limiting values to a certain range is one of the most basic options in Django model fields. For text-based
data types the max_length option enforces values don’t surpass a certain number of characters. In Table 7-1
you can see the CharField data type requires you specify the max_length option and for more specialized
text-based data types (e.g., EmailField) Django assigns a default max_length option value, which you can
override with an explicit max_length value.

For fields that use the IntegerField data type, Django offers the min_value and max_value options to
restrict a value to lower/upper bounds (e.g., IntegerField(min_value=0,max_value=1000) limits values to
a 0 to 1000 range). Similarly, for fields with the DecimalField data type, Django requires you specify the max_
digits and decimal_places options to enforce a value’s maximum number of digits and decimal points,
respectively.

Chapter 7 ■ Django Models

288

Empty, Null and Not Null Values: Blank and Null
By default, all Django model fields are assigned a NOT NULL restriction at the database level; if you look at
Table 7-1 again you can confirm this by the generated DDL - the only exception is for certain fields on Oracle
databases, which is explained in the sidebar below Table 7-1.

This means that when you create/update a record with a NOT NULL field on it, a value must be provided for
the field or otherwise the database rejects the operation. On certain occasions though, it can be necessary to allow
empty field values or as they’re known in the database world NULL values. To allow Django model fields to support
NULL values at the database level, you must declare the null=True field option (e.g., IntegerField(null=True)
allows an integer field to be left empty and generates DDL with NULL instead of the default NOT NULL).

In addition to the null option that’s enforced at the database level and which defaults to null=False,
Django also supports the blank option. The blank option also defaults to blank=False on all fields and is used
to enforce Django/Python validation through forms that work on Django models (e.g., creating a Django model
record through a form in the Django admin or a custom Django form). If a Django model field is declared with
blank=True, Django permits the field to be left blank in a form, otherwise (i.e., if blank=True isn’t explicitly
declared in a model field) Django rejects the form and forces an end user to provide a value for the field.

Since the use of null and blank options can be one of the most confusing topics in Django model field
options, Table 7-2 presents a matrix with different model definitions and operations to better illustrate this
behavior.

Chapter 7 ■ Django Models

289

Ta
bl

e
7-

2.
 D

ja
n

go
 m

od
el

 v
al

id
at

io
n

 fo
r

bl
an

k
an

d
n

u
ll

fi
el

d
op

ti
on

s

M
od

el
 d

ef
in

iti
on

cl
as

s
Pe

rs
on

(m
od

el
s.

M
od

el
):

fi
rs

t_
na

m
e

=
m

od
el

s.
C

ha
rF

ie
ld

(m
ax

_l
en

gt
h=

30
)

m
id

dl
e_

na
m

e
=

m
od

el
s.

C
ha

rF
ie

ld
(m

ax
_l

en
gt

h=
30

)

la
st

_n
am

e
=

m
od

el
s.

C
ha

rF
ie

ld
(m

ax
_l

en
gt

h=
30

)

B
la

n
k

an
d

 n
u

ll
fi

el
d

 c
om

b
in

at
io

n
s

D
ef

au
lt

 (
b

la
n

k=
Fa

ls
e,

n
u

ll=
Fa

ls
e)

m
id

d
le

_n
am

e
=

m
od

el
s.

C
h

ar
Fi

el
d

(m
ax

_
le

n
gt

h
=3

0)

n
u

ll=
T

ru
e

(w
it

h
 d

ef
au

lt
b

la
n

k=
Fa

ls
e)

 m
id

d
le

_
n

am
e

=
m

od
el

s.
C

h
ar

Fi
el

d
(m

ax
_l

en
gt

h
=3

0,
n
u
ll
=

T
ru

e)

b
la

n
k=

T
ru

e
(w

it
h

 d
ef

au
lt

n
u

ll=
T

ru
e)

m
id

d
le

_n
am

e=
m

od
el

s.
C

h
ar

Fi
el

d
(m

ax
_l

en
gt

h
=3

0,
bl
an

k=
T
ru

e)

n
u

ll=
T

ru
e

an
d

b
la

n
k=

T
ru

e
m

od
el

s.
C

h
ar

Fi
el

d
(

m
ax

_l
en

gt
h

=3
0,
n
u
ll
=

T
ru

e,
bl
an

k=
T
ru

e)

P
er

so
n

.o
b

je
ct

s.
cr

ea
te

(f
ir

st
_

n
am

e=
‘J

oh
an

n
’,

m
id
dl
e_
n
am

e=
N
on

e,

la
st

_n
am

e=
‘B

ac
h’

)

N
on

e
is

 tr
ea

te
d

 a
s

N
U

LL

an
d

 s
o

m
id

d
le

_n
am

e
ca

n
’t

b

e
N

U
LL

.

m
id

d
le

_n
am

e
ca

n
 b

e
N

U
LL

d

u
e

to
 n

u
ll=

T
ru

e
N

on
e

is
 tr

ea
te

d
 a

s
N

U
LL

an

d
 s

o
m

id
d

le
_n

am
e

ca
n

’t

b
e

N
U

LL
, b

la
n

k=
T

ru
e

is
 fo

r
fo

rm
s.

m
id

d
le

_n
am

e
ca

n
 b

e
N

U
LL

d

u
e

to
 n

u
ll=

T
ru

e

P
er

so
n

.o
b

je
ct

s.
cr

ea
te

(f
ir

st
_

n
am

e=
‘J

oh
an

n
’,

la
st

_n
am

e=
‘B

ac
h’

)

U
n

sp
ec

if
ie

d
 m

id
d

le
_n

am
e

d
ef

au
lt

s
to

 a
n

 e
m

p
ty

 s
tr

in
g

‘’
an

d
 o

p
er

at
io

n
 s

u
cc

ee
d

s
as

 ‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll.

U
n

sp
ec

if
ie

d
 m

id
d

le
_n

am
e

d
ef

au
lt

s
to

 a
n

 e
m

p
ty

 s
tr

in
g

‘’
an

d
 o

p
er

at
io

n
 s

u
cc

ee
d

s
as

 ‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll.

U
n

sp
ec

if
ie

d
 m

id
d

le
_n

am
e

d
ef

au
lt

s
to

 a
n

 e
m

p
ty

 s
tr

in
g

‘’
an

d
 o

p
er

at
io

n
 s

u
cc

ee
d

s
as

 ‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll.

U
n

sp
ec

if
ie

d
 m

id
d

le
_n

am
e

d
ef

au
lt

s
to

 a
n

 e
m

p
ty

 s
tr

in
g

‘’
an

d
 o

p
er

at
io

n
 s

u
cc

ee
d

s
as

 ‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll.

P
er

so
n

.o
b

je
ct

s.
cr

ea
te

(f
ir

st
_

n
am

e=
‘J

oh
an

n
’,

m
id
dl
e_
n
am

e=
‘’,

la
st

_n
am

e=
‘B

ac
h’

)

E
xp

lic
it

 e
m

p
ty

 s
tr

in
g

‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll

an
d

op

er
at

io
n

 s
u

cc
ee

d
s.

E
xp

lic
it

 e
m

p
ty

 s
tr

in
g

‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll

an
d

op

er
at

io
n

 s
u

cc
ee

d
s.

E
xp

lic
it

 e
m

p
ty

 s
tr

in
g

‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll

an
d

op

er
at

io
n

 s
u

cc
ee

d
s.

E
xp

lic
it

 e
m

p
ty

 s
tr

in
g

‘’

is
 tr

ea
te

d
 a

s
n

ot
 n

u
ll

an
d

op

er
at

io
n

 s
u

cc
ee

d
s.

Fo
rm

 v
al

id
at

io
n

 w
it

h

em
p

ty
 m

id
d

le
_n

am
e

in
 D

ja
n

go
 a

d
m

in
 o

r
re

gu
la

r
D

ja
n

go
 fo

rm
.

V

al
id

at
io

n
 e

rr
or

 d
u

e
to

em

p
ty

 m
id

d
le

_n
am

e.

V

al
id

at
io

n
 e

rr
or

 d
u

e
to

em

p
ty

 m
id

d
le

_n
am

e.

R

ec
or

d
 c

re
at

io
n

 v
al

id
 e

ve
n

w

it
h

 e
m

p
ty

 m
id

d
le

_n
am

e
d

u
e

to
 b

la
n

k=
T

ru
e.

R

ec
or

d
 c

re
at

io
n

 v
al

id
 e

ve
n

w

it
h

 e
m

p
ty

 m
id

d
le

_n
am

e
d

u
e

to
 b

la
n

k=
T

ru
e.

Chapter 7 ■ Django Models

290

■■ Tip  The next chapter covers Django model forms and their validation.

Predetermined Values: default, auto_now, auto_now_add,
and choices
Sometimes it’s helpful to assign predetermined values to Django model fields. For example, to avoid empty
strings when no value is provided - as illustrated in some of the cases in Table 7-2 - you can use the default
option on a Django model field (e.g., provide a default id, city, or date). In most circumstances you assign
a default option as a hard-coded value or a method reference. Listing 7-6 illustrates an example of the
default option using both approaches.

Listing 7-6.  Django model default option use

def default_city():
 return "San Diego"

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30,default=default_city)
 state = models.CharField(max_length=2,default='CA')

As you can see in Listing 7-6 we have two Django model fields that use the default option. First the
city field relies on the default=default_city value – note the lack of parentheses in the syntax, which
makes it a reference to the function – that tells Django to call the default_city method to populate the field
every time a new record is created.

It’s worth mentioning the method is placed outside the Django model class vs. declaring it in the same
class body; this is to allow serialization and support of Django model migrations in Python 2 projects.1
Next in Listing 7-6 you can see the state field uses the default='CA' value, which tells Django to use the
hard-coded CA string to populate the field when a new record is created.

The enforcement of default options is done entirely by Django/Python (i.e., the database DDL is
unaware of any default values). This means that when you work with a model like the one in Listing 7-6,
Django/Python intervenes to provide default values. For example, if you create a Django model instance as
Person.objects.create(name='Downtown',address='Main Street #5'), the city and state values are
filled by Django/Python to create the record. Similarly, if you go to the Django admin and attempt to create
an instance of the model in Listing 7-6, the city and state form fields are pre-filled with the default values.

Even though the default option works just as described for text fields, as well as number
and Boolean fields, it has particular behaviors for date fields - specifically models.DateField() and
models.DateTimeField() - that are important to explore, so let’s do that and while on the topic of dates
also learn about the auto_now and auto_now_add options related to date and time model fields.

1https://docs.djangoproject.com/en/1.11/topics/migrations/#serializing-values

https://docs.djangoproject.com/en/1.11/topics/migrations/#serializing-values

Chapter 7 ■ Django Models

291

Listing 7-7.  Django model default options for dates and times, as well as auto_now and auto_now_add use

from datetime import date
from django.utils import timezone

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 date = models.DateField(default=date.today)
 datetime = models.DateTimeField(default=timezone.now)
 date_lastupdated = models.DateField(auto_now=True)
 date_added = models.DateField(auto_now_add=True)
 timestamp_lastupdated = models.DateTimeField(auto_now=True)
 timestamp_added = models.DateTimeField(auto_now_add=True)

Listing 7-7 illustrates a modified version of the Store model from Listing 7-6 with a series of date field
variations. The first two additional fields date and datetime use a DateField with a default value using
Python’s standard datetime library and a DateTimeField with a default value using Django’s django.utils.
timezone module, respectively – the sidebar contains more details on why the django.utils.timezone
module was used to create a date time value.

In this case, if you create a Store record based on the model in Listing 7-7, Django/Python fills in the
values for the date and datetime fields based on the backing library’s functionality. Similarly, if you go to
the Django admin and attempt to create an instance of the model in Listing 7-7, the date and datetime form
fields are pre-filled with the default values for the current date and date with time, respectively.

DON’T ADD () PARENTHESES TO METHODS IN DEFAULT VALUES

If you look closely at the default values from previous listings, notice they lack () in their syntax, which
creates an important behavior. By omitting the () syntax, Python assign a reference to a method and
evaluates the expression until runtime, but if you use the () syntax (e.g., default=timezone.now()) Python
evaluates the expression at compile time. For functions that return fixed values this is a non-issue, but
for functions that return dynamically calculated values (e.g., dates) this is critical; otherwise you get a
single value calculated at compile time (e.g., the date or datetime field would contain the same value
calculated at compile time for all records).

DON’T USE THE BASIC DATETIME.NOW FOR DATETIMEFIELD FIELDS

Django is time-zone aware by default - due to the USE_TZ = True in settings.py. This means that when
you handle dates with times (e.g., in DateTimeField model fields) you must provide time-zone aware
dates. This is why in Listing 7-7 the models.DateTimeField(default=timezone.now) statement uses
Django’s django.utils.timezone module, which generates time-zone aware dates.

Chapter 7 ■ Django Models

292

In Listing 7-7 there’s an additional pair of DateField and DateTimeField fields that use the auto_
now=True and auto_now_add=True options. Both of these options work like the default option - in the sense
they add a default date or date & time - but have a slightly different behavior. The first important difference
is that while the default option can be used with several types of fields, the auto_now and auto_now_add
options are designed for DateField and DateTimeField fields.

Values for fields that use either the auto_now and auto_now_add options are generated when a record
is created. Values for fields that use the auto_now option are updated every time a record is changed, while
values for fields that use the auto_now_add option remain frozen for the lifetime of the record. By default,
DateField fields that use either the auto_now or auto_now_add options generate their value from datetime.
date.today(), whereas DateTimeField fields that use either auto_now or auto_now_add options generate
their value from django.utils.timezone.now().

Unlike fields with the default option where you can provide a value for the field, fields with the auto_now
and auto_now_add options can’t be overridden. This means that even if you create or update a record and
provide a value for a field with an auto_now or auto_now_add option, the value is ignored. Similarly, in the
Django admin by default fields that use the auto_now and auto_now_add option are not displayed because
their value can’t be modified. Finally, it’s worth mentioning the auto_now, auto_now_add and default options
are mutually exclusive (i.e., you can’t use more than one option in a field or it will result in an error).

As you can see, the auto_now option is ideal to track a record’s last-modified date, the auto_now_add is
ideal to track a record’s creation date, and the default option works as a general purpose modifiable date on
a form field.

Another scenario for predetermined values is to restrict a Django model field to a list of values with
the choices option to limit open-ended values and reduce disparate data and errors (e.g., a list of states
["CA","AR"], instead of letting users introduce Ca, Cali, ar, or Arizona). Listing 7-8 illustrates an example
of a Django model field that uses the choices option.

Listing 7-8.  Django model choices option

ITEM_SIZES = (
 ('S','Small'),
 ('M','Medium'),
 ('L','Large'),
 ('P','Portion'),
)

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)
 size = models.CharField(choices=ITEM_SIZES,max_length=1)

The first thing you need to use the choices option is create a list of values as a tuple of tuples as
illustrated in Listing 7-8. The ITEMS_SIZES tuple has four tuples, where the first tuple element represents
a key to use in the database (e.g., S,M) and the second tuple element represents a human-friendly
representation of the first tuple element (e.g., Small, Medium).

Next, in Listing 7-8 you can see the size field is assigned the choices=ITEM_SIZES value that tells
Django to use the keys from ITEM_SIZES as potential values. Note that in this case the keys to use in the
database are all one-character text values (e.g., S,M) that correspond to the CharField(max_length=1) data
type, but you can also use numbers or Boolean values as keys so long as they match the target field data type.

Chapter 7 ■ Django Models

293

■■ Tip  The next chapter covers Django form models with the choices option.

Unique values: unique, unique_for_date, unique_for_month and
unique_for_year
It’s possible to enforce a field value to be unique across all records. For example, in Listing 7-7 if you change
name=models.CharField(max_length=30) to name=models.CharField(max_length=30, unique=True) it
tells Django to ensure all Store records have a unique name value.

The unique option is enforced by Django at the database layer (i.e., by adding a DDL UNIQUE SQL
constraint), as well as the Django/Python layer. In addition, the unique option is valid on all field types
except ManyToManyField, OneToOneField, and FileField.

To enforce uniqueness of a field along with a DateField or DateTimeField value, Django offers the
unique_for_date, unique_for_month, and unique_for_year options. For example, in Listing 7-7 to enforce
the name field value be unique with a date of the date_lastupdated field you can use the name = models.
CharField(max_length=30, unique_for_date="date_lastupdated") statement that tells Django to
allow only one record with the same name and date_lastupdated (e.g., you can’t have two records with
name="Downtown" and date_lastupdated="2018-01-01", but two records with name="Downtown" and
different date_lastupdated values are allowed).

The unique_for_month and unique_for_year options provide wider ranges to enforce validation. For
example, the name = models.CharField(max_length=30, unique_for_month="date_lastupdated") statement
tells Django to only allow one record with the same name and date_lastupdated value for the same month
and the name = models.CharField(max_length=30, unique_for_year="date_lastupdated") statement tells
Django to only allow one record with the same name and date_lastupdated value for the same year.

Due to the more complex requirements of the unique_for_date, unique_for_month, and unique_for_
year options, the enforcement of these options is done at the Django/Python layer. In addition, due to the
nature of the validation process these options are only valid for DateField and DateTimeField fields, noting
that for DateTimeField cases only the date portion of the value is used.

Form Values: Editable, help_text, verbose_name, and error_messages
When Django models are used in the context of forms, form fields backed by Django model fields can be
influenced through various model options. The following options are identical to the form options you
learned in the previous chapter on Django forms, except these options are assigned as part of model fields
to influence forms fields.

By default, all Django model fields presented in forms are editable, but you can change this behavior
by using the editable=False option. Setting a model field with editable=False tells Django to omit it
completely in a form (e.g., in the Django admin) and as a consequence any validation associated with the
form field is also bypassed.

The help_text option allows the inclusion of additional text alongside a form field. Listing 7-9
illustrates the use of the help_text option.

Listing 7-9.  Django model help_text option

ITEM_SIZES = (
 ('S','Small'),
 ('M','Medium'),
 ('L','Large'),
 ('P','Portion'),
)

Chapter 7 ■ Django Models

294

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 �description = models.CharField(max_length=100,help_text="Ensure you provide some

description of the ingredients")
 size = models.CharField(choices=ITEM_SIZES,max_length=1)
 �calories = models.IntegerField(help_text="Calorie count should reflect size of

the item")

In Listing 7-9 you can see there are two fields with the help_text option. When a Django form based on
this Django model is rendered in a template, the help_text defined in the model goes on to form part of the
final form layout.

By default, a Django model field name is used to generate the header of a Django form field using a
capitalized version of the model field name. (e.g., Name, Description). You can configure more verbose form
field headers with the verbose_name option (e.g., models.CharField (max_length=30,verbose_name="ITEM
NAME"), outputs the ITEM NAME header for the form field.

If you attempt to save or update a Django model in a form and any of the values don’t comply with the
underlying field types, Django generates default error messages for the non-compliant values. These error
messages while helpful are generic in nature, so it’s possible to customize these error messages for each field
with the error_messages option. The error_messages option accepts a dictionary of key-values, where keys
represent error codes and values error messages. See the previous chapter on Django forms for detailed
examples on the structure of the error_messages dictionary.

■■ Tip  Chapter 9 covers Django model forms in greater detail.

Database Definition Language (DDL) Values: db_column, db_index,
db_tablespace, primary_key
By default, Django generates a database table’s column names based on a Django model’s field names. For
example, if a Django model field is named menu, Django generates a DB column named menu. It’s possible
to override this behavior using the db_column option (e.g., name = models.CharField(max_length=30,
db_column="my_custom_name"). Django generates the DDL with the my_custom_name column name).

Another database-related option for Django models is the db_index option that tells Django to generate
a database index for the field (e.g., size = models.CharField(choices=ITEM_SIZES,max_length=1,db_
index=True) generates a database index for the size field). Be aware that under the following circumstances
Django automatically creates a database index, so db_index=True for the following scenarios is redundant:

•	 If a field uses the unique=True option, Django automatically creates an index for the
field. You can disable this behavior setting db_index=False.

•	 If a field is a ForeignKey data type, Django automatically creates an index for the
field. You can disable this behavior setting db_index=False.

■■ Tip  The meta indexes option can also define indexes for a single or multiple fields. See the following
section on “Meta Class Options” for more details.

http://dx.doi.org/10.1007/978-1-4842-2787-9_9

Chapter 7 ■ Django Models

295

If you use a PostgreSQL or Oracle database, it’s possible to specify a DB tablespace for a field’s index
through the db_tablespace name. By default, Django uses a project’s DEFAULT_INDEX_TABLESPACE value in
settings.py to determine a tablespace, but if a field uses the db_tablespace this value takes precedence. If
a database brand doesn’t support tablespaces (e.g., MySQL or SQLite) this option is ignored.

Finally, the primary_key option allows you to define a primary key for a model. By default, if no Django
model field is set with the primary_key=True statement, Django automatically creates an AutoField data
type named id to hold the primary key (e.g., id = models.AutoField(primary_key=True)). The typical use
case for the primary_key option is for fields that are references to other fields (e.g., OneToOneField) or if you
want a custom primary key due to design constraints.

Built-In and Custom Validators: Validators
In addition to the data enforcement options for Django models described in previous sections (e.g., unique,
default), Django models also offer enforcement of values through the validators option, which allow more
advanced validation logic through built-in or custom methods.

Django model offers a series of built-in validator methods in the django.core.validators package that are
used by model data types. For example, the models.EmailField data type relies on django.core.validators.
EmailValidator to validate email values, just as the models.IntegerField data type uses the MinValueValidator
and MaxValueValidator validators to enforce the min_value and max_value options, respectively.

In addition to Django built-in validator methods, you can also create custom validator methods. The
only requirements to create custom validator methods are for a method to accept a model field’s input and
to throw a django.core.exceptions.ValidatorError in case the value doesn’t comply with the expected
rules. Listing 7-10 illustrates a model that uses both a built-in validator and a custom validator.

Listing 7-10.  Django model field validators option with built-in and custom validator

ITEM_SIZES = (
 ('S','Small'),
 ('M','Medium'),
 ('L','Large'),
 ('P','Portion'),
)

Import built-in validator
from django.core.validators import MinLengthValidator

Create custom validator
from django.core.exceptions import ValidationError

def calorie_watcher(value):
 if value > 5000:
 raise ValidationError(
 �('Whoa! calories are %(value)s ? We try to serve healthy food, try something

less than 5000!'),
 params={'value': value},
)
 if value < 0:
 raise ValidationError(
 ('Strange calories are %(value)s ? This can\'t be, value must be greater than 0'),
 params={'value': value},
)

Chapter 7 ■ Django Models

296

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30,validators=[MinLengthValidator(5)])
 description = models.CharField(max_length=100)
 size = models.CharField(choices=ITEM_SIZES,max_length=1)
 calories = models.IntegerField(validators=[calorie_watcher])

The first validators option in Listing 7-10 uses the built-in MinLengthValidator validator class to
enforce the values for the name field contain at least 5 characters. The second validators option in Listing 7-10
uses the custom calorie_watcher validator method to enforce the values for the calories field fit a certain
range and uses custom messages in case this range is not met. It’s worth mentioning that it’s possible to use
multiple validator methods on a single field with a list syntax (e.g., validators=[MinLengthValidators(5),
MaxLengthValidators(100)]).

Django Model Default and Custom Behaviors
When you create a Django model class it always inherits its behavior from the django.db.models.Model
class, as illustrated back in Listing 7-1. This Django class provides a Django model with a great deal of
functionality, which includes basic operations via methods like save() and delete(), as well as naming
conventions and query behaviors for the model.

In most circumstances, the default behaviors provided by the django.db.models.Model class are
sufficient, but in other cases you’ll want to provide custom behavior. Next, I’ll enumerate a Django model’s
functionalities provided via the django.db.models.Model class.

Model Methods
All Django models inherit a series of methods for operations that include saving, deleting, validating,
loading, and applying custom logic to model data. In the next sections I’ll describe the default behavior for
each of these methods and how to customize their behavior.

save() method
The save() method offers one of the most common operations for Django models: to save (i.e., create or
update) a record to a database. Once you create or have a reference to a Django model instance, you call the
save() method to create/update the instance on a database. Listing 7-11 illustrates this process.

Chapter 7 ■ Django Models

297

Listing 7-11.  Django model use of the save() method

Import Django model class
from coffeehouse.stores.models import Store

Create a model Store instance
store_corporate = Store(name='Corporate',address='624 Broadway',city='San Diego',state='CA',
email='corporate@coffeehouse.com')

Invoke the save() method to create/save the record
No record id reference, so a create operation is made and the reference is updated with id
store_corporate.save()

Change field on instance
store_corporate.city='625 Broadway'

Invoke the save() method to update/save the record
Record has id reference from prior save() call, so operation is update
store_corporate.save()

In Listing 7-11 two calls are made to the save() method on the same reference; the first one creates a
record on the database and the second one updates the record on the database.

Can you tell how Django knows when to create and when to update a record with the same save()
method? It’s not in plain sight so don’t worry if you can’t spot it.

In the first section of this chapter when you created a Django model, I mentioned Django automatically
adds an id field as a primary key to all Django models, in order to make searching for records easier and
more efficient. The presence of this id primary key is what Django uses to determine if the save() method
performs a create or update operation.

Although there’s no trace of an explicit id primary key-value in Listing 7-11, a model instance gets an id
value after Django creates an instance. The first time the save() method is invoked in Listing 7-11, Django
attempts to create a new record because it can’t find an id primary key-value on the instance. However, if the
creation operation is successful, the database assigns the record an id primary key-value that’s returned to
Django, which updates the reference with this id primary key-value.

On subsequent calls made to the save() method on the same model reference, Django detects the
presence of the id primary key-value and performs an update operation based on this id primary key-value.
In case you’re wondering, if you add an explicit id primary key-value to a record reference, Django also
performs an update because that’s the flag it looks for to determine whether to create or update a record,
so be aware placing an explicit id primary key updates/overwrites the database record associated with the
given id primary key.

Now that you have a firm understanding of the default behaviors of a Django model’s save() method,
I’ll describe the various options available for the save() method. The save() method accepts a series of
arguments to override its default behavior; Table 7-3 illustrates these arguments, their behavior, and their
default value.

Chapter 7 ■ Django Models

298

The option you’re likely to use the most from Table 7-3 is update_fields, since it produces a
performance boost by selectively choosing which fields to update. However, Table 7-3 gives you the full
series of options in case you hit an edge-case with the save() method.

Finally, to close our discussion on the save() method, it’s possible to define an implementation of
the save() method on a Django model to execute custom logic when the method is called. Listing 7-12
illustrates this process.

Listing 7-12.  Django model with custom save() method

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

 def save(self, *args, **kwargs):
 # Do custom logic here (e.g. validation, logging, call third party service)
 # Run default save() method
 super(Store,self).save(*args, **kwargs)

Table 7-3.  Django model save() method arguments

Argument Default Description

force_insert force_insert=False Explicitly tells Django to force a create operation on a record
(e.g., .save(force_insert=True). This is rarely used but can
be helpful for cases when you don't or can't rely on Django
detecting a create operation (i.e., via the id primary key).

force_update force_update=False Explicitly tells Django to force an update operation on a record
(e.g., .save(force_update=True). This is rarely used but can
be helpful for cases when you don't or can't rely on Django
detecting an update operation (i.e., via the id primary key).

using using=DEFAULT_
DB_ALIAS, where
DEFAULT_DB_ALIAS
is a constant with a
value of default

Allows save() to perform the operation against a database that's
not the default value in settings.py (e.g.. .save(using='oracle')
performs the operation against the oracle database, where
oracle is a key in the DATABASES variable in settings.py) See
the later section in the chapter on multiple databases.

update_fields update_fields=None Accepts a list of fields to update (e.g., .save(update_fields=
['name']) only updates a record's name value). Helpful when
you have large models and want to do a more efficient/granular
update, because by default Django updates all model fields.

commit commit=True Ensures a record is saved to the database. In certain
circumstances (e.g., model forms or relationship operations)
commit is set to False to create a model instance without saving
it. This allows additional operations (on forms, relationships)
to be made and based on their outcome, determine to make a
standard save() call to write the record to the database.

Chapter 7 ■ Django Models

299

Notice the save() method in Listing 7-12 is declared inline with a Django model’s fields. In this case,
when a call is made to save() on a reference for this type of model (e.g., downtown.save()) Django attempts
to run the model’s custom save() method. This is helpful in circumstances where you want to perform other
actions (e.g., log a message, call a third-party service) when a model instance is created or updated. The last
snippet in the custom save() method super(Store,self).save(*args, **kwargs) tells Django to run the
base save() method from django.db.models.Model.

■■ Tip  See the Django signals section later in this chapter to execute logic before or after a model’s save()
method is run.

delete() method
The delete() method is used to eliminate a record from the database through a reference. For example, if in
Listing 7-11 you call store_corporate.delete() - where store_corporate is the record reference - Django
removes the record from the database. Under the hood, the delete() method relies on the id primary key to
remove the record, so it’s a requirement for a reference to have the id value to invoke the delete() method.

When the delete() method is called on a reference, its id primary key-value is removed but the
record’s remaining values remain in memory. In addition, the delete() method responds with the amount
of deleted records (e.g., (4, {u'stores.Store_amenities': 3, u'stores.Store': 1}), indicates 4 overall
records were deleted, with 1 Store record and 3 stores.Store_amenities – the stores.Store represents a
relationship on the main Store model.

Similar to the save() method, the delete() method also supports two arguments: using=DEFAULT_
DB_ALIAS and keep_parents=False. The using argument allows you to specify an alternate database to
perform the delete() operation on - see Table 7-3 for more details on this type of argument and the multiple
database section later in this chapter. And the keep_parents arguments is useful when the delete()
operation takes place on a model with a relationship and you wish to keep the parent model’s data intact
- or removed, which is the default. More details on the use of keep_parents are given in the Django model
relationships section later in this chapter.

And finally, it’s also possible to define a custom delete() method on a Django model class - just like
save() in Listing 7-12-- to execute custom logic (e.g., create an audit trail) when a record is removed.

■■ Tip  See the Django signals section later in this chapter to execute logic before or after a model’s delete()
method is run.

Validation methods: clean_fields(), clean(), validate_unique() and full_clean()
When you create or update a Django model instance with the save() method, Django enforces that the
instance values comply with those of the model definition. For example, if you use the model field name =
models.CharField(max_length=30) Django enforces the name value is a text field with at most 30 characters.

The most important part to understand about Django model instance validation is that it’s done on two
layers: at the database layer and the Django/Python layer, both of which are enforced via the model data
types you learned about in the previous section.

Let’s analyze the database layer validation layer first. Once you have a Django model and create its
initial migration - as described in the first section of this chapter on “Migrations and the Django Model
Workflow” - Django generates the database DDL (Data definition language) to create a database table in
accordance with the model definition (e.g., the Django model field CharField(max_length=30) generates a

Chapter 7 ■ Django Models

300

varchar(30) NOT NULL database column type). Therefore due to this initial database DDL, all Django model
values that don’t comply with validation rules are guaranteed to be rejected at the database layer where it’s
the database that performs the validation.

Now let’s analyze the Django/Python validation layer. Although the Django model data types for fields
(e.g., CharField(max_length=30)) can give the impression they act on model instances automatically,
the Django/Python validation layer requires you to execute validation methods on the model instance
to enforce validation. If you don’t use these validation methods – which are the topic of this section – the
database validation layer is the only enforcer of model field data types.

Although relying on validation at the database layer is perfectly acceptable, using model validation at
the Django/Python layer has the advantage of supporting more complex validation rules, as well as reducing
database load for operations that will end up being rejected by a database. However, unlike database
layer validation, which is automatically done after a Django model’s first migration, Django/Python layer
validation requires you use some of the following model methods.

Let’s first explore the Django model validation clean_fields() method. Listing 7-13 illustrates a model
definition, followed by a call sequence that uses the clean_fields() method.

Listing 7-13.  Django model use of validation clean_fields() method

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

Create a model Store instance, that violates the max_length rule
store_corporate = Store(name='This is a very long name for the Corporate store that exceeds
the 30 character limit',address='624 Broadway',city='San Diego',state='AZ',email='corporate@
coffeehouse.com')

No error yet

You could call save() and let the database reject the instance...
But you can also validate at the Django/Python level with the clean_fields() method
store_corporate.clean_fields()
Traceback (most recent call last):
 raise ValidationError(errors)
ValidationError: {'name': [u'Ensure this value has at most 30 characters (it has 84).']}

First off, notice the model’s name field in Listing 7-13 uses the max_length=30 option to enforce that
values of this kind are capped to 30 characters. After the model definition, you can see the store_corporate
instance breaks this rule with a value greater than 30 characters, which means Django doesn’t detect broken
model rules at instance creation.

While you can attempt to call save() on this last instance and let the database reject the operation via
its DDL, you can call the clean_fields() method on the instance to tell Django to check the values of the
instance against the model date types and raise an error.

Also notice the output of the clean_fields() method in Listing 7-8 is a ValidatioError data type
with a dictionary. This last dictionary follows the key-value pattern '<model_field>'-'[<error_message_
list>]', making it easy to identify multiple validation errors and reuse this data for other purposes (e.g.,
logging, presenting the error in a template).

Chapter 7 ■ Django Models

301

While the clean_fields() method validates model values individually against their data types, the
clean() method can be used to enforce more elaborate rules (e.g., relationships or specific values). Unlike
the clean_fields() method you can invoke directly, you must define an implementation of the clean()
method with validation logic, as illustrated in Listing 7-14.

Listing 7-14.  Django model use of validation clean() method

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 def clean(self):
 # Don't allow 'San Diego' city entries that have state different than 'CA'
 if self.city == 'San Diego' and self.state != 'CA':
 �raise ValidationError('Wait San Diego is CA!, are you sure there is another San

Diego in %s ?' % self.state)

Create a model Store instance, that violates city/state rule
store_corporate = Store(name='Corporate',address='624 Broadway',city='San Diego',state='AZ',
email='corporate@coffeehouse.com')

To enforce more complex rules call the clean() method implemented on a model
store_corporate.clean()
Traceback (most recent call last):
 �raise ValidationError('Wait San Diego is in CA!, are you sure there is another San Diego

in %s ?' % (self.state))
ValidationError: [u'Wait San Diego is in CA!, are you sure there is another San Diego in AZ ?']

Notice in Listing 7-14 the Django model class defines the clean() method that enforces that if an
instance city value is San Diego its state must be CA, and if this condition is not met, a ValidationError
error is raised. Next, when the clean() method is invoked on an instance that violates this rule, a
ValidationError error is raised just like the clean_fields() method.

Another Django validation mechanism you can use is the clean_unique() method to enforce
no two instances have the same value for a field that uses unique options. Listing 7-15 illustrates the use
the clean_unique() method.

■■ Note  The previous section on Django model data types describes Django’s various unique values options
for model fields: unique, unique_for_date, unique_for_month, and unique_for_year.

Listing 7-15.  Django model use of validation clean_unique() method with unique* fields

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

Chapter 7 ■ Django Models

302

Create a model Store instance
store_corporate = �Store(name='Downtown',address='624 Broadway',city='San Diego',state='AZ',

email='corporate@coffeehouse.com')

Save instance
store_corporate.save()

Create another instance to violate uniqueness of address field
store_uptown = Store(name='Uptown',address='624 Broadway', city='San Diego',state='CA')

You could call save() and let the database reject the instance...
But you can also validate at the Django/Python level with the validate_unique() method
store_uptown.validate_unique()
Traceback (most recent call last):
 raise ValidationError(errors)
ValidationError: {'address': [u'Store with this Address already exists.']}

Look at how the address field of the Store model in Listing 7-15 uses unique=True, which tells Django
not to allow two Store instances with the same address value. Next, we create a Store instance with
address='624 Broadway' and save it to the database. Right after, we create another Store instance with the
same address='624 Broadway' value, but because the address model field has the unique option this new
instance is in violation of the rule.

Therefore when you call the validate_unique() method on the store_uptown reference, Django
raises a ValidationError exception indicating there’s already a Store record with the same address in
the database. Note that even if you didn’t call the validate_unique() method, the database would end
up rejecting the duplicate record since the unique=True produces the necessary DDL to enforce unique
address values.

In addition to the clean_unique function performing validation on fields marked with unique options,
the clean_unique method also enforces validation for the unique_together option declared in a model’s
Meta class. This variation is illustrated in Listing 7-16.

Listing 7-16.  Django model use of validation clean_unique() method with Meta unique_together

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 email = models.EmailField()
 class Meta:
 unique_together = ("name", "email")

Create instance to show use of validate_unique() via Meta option
store_downtown_horton = �Store(name='Downtown',address'Horton Plaza',city='San Diego',

state='CA',email='downtown@coffeehouse.com')
Save intance to DB
store_downtown_horton.save()

Create additional instance that violated unique_together rule in Meta class
store_downtown_fv = �Store(name='Downtown',address'Fashion Valley',city='San Diego',

state='CA',email='downtown@coffeehouse.com')

Chapter 7 ■ Django Models

303

You could call save() and let the database reject the instance but lets use validate_unique
store_downtown_fv.validate_unique()
Traceback (most recent call last):
ValidationError: {'__all__': [u'Store with this Name and Email already exists.']}

Notice how the class in Listing 7-16 declares the Meta class followed by unique_together = ("name",
"email"), which tells Django not to allow two Store instances with the same name and email value.

Next, two Store records are created with the same name and email value. Because this is in
violation of the Django model meta option unique_together = ("name", "email"), after you save
the first record store_downtown_horton and call the validate_unique() method on the second record
store_downtown_fv, Django raises a ValidationError exception indicating there’s already a Store record
with the same name and email values in the database. Toward the end of this section I’ll describe a Django
model’s Meta class options in greater detail.

Finally, the last validation method available on all Django models is the full_clean() method, which is
a shortcut to run the clean_fields(), clean() and validate_unique() methods - in that order.

Data loading methods: Refresh_from_db(), from_db(), and
get_deferred_fields() methods
The refresh_from_db() method is a helpful aid if you want to update a preexisting model instance with
data from the database, either because the database was updated by another process or you accidentally
(or purposely) changed the model instance and want it to reflect the data in database once again. Using
the refresh_from_db() method is as simple as executing it on a model reference (e.g., downtown.refresh_
from_db() updates the downtown instance from values in the database).

Although the refresh_from_db() method is generally called without arguments, it does support two
optional arguments. The using argument can be used to specify an alternate database from which to perform
the refresh operation, a mechanism that works just like the option used in the save() and delete() methods
and is described in Table 7-3. The fields argument can be used to selectively refresh certain model fields; if
no fields argument list is provided then the refresh_from_db() method refreshes all model fields.

In most circumstances, the initial loading mechanism for Django model instances is reasonable and
sufficient. However, if you want to customize the default loading mechanism you can define the from_db()
method. Unlike the refresh_from_db() method, which can be called on a model instance, the from_db()
method cannot be called directly and is intended to be part of a model class to be called every time a model
instance is created from database data. So what is a good reason for the from_db method? If you want to
defer loading model data.

For example, if you start to work with large Django models (e.g., more than 10 fields) you can quickly
notice a performance hit by accessing large amounts of data at once. To minimize this performance hit, you
can create a from_db method to defer the loading of model field data, instead of having Django load the full
field data set at once which it does by default.

Complementing the functionality of deferred model fields is the get_deferred_fields() method,
which returns a list of model fields that have been deferred from loading. Although the from_db() and
get_deferred_fields() methods don’t have as many usage scenarios as the refresh_from_db() method,
you may encounter a need for these two model methods once you work with larger and more complex
models. The next chapter’s section on CRUD operations describes the use of these methods in greater detail.

Chapter 7 ■ Django Models

304

Custom methods
All the methods I’ve described up to this point come from Django’s django.db.models.Model class. While
it’s important to learn how to use these methods and provide your own implementation for them, this
doesn’t necessarily mean a Django model class is restricted to using just these methods. You can use your
own custom model class methods, as illustrated in Listing 7-17.

Listing 7-17.  Django model with custom method

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

 def latitude_longitude(self):
 # Call remote service to get latitude & longitude
 latitude, longitude = geocoding_method(self.address, self.city, self.state)
 return latitude, longitude

The latitude_longitude method in Listing 7-17 gives the Django model the ability to offer a common
calculation on the model instance. For example, for a Store instance called downtown you could call
downtown.latitude_longitude() to get a result based on the instance’s address, city, and state values
aided by a remote service. This type of custom method is helpful because it favors encapsulation, keeping
the logic that operates on a Django model where it belongs – in the model class itself.

Model Manager Field: Objects
The objects field - technically known as the default Django model manager - is available on all Django
models and is charged with managing all query operations related to Django model instances. This means
that when you perform Django model query operations (e.g., create, read, update, or delete) you’ll end up
using a Django model’s objects field or model manager.

A Django model’s objects reference is used directly on a model class and not an instance of a model.
For example, to read a Store model record with id=1 you would use the Store.objects.get(id=1) syntax
and to delete all Store model records you would use the Store.objects.all().delete() syntax.

The objects field of a model manager is not explicitly declared as part of Django model – just as it was
described in Listing 7-1 alongside a Django model’s id field – but it’s nevertheless present on all Django
models. You can, however, customize the default model manager to use another field name (e.g., if you
require a Django model field named objects, you can customize the model manager to be named mgr).
Listing 7-18 illustrates a model class that renames the default model manager to use the mgr reference name.

Listing 7-18.  Django default model manager renamed

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 mgr = models.Manager()

Chapter 7 ■ Django Models

305

As you can see in Listing 7-18, you explicitly declare a model field with models.Manager() to mark
another field as the default model manager. If you override the default manager in this way, you would use
the Store.mgr.get(id=1) syntax to read a record with id=1 or the Store.mgr.all().delete() syntax to
delete all store records vs. the default model manager objects syntax.

■■ Note  The next chapter on Django model queries is dedicated to exploring the functional aspects of the
default model manager or objects reference, including CRUD operations with multiple records and some of the
subtle behaviors associated with QuerySet classes, as well as model managers.

Model Meta Class and Options
In the previous section on model validation methods - in Listing 7-16 - I made use of the Meta class on a
Django model to enforce the uniqueness of model field values. In this section I’ll expand on the purpose and
options available for a Django model’s Meta class.

The Meta class in a Django model is intended to define behaviors for a Django model as a whole, unlike
Django model data types (e.g., models.CharField), which define granular behaviors on Django model fields
(e.g., a model field data can be 30 or 50 characters in length).

The Django Meta class and its options are always declared after a Django model’s data types, as
illustrated in Listing 7-19.

Listing 7-19.  Django model with Meta class and ordering option

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

 class Meta:
 ordering = ['-state']

In Listing 7-19 you can see the class Meta: statement declares the ordering = ['-state'] option.
In this case, the ordering option tells Django that when a query is made on the model it orders the results
by the state field in descending order. The ordering meta option is helpful because it overrides the default
model query order - which is by a model’s id - and it avoids the need to constantly and explicitly declare a
model query’s sort order.

Now that you have a basic understanding of a Django model's Meta class, in the upcoming sections I’ll
classify the various Meta options by category so you can easily identify them and use them appropriately.

Database Definition Language (DDL) table options: db_table, db_tablespace,
managed, required_db_vendor, required_db_features and unique_together
By default, the database table name for a Django model is based on the app name and model, with all
lowercase letters and separated by an underscore. For example, for an app named stores, a model class
named Amenity uses the stores_amenity database table by default. You can define a different database
table name for a Django model with the meta db_table option.

Chapter 7 ■ Django Models

306

By default, if a Django project’s backing database brand (e.g., Oracle) supports the concept of a
tablespace, Django uses the DEFAULT_TABLESPACE variable in settings.py as the default tablespace. It’s
possible to specify an alternative tablespace for a Django model through the meta db_tablespace option.
Note that if a Django project’s backing database doesn’t support the concept of a tablespace, this option is
ignored.

All Django models are subject to the life cycle described earlier in the Django models workflow in
Figure 7-1. As part of this life cycle, Django manages the DDL that creates and/or destroys the backing
database table for every Django model. If you want to disable Django executing a model’s default DDL
against a database, you can do so with meta managed=False option. The managed=False option is useful
when a model’s backing database table is created by some other means and you don’t want Django to
interfere with the management of this table.

Because Django can work with different database back ends (e.g., MySQL, Oracle, PostgreSQL) you can
have situations where certain model definitions are designed to work with features that are not available on
all database back ends. To ensure a Django model is deployed against a certain database back end, you can
use two Meta class options.

The required_db_vendor option accepts the values sqlite, postgresql, mysql, and oracle to ensure
a project’s underlying database connection is for a given vendor; if the connection does not match the
specified vendor, the model is not migrated against the database.

The required_db_features option is used to ensure a backing database connection is enabled with a
given list of features, and if the connection does not have the specified feature list enabled, the model is not
migrated against the database.

Django defines over 75 database features in django.db.backends.base.features.py. Once a
connection is made to a database, you can get its supported Django features with:

from django.db import connection
dir(connection.features)

The previous snippet outputs the features supported by a database connected to a Django project.
Most Django database features are supported across all brands, so the required_db_features option only
requires you to declare esoteric database features to ensure the underlying Django database can support
a given model (e.g., gis_enabled ensures a database supports Django’s Geographic Information Systems
model feature, can_share_in_memory_db is a feature supported by SQLite but not MySQL, is_sql_auto_is_
null_enabled is a feature supported in MySQL but not SQLite).

The unique_together option enforces no two model records have the same pair of values. For example,
unique_together('city','state') ensures only one record has a city/state value (e.g., San Diego,CA) and
rejects all other attempts to create a record with the same city/state value. The unique_together option
creates the DDL to enforce this rule at the database level. The unique_together option also supports the
ability to specify multiple unique field pairs through a list of tuples (e.g., unique_together(('city',
'state'),('city','zipcode')) enforces both city/state and city/zipcode fields are unique together).

Database Definition Language (DDL) index options: Indexes and
index_together
Indexes play an important role in the efficient lookup of relational database records. In very simple terms,
indexes are special structures that contain certain record column values that ensure queries are made faster
than doing queries on the full record values in the main database table.

The Django meta class offers two options to generate the necessary DDL (e.g., CREATE INDEX...) to
create database indexes against Django model fields: indexes and index_together.

Chapter 7 ■ Django Models

307

■■ Tip  By default fields marked as primary keys and unique don’t require explicit creation of indexes. See the
previous section on “db_index,” “primary_key” in model data types.

The index meta options accepts a list of models.Index references. A model.Index reference accepts
a fields value – which in itself is a list of model fields on which to create an index – and an optional name
value – which is a string to name the index. Listing 7-20 illustrates the use of the index meta option.

Listing 7-20.  Django model with meta class and index option

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)

 class Meta:
 indexes = [
 models.Index(fields=['city','state']),
 models.Index(fields=['city'],name='city_idx')
]

As you can see in Listing 7-20, the Store model defines two indexes. A two-field index for the city and
state fields, as well as an index for the city field named city_idx. If no name value is provided for an index,
Django automatically gives the index a name.

■■ Tip  By default Django creates B*tree indexes for all relational database brands. However, if you’re using
PostgreSQL, Django also supports Brin and Gin indexes.2

The index_together meta option allows you to define a multi-field index on a Django model, just like
the model.Index reference in the indexes meta options. The only difference being the index_together
option is a top-level option of the Meta class (e.g., index_together=['city','state'] is equivalent to the
first index in Listing 7-20).

Naming convention options: verbose_name, verbose_name_plural, label,
label_lower, and app_label
By default, Django models are referenced by their class name. In most cases, relying on this name is a non-
issue – like the class Store in Listing 7-20, a Store is a store anyway you see it. But on other occasions, a
model class name can use an acronym or abbreviation that while reasonable for development purposes, is
inexpressive for others (e.g., on a user interface(UI) element like a template or the Django admin).

2https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/indexes/#module-django.contrib.
postgres.indexes

https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/indexes/#module-django.contrib.postgres.indexes
https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/indexes/#module-django.contrib.postgres.indexes

Chapter 7 ■ Django Models

308

Django models can use both the verbose_name and verbose_name_plural meta class options to assign
more explicit model names. For example, if a model class is named SSN, you can declare the meta class
option verbose_name='Social Security Number' to use this last value on UIs that rely on model instances.
By default, when referring to multiple instances of a Django model class, Django pluralizes a model class
by appending an s (e.g., Store becomes Stores). The verbose_name_plural meta class option allows you
to define a custom plural value when the letter s is not applicable (e.g., the model class Strawberry with
verbose_name_plural='Strawberries' becomes Strawberries in a plural context, instead of the default
and incorrect Straberrys).

To access a Django model meta class verbose_name and verbose_name_plural values, you can use the
syntax <class_name>._meta.verbose_name and <class_name>._meta.verbose_name_plural.

■■ Tip  If you want to assign a verbose name value to individual model fields, see the verbose_name in the
previous section on Django model data types.

A Django model label refers to the combination of an <app_name>.<model_class>, which can
sometimes be necessary when models are used as part of forms or UI components. The Django model meta
class offers the label and label_lower read-only attributes – by read-only it means the attribute values
can’t be set (i.e., like other meta attributes such as verbose_name) but only read as part of the meta class.
For example, if a Store model is defined inside the stores app, the statement Store._meta.label outputs
stores.Store. And the label_lower attribute outputs a lowercase label value, including classes that use
camel case3 (e.g., for the model class StoreFront in the stores app, StoreFront._meta.label outputs
stores.StoreFront. and Store._meta.label_lower outputs stores.storefront).

A Django app is an integral part of all Django models since it defines among other things, a model’s
default database table prefix, where a model’s migrations are placed and a model’s default reference label.
The meta class app_label attribute allows you to assign an explicit app name to a Django model. The
Django meta app_label takes precedence over the default app model naming mechanism. One of the last
sections in this chapter on placing Django models outside of models.py contains more details on the meta
app_label option.

Inheritance Meta options: Abstract and proxy
The meta abstract option allows a Django model to function as a base class that doesn’t have a backing
database table, but serves as a foundation for other Django model classes. Listing 7-21 illustrates a set of
Django models that use the abstract option.

Listing 7-21.  Django model abstract option

from django.db import models

class Item(models.Model):
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)
 class Meta:
 abstract = True

class Drink(Item):
 mililiters = models.IntegerField()

3https://en.wikipedia.org/wiki/Camel_case

https://en.wikipedia.org/wiki/Camel_case

Chapter 7 ■ Django Models

309

The Item model class in Listing 7-21 is abstract, which means it behaves like other abstract classes
across programming languages.4 For Django model classes, it means no database table is created for this
type model, nor is it possible to create an instance out of it. However, it’s possible to use an abstract model as
the basis for other Django models.

In Listing 7-21 you can see the Drink model class inherits its behavior from the Item class (vs. the
standard Django models.Model class). Notice the Drink class declares the additional mililiters field, but
since it inherits its behavior from the Item class, the Drink class also gains the model Item class fields (i.e.,
the Drink class becomes a three-field model, with a database table with three columns – name, description,
and mililiters).

The meta proxy option is also designed for Django model inheritance scenarios. But unlike the
abstract option where parent classes are declared abstract and children inherit their behavior, the proxy
option is designed to give child classes access to a parent class without the child becoming a full-fledged
model class. Classes marked with the meta proxy option enable them to perform operations on a parent
class and its database table, without having a database table of their own.

For example, a Store model class can have multiple model proxies (e.g., FranchiseStore, Employee
OwnedStore) where each proxy class defines its own operations made against Store models, while not
replicating Store data into a separate table. Django model proxies are ideal to shield a parent class against
model changes (e.g., custom model managers or custom operations) while still retaining access to the
database table of the parent class.

Query Meta options: Ordering, order_with_respect_to, get_latest_by,
default_manager_name, base_manager_name, default_related_name,
and select_on_save
When you make Django model queries – which are explained in full in the next chapter – there are many
kinds of default behaviors associated with their operations. If you want to use non-default query behaviors,
you can explicitly create queries with explicit arguments. However, creating explicit queries over and over
can get tiresome; you can instead rely on the meta options explained in this section to assign a model’s
default query behaviors.

The ordering meta option is used to define the default ordering for a list of model instances. Although
you can use the order_by() method to define the order for a group of model instances (e.g., Store.objects.
all().order_by('-name'), to get all Store objects in descending order by name), you can use the ordering
meta option (e.g., ordering=[-name] on the Store model) to ensure a list of model instances is always sorted
without needing the order_by() method (e.g., Store.objects.all() uses the ordering meta option to
determine query order).

The order_with_respect_to meta option is also used to define default sorting query behavior, but in
the context of model relationships. If you perform a query on a model that has a relationship and you want
to establish the default ordering on a field in the related model, you can use the order_with_respect_to
meta option.

The get_latest_by meta option is used to specify a default model field for queries that use the
latest() and earliest() methods. Both the latest() and earliest() methods specify a field by which
to get the latest or earliest model record (e.g., Receipt.objects.latest('date') to get the latest Receipt
model instance by date). You can use the get_latest_by meta option so queries made with, the latest()
and earliest() methods don’t require an argument.

4https://en.wikipedia.org/wiki/Abstract_type

https://en.wikipedia.org/wiki/Abstract_type

Chapter 7 ■ Django Models

310

All models rely on the objects field as their default model manager, as described in the earlier “Model
Manager Field” section. The default_manager_name meta option is used in cases where a model has
multiple model managers and you must specify a default manager. The base_manager_name meta option is
used to specify a base model manager – which defaults to django.db.models.Manager – for cases in which
a base model manager isn’t appropriate. The next chapter describes the use custom model managers and
these meta options in greater detail.

The default_related_name meta option is used to define the reverse name for a field that serves as a
related object. This reverse name concept is explained in greater detail in the model relationships section
later in this chapter.

The select_on_save meta option is a Django legacy option, which tells Django to use the pre-1.6
Django version of a model’s save() method algorithm. This algorithm has a distinct behavior than the
save() method behavior explained earlier in this chapter.

Permission Meta options: default_permissions and permissions
All Django models are given a set of permissions to manipulate object model instances. These permissions
are an integral part of Django’s built-in user management system, which is used extensively by the Django
admin and can be integrated as part of the general permission workflow of a Django project.

By default, all Django models are given permissions to add, change, and delete object instances
through the meta default_permissions set to ('add','change','delete') – who can actually add,
change, and delete instances is covered in the chapter on Django user management and the Django admin.
You can declare an explicit meta default_permissions value on a model class to rescind one if its default
permissions (e.g., an empty tuple () if you don’t want to assign permissions or ('add','change') to deny a
model class the delete permission).

The permissions meta attribute is designed to assign custom permissions to a Django model. For
example, you can assign custom permissions to a Django model to allow tasks that are different than the
generic add, change, delete operations (e.g., can_do_refunds on a Store model). The permissions meta
attribute accepts a list of tuple permissions, where each tuple is composed of a reference permission code
and a verbose permission description (e.g., (('can_do_refunds','Can refund customers'),)). A later
chapter on Django user management covers the topic of custom permissions.

Relationships in Django Models
Django models operate by default on relational database systems (RDBMS) and thus they also support
relationships among one another. In the simplest terms, database relationships are used to associate records
on the basis of a key or id, resulting in improved data maintenance, query performance, and less duplicate
data, among other things.

Django models support the same three relationships supported by relational database systems: one to
many, many to manym and one to one.

Chapter 7 ■ Django Models

311

One to Many Relationships in Django Models
A one to many relationship implies that one model record can have many other model records associated
with itself. For example, a Menu model record can have many Item model records associated with it and yet
an Item belongs to a single Menu record. To define a one to many relationship in Django models you use
the ForeignKey data type on the model that has the many records (e.g., on the Item model). Listing 7-22
illustrates a sample of a one to many Django relationship.

Listing 7-22.  One to many Django model relationship

from django.db import models

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

The first Django model in Listing 7-22 is Menu and has the name field (e.g., Menu instances can be
Breakfast, Lunch, Drinks, etc.). Next, in Listing 7-22 is the Item Django model, which has a menu field, that
itself has the models.ForeignKey(Menu) definition. The models.ForeignKey() definition creates the one to
many relationship, where the first argument Menu indicates the relationship model.

In addition to the database level benefits of creating a one to many relationship (e.g., improved data
maintenance), Django models also provide an API to simplify the access of data related to this kind of
relationship, which is explained in the next chapter on CRUD records across Django model relationships.

Many to Many Relationships in Django Models
A many to many relationship implies that many records can have many other records associated among
one another. For example, Store model records can have many Amenity records, just as Amenity records
can belong to many Store records. To define a many to many relationship in Django models you use the
ManyToManyField data type. Listing 7-23 illustrates a sample of a many to many Django relationship.

Listing 7-23.  Many to many Django model relationship

from django.db import models

class Amenity(models.Model):
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 email = models.EmailField()
 amenities = models.ManyToManyField(Amenity,blank=True)

Chapter 7 ■ Django Models

312

The first Django model in Listing 7-23 is Amenity and has the name and description fields. Next, in
Listing 7-23 is the Store Django model that has the amenities field, that itself has the models.ManyToMany
Field(Amenity,blank=True) definition. The models.ManyToManyField() definition creates the many
to many relationship via a junction table,5 where the first argument Amenity indicates the relationship
model and the optional blank=True argument allows a Store record to be created without the need of an
amenities value.

In this case, the junction table created by Django is used to hold the relationships between the
Amenity and Store records through their respective keys. Although you don’t need to manipulate the
junction table directly, for reference purposes, Django uses the syntax <model_name>_<model_field_with_
ManyToManyField> to name it (e.g., For Store model records stored in the stores_store table and Amenity
model records stored in the stores_amenity table, the junction table is stores_store_amenities).

In addition to the database level benefits of creating a many to many relationship (e.g., improved data
maintenance), Django models also provide an API to simplify the access of data related to this kind of
relationship, which is explained in the next chapter on CRUD records across Django model relationships.

One to One Relationships in Django Models
A one to one relationship implies that one record is associated with another record. If you’re familiar with
object-oriented programming, a one to one relationship in RDBMS is similar to object-oriented inheritance
that uses the is a rule (e.g., a Car object is a Vehicle object).

For example, generic Item model records can have a one to one relationship to Drink model records,
where the latter records hold information specific to drinks (e.g., caffeine content) and the former records
hold generic information about items (e.g., price). To define a one to one relationship in Django models you
use the OneToOneField data type. Listing 7-24 illustrates a sample of a one to one Django relationship.

Listing 7-24.  One to one Django model relationship

from django.db import models

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)
 calories = models.IntegerField()
 price = models.FloatField()

class Drink(models.Model):
 item = models.OneToOneField(Item,on_delete=models.CASCADE,primary_key=True)
 caffeine = models.IntegerField()

The first Django model in Listing 7-24 is Item, which is similar to the one presented in Listing 7-22,
except the version in Listing 7-24 has the additional calories and price fields. Next, in Listing 7-24 is the
Drink model, which has the item field, that itself has the models.OneToOneField(Amenity,on_delete=
models.CASCADE,primary_key=True) definition.

5https://en.wikipedia.org/wiki/Associative_entity

https://en.wikipedia.org/wiki/Associative_entity

Chapter 7 ■ Django Models

313

The models.OneToOneField() definition creates the one to one relationship, where the first argument
Item indicates the relationship model. The second argument on_delete=models.CASCADE tells Django
that in case the relationship record is deleted (i.e., the Item,) its other record (i.e., the Drink) will also be
deleted; this last argument prevents orphaned data. Finally, the primary_key=True tells Django to use
the relationship id (i.e., Drink.id) as the primary key instead of using a separate and default column id, a
technique that makes it easier to track relationships.

In addition to the database level benefits of creating a one to one relationship (e.g., improved data
maintenance), Django models also provide an API to simplify the access of data related to this kind of
relationship, which is explained in the next chapter on CRUD records across Django model relationships.

Options for Relationship Model Data Types
Previously you explored Django data types and the many options to customize how they handle data, such
as limiting values, allowing empty and null values, establishing predetermined values, and enforcing DDL
rules. In this section you’ll learn about the options available for Django relationship model data types.

■■ Note  Options described in the general purpose model data type section (e.g., blank, unique) are applicable
to relationship model data types unless noted.

Data integrity options: on_delete
All model relationships create dependencies between one another, so an important behavior to define is
what happens to the other party when one party is removed. The on_delete option is designed for this
purpose, to determine what to do with records on the other side of a relationship when one side is removed.

For example, if an Item model has a menu ForeignKey() field pointing to a Menu model (i.e., like
Listing 7-22, a one to many relationship: an Item always belong to one Menu, and a Menu has many Items),
what happens to Item model records if their related Menu model instance is deleted? Are the Item model
records also deleted?

The on_delete option is available for all three relationship model data types and supports the
following values:

•	 on_delete=models.CASCADE (Default).- Automatically deletes related records when
the related instance is removed (e.g. if the Menu Breakfast instance is deleted, all Item
records referencing the Menu Breakfast instance are also deleted).

•	 on_delete=models.PROTECT.- Prevents a related instance from being removed (e.g.
if the menu field on Item uses ForeignKey(Menu,on_delete=models.PROTECT), any
attempt to remove Menu instances referenced by Item instances are blocked).

•	 on_delete=models.SET_NULL.- Assigns NULL to related records when the related
instance is removed, note this requires the field to also use the null=True option
(e.g. if the Menu Breakfast instance is deleted, all Item records referencing the Menu
Breakfast instance are assigned NULL to their menu field value).

•	 on_delete=models.SET_DEFAULT.- Assigns a default value to related records when the
related instance is removed, note this requires the field to also use a default option
value (e.g., if the Menu Breakfast instance is deleted, all Item records referencing the
Menu Breakfast instance are assigned a default Menu instance to their menu field value).

Chapter 7 ■ Django Models

314

•	 on_delete=models.SET.- Assigns a value set through a callable to related records
when the related instance is removed (e.g., if the Menu Breakfast instance is deleted,
all Item records referencing the Menu Breakfast instance are assigned an instance to
their menu field value set through a callable function).

•	 on_delete=models.DO_NOTHING.- No action is taken when related records are
removed. This is generally a bad relational database practice, so by default,
databases will generate an error since you’re leaving orphaned records with no
value, null or otherwise. If you use this value, you must ensure the database table
does not enforce referential integrity.

Reference options: Self, literal strings, and parent_link
Model relationships sometimes have recursive relationships. This is a common scenario in one to many
relationship models with parent-child relationships. For example, a Category model can have a parent field
that in itself is another Category model or a Person model can have a relatives field that in itself are other
Person models. To define this type of relationship you must use the 'self' keyword to reference the same
model, as shown in Listing 7-25.

Listing 7-25.  One to many Django model relationship with self-referencing model

from django.db import models

class Category(models.Model):
 menu = models.ForeignKey('self')

class Person(models.Model):
 relatives = models.ManyToManyField('self')

Although model relationship data types typically express their relationships through model object
references (e.g., models.ForeignKey(Menu)), it’s also valid to use literal strings to reference models
(e.g., models.ForeignKey('Menu')). This technique is helpful when the model definition order does not
allow you to reference model objects that are not yet in scope and is a technique often referred to as model
‘lazy-loading’.

The parent_link=True option is an exclusive option for one to one relationships (i.e., the models.
OneToOneField data type) used when inheriting model classes, to help indicate the child class field should
be used as a link to the parent class.

Reverse relationships: related_name, related_query_name, and symmetrical
When you use relationship model data types, Django automatically establishes the reverse relationship
between data types with the _set reference. This mechanism is illustrated in Listing 7-26.

Listing 7-26.  One to many Django model relationship with reverse relationship references

from django.db import models

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)

Chapter 7 ■ Django Models

315

 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)
 price = models.FloatField(blank=True,null=True)

breakfast = Menu.objects.get(name='Breakfast')
Direct access
all_items_with_breakfast_menu = Item.objects.filter(menu=breakfast)

Reverse access through instance
same_all_items_with_breakfast_menu = breakfast.item_set.all()

As you can see in Listing 7-26, there are two routes between a Django relationship. The direct
route involves using the model with the relationship definition; in this case, Item gets all the Item
records with a Menu Breakfast instance. To do this, you use Item and filter on the menu ForeignKey
reference (e.g., Item.objects.filter(menu=breakfast)).

But it’s also possible to use a Menu instance (e.g., breakfast in Listing 7-26) and get all Item records
with a menu instance; this is called a reverse relationship or path. As you can see in Listing 7-26, the reverse
relationship uses the <model_instance>.<related_model>_set syntax (e.g., breakfast.item_set.all() to
get all Item records with a the breakfast instance).Now that you know what a reverse relationship is, let’s
explore the options associated with this term.

The related_name option allows you to customize the name or disable a reverse model relationship.
Renaming a reverse relationship provides more intuitive syntax over the _set syntax from Listing 7-26,
whereas disabling a reverse relationship is helpful when a related model is used in other contexts and
blocking access to a reverse relationship is required for accessibility reasons.

For example, in Listing 7-26 the reverse relationship uses the breakfast.item_set.all() syntax,
but if you change the field to models.ForeignKey(...related_name='menus'), you can use the reverse
relationship breakfast.menus.all() syntax. To disable a reverse relationship you can use the + (plus sign)
on the related_name value (e.g., models.ForeignKey(...related_name='+')).

Reverse relationships are also available as part of queries, as illustrated in Listing 7-27.

Listing 7-27.  One to many Django model relationship with reverse relationship queries

Based on models from listing 7-26

Direct access, Item records with price higher than 1
Items.objects.filter(price__gt=1)

Reverse access query, Menu records with Item price higher than 1
Menu.objects.filter(item__price__gt=1)

Notice how the Menu query in Listing 7-27 uses the item reference to filter all Menu records via its Item
relationship. By default, reverse relationship queries use the name of the model, so in this case, the related
Menu model is Item; therefore the query field is item. However, if you define the related_name option on a
field this value takes precedence. For example, with models.ForeignKey(...related_name='menus') the
reverse query in Listing 7-27 becomes Menu.objects.filter(menus__price__gt=1), all of which takes us to
the related_query_name option.

The related_query_name option is used to override the related_name option value for cases where you
want the reverse query to have a different field value. For example, with models.ForeignKey(...related_
name='menus',related_query_name='onlyitemswith') the reverse relationship reference for menus in
Listing 7-26 would still work, but the reverse relationship query from Listing 7-27 would change to Menu.
objects.filter(onlyitemswith__price__gt=1).

Chapter 7 ■ Django Models

316

Covering an edge-case for many to many relationships is the symmetrical option. If you create a many
to many relationships that references itself – as illustrated in Listing 7-25 with the 'self' syntax – Django
assumes the relationship is symmetrical (e.g., all Person instances are relatives and therefore requires no
reverse relationships since it would be redundant) thus self-referencing many to many relationships forgo
adding a _set reverse relationship to the field. You can use symmetrical=False to force Django to maintain
the reverse relationship.

■■ Tip  The next chapter covers Django model relationship queries in greater detail.

Database options: to_field, db_constraint, swappable, through,
through_fields, and db_table
By default, Django model relationships are established on the primary key of a model, which, in itself,
defaults to a model’s id field. For example, the field menu = models.ForeignKey(Menu) stores the id from
a Menu instance as the relationship reference. You can override this default behavior with the to_field
option and specify a different field on which to establish the relationship reference. Note that if you assign a
to_field value, this field must be set with unique=True.

By default, Django follows relational database conventions and constrains relationships at the database
level. The db_constraint option – which defaults to True – allows you to bypass this constraint by assigning
it a False value. Setting db_constraint=False should only by used when you know beforehand the data
relationships in a database is broken and doesn’t require constraint checking at database level.

The swappable option is intended to influence migrations for models that contain relationships
and are swappable with other models. Unless you implement a very sophisticated model hierarchy with
model swapping features, this option is primarily intended for Django’s built-in User model, which uses a
relationship and is often swapped out for custom user models. The chapter on user management contains
more details on this option.

Specific to many to many model relationships (i.e., the models.ManyToManyField data type) the
through, through_fields & db_table options, influence the junction table used in these types of
relationships. If you want to change the default name for a many to many junction table, you can use the
db_table option to specify a custom junction table name.

By default, a junction table for a many to many relationship stores a minimum amount of information:
an id for the relationship and the id’s for each of the model relationships. It’s possible to specify a separate
model to operate as a junction table and store additional information about the many to many relationship
(e.g., through=MyCustomModel uses the MyCustomTable model as the many to many junction table). If you
define a through option, then it’s also necessary to use the through_fields to tell Django which fields in the
new model are used to store references for the model relationships.

Form values: limit_choices_to
When Django models with relationships are used in the context of forms, it can be useful and even necessary
to delimit the amount of displayed relationships. For example, if you use an Item model with a relationship
to a Menu model, displaying the entire set of Item records as forms (e.g., in the Django admin) can be
impractical if you have hundreds of Item records.

The limit_choices_to can be used on a relationship model type to filter the amount of displayed
records in forms. The limit_choices_to can declare an inline reference field filter (e.g., limit_choices_
to={'in_stock':True}) or a callable that performs more complex logic (e.g., limit_choices_to=my_
complex_method_limit_picker).

Chapter 7 ■ Django Models

317

■■ Tip  The next chapter covers Django model forms in greater detail.

Django Model Transactions
Transactions play an important role in the integrity of model data operations. When you set up a database
for a Django project back in Chapter 1, among the many default options described in Table 1-3, were the
following transaction-related settings:

AUTOCOMMIT = True
ATOMIC_REQUESTS = False

The AUTOCOMMIT option set to True ensures all operations that alter data (i.e., Create, Update, and Delete)
run in their own transaction, and depending on the outcome, are automatically committed to a database if
successful or rolled back if they fail. The AUTOCOMMIT=True settings fits the expectations of most applications,
as it cuts down on the need to explicitly mark operations final and provides reasonable behaviors (i.e., if the
data operation is successful it’s made final [a.k.a. commit], if not, then it’s reverted [a.k.a. rolled back]).

However, there are occasions when grouping operations that alter data into larger transactions – all-or-
nothing tasks – is a necessity.

■■ Tip  If you set AUTOCOMMIT = False you’ll need to explicitly declare commits. A more practical choice is to
leave the default AUTOCOMMIT = True and declare larger transactions explicitly on a case-by-case basis.

Transaction per Request: ATOMIC_REQUESTS and Decorators
Django supports the ATOMIC_REQUESTS option that is disabled by default. The ATOMIC_REQUEST is used to open
a transaction on every request made to a Django application. By setting ATOMIC_REQUEST=True, it ensures the
data operations included in a request (i.e., view method) are committed only if a response is successful.

Django atomic requests are helpful when you want the logic in a view method to be an all-or-nothing
task. For example, if a view method executes fives subtasks associated with data (e.g., credit card verification
procedure, sending an email), it can be helpful to ensure that only if all subtasks are successful the data
operations be considered final, and if only one subtasks fails, then all subtasks are rolled back as if nothing
had happened.

Since ATOMIC_REQUEST=True opens a transaction for every request made on a Django application, it can
cause a performance impact on high-traffic applications. Due to this factor, it’s also possible to selectively
disable atomic requests on certain requests when ATOMIC_REQUEST=True or inclusively selectively enable
atomic requests on certain requests when ATOMIC_REQUEST=False. Listing 7-28 illustrates how to selectively
activate and deactivate atomic requests.

Listing 7-28.  Selectively activate and deactivate atomic requests with @non_atomic_requests and @atomic

from django.db import transaction

When ATOMIC_REQUESTS=True you can individually disable atomic requests

@transaction.non_atomic_requests
def index(request):
 # Data operations with transactions commit/rollback individually

http://dx.doi.org/10.1007/978-1-4842-2787-9_1
http://dx.doi.org/10.1007/978-1-4842-2787-9_1#Tab3

Chapter 7 ■ Django Models

318

 # Failure of one operation does not influence other
 data_operation_1()
 data_operation_2()
 data_operation_3()

When ATOMIC_REQUESTS=False you can individually enable atomic requests

@transaction.atomic
def detail(request):
 # Start transaction.
 # Failure of any operation, rollbacks other operations
 data_operation_1()
 data_operation_2()
 data_operation_3()
 # Commit transaction if all operation successful

As you can see in Listing 7-28, if you decide to use ATOMIC_REQUESTS=True, you can disable
transactions per request on a view method with the @transaction.non_atomic_requests decorator from
the django.db.transaction package. If you decide to keep the default ATOMIC_REQUESTS=False, you can
enable transactions per request on a view method with the @transaction.atomic decorator from the same
django.db.transaction package.

Context Manager and Callbacks: atomic() and on_commit()
In addition to the AUTOCOMMIT and ATOMIC_REQUEST transaction configurations, as well as the view method
transaction decorators, it’s possible to manage transactions at an intermediate scope. That is, coarser
transactions than individual data operations (e.g., save()), but finer transactions than atomic requests (i.e.,
view methods).

The Python with keyword can invoke a context manager6 charged with managing transactions. Context
managers for transactions use the same django.db.transaction.atomic() method – used as a decorator in
Listing 7-28 – but inside the body of a method, as illustrated in Listing 7-29.

Listing 7-29.  Transactions with context managers

from django.db import transaction

def login(request):
 # With AUTO_COMMIT=True and ATOMIC_REQUEST=False
 # Data operation runs in its own transaction due to AUTO_COMMIT=True
 data_operation_standalone()

 # Open new transaction with context manager
 with transaction.atomic():
 # Start transaction.
 # Failure of any operation, rollbacks other operations

6https://docs.python.org/3/reference/datamodel.html#context-managers

https://docs.python.org/3/reference/datamodel.html#context-managers

Chapter 7 ■ Django Models

319

 data_operation_1()
 data_operation_2()
 data_operation_3()
 # Commit transaction if all operation successful

 # Data operation runs in its own transaction due to AUTO_COMMIT=True
 data_operation_standalone2()

As you can see in Listing 7-29, it’s possible to generate a transaction inside a method without
influencing its entire scope vs. atomic requests which run on the entire view method scope. In addition,
Django transactions also support callbacks, where by you can run a task once a transaction is successful
(i.e., it’s committed).

Callbacks are supported through the on_commit() method, which is also part the django.
db.transaction package. The syntax for the on_commit() method is the following:

transaction.on_commit(only_after_success_operation)

transaction.on_commit(lambda: only_after_success_with_args('success'))

The argument to on_commit() method can be either a non-argument function to run after a successful
transaction or a function wrapped in a lambda statement if the function to run after a successful transaction
requires arguments.

The transaction.on_commit() method is triggered once the transaction in which the method was
declared is successful. If the transaction running at the point where the transaction.on_commit() method
is declared fails, the on_commit() callback is never called. If there’s no transaction running at the point
where the transaction.on_commit() method is declared, the on_commit() callback is trigged immediately.

■■ Tip  Use commit=False on a model’s save() method – described in Table 7-3 – to avoid a transaction
(i.e., write operation) and still create a model object in memory.

Django Model Migrations
At the start of this chapter you learned how Django models are closely tied to the migrations. Recapping, the
migrations consists of registering the evolution of Django models in an app’s models.py file into ‘migration
files’, with the purpose of later reviewing and applying these models.py changes to a database.

In essence, migration files serve as a buffer between a database and the changes made to a Django
project’s models defined in models.py files. With data being such a delicate piece of a project, migration
files provide highly desirable functionalities, such as the ability to preview database change before they’re
committed (e.g., sqlmigrate in Listing 7-4) and also the ability to go back to a certain point in time in a
models.py file state, reverting what are generally complex DDL structure changes.

Migration File Creation
The manage.py makemigrations command is the entry point to create migration files. If you execute this
command without arguments, Django inspects all the models.py files for apps declared in the INSTALLED_
APPS variable and creates a migration file for apps whose models.py contents has changed from prior
migrations. Table 7-4 describes the most common makemigrations arguments and their purpose.

Chapter 7 ■ Django Models

320

Table 7-4.  Django most-used makemigrations arguments

Argument Description

<app_name> Indicates a specific app’s models.py file (e.g., manage.py makemigrations
stores, only inspects/creates migrations for the models.py in the stores app).

--dry-run Simulates migration creation without creating the actual migration files.

--empty Creates an empty migration file, irrespective of the models.py file being
changed or not.

--name 'my_migration_file' Creates a migration file a custom name, instead of the default
'auto_<current_date'>. Note the leading serial number used for migration
files (e.g., 0001, 0002) is not customized, as this is a best practice to identify
migration order.

--merge Creates a merged migration from two conflicting migration files. Required
when multiple serial number files are present in the same app (e.g., 0002_
unique_constraints.py, 0002_field_update.py), generally due to multiple
people creating a duplicate serial numbers (e.g., when you try to make a
migration in these circumstances, Django throws the error 'Conflicting
migrations detected', suggesting you use -merge to fix the problem).

As you can see in Table 7-4, the makemigrations command offers multiple ways to create migration
files. You can create empty migration files, you can simulate the creation of migration files to inspect changes
first, and you can also create migration files with a specific name, among other things.

■■ Tip  Remember you can use the sqlmigrate command to preview the SQL generated by a migration file
and the migrate command to apply the migration file to a database. See the first section in this chapter for
additional examples of model migration commands.

Migration File Renaming
Migration files are not set in stone, so it’s possible to rename migration files. What steps you need to take to
rename a migration file, depend on whether a migration has been applied to a database or not. To determine
the state of a migration file with respect to a database, execute the python manage.py showmigrations, and
if a migration file has an X beside it, it means it has been applied to the database.

For migrations that haven’t been applied to the database, you can rename a migration file directly in
the migrations folder to a more descriptive name. At this point, the migration file is just a representation of
model changes that no one else knows about, so you can even delete the migration file if needed.

■■ Caution  Migration files should always maintain the serial number prefix (e.g., 0001, 0002) since it reduces
confusion regarding migration file order.

Chapter 7 ■ Django Models

321

For migrations that have been applied to a database you have two alternatives. The first option is to
rename the migration file, alter the database table that holds the migration activity to reflect this new name,
and update other migration file dependencies (if any) to also reflect this new name. Once you rename the
migration file inside the migrations folder, access the django_migrations database table, and look for the
record with the old migration file name and update it to the reflect the new migration name. Next, if there’s
a newer migration file than the one you’re renaming, the newer migration file will have a dependencies
statement – described in the migration file structure section – that must be updated with the new name.

The second alternative is to roll back to a migration prior to the migration file you want to rename,
at which point you can simply rename the migration file – as an unapplied database migration file – and
then reapply the migration process back to the most recent migration file. An upcoming section describes
migration file rollback in greater detail.

Migration File Squashing
A models.py files that undergoes many changes can generate dozens or even hundreds of migrations files.
In these circumstances, it’s possible to squash multiple migration files into a single migration file to simplify
file migration management. Note the term 'squash' is used vs. the more technically accurate term 'merge',
because migration file merging refers to conflicting migration files, see the --merge option in Table 7-4.

The manage.py squashmigrations command is designed to squash multiple migration files, and its
syntax is the following:

manage.py squashmigrations <app_name> <squash_up_to_migration_file_serial_number>

As you can see, the squashmigrations command requires you specify both the app on which you
want to squash migration files, as well as the migration serial number up to which you want to squash
(e.g., squashmigrations stores 0004, generates a single migration file for the stores app from the
migration files 0001, 0002, 0003,and 0004).

The squashmigrations command also supports an additional positional argument to change the start
of the squashing process from the default 0001 (e.g., squashmigrations stores 0002 0004, generates a
single migration file from the migration files 0002, 0003, and 0004)

Like all file merging mechanisms, there’s always a possibility squashmigrations may not be able to
produce automatic results, in which case it generates the message 'Manual porting required', where it’s
necessary to manually edit the squashed migration file (e.g., just like it can happen with other file merging
conflict operations in platforms like git).

Squashed migration files follow the naming convention:

<initial_serial_number>_squashed_<up_to_serial_number>_<date>.py

You can rename squashed migration file just like regular migration files; just follow the same steps
described in the previous section, depending on whether the squashed migration file has been applied to a
database or not.

Squashed migration files take over the duties of un-squashed migration files. You can keep the old
(un-squashed) migration files as long as you want, but they only continue to serve a purpose until the squashed
migration file is applied to a database. Behind the scenes, squashed migration files use the replaces migration
field – described in the next section – to indicate which migration files it replaces. Therefore once you apply a
squashed migration file to a database, the migration files in replaces are ignored.

Chapter 7 ■ Django Models

322

Migration File Structure
Although migration files are automatically created based on the changes made to models.py files vs. the
prior migration files belonging to the same models.py files, this doesn’t mean you can’t or won’t have
to change the internal structure of migration files. Listing 7-30 illustrates the basic structure of a Django
migration file.

Listing 7-30.  Django migration file basic structure

from django.db import migrations, models

class Migration(migrations.Migration):

 initial = True

 replaces = [
]

 dependencies = [
]

 operations = [
]

First, notice in Listing 7-30 all migration files include a class named Migration that inherits its behavior
from django.db.migrations.Migration. This allows migrations to automatically receive a series of default
behaviors, similar to how Django model classes inherit their behavior from the django.db.models.Model class.

Inside each Migration class are a series of fields that determine the actions of the migration file. The
initial field is a Boolean value present on the initial migration file for every app (i.e., migration files with
the 0001 serial number). The replaces field is a list field used by squashed migration files to declare which
migration files it replaces, a value that is automatically populated when you create a squashing migration file.

The dependencies and operations fields are by far the two most common fields in migrations files.
Although they’re automatically populated once a migration file is created – just like other migration file
fields – these two fields are the ones you’re most likely to change if you require adjusting the logic executed
by a migration file.

The dependencies field is a list of tuples with the ('<app_name>','<migration_file>') syntax, where
each tuple represents a migration dependency. For example, by default the second migration file for an app
named about contains the following dependencies value:

dependencies = [
 ('about', '0001_initial'),
]

This tells Django the migration file depends on the execution of the migration file 0001_initial in the
about app, ensuring this last migration file is run first.

The most common scenario for editing the dependencies field is to add inter-app migration file
dependencies. For example, if the online app depends on data from the stores app created by its 0002_
data_population migration file, you can add a dependency tuple to the online app’s first migration file to
ensure it’s run after the stores migration files (e.g., ('stores', '0002_data_population')).

Chapter 7 ■ Django Models

323

■■ Tip  To reference the first migration file in an app you can use the __first__ reference (e.g., ('stores',
'__first__')), to reference the last migration file in an app you can use the __latest__ reference (e.g., ('stores',
'__latest__')).

The operations field declares a list of migration operations.7 Migration operations include all
database-related tasks performed by migrations. If you were wondering how Django generates the DDL to
create, delete, alter, or rename the database table behind a model, it’s all based on migration operations.

For most cases, Django generates the migration operations based on the changes made to models in
a models.py file. For example, if you add a new model, the next migration file includes a django.db.
migrations.operations.CreateModel() migration operation; if you rename a model in the models.py, the
next migration file includes a RenameModel() operation from the same django.db.migrations.operations
package; this same mechanism occurs when you change a model field (AlterModel()), add an index
(AddIndex()) and perform all the other modifications possible to models in a models.py file.

The most common scenario for editing the operations field in a migration file is to add non-DDL
operations (e.g., SQL DML- Data Manipulation Language) which can’t be reflected as part of model changes.
For example, you can insert SQL queries as part of a migration file through the RunSQL migration operation and
you can also run Python logic as part of a migration file through the RunPython migration operation. The section
“Django Model Initial Data Setup” describes how to use the RunSQL and RunPython migration operations.

Migration File Rollback
Reverting a database to a previous state of a Django model can be done by rolling back migration files.
Reverting a database to a previous migration file is as simple as passing an additional argument to the same
migrate command that applies migration files. For example, the migrate stores 0001 statement tells
Django to migrate the stores app to the 0001 migration file, if the app’s database state is in a more recent
migration file (e.g., 0004), Django rolls back migration files until the database reflects the 0001 migration file.

But as simple as the migration file rollback command is, the actual rollback process is anything but
simple. Since migration files can contain multiple DDL and DML operations – as described in the previous
section – there are certain migration operations that are considered irreversible. This means once a
migration is applied, Django can’t determine with certainty how to undo it.

When a rollback is attempted on a migration with an irreversible operation, Django throws the error
django.db.migrations.exceptions.IrreversibleError. Of course, irreversible does not mean impossible,
but it does mean additional work to make a migration file reversible.

Most irreversible migration operations happen on DDL migration operations (e.g., RunSQL, RunPython)
where you execute certain logic as part of the migration file. To make these types of migration operations
reversible, you must equally provide the logic to revert the logic applied as part of the migration file. The
section “Django Model Initial Data Setup” describes how to create reverse operations for the RunSQL and
RunPython migration operations.

Django Model Database Tasks
Django is equipped to execute database-level tasks on Django models that are often done by database tools.
A Django project’s manage.py command offers several management subcommands for tasks like backing
up, loading, and deleting data from database tables linked to Django models, as well as re-creating Django
models from database tables and issuing interactive commands to a database.

7https://docs.djangoproject.com/en/1.11/ref/migration-operations/

https://docs.djangoproject.com/en/1.11/ref/migration-operations/

Chapter 7 ■ Django Models

324

Backup Data: Fixtures, dumpdata, loaddata, and inspectdb
The dumpdata and loaddata commands are Django’s data backup and loading tools, similar to native tools
included in databases (e.g., MySQL mysqldump, Postgres pg_dump).

Django uses the term fixture to refer to the data structures created and used by the dumpdata and
loaddata commands. Because Django fixtures are designed for Django model instance data, their structure
is based on formats that better describe this type of data. By default, Django fixtures use the JSON (JavaScript
Object Notation) format, but it’s also possible to create fixtures in XML and YAML.

The dumpdata command outputs database table data linked Django models. It accepts a wide array of
options, the most common of which are described in the following examples:

•	 manage.py dumpdata > all_model_data.json.- Outputs data for all project models
and places it in the all_model_data.json file.

•	 manage.py dumpdata stores --format xml.- Outputs data for all models in the
stores app in XML.

•	 manage.py dumpdata about.contact --indent=2.- Outputs data for the Contact
model in the about app with two space indentation -- the indentation makes the
output more readable.

•	 manage.py dumpdata items.menu –pk=1,2,3 --format yaml.- Outputs the Menu
model records with primary keys (i.e., id values) 1,2,3 from the items app in a
YAML format.

■■ Note  To output YAML you need the PyYAML package (e.g., pip install PyYAML).

The manage.py loaddata command is designed to load fixture files produced by dumpdata. This means
invoking loaddata is as simple as executing manage.py loaddata <fixture_file_name>. The loaddata
command can accept relative or absolute paths to fixture files, but in addition, it also searches for fixture
files in the fixtures folder inside apps. The next section on “Django Model Initial Data Setup” describes the
procedure to use fixtures in apps.

The most important variation for the manage.py loaddata command are that it can accept multiple
fixture files as arguments (e.g., loaddata <fixture_1>, <fixture_2>, <fixture_3>), which is necessary if
fixture files have interdependencies; and it can restrict the searching/loading of fixtures to certain apps (e.g.,
manage.py loaddata menu --app items, searches/loads a fixture file named menu, but only inside the items
app, specifically inside its fixtures folder).

The manage.py inspectdb is a reverse-engineering process that outputs Django models generated
from database tables. Note the manage.py inspectdb outputs a single stream of model classes, so it requires
rearranging the output if the model classes are to be placed in different models.py files.

Delete Data: Flush, sqlflush, and sqlsequencereset
Django also offers the flush and sqlflush commands to delete the contents of database tables linked to
Django models. The manage.py flush command triggers the actual deleting process, whereas manage.py
sqlflush outputs the SQL required to delete all data in Django model database tables (i.e., the logic
triggered by flush).

The manage.py sqlsequenereset command outputs the required SQL to reset logic used by database
sequences of a given app (e.g., manage.py sqlsequencereset stores to output the SQL necessary to reset
the sequences used by models in the stores app). Sequences are used by databases to give automatically
incrementing values to certain Django models fields (e.g., id field), and this command is used to fix issues
when sequence values become out of sync.

Chapter 7 ■ Django Models

325

Interact with Data: dbshell
Sometimes the need to connect directly to a database linked to a Django project can become inevitable in
order to perform a complex task or query. The manage.py dbshell command is designed to connect to a
Django project’s database using the credentials in a Django projects settings.py file, in turn, avoiding the
need to type in credentials to access a database.

Depending on the database brand you’re using, the dbshell command opens an interactive command-
line shell to the built-in tool for each database brand: for PostgreSQL to the dpsql environment, for
MySQL to the mysql environment, for SQLite to the sqlite3 environment, and for Oracle to the sqlplus
environment.

Django Model Initial Data Setup
On many occasions it can be helpful or necessary to load a set of predefined data records on a Django
model. Django allows you to load predefined records by either hard-coding them in Python; using a
standard SQL script with SQL statements; or using a fixture file, which is a Django export/import format
described in the previous section.

The first step to load a set of predefined data records is to generate an empty migration file to handle the
actual data loading process. Listing 7-31 illustrates how to generate an empty migration file.

Listing 7-31.  Create empty Django migration file to load initial data for Django model

[user@coffeehouse ~]$ python manage.py makemigrations --empty stores
Migrations for 'stores':
 0002_auto_20180124_0507.py:

As you can see in Listing 7-31, Django creates the empty migration file 0002_auto_20180124_0507.py
for the stores app. At this point, you can easily rename the migration file as described in the previous section.
Once you have an empty Django migration, let’s explore the different ways to modify it to set up initial data
for a Django model.

Hard-code predefined records in Python migration file
The simplest approach to set up initial data is to hard-code the set of predefined data records and make
it part of the migration file itself. Listing 7-32 illustrates a modified migration file with hard-coded model
objects to load into a database.

Listing 7-32.  Load initial data with hard-coded data in Django migration file

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

def load_stores(apps, schema_editor):
 Store = apps.get_model("stores", "Store")
 store_corporate = �Store(id=0,name='Corporate',address='624 Broadway',city='San Diego',

state='CA',email='corporate@coffeehouse.com')
 store_corporate.save()
 store_downtown = �Store(id=1,name='Downtown',address='Horton Plaza',city='San Diego',

state='CA',email='downtown@coffeehouse.com')

Chapter 7 ■ Django Models

326

 store_downtown.save()
 store_uptown = �Store(id=2,name='Uptown',address='1240 University Ave',city='San

Diego',state='CA',email='uptown@coffeehouse.com')
 store_uptown.save()
 store_midtown = �Store(id=3,name='Midtown',address='784 W Washington St',city='San

Diego',state='CA',email='midtown@coffeehouse.com')
 store_midtown.save()

def delete_stores(apps, schema_editor):
 Store = apps.get_model("stores", "Store")
 Store.objects.all().delete()

class Migration(migrations.Migration):

 dependencies = [
 ('stores', '0001_initial'),
]

 operations = [
 migrations.RunPython(load_stores,delete_stores),
]

The first thing that's added to the empty migration file is the migrations.RunPython(load_
stores,delete_stored) line in the operations[] list. The RunPython method runs Python code and its first
argument indicates to run the load_stores method, the second argument – which is optional – is called
the reverse code and is run when rolling back migrations – which is mentioned in the previous section on
“Migration File Rollback.”

The load_stores method in Listing 7-32 contains the hard-coded data records. This method first
gets a reference of the Store model and then creates three different instances, which are then saved to the
database. The delete_stores method does the opposite of the load_stores method – as its purpose is to
roll back the applied data – deleting Store instances.

Once you make the additions illustrated in Listing 7-32 to an empty migration file, you just need to
trigger the migration with the migrate command to load data into the database.

SQL script with SQL statements
On other occasions you may already have a set of predefined records in an SQL script to populate a database
table. Listing 7-33 illustrates a sample SQL script to populate the table associated with the Store model.

Listing 7-33.  SQL script with SQL statements

INSERT INTO stores_store (id,name,address,city,state,email) VALUES (0,'Corporate','624
Broadway','San Diego','CA','corporate@coffeehouse.com');
INSERT INTO stores_store (id,name,address,city,state,email) VALUES (1,'Downtown','Horton
Plaza','San Diego','CA','downtown@coffeehouse.com');
INSERT INTO stores_store (id,name,address,city,state,email) VALUES (2,'Uptown','1240
University Ave','San Diego','CA','uptown@coffeehouse.com');
INSERT INTO stores_store (id,name,address,city,state,email) VALUES (3,'Midtown','784 W
Washington St','San Diego','CA','midtown@coffeehouse.com');

Chapter 7 ■ Django Models

327

By convention, Django names SQL scripts after the Django model its storing data for and places the SQL
scripts in a subfolder named sql inside the app where the models are. For example, the contents of Listing 7-33
are for the Store model in the stores app and therefore would be placed in the project folder stores/sql/
store.sql. Once you have an SQL script inside a Django project's directory structure, you can set it up as the
initial data for a Django model. Listing 7-34 illustrates a modified migration file to load data from the SQL
script in Listing 7-33 into a database.

Listing 7-34.  Load initial data with SQL script in Django migration file

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

def load_stores_from_sql():
 from coffeehouse.settings import PROJECT_DIR
 import os
 sql_statements = open(os.path.join(PROJECT_DIR,'stores/sql/store.sql'), 'r').read()
 return sql_statements

def delete_stores_with_sql():
 return 'DELETE from stores_store;'

class Migration(migrations.Migration):

 dependencies = [
 ('stores', '0001_initial'),
]

 operations = [
 migrations.RunSQL(load_stores_from_sql(), delete_stores_with_sql()),
]

■■ Note  The RunSQL method used to load SQL statements relies on the sqlparse package. So if you plan to
use this functionality you need to install this package (e.g., pip install sqlparse).

The first thing that's added to the empty migration file is the migrations.RunSQL(load_stores_from_
sql(),delete_stores_with_sql()) line in the operations[] list. The RunSQL method runs SQL statements,
and its first argument indicates to run the load_stores method, the second argument – which is
optional – is called the reverse code and is run when rolling back migrations – described in the previous
section on “Migration File Rollback.”

The load_stores_from_sql method in Listing 7-34 reads the contents of the SQL script from a relative
path in the main project directory at stores/sql/store.sql and returns the SQL statements in the file. In this
case, the relative path is provided by the PROJECT_DIR variable defined in a Django project's settings.py file
and the SQL script is read using Python's standard open method. The delete_stores_from_sql method does
the opposite of the load_stores_from_sql method – as its purpose is to roll back the applied data – deleting
Store instances.

Once you make the additions illustrated in Listing 7-34 to an empty migration file, you just need to
trigger the migration with the migrate command to load data into the database.

Chapter 7 ■ Django Models

328

Django fixture file
Another alternative to load initial data in a Django model is through a fixture file. A fixture file is a Django-
specific format used to manage the data export/import of Django models, described in the previous section
on Django model database tasks. Listing 7-35 illustrates a JSON fixture file to populate the table associated
with the Store model.

Listing 7-35.  Django fixture file with JSON structure

[{
 "fields": {
 "city": "San Diego",
 "state": "CA",
 "email": "corporate@coffeehouse.com",
 "name": "Corporate",
 "address": "624 Broadway"
 },
 "model": "stores.store",
 "pk": 0
},
{
 "fields": {
 "city": "San Diego",
 "state": "CA",
 "email": "downtown@coffeehouse.com",
 "name": "Downtown",
 "address": "Horton Plaza"
 },
 "model": "stores.store",
 "pk": 1
}]

■■ Tip  Use dumpdata to generate fixture files, as described in the section “Model Database Tasks.”

By convention, Django names fixture files after the Django model its stores data for and place fixture
files in a subfolder named fixtures inside the app where a model is located. For example, the contents of
Listing 7-35 are for the Store model in the stores app; therefore they’re placed in the project folder stores/
fixtures/store.json. Once you have a fixture file inside a Django project's directory structure, you can take
the next step to set it up as the initial data for a Django model.

Listing 7-36 illustrates a modified migration file to load data from the fixture file in Listing 7-35 into a
database.

Listing 7-36.  Load initial data from Django fixture file in Django migration file

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

Chapter 7 ■ Django Models

329

def load_stores_from_fixture(apps, schema_editor):
 from django.core.management import call_command
 call_command("loaddata", "store")

def delete_stores(apps, schema_editor):
 Store = apps.get_model("stores", "Store")
 Store.objects.all().delete()

class Migration(migrations.Migration):

 dependencies = [
 ('stores', '0001_initial'),
]

 operations = [
 migrations.RunPython(load_stores_from_fixture,delete_stores),
]

The first thing that's added to the empty migration file is the migrations.RunPython(load_stores_
from_fixture,,delete_stores) line in the operations[] list. The RunPython method runs Python code as
previously described in Listing 7-32.

The load_stores_from_fixture method in Listing 7-36 uses the call_command method to load the
fixture file by simulating the command-line execution of the manage.py loaddata command. The loaddata
command requires an additional argument to search for the fixture file in a specific app. In this case, the
argument store tells Django to look for a fixture files named store in all the fixtures subdirectories for all
apps. Note the RunPython() also uses a reverse code aegument – as it was done in Listing 7-32 – to be able to
roll back the loading of fixture data.

Once you make the additions illustrated in Listing 7-36 to an empty migration file, you just need to
trigger the migration with the migrate command to load data into the database.

Django Model Signals
As you’ve learned throughout this chapter, Django models have a series of methods you can override to
provide custom functionalities. For example, you can create a custom save() or __init__ method, so
Django executes custom logic when saving or initializing a Django model instance, respectively.

While this ability provides a wide array of possibilities to execute custom logic at certain points in
the life cycle of a Django model instance (e.g., create an audit trail if the delete() method is called on an
instance), there are cases that require executing custom logic when an event happens in the life cycle of
another model instance. For example, updating an Item model’s stock value when an Order model instance
is saved or generating a Customer model instance each time a Contact model instance is updated.

These scenarios create an interesting implementation problem. One approach is to interconnect
the logic between two model classes to fulfill this type of logic (e.g., every time an Order object is saved,
update related Item objects). This last approach though can become overly complex with more demanding
requirements, because dependent classes need to be updated to perform actions on behalf of other classes.
This type problem only grows in complexity once you confront the need to execute actions on classes you
have no control over (e.g., how do you trigger a custom action when an instance of the built-in django.
contrib.auth.User model class is saved?).

Chapter 7 ■ Django Models

330

It turns out this scenario to trigger actions on behalf of other classes is so common in software, there’s
a name for it: the observer pattern.8 The Django framework supports the observer pattern through Django
signals.

In the simplest terms, signals are emitted by Django models into the project environment, just like
airplanes emit signals into the environment. Similarly, all you need to intercept signals is create the
appropriate receiver to intercept such signals (e.g., a receiver to detect the save signal for all project models,
a receiver to detect the delete signal for a specific model) and execute whatever custom logic it is you need to
run whenever the signal surfaces.

Built-In Django Model Signals
By default, all Django models emit signals for their most important workflow events. This is a very important
fact for the sole reason it provides a noninvasive way to link into the events of any Django model. Note the
emphasis on any Django model, meaning your project models, third-party app models and even Django
built-in models, this is possible because signals are baked into the core django.db.models.Model class used
by all Django models. Table 7-5 illustrates the various signals built in to Django models.

■■ Tip  Django also offers built-in signals for requests, responses, pre and post migrate events, and testing
events. See built-in signal reference.9

Now that you know there are always a series of signals emitted by all of your Django project models, let’s
see how to get notified of signals, in order to execute custom logic when the signal occurs.

Listen for Django Model Signals
Listening for Django model signals – and Django signals in general – follows a straightforward syntax using
the @receiver decorator from the django.dispatch package, as shown in Listing 7-37.

Listing 7-37.  Basic syntax to listen for Django signals

from django.dispatch import receiver

@receiver(<signal_to_listen_for_from_django_core_signals>,sender=<model_class_to_listen_to>)
def method_with_logic_to_run_when_signal_is_emitted(sender, **kwargs):
 # Logic when signal is emitted
 # Access sender & kwargs to get info on model that emitted signal

As you can in Listing 7-37, you enclose the logic you want to execute on a signal in a Python method
that follows the input signature of the signal callback; this in turn allows you to access information about
the model that emitted the signal. For most signals, the input signature sender, **kwargs fits, but this can
change depending on the signal – see the footnote reference on signals for details on the input arguments
used by each signal.

8https://en.wikipedia.org/wiki/Observer_pattern
9https://docs.djangoproject.com/en/1.11/ref/signals/

https://en.wikipedia.org/wiki/Observer_pattern
https://docs.djangoproject.com/en/1.11/ref/signals/

Chapter 7 ■ Django Models

331

Once you have a method to run on a signal emission, the method must be decorated with the
@receiver annotation, which generally uses two arguments: a signal to listen for – those described in
Table 7-5 – which is a required argument and the optional sender argument to specify which model class to
listen into for the signal. If you want to listen for the same signal emitted by all your project’s models – a rare
case – you can omit the sender argument.

Now that you have a basic understanding of the syntax used to listen for Django signals, let’s explore the
placement and configuration of signals in a Django project.

The recommended practice is to place signals in a file called signals.py under an app’s main folder
(i.e., alongside models.py, views.py). This keeps signals in an obvious location, but more importantly it avoids
any potential interference (e.g., loading issues, circular references) given signals can contain logic related to
models and views. Listing 7-38 illustrates the contents of the signals.py file for an app named items.

Listing 7-38.  Listen for Django pre_save signal on Item model in signals.py

from django.dispatch import receiver

from django.db.models.signals import pre_save
from django.dispatch import receiver

import logging

stdlogger = logging.getLogger(__name__)

@receiver(pre_save, sender='items.Item')
def run_before_saving(sender, **kwargs):
 stdlogger.info("Start pre_save Item in signals.py under items app")
 stdlogger.info("sender %s" % (sender))
 stdlogger.info("kwargs %s" % str(kwargs))

First, notice the signal listening method in Listing 7-38 uses the @receiver decorator to listen for the
pre_save signal on the Item model. This means that every time an Item model instance is about to be saved,
the method run_before_saving is triggered. In this case, a few log messages are generated, but the method
can execute any logic depending on requirements.

Table 7-5.  Built-in Django model signals

Signal(s) Signal class Description

pre_init
post_init

django.db.models.signals.pre_init
django.db.models.signals.post_init

Signal emitted at the beginning and end of
the model’s __init__() method.

pre_save
post_save

django.db.models.signals.pre_save
django.db.models.signals.post_save

Signal emitted at the beginning and end of
the model’s __save__() method.

pre_delete
post_delete

django.db.models.signals.pre_delete
django.db.models.signals.post_delete

Signal emitted at the beginning and end of
the model’s __delete__() method.

m2m_changed django.db.models.signals.m2m_changed Signal emitted when a ManyToManyField
is changed on a model instance.

class_prepared django.db.models.signals.class_prepared Signal emmited when a model has been
defined and registered with Django’s
model system. Used internally by Django,
but rarely used for other circumstances.

Chapter 7 ■ Django Models

332

■■ Tip  The sender argument in Listing 7-38 uses a string model reference instead of a standard class import
reference. This ensures models in signals are lazy-loaded avoiding potential import conflicts between models
and signals.

Once you have a signals.py file with all of its signal listening methods, you must tell Django to inspect
this file to load the signal logic. The recommended practice is to do this with an import statement in the
apps.py file, which is also part of an app’s structure. Listing 7-39 illustrates a modified version of the default
apps.py to inspect the signals.py file.

Listing 7-39.  Django apps.py with custom ready() method to load signals.py

from django.apps import AppConfig

class ItemsConfig(AppConfig):
 name = 'coffeehouse.items'

 def ready(self):
 import coffeehouse.items.signals

In Listing 7-39 you can see the apps.py file contains the ready() method. The ready() method, as its
name implies, is executed once the app is ready to be accessed. Inside ready() there’s an import statement
for the signals module in the same app (i.e., Listing 7-38), which in turn makes Django load the signal
listening methods in Listing 7-38.

In addition to this change to the apps.py file to load signals, it’s also necessary to ensure the apps.py file
itself is loaded by Django. For this requirement there are two options illustrated in Listing 7-40.

Listing 7-40.  Django configuration options to load apps.py

Option 1) Declare apps.py class as part of INSTALLED_APPS
settings.py
INSTALLED_APPS = [
 'coffeehouse.items.apps.ItemsConfig',
 ...
]

Option 2) Declare default_app_config inside the __init__ file of the app

#/coffeehouse/items/__init__.py
default_app_config = 'coffeehouse.items.apps.ItemsConfig'

The first option in Listing 7-40 consists of explicitly declaring an app’s configuration class as part of
INSTALLED_APPS – in this case coffeehouse.items.apps.ItemsConfig – instead of the stand-alone package
app statement (e.g., coffeehouse.items). This last variation ensures the custom ready() method is called as
part of the initialization procedure.

The second option in Listing 7-40 consists of adding the default_app_config value to the __init__ file
of an app (i.e., the one besides the apps.py, models.py and views.py) and declaring the app’s configuration
class, in this case coffeehouse.items.apps.ItemsConfig.

The first option in Listing 7-40 is newer and supported since the introduction of the app configuration
in Django 1.9, the second is equally valid and was used prior to introduction of athe pp configuration.

Chapter 7 ■ Django Models

333

Emit Custom Signals in Django Model Signals
In addition to the Django built-in signals presented in Table 7-5, it’s also possible to create custom signals.
Custom signals are helpful when you want to execute actions pegged to important events in the workflow of
your own models (e.g., when a store closes, when an order is created), whereas Django built-in signals let you
listen to important Django model workflow signals (e.g., before and after a model instance is saved or deleted).

The first step to create custom signals is to generate a signal instance with the django.dispatch.Signal
class. The Signal class only requires the providing_args argument, which is a list of arguments that both
signal emitters and receivers expect the Signal to have. The following snippet illustrates two custom Signal
instances:

from django.dispatch import Signal

order_complete = Signal(providng_args=["customer","barista"])

store_closed = Signal(providing_args=["employee"])

Once you have a custom Signal instance, the next step is to add a signal emission method to trigger
a Signal instance. For Django models, the standard location is to emit signals as part of a class method, as
illustrated in Listing 7-41.

Listing 7-41.  Django model emitting custom signal

from django.db import models
from coffeehouse.stores.signals import store_closed

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 ...
 def closing(self,employee):
 store_closed.send(sender=self.__class__, employee=employee)

As you can see in Listing 7-41, the Store model defines a method called closing() that accepts an
employee input. Inside this closing() method, a signal is emitted to the custom Signal class named store_
closed using the send() method – inherited through Signal – which uses the arguments expected by the
custom Signal class.

Next, when you have a reference to a Store model instance and call the closing() method on any
store instance (e.g., downtown_store.closing(employee=request.user)) a custom store_closed signal is
emitted. And who receives this signal? Anyone who is listening for it, just like built-in Django signals. The
following snippet illustrates a signal listening method for the custom store_closed signal:

@receiver(store_closed)
def run_when_store_is_closed(sender,**kwargs):
 stdlogger.info("Start store_closed Store in signals.py under stores app")
 stdlogger.info("sender %s" % (sender))
 stdlogger.info("kwargs %s" % str(kwargs))

This last listening signal method is almost identical to the ones used to listen for built-in Django signals –
presented in the past section in Listing 7-38. In this case, the only argument to the @receiver decorator
corresponds to the signal name store_closed, which indicates the method is listening for this signal. Since the
custom store_closed signal is produced in a limited location (i.e., in a single model method) – unlike built-in
signals that are produced by all models – the @receiver decorator forgoes adding the optional sender argument.

Chapter 7 ■ Django Models

334

Django Models Outside of models.py
By default, Django models are placed in models.py files inside apps. However, this single file can outgrow
the needs of large apps that require storing dozens or hundreds of models. There are three techniques you
can use to deallocate Django models from models.py files inside apps.

Django Models Inside Apps in the Models Folder
The first technique to store Django models outside of models.py files is to create a folder named models –
inside the same app – declare class models in stand-alone files in this folder and import the classes through
this new folder’s __init__ file. Listing 7-42 shows an app folder layout for this type of model deployment.

Listing 7-42.  Django apps with models stored under models directory

+---+
 |
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-apps.py
 +-models-+
 |
 +-__init__.py
 +-menus.py
 +-equipment.py
 +-personnel.py

Notice in Listing 7-42 that alongside the standard models.py file is a models folder. Next, inside the
models folder are multiple .py files with Django models declared as they would typically be done inside
models.py. You can have as many models as needed in each .py file and as many .py files as you deem
necessary (e.g., one model per file).

However, the __init__ file inside this new models folder does require additional attention. While
__init__ files are typically left empty, in this case, the __init__ file must make a relative import for each
of the models – inside .py files – to make them visible to the app. For example, if the menus.py file contains
the Breakfast model class, the __init__ file must declare the line from .menus import Breakfast. This
one-line syntax – from .<file> import <model_class> – must be used in __init__.py for every model
declared in .py files inside the models folder.

With this layout you’re able to place Django models outside of a single models.py file, but the following
points apply to this first technique to relocate Django models:

•	 The subfolder must be named models.- Because the models.py file is inspected by
default (as the Python path <app>.models), it requires an identically named Python
path <app>.models to detect models – with the __init__ file doing the rest of the
import work. So beware any other folder name different than models won’t work
with this configuration – the next technique to configure models outside models.py a
solution to using a different folder name.

Chapter 7 ■ Django Models

335

•	 Declaring an app as part of INSTALLED_APPS is sufficient, so long as the __init__
file performs the correct relative imports.- So long as an app is declared as part of
INSTALLED_APPS in settings.py, it’s sufficient for Django to detect any models
declared inside the models folder as described in Listing 7-42. Just take care of
relatively importing all models in the __init__.py file.

•	 The app name for every model is determined automatically.- Since the models
folder is nested inside an app, all the models inside this folder receive the app name
configured in the apps.py file for the app. Although you can use the meta class app_
label option to explicitly assign an app to a model – as described earlier in the Meta
Class Options section – it’s redundant in this case because the models receive the
same app name they’re in, including the placement of their migrations files.

•	 The models are accessible as if they were in models.py .- Athough the models are
placed in different files, the Python access path remains t app.models, so the models
are accessible as if they were in models.py (e.g., to access the Breakfast model class
inside the menus.py file, you would still use from <app>.models import Breakfast
from other parts of an application).

Django Models Inside Apps in Custom Folders
A second technique to declare models outside models.py files is to use custom folders inside an app. This
requires using the main models.py file as the import mechanism and also requires using longer access paths
for models. Listing 7-43 shows an app folder layout with custom folders for models.

Listing 7-43.  Django apps with models stored under custom directories

+---+
 |
 +-stores(app)-+
 +-__init__.py
 +-models.py
 +-tests.py
 +-views.py
 +-apps.py
 +-menus+
 | +-__init__.py
 | +-breakfast.py
 |
 +-equipment+
 +-__init__.py
 +-kitchen.py

As you can Listing 7-43 the app now has multiple subfolders, where each folder contains multiple .py
files with Django models declared as they would typically be done inside models.py. (i.e., breakfast.py and
kitchen.py in Listing 7-43 contain model classes).

Since Django only looks for models under the Python path <app>.models, you must declare a relative
import in the main models.py file – for each of the models inside subfolders – to make them visible to the
app. For example, if the Breakfast model class is inside the menus subfolder file and breakfast.py file,
the main models.py file must declare the line from .menus.breakfast import Breakfast. This one-line
syntax – from .<sub_folder>.<file> import <model_class> – must be used in models.py for every model
declared in subfolders inside an app.

Chapter 7 ■ Django Models

336

Because the models.py file uses a relative import path to the models themselves, this alters the standard
Django Python path to access models – from <app>.models... – and requires a longer path: from <app>.
models.<sub_folder>.<file>.... Other than this change in import paths, the remaining configuration
options for models have no change in behavior (i.e., INSTALLED_APPS, model app name).

Django Models Outside Apps and Model Assignment to Other Apps
A third technique available for Django models is to declare them completely outside of apps or inclusively
assign Django models to a different app than the one in which they’re declared. So what does it means to
‘assign models to an app’? It means just that, you can declare models outside of apps or in a given app, but
change the app a model belongs to.

Although I don’t recommend this technique because it can lead to confusion, it does provide a different
solution that I’ll describe for the sake of completeness.

This technique requires you provide models an explicit app name through the meta class app_label
option so they’re assigned to an app. When Django detects a model it declares the meta app_label option,
this takes the highest precedent to assign a model its app name. So even if a model is declared inside a
random folder named common or an app named items, if a model’s meta app_label value is set to stores, the
model is assigned to the stores app, irrespective of its location.

The confusing aspect of using the app_label option is due to the influence an app name has on Django
models. For example, an app name is used to give a model’s database table name prefix and it’s also used to
determine the location of a model’s migration files. So if you define a model inside a folder named common
with the meta class app_label='stores', the model will end up belonging to the stores app – along with its
migration files and a prefix table app name stores – even though it’s declared in the common folder.

This last technique although flexible, as I’ve just explained, can also lead to unintuitive outcomes in the
naming and placement of Django model constructs.

Django Models and Multiple Databases
Back in Chapter 1, when you set up a database for a Django project, you used the DATABASES variable in
settings.py to define the type and connection parameters to perform all database-related operations in a
Django application. Since this variable is plural, it means you can declare multiple databases in a Django
project, as illustrated in Listing 7-44.

Listing 7-44.  Django multiple DATABASES definitions in settings.py

DATABASES = {
 'default': {
 ...
 },
 'devops': {
 ...
 },
 'analytics': {
 ...
 }
 'warehouse': {
 ...
 }
}

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 7 ■ Django Models

337

Listing 7-44 shows four different databases for a Django project, where the ... notation is the position in
which each database’s connection parameters are declared (e.g., ENGINE, NAME, and all those other described
in Table 1-3).

The most important aspect in Listing 7-44 is the default key, which represents the database on which
all Django project database-related operations are made, unless otherwise specified. In the upcoming
sections, I’ll describe how to tell Django to perform data operations on different databases than the default.

■■ Tip  If you want Django to do operations by default on a different database than default, you can declare
the DEFAULT_DB_ALIAS value in settings.py. (e.g., DEFAULT_DB_ALIAS='analytics', tells Django to perform all
database-related operation on the database assigned to the analytics handle, unless explicitly told otherwise).

Now that you know how to declare multiple databases in a Django project and the importance of the
default database, let’s explore how to execute instructions on multiple databases from within a Django project.

Multiple Databases for Django Models: using
All Django model operations described in this chapter and the upcoming chapter are designed to run
against the database defined in the default handle in DATABASES, or if provided, the DEFAULT_DB_ALIAS
database handle. However, with multiple databases it’s possible to selectively execute operations against
different databases, overriding the default database.

Django models support the using keyword to indicate against which database to execute operations.
There are two variations of the using keyword:

•	 The using option.- Django model methods such as save() and delete() support
the using option to indicate against which database to save or delete records. For
example, store.save(using='analytics') tells Django to save the store records to
the analytics database handle, overriding the default database value.

•	 The using method.- The default Django model manager objects supports the
using() method to indicate against which database to perform a query. For example,
Item.objects.using('warehouse').all() tells Django to get all Item records from
the warehouse database handle, overriding the default database value.

Multiple Databases for Django Tools: --database
In addition to Django models having the ability to selectively execute operations against different databases,
Django tools that perform database-related tasks also have the ability to specify a different database than the
default database handle.

For example, manage.py commands such as migrate, dumpdata, loaddata and others described
in this chapter support the --database flag to execute their logic against a different database than the
default database handle. For example, mange.py migrate --database devops tells Django to perform the
migration process on the devops database, overriding the default database value.

Multiple Database Routers: DATABASE_ROUTERS setting
Although the using and --database options offer a solution to work with multiple databases in a Django
project, they both require spreading out the multi-database logic to different parts of an application (e.g.,
models and scripts). Django database routers offer the ability to centralize multi-database logic, so that based
on the model or type of database operation, the logic is executed against a different database than the default.

http://dx.doi.org/10.1007/978-1-4842-2787-9_1#Tab3

Chapter 7 ■ Django Models

338

Django database routers are standard Python classes that implement up to four different methods
illustrated in Table 7-6.

Armed with this basic knowledge of methods used by Django database routers, let’s create a custom
router that stores Django models associated with core Django apps (e.g., users, admin, sessions) in one
database and other Django project models in another database. Listing 7-45 illustrates a Django database
router that performs this logic.

Listing 7-45.  Django database router to store core app models in devops database and all other models in
default database

class DatabaseForDevOps(object):

 def db_for_read(self, model, **hints):
 if model._meta.app_label in ['auth','admin','sessions','contenttypes']:
 return 'devops'
 # Returning None is no opinion, defer to other routers or default database
 return None

 def db_for_write(self, model, **hints):
 if model._meta.app_label in ['auth','admin','sessions','contenttypes']:
 return 'devops'
 # Returning None is no opinion, defer to other routers or default database
 return None

 def allow_relation(self, obj1, obj2, **hints):
 # Allow relations between two models that are both Django core app models
 �if obj1._meta.app_label in ['auth','admin','sessions','contenttypes'] and obj2._

meta.app_label in ['auth','admin','sessions','contenttypes']:
 return True
 �# If neither object is in a Django core app model (defer to other routers or default

database)
 �elif obj1._meta.app_label not in ['auth','admin','sessions','contenttypes'] or

obj2._meta.app_label not in ['auth','admin','sessions','contenttypes']:
 return None
 return None

Table 7-6.  Django database router methods

Method Description

db_for_read(model, **hints) Suggests the database to use for read operations of a model.

db_for_write(model, **hints) Suggests the database to use for write operations of a model.

allow_relation(obj1, obj2, **hints) Suggests whether to (allow/prevent/no opinion) on relationship
operations between obj1 and obj2.

allow_migrate(db, app_label,
model_name=None, **hints)

Suggests the database to use for migration operations.

**Hints are additional information provided to each router method to further determine which database to use
each routing case, in addition to the other input parameters.

Chapter 7 ■ Django Models

339

 def allow_migrate(self, db, app_label, model_name=None, **hints):
 if db == 'devops':
 # Migrate Django core app models if current database is devops
 if app_label in ['auth','admin','sessions','contenttypes']:
 return True
 else:
 # Non Django core app models should not be migrated if database is devops
 return False
 # Other database should not migrate Django core app models
 elif app_label in ['auth','admin','sessions','contenttypes']:
 return False
 # Otherwise no opinion, defer to other routers or default database
 return None

The first two methods in Listing 7-45 – db_for_read() and db_for_write() – tell Django how to
proceed with the read and write operations of models. In this case, both methods check the model app_name,
if the app_name is either auth, admin, sessions or contenttypes – all of which are Django core apps – the
methods return the 'devops' value, which represents a database handle, as described in Listing 7-44. This
logic tells Django to perform all read and write operations for these type of models on the devops database.
If a model does not match any of the cited app_name values, notice both methods return None, which is an
indication the router class has no opinion on how to handle the model and passes control to another router
class or the default database to determine where to perform a model’s read/write operations.

Here it’s worth mentioning you can use multiple Django database routers, with their configuration
order defining their precedence. If one Django database router cannot determine or does not define a
specific database on which to execute an operation or model, it moves on to the next database router, and
this process continues until all database routers are run out and the operation or model defaults to using
the default database. This behavior has the advantage that database routers don’t have to declare database
routing paths for every single model and operation in a project; it’s sufficient to declare routing rules for
certain models or operations, and let Django use the default database as a back stop.

Turning our attention back to Listing 7-45, the allow_relation() method is used to determine how
to route model operations when a model contains related models. For example, if a model contains a
ForeignKey field or ManyToManyField field, this relationship can cross over into another app, which in turn
influences where a database table can reside. In the case of Listing 7-45, the allow_relation() method
indicates to allow relationship operations if the related model objects belong to either the auth, admin,
sessions, or contenttypes apps.

Finally, the allow_migrate() in Listing 7-45 is used to define against which database migrations
operations are run. In this case, it indicates that if a migrate operation is done against the devops database,
it only migrates models belonging to either the auth, admin, sessions, or contenttypes apps and it should
ignore all other model migrations (i.e., the devops database should only contain model tables related to
the auth, admin, sessions, or contenttypes apps). The second part in allow_migrate() indicates that for
any other database that’s not devops, it should ignore model migrations for the auth, admin, sessions, or
contenttypes apps (i.e., the default database will not contain tables related to the auth, admin, sessions,
or contenttypes apps).

Once you have a database router class like the one in Listing 7-45, you must declare it as part of the
DATABASE_ROUTERS value list in settings.py. Assuming the database router class in Listing 7-45 is located
in the folder /coffeehouse/common/ in the routers.py file, then DATABASE_ROUTERS = ['coffeehouse.
common.routers.DatabaseForDevOps'].

As I already mentioned, the DATABASE_ROUTERS value can be a list of database routers for which all
models pass through to determine on which database to perform their operations, and if the DATABASE_
ROUTERS list is exhausted, then the default database is used.

Chapter 7 ■ Django Models

340

Once you finish setting up the database router configuration, you must run the migrate operation
on both of your project databases. Once this is done, all read and write operations related to Django core
app models will be done on the devops database and all other project models will be done on the default
database.

■■ Caution  The manage.py migrate command only performs migrations against the default database.
This means that if you need to perform migrations against other databases – such as with this database router
configuration example – you must explicitly run the migrate with the --database flag to create migrations
for all non-default databases.

341© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_8

CHAPTER 8

Django Model Queries and
Managers

As you learned in the previous chapter, Django models encapsulate data through classes, enforce data
validation, are used to interact with a Django project’s relational database, and have a myriad of options to
guarantee and customize how data operates in Django projects.

In this chapter we’ll build on the previous Django model concepts and learn about a Django model
queries and managers. We’ll start with an in-depth look at Django model CRUD (Create-Read-Update-
Delete) operations, including single, multiple, and relationship queries, covering their speed and efficiency
implications. Next, you’ll learn about the many SQL query variations supported by Django models,
including field lookups to produce SQL WHERE statements; models methods to produce SQL statements
like DISTINCT and ORDER; as well as query expressions to execute SQL aggregation operations, database
functions, and subqueries.

Next, you’ll learn how to create raw (open-ended) SQL queries when Django’s built-in SQL facilities
prove to be insufficient. Finally, you’ll learn how to create and configure custom model managers in Django
models.

CRUD Single Records in Django Models
Working with single records is one of the most common tasks you’ll do with Django models. Next, I’ll
structure the following sections into the classical web application CRUD operations and describe the various
techniques for each case so you can get a better grasp of what to use under different circumstances.

Note that although the following sections concentrate on the actual CRUD operation and its behaviors,
sometimes I’ll inevitably introduce more advanced query concepts in the examples (e.g., field lookups),
which are described in detail in later sections of the chapter.

Create a Single Record with save() or create()
To create a single record on a Django model, you just need to make an instance of a model and invoke the
save() method on it. Listing 8-1 illustrates the process to create a single record for a model called Store.

■■ Tip  Consult the book’s accompanying source code to run the exercises, in order to reduce typing and
automatically access test data.

https://doi.org/10.1007/978-1-4842-2787-9_8

Chapter 8 ■ Django Model Queries and Managers

342

Listing 8-1.  Create a single record with model save() method

Import Django model class
from coffeehouse.stores.models import Store

Create a model Store instance
store_corporate = Store(name='Corporate',address='624 Broadway',state='CA',email='corporate@
coffeehouse.com')
Assign attribute value to instance with Python dotted notation
store_corporate.city = 'San Diego'
Invoke the save() method to create the record
store_corporate.save() # If successful, record reference has id
store_corporate.id

As you can see in Listing 8-1, you can declare all the instance attributes in a single step or you can use
Python’s dotted notation to assign attribute values one by one on the reference itself. Once the instance is
ready, call the save() method on it to create the record in the database. There are two important behaviors
to be aware of when you invoke the save() method:

•	 By default, all Django models are assigned an auto-incrementing primary key named
id, created when you initiate a model’s database table – see the previous chapter’s
section on “Django Models and the Migrations Workflow” for more details. This
means the database assigns an id value to a record – unless you explicitly provide an
id value to the instance – that gets passed back to the reference.

•	 The creation of a record is rejected if it violates any database or Django validation
rule created by the Django model. This means that if a new instance doesn’t comply
with any of these validation rules, save() generates an error. See the previous
chapter’s section on “Django Models Data Types” for more details on rule validation.

These are the two most important points when you use the save() method to create a record. For the
full set of options and subtleties associated with a Django model save() method, see the previous chapter’s
Table 7-3 and the section on “Model Methods.”

After a successful call to the save() method in Listing 8-1, you can see the object reference is assigned
the id attribute – created by the database – which serves to directly link it to a database record that can later
be updated and/or deleted.

The create() method offers a shorter route alternative to create a record. Listing 8-2 illustrates the
equivalent record creation in Listing 8-1 using the create() method.

Listing 8-2.  Create a single record with create() method

Import Django model class
from coffeehouse.stores.models import Store

Create a model Store instance which is saved automatically
store_corporate = Store.objects.create(name='Corporate',address='624 Broadway',city='San Diego',
state='CA',email='corporate@coffeehouse') # If successful, record reference has id
store_corporate.id

You can see in Listing 8-2 that the create() method is invoked on a Django model class through the
model’s default objects model manager. The create() method accepts arguments that represent the model
instance field values. The execution of create() returns an object reference to the created record including
an id value just like the save() method.

http://dx.doi.org/10.1007/978-1-4842-2787-9_7#Tab3

Chapter 8 ■ Django Model Queries and Managers

343

Behind the scenes, the create() method actually uses the same save() method, but it uses the model
manager to allow the creation of a record in a single line.

Read a Single Record with get() or get_or_create()
To read a single database record you can use the get() method – which is part of a model’s default objects
model manager – and which accepts any model field to qualify a record. Listing 8-3 illustrates a basic
example of the get() Django model method.

Listing 8-3.  Read model record with get() method

Import Django model class
from coffeehouse.stores.models import Store

Get the store with the name "Downtown" or equivalent SQL: 'SELECT....WHERE
name = "Downtown"
downtown_store = Store.objects.get(name="Downtown")

Define uptown_email for the query
uptown_email = "uptown@coffeehouse.com"
Get the store with the email value uptown_email or equivalent SQL: 'SELECT....WHERE
email = "uptown@coffeehouse.com"'
uptown_email_store = Store.objects.get(email=uptown_email)

Once the get() method runs, you can access an object's attributes
either in logging statements, functions or templates
downtown_store.address
downtown_store.email

Note you can access the object without attributes.
If the Django model has a __str__/ method definition, the output is based on this method
If the Django model has no __str__ method definition, the output is just <object>
print(uptown_email_store)

As you can see in Listing 8-3, the get() method uses a Django model attribute as its argument to
retrieve a specific record. The first example gets the Store record with name=Downtown and the second
example gets the Store record with email=uptown@coffeehouse.com. Once the record is assigned to a
variable, you can access its contents or attributes using Python’s dotted notation.

■■ Tip  In addition to single fields – name=“Downtown” or email=“uptown@…” – the get() method also
accepts multiple fields to produce an and query (e.g., get(email=“uptown@…”,name=“Downtown”) to get
a record were both email and name match). In addition, Django also offers field lookup to create finer single
record queries (e.g., get(name__contains=“Downtown”) to produce a substring query). See the later section in
the chapter on queries classified by SQL keyword.

Chapter 8 ■ Django Model Queries and Managers

344

It’s that simple to use a Django model’s get() method. However, the get() method has some behaviors
you should be aware of:

•	 With get() the query has to match one and only one record. If there are no matching
records you will get a <model>.DoesNotExist error. If there are multiple matching
records you will get a MultipleObjectsReturned error.

•	 get() calls hit the database immediately and every time. This means there’s no
caching on Django’s part for identical or multiple calls.

Knowing these get() limitations, let’s explore how to tackle the first scenario that involves a record that
doesn’t exist. A common occurrence when attempting to read a single record that doesn’t exist is to get it
and if it doesn’t exist just create it. Listing 8-4 illustrates how to use the get_or_create() method for this
purpose.

Listing 8-4.  Read or create model record with get_or_create() method

Import Django model class
from coffeehouse.items.models import Menu

Get or create a menu instance with name="Breakfast"
menu_target, created = Menu.objects.get_or_create(name="Breakfast")

As you can see in Listing 8-4, the get_or_create() method – also part of a model’s default objects
model manager – is invoked on a Django model class using a model’s attributes as its arguments to get or
create a record in one step. The get_or_create() method returns a pair of results, the model instance –
whether created or read – as well as a Boolean indicating whether a model instance was created or read
(i.e., True if created, False if read).

The get_or_create() method is a shortcut that uses both the get() and the create() methods –
the last of which uses the save() method behind the scenes, as you learned in the previous section. The
difference being, the get_or_create() method automatically handles the error condition when get() finds
no matches. Listing 8-5 illustrates how the get_or_create() method functions behind the scenes, which
you can also use if you prefer to handle get() errors method explicitly.

Listing 8-5.  Replicate get_or_create() method with explicit try/except block and save method

from django.core.exceptions import ObjectDoesNotExist
from coffeehouse.items.models import Menu

try:
 menu_target = Menu.objects.get(name="Dinner")
 # If get() throws an error you need to handle it.
 # You can use either the generic ObjectDoesNotExist or
 # <model>.DoesNotExist which inherits from
 # django.core.exceptions.ObjectDoesNotExist, so you can target multiple
 # DoesNotExist exceptions
except Menu.DoesNotExist: # or the generic "except ObjectDoesNotExist:"
 menu_target = Menu(name="Dinner")
 menu_target.save()

As you can see in Listing 8-5, it’s necessary to write more code (e.g., error handling, get and save calls)
when you know there’s a possibility a record doesn’t exist and you want to create it anyways. So the get_or_
create() method becomes a helpful shortcut in this scenario.

Chapter 8 ■ Django Model Queries and Managers

345

Now let’s take a look the second get() limitation, which involves getting multiple records on a query.
By design, the get() method throws a MultipleObjectsReturned error if more than one record matches a
query. This behavior is an actual feature, because there are circumstances when you want to ensure a query
only returns one record and be informed otherwise (e.g., a query for a user or product where duplicates are
considered erroneous).

If there’s a possibility for a query to return one or multiple records, then you’ll need to forgo the use
of get() method and use either a model manager’s filter() or exclude() methods. Both the filter()
or exclude() methods produce a multirecord data structure called a QuerySet, which can be reduced to a
single record with an additional QuerySet method (e.g., Item.objects.filter(name__contains='Salad').
first() to get the first Item record whose name contains the Salad substring).

Since a Django model’s filter() or exclude() methods are designed for multiple record queries, these
methods along with QuerySet behaviors are described in detail in the later section on CRUD operations for
multiple records. Additional QuerySet methods like first() are also described in the later section on model
queries classified by SQL keyword.

Update a Single Record with save(), update(), update_or_create(),
or refresh_from_db()
If you already have a reference to a model record, an update is as simple as updating its attributes using
Python’s dotted notation and calling the save() method on it. Listing 8-6 illustrates this process.

Listing 8-6.  Update model record with the save() method

Import Django model class
from coffeehouse.stores.models import Store

Get the store with the name "Downtown" or equivalent SQL: 'SELECT....WHERE name = "Downtown"

downtown_store = Store.objects.get(name="Downtown")

Update the name value
downtown_store.name = "Downtown (Madison)"

Call save() with the update_fields arg and a list of record fields to update selectively
downtown_store.save(update_fields=['name'])

Or you can call save() without any argument and all record fields are updated
downtown_store.save()

In Listing 8-6, you can see the save() method is called in two ways. You can use the update_fields
argument with a list of fields to update certain fields and get a performance boost in large models. Or the
other alternative is to use save() without any argument, in which case Django updates all fields.

If you don’t yet have a reference to the record to update, it’s slightly inefficient to first get it (i.e., issue
a SELECT query) and then update it with the save() method. In addition, doing the update process in
separate steps can lead to race conditions. For example, if another user fetches the same data at the same
time and also does an update, you’ll both race to save it, but whose update is definitive and whose is
overwritten? Because no party is aware the other is working on the same data, you need a way to indicate -
technically known as lock or isolate - the data to avoid race conditions.

Chapter 8 ■ Django Model Queries and Managers

346

For such cases you can use the update() method – part of a model’s default objects model manager
– which performs an update in a single operation and guarantees there are no race conditions. Listing 8-7
illustrates this process.

Listing 8-7.  Update model record with the update() method

from coffeehouse.stores.models import Store

Store.objects.filter(id=1).update(name="Downtown (Madison)")

from coffeehouse.items.models import Item
from django.db.models import F

Item.objects.filter(id=3).update(stock=F('stock') +100)

The first example in Listing 8-7 uses the update() method to update the Store record with id=1 and
set its name to Downtown (Madison). The second example in Listing 8-7 uses a Django F expression and the
update() method to update the Item record with id=3 and set its stock value to the current stock value
plus 100. For the moment, don’t worry about Django F expressions – they’re described later on for more
elaborate queries – just realize Django F expressions allow you to reference model fields within a query – as
an SQL expression – which is necessary in this case to perform the update in a single operation.

■■ Caution T he update() method can update a field across multiple records if you’re not careful. The update()
method is preceded by the objects.filter() method, which can return query results for multiple records. Notice in
Listing 8-7 the query uses the id field to define the query, ensuring that only a single record matches the query,
because id is the table’s primary key. If the query definition in objects.filter() uses a less strict lookup (e.g., a
string) you can inadvertently update more records than you expect.

Similar to the convenience get_or_create() method described in the previous section, Django also
offers the convenience update_or_create() method. This method is helpful in cases where you want to
perform an update and aren’t sure if the record exists yet. Listing 8-8 illustrates this process.

Listing 8-8.  Update or create model record with the update_or_create() method

Import Django model class
from coffeehouse.stores.models import Store

values_to_update = {'email':'downtown@coffeehouse.com'}

Update for record with name='Downtown' and city='San Diego' is found,
otherwise create record
obj_store, created = Store.objects.update_or_create(
 name='Downtown',city='San Diego', defaults=values_to_update)

Chapter 8 ■ Django Model Queries and Managers

347

The first thing that’s done in Listing 8-8 is create a dictionary with field values to update. Next, you pass
a query argument to update_or_create for a desired object (i.e., the one you wish to update or create), along
with dictionary containing the field values to update.

For the case in Listing 8-8, if there’s already a Store record with name='Downtown' and city='San
Diego' the record’s values in values_to_update are updated, if there is no matching Store record a new
Store record with name='Downtown', city='San Diego' along with the values in values_to_update. The
update_or_create method returns an updated or created object, as well as a Boolean value to indicate if the
record was newly created or not.

■■ Note  update_or_create only works on queries with single records. If there are multiple records that match
the query in update_or_create() you'll get the error MultipleObjectsReturned just like the get() method.

If you change a model record inadvertently, you can reinstate its data from the database with the
refresh_from_db() method, as illustrated in Listing 8-9.

Listing 8-9.  Update model record from database with the refresh_from_db() method

from coffeehouse.stores.models import Store

store_corporate = Store.objects.get(id=1)
store_corporate.name = 'Not sure about this name'

Update from db again
store_corporate.refresh_from_db() # Model record name now reflects value in database again
store_corporate.name

Multiple edits
store_corporate.name = 'New store name'
store_corporate.email = 'newemail@coffeehouse.com' store_corporate.address =
'To be confirmed'

Update from db again, but only address field
so store name and email remain with local values
store_corporate.refresh_from_db(fields=['address'])

As you can see in Listing 8-9, after changing the name field value on a model record, you can call the
refresh_from_db() method on the reference to update the model record as it’s in the database. The second
example in Listing 8-9 uses the refresh_from_db() method with the fields argument, which tells Django
to only update the model fields declared in the fields list, allowing any (local) edits made to other fields to
remain unchanged.

Delete a Single Record with delete()
If you already have a reference to a record, deleting it is as simple as invoking the delete() method on it.
Listing 8-10 illustrates this process.

Chapter 8 ■ Django Model Queries and Managers

348

Listing 8-10.  Delete model record with the delete() method

Import Django model class
from coffeehouse.stores.models import Store

Get the store with the name "Downtown" or equivalent SQL: 'SELECT....WHERE
name = "Downtown"

downtown_store = Store.objects.get(name="Downtown")
Call delete() to delete the record in the database
downtown_store.delete()

For cases where you don’t yet have a reference to a record you want to delete, it can be slightly
inefficient to first get it (i.e., issue a SELECT query) and then delete it with the delete() method. For such
cases you can use the delete() method and append it to a query so everything is done in a single operation.
Listing 8-11 illustrates this process.

Listing 8-11.  Delete model record with the delete() method on query

from coffeehouse.items.models import Menu

Menu.objects.filter(id=1).delete()

Irrespective of the delete() method you use – directly on reference or through the objects model
manager – a delete() method always returns a dictionary with the results of the delete operation. For
example, if the delete operation in 8-11 is successful it returns (1, {'items.Menu': 1}) indicating one
record of the items.Menu type was deleted. If the delete operation in 8-10 is successful, it returns
(5, {'stores.Store_amenities': 4, 'stores.Store': 1}) indicating five overall records were deleted,
four of the stores.Store_amenities type and one of the stores.Store – in this case multiple records are
deleted because stores.Store_amenities is a model relationship in the Store model.

■■ Caution T he delete() method can delete multiple records if you're not careful. The delete() method is
preceded by the objects.filter() method that can return query results with multiple records. Notice in
Listing 8-11 the query uses an id field to define the query, ensuring that only a single record matches the
query, because id is a table's primary key. If the query definition in objects.filter() uses a less strict lookup
(e.g., a string) you can inadvertently delete more records than you expect.

CRUD Multiple Records in Django Models
In this section you’ll learn how to work with multiple records in Django models. Although the process is just
as easy as working with single records, working with multiple records can require multiple database calls,
as well as caching techniques and bulk operations, all of which need to be taken into account to minimize
execution times.

Chapter 8 ■ Django Model Queries and Managers

349

Create Multiple Records with bulk_create()
To create multiple records based on a Django model you can use the built-in bulk_create() method. The
advantage of the bulk_create() method is that it creates all entries in a single query, so it’s very efficient if
you have a list of a dozen or a hundred entries you wish to create. Listing 8-12 illustrates the process to create
multiple records for the Store model.

Listing 8-12.  Create multiple records of a Django model with the bulk_create() method

Import Django model class
from coffeehouse.stores.models import Store

Create model Store instances
store_corporate = Store(name='Corporate',address='624 Broadway',city ='San Diego',state='CA',
email='corporate@coffeehouse.com')
store_downtown = Store(name='Downtown',address='Horton Plaza',city ='San Diego',state='CA',
email='downtown@coffeehouse.com')
store_uptown = Store(name='Uptown',address='240 University Ave',city ='San
Diego',state='CA',email='uptown@coffeehouse.com')
store_midtown = Store(name='Midtown',address='784 W Washington St',city ='San Diego',
state='CA',email='midtown@coffeehouse.com')

Create store list
store_list = [store_corporate,store_downtown,store_uptown,store_midtown]

Call bulk_create to create records in a single call
Store.objects.bulk_create(store_list)

In Listing 8-12 you can see the bulk_create() method accepts a list of model instances to create all
records in one step. But as efficient as the bulk_create() method is, you should be aware it has certain
limitations:

•	 It does not support pre-save and post-save model signals.- To speed things up and
unlike the save() method to create single records, the bulk_create() method does
not execute pre-save and post-save model signals. If you’re unfamiliar with the
model signal concept, pre-save and post-save model signals allow the execution of
custom logic prior and after a model record is saved, a topic covered in the previous
chapter.

•	 It does not support models that span multiple tables (i.e., have relationships among
one another).- Because records are created in bulk, there is no way to obtain primary
key references for the first type of created records, which are then used to create
related child records. If a model spans multiple tables, then you must individually
create each record using the save() method, which does support creating records
that span multiple tables.

If you face these limitations for the bulk_create() method, the only alternative is to loop over each
record and use the save() method to create each entry, as illustrated in Listing 8-13.

Chapter 8 ■ Django Model Queries and Managers

350

Listing 8-13.  Create multiple records with the save() method

Same store_list as Listing 8-12

Loop over each store and invoke save() on each entry # save() method called on each list
member to create record
for store in store_list:
 store.save()

As I mentioned when I introduced the bulk_create() method, the process in Listing 8-13 can be highly
inefficient if it’s done for dozens or hundreds of records, but sometimes it’s the only option to create multiple
records in bulk. However, the speed issues related to Listing 8-13 can be improved if you manually deal with
model transactions.

Listing 8-14 illustrates how to use the save() method and group the entire record creation process in a
single transaction to speed up the bulk creation process.

Listing 8-14.  Create multiple records with save() method in a single transaction

Import Django model and transaction class
from coffeehouse.stores.models import Store
from django.db import transaction

Create store list, with same references from Listing 8-12
first_store_list = [store_corporate,store_downtown]
second_store_list = [store_uptown,store_midtown]

Trigger atomic transaction so loop is executed in a single transaction
with transaction.atomic():
 # Loop over each store and invoke save() on each entry
 for store in first_store_list:
 # save() method called on each member to create record
 store.save()

Method decorated with @transaction.atomic to ensure logic is executed in single
transaction
@transaction.atomic
def bulk_store_creator(store_list):
 # Loop over each store and invoke save() on each entry
 for store in store_list:
 # save() method called on each member to create record
 store.save()

Call bulk_store_creator with Store list
bulk_store_creator(second_store_list)

As you can see in Listing 8-14, there are two ways to create bulk operations in a single database
transaction, both using the django.db.transaction package. The first instance uses the with transaction.
atomic(): statement, so any nested code within this statement is run in a single transaction. The second
instance uses the @transaction.atomic method decorator, which ensures the method operations are run in
a single transaction.

Chapter 8 ■ Django Model Queries and Managers

351

BE CAREFUL WITH EXPLICIT TRANSACTIONS

There’s a reason Django’s default database transaction mechanism creates transactions on every query:
it’s to err on the safe side and minimize the potential for data loss.

If you decide to use explicit transactions to improve performance – as illustrated in Listing 8-14 – be
aware that either all or no records are created. Although this can be a desired behavior, for certain
circumstances it might lead to unexpected results. Make sure you understand the implications of
transactions on the data you’re working with. The previous chapter contains a section discussing the
topic of Django model transactions in greater detail.

Read Multiple Records with all(), filter(), exclude(), or in_bulk()
To read multiple records associated with a Django model you can use several methods, which include
all(), filter(), exclude(), and in_bulk(). The purpose of the all() method should be self-explanatory:
it retrieves all the records of a given model. The filter() method is used to restrict query results on a given
model property, for example, filter(state='CA') is a query to get all model records with state='CA'.
And the exclude() method is used to execute a query that excludes records on a given model property, for
example, exclude(state='AZ') is a query to get all model records except those with state='AZ'.

It’s also possible to chain filter() and exclude() methods to create more complex multiple record
queries. For example, filter(state='CA').exclude(city='San Diego') is a query to get all model records
with state='CA' and exclude those with city='San Diego'. Listing 8-15 illustrates more multiple record
query examples.

Listing 8-15.  Read multiple records with with all(), filter(), and exclude() methods

Import Django model class
from coffeehouse.stores.models import Store

Query with all() method or equivalent SQL: 'SELECT * FROM ...'
all_stores = Store.objects.all()

Query with include() method or equivalent SQL: 'SELECT....WHERE city = "San Diego"'
san_diego_stores = Store.objects.filter(city='San Diego')

Query with exclude() method or equivalent SQL: 'SELECT....WHERE NOT (city = "San Diego")'
non_san_diego_stores = Store.objects.exclude(city='San Diego')

Query with include() and exclude() methods or equivalent SQL: 'SELECT....WHERE
STATE='CA' AND NOT (city = "San Diego")'
ca_stores_without_san_diego = Store.objects.filter(state='CA').exclude(city='San Diego')

Chapter 8 ■ Django Model Queries and Managers

352

APPEND .QUERY TO VIEW THE ACTUAL SQL

Sometimes it can be helpful or even necessary to view the actual SQL executed by a Django model
query. You can do so by appending .query to a query, as illustrated in the following listing:

from coffeehouse.stores.models import Store

import logging
stdlogger = logging.getLogger(__name__)

Get the Store records with city San Diego
san_diego_stores = Store.objects.filter(city='San Diego')
stdlogger.debug("Query %s" % str(san_diego_stores.query))
You can also use print(san_diego_stores.query)

As you can see in the previous snippet, you can output the SQL query to a Python logger or use the 'quick
& dirty' print statement. Note that .query only works with queries that output QuerySets, so it doesn't work
with queries like with the get() method – more on QuerySets shortly. Chapter 5 describes other alternatives
to inspect the SQL used by model queries (e.g., Django debug toolbar) and Chapter 3 shows how to output
SQL queries in Django templates (e.g. Debug context processor sql_queries variable).

■■ Tip I n addition to single fields – city=“San Diego” or state=“CA” – the all(), filter(), and exclude() methods
can also accept multiple fields to produce an and query (e.g., filter(city=“San Diego”, state=“CA”) to get
records were both city and state match). See the later section in the chapter on queries classified by SQL
keyword.

Besides the all(), filter(), and exclude() methods, Django models also support the in_bulk()
method. The in_bulk() method is designed to efficiently read many records, just like the bulk_create()
method – described in the past section – is used to efficiently create many records.

The in_bulk() method is more efficient to read many records vs. the all(), filter(),and exclude()
methods, because all the latter methods produce a QuerySet and the former produces a standard Python
dictionary. Listing 8-16 illustrates the use of the in_bulk() method.

Listing 8-16.  Read multiple records with with in_bulk() method

Import Django model class
from coffeehouse.stores.models import Store

Query with in_bulk() all
Store.objects.in_bulk()
Outputs: {1: <Store: Corporate (San Diego,CA)>, 2: <Store: Downtown (San Diego,CA)>,
3: <Store: Uptown (San Diego,CA)>, 4: <Store: Midtown (San Diego,CA)>}

Compare in_bulk query to all() that produces QuerySet
Store.objects.all()

http://dx.doi.org/10.1007/978-1-4842-2787-9_5
http://dx.doi.org/10.1007/978-1-4842-2787-9_3

Chapter 8 ■ Django Model Queries and Managers

353

Outputs: <QuerySet [<Store: Corporate (San Diego,CA)>, <Store: Downtown (San Diego,CA)>,
<Store: Uptown (San Diego,CA)>, <Store: Midtown (San Diego,CA)>]>

Query to get single Store by id
Store.objects.in_bulk([1])
Outputs: {1: <Store: Corporate (San Diego,CA)>}

Query to get multiple Stores by id
Store.objects.in_bulk([2,3])
Outputs: {2: <Store: Downtown (San Diego,CA)>, 3: <Store: Uptown (San Diego,CA)>}

The first example in Listing 8-16 uses the in_bulk() method without any arguments to produce a
dictionary will the records of the Store model (i.e., just like the all() method). However, notice how the
output of the in_bulk() method is a standard Python dictionary, where each key corresponds to the id
value of the record.

The remaining examples in Listing 8-16 illustrate how the in_bulk() method can accept a list of values
to specify which record id’s should be read from the database. Here again, notice that although the behavior
is similar to the filter() or exclude() methods, the output is a standard Python dictionary vs. a QuerySet
data structure.

Now that you have a clear understanding of the various methods that can read multiple model records
and how some methods produce a QuerySet and other don’t, it begets the question, what is a QuerySet and
why is it used in the first place? So before we move on to the next parts of this broader section – on how to do
CRUD operations on multiple records - we’ll take a brief detour to explore the QuerySet data type.

Understanding a QuerySet: Lazy Evaluation and Caching
The first important characteristic of a QuerySet data type is technically known as lazy evaluation. This
means a QuerySet isn’t executed against the database right away, it just waits until it’s evaluated. In other
words, the act of running a snippet like Store.objects.all() doesn’t involve any database activity right
away. Listing 8-17 illustrates how you can even chain query after query and still not trigger database activity.

Listing 8-17.  Chained model methods to illustrate concept of QuerySet lazy evaluation

Import Django model class
from coffeehouse.stores.models import Store

Query with all() method
stores = Store.objects.all()
Chain filter() method on query
stores = stores.filter(state='CA')
Chain exclude() method on query
stores = stores.exclude(city='San Diego')

Notice the three different statements in Listing 8-17 that chain the all(), filter(), and exclude()
methods. Although it can appear Listing 8-17 makes three database calls to get Store records with
state='CA' and excludes those with city='San Diego', there is no database activity!

This is how QuerySet data structures are designed to work. So when does a query made on a QuerySet
data type hit the database? There are many triggers that make a QuerySet evaluate and invoke an actual
database call. Table 8-1 illustrates the various triggers.

Chapter 8 ■ Django Model Queries and Managers

354

Table 8-1.  Django QuerySet evaluation triggers that invoke an actual database call

Evaluation Trigger Description Example

Iteration Creating a loop on a QuerySet
triggers a database call.

for store in Store.objects.all():

Slicing with ‘step’ argument Slicing a QuerySet with a third
argument (a.k.a. ‘step’ or ‘stride’
argument) triggers a database call.
NOTE: Slicing a Queryset with 1 or
2 arguments just creates another
QuerySet.

A list of every 5th record, for the first
100 records
Store.objects.all()[:100:5]
This does NOT trigger a database hit,
(2 arguments) # Records 50 to 100
Store.objects.all()[49:99]
All records starting from the 6th
Store.objects.all()[5:]
This does NOT trigger a database hit
(1 argument)
Store.objects.all()[0] # First record

Pickling* Pickling a QuerySet forces all the
results to be loaded into memory
prior to pickling.

import pickle
stores = Store.objects.all()
pickled_stores = pickle.dumps(stores)

repr() method Calling repr() on a QuerySet
triggers a database call. NOTE:
This is for convenience in the
Python interactive interpreter, so
you can immediately see query
results.

repr(Store.objects.all())

len() method Calling len() on a QuerySet
triggers a database call. NOTE:
If you only want the number of
records, it’s more efficient to
use the Django model count()
method.

total_stores = len(Store.objects.all())
#NOTE: The count() method is more
efficient to get a total count
efficient_total_stores = Store.objects.
count()

list() method Calling list() on a QuerySet
triggers a database call.

store_list = list(Store.objects.all())

Boolean tests (bool(), or, and
or if statements)

Making a Boolean test on a
QuerySet triggers a database call.
NOTE: If you only want to check if
a record exists, it’s more efficient
to use the Django model exists()
method.

Check if there’s a store with city=‘San
Diego’
if Store.objects.filter(city=‘San Diego’):
There is a store in ‘San Diego’
pass
#NOTE: The exists() method is more
efficient for a Boolean check
san_diego_stores = Store.objects.
exists(city=‘San Diego’)

* Pickling is Python’s standard mechanism for object serialization, a process that converts a Python object into
a character stream. The character stream contains all the information necessary to reconstruct the object at
a later time. Pickling in the context of Django queries is typically used for heavyweight queries in an attempt
to save resources (e.g., make a heavyweight query, pickle it, and on subsequent occasions consult the pickled
query). You can consider pickling Django queries a rudimentary form of caching.

Chapter 8 ■ Django Model Queries and Managers

355

Now that you know the triggers that cause a QuerySet to make a call to a database, let’s take a look at
other important QuerySet subject: caching.

Every QuerySet contains a cache to minimize database access. The first time a QuerySet is evaluated
and a database query takes place - see evaluation triggers in Table 8-1 - Django saves the results in the
QuerySet’s cache for later use.

A QuerySet’s cache is most useful when an application has a recurring need to use the same data, as
it leads to less hits on a database. However, leveraging a QuerySet’s cache comes with a few subtleties tied
to the evaluation of a QuerySet. A rule of thumb is to first evaluate a QuerySet you plan to use more than
once and proceed to use its data to leverage the QuerySet cache. This is best explained with the examples
presented in Listing 8-18.

Listing 8-18.  QuerySet caching behavior

Import Django model class
from coffeehouse.stores.models import Store

CACHE USING SEQUENCE
Query awaiting evaluation
lazy_stores = Store.objects.all()
Iteration triggers evaluation and hits database
store_emails = [store.email for store in lazy_stores]
Uses QuerySet cache from lazy_stores, since lazy_stores is evaluated in previous line
store_names = [store.name for store in lazy_stores]

NON-CACHE SEQUENCE
Iteration triggers evaluation and hits database
heavy_store_emails = [store.email for store in Store.objects.all()]
Iteration triggers evaluation and hits database again, because it uses another
QuerySet ref
heavy_store_names = [store.name for store in Store.objects.all()]

CACHE USING SEQUENCE
Query wrapped as list() for immediate evaluation
stores = list(Store.objects.all())
Uses QuerySet cache from stores
first_store = stores[0]
Uses QuerySet cache from stores
second_store = stores[1]
Uses QuerySet cache from stores, set() is just used to eliminate duplicates
store_states = set([store.state for store in stores])
Uses QuerySet cache from stores, set() is just used to eliminate duplicates
store_cities = set([store.city for store in stores])

NON-CACHE SEQUENCE
Query awaiting evaluation
all_stores = Store.objects.all()
list() triggers evaluation and hits database
store_one = list(all_stores[0:1])
list() triggers evaluation and hits database again, because partially evaluating a
QuerySet does not populate the cache
store_one_again = list(all_stores[0:1])

Chapter 8 ■ Django Model Queries and Managers

356

CACHE USING SEQUENCE
Query awaiting evaluation
coffee_stores = Store.objects.all()
Iteration triggers evaluation and hits database
[store for store in coffee_stores]
Uses QuerySet cache from coffee_stores, because it's evaluated fully in previous line
store_1 = coffee_stores[0]
Uses QuerySet cache from coffee_stores, because it's already evaluated in full
store_1_again = coffee_stores[0]

As you can see in the examples in Listing 8-18, sequences that leverage a QuerySet’s cache trigger
the evaluation of the QuerySet right away and then use a reference to the evaluated QuerySet to access
the cached data. Sequences that don’t use a QuerySet cache either constantly create identical QuerySet
statements or make the evaluation process late for each data assignment.

The only edge case for caching QuerySet’s that doesn’t fit the previous behavior is the second to last
example in Listing 8-18. If you trigger a partial evaluation of QuerySet by slicing it (e.g., [0] or [1:5]) the
cache is not populated. So to ensure a QuerySet cache is used, you must evaluate a QuerySet and then slice
the results, as illustrated in the last example in Listing 8-18.

Read Performance Methods: defer(), only(), values(), values_list(),
iterator(), exists(), and none()
Although QuerySet data structures represent a step forward toward dealing with multiple data records by
integrating lazy evaluation and caching mechanisms, they don’t cover the entire performance spectrum
needed to deal with large data queries.

A common performance problem you’ll face with large data queries is related to reading unnecessary
record fields. Although selectively choosing which fields to read from a database record can be an
afterthought in most circumstances, it can have an important impact for queries made on Django models
with more than a couple of fields.

The first methods available to increase performance while reading model records are the defer() and
only() methods, both of which are intended to delimit which fields to read in a query. The defer() and
only() methods accept a list of fields to defer or load, respectively, and are complementary to one another
depending on what you want to achieve. For example, if you want to defer loading the majority of model
fields, it’s simpler to specify which fields to load with only(), if you want to defer loading one or a few fields
in a model you can specify the fields in the defer() method. Listing 8-19 illustrates the use of the defer()
and only() methods.

Listing 8-19.  Read performance with defer() and only() to selectively read record fields

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item

Item names on the breakfast menu
breakfast_items = Item.objects.filter(menu__name='Breakfast').only('name')

All Store records with no email
all_stores = Store.objects.defer('email').all()

Confirm loaded fields on overall query
breakfast_items.query.get_loaded_field_names()
Outputs: {<class 'coffeehouse.items.models.Item'>: {'id', 'name'}}

Chapter 8 ■ Django Model Queries and Managers

357

all_stores.query.get_loaded_field_names()
Outputs: {<class 'coffeehouse.stores.models.Store'>: {'id', 'address', 'state', 'city', 'name'}}

Confirm deferred fields on individual model records breakfast_items[0].get_deferred_fields()
Outputs: {'calories', 'stock', 'price', 'menu_id', 'size', 'description'}
all_stores[1].get_deferred_fields()
Outputs: {'email'}

Access deferred fields, note each call on a deferred field implies a database hit
breakfast_items[0].price
breakfast_items[0].size
all_stores[1].email

As you can see in Listing 8-19, both the defer() and only() methods can be chained to a model manager
(i.e., objects) either at the start or end of a query, as well as be used in conjunction with other methods like
all() and filter(). In addition, notice how both methods can accept a list of fields to defer or load.

To verify which model fields have been deferred or loaded, Listing 8-19 illustrates two alternatives.
The first technique consists of calling the get_loaded_field_names() on the query reference of a query
statement to get a list of loaded fields. The second technique consists of calling the get_deferred_fields()
method on a model instance to obtain a list of deferred fields.

So how do you obtain deferred fields? Easy, you cast call them. Toward the end of Listing 8-18, notice
how even though the breakfast_items represents a query that only loads the name field, a call is made to
the get the value of the price and size fields. Similarly, the all_stores reference in Listing 8-19 represents
a query that defers the email field; nevertheless you can get a record’s email field value by just calling it.
Although this last technique requires an additional database hit to get the deferred field(s), it also illustrates
how easy it is to get a record’s entire fields even if they’re deferred.

The values() and values_list() methods offer another alternative to delimit the fields fetched by a
query. Unlike the defer() and only() methods that produce a QuerySet of model instances, the values()
and values_list() methods produce QuerySet instances composed of plain dictionaries, tuples, or lists.
This has the performance advantage of not creating full-fledged model instances, albeit this also has the
disadvantage of not having access to full-fledged model instances.

The values() and values_list() methods accept a list of fields to load as part of a query, a process
that’s illustrated in Listing 8-20.

■■ Tip  You can use the values() and values_list() methods without any field argument to produce full model
records as plain dictionaries, tuples, or lists.

Listing 8-20.  Read performance with values() and values_list() to selectively read record fields

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item

Item names on the breakfast menu
breakfast_items = Item.objects.filter(menu__name='Breakfast').values('name')
print(breakfast_items)
Outputs: <QuerySet [{'name': 'Whole-Grain Oatmeal'}, {'name': 'Bacon, Egg & Cheese Biscuit'}]>

Chapter 8 ■ Django Model Queries and Managers

358

All Store records with no email
all_stores = Store.objects.values_list('email','name','city').all()
print(all_stores)
Outputs: <QuerySet [('corporate@coffeehouse.com', 'Corporate', 'San Diego'),
('downtown@coffeehouse.com', 'Downtown', 'San Diego'), ('uptown@coffeehouse.com',
'Uptown', 'San Diego'), ('midtown@coffeehouse.com', 'Midtown', 'San Diego')]>

all_stores_flat = Store.objects.values_list('email',flat=True).all()
print(all_stores_flat)
Outputs: <QuerySet ['corporate@coffeehouse.com', 'downtown@coffeehouse.com', 'midtown@
coffeehouse.com', 'uptown@coffeehouse.com']>

It isn't possible to access undeclared model fields with values() and values_list()
breakfast_items[0].price #ERROR
Outputs AttributeError: 'dict' object has no attribute 'price'

The first variation in Listing 8-20 generates an Item QuerySet with the name field, which as you can see
produces a list of dictionaries with only the name field and value. Next, a query is made to get the email,
name, and city fields for all Store models using the values_list() method. Notice that unlike the values()
method, the values_list() method produces a more compact structure in the form of a tuple. In Listing 8-20
you can also see the values_list() method accepts the optional flat=True argument to flatten the
resulting tuple into a plain list.

Finally, toward the end of Listing 8-20 you can see that when using the values() and values_list()
methods it isn’t possible to obtain undeclared fields by just calling them, like it’s possible with the defer()
and only() methods. This behavior is due to the water-down QuerySet produced by the values() and
values_list() methods, which aren’t full-fledged model objects.

The iterator() method is yet another option available in Django models that creates an iterator over
the results of a QuerySet. The iterator() method is ideal for large queries that are intended to be used
once, as this lowers the required memory to store data, which is an inherent property of all Python iterators.
Listing 8-21 illustrates a query that uses the iterator() method and appendix A describes the core concepts
behind Python iterators.

Listing 8-21.  Read performance with iterator(), exists(), and none()

from coffeehouse.stores.models import Store

All Store with iterator()
stores_on_iterator = Store.objects.all().iterator()

print(stores_on_iterator)
Outputs: <generator object __iter__ at 0x7f2864db8fc0>

Advance through iterator with __next__()
stores_on_iterator.__next__()
Outputs: <Store: Corporate (San Diego,CA)>

stores_on_iterator.__next__()
Outputs: <Store: Downtown (San Diego,CA)>

Check if Store object with id=5 exists
Store.objects.filter(id=5).exists()
Outputs: False

Chapter 8 ■ Django Model Queries and Managers

359

Create empty QuerySet on Store model
Store.objects.none()
Outputs: <QuerySet []>

Another Django model read performance technique is the exists() method, which is illustrated in
Listing 8-21 and is used to verify if a query returns data. Although the exists() method executes a query
against the database, the query used by exists() is a simplified version compared to a standard query,
in addition to the exists() method returning a Boolean True or False value compared to a full-fledged
QuerySet. This makes the exists() method a good option for queries that operate on conditionals, where
it’s only necessary to verify if model records exists and the actual records data is unnecessary.

Finally, the Django model none() method – illustrated at the end of Listing 8-21 – is used to generate
an empty QuerySet, specifically of a subclass named EmptyQuerySet. The none() method is helpful for
cases where you knowingly need to assign an empty model QuerySet, such as edge cases related to Django
model forms or Django templates, which expect a QuerySet instance in one way or another. In such cases, it
becomes necessary to create a dummy QuerySet, instead of inefficiently creating QuerySet that return data
and deleting its contents.

As you’ve learned in this subsection, in addition to the QuerySet data structure, Django also offers many
methods specifically designed to efficiently read large or small amounts of records associated with Django
models.

■■ Tip  Remember the in_bulk() method from the past section also provides read performance over the basic
all(), filter(), and exclude() methods.

Update Multiple Records with update() or select_for_update()
In the section on single record CRUD operations, you explored how to update single records with the
update() method; this same method can handle updating multiple records. This process is illustrated in
Listing 8-22.

Listing 8-22.  Update multiple records with the update() method

from coffeehouse.stores.models import Store

Store.objects.all().update(email="contact@coffeehouse.com")

from coffeehouse.items.models import Item
from django.db.models import F

Item.objects.all().update(stock=F('stock') +100)

The first example in Listing 8-22 uses the update() method to update all Store records and set their
email value to contact@coffeehouse.com. The second example uses a Django F expression and the
update() method to update all Drink records and set their stock value to the current stock value plus 100.
Django F expressions allow you to reference model fields within a query, which is necessary in this case to
perform the update in a single operation.

Although the update() method guarantees everything is done in a single operation to avoid race conditions,
on certain occasions the update() method may not be enough to do complex updates. Offering another
alternative to update multiple records is the select_for_update() method that locks rows on the given query
until the update is marked as done. Listing 8-23 illustrates an example of the select_for_update() method.

Chapter 8 ■ Django Model Queries and Managers

360

SELECT_FOR_UPDATE() SUPPORT IS DATABASE DEPENDENT

Under the hood, the Django select_for_update() method is based on SQL’s SELECT…FOR UPDATE
syntax that is not supported by all databases. Postgres, Oracle, and MySQL databases support this
functionality, but SQLite does not.

In addition, there's the special argument nowait (e.g., select_for_update(nowait=True) to make a
query non-blocking). By default, if another transaction acquires a lock on one of the selected rows, the
select_for_update() query blocks until the lock is released. If you use nowait, this allows a query to run
right away and in case a conflicting lock is already acquired by another transaction the DatabaseError is
raised when the QuerySet is evaluated. Be aware though, MySQL does not support the nowait argument
and if used with MySQL, Django throws a DatabaseError.

Listing 8-23.  Update multiple records with a Django model with the select_for_update() method

Import Django model class
from coffeehouse.stores.models import Store
from django.db import transaction

Trigger atomic transaction so loop is executed in a single transaction
with transaction.atomic():
 store_list = Store.objects.select_for_update().filter(state='CA')
 # Loop over each store to update and invoke save() on each entry
 for store in store_list:
 # Add complex update logic here for each store
 # save() method called on each member to update
 store.save()

Method decorated with @transaction.atomic to ensure logic is executed in single
transaction
@transaction.atomic
def bulk_store_updae(store_list):
 store_list = Store.objects.select_for_update().exclude(state='CA')
 # Loop over each store and invoke save() on each entry
 for store in store_list:
 # Add complex update logic here for each store
 # save() method called on each member to update
 store.save()

Call bulk_store_update to update store records
bulk_store_update(store_list_to_update)

Listing 8-23 shows two variations for select_for_update(), one using an explicit transaction and the
other decorating a method to scope it inside a transaction. Both variations use the same logic; they first
create a query with select_for_update(), then loop over the results to update each record and use save()
to update individual records. In this manner the rows touched by the query remain locked to other changes
until the transaction finishes.

Chapter 8 ■ Django Model Queries and Managers

361

Be aware that when using the select_for_update() it’s absolutely necessary to use transactions using
any of the techniques described in Listing 8-23. If you run the select_for_update() method in a database
that supports it and you don’t use transactions as illustrated in Listing 8-23 - maintaining Django’s default
auto-commit mode - Django throws a TransactionManagementError error because the rows cannot be
locked as a group. Using the select_for_update method in a database that offers no support for it has no
effect (i.e., you won’t see an error).

Delete Multiple Records with delete()
To delete multiple records you use the delete() method and append it to a query. Listing 8-24 illustrates
this process.

Listing 8-24.  Delete model records with the delete() method

from coffeehouse.stores.models import Store

Store.objects.filter(city='San Diego').delete()

The example in Listing 8-24 uses the delete() method to delete the Store records with city='San
Diego'.

CRUD Relationship Records Across Django Models
In the previous chapter, you learned how Django model relationships can help you improve data
maintenance through special model data types (i.e., ForgeignKey, ManyToManyField, and OneToOne). CRUD
operations made on Django model relationships also have a special syntax.

Although the same syntax from previous sections is applicable for direct operations made on Django
model relationship data types, you can also make reverse operations on the model that’s opposite to the
Django model that defines the relationship data type.

■■ Note  Direct Django model operations operate through a Manager class, and reverse operations Django
model operations are done through a RelatedManager class.

One to Many CRUD Operations
One to many relationships are established through ForgeignKey model data types. Listing 8-25 shows a
one to many relationship between two models, including a series of direct query operations on the
related model.

Listing 8-25.  One to many ForeignKey direct query read operations

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)

Chapter 8 ■ Django Model Queries and Managers

362

 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

Get the Menu of a given Item
Item.objects.get(name='Whole-Grain Oatmeal').menu.id

Get the Menu id of a given Item
Item.objects.get(name='Whole-Grain Oatmeal').menu.name

Get Item elements that belong to the Menu with name 'Drinks'
Item.objects.filter(menu__name='Drinks')

In Listing 8-25 you can see the Item model declares a ForeignKey relationship to the Menu model. Once
an Item model is related to a Menu model in this way, it’s possible to access a Menu model using Python’s dot
notation as shown in Listing 8-25 (e.g., menu.id and menu.name to get the id and name of the related Menu
instance on the Item reference). Notice in Listing 8-25 it’s also possible to create a query that references a
related model using __ (two underscores) (a.k.a. “follow notation”) to indicate a field in the related model.

The operations in Listing 8-25 use the same query syntax as non-relationship models, because the
operations are created parting from the model that has the relationship data type. However, Django also
supports CRUD operations initiated on models that don’t have the relationship data type.

Listing 8-26 illustrates a series of CRUD actions made through an instance of the Menu model done
against its related Item model. These tasks are called reverse operations, because the model holding the
relationship – ForeignKey – is reached in reverse.

Listing 8-26.  One to many ForeignKey reverse query read operations with _set syntax

from coffeehouse.items.models import Menu, Item

breakfast_menu = Menu.objects.get(name='Breakfast')

Fetch all Item records for the Menu
breakfast_menu.item_set.all()

Get the total Item count for the Menu
breakfast_menu.item_set.count()

Fetch Item records that match a filter for the Menu
breakfast_menu.item_set.filter(name__startswith='Whole')

Listing 8-26 starts with a standard Django query for a Menu record. Although the Menu model lacks an
explicit relationship to the Item model, the Item model does declare a relationship to a Menu model, and
Django creates a reverse access pattern with the <one_model>.<many_model>_set syntax.

Therefore, parting from a Menu record, you can see it’s possible to get all Item records that have a
relationship with a Menu record using the menu_record.item_set.all() syntax. Similarly, as shown in the
last example in Listing 8-26, it’s possible to generate a query that filters a set of Item records parting from a
Menu record using the same _set syntax.

■■ Tip  You can change the _set syntax to a more explicit name or disable this behavior altogether, with the
related_name and related_query_name model field options. See the previous chapter section on “Options for
Relationship Model Data Types” in the subsection “Reverse Relationship Options.”

Chapter 8 ■ Django Model Queries and Managers

363

Just as the reverse _set syntax is used to perform read operations parting from models that don’t
have an explicit relationship field toward the model that has the relationship field, it’s also possible to use
the same _set syntax to execute other database operations (e.g., Create, Update, Delete), as illustrated in
Listing 8-27.

Listing 8-27.  One to many ForeignKey reverse query create, update, delete operations with _set syntax

from coffeehouse.items.models import Menu, Item

breakfast_menu = Menu.objects.get(name='Breakfast')

Create an Item directly on the Menu
NOTE: Django also supports the get_or_create() and update_or_create() operations
breakfast_menu.item_set.create(name='Bacon, Egg & Cheese Biscuit',description='A fresh
buttermilk biscuit...',calories=450)

Create an Item separately and then add it to the Menu
new_menu_item = Item(name='Grilled Cheese',description='Flat bread or whole wheat
...',calories=500)
Add item to menu using add()
NOTE: bulk=False is necessary for new_menu_item to be saved by the Item model manager
first
it isn't possible to call new_menu_item.save() directly because it lacks a menu instance
breakfast_menu.item_set.add(new_menu_item,bulk=False)

Create copy of breakfast items for later
breakfast_items = [bi for bi in breakfast_menu.item_set.all()]

Clear menu references from Item elements (i.e. reset the Item elements menu field to null)
NOTE: This requires the ForeignKey definition to have null=True
(e.g. models.ForeignKey(Menu, null=True)) so the key is allowed to be turned null
otherwise the error 'RelatedManager' object has no attribute 'clear' is thrown
breakfast_menu.item_set.clear()

Verify Item count is now 0
breakfast_menu.item_set.count()
0

Reassign Item set from copy of breakfast items
breakfast_menu.item_set.set(breakfast_items)

Verify Item count is now back to original count
breakfast_menu.item_set.count()
3

Clear menu reference from single Item element (i.e. reset an Item element menu field to null)
NOTE: This requires the ForeignKey definition to have null=True
(e.g. models.ForeignKey(Menu, null=True)) so the key is allowed to be turned null
otherwise the error 'RelatedManager' object has no attribute 'remove' is thrown
item_grilled_cheese = Item.objects.get(name='Grilled Cheese')
breakfast_menu.item_set.remove(item_grilled_cheese)

Chapter 8 ■ Django Model Queries and Managers

364

Delete the Menu element along with its associated Item elements
NOTE: This requires the ForeignKey definition to have blank=True and on_delete=models.
CASCADE (e.g. models.ForeignKey(Menu, blank=True, on_delete=models.CASCADE))
breakfast_menu.delete()

In Listing 8-27 you can see that after obtaining a reference to a Menu record, you can generate an Item
record using the create() method directly on the _set reference. Listing 8-27 also illustrates how it’s
possible to first generate an Item record and later link it to a Menu record using the add() method that also
works on the _set reference.

■■ Note T he add(), create(), remove(), clear(), and set() relationship methods all apply database changes
immediately for all types of related fields. This means there’s no need to call save() on either end of the
relationship.

Next, Listing 8-27 is an example of the clear() relationship method. The clear() method is used to
dissociate relationships, in the case of Listing 8-27, it sets the Menu reference for all Item records associated
with a Menu named 'Breakfast' to NULL (i.e., it doesn’t delete any data, it just removes the relationship
reference). It’s worth mentioning that in order to call the clear() method, a model field must be declared
with the null=True option in order for the relationship reference to be set to NULL.

The add() relationship method in Listing 8-27 is used to associate a list of instances on a relationship.
In the case of Listing 8-27, it reverts the logic made by the clear() method in the same listing. An important
aspect of the add() relationship method is that behind the scenes it uses a model’s standard update()
method to add the relationship, and this in turn requires both model records to be previously saved before
creating the relationship. You can bypass this limitation by using the bulk=False – used in Listing 8-27 – to
delegate the save operation to the related manager and create the relationship without saving the related
object beforehand.

The remove() relationship method works like the clear() relationship method, but is designed to
dissociate relationships in a granular way. In the case of Listing 8-27, the remove() method sets the Menu
reference for Item record named 'Grilled Cheese' to NULL (i.e., it doesn’t delete any data, it just removes
the relationship reference). Similar to the clear() relationship method, a model field must be declared with
the null=True option in order for the relationship reference to be set to NULL.

Finally, Listing 8-27 illustrates how calling the delete() method on a model instance with a
relationship deletes the instance on which it’s called and also its related model instances. In the case of
Listing 8-27, breakfast_menu.delete() deletes the Menu named 'Breakfast' and all the Item instances
linked to it. Similar to the clear() and remove() relationship methods, the delete() relationship method
requires a model field be declared with the on_delete=models.CASCADE option in order to automatically
delete related models.

■■ Tip  See the previous chapter section on “Options for Relationship model Data Types” in the subsection
“Data Integrity Options” for other on_delete options.

Chapter 8 ■ Django Model Queries and Managers

365

Many to Many CRUD Operations
In a similar fashion to one to many relationships, many to many relationships also support both direct and
reverse CRUD operations. Listing 8-28 shows a many to many relationship between two models, including a
series of direct query operations on the related model.

Listing 8-28.  Many to many ManyToManyField direct query read operations

class Amenity(models.Model):
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 email = models.EmailField()
 amenities = models.ManyToManyField(Amenity,blank=True)

Get the Amenity elements of a given Store
Store.objects.get(name='Downtown').amenities.all()

Fetch store named Midtown
midtown_store = Store.objects.get(name='Midtown')

Create and add Amenity element to Store
midtown_store.amenities.create(name='Laptop Lock',description='Ask our baristas...')

Get all Store elements that have amenity id=3
Store.objects.filter(amenities__id=3)

In Listing 8-28 you can see the Store model declares a ManyToManyField relationship to the Amenity
model. Once an Store model is related to an Amenity model in this way, it’s possible to access the Amenity
model using Python’s dot notation as shown in Listing 8-28 (e.g., amenities.all() to get all related Amenity
instance on the Store reference). In addition, Listing 8-28 also illustrates how it’s possible to create Amenity
instances using the create() method directly on the model amenities reference. Also notice in Listing 8-28
how it’s possible to create a query that references a related model using __ (two underscores) (a.k.a. “follow
notation”) to indicate a field in the related model.

The operations in Listing 8-28 use the same query syntax as non-relationship models, because the
operations are created parting from the model that has the relationship data type. However, Django also
supports CRUD operations initiated on models that don’t have the relationship data type.

Listing 8-29 illustrates a series of CRUD actions made through an instance of the Amenity model done
against its related Store model. These tasks are called reverse operations, because the model holding the
relationship – ManyToManyField – is reached in reverse.

Chapter 8 ■ Django Model Queries and Managers

366

Listing 8-29.  Many to many ManyToManyField reverse query create, read, update, and delete operations
with _set syntax

from coffeehouse.stores.models import Store, Amenity

wifi_amenity = Amenity.objects.get(name='WiFi')

Fetch all Store records with Wifi Amenity
wifi_amenity.store_set.all()

Get the total Store count for the Wifi Amenity
wifi_amenity.store_set.count()

Fetch Store records that match a filter with the Wifi Amenity
wifi_amenity.store_set.filter(city__startswith='San Diego')

Create a Store directly with the Wifi Amenity
NOTE: Django also supports the get_or_create() and update_or_create() operations
wifi_amenity.store_set.create(name='Uptown',address='1240 University Ave...')

Create a Store separately and then add the Wifi Amenity to it
new_store = Store(name='Midtown',address='844 W Washington St...')
new_store.save()
wifi_amenity.store_set.add(new_store)

Create copy of breakfast items for later
wifi_stores = [ws for ws in wifi_amenity.store_set.all()]

Clear all the Wifi amenity records in the junction table for all Store elements
wifi_amenity.store_set.clear()

Verify Wifi count is now 0
wifi_amenity.store_set.count()
0

Reassign Wifi set from copy of Store elements
wifi_amenity.store_set.set(wifi_stores)

Verify Item count is now back to original count
wifi_amenity.store_set.count()
6

Reassign Store set from copy of wifi stores
wifi_amenity.store_set.set(wifi_stores)

Clear the Wifi amenity record from the junction table for a certain Store element
store_to_remove_amenity = Store.objects.get(name__startswith='844 W Washington St')
wifi_amenity.store_set.remove(store_to_remove_amenity)

Delete the Wifi amenity element along with its associated junction table records for Store elements
wifi_amenity.delete()

Chapter 8 ■ Django Model Queries and Managers

367

In Listing 8-29 you can see the various examples of many to many Django model reverse query
operations. Notice the similarities to the one to many relationship CRUD operation examples shown in
Listings 8-26 and 8-27. Among the notable differences of calling relationship methods in one to many and
many to many relationships, are the following:

•	 The add() and remove() relationship methods when applied on many to many
models uses a model’s standard bulk_create() and delete() methods to add
and remove the relationship, respectively. This in turn means a model’s standard
save() method isn’t called; therefore if either model’s save() method executes
custom logic, it will never run with the add() and remove() relationship methods.
If you want to execute custom logic when a many to many relationship is created or
removed, use the m2m_changed signal. See the previous chapter section on model
signals for additional details.

•	 If you declare a custom junction table for a many to many model relationship, the
add(), create(), remove(), and set() relationships methods are disabled. See
the previous chapter section “Options for Relationship Model Data Types” in the
subsection “Database Options” for how to use custom junction tables.

One to One CRUD Operations
CRUD operations on Django one to one relationships are much simpler than the previous relationship
CRUD operations, simply because one to one relationships are inherently much simpler. In the previous
chapter, you learned how one to one relationships resemble an inheritance hierarchy, where one model
declares generic fields and a second (related) model inherits the fields of the former and adds more
specialized fields.

This means one to one relationships just have direct query operations, as reverse operations don’t make
sense since models follow a hierarchy structure. Listing 8-30 shows a one to many relationship between two
models, including a series of query operations on the related model.

Listing 8-30.  One to one OneToOneField query operations

from coffeehouse.items.models import Item
See Listing 8-25 for Item model definition

class Drink(models.Model):
 item = models.OneToOneField(Item,on_delete=models.CASCADE,primary_key=True)
 caffeine = models.IntegerField()

Get Item instance named Mocha
mocha_item = Item.objects.get(name='Mocha')

Access the Drink element and its fields through its base Item element
mocha_item.drink.caffeine

Get Drink objects through Item with caffeine field less than 200
Item.objects.filter(drink__caffeine__lt=200)

Delete the Item element and its associated Drink record
NOTE: This deletes the associated Drink record due to the on_delete=models.CASCADE in the
OneToOneField definition
mocha_item.delete()

Chapter 8 ■ Django Model Queries and Managers

368

Query a Drink through an Item property
Drink.objects.get(item__name='Latte')

As you can see in Listing 8-30, the operations for one to one Django model relationships are much
simpler than the previous example, albeit the query operations still use the same dotted notation to move
through the relationship models and fields as well as __ (two underscores) (a.k.a. “follow notation”) to
perform queries by field on the related model.

Read Performance Relationship Methods: select_related() and
prefetch_related()
In these last Django model relationship CRUD operation sections — Listings 8-25 through 8-30 — you
learned how easy it is to traverse from one model to another model via its relationship field to access other
fields. For example, for a one to many relationship between an Item and Menu model, you can access the
name field on a Menu record using the syntax item.menu.name; similarly for a many to many relationship
between a Store and Amenity model, you can access the name field on an Amenity record using the syntax
store.amenities.all()[0].name.

While this dot notation provides an effortless approach to access fields in related models – similar to
how the defer() and load() methods allow effortless access to deferred data – this technique also generates
additional database hits that can be prevented with the select_related() and prefetch_related()
methods.

The selected_related() method accepts related model fields arguments that should be read as part
of an initial query. Although this creates a more complex initial query, it avoids additional database hits
on related model fields. Listing 8-31 illustrates an example of the select_related() method, along with a
query that forgoes its use.

Listing 8-31.  Django model select_related syntax and generated SQL

from coffeehouse.items.models import Item
See Listing 8-25 for Item and Menu model definitions

Inefficient access to related model
for item in Item.objects.all():
 item.menu # Each call to menu creates an additional database hit

Efficient access to related model with selected_related()
for item in Item.objects.select_related('menu').all():
 item.menu # All menu data references have been fetched on initial query

Raw SQL query with select_related
print(Item.objects.select_related('menu').all().query)
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name", "items_
item"."description", "items_item"."size", "items_item"."calories", "items_item"."price",
"items_item"."stock", "items_menu"."id", "items_menu"."name" FROM "items_item" LEFT OUTER
JOIN "items_menu" ON ("items_item"."menu_id" = "items_menu"."id")

Raw SQL query without select_related
print(Item.objects.all().query)
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name", "items_
item"."description", "items_item"."size", "items_item"."calories", "items_item"."price",
"items_item"."stock" FROM "items_item"

Chapter 8 ■ Django Model Queries and Managers

369

In Listing 8-31 you can see there are two variations to access the related Menu model for all Item model
records. The first variation uses the Item.objects.all() syntax to get all Item model records and then
directly accesses the menu field to gain access to the corresponding Menu record. The problem with this
approach is that getting the Menu record for each Item record generates an additional database hit, so if you
have 100 Item records this implies an additional 100 database hits!

The second variation in Listing 8-31 adds the select_related('menu') method to the query, ensuring
the related Menu record for each Item record is also fetched as part of the initial query. This technique
guarantees that all relationship data is fetched in a single query.

In the bottom half of Listing 8-31 you can see the raw SQL generated when the select_related()
method is used and omitted. When select_related() is used, a more complex LEFT OUTER JOIN query is
used to ensure all related data is read in one step.

The prefetch_related() method solves the same problem as the select_related() method, but does
so using a different technique. As you saw in Listing 8-31, the select_related() method fetches related
model data in a single query by means of a database JOIN; however, the prefetch_related() method
executes its join logic once the data is in Python.

Although a database JOIN solves a multi-query problem in a single query, it’s a heavyweight operation
that is often used sparingly. For this reason, the select_related() method is limited to single value
relationships (i.e., ForeignKey and OneToOneField model fields), since multi-value relationships associated
with a junction table (i.e., ManyToManyField) can produce an inordinate amount of data in a single query.

When a query uses the prefetch_related() method, Django first executes the primary query and later
generates QuerySet instances for all the related models declared inside the prefetch_related() method.
All of this happens in a single step, so by the time you attempt to access related model references, Django
already has a pre-filled cache of related results, which it joins as Python data structures to produce the final
results. Listing 8-32 illustrates an example of the prefetch_related() method.

Listing 8-32.  Django model prefetch_related syntax and generated SQL

from coffeehouse.items.models import Item
from coffeehouse.stores.models import Store
See Listing 8-25 for Item model definitions
See Listing 8-28 for Store model definitions

Efficient access to related model with prefetch_related()
for item in Item.objects.prefetch_related('menu').all():
 item.menu # All menu data references have been fetched on initial query

Efficient access to many to many related model with prefetch_related()
NOTE Store.objects.select_related('amenities').all() is invalid due to many to many model
for store in Store.objects.prefetch_related('amenities').all():
 store.amenities.all()

Raw SQL query with prefetch_related
print(Item.objects.prefetch_related('menu').all().query)
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name", "items_
item"."description", "items_item"."size", "items_item"."calories", "items_item"."price",
"items_item"."stock" FROM "items_item"

Raw SQL query with prefetch_related
print(Store.objects.prefetch_related('amenities').all().query)
SELECT "stores_store"."id", "stores_store"."name", "stores_store"."address", "stores_
store"."city", "stores_store"."state", "stores_store"."email" FROM "stores_store"

Chapter 8 ■ Django Model Queries and Managers

370

The first query in Listing 8-32 is equivalent to the query presented in Listing 8-31 that fetches the related
Menu model for all Item model records, except that it uses the prefetch_related() method. The second query
in Listing 8-32 is made on a many to many model relationship to fetch the related amenities model instances
for all Store model records using the prefetch_related() method. It’s worth mentioning this last query is
only possible with the prefetch_related() method because it’s a many to many model relationship.

Finally, in the bottom half of Listing 8-32, you can confirm the raw SQL produced by queries that use
the prefetch_related() method appear as a plain SQL query (i.e., no JOIN). In this case, it’s Django/
Python itself that’s charged with managing and creating the additional QuerySet data structures needed to
efficiently read related model data.

■■ Tip  The prefetch_related() method can be further optimized with a Prefetch() object to further filter a
prefetch operation or inclusively use selected_related.1

Model Queries by SQL Keyword
In the previous sections you learned how to query single, multiple and related records with Django model
methods. However, the matching process was done for the most part on exact values. For example, a query
for the Store record with id=1 translated into the SQL WHERE ID=1 or a query for all Store records with
state="CA" translated into the SQL WHERE STATE="CA".

In reality, exact SQL matching patterns are far from most real world scenarios that require finer grained
SQL queries. In the following sub-sections, you’ll learn about the various Django model query options
classified by SQL keywords, this way you can easily identify the required Django syntax using the better
known SQL keywords as identifiers.

WHERE Queries: Django Field Lookups
The SQL WHERE keyword is among the most used keywords in relational database queries, because it’s used
to delimit the amount of records in a query through a field value. Up to this point, you’ve mostly used the
SQL WHERE keyword to create queries on exact values (e.g., WHERE ID=1); however, there are many other
variations of the SQL WHERE keyword.

In Django models, variations of the SQL WHERE keyword are supported through field lookups, which
are keywords appended to field filters using __ (two underscores) (a.k.a. “follow notation”).

THE PK LOOKUP SHORTCUT

Django queries rely on model field names to classify queries. For example, the SQL WHERE ID=1
statement in a Django query is written as …(id=1), and the SQL WHERE NAME=“CA” statement in a
Django query is written as …(state=“CA”).

In addition, Django models can also use the pk shortcut – where pk=“primary key” – to perform queries
against a model’s primary key. By default, a Django model’s id field is the primary key, so id field and pk
shortcut queries are considered equivalent (e.g., Store.objects.get(id=1) Store.objects.get(pk=1)).

A query with a pk lookup only has a different meaning than one with an id field, when a model defines a
custom primary key model field.

1https://docs.djangoproject.com/en/1.11/ref/models/querysets/#prefetch-objects

https://docs.djangoproject.com/en/1.11/ref/models/querysets/#prefetch-objects

Chapter 8 ■ Django Model Queries and Managers

371

=/EQUAL and !=/NOT EQUAL queries: exact, iexact
Equality or = queries is the default WHERE behavior used in Django models. There are two syntax variations
for equality searches; one is a short-handed version and the other uses the exact field lookup, Listing 8-33
shows both approaches.

Listing 8-33.  Django equality = or EQUAL query

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item

Get the Store object with id=1
Store.objects.get(id__exact=1)

Get the Store object with id=1 (Short-handed version)
Store.objects.get(id=1)

Get the Drink objects with name="Mocha"
Item.objects.filter(name__exact="Mocha")

Get the Drink objects with name="Mocha" (Short-handed version)
Item.objects.filter(name="Mocha")

As you can see in Listing 8-33, you can either use the exact field lookup to explicitly qualify the query
or use the short-handed syntax <field>=<value>. Because exact WHERE queries are the most common,
Django implies exact searches by default.

■■ Tip  You can do case insensitive equality queries with the iexact field lookup (e.g., match ‘IF’,‘if’,‘If’, or ‘iF’).
See LIKE and ILIKE queries section for details.

Inequality or != searches also have two syntax variations presented in Listing 8-34.

Listing 8-34.  Django inequality != or NOT EQUAL query with exclude() and Q objects

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item
from django.db.models import Q

Get the Store records that don't have state 'CA'
Store.objects.exclude(state='CA')

Get the Store records that don't have state 'CA', using Q
Store.objects.filter(~Q(state="CA"))

Get the Item records and exclude items that have more than 100 calories
Item.objects.exclude(calories__gt=100)

Get the Item records and exclude those with 100 or more calories, using Q
Item.objects.filter(~Q(calories__gt=100))

Chapter 8 ■ Django Model Queries and Managers

372

As you can see in Listing 8-34, one syntax variation uses the exclude() method to exclude objects that
match a given statement. Another alternative is to use a Django Q object to negate a query. In Listing 8-34
you can see the Q object Q(state="CA") that matches state values with CA, but because the Q object is
preceded with ~(tilde symbol) it’s a negation pattern (i.e., matches state values that aren’t CA).

Both the exclude() and Q object syntax produce the same results. Q objects are mostly used in more
complex queries, but in this case a negated Q object works just like exclude().

AND queries
To create SQL WHERE queries with an AND statement you can add multiple statements to a query or use
Q objects, as illustrated in Listing 8-35.

Listing 8-35.  Django AND query

from coffeehouse.stores.models import Store
from django.db.models import Q

Get the Store records that have state 'CA' AND city 'San Diego'
Store.objects.filter(state='CA', city='San Diego')

Get the Store records that have state 'CA' AND city not 'San Diego'
Store.objects.filter(Q(state='CA') & ~Q(city='San Diego'))

The first example in Listing 8-35 adds multiple field values to the filter() method to produce a WHERE
<field_1> AND <field_2> statement. The second example in Listing 8-35 also uses the filter() method,
but uses two Q objects to produce a negation with the AND statement (i.e., WHERE <field_1> AND NOT
<field2>) through the & operator.

■■ Tip  If you’re looking for a broader AND query than the ones in Listing 8-35, for example, get Store objects
with state ‘CA’ AND those with state ‘AZ’, look at either OR queries or IN queries.

If you’re looking to combine two queries, for example, query1 AND query 2, look at the Merge queries section
later in this same chapter.

OR queries: Q() objects
To create SQL WHERE queries with an OR statement you can use Q objects, as illustrated in Listing 8-36.

Listing 8-36.  Django OR query

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item
from django.db.models import Q

Chapter 8 ■ Django Model Queries and Managers

373

Get the Store records that have state 'CA' OR state='AZ'
Store.objects.filter(Q(state='CA') | Q(state='AZ'))

Get the Item records with name "Mocha" or "Latte"
Item.objects.filter(Q(name="Mocha") | Q(name='Latte'))

Both examples in Listing 8-36 uses the | (pipe) operator between Q objects to produce a WHERE <field1>
OR <field2> statement, similar to how the & operator is used for AND conditions.

IS and IS NOT queries: isnull
The SQL IS and IS NOT statements are typically used with WHERE in queries involving NULL values. And
depending on the database brand, SQL IS and IS NOT can also be used in Boolean queries. To create SQL
WHERE queries with an IS or IS NOT statement you can use a Python None data type with an equivalency
test or the isnull field lookup, as illustrated in Listing 8-37.

Listing 8-37.  Django IS and IS NOT queries

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Drink
from django.db.models import Q

Get the Store records that have email NULL
Store.objects.filter(email=None)

Get the Store records that have email NULL
Store.objects.filter(email__isnull=True)

Get the Store records that have email NOT NULL
Store.objects.filter(email__isnull=False)

The first example in Listing 8-37 attempts a query on Python’s None value; in this case None gets
translated to SQL’s NULL (i.e., IS NULL). The second and third examples in Listing 8-37 use the isnull field
lookup, to create IS NULL and IS NOT NULL queries, respectively.

IN queries: in
The SQL IN statement is used with WHERE clauses to generate queries that match a list of values. To create
SQL WHERE queries with an IN statement you can use the in field lookup, as illustrated in Listing 8-38.

Listing 8-38.  Django IN queries

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Drink

Get the Store records that have state 'CA' OR state='AZ'
Store.objects.filter(state__in=['CA','AZ'])

Get the Item records with id 1,2 or 3
Item.objects.filter(id__in=[1,2,3])

As you can see in Listing 8-38, the Django in field lookup can be used to create a query for records that
match a list values from any field (e.g., integers, strings).

Chapter 8 ■ Django Model Queries and Managers

374

LIKE and ILIKE queries: contains, icontains, startswith, istartswith, endswith,
iendswith
The SQL LIKE and ILIKE queries are used with WHERE clauses to match string patterns, with the former
being case sensitive and the latter case insensitive. Django offers three field lookups to generate SQL LIKE
queries, depending on the string pattern you wish to match. Listing 8-39 illustrates how to generate three
different SQL LIKE queries with Django field lookups.

Listing 8-39.  Django LIKE queries

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item, Drink

Get the Store records that contain a 'C' anywhere in state (LIKE '%C%')
Store.objects.filter(state__contains='C')

Get the Store records that start with 'San' in city (LIKE 'San%')
Store.objects.filter(city__startswith='San')

Get the Item records that end with 'e' in name (LIKE '%e')
Drink.objects.filter(item__name__endswith='e')

As you can see in Listing 8-39, the % symbol represents an SQL wildcard and is placed in different
positions in the SQL LIKE pattern value depending on the Django field lookup: to generate an SQL query
with the LIKE '%PATTERN%' you use the contains field lookup; to generate an SQL query with the LIKE
'PATTERN%' you used the startswith field lookup; and to generate an SQL query with the LIKE '%PATTERN'
you use the endswith field lookup.

Django also supports the SQL ILIKE queries, which function as LIKE queries, but are case insensitive.
Listing 8-40 illustrates how to create ILIKE queries with Django field lookups.

Listing 8-40.  Django ILIKE queries

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item

Get the Store recoeds that contain 'a' in state anywhere case insensitive (ILIKE '%a%')
Store.objects.filter(state__icontains='a')

Get the Store records that start with 'san' in city case insensitive (ILIKE 'san%')
Store.objects.filter(city__istartswith='san')

Get the Item records that end with 'a' in name case insensitive (ILIKE '%A')
Item.objects.filter(name__iendswith='A')

Get the Store records that have state 'ca' case insensitive (ILIKE 'ca')
Store.objects.filter(state__iexact='ca')

The examples in Listing 8-40 are just like those in Listing 8-39, but the only difference is Django’s field
lookups are preceded with the letter i to indicate a case-insensitive ILIKE query.

It’s worth mentioning the last example in Listing 8-40 is a case-insensitive version of =/EQUAL and
!=/NOT EQUAL queries. However, because iexact uses ILIKE under the hood it’s mentioned again in this
section.

Chapter 8 ■ Django Model Queries and Managers

375

REGEXP queries: regex, iregex
Sometimes the patterns supported by SQL LIKE & ILIKE statements are too basic, in which case you can
use an SQL REGEXP statement to define a complex pattern as a regular expression. Regular expressions
are more powerful because they can define fragmented patterns, for example: a pattern that starts with sa
followed by any letters, followed by a number; or a conditional pattern, such as pattern that starts with Los
or ends in Angeles. Django supports the SQL REGEXP keyword through the regex field lookup and also
supports case-insensitive regular expression queries through the iregex field lookup.

Although it would be beyond the scope of our discussion to describe the many regular expression
syntax variations, a sample regular expression query to match Store records with a city that starts with Los
or San would be: Store.objects.filter(city__regex=r'^(Los|San) +').

Note the recommended practice to define patterns for regex or iregex field lookups is to use Python
raw string literals. A Python raw string literal is a string preceded by r that conveniently expresses strings
that would be modified by escape sequence processing (e.g., the raw string r'\n' is identical to the standard
string '\\n'). This behavior is particularly helpful with regular expressions that rely heavily on escape
characters. Appendix A describes the use of Python raw strings in greater detail.

>/GREATER THAN and </LESS THAN queries: gt, gte, lt, lte
SQL WHERE statements associated with numeric fields often use the mathematical operators >, >=, <,
and <= to restrict queries to certain number ranges. Django models support the use of the mathematical
operators >, >=, < and <= through the gt, gte, lt, and lte field lookups, respectively. Listing 8-41 illustrates
the use of these field lookups in Django.

Listing 8-41.  Django GREATER THAN and LESSER THAN queries

from coffeehouse.items.models import Item

Get Item records with stock > 5
Item.objects.filter(stock__gt=5)

Get Item records with stock > or equal 10
Item.objects.filter(stock__gte=10)

Get Item records with stock < 100
Item.objects.filter(stock__lt=100)

Get Item records with stock < or equal 50
Item.objects.filter(stock__lte=50)

Date and time queries: Range, date, year, month, day, week, week_day, time,
hour, minute, second
Although SQL WHERE queries for date and time fields can be done with equality, greater than and lesser
than symbols, writing SQL date and time queries can be time consuming due to their special characteristics.
For example, to create an SQL query to get all records with a 2018 year timestamp, you need to create a query
like 'WHERE date BETWEEN '2018-01-01' AND '2018-12-31'. As you can see, syntax-wise these queries can
become complex and error prone if you add the need to deal with things like timezones, months, and things
like leap years.

Chapter 8 ■ Django Model Queries and Managers

376

To simplify the creation of SQL WHERE queries with date and time values, Django offers various field
lookups, which are illustrated in Listing 8-42.

Listing 8-42.  Django date and time queries with field lookups

from coffeehouse.online.models import Order
from django.utils.timezone import utc
import datetime

Define custom dates
start_date = datetime.datetime(2017, 5, 10).replace(tzinfo=utc)
end_date = datetime.datetime(2018, 5, 21).replace(tzinfo=utc)

Get Order recrods from custom dates, starting May 10 2017 to May 21 2018
Order.objects.filter(created__range=(start_date, end_date))

Get Order records with exact start date
orders_2018 = Order.objects.filter(created__date=start_date)

Get Order records with year 2018
Order.objects.filter(created__year=2018)

Get Order records with month January, values can be 1 through 12 (1=January, 12=December).
Order.objects.filter(created__month=1)

Get Order records with day 1, where values can be 1 through 31.
Order.objects.filter(created__day=1)

Get Order records from January 1 2018
Order.objects.filter(created__year=2018,create__month=1,created__day=1)

Get Order records that fall on week number 24 of the yr, where values can be 1 to 53.
Order.objects.filter(created__week=24)

Get Order recrods that fall on Monday, where values can be 1 to 7 (1=Sunday, 7=Saturday).
Order.objects.filter(created__week_day=2)

Get Order records made at 2:30pm using a time object
Order.objects.filter(created__time=datetime.time(14, 30))

Get Order records made at 10am, where values can be 0 to 23 (0=12am, 23=11pm).
Order.objects.filter(date__hour=10)

Get Order records made at the top of the hour, where values are 0 to 59.
Order.objects.filter(date__minute=0)

Get Order records made the 30 second mark of every minute, where values are 0 to 59.
Order.objects.filter(date__second=30)

Chapter 8 ■ Django Model Queries and Managers

377

The first example in Listing 8-42 uses the range field lookup, which takes two Python datetime.
datetime objects to define a date range for the query. Although range is the most flexible approach to create
date and time queries, there are other field lookup alternatives that offer simpler syntax. The date field
lookup allows you to create a query for an exact date.

The year, month, and day field lookups allow you to create queries that match records for a given
year, month, or day, respectively. In addition, if you look at the middle of Listing 8-42, you’ll notice it’s also
possible to create a query with multiple field lookups to match a combination of year, month, and day.

Finally, toward the bottom half of Listing 8-42 you can see the week and week_day field lookups can
create a query for records that match a given week of the year or day of the week, respectively. In addition
to the time field lookup designed to make a query based on a datetime.time object, as well as the hour,
minute, and second field lookups designed to create queries for records that match a given hour, minute, or
second, respectively.

■■ Tip  To make a query that only extracts dates and times from a record (and not the full record), look at the
DISTINCT section under the date and time subsection.

CAN’T FIND AN SQL WHERE STATEMENT? CUSTOM LOOKUPS,
EXTRA(), SUBQUERIES, OR RAW QUERY

Although Django provides an extensive list of field lookups to generate various SQL WHERE statements,
this doesn’t mean you will always find the necessary field lookup to generate a desired SQL WHERE
statement. In such cases, you have the following alternatives:

•	 Create a custom lookup: Just like other Django custom constructs, you can create
custom lookups with custom SQL WHERE statements.2

•	 Use the extra() method: The Django model extra() method can also be used to create a
custom SQL WHERE statement.3

•	 Use a subquery: Subqueries allow the creation of WHERE statements dependent on
the results of other queries. A later section in this chapter addresses how to crate SQL
subqueries on Django models.

•	 Raw SQL query: You can create a raw (open-ended) SQL query with verbatim SQL
WHERE statements. A later section in this chapter addresses how to execute raw SQL
queries on Django models.

DISTINCT Queries
The SQL DISTINCT keyword is used to filter duplicate records and is supported in Django models through
the distinct() method. By default, SQL DISTINCT and the Django distinct() method are applied against
the contents of entire records. This means that unless a query limits its number of fields or a query spans
multiple models, the distinct() method will never produce distinct results. Listing 8-43 illustrates several
queries that use the distinct() method that better illustrate this behavior.

2https://docs.djangoproject.com/en/1.11/howto/custom-lookups/
3https://docs.djangoproject.com/en/1.11/ref/models/querysets/#extra

https://docs.djangoproject.com/en/1.11/howto/custom-lookups/
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#extra

Chapter 8 ■ Django Model Queries and Managers

378

Listing 8-43.  Django DISTINCT queries with distinct()

from coffeehouse.stores.models import Store

Get all Store records number
Store.objects.all().count()
4

Get all distinct Store record number
Store.objects.distinct().count()
4
 # Get distinct state Store record values
Store.objects.values('state').distinct().count()
1

ONLY for PostgreSQL, distinct() can accept model fields to create DISTINCT ON query
Store.objects.distinct('state')

The first query in Listing 8-43 gets the total count for all Store records, whereas the second query gets
the total count for distinct Store records. Notice how even though the second query uses the distinct()
method, both counts are the same, since there’s at least one field value (e.g., id) across all records that is
distinct.

The third query in Listing 8-43 makes use of the values() method to restrict the query records to only
the state field. Once this is done, the distinct() method is applied to the query followed by the count()
method, to get the total number of distinct state values. By applying a selective query field method (e.g.,
values() or values_list()) prior to the distinct() method, the logic performed by the distinct() method
produces a logical output.

The final example in Listing 8-43 passes a model field to the distinct() method to produce an SQL
DISTINCT ON query. This last distinct() method syntax is only supported for PostgreSQL databases that
understand the SQL DISTINCT ON statement.

Dates and times queries: dates() and datetimes()
In addition to the distinct() method, Django also offer two special methods designed to extract DISTINCT
date and time values from records. The dates() and datetimes() methods generate a list of datetime.
date or datetime.datetime objects (respectively) based on model record values that match distinct dates or
times.

The dates() method accepts three arguments, two required and one optional. The first argument
(required) is a date field on which to perform the DISTINCT query, the second argument (required) is the
date component on which to perform the DISTINCT query, which can be 'year', 'month', or 'day'. The
third argument (optional) is the query order that defaults to 'ASC' for ascending, but can also be for 'DESC'
descending.

The datetimes() method also accepts three arguments, two required and one optional. The first
argument (required) is a date time field on which to perform the DISTINCT query, the second argument
(required) is the date time component on which to perform the DISTINCT query, which can be 'year',
'month', 'day', 'hour', 'minute', or 'second'. The third argument (optional) is the query order that
defaults to 'ASC' for ascending, but can also be for 'DESC' descending.

Listing 8-44 illustrates a series of examples using the dates() and datetimes() methods.

Chapter 8 ■ Django Model Queries and Managers

379

Listing 8-44.  Django DISTINCT date and time queries with dates and datetimes() methods

from coffeehouse.online.models import Order

Get distinct years (as datetime.date) for Order objects
Order.objects.dates('created','year')
Outputs: <QuerySet [datetime.date(2017, 1, 1),datetime.date(2018, 1, 1)]>

Get distinct months (as datetime.date) for Order objects
Order.objects.dates('created','month')
Outputs: <QuerySet [datetime.date(2017, 3, 1),datetime.date(2017, 6, 1),datetime.
date(2018, 2, 1)]>

Get distinct days (as datetime.datetime) for Order objects
Order.objects.datetimes('created','day')
Outputs: <QuerySet [datetime.datetime(2017, 6, 17, 0, 0, tzinfo=<UTC>)...]>

Get distinct minutes (as datetime.datetime) for Order objects
Order.objects.datetimes('created','minute')
Outputs: <QuerySet [datetime.datetime(2017, 6, 17, 3, 13, tzinfo=<UTC>)...]>

As you can see in Listing 8-44, the dates() method produces a list of datetime.date objects generated
from a given date component across all model records, whereas the datetimes() method produces a list of
datetime.datetime objects generated from a given date time component across all model records. Note the
examples in Listing 8-44 apply the dates() and datetimes() methods to all model records, but it’s valid to
use these methods on any query (i.e., filter() or exclude()).

■■ Tip  You can also use an aggregation query to count distinct values. See the Aggregation queries section
for additional details on this process.

ORDER Queries: order_by() and reverse()
SQL queries often use the ORDER keyword to tell the database engine to sort query results based on certain
field or fields. This technique is helpful because it avoids the additional overhead of sorting records outside
the database (i.e., in Python). Django models support the SQL ORDER statement through the order_by()
method. The order_by() method accepts model fields as input to define the query order, a process that’s
illustrated in Listing 8-45.

Listing 8-45.  Django ORDER queries

from coffeehouse.stores.models import Store

Get Store records and order by city (ORDER BY city)
Store.objects.all().order_by('city')

Get Store recrods, order by name descending, email ascending (ORDER BY name DESC, email ASC)
Store.objects.filter(city='San Diego').order_by('-name','email')

Chapter 8 ■ Django Model Queries and Managers

380

The first example in Listing 8-45 defines a query for all Store objects ordered by city. By default, order_
by sets the order ascending (i.e., ’A’ records first, ’Z’ records last). The second example in Listing 8-45 defines
a Store query but with multiple fields, so the query is first ordered by the first field and then with the second.
In addition, the second example illustrates the use of the – (minus) symbol to override the default ascending
order, -name indicates to order records by name but in descending order (i.e., ’Z’ records first, ’A’ records last).

■■ Tip  You can declare the ordering Meta option on a model to set its default query ordering behavior, instead
of declaring the order_by() method. See the previous chapter’s Query meta options section.

In addition to the order_by() method, Django models also support the reverse() method that inverts
the results of a QuerySet. The reverse() method works just like Python’s standard reverse() method that
inverts the order of a list, except it’s designed to operate on Django QuerySet data structures before the data
is materialized.

LIMIT Queries
THE SQL LIMIT statement is used when you want to avoid reading an entire set of records in a query and
instead limit the resulting records to a smaller set. The SQL LIMIT statement is helpful for cases when you
purposely want to read query records gradually (e.g., large queries that are displayed on multiple pages,
a.k.a. pagination) – or you want to sample a query (e.g., get the first, last, latest, or oldest record in a query).

Django models offer various mechanisms to generate LIMIT queries described in the next sections.

LIMIT and OFFSET queries: Python slice syntax
SQL LIMIT queries are often accompanied by the OFFSET statement, the last of which is used to extract
records starting from a given point in the whole set of records. Django models support the creation of SQL
queries with LIMIT and OFFSET statements using standard Python slice syntax (i.e., the same syntax used to
split lists). Listing 8-46 illustrates how to generate LIMIT and OFFSET queries.

Listing 8-46.  Django LIMIT and OFFSET queries with Python slice syntax

from coffeehouse.stores.models import Store
from coffeehouse.items.models import Item

Get the first five (LIMIT=5) Store records that have state 'CA'
Store.objects.filter(state='CA')[:5]

Get the second five (OFFSET=5,LIMIT=5) Item records (after the first 5)
Item.objects.all()[5:10]

Get the first (LIMIT=1) Item object
Item.objects.all()[0]

As you can see in Listing 8-46, the technique to generate LIMIT and OFFSET queries is through Python’s
slice syntax applied directly to QuerySet data structures. In case you’ve never used Python’s slice syntax,
the technique is straightforward: The syntax QuerySet[start:end] gets items from start to end-1 of a
QuerySet, the syntax QuerySet[start:] gets items from start through the rest of a QuerySet,and the syntax
QuerySet[:end] gets items from the beginning of a QuerySet through end-1.

Chapter 8 ■ Django Model Queries and Managers

381

Pseudo LIMIT 1 order queries: first() and last()
Under certain circumstances, the SQL LIMIT statement is used to get a single record that’s the first or last
record in a set of records. Django models support the first() and last() methods, which generate a LIMIT 1
query just as if you created a query with the slice syntax [0] – describe in Listing 8-46.

The first() and last() methods are typically preceded by the order_by() model method, in order to
guarantee an expected record order and thus get the first or last record of said records. If the first() and
last() methods are applied without the order_by() model method, then queries are applied against the
default ordering mechanism – by the id field – and thus first() returns the record with the first id value
and last() returns the record with the last id value.

For example, the query Store.objects.filter(state='CA').first() gets the first Store record with
state='CA' with the lowest id (since order defaults to id), a query that’s equivalent to Store.objects.
filter(state='CA')[0]. The query Item.objects.all().order_by('name').last() gets the last Item
record with the name that comes last in the alphabet (since order is specified by name), a query that’s
equivalent to Item.objects.all().order_by('name').reverse()[0].

Pseudo LIMIT 1 date and time queries: latest() and earliest()
For SQL LIMIT queries associated with dates or times, Django offers the latest() and earliest() methods
to obtain the most recently or first created model records (respectively) based on a date field. Both the
latest() and earliest() methods accept a date field on which to perform a query and provide much
shorter syntax to deal with LIMIT queries related to dates or times vs. the first() and last(). This is
because latest() and earliest() methods automatically perform the order_by() operation on the field
provided as an argument.

For example, Order.objects.latest('created') gets the most recent Order record based on the
created field, whereas Order.objects.earliest('created') gets the oldest Order record based on the
created field.

■■ Tip  Use the get_latest_by Meta option in a model to set a default field on which to execute the latest() and
earliest() methods. See the previous chapter on Meta options for additional details.

Merge Queries
SQL queries often need to be merged to produce different sets of results, such as combining the records of
multiple SQL queries or obtaining common records between multiple SQL queries. Django supports various
ways to merge SQL queries, both as QuerySet data structures, as well as through SQL query statements like
UNION, INTERSECT, and EXCEPT.

QuerySet merger: Pipe and itertools.chain
As you’ve learned throughout this chapter, Django models most often use QuerySet data structures to
represent SQL queries. Such QuerySet data structures often require to be merged, to present a larger set of
results and avoid having to perform new database queries. Listing 8-47 illustrates the two syntax variations
available to merge QuerySet data structures.

Chapter 8 ■ Django Model Queries and Managers

382

Listing 8-47.  Combine two Django queries with | (pipe) and itertools.chain

from coffeehouse.items.models import Item, Drink
from itertools import chain

menu_sandwich_items = Item.objects.filter(menu__name='Sandwiches')
menu_salads_items = Item.objects.filter(menu__name='Salads')
drinks = Drink.objects.all()

A pipe applied to two QuerySets generates a larger QuerySet
lunch_items = menu_sandwich_items | menu_salads_items

| can't be used to merge QuerySet's with different models # ERROR menu_sandwich_items | drinks

itertools.chain generates a Python list and can merge different QuerySet model types
lunch_items_with_drinks = list(chain(menu_sandwich_items, drinks))

The first option in Listing 8-47 uses the | (pipe) operator to combine two QuerySet data structures. This
technique produces yet another QuerySet data structure, but has the caveat of only working on QuerySet’s
that use the same model (e.g., Item).

The second option in Listing 8-47 uses the Python itertools package to merge two QuerySet data
structure with the chain() method. This technique produces a standard Python list – with the respective
model objects – and is the more flexible option because it can combine QuerySet data structures even if they
use different models (e.g., Item and Drink).

UNION queries: union()
The SQL UNION statement is used to merge two or more queries directly in the database. Unlike the
previous merge query techniques – illustrated in Listing 8-47 – which take place in Django/Python, UNION
queries are done entirely by the database engine. Django supports the SQL UNION statement through the
union() method, as illustrated in Listing 8-48.

Listing 8-48.  Merge Django queries with union()

from coffeehouse.items.models import Item

menu_breakfast_items = Item.objects.filter(menu__name='Breakfast')
menu_sandwich_items = Item.objects.filter(menu__name='Sandwiches')
menu_salads_items = Item.objects.filter(menu__name='Salads')

All items merged with union()
all_items = menu_breakfast_items.union(menu_sandwich_items,menu_salads_items)
print(all_items.query)
SELECT "items_item"."id", "items_item"."menu_id" ... WHERE "items_menu"."name" = Breakfast UNION
SELECT "items_item"."id", "items_item"."menu_id" ... WHERE "items_menu"."name" =
Sandwiches UNION SELECT "items_item"."id", "items_item"."menu_id"... WHERE
"items_menu"."name" = Salads

Chapter 8 ■ Django Model Queries and Managers

383

Listing 8-48 first declares three standard SQL queries that produce QuerySet data structures. Next,
notice how the union() method is linked to one of the queries and the remaining queries are passed as
arguments. Finally, Listing 8-48 illustrates how the results of the union() method produce a query with
multiple SQL UNION statements that merge the individual queries.

In addition to the union() method accepting different QuerySet instances as arguments, the union()
method also accepts the optional keyword all argument that is set to False. By default, the union() method
ignores duplicate values across QuerySet instances; however, you can set the all argument to True to tell
Django to merge duplicate records (e.g., menu_breakfast_items.union(menu_sandwich_items,menu_
salads_items, all=True)).

INTERSECT queries: intersection()
The SQL INTERSECT statement is used to obtain records that intersect (i.e., are present) across multiple
queries. Django supports the SQL INTERSECT statement through the intersection() method, as illustrated
in Listing 8-49.

Listing 8-49.  Intersect (Common) Django query records with intersection()

from coffeehouse.items.models import Item

all_items = Item.objects.all()
menu_breakfast_items = Item.objects.filter(menu__name='Breakfast')

Intersected (common) records merged with intersect()
intersection_items = all_items.intersection(menu_breakfast_items)
print(intersection_items.query)
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name"... INTERSECT
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name"... WHERE
"items_menu"."name" = Breakfast

Listing 8-49 first declares two standard SQL queries that produce QuerySet data structures. Next, notice
how the intersection() method is linked to one of the queries and the remaining query is passed as an
argument. Finally, Listing 8-49 illustrates how the results of the intersection() method produce a query
with an SQL INTERSECTION statements to produce the common records across queries.

The intersection() method only accept QuerySet instances as arguments. In addition, be careful
when declaring more than two QuerySet instances on an intersection() query, as only records that are
present in all QuerySet instances form part of the final query result.

EXCEPT queries: difference()
The SQL EXCEPT statement is used to obtain records that are present in a query, but missing in other
queries. Django supports the SQL EXCEPT statement through the difference() method, as illustrated in
Listing 8-50.

Listing 8-50.  Except Django query records with difference()

from coffeehouse.items.models import Item

all_items = Item.objects.all()
menu_breakfast_items = Item.objects.filter(menu__name='Breakfast')
menu_sandwich_items = Item.objects.filter(menu__name='Sandwiches')
menu_salads_items = Item.objects.filter(menu__name='Salads')

Chapter 8 ■ Django Model Queries and Managers

384

Extract records in all_items, except those in:
menu_breakfast_items, menu_sandwich_items & menu_salads_items
ex_items = all_items.difference(menu_breakfast_items, menu_sandwich_items, menu_salads_
items)
print(ex_items.query)
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name"...EXCEPT
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name"... EXCEPT
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name", ... EXCEPT
SELECT "items_item"."id", "items_item"."menu_id", "items_item"."name" ... WHERE
"items_menu"."name" = Salads

Listing 8-50 first declares four standard SQL queries that produce QuerySet data structures. Next, notice
how the difference() method is called on the all_items query and the remaining queries are passed as
arguments to be excluded from the all_items query. Finally, Listing 8-50 illustrates how the results of the
difference() method produce a query with multiple SQL EXCEPT statements that exclude query records
from the parent query.

Aggregation Queries
SQL queries sometimes need to produce values derived from the core fields contained in Django models
(e.g., mathematical calculations such as counts, averages, maximum or minimum values from sets of
records). Storing this type of aggregate information as individual Django model fields is redundant – since
it can be derived from core data – and calculating this data outside the context of a database is also wasteful
(e.g., reading all records and producing the aggregate results in Python).

SQL offers the necessary statements for a database to solve this problem, through aggregation functions.
An aggregation function forms part of an SQL query, which is executed by the database engine and returned
as a stand-alone result – when used in conjunction with the aggregate() method – or as an additional
field along with the resulting SQL response – when used in conjunction with the annotate() method.
Django supports aggregation queries through a series of methods that include count(), aggregate(), and
annotate(), as well as aggregation classes.

COUNT queries: count() method and Count() class
The SQL COUNT aggregation function is used in cases where you only need to get the number of records
that match a certain criteria, rather than reading all records that make up a query. Queries that use SQL
COUNT are also more efficient because it’s the database engine that makes the calculation, instead of getting
all the data and making the calculation in Python.

Django models supports the SQL COUNT aggregation function through the count() method and the
aggregate Count class. Both variations are illustrated in Listing 8-51.

Listing 8-51.  Django COUNT queries with aggregate(), annotate(), and Count()

from coffeehouse.stores.models import Store

from django.db.models import Count

Get the number of stores (COUNT(*))
stores_count = Store.objects.all().count()
print(stores_count)
4

Chapter 8 ■ Django Model Queries and Managers

385

Get the number of stores that have city 'San Diego' (COUNT(*))
stores_san_diego_count = Store.objects.filter(city='San Diego').count()

Get the number of emails, NULL values are not counted (COUNT(email))
emails_count = Store.objects.aggregate(Count('email'))
print(emails_count)
{'email__count': 4}

Get the number of emails, NULL values are not counted (COUNT(email)
AS "coffeehouse_store_emails_count")
emails_count_custom = Store.objects.aggregate(coffeehouse_store_emails_count=Count('email'))
print(emails_count_custom)
{'coffeehouse_store_emails_count': 4}

Get number of distinct Amenities in all Stores, NULL values not counted (COUNT(DISTINCT name))
different_amenities_count = Store.objects.aggregate(Count('amenities',distinct=True))
print(different_amenities_count)
{'amenities__count': 5}

Get number of Amenities per Store with annotate
stores_with_amenities_count = Store.objects.annotate(Count('amenities'))
Get amenities count in individual Store
stores_With_amenities_count[0].amenities__count

Get number of Amenities per Store with annotate and custom name
stores_amenities_count_custom = Store.objects.annotate(amenities_per_store=Count('amenities'))
stores_amenities_count_custom[0].amenities_per_store

The first two examples in Listing 8-51 append the count() method as the last part of a Django query to
get a total count.

The third example in Listing 8-51 uses the aggregate() function and the aggregate Count class to get
the total count of emails in Store records. Notice how a query with the aggregate() method produces a
dictionary, where the key is the counted field – in this case email – suffixed with the __count to indicate
aggregate class, and the dictionary value is the resulting count. The fourth example in Listing 8-51 is very
similar to the third one, except it prefixes the aggregate Count class with a custom string to simulate the SQL
AS keyword, so the resulting dictionary value uses the custom string coffeehouse_store_emails_count as
the key result.

■■ Note I f no string is assigned to an aggregate class (e.g., Count) in a query, the resulting query output
defaults to: <field>__<aggregate_class>.

The fifth example in Listing 8-51 illustrates how the aggregate Count class can accept the optional
distinct=True argument to omit duplicate values in the count. In this case, a count is made for all
amenities associated with Store records, but the count only reflects distinct amenities values.

Although the aggregate() method produces aggregation results, it’s limited to only producing
the aggregation result by itself, that is, it requires additional queries to get the core data from where the
aggregation result was calculated. The annotate() method solves this problem, as shown in Listing 8-51.

Chapter 8 ■ Django Model Queries and Managers

386

The last two examples in Listing 8-51 use the annotate() method to add an additional field to a query’s
records to hold an aggregate result. The second to last example in Listing 8-51 adds the amenities__count
field via the aggregate Count() class to all Store records. And the last example in Listing 8-51 assigns a
custom string to the aggregate Count() class to create the custom amenities_per_store field to hold the
amenities count for all Store records.

MAX, MIN, SUM, AVG, VARIANCE and STDDEV queries: Max(), Min(), Sum(),
Avg(), Variance(), and StdDev() classes
In addition to the SQL COUNT aggregation function, SQL queries also support other aggregation functions
for mathematical operations that are best done in the database. These SQL aggregation functions include
MAX to get a maximum value from a set of records, MIN to get a minimum value from a set of records, SUM
to a sum of values from a set of records, AVG to get the average from a set of records, VARIANCE to get the
statistical variance of values from a set of records, and STDDEV to get the statistical deviation from a set of
records.

Django models support all the previous SQL aggregation functions through the use of aggregation
classes – just like Count() aggregation described in Listing 8-51. Therefore to make use of these additional
SQL aggregation functions, you use a Django model’s aggregate() or annotate() methods in conjunction
with the relevant aggregation class, a processed that’s illustrated in Listing 8-52.

Listing 8-52.  Django MAX, MIN,SUM, AVG, VARIANCE and STDDEV queries with Max(), Min(), Sum(),
Avg(), Variance() and StdDev() classes

from coffeehouse.items.models import Item
from django.db.models import Avg, Max, Min
from django.db.models import Sum
from django.db.models import Variance, StdDev

Get the average, maximum and minimum number of stock for all Item records
avg_max_min_stock = Item.objects.aggregate(Avg('stock'), Max('stock'), Min('stock'))

print(avg_max_min_stock)
{'stock__avg': 29.0, 'stock__max': 36, 'stock__min': 27}

Get the total stock for all Items
item_all_stock = Item.objects.aggregate(all_stock=Sum('stock'))
print(item_all_stock)
{'all_stock': 261}

Get the variance and standard deviation for all Item records
NOTE: Variance & StdDev return the population variance & standard deviation, respectively.
But it's also possible to return sample variance & standard deviation,
using the sample=True argument
item_statistics = Item.objects.aggregate(Variance('stock'), std_dev_stock= StdDev('stock'))
{'std_dev_stock': 5.3748, 'stock__variance': 28.8888}

As you can see in the first example in Listing 8-52, it’s possible to define multiple aggregate classes to
a single query as part of the aggregate() method, in this case the query gets the average, minimum, and
maximum stock values across all Item records.

Chapter 8 ■ Django Model Queries and Managers

387

The second example in Listing 8-52 gets the sum of all stock values across all Item records by using
the aggregate Sum class. Notice how it’s possible in this second example to prefix the aggregate class with a
custom string to act as an SQL AS keyword, in order for the query to output the results with a different value
than the aggregate class name. Finally, the last example in Listing 8-52 calculates the variance and standard
deviation for all stock values across all Item records.

■■ Tip  If you want to perform more complex aggregation queries, such as multi-field math operations
(e.g., multiplication), see the F expressions subsection.

If want to perform more complex aggregation queries, see the section on Model queries with raw
(open-ended) SQL.

Expression and Function Queries
SQL queries irrespective of their many statements generally reference values provided by the calling
environment. For example, when you create a query to get all Store records that have certain state values,
Django/Python provides a value reference for the state, similarly, if you create a query to get all Item
records that belong to a certain Menu model, Django/Python provides a value reference for the Store.

For certain SQL queries, though, it’s necessary to use references that point toward data in the actual
database. This is necessary because the results for certain SQL queries depend on the data present in the
database, or because, manipulating the data outside the context of a database (i.e., Python) represents an
additional effort that can easily be solved in SQL.

You already learned about this technique in the past section on Aggregation queries, where an SQL
query can tell a database engine to calculate things like counts and averages, without the need to pull the
data and do the operations outside the database (i.e., in Python). Aggregation queries rely on a special
subset of expressions properly called aggregation expressions, but in this upcoming sections you’ll learn how
Django supports many other types of SQL expressions.

Another SQL technique designed in the same spirit of SQL expressions to favor the delegation of work
to the database engine are SQL functions. SQL functions are intended to allow a database to alter the results
of query (e.g., concatenate two fields or transform a field to upper/lowercase) and alleviate the need to such
tasks in the calling party environment (i.e., Django/Python). In the upcoming section you’ll also learn about
different SQL functions supported by Django models.

SQL expression queries: F expressions
Django F expressions are among the most common type of SQL expressions you’ll use in Django models.
At the start of this chapter you were exposed to the utility of F expressions when you learned how it’s possible
to update a record in a single step, and let the database engine perform the logic without the need pull the
record out of the database.

Through an F expression, it’s possible to reference a model field in a query and let the database perform
an operation on the model field value without the need to pull the data from the database. In turn, this
not only provides a more succinct query syntax – a single update query, instead of two (one to read, one to
update) – it also avoids ‘race conditions’.4

4https://en.wikipedia.org/wiki/Race_condition

https://en.wikipedia.org/wiki/Race_condition

Chapter 8 ■ Django Model Queries and Managers

388

Listing 8-53 illustrates various ways that F expressions can be used on update queries.

Listing 8-53.  Django F() expression update queries

from coffeehouse.items.models import Item
from django.db.models import F

Get single item
egg_biscuit = Item.objects.get(id=2)
Check stock
egg_biscuit.stock
2
Add 10 to stock value with F() expression
egg_biscuit.stock = F('stock') + 10
Trigger save() to apply F() expression
egg_biscuit.save()
Check stock again
egg_biscuit.stock
<CombinedExpression: F(stock) + Value(10)>
Ups, need to re-read/refresh from DB
egg_biscuit.refresh_from_db()
Check stock again
egg_biscuit.stock
12

Decrease stock value by 1 for Item records on the Breakfast menu
breakfast_items = Item.objects.filter(menu__name='Breakfast')
breakfast_items.update(stock=F('stock') – 1)

Increase all Item records stock by 20
Item.objects.all().update(stock=F('stock') + 20)

The first example in Listing 8-53 reads a single model record and applies an F() expression to the stock
field. Once the F() expression is applied, it’s necessary to call the save() method on the record for the
database to trigger the update. Next, notice that in order for the model record reference to reflect the results
of the F() expression, you must reread the record from the database – in this case with the refresh_from_
db() method – given the database is the only party aware of the result of the update operation.

Next in Listing 8-53, you can see how it’s also possible to perform a subtraction operation on an F()
expression, as well as apply an F() expression to all the records in a QuerySet through the update() method.

In addition to updating records without the need to extract data from the database, F() expressions
can also be used in database read operations. F() expressions are helpful for read queries and aggregation
queries where the results are best determined by the database engine, as shown in Listing 8-54.

Listing 8-54.  Django F() expressions in read queries and aggregate queries

from django.db.models import F, ExpressionWrapper, FloatField
from coffeehouse.items.models import Drink, Item

calories_dbl_caffeine_drinks = Drink.objects.filter(item__calories__gt=F('caffeine')*2)

items_with_assets = Item.objects.annotate(
 assets=ExpressionWrapper(F('stock')*F('price'),
 output_field=FloatField()))

Chapter 8 ■ Django Model Queries and Managers

389

Notice how the first query example in Listing 8-54 lacks any fixed values and is instead composed of
references that are checked by the database engine to return records that match the condition. In this case,
the query obtains all Drink records that have calories greater than two times their caffeine content, where
its database engine – via the F() expression – is tasked with determining which Drink records comply with
this rule.

The second example in Listing 8-54 creates an aggregate query from two F() expressions. In this case,
a new field called assets is calculated with the annotate() method, by multiplying the value of a record’s
stock and price fields via F() expressions. Unlike the aggregation queries examples in the previous section,
this aggregation has two important differences and arguments:

•	 ExpressionWrapper.- Because the aggregate query in Listing 8-54 is composed of
multiple model fields, it’s necessary to delimit its scope by wrapping the aggregate
query in the ExpressionWrapper statement.

•	 output_field.- When an aggregate query is composed of multiple model fields
and the data types differ, it’s necessary to specify output_field with a model data
type. In Listing 8-54, because stock is an IntegerField model field and price is a
FloatField model field, the output_field tells Django to generate the aggregated
assets field as a FloatField, thus avoiding data type ambiguity.

SQL function queries: Func expressions and Django database functions
Func expressions are another expression subset supported by Django models, which have the same purpose
as other SQL expressions: to use the database to execute operations, instead of fetching data and later
performing the operation outside the database (i.e., in Python).

Func expressions are used in Django to trigger the execution of database functions. Unlike F
expressions that are used to perform basic operations against model fields, Func expressions are used to
execute more sophisticated functions supported by databases and run them against models fields.

Listing 8-55 illustrates an example of a Func expression that calls an SQL function, as well as a couple of
Django database functions that simulate SQL functions.

Listing 8-55.  Django Func() expressions for SQL functions and Django SQL functions

from django.db.models import F, Func, Value
from django.db.models.functions import Upper, Concat
from coffeehouse.stores.models import Store

SQL Upper function call via Func expression and F expression
stores_w_upper_names = Store.objects.annotate(name_upper=Func(F('name'), function='Upper'))
stores_w_upper_names[0].name_upper
'CORPORATE'
stores_w_upper_names[0].name
'Corporate'

Equivalent SQL Upper function call directly with Django SQL Upper function
stores_w_upper_names_function = Store.objects.annotate(name_upper=Upper('name'))
stores_w_upper_names_function[0].name_upper
'CORPORATE'

SQL Concat function called directly with Django SQL Concat function
stores_w_full_address = Store.objects.annotate(full_address=
 Concat('address',Value(' - '),'city',Value(' , '),'state'))

Chapter 8 ■ Django Model Queries and Managers

390

stores_w_full_address[0].full_address
'624 Broadway - San Diego, CA'
stores_w_full_address[0].city
'San Diego'

The first example in Listing 8-55 makes use of the Func() expression to generate the additional name_
upper field via annotate(). The purpose of the additional name_upper field is to get the name of all Store
records in an uppercase format, a process that fits perfectly with the SQL UPPER function. In the case of
Listing 8-55, the Func() expression declares two arguments: an F expression to specify the model field on
which to apply the function and the function argument to specify the SQL function to use. Once the query
is created, you can see in Listing 8-55, each record has access to the additional name_upper field with an
uppercase version of the name field, as well as access to the other model fields.

Although Func() expressions are the most flexible option to generate Django model queries with SQL
expressions, Func() expressions can be verbose for default scenarios. Django offers a quicker alternative to
generate SQL expressions via SQL functions that are of the django.db.models.functions package.

The second query in Listing 8-55 is equivalent to the first query, but notice this variation uses the
Django database Upper() function as an argument of the annotate() method, similar to how Django
aggregate classes are declared in annotate() statements.

The third example in Listing 8-55 generates the additional full_address field via annotate()
and makes use of the Django database Concat() function. The purpose of the Concat() function is
to concatenate the values of multiple model fields. In the case of Listing 8-55, the Concat() function
concatenates the values of the Store model’s address, city, and state. In order to leave spaces between the
concatenated field values, the Concat() function uses the Django Value() expression to output verbatim
separators and spaces. Once the query is created, you can see in Listing 8-55 that each record has access to
the additional full_address field with a concatenated value of the address, city, and state fields, as well
as access to the other model fields.

Django includes over a dozen database functions in the django.db.models.functions package5 for
strings, dates, and other data types you can leverage as SQL functions in queries.

SQL subqueries: Subquery expressions
SQL subqueries are queries that are nested inside other standard CRUD queries or inclusively other
subqueries. Most SQL subqueries are used under two scenarios. The first scenario occurs when you need
to create SQL queries with related fields that span multiple tables, yet the underlying tables don’t have an
explicit relationship between one another.

This first SQL subquery scenario is common for queries involving multiple Django models with missing
relationship data types (i.e., OneToOneField, ForeignKey, and ManyToManyField). Listing 8-56 illustrates this
SQL subquery scenario solved through the use of Subquery expressions.

Listing 8-56.  Django Subquery expression with SQL subquery to get related model data

from django.db.models import OuterRef, Subquery

class Order(models.Model):
 created = models.DateTimeField(auto_now_add=True)

5https://docs.djangoproject.com/en/1.11/ref/models/database-functions/

https://docs.djangoproject.com/en/1.11/ref/models/database-functions/

Chapter 8 ■ Django Model Queries and Managers

391

class OrderItem(models.Model):
 item = models.IntegerField()
 amount = models.IntegerField()
 order = models.ForeignKey(Order)

Get Items in order number 1
order_items = OrderItem.objects.filter(order__id=1)
Get item
order_items[0].item
1
Get item name ?

OrderItem item field is IntegerField, lacks Item relationship
Create sub-query to get Item records with id
item_subquery = Item.objects.filter(id=(OuterRef('id')))

Annotate previous query with sub-query
order_items_w_name = order_items.annotate(item_name=Subquery(item_subquery.values('name')
[:1]))
Output SQL to verify
print(order_items_w_name.query)
SELECT `online_orderitem`.`id`, `online_orderitem`.`item`,
 `online_orderitem`.`amount`, `online_orderitem`.`order_id`,
 (SELECT U0.`name` FROM `items_item` U0 WHERE U0.`id` = (online_orderitem.`id`) LIMIT 1)
 AS `item_name` FROM `online_orderitem` WHERE `online_orderitem`.`order_id` = 1
Access item and item_name
order_items_w_name[0].item
1
order_items_w_name[0].item_name
'Whole-Grain Oatmeal'

The first lines in Listing 8-56 show the Order and OrderItem models, including a query that gets all the
OrderItem records that belong to Order number 1. Next, you can see that although the OrderItem model has
an item field, its value is an integer. This presents a problem because it isn’t possible to obtain the name and
other properties associated with an item field integer value, or in other words, the OrderItem records are
missing a relationship to the Item model. This problem can be solved with a subquery.

Next in Listing 8-56, the Item.objects.filter(id=(OuterRef('id'))) subquery is declared to get all
the Item records by id, which is the value the main OrderItem expects to map to item values. The special
OuterRef syntax work like an F expression to be evaluated until the parent query is resolved; after all, the
Item records to get by id are dependent on the parent query (e.g., The subquery should only Item records by
id for only those items in an OrderItem record).

Once the subquery is defined in Listing 8-56, it’s linked via the annotate() method and the Subquery()
expression to the initial OrderItem query. Next, you can see the SQL generated by the query contains a
subquery referencing the Item model. Finally, Listing 8-56 illustrates the output of the additional item_name
field on the OrderItem query that’s generated via a subquery.

The second scenario involving subqueries is when an SQL query must generate a WHERE statement with
values that are dependent on the results of another SQL query. This scenario is illustrated in Listing 8-57.

Chapter 8 ■ Django Model Queries and Managers

392

Listing 8-57.  Django Subquery expression with SQL subquery in WHERE statement

See Listing 8-56 for referenced model definitions
from coffeehouse.online.models import Order
from coffeehouse.items.models import Item
from django.db.models import OuterRef, Subquery

Get Item records in lastest Order to replenish stock
most_recent_items_on_order = Order.objects.latest('created').orderitem_set.all()

Get a list of Item records based on recent order using a sub-query
items_to_replenish = Item.objects.filter(id__in=Subquery(
 most_recent_items_on_order.values('item')))

print(items_to_replenish.query)
SELECT `items_item`.`id`, `items_item`.`menu_id`, `items_item`.`name`, `items_
item`.`description`, `items_item`.`size`, `items_item`.`calories`,
 `items_item`.`price`, `items_item`.`stock` FROM `items_item` WHERE `items_item`.`id`
 IN (SELECT U0.`item` FROM `online_orderitem` U0 WHERE U0.`order_id` = 1)

The first step in Listing 8-57 gets all OrderItem records from the latest Order record, with the purpose to
detect which Item stock to replenish. However, because OrderItem records use a plain integer id to reference
Item records, it’s necessary to create a subquery that gets all Item records based on the OrderItem integer
reference.

Next in Listing 8-57, a query is made for Item records whose id is contained in a subquery. In this case, a
Subquery expression is used to point toward the most_recent_items_on_order query that only gets the item
values (i.e., integer values) from the most recent Order record.

Finally, Listing 8-57 illustrates how the generated query uses a WHERE statement that makes use of a
subquery.

JOIN QUERIES

The SQL JOIN keyword is used to produce queries from multiple database tables. Django supports
JOIN queries for related models through the select_related() method, described earlier in the CRUD
relationship records across Django models.

If you want to create a JOIN query between tables that don’t have a Django model relationship, you can
use a raw SQL query, described in the next section.

Model Queries with Raw (Open-Ended) SQL
As extensive as Django model queries are, there can be circumstances when neither of the options presented
in previous sections is sufficient to execute certain CRUD operations. Under these circumstances, you must
rely on raw (open-ended) SQL queries, which represent the most flexible approach to execute operations
against databases connected to Django projects.

Chapter 8 ■ Django Model Queries and Managers

393

Django offers two ways to execute raw SQL queries. The first consists of using a model manager’s raw()
method that fits the resulting SQL query data into a Django model, which has the added advantage of raw
SQL queries behaving as close as possible to native Django model queries. And a second approach consists
of using a Python database connection – managed by Django – to fetch the SQL query data and process it
with lower-level Python DB API functions (e.g., cursor).6

SQL Queries with a Model Manager’s raw() Method
A model manager’s raw() method should be your first option to execute raw SQL queries, since the results
are structured as a RawQuerySet class instance, which is very similar to the QuerySet class instances
produced by Django model queries you’ve used up to this point.

Thus a RawQuerySet class instance – just like a QuerySet class instance – offers an easy way to access
records using a Django model’s fields, the ability to defer the loading of model fields, as well as indexing and
slicing. Listing 8-58 illustrates a series a raw SQL query performed with a model manager’s raw() method.

Listing 8-58.  Django model manager raw() method

from coffeehouse.items.models import Drink, Item

Get all drink
all_drinks = Drink.objects.raw("SELECT * FROM items_drink")

Confirm type
type(all_drinks)
Outputs: <class 'django.db.models.query.RawQuerySet'>

Get first drink with index 0
first_drink = all_drinks[0]

Get Drink name (via item OneToOne relationship)
first_drink.item.name

Use parameters to limit a raw SQL query
caffeine_limit = 100

Create raw() query with params argument to pass dynamic arguments
drinks_low_caffeine = Drink.objects.raw("SELECT * FROM items_drink where caffeine <
%s",params=[caffeine_limit]);

The first snippet in Listing 8-58 uses the Drink model manager’s raw() method to issue the SELECT
* FROM items_drink query. It’s worth mentioning this raw query produces the same results as the native
Django query Drink.objects.all(), but unlike native queries that produce QuerySet data structures, notice
how raw() method queries produce RawQuerySet data structure.

Because a RawQuerySet data structure is a subclass of QuerySet, Listing 8-58 shows how it’s
possible to use many of the same mechanisms as QuerySet data structures. For example, access to
records is also done by index (e.g., [0] to get the first elements) and it’s also possible to access related
models using dot notation.

6https://www.python.org/dev/peps/pep-0249/

https://www.python.org/dev/peps/pep-0249/

Chapter 8 ■ Django Model Queries and Managers

394

Finally, the last example in Listing 8-58 illustrates how to create raw SQL queries with dynamic
arguments using the params argument. In all cases where you need to create raw() SQL queries that depend
on dynamic values (e.g., provided by a user or another subroutine) you should always create the backing
raw SQL query string with placeholders – %s – which then get substituted through the params argument. In
the case of Listing 8-58, notice how the caffeine_limit variable is declared in params to later be substituted
into the raw SQL query. The params argument ensures dynamic values are escaped from queries before
being applied to the database, avoiding a potential SQL injection security attack.7

The raw() SQL example in Listing 8-58 is straightforward because the results of the query map directly
to the intended model. In other words, the SELECT * FROM items_drink query produces the necessary
results for Django to create Item records without additional help. Sometimes though, raw() SQL queries
require additional configuration to be able to create the underlying model records.

For example, if you perform a raw SQL query on a legacy table or multiple tables, with the intention to
use the raw() method of a certain model, you must ensure Django is able to interpret the results of raw SQL
query to the model, by either using SQL AS statements in the raw SQL or relying on the raw() translations
parameter. Listing 8-59 illustrates both techniques.

Listing 8-59.  Django model manager raw() method with mapping, deferred fields, and aggregate queries

Map results from legacy table into Item model
all_legacy_items = Item.objects.raw("SELECT product_name AS name, product_description AS
description from coffeehouse_products")

Access legacy results as if they are standard Item model records
all_legacy_items[0].name

Use explicit mapping argument instead of 'as' statements in SQL query
legacy_mapping = {'product_name':'name','product_description':'description'}

Create raw() query with translations argument to map table results
all_legacy_items_with_mapping = Item.objects.raw("SELECT * from coffeehouse_products",
translations=legacy_mapping)

Deferred model field loading, get item one with limited fields
item_one = Item.objects.raw("SELECT id,name from items_item where id=1")
Acess model fields not referenced in the raw query, just like QuerySet defer()
item_one[0].calories
item_one[0].price

Raw SQL query with aggregate function added as extra model field
items_with_inventory = Item.objects.raw("SELECT *, sum(price*stock) as assets from items_
item");
Access extra field directly as part of the model
items_with_inventory[0].assets

The first example in Listing 8-59 declares a raw() method with multiple SQL AS statements, in this case,
each of the AS clauses corresponds to an Item model field. In this manner, when Django inspects the results
of the raw query, it knows how to map the results to Item instances, irrespective of the underlying database
table column names.

7https://en.wikipedia.org/wiki/SQL_injection

https://en.wikipedia.org/wiki/SQL_injection

Chapter 8 ■ Django Model Queries and Managers

395

The second example in Listing 8-59 declares a raw() method with the translations argument whose
value is a Python dictionary that maps database table column names to Django model fields. In this case,
when Django encounters an unknown database table column name in the raw query results, it uses the
translations dictionary to determine how to map the results to Item instances.

The third example in Listing 8-59 illustrates how even when issuing a partial raw SQL query with the
raw() method, Django is capable of fetching missing fields as if it were a native QuerySet data structure.
Finally, the fourth example in Listing 8-59 illustrates how the raw() method is capable of handling extra
fields declared as aggregation queries and how they become accessible as if they were added with the native
model aggregate() method.

SQL Queries with Python’s DB API
Although the Django model raw() method offers a great alternative to create raw SQL queries and have
the ability to leverage native Django model features, there are circumstances where raw SQL queries with
a model’s raw() method won’t work. Either because the results of a raw SQL query can’t be mapped to a
Django model, or because, you simply want access to the raw data without any Django model influence.

Under such circumstances, you’ll need to use the second Django alternative to perform raw SQL
queries, which consists of directly connecting to a database and explicitly extracting the results of a query.
Although this second Django alternative is technically the most flexible to interact with a database, it also
requires using lower-level calls from Python’s DB API.

The only thing you can leverage from Django when performing raw SQL queries using this technique
is the database connection defined in a Django project (i.e., the DATABASES variable in settings.py).
Once a database connection is established, you’ll need to rely on Python DB API methods like cursor(),
fetchone() and fetchall() – as well as perform manual extraction of the results – to be able to successfully
run raw SQL queries.

Listing 8-60 illustrates SQL queries using the Python DB API in the context of Django.

Listing 8-60.  Django raw SQL queries with connection() and low-level DB API methods

from django.db import connection

Delete record
target_id = 1
with connection.cursor() as cursor:
 cursor.execute("DELETE from items_item where id = %s", [target_id])

Select one record
salad_item = None
with connection.cursor() as cursor:
 cursor.execute("SELECT * from items_item where name='Red Fruit Salad'")
 salad_item = cursor.fetchone()

DB API fetchone produces a tuple, where elements are accessible by index
salad_item[0] # id
salad_item[1] # name
salad_item[2] # description

Select multiple records
all_drinks = None
with connection.cursor() as cursor:

Chapter 8 ■ Django Model Queries and Managers

396

 cursor.execute("SELECT * from items_drink")
 all_drinks = cursor.fetchall()

DB API fetchall produces a list of tuples
all_drinks[0][0] # first drink id

The first statement in Listing 8-60 imports django.db.connection, which represents the default
database connection defined in the DATABASES variable in settings.py. Once you have a connection
reference to the Django database, you can start to make use of the Python DB API, which generally starts
with the use of the cursor() method.8

The first raw SQL query in Listing 8-60 opens a cursor on the connection and executes the cursor.
execute() method to perform a delete operation. Because delete queries don’t return results, the operation
is considered concluded after the calling the cursor.execute() method

■■ Tip  If you declare multiple database reference in DATABASES, you can cause the django.db.connections
reference to create a cursor on a specific database, instead of the default:

from django.db import connections

cursor = connections['analytics'].cursor() # Cursor connects to 'analytics' DB

The second raw SQL query in Listing 8-60 first declares the salad_item placeholder variable to store
the results of the raw SQL query. Once this is done, another cursor is opened on the connection to execute
a select operation using the same cursor.execute() method. Because select queries return a result, an
additional call is made on the cursor.fetchone() method to extract the results of the query and assign
them to the placeholder variable. Note the fetchone() method is used because it’s expected the raw SQL
query will return a single record result.

Next, observe how the results of raw SQL query in salad_item are accessed by an index. Since the
Python DB API cursor.fetchone() method makes no use of field names or other references, you have to
know the order in which record fields are returned, a process that can be particularly cumbersome for raw
SQL with many fields.

The third raw SQL query in Listing 8-60 first declares the all_drinks placeholder variable to store the
results of the raw SQL query. Once this is done, another cursor is opened on the connection to execute
anther select operation using the same cursor.execute() method. Because select queries return a result,
an additional call is made on the cursor.fetchall() method to extract the results of the query and assign
them to the placeholder variable. Note the fetchall() method is used because it’s expected the raw SQL
query will return multiple record results.

Next, observe how the results of raw SQL query in all_drinks are accessed by multiple indexes. Since
the Python DB API cursor.fetchall() method makes no use of field names or other references, the first
index represents a record in the result and the second index represents a field value from a given record.

Model Managers
As you’ve learned throughout the examples presented in this and the previous chapter, a Django model’s
objects reference or default model manager offers an extensive array of functionalities to execute database
operations.

8https://en.wikipedia.org/wiki/Cursor_(databases)

https://en.wikipedia.org/wiki/Cursor_(databases

Chapter 8 ■ Django Model Queries and Managers

397

Under most circumstances, Django models don’t require any modifications to their default model
manager or objects reference. However, there can be circumstances where the need arises to customize a
Django model’s default model manager or inclusively create multiple model managers.

Custom and Multiple Model Managers
One of the main reasons to create custom Django model managers is to add custom manager methods, to
make the execution of recurring queries on a model easier.

For example, running queries such as Item.objects.filter(menu__name='Sandwiches') or Item.
objects.filter(menu__name='Salads') is simple, but if you start writing these same queries over and over,
the process can become tiresome and error prone. This is particularly true for raw SQL queries, which take
more time to write and have a higher degree of complexity.

A custom manager method allows you to write a query once as part of a model, and later invoke the
custom manager method – just like other model manager methods (e.g., all(), filter(), exclude()) – to
trigger the query. Listing 8-61 illustrates a custom model manager class with a custom method, including a
model that uses it, in addition to various model manager calls.

Listing 8-61.  Django custom model manager with custom manager methods

from django.db import models

Create custom model manager
class ItemMenuManager(models.Manager):
 def salad_items(self):
 return self.filter(menu__name='Salads')

 def sandwich_items(self):
 return self.filter(menu__name='Sandwiches')

Option 1) Override default model manager
class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 ...
 objects = ItemMenuManager()

Queries on default custom model manager
Item.objects.all()
Item.objects.salad_items()
Item.objects.sandwich_items()

Option 2) Create new model manager field and leave default model manager as is
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 ...
 objects = models.Manager()
 menumgr = ItemMenuManager()

Chapter 8 ■ Django Model Queries and Managers

398

Queries on default and custom model managers
Item.objects.all()
Item.menumgr.salad_items()
Item.menumgr.sandwich_items()
ERROR Item.objects.salad_items() # 'Manager' object has no attribute 'salad_items'
ERROR Item.objects.sandwich_items() # 'Manager' object has no attribute 'sandwich_items'
Item.menumgr.all()

The first class in Listing 8-61 is the ItemMenuManager that functions as a custom model manager. Notice
how this class inherits its behavior from the models.Manager class, which is what gives it model manager
behavior. Next, the ItemMenuManager class declares two methods that return QuerySet results. Notice
how the class methods reference self – representing the model class instance – and call standard model
methods to trigger database queries.

It’s worth mentioning custom model managers don’t necessarily need to use native model queries or
return QuerySet data structures, and custom model managers can equally contain any logic (e.g., Python DB
API calls) or return any data structure (e.g., Python tuples).

Once you have a custom model manager there are two options to assign it to a model class. The first
option, illustrated in Listing 8-61, consists of overriding a model’s default model manager objects and
explicitly assigning it a custom model manager. Once this is done, you can use the same objects reference
to call the custom model manager methods. In addition, notice in Listing 8-61 that even when overriding the
default model manager objects, a model continues to have access to the built-in model manager methods
(e.g., all()) because the custom model inherits its behavior from the parent models.Manager class.

Next, Listing 8-61 illustrates the second option to integrate a custom model manager. This option
consists of adding a new model field to reference a custom manager and leave the default manager objects
as is. In this case, the custom model manager methods become accessible through the new field reference
(e.g., Item.menumgr.salad_items()) and the objects reference continues to work with its default behavior.

■■ Tip  When you declare multiple model managers in a model, you can set the default model manager using
the default_manager_name meta option. See the previous chapter for additional details on model meta options.

■■ Warning I f you don’t define a default model manager in a multi-manager model, Django choose the first
manager declared in the model. This can have unexpected behaviors in model operations that can’t explicitly
choose model managers (e.g., dumpdata) unlike queries that can use dot notation to choose a model manager.

Custom Model Managers and QuerySet Classes with Methods
Model managers are closely tied to methods that return QuerySet data structures. As you’ve seen, nearly
all methods chained to the default model manager objects (e.g., all(), filter()) generate QuerySet data
structures. When you create custom model managers, it’s possible to override the default behavior for these
QuerySet methods, as well as create your own custom QuerySet classes and methods.

One of the most important QuerySet methods in model managers is the get_queryset() method,
used to define a model’s initial QuerySet or what’s returned by a model manager’s all() method. In custom
model managers, the get_queryset() method is particularly important because it lets you filter the initial
QuerySet depending on the purpose of a model manager.

Chapter 8 ■ Django Model Queries and Managers

399

Listing 8-62 illustrates multiple custom model managers that define custom logic for the get_
queryset() method.

Listing 8-62.  Django custom model managers with custom get_queryset() method

class SanDiegoStoreManager(models.Manager):
 def get_queryset(self):
 return super(SanDiegoStoreManager, self).get_queryset().filter(city='San Diego')

class LosAngelesStoreManager(models.Manager):
 def get_queryset(self):
 return super(LosAngelesStoreManager, self).get_queryset().filter(city='Los Angeles')

class Store(models.Model):
 name = models.CharField(max_length=30)
 ...
 objects = models.Manager()
 sandiego = SanDiegoStoreManager()
 losangeles = LosAngelesStoreManager()

Call default manager all() query, backed by get_queryset() method
Store.objects.all()
Call sandiego manager all(), backed by get_queryset() method
Store.sandiego.all()
Call losangeles manager all(), backed by get_queryset() method
Store.losangeles.all()

The first two classes in Listing 8-62 represent custom model managers; however, notice that unlike the
custom model manager in Listing 8-61, both the SanDiegoStoreManager and LosAngelesStoreManager
classes define the get_queryset() method. In both cases, the get_queryset() method returns a QuerySet
generated by calling the parent model manager get_queryset() method (i.e., all()) – via the super()
method – and applying an additional filter() to the parent depending on the purpose of the custom model
manager (e.g., get stores by city).

Once the custom managers are defined, Listing 8-62 declares the custom model managers as separate
fields in the Store model class. Finally, in Listing 8-62 you can see calls made to each of the model managers
using the all() method, which return the appropriate filtered results depending on the logic of the backing
get_queryset() method.

An alternative to multiple custom model managers is to create a single custom manager and rely on
a custom QuerySet class and methods to execute the same logic, a technique that’s illustrated in Listing 8-63.

Listing 8-63.  Django custom model manager with custom QuerySet class and methods

class StoreQuerySet(models.QuerySet):
 def sandiego(self):
 return self.filter(city='San Diego')

 def losangeles(self):
 return self.filter(city='Los Angeles')

class StoreManager(models.Manager):
 def get_queryset(self):
 return StoreQuerySet(self.model, using=self._db)

Chapter 8 ■ Django Model Queries and Managers

400

 def sandiego(self):
 return self.get_queryset().sandiego()

 def losangeles(self):
 return self.get_queryset().losangeles()

class Store(models.Model):
 name = models.CharField(max_length=30)
 ...
 objects = models.Manager()
 shops = StoreManager()

Store.shops.all()
Store.shops.sandiego()
Store.shops.losangeles()

The StoreQuerySet class in Listing 8-63 is a custom QuerySet class that defines the sandiego()
and losangeles() methods, both of which apply additional filters to its base QuerySet. Once you have a
QuerySet class, it’s necessary to associate it with a custom model manager. In Listing 8-63, you can see the
StoreManager class represents a custom model manager, which defines its get_queryset() method to set its
initial data through the custom StoreQuerySet class.

Next, notice how the custom model manager StoreManager class defines the additional sandiego()
and losangeles() methods, which are hooked up to call the methods by the same name in the custom
StoreQuerySet class.

Finally, the custom model manager StoreManager is set up as the shops field in the Store model class,
where you can observe how calls are made via the shops reference to trigger the query methods backed by
the custom StoreQuerySet class.

As helpful as the technique in Listing 8-63 is to cut down on the amount of model managers, if you look
carefully at Listing 8-63, there’s still a fair amount of redundancy declaring similar named methods for both
a custom model manager and a custom QuerySet class.

To cut down on redundant methods when using custom model managers and custom QuerySet classes,
the latter type of class offers the as_manager() method to automatically convert a QuerySet class into a
custom model manager, a technique that’s illustrated in Listing 8-64.

Listing 8-64.  Django custom model manager with custom QuerySet converted to manager

class StoreQuerySet(models.QuerySet):
 def sandiego(self):
 return self.filter(city='San Diego')

 def losangeles(self):
 return self.filter(city='Los Angeles')

class Store(models.Model):
 name = models.CharField(max_length=30)
 ...
 objects = models.Manager()
 shops = StoreQuerySet.as_manager()

Store.shops.all()
Store.shops.sandiego()
Store.shops.losangeles()

Chapter 8 ■ Django Model Queries and Managers

401

The example in Listing 8-64 defines the same custom QuerySet class as the one in Listing 8-63; however,
notice the lack of a custom model manager class. Instead, the Store model definition in Listing 8-64 directly
references the custom StoreQuerySet class and calls the as_manager() on it to convert the QuerySet class
into a model manager. Finally, notice how the calls made via the shops reference are identical to the ones in
Listing 8-63. In this manner, the technique in Listing 8-64 saves you the additional work of creating explicit
custom model managers if you’re using custom QuerySet classes.

Custom Reverse Model Managers for Related Models
Earlier in the CRUD relationship records subsection, you learned how models that have relationships
between one another use reverse queries or _set syntax to execute operations from the model that doesn’t
have the relationship definition.

These reverse operations are executed by a model manager dubbed RelatedManager, which is a
subclass of a model’s default manager. This means all reverse queries or _set syntax calls are based on the
objects model manager reference or whatever default model manager is used by a model.

If you configure a default model manager on a model, then all the reverse operations on a model will
automatically use this same manager. However, it’s possible to define a custom model manager exclusively
for reverse operations, while ignoring the default model manager. This technique consists of explicitly
declaring a model manager as part of the reverse operation, as shown in Listing 8-65.

Listing 8-65.  Django custom model manager for reverse query operations

from django.db import models

class Item(models.Model):
 ...
 objects = models.Manager() # Default manager for direct queries
 reverseitems = CustomReverseManagerForItems() # Custom Manager for reverse queries

Get Menu record named Breakfast
breakfast_menu = Menu.objects.get(name='Breakfast')

Fetch all Item records in the Menu, using Item custom model manager for reverse queries
breakfast_menu.item_set(manager='reverseitems').all()
Call on_sale_items() custom manager method in CustomReverseManagerForItems
breakfast_menu.item_set(manager='reverseitems').on_sale_items()

Listing 8-65 first declares the Item model with its default objects model manager and a custom model
manager assigned to the reverseitems field. Next, a query is made to get a Menu record, followed by various
queries to get the Menu record’s related Item records via the reverse _set syntax.

However, notice how the reverse query operation in Listing 8-65 with _set syntax uses the manager
argument to indicate which model manager to use for reverse operations; in this case, the reverseitems
model manager is used to execute the queries, instead of the default objects model manager.

403© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_9

CHAPTER 9

Django Model Forms and
Class Views

In the previous two chapters you learned how Django models are used to move data between a relational
database and a Django project. Although this is the main purpose of Django models, there’s another
important set of functionalities fulfilled by Django models that isn’t tied directly to a database.

In this chapter you’ll learn how to create Django forms parting from Django models, a process that
further extends Django’s DRY (Don’t Repeat Yourself) principle. You’ll learn how a Django model can
produce a Django form, including its fields, validations, and also save its data to a database, all without
writing many of the form scaffolding logic described in Chapter 6.

Next, you’ll learn about Django class-based views with models. Although you can continue to use the
Django view techniques covered in Chapter 2 – just like the form techniques in Chapter 6 – with a firm
grasp of Django models, you can further apply the Django DRY principle to views. You’ll learn how to create
class-based views to execute model CRUD operations, in turn, reducing the amount of logic required to
incorporate model CRUD operations in views.

Django Model Form Structure and Workflow
Django models represent the standard way to move data into and out of a database. But as you’ve learned
throughout the previous two chapters, the phase of moving data into and out of a database requires you to
programmatically manipulate model records (e.g., inside view methods in views.py files) to execute the
needed CRUD operation on a model.

While this is a perfectly valid workflow for any web framework, you can improve this process of moving
data into and out of a database by linking Django models to a more natural input/output mechanism: forms.

Once you programmatically create enough Django model records in real-life projects, you’ll see a
pattern emerge: the logic behind most Django model operations is dictated by user interactions. Either an
end user creates an Order model record, an end user reads a Store model record, an administrator updates
a Menu model record, or an administrator deletes an Item model record. And what do these end users and
administrators use to communicate these model operations? Exactly, forms in a user interface (UI).

Now let’s take a look at the flip side of linking forms to models. In Chapter 6 you learned about Django
forms, but did you realize what’s the most likely operation you’re going to do with the form data after its
processed? You’re most likely to save it to a database, which involves Django models.

So in the spirit of Django’s DRY principle, model forms offer a way to use a Django model as the
foundation to produce a Django form to execute CRUD operations on a Django model. In other words,
instead of creating a stand-alone Django form and then creating the necessary 'glue' code to create a Django
model instance, or vice versa, creating a stand-alone Django model and then creating the necessary form to
do CRUD operations on a model record, Django model forms allow you to not repeat yourself.

https://doi.org/10.1007/978-1-4842-2787-9_9
http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

404

Create Django Model Forms
Back in Chapter 6 you created a Django form to capture a name, email, and comment. Next, we’ll redesign
this form as a model form to be able to quickly save the data to a database.

The first step to create a model form is to create a model as the foundation for the data. Listing 9-1
illustrates a Django model class and immediately after a Django model form created from the model.

■■ Tip  Consult the book’s accompanying source code to run the exercises, in order to reduce typing and
automatically access test data.

Listing 9-1.  Django model class and model form

from django import forms

class Contact(models.Model):
 name = models.CharField(max_length=50,blank=True)
 email = models.EmailField()
 comment = models.CharField(max_length=1000)

class ContactForm(forms.ModelForm):
 class Meta:
 model = Contact
 fields = '__all__'

The first important aspect of Listing 9-1 is the Django model follows the standard model syntax, with
three fields that use model fields to restrict the type of data stored by the model. The model in Listing 9-1
is kept simple to better illustrate model forms, but it’s possible to add any other model functionality you
learned in the previous two chapters (e.g., validators, clean methods, Meta options).

Next in Listing 9-1 is the ContactForm class that represents the form and which inherits its behavior
from the django.forms.ModelForm class, the last of which is what makes it a model form. Notice the
ContactForm class lacks any form fields like those you learned in Chapter 6 in Table 6-2; instead it declares a
Meta class section like the one used in models.

The Meta class section for the ContactForm specifies two options: model and fields. The model option
indicates which model to use to generate the form, in this case, the Contact model also in Listing 9-1. The
fields option indicates which model fields to use to generate the form, in the case, '__all__' tells Django
to use all the model fields in the model.

The powerful aspect of ContactForm in Listing 9-1 is it uses two statements to create a form that reflects
the same field types as the Contact model. Not only does this avoid repeating yourself (e.g., typing in explicit
form fields), the form fields also inherit the validation behaviors of the model (e.g., models.EmailField()
get translated into forms.EmailField). But I’ll describe more details and options about this model-to-form
inheritance behavior shortly, once I finish describing the basics of model forms.

Once you have a model form class, you might be wondering how does its processing differ from a
standard Django form? Very little actually; the same concepts you learned in Chapter 6 to process, validate,
and lay out forms are just as valid for model forms, as shown in Listing 9-2.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_6Tab#2
http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

405

Listing 9-2.  Django model form processing

views.py method to process model form
def contact(request):
 if request.method == 'POST':
 # POST, generate bound form with data from the request
 form = ContactForm(request.POST)
 # check if it's valid:
 if form.is_valid():
 # Insert into DB
 form.save()
 # redirect to a new URL:
 return HttpResponseRedirect('/about/contact/thankyou')
 else:
 # GET, generate unbound (blank) form
 form = ContactForm()
 return render(request,'about/contact.html',{'form':form})

See chapter 6 for form layout template syntax in about/contact.html

In Listing 9-2 you can see the view method sequence follows the same pattern as a standard Django
form. When a user makes a GET request on the view method, an unbound form instance is created that is
sent to the user and rendered via the about/contact.html template. Next, when a user submits the form via
a POST request, a bound form is created using the request.POST argument, which is then validated using
the is_valid() method. If the form values are invalid, the bound form with errors is returned to the user
so he can correct the mistakes, and if the form values are valid, in the specific case of Listing 9-2, the user is
redirected to the /about/contact/thankyou page.

However, there’s one important processing difference in model forms that’s bolded out in Listing 9-2.
After a form’s values are determined to be valid, a call is made to the save() on the model form instance.
This save() method is tied to a form’s backing model save() method, which means the form data is
structured as a model record and saved to the database.

As you can realize, this process to create and process a model form is a real time saver vs. having to a
create and process a stand-alone form and a stand-alone model.

Django Model Form Options and Field Mapping
Now that you understand the basic operation of model forms, let’s take a look at its various options. Most
model form options are declared in the Meta class statement, as you saw in Listing 9-1. However, it’s also
possible to declare regular form fields, to either override the default model field behavior or include new
form fields altogether.

Model Form Required Options: Model and Fields or Exclude
Model forms inherit their behavior from the forms.ModelForm class – instead of the standard forms.Form
class – therefore Django always expect a model on which to base the form, which is the purpose of the meta
model option. Therefore a model option value is always a requirement of model forms.

Chapter 9 ■ Django Model Forms and Class Views

406

Django doesn’t expect the structure of a model to fit perfectly with a form, to the point Django also
expects you to explicitly tell it which fields of the backing model should or shouldn’t become part of the
model form. This is achieved with either the fields option – to indicate which model fields become part of
the model form – of the exclude option – to indicate which model fields shouldn’t become part of the model
form. The fields or exclude option is always required, even when a model form will contain all fields of the
backing model. Notice how the model form example in Listing 9-1 declares the option fields='__all__' to
create a model form that captures the same set of fields as its backing model.

When you declare a model form with something other than fields='__all__' (e.g., a shortened list
of model fields) or the exclude option (e.g., a list of model fields to omit in the form), be aware that you’re
willfully and potentially breaking a model’s rules. For example, by default all model fields are required, so
if you create a model form that omits certain fields – either with fields or exclude – the form itself can
appear normal, but the model form will never successfully finish its standard workflow, unless you manually
add the omitted fields. Under such circumstances, end users will see an ‘invalid form error’ because the
model part of the form is broken due to a required model field value. The upcoming section on model form
validation and initialization describes how to manually add omitted field values to model forms.

As you can see, you can create a model form with more or less fields than its backing model. In addition,
it’s also possible to add new fields to a model form – which aren’t part of a backing model – as well as
customize the default form field produced by a model field.

In order to describe a solution to these last two scenarios, the next section describes the different form
fields produced by each model field – so you can determine if you need to customize the default behavior -
and the subsequent section describes how to customize and add new fields to a model form.

Model Form Default Field Mapping
Models forms follow certain rules to transform model field data types – described in Table 7-1 – into form
field data types – described in Table 6-2. In most cases, model field data types get transformed into mirror-
like equivalent form field data types. For example, if a model field uses the models.CharField data type, a
model form converts this field to a forms.CharField data type.

Table 9-1 illustrates the model form mapping used between model data types and form data types. Note
that data types with mirror-like data type mappings between models and forms are enclosed in the first line
in Table 9-1.

http://dx.doi.org/10.1007/978-1-4842-2787-9_7#Tab1
http://dx.doi.org/10.1007/978-1-4842-2787-9_6#Tab2

Chapter 9 ■ Django Model Forms and Class Views

407

As you can see in Table 9-1, over 50% of Django model data types map directly to equivalent form data
types. Most of the remaining model data types map to slightly adjusted form data types to better fit the
backing model type (e.g., models.PositiveIntegerField maps to a forms.IntegerField but with a form
min_value value of 0).

It’s only four model data types in Table 9-1 that don’t map directly to form data types described in
Chapter 6 in Table 6-2. The models.AutoField and models.BigAutoField model data types are never
represented in model forms, for the simple reason their values are auto-assigned by a database, so they have
no place to be input in forms. The models.ForeignKey and models.ManyToManyField model data types
represent model relationships, which means their data comes from separate models. In turn, the models.
ForeignKey and models.ManyToManyField model data types don’t map to regular form field for strings or
numbers, but rather form fields that represent other model data, which is the purpose of the special form
data types: forms.ModelChoiceField and forms.ModelMultipleChoiceField. These two last form fields are
described in the later subsection on model forms with relationships.

Table 9-1.  Model form data type mapping between models and forms

Model field Form field

models.BooleanField
models.DateField
models.DateTimeField
models.DecimalField
models.EmailField
models.FileField
models.FilePathField
models.FloatField
models.ImageField
models.IntegerField
models.IPAddressField
models.GenericIPAddressField
models.NullBooleanField
models.SlugField
models.TimeField
models.URLField

forms.BooleanField
forms.DateField
forms.DateTimeField
forms.DecimalField
forms.EmailField
forms.FileField
forms.FilePathField
forms.FloatField
forms.ImageField
forms.IntegerField
forms.IPAddressField
forms.GenericIPAddressField
forms.NullBooleanField
forms.SlugField
forms.TimeField
forms.URLField

models.AutoField
models.BigAutoField

Not represented in the form, because Auto-model fields are
generated by the database.

models.BigIntegerField forms.IntegerField, with min_value set to
-9223372036854775808 and max_value set to
9223372036854775807)

models.CharField forms.CharField, with max_length set to the model field’s
max_length and empty_value set to None if null=True

models.CommaSeparatedIntegerField forms.CharField

models.ForeignKey forms.ModelChoiceField

models.ManyToManyField forms.ModelMultipleChoiceField

models.PositiveIntegerField forms.IntegerField, with min_value set to 0

models.PositiveSmallIntegerField forms.IntegerField, with min_value set to 0

models.SmallIntegerField forms.IntegerField

models.TextField forms.CharField, with widget=forms.Textarea

http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_6#Tab2

Chapter 9 ■ Django Model Forms and Class Views

408

■■ Tip T o consult the HTML produced by a form field data type (e.g., <input type=“text” …> consult Table 6-2,
which contains the mapping between form fields and form widgets, the last of which produces the actual form
HTML markup.

Model Form New and Custom Fields: Widgets, Labels, help_texts,
error_messages, field_classes, and localize_fields
Now that you know how all model fields are transformed into form fields in a model form, let’s address how
to add and customize form fields in a model form.

Adding a new form field to a model form is as simple as declaring a form field as if it were a regular
form. It’s also possible to customize the default form field data type used by a model field data type
(i.e., the mappings in Table 9-1), by declaring a new form field with the same name as a model field, to take
precedence over the default model-form field mapping.

Listing 9-3 illustrates the Django model class and model form from Listing 9-1, updated to include a
new form field and a form field that overrides a default model-form field mapping.

Listing 9-3.  Django model form with new and custom field

from django import forms

def faq_suggestions(value):
 # Validate value and raise forms.ValidationError for invalid values
 pass

class Contact(models.Model):
 name = models.CharField(max_length=50,blank=True)
 email = models.EmailField()
 comment = models.CharField()

class ContactForm(forms.ModelForm):
 age = forms.IntegerField()
 comment = forms.CharField(widget=forms.Textarea,validators=[faq_suggestions])
 class Meta:
 model = Contact
 fields = '__all__'

Listing 9-3 first adds the new age form field to capture an integer value in the form. Although the
underlying Contact model is never aware of the age field or value, with this modification the model form will
require this field to be provided as part of the form workflow.

Next in Listing 9-3 is the comment form field, which overrides the underlying model field by the same
name. In this case, overriding the comment form field has the purpose of adding a custom widget, as well as
adding a custom validators method to verify the comment value before the form is deemed valid – note that
both the widget and validators options are standard form options described in Chapter 6.

The form field overriding mechanism in Listing 9-3 has both an advantage and disadvantage. The
advantage is you get full control of the form field to define any options. The disadvantage is a model field
option’s (e.g., max_length) – that would be passed to the form field – are lost and need to be redeclared as
part of the new form field statement.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6#Tab2
http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

409

To preserve a model field’s underlying behavior and still be able to customize certain form field options,
model forms support additional meta class options besides the model, fields, and exclude options.
Listing 9-4 illustrates a model form’s additional meta options to override the default model-form field
mapping, while keeping the underlying model field behavior.

Listing 9-4.  Django model form with meta options to override default form field behavior

from django import forms

class Contact(models.Model):
 name = models.CharField(max_length=50,blank=True)
 email = models.EmailField()
 comment = models.CharField()

class ContactForm(forms.ModelForm):
 class Meta:
 model = Contact
 fields = '__all__'
 widgets = {
 'name': models.CharField(max_length=25),
 'comment': form.Textarea(attrs={'cols': 100, 'rows': 40})
 }
 labels = {
 'name': 'Full name',
 'comment': 'Issue'
 }
 help_texts = {
 'comment': 'Provide a detailed account of the issue to receive a quick answer'
 }
 error_messages = {
 'name': {
 'max_length': "Name can only be 25 characters in length"
 }
 }
 field_classes = {
 'email': EmailCoffeehouseFormField
 },
 localized_fields = '__all__'

The most important aspect of the meta model form options in Listing 9-4 is they’re pluralized names
of the form field options described in Chapter 6. The highlighted model form meta options in Listing 9-4
are pluralized because they can declare options for multiple form fields as a dictionary, where each key
represents the form field name and its value the option value.

For example, the widgets and labels meta options in Listing 9-4 define custom widgets and labels for
both the name and comment model form fields. The help_texts meta option defines the help_text option for
the comment model form field, while the error_messages meta option declares a custom form error message
for the max_length key error on the name model form field.

Next, the field_classes meta option in Listing 9-4 is used to declare a custom form field for the email
model form field. Finally, the localized_field meta option in Listing 9-4 is set to __all__ to tell Django
to localize (i.e., convert into a different language) all model form fields. If the localized_field option is
omitted, then model form fields are not localized. It’s worth mentioning you can selectively localize certain
model form fields by passing a list of model form fields to the localized_field option, just like it’s done
with the fields and exclude options.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

410

Django Model Forms with Relationships
As you learned in the previous two chapters, Django models can have relationships between one another,
which in turn makes models have a data type (e.g., ForeignKey, ManyToManyField) that references records in
another model.

When models containing such data types are used in the context of model forms, Django relies on two
special form fields. By default, ForeignKey model fields are converted to ModelChoiceField form fields, and
ManyToManyField model fields are converted to ModelMultipleChoiceField form fields.

The benefit of the ModelChoiceField and ModelMultipleChoiceField form fields is that they generate
a form field based on a Django model query. So instead of manually populating a form field with model
data, the ModelChoiceField and ModelMultipleChoiceField form fields generate a friendly HTML
<select>/<option> input field with model records.

ModelChoiceField and ModelMultipleChoiceField Form Field
Options: queryset, empty_label, to_field_name, and
label_from_instance

■■ Tip  ModelChoiceField and ModelMultipleChoiceField are standard form fields usable on any Django
form that requires model data. They are used by default on model forms with relationships, but they’re not
restricted to model forms (i.e., forms inherited from forms.ModelForm).

■■ Note  ModelChoiceField and ModelMultipleChoiceField being standard form fields (i.e., part of the
Django forms package), also accept the standard form options: required, widget, label, initial, help_text, and
limit_choices_to – described in Chapter 6.

Since ModelChoiceField and ModelMultipleChoiceField form fields use model records to source their
data, they unequivocally require a model query. For model forms that inherit their behavior from forms.
ModelForm and their underlying models contain a ForeignKey or ManyToManyField model field, this model
query is set automatically. For example, if an Item model contains a ForeignKey to a Menu model, an Item
model form presents all Menu records in a form to allow users to select a single Menu record. Similarly, if a
Store model contains a ManyToManField to an Amenity model, a Store model form presents all Amenity
records in a form to allow users to select multiple Amenity records.

While this behavior is acceptable in most circumstances, it can be necessary to provide an explicit query
to ModelChoiceField or ModelMultipleChoiceField form fields, either when you need to filter the default
behavior to use all model records on a model form field or when these form fields are used in a regular form
(i.e., that inherits forms.Form).

Listing 9-5 illustrates the two techniques to set a model query on either the ModelChoiceField and
ModelMultipleChoiceField form fields using the queryset option.

Listing 9-5.  Django model form and standard form with custom query for ModelChoiceField and
ModelMultipleChoiceField form fields

from django import forms
from coffeehouse.stores.models import Amenity

http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

411

class Menu(models.Model):
 name = models.CharField(max_length=30)
 def __str__(self):
 return "%s" % (self.name)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

class ItemForm(forms.ModelForm):
 menu = forms.ModelChoiceField(queryset=Menu.objects.filter(id=1))
 class Meta:
 model = Item
 fields = '__all__'

class StoreForm(forms.Form):
 name = forms.CharField()
 address = forms.CharField()
 amenities = forms.ModelMultipleChoiceField(queryset=None)
 def __init__(self, *args, **kwargs):
 super(StoreForm, self).__init__(*args, **kwargs)
 self.fields['amenities'].queryset = Amenity.objects.filter(name__contains='W')

The first technique in Listing 9-5 defines an inline queryset value by overriding the menu field with a
custom ModelChoiceField() on the ItemForm model form. In this case, instead of the ItemForm model form
having a menu field with all Item records, the menu field is restricted to only the Item record with id=1.

The second technique in Listing 9-5 defines an empty queryset value on a standard form that uses
a forms.ModelMultipleChoiceField() form field on the amenities field. But inside the form’s __init__
method, the amenities field is set to a query that restricts its records to Amenity records that contain the
letter W.

It’s worth mentioning, both queryset techniques illustrated in Listing 9-5 are equally valid in both
model forms and regular forms, as well as ModelChoiceField() and ModelMultipleChoiceField() form
fields.

By default, ModelChoiceField() form fields that don’t define an initial value are generated with the
empty HTML <option>---------</option> choice as the default field value. It’s possible to customize the
value of this empty option with the empty_label option (e.g., empty_label='Please select a value', to
output <option>Please select a value</option>). It’s also possible to disable the inclusion of this empty
option with empty_label=None.

By default, both ModelChoiceField() and ModelMultipleChoiceField() form fields generate their
HTML <select>/<option> input field values from a model record’s primary key value (i.e., id) and model
__str__ method representation. For example, given the Menu model definition in Listing 9-5, an HTML
<select>/<option> input field for this model would look like the following snippet:

<select name="menu" required id="id_menu">
 <option value="" selected>---------</option>
 <option value="1">Breakfast</option>
 <option value="2">Salads</option>
 <option value="3">Sandwiches</option>
 <option value="4">Drinks</option>
</select>

Chapter 9 ■ Django Model Forms and Class Views

412

Note each <option> value corresponds to a record’s primary key id value and the <option> text
corresponds to a record’s name field returned by the model’s __str__ method.

It’s possible to customize the <option> value used in both ModelChoiceField() and
ModelMultipleChoiceField() form fields with the to_field_name option. For example, setting to_field_
name='name' in the context of this last snippet, changes the HTML <select>/<option> input field to the
format <option value="Breakfast">Breakfast</option>.

■■ Caution  Using a to_field_name value breaks the underlying model form’s ability to be saved to the
database, since the model’s relationship value is set to a different value than the primary key expected by the
model relationship.

In addition to customizing the <option> value, it’s also possible to customize the <option> text in form
fields to something other than a model’s __str__ method, by overriding a label_form_instance method in
either a ModelChoiceField() and ModelMultipleChoiceField() form field. Listing 9-6 illustrate a custom
form field designed for this purpose.

Listing 9-6.  Django custom form field to customize <option> text for ModelChoiceField and
ModelMultipleChoiceField form fields

from django import forms
from django.forms import ModelChoiceField

class MenuModelChoiceField(ModelChoiceField):
 def label_from_instance(self, obj):
 return "Menu #%s) %s" % (obj.id,obj.name)

class ItemForm(forms.ModelForm):
 menu = MenuModelChoiceField(queryset=Menu.objects.all())
 class Meta:
 model = Item
 fields = '__all__'

HTML menu form field output
<select name="menu" id="id_menu" required>
 <option value="" selected>---------</option>
 <option value="1">Menu #1) Breakfast</option>
 <option value="2">Menu #2) Salads</option>
 <option value="3">Menu #3) Sandwiches</option>
 <option value="4">Menu #4) Drinks</option>
</select>

The first step in Listing 9-6 creates the MenuModelChoiceField custom form field that inherits its
behavior from the ModelChoiceField form field and defines an implementation for the label_from_
instance method. In this case, the label_from_instance method tells Django to generate <option> text
values prefixed with the Menu # static string, followed by a model’s id and name. Note this same technique
can be used to customize a ModelMultipleChoiceField, just make sure to change the custom form field’s
inheriting class.

Chapter 9 ■ Django Model Forms and Class Views

413

Next, the MenuModelChoiceField custom form field in Listing 9-6 is added to the ItemForm model form
in the same listing through the menu field. Because MenuModelChoiceField is a custom ModelChoiceField
form field, it’s necessary to specify an explicit queryset value to populate the form field, which in this case
corresponds to all Menu model records.

Finally, Listing 9-6 illustrates the HTML <option> text output for the menu field follows the pattern
defined in the custom MenuModelChoiceField custom form field.

Django Model Form Processing
Now that you have a solid understanding of the various model form options, it’s time to take a deeper look at
model form processing, which was briefly introduced in Listing 9-2.

The most important factor to take into account when processing model forms is you’re working with
two entities: a form and a model. In the model form processing example presented in Listing 9-2, this fact
isn’t too obvious, mainly because the form fits the backing model perfectly. However, when you modify any
of the model form parts, working with a single reference that represents both a form and a model can require
more forethought.

Model Form Initialization: Initial and Instance
Model forms can use two initialization parameters: initial and instance. The initial argument works
just like the standard initial form argument – described in Chapter 6 – providing the initial values for an
unbound form. The instance argument is used to initialize a model form with a model instance, which in
turn is also used to initialize the values of an unbound form.

In all model forms, as you learned in the previous sections, form definitions take precedence over any
underlying model definitions. This means all model form values in the initial argument take precedence
over values defined via the instance argument. Listing 9-7 illustrates a model form initialization sequence
using both the initial and instance parameters.

Listing 9-7.  Django model form initialization with initial and instance

from coffeehouse.items.models import Item

preloaded_item = Item.objects.get(id=1)

Model form from Listing 9-6, initialize with instance
form = ItemForm(instance=preloaded_item)

Unbound form set up with instance values
form.as_p()
 <p>
 <label for="id_menu">Menu:</label>
 <select name="menu" required id="id_menu">
 <option value="">---------</option>
 <option value="1" selected>Menu #1) Breakfast</option>
 <option value="2">Menu #2) Salads</option>
 <option value="3">Menu #3) Sandwiches</option>
 <option value="4">Menu #4) Drinks</option>
 </select>
 </p>

http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

414

 <p>
 <label for="id_name">Name:</label>
 <input type="text" name="name"
 value="Whole-Grain Oatmeal" required maxlength="30" id="id_name" />
 </p>
 # Remaining fields committed for brevity

Model form from Listing 9-6, initialize with instance and override with initial
form2 = ItemForm(initial={'menu':3},instance=preloaded_item)

Unbound form set up with instance values
form2.as_p()

Unbound form set up with instance values, but overridden with initial
form2.as_p()
 <p>
 <label for="id_menu">Menu:</label>
 <select name="menu" required id="id_menu">
 <option value="">---------</option>
 <option value="1">Menu #1) Breakfast</option>
 <option value="2">Menu #2) Salads</option>
 <option value="3" selected>Menu #3) Sandwiches</option>
 <option value="4">Menu #4) Drinks</option>
 </select>
 </p>
 # Remaining fields committed for brevity

The first step in Listing 9-7 is to obtain an Item model record to populate the ItemForm model form; in
this case, a query is made to get the Item model record with id=1. Next, the Item model record is used to
initialize the model form with the instance values. In Listing 9-7, the form is output with the standard as_p()
form method, where you can confirm the form fields are preselected to reflect the underlying model record.

Next in Listing 9-7 is an initialization sequence for the same ItemForm model form, but which also
uses the initial argument in combination with the instance argument. In this case, because the initial
argument provides the 'menu':3 value, the unbound form’s menu field is set to a value of 3, instead of the
model record’s instance menu value of 1. Thus confirming the initial argument values take precedence over
instance argument values.

Note that it’s equally valid to only use the initial argument – without the instance argument – to
initialize a model form as if it were a regular form. At the initialization phase of a model form, the model part
of the form is unaware of any values, it’s only until the model form enters its validation phase the underlying
model is made of aware of any form values.

Model Form Validation
Similar to model form initialization, model form validation can appear to be intertwined because you’re
dealing with a single variable that references both a form and a model. But as long as you’re aware of the
fundamental steps of form validation – described in Chapter 6 – and model validation – described in
Chapter 7 – model form validation is straightforward.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_7

Chapter 9 ■ Django Model Forms and Class Views

415

Back in Listing 9-2, you learned how a model form is converted to a bound form (i.e., a form containing
user data) by passing the request.POST value in a view method (e.g., ContactForm(request.POST)). Once
you have a bound form, the standard Django form validation workflow continues to apply for model forms:
a call is made to the is_valid() method on the form reference to validate the user submitted data against
form validation rules. If any of the form rules don’t comply, an errors dictionary is added to the form
reference with the causes, which makes its way back to the user as a re-rendered form with the errors. If the
is_valid() method succeeds, the processing logic of the model form can move to the next step.

Once a model form passes the is_valid() method test, you can actually use the same standard
form cleaned_data() method to gain access to a dictionary with the contents of the valid form data
(e.g., form.cleaned_data() contains {'name': '...','email': '...','comment': '...', }).
But since you’re working with a model form, the step you’re more likely take is to use the form data to
further interact with a model.

To facilitate this process, Django adds the instance field to the form reference, containing the form
data structured as an instance of the underlying model of the model form. The instance field is particularly
important when you need or must manipulate the model data prior to attempting a model operation. And
this is the most critical aspect of the model form validation process: even after the form is_valid() method
passes and the data is used to structure a model instance in the instance field, this model instance data
must still undergo model validation or risk being rejected by the backing model validation rules.

For straightforward model form scenarios, where a model and form map directly to one another – like
the one in Listing 9-2 – manipulating the instance field is unnecessary (e.g., Right after the form is_valid()
method passes, you can call the save() method on the form reference to save the model instance in
instance). But for model forms where the model and form differ in the amount of fields, you’ll need to
perform additional logic after the form is_valid() method passes and before a called is made to the model
form’s save() method.

Listing 9-8 illustrates two validation procedures for a model form where the form omits fields from the
underlying model.

Listing 9-8.  Django model form with reduced form that requires model update before saving

from django import forms
from django.conf import settings

class Contact(models.Model):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, default=None)
 name = models.CharField(max_length=50,blank=True)
 email = models.EmailField()
 comment = models.CharField()

class ContactForm(forms.ModelForm):
 class Meta:
 model = Contact
 exclude = ['user']

Option 1) Form model processing with missing value assigned with instance
 if form.is_valid():
 # Check if user is available
 if request.user.is_authenticated():
 # Add missing user to model form
 form.instance.user = request.user
 # Insert into DB
 form.save()

Chapter 9 ■ Django Model Forms and Class Views

416

Option 2) Form model processing with missing value assigned after model form sequence
 if form.is_valid():
 # Save instance but don't commit until model instance is complete
 # form.save() returns a materialized model instance that has yet to be saved
 pending_contact = form.save(commit=False)
 # Check if user is available
 if request.user.is_authenticated():
 # Add missing user to model form
 pending_contact.user = request.user
 # Insert into DB
 pending_contact.save()

The Contact model in Listing 9-8 is similar to the model class used in previous listings, but has
the additional user field to register a Django user as part of the model record. Next, in Listing 9-8 is the
ContactForm model form – based on this last Contact model – which uses the exclude option to omit the
user model field from the form.

Because you’re purposely omitting the user field from the model form, an end user will have no way of
providing it – even in the unlikely case he would know his internal user. Therefore, as part of the validation
process, it’s necessary to update the model to contain the internal user, which is always available in the
request reference of a view method.

In the first validation sequence in Listing 9-8, you can see that after the model form passes the is_
valid() method, a quick check is made to confirm if the user is authenticated; if so, the model’s instance
reference is accessed to update the user model field. Once this is done, the model form’s backing instance
contains a value for the omitted user field and upon calling the save() method, the model record is saved
with values for all its model fields.

The second validation sequence in Listing 9-8 uses the commit=False to materialize the model instance
of the model form without saving it to the database. Once this is done, the model form’s work is done, so
you’re left with a basic model record instance that needs to be updated and saved to the database. You can
see in Listing 9-8 an identical check is made to confirm if the user is authenticated, if so, the unsaved model
record user reference is updated and a final called is made to the model’s save() method to commit the
record to the database.

Django Model Formsets
Just as standard Django forms can be grouped together as a set in what’s called a formset, Django model
forms can also be grouped into what’s called a model formset. Similarly, just as Django model forms
resemble standard Django forms, model formsets also have a lot of similarities with standard formsets.

Up next, I’ll describe the particularities of model formsets building on the knowledge presented in
the last part of Chapter 6 on standard formsets. So if you’re unfamiliar with formset terms (e.g., factory and
management form), go back and read this last section, as the following assumes you have prior knowledge
on these basic formset concepts.

Model Formset Factory
The modelformset_factory() method is the centerpiece to working with model formsets. The
modelformset_factory() method can accept up to 19 arguments, 9 of which are identical to standard
formsets and the remaining ones specific to model formsets. The following snippet illustrates all the names
and default values for each argument in the modelormset_factory() method, with bolded text representing
model formset specific options.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6

Chapter 9 ■ Django Model Forms and Class Views

417

modelformset_factory(model, queryset=model.objects.all(),
 form=ModelForm,fields=None, exclude=None,
 formset=BaseModelFormSet, extra=1, can_order=False, can_delete=False,
 max_num=None, min_num=None, validate_max=False, validate_min=False,
 widgets=None, localized_fields=None,labels=None,
 help_texts=None, error_messages=None,
 field_classes=None,formfield_callback=None)

As you can confirm in this snippet, the only required argument (i.e., that doesn’t have a default value)
for the modelformset_factory() method is model. The meaning for each argument is the following:

model.- Defines the model class on which to create a formset.
queryset.- Defines the queryset to create a formset. By default, all model records are used to create the

formset (i.e., the model.objects.all() queryset if used).
fields.- Defines the model form fields to include as part of the model to create the model formset – just

like the fields meta model form option.
exclude.- Defines the model form fields to omit as part of the model to create the model formset – just

like the exclude meta model form option.
widgets.- Defines overriding widgets for the model form to create the model formset – just like the

widgets meta model form option.
localize_fields.- Defines model form fields to localize (i.e., support multiple languages) to create the

formset – just like the localize_fields meta model form option.
labels.- Defines overriding label for the model form to create the model formset – just like the labels

meta model form option.
help_text.- Defines overriding help text for the model form to create the model formset – just like the

help_texts meta model form option.
error_messages.- Defines overriding error messages for the model form to create the model formset –

just like the help_texts meta model form option.
field_classes.- Defines overriding field classes for the model form to create the model formset – just

like the field_classes meta model form option.
formsetfield_callback.- Defines a method to execute prior to creating a form field from a model field.

Generally used to customize a model form field – as described in the earlier model form section – in the
context of a formset.

■■ Tip S ee Chapter 6 for details on the additional modelformset_factory option, which were already described
in the standard formsets section.

Given that model formset logic is a combination of the model form techniques described earlier and formset
techniques described in Chapter 6, I won’t readdress the same techniques once again. You can look over the
book’s source code for a working model formset example in the source code for Chapter 9 under the online app.

Class-Based Views with Models
Back in Chapter 2, you learned how class-based views allow you to create views that operate with object-
oriented programming (OOP) principles (e.g., encapsulation, polymorphism and inheritance) leading to
greater reusability and shorter implementation times. Now that you know how Django models work, we can
address class-based views that integrate with models described in the last part of Table 2-10.

Unlike standard Django views – explored in the early sections of Chapter 2 – which allow open-ended
logic to process a request and generate a response, class-based views with models encapsulate the logic
performed against Django models in a more modular way.

http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_9
http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_2#Tab10
http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 9 ■ Django Model Forms and Class Views

418

For example, the logical patterns to create, read, update, and delete model instances in a standard
view method, generally follow a very consistent workflow: get input data from a url or form, execute CRUD
operation on the model, and send the response to a template.

In the spirit of Django’s DRY principle, class-based views with models offer a way to cut down on the
boilerplate code used in standard view methods and use class fields and methods to define the workflow
used for Django model CRUD operations.

Create Model Records with the Class-Based View CreateView
As you’ve learned up to this point, the creation of Django model instances in real-life projects comes
accompanied by a series of constructs that can include model forms, GET/POST request processing, and the
use of templates, among other things.

The Django CreateView class-based view is specifically designed to cut down on the amount of
boilerplate code needed to perform the creation of a model record. Listing 9-9 illustrates a class-based view
that uses the CreateView class.

Listing 9-9.  Django class-based view with CreateView to create model records

views.py
from django.views.generic.edit import CreateView
from .models import Item, ItemForm
from django.core.urlresolvers import reverse_lazy

class ItemCreation(CreateView):
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')

models.py
from django import forms
from django.db import models

class Menu(models.Model):
 name = models.CharField(max_length=30)

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

class ItemForm(forms.ModelForm):
 class Meta:
 model = Item
 fields = '__all__'
 widgets = {
 'description': forms.Textarea(),
 }

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

Chapter 9 ■ Django Model Forms and Class Views

419

urlpatterns = [
 url(r'^new/$', items_views.ItemCreation.as_view(), name='new'),
]

templates/items/item_form.html
 <form method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit" class="btn btn-primary">Create</button>
 </form>

The first part in Listing 9-9 illustrates the ItemCreation class-based view that inherits its behavior from
the CreateView class. Notice this view lacks a request reference, processing logic, or return statement, all
of which were common in the standard view methods described in Chapter 2. So what is the ItemCreation
class-based view actually doing?

Because you know beforehand you want to create a model record, the CreateView class – used by the
ItemCreation class-based view – supports all the necessary boilerplate logic and requires a minimum set of
code to fulfill its model record creation logic.

The ItemCreation class-based view in Listing 9-9 uses the model field to tell Django to create Item
model records. In addition, the form_class field specifies the ItemForm form – also declared in Listing 9-9
– which is used to create model records. In addition, the success_url field is used to return control to the
item:index url when model record creation is successful.

WHY REVERSE_LAZY IN CLASS-BASED VIEWS,
INSTEAD OF REVERSE?

Due to the simultaneous import order of models, views, and urls in class-based views, using the
standard reverse() method to resolve url names can result in the error: django.core.exceptions.
ImproperlyConfigured: The included URLconf ‘–----’ does not appear to have any patterns in it. If you
see valid patterns in the file then the issue is probably caused by a circular import.

The reverse_lazy method ensures any reverse url name resolution is attempted only after all models,
views, and urls have been properly imported; therefore it’s the common choice in the context of
class-based views.

You may still be left wondering, where are the save() and is_valid() methods for the ItemCreation
class-based view in Listing 9-9 if it’s creating model records? By default there aren’t any. Because you just
want to create a model record, the parent CreateView class takes care of this supporting logic.

The next part in Listing 9-9 contains the urly.py file with the hook to set up the class-based view into
the application. In this case, the ItemCreation class-based view is set to run on the /new url and is declared
as part of the url() method by using the class-based view as_view() method – note this url set up technique
is identical for all class-based views and was described toward the end of Chapter 2 for class-based views
without models.

So what happens when a user visits the /new url? Control is sent to the ItemCreation class-based
view. And because this view’s purpose is to create an Item model record, the class-based view looks for a
template to render the form, under the TEMPLATES directory path of a project following the convention
<app_name>/<model_name>_form.html.

http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 9 ■ Django Model Forms and Class Views

420

In the last part of Listing 9-9, you can see the template templates/items/item_form.html, where
templates represents a TEMPLATES directory path value, items the app name, and item the model name
defined for the class-based view. In addition, notice the contents of the item_form.html template use a
standard form layout, which you can adjust like any Django form.

So where is the POST form handler and error handling in Listing 9-9? By default, there isn’t any either.
Once a user gets an unbound form illustrated at the bottom of Listing 9-9, the form processing and validation
is taken care of behind the scenes by the ItemCreation class-based view. If the form contains errors, the
template is re-rendered – like any other form – using the same template in Listing 9-9. If the form data is valid,
form processing is deemed successful and the class-based view creates an Item model record – like a model
form – redirecting control to the item:index url defined in the class-based view success_url field.

As you can see in this example, a class-based view that inherits its behavior from the CreateView class,
cuts down the boilerplate code needed to a create model record.

CreateView Fields and Methods
While at first glance a class-based view that inherits its behavior from the CreateView class can appear to be
inflexible, it’s possible to override its default behaviors like any Django construct.

As it turns out, the CreateView class inherits its behavior from many other Django class-based views,
which is what gives the CreateView class – and its implementing child classes like the class-based view in
Listing 9-9 – its behind-the-scene powers. The CreateView class inherits its behavior from the following
class-based view classes:

django.views.generic.detail.SingleObjectTemplateResponseMixin
django.views.generic.base.TemplateResponseMixin
django.views.generic.edit.BaseCreateView
django.views.generic.edit.ModelFormMixin
django.views.generic.edit.FormMixin
django.views.generic.detail.SingleObjectMixin
django.views.generic.edit.ProcessFormView
django.views.generic.base.View

So why are these classes even important? Because they provide the default behavior for all CreateView
class-based views. The scant fields declared in the ItemCreation class-based view in Listing 9-9 are only
three fields for CreateView class-based views. It’s possible to declare over a dozen more fields and methods
– that belong to this past list of classes – to provide behaviors, such as using another template other than
<app_name>/<model_name>_form.html; specifying the content type for the response (e.g., text/csv); custom
methods to run when a model form is valid or invalid; as well as declaring custom methods to manually
execute GET and POST workflow logic.

■■ Note A CreateView class-based view inherits many fields and methods from its parent classes. The following
options are the most common ones; for an exhaustive list consult each of the CreateView parent classes.

Basic CreateView options: Model, form_class, and success_url fields
As you’ve already seen in Listing 9-9, the essential logic fulfilled by a CreateView class-based view is to
create a model record using a form, which in turn requires a basic set of parameters. First, the model field is
basic to the whole operation, because a CreateView class-based view must know beforehand which type of
model record to create. Second, the form_class is also a basic parameter, because a user must be presented
with a form to capture the data to create the model record.

Chapter 9 ■ Django Model Forms and Class Views

421

Finally, because successfully creating a model record entails notifying a user about the action and
moving away from the form page, the success_url field is also a basic part of a CreateView class-based view
to indicate where to redirect a user after a model record is created.

Customize template name, MIME type and context: template_name and
content_type fields and get_context_data() method
Sometimes relying on the CreateView class-based view template naming convention <app_name>/<model_
name>_form.html is unfeasible, either because you have a preexisting template to reuse or simply because
you don’t like the default convention. You can declare the template_name field as part of a CreateView class-
based view to override this convention. Similarly, it’s also possible to override the default MIME type used
by a class-based view response – if the template contains something other than text/html (e.g., text/csv)
– using the content_type field as part of a CreateView class-based view.

In addition, you can alter the context data passed to a class-based view template by defining an
implementation of the get_context_data() method. This last process is common when you need to pass
additional data to a template – besides the form reference – or change the actual form reference to another
name.

Listing 9-10 illustrates a CreateView class-based view that makes use of the template_name and
content_type fields, as well as the get_context_data() method.

Listing 9-10.  Django class-based view with CreateView with template_name, content_type, and
get_context_data()

views.py
from django.views.generic.edit import CreateView
from .models import Item, ItemForm, Menu

class ItemCreation(CreateView):
 template_name = "items/item_form.html"
 context_type = "text/html"
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 def get_context_data(self,**kwargs):
 kwargs['special_context_variable'] = 'My special context variable!!!'
 context = super(ItemCreation, self).get_context_data(**kwargs)
 return context

You can see in Listing 9-10 the template_name and content_type fields are declared as part of the
class-based view. In this particular case, both field values are assigned their default values – making them
redundant – for simplicity; but you can adjust accordingly to your needs.

The get_context_data() method in Listing 9-10 first adds the custom special_context_variable key
to make it available to the class-based view template (i.e., items/item_form.html). Next, a call is made to the
parent class’s get_context_data() method (i.e., CreateView) to run its context set up logic, which consists
of setting up the form reference which is also used in the template. Finally, the context reference with all the
template context values is returned by the get_context_data() method for use inside the template.

As you can see in Listing 9-10, by simply adding fields and overriding methods in a CreateView class-
based view, you can easily start changing its default behavior.

Chapter 9 ■ Django Model Forms and Class Views

422

Customize form initialization and validation: Initial field, get_initial(),
get_form(), form_valid(), and form_invalid() methods
The initial field on a CreateView class-based view works just like a standard form’s initial argument to
specify default values for an unbound form. For example, declaring the field initial = {'size':'L'} on a
CreateView class-based view sets its form’s size field to L.

Form initialization can sometimes require more complex requirements than a single line statement, in
which a CreateView class-based view also offers the get_initial() method. The get_initial() method
functions like the __init__ method used in standard forms – in that you can introduce open-ended logic
to set up default values – but is intended solely to set up initial values and to return a dictionary of
values – unlike the __init__ method where you can introduce other actions besides default form values
(e.g., change widgets, add validation).

Listing 9-11 illustrates the use of the initial argument and get_initial() method on a CreateView
class-based view.

Listing 9-11.  Django class-based view with CreateView with initial and get_initial()

views.py
from django.views.generic.edit import CreateView
from .models import Item, ItemForm, Menu

class ItemCreation(CreateView):
 initial = {'size':'L'}
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 def get_initial(self):
 initial_base = super(ItemCreation, self).get_initial()
 initial_base['menu'] = Menu.objects.get(id=1)
 return initial_base

The first step in Listing 9-11 set the initial field to set the class-based view’s form size field to L. Next,
the get_initial() method is declared to add another default value to a class-based view form.

Inside the get_initial() method, the first step is to call the parent class’s get_initial() method (i.e.,
CreateView) to run its initial set up logic; this ensures the class’s initial field value (i.e., {'size':'L'}) is
taken into account to as part of the initial value. Next, the initial_base reference is updated to set the
form’s menu field to the Menu record with id=1. Finally, the get_initial() method in Listing 9-11 returns a
dictionary containing both the initial field value set by the class-based view and the custom form value set
in its body.

The get_form() method of a CreateView class-based view is designed to tap into the full initialization
process of a form and not just on setting its default values like the initial field and get_initial() method.
This makes get_form() method suited to perform broader form initialization tasks like setting form
widgets and validation initialization, like its done in the __init__ method in standard forms. Inclusively,
it’s possible to use the get_form() method to specify default form values and forgo the use of initial and
get_initial() altogether. Listing 9-12 illustrates the use of the get_form() method in a CreateView
class-based view.

Chapter 9 ■ Django Model Forms and Class Views

423

Listing 9-12.  Django class-based view with CreateView with get_form()

views.py
from django.views.generic.edit import CreateView
from .models import Item, ItemForm, Menu

class ItemCreation(CreateView):
 initial = {'size':'L'}
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 def get_form(self):
 form = super(ItemCreation, self).get_form()
 initial_base = self.get_initial()
 initial_base['menu'] = Menu.objects.get(id=1)
 form.initial = initial_base
 form.fields['name'].widget = forms.widgets.Textarea()
 return form

The first step in the get_form() method in Listing 9-12 is to call the parent class’s get_form() method
(i.e., CreateView) to get the base form. Next, a call is made to the class-based view’s get_initial() method
to get its initial form value, as well as set up a default value for the form’s menu field using a model query.
In this case, the form initialization form dictionary has the same values as those in Listing 9-11.

Next, the form initialization dictionary is assigned to the base form using the standard initial form
reference. Finally, before returning an instance of the form class, a custom widget is set on the form’s name
field, overriding the default widget of the form name field.

In addition to initialization tasks, the form validation process for a CreateView class-based view can
also be customized. The form_valid() and form_invalid() methods are used to access the points at which
a class-based view form is deemed successful or erroneous, respectively. Listing 9-13 illustrates an example
that uses the form_valid() and form_invalid() methods in a CreateView class-based view.

Listing 9-13.  Django class-based view with CreateView with form_valid() and form_invalid()

views.py
from django.views.generic.edit import CreateView
from django.http import HttpResponseRedirect
from django.contrib import messages
from .models import Item, ItemForm, Menu

class ItemCreation(CreateView):
 initial = {'size':'L'}
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 def form_valid(self,form):
 super(ItemCreation,self).form_valid(form)
 # Add action to valid form phase
 messages.success(self.request, 'Item created successfully!')
 return HttpResponseRedirect(self.get_success_url())
 def form_invalid(self,form):
 # Add action to invalid form phase
 return self.render_to_response(self.get_context_data(form=form))

Chapter 9 ■ Django Model Forms and Class Views

424

As you can see in Listing 9-13, the form_valid() method gains access to the form instance via its form
input argument, which in turn allows you to perform actions on the form when it passes its validation phase.
In this case, no action is taken on the form itself to simplify things, but an additional piece of logic is added
to illustrate the customization process.

The first step in the form_valid() in Listing 9-13 is a call to the parent class’s form_valid() method
(i.e., CreateView) to run its form validation setup logic, this ensures the base class’s form validation is run
first to verify any form rule violations (e.g., add errors to the form). If a call to the parent’s form_valid()
method detects a rule violation, then the class’s form_valid() method (i.e., the one Listing 9-13) short-
circuits and falls back to the form_invalid() method. If the parent’s form_valid() method passes, the logic
in Listing 9-13 continues to add a Django message framework success message to present to a user.

■■ Tip  It’s also possible to add Django message framework success messages to a class-based view form
validation process through a mixin. Mixins for class-based views are described in the last section of this
chapter.

Finally, because you’re handling a valid form workflow, the form_valid() method in Listing 9-13
must explicitly redirect a user to a location to finish its work. In this case, a standard Django
HttpResponseRedirect method is used with the class-based view’s get_success_url() method, the last of
which gets the class-based view success_url field value.

The form_invalid() method in Listing 9-13 does nothing in particular to handle an invalid form. It
simply does the minimum amount work – by means of class-based view methods – which is to return control
to the same template location and add the context that contains the form with errors to present to a user.

As you can see, the benefit of the form_valid() and form_invalid() methods in a CreateView class-
based view is they allow you to customize the form validation workflow, without the need to modify other
parts of a CreateView workflow (e.g., saving the form data to the database).

Customize view method workflow: get() and post() methods
Besides the previous customization options for a CreateView class-based view, it’s also possible to get
absolute control over the workflow done by a class-based view with either the get() or post() methods. The
get() method is used to tap into the HTTP GET workflow associated with a class-based view, whereas the
post() method is used to tap into the HTTP POST workflow associated with a class-based view.

Although the use of the get() or post() methods can offer some of the greatest flexibility to a class-
based view, they also require to explicitly declare the initialization, validation, and redirect sequences of a
class-based view. This means class-based views that use either the get() or post() methods can resemble
more the standard open-ended Django views – described in Chapter 2 – than the succinct class-based view
presented earlier in Listing 9-9.

Still, sometimes the appeal of class-based views is so great, the use of the get() or post() methods
is warranted. Listing 9-14 illustrates an example that uses the get() and post() methods in a CreateView
class-based view.

Listing 9-14.  Django class-based view with CreateView with get() and post()

views.py
from django.views.generic.edit import CreateView
from django.shortcuts import render
from django.contrib import messages

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 9 ■ Django Model Forms and Class Views

425

class ItemCreation(CreateView):
 initial = {'size':'L'}
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 template_name = "items/item_form.html"
 def get(self,request, *args, **kwargs):
 form = super(ItemCreation, self).get_form()
 # Set initial values and custom widget
 initial_base = self.get_initial()
 initial_base['menu'] = Menu.objects.get(id=1)
 form.initial = initial_base
 form.fields['name'].widget = forms.widgets.Textarea()
 # return response using standard render() method
 return render(request,self.template_name,
 {'form':form,
 'special_context_variable':'My special context variable!!!'})

 def post(self,request,*args, **kwargs):
 form = self.get_form()
 # Verify form is valid
 if form.is_valid():
 # Call parent form_valid to create model record object
 super(ItemCreation,self).form_valid(form)
 # Add custom success message
 messages.success(request, 'Item created successfully!')
 # Redirect to success page
 return HttpResponseRedirect(self.get_success_url())
 # Form is invalid
 # Set object to None, since class-based view expects model record object
 self.object = None
 # Return class-based view form_invalid to generate form with errors
 return self.form_invalid(form)

You can see in Listing 9-14 that both the get() and post() methods have access to a request input –
an HttpRequest instance – like standard view methods. This request reference allows class-based views
access to request data, such as HTTP meta data (e.g., user’s IP address), which is a topic described in detail
in Chapter 2.

The first step in the get() method in Listing 9-14 is to create an unbound form using the parent class’s
get_form() method (i.e., CreateView). Because the get() method gives you full control over the workflow,
it would be equally valid to create an unbound form using standard form syntax (e.g., form = ItemForm()),
but since it’s a class-based view, the example leverages a class-based view construct. Once the unbound
form is created, a series of initial values and a custom widget is set on the form, just like it’s done in the
previous class-based view examples.

Once the unbound form is ready, notice the return statement of the get() method uses the standard
render() method used in regular view methods. In this case, the render() method redirects control to the
class-based view template and sets the template context with the unbound form and an additional special_
context_variable variable to use in the template.

Next, the post() method in Listing 9-14 is tasked with processing the form with user data. The first step
in the post() method is to get a bound form instance using the class-based view get_form() class. Similarly
to the get() method, it would be equally valid to create a bound form using standard form syntax (e.g., form
= ItemForm(request.POST)).

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 9 ■ Django Model Forms and Class Views

426

With a bound form instance, a check is made to verify if the user provided form data is valid, just like
it’s done with standard forms (e.g., form.is_valid()). If the form data is valid, a call is made to the parent
class’s is_valid() method (i.e., CreateView), which ensures the core logic of a class-based view is executed
when a form is valid (e.g. saving the form data to a database). Here it’s possible once again to use any
standard model construct, but calling the parent class’s is_valid() method is easier to execute this routine
logic to create a model object record. Once the routine validation logic is complete, a success message is
added to present to an end user and a redirect is made to the class-based view’s success url. If the form data
is invalid, the class-based view’s object field is set to None – since class-based views expect to handle an
object record instance in POST processing – and control is returned using the class-based form_invalid()
method that takes care of the underlying details vs. using the render() method to create a standard view
method response.

As you can now understand from this example in Listing 9-14, a CreateView class-based view can be
just as flexible as a standard view method. It’s simply a matter of knowing and understanding the different
fields and methods supported by a CreateView class-based view. Of course, if you feel the custom logic for
a CreateView class-based view becomes too unwieldy, you can always fall back to a standard view method
presented back in Chapter 2.

Read Model Records with the Class-Based Views ListView and
DetailView
Similar to the process of creating model records, the process to read model records also follows a near
identical process for all models: create a query to get model record(s) and then use a template to display
the model record(s). The Django ListView and DetailView class-based views are specifically designed to
cut down on the amount of boilerplate code needed to display a list of Django model records and a single
Django model record, respectively.

The ListView class-based view can quickly set up a query for a list of model records and display them in
a template. Listing 9-15 illustrates a class-based view that uses the ListView class-based view.

Listing 9-15.  Django class-based view with ListView to read list of records

views.py
from django.views.generic.list import ListView
from .models import Item

class ItemList(ListView):
 model = Item

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

urlpatterns = [
 url(r'^$',items_views.ItemList.as_view(),name="index"),
]

templates/items/item_list.html
 {% regroup object_list by menu as item_menu_list %}
 {% for menu_section in item_menu_list %}
 {{ menu_section.grouper }}

 {% for item in menu_section.list %}

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 9 ■ Django Model Forms and Class Views

427

 {{item.name|title}}
 {% endfor %}

{% endfor %}

The first definition in Listing 9-15 is the ItemList class, which inherits its behavior from the ListView
class-based view class. The model field in the ItemList class set to Item tells Django to generate a list of all
Item model records (e.g., Item.objects.all()).

Next, the ListView class-based view is hooked up to a root url regular expression – r'^$' – using the
as_view() method, the last of which is available on all class-based views and was also used in the past
section to set up a CreateView class-based view.

Finally, the last part in Listing 9-15 illustrates the template item_list.html that generates a loop over
the object_list reference, the last of which is the default context variable used by a ListView class-based
view that contains the model record list.

Recapping, the most important default behaviors of a ListView class-based view are the following:
The list of records is made from all records of the model defined in the model option.
The template to render the list of records uses the convention <app_name>/<model_name>_list.html

under the TEMPLATES directory path of a project.
The context variable passed to a template (i.e., the one containing the records) is named object_list.
As you can see in this example, a ListView class-based view cuts down the boilerplate code needed to

present a list of model records to one field.
The DetailView class-based view is another record reading construct, designed to quickly set up a

single record query and present the results in a template. Listing 9-16 illustrates a class-based view that uses
the DetailView class.

Listing 9-16.  Django class-based view with DetailView to read model record

views.py
from django.views.generic. import DetailView
from .models import Item

class ItemDetail(DetailView):
 model = Item

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

urlpatterns = [
 url(r'^(?P<pk>\d+)/$',items_views.ItemDetail.as_view(),name="detail"),
]

templates/items/item_detail.html
<h4> {{item.name|title}}</h4>
<p>{{item.description}}</p>
<p>${{item.price}}</p>
<p>For {{item.get_size_display}} size: Only {{item.calories}} calories
{% if item.drink %}
and {{item.drink.caffeine}} mg of caffeine.</p>
{% endif %}
</p>

Chapter 9 ■ Django Model Forms and Class Views

428

The first definition in Listing 9-16 is the ItemDetail class, which inherits its behavior from the
DetailView class-based view class. The model field in the ItemDetail class is to Item, which tells Django to
get an Item model record. Unlike the ListView class-based view class in Listing 9-15 that reads all model
records, a DetailView class-based view class must always limit its model query to a single record, which is
where the class-based view url definition comes into play.

The DetailView class-based view in Listing 9-16 is hooked up to a root url regular expression – r'^$'
– using the as_view() method – just like other class-based views – but notice the url definition contains
the (?P<pk>\d+) url parameter, which gets passed to the class-based view to delimit the model query to a
single record.

For example, if a request is made on the url /items/1/, the 1 is assigned to the pk parameter, which
is passed to the classed-based view, to build the model query Item.objects.get(pk=1) that gets the Item
model record with pk=1 – note the pk field stands for primary key, which is generally equivalent to the id
field.

In this manner, as the url requests made on the DetailView class-based view change (e.g. /items/2/,
/items/3/), so does the backing query made for a model a record, and with it the record returned to be
displayed in the template.

Finally, the last part in Listing 9-16 illustrates the template item_detail.html that outputs various
fields of the item reference that represents the model record. In this case, the item reference is used
because the default context variable used by a DetailView class-based view for a model record is the name
of the model itself.

Recapping, the most important default behaviors of a DetailView class-based view are the following:
The model record is determined based on the model option and the url pk parameter that delimits the

query to a single record based on the model’s primary key.
The template to render the record uses the convention <app_name>/<model_name>_detail.html under

the TEMPLATES directory path of a project.
The context variable passed to a template (i.e., the one containing the record) is named after the model

of the class-based view (e.g., if model=Item, the context variable is named item).
As you can see in this example, a class-based view that inherits its behavior from the DetailView class

cuts down the boilerplate code needed to present a single model record.

ListView Fields and Methods
Similar to the CreateView class-based view presented earlier, it’s possible to override many of default
behaviors of a ListView class-based view.

As it turns out, the ListView class-based view inherits its behavior from many other Django class-based
views, presented in the following list:

django.views.generic.list.MultipleObjectTemplateResponseMixin
django.views.generic.base.TemplateResponseMixin
django.views.generic.list.BaseListView
django.views.generic.list.MultipleObjectMixin
django.views.generic.base.View

■■ Note  A ListView class-based view inherits many fields and methods from its parent classes. The
following options are the most common ones; for an exhaustive list consult each of the ListView parent
classes.

Chapter 9 ■ Django Model Forms and Class Views

429

Basic ListView option: Model field
As you saw in Listing 9-15, the essential logic fulfilled by a ListView class-based view is to create a list of
records from a model. Therefore the model field option is essential to indicate on which model to create a
record list.

The next sections describe how to customize a ListView class-based view, including how to delimit and
generate multiple pages for a list of records, as well as how to override other default behaviors.

Customize template context reference name: context_object_name
In Listing 9-15, you can see the template of the ListView class-based view uses the rather unfriendly context
variable named object_list. This is the default behavior, but to help template editors, it’s possible to use a
different context variable to contain the list of records.

The context_object_name field is used to define a custom context variable name to manipulate the list
of records inside a template (e.g., context_object_name = 'item_list').

■■ Tip  A ListView class-based view also inherits its behavior from many of the same classes as the
CreateView class described earlier. Therefore, you can also use the template_name field to specify a custom
template name; the content_type field to specify a MIME type; and the get_context_data() method to alter
the context used by a template.

Customize record list: Queryset and ordering fields and pagination behavior
By default, a ListView class-based view generates a list for all records that belong to a model. While this
behavior is reasonable, it can also be necessary to create a ListView class-based view that returns more
limited criteria, in which case it’s necessary to delimit the backing model query. The queryset field is used
to define a custom query to generate a list of records.

Another helpful option to customize a record list is to specify the field order in which to generate the
record list. Similar to the standard order_by() method used in model queries, a ListView class-based view
can specify the ordering field to define the sort order of a record list.

Listing 9-17 illustrates the use of the queryset and ordering fields in a ListView class-based view.

Listing 9-17.  Django class-based view with ListView to reduce record list with queryset

views.py
from django.views.generic.list import ListView
from .models import Item

class ItemList(ListView):
 model = Item
 queryset = Item.objects.filter(menu__id=1)
 ordering = ['name']

As you can see in Listing 9-17, the queryset field is assigned a standard model query to produce Item
records with a menu id=1. In this manner, the resulting record list passed by ListView the class-based view
to the template only contains Item records that match these criteria. In addition, Listing 9-17 also makes use
of the ordering = ['name'] field, which in this case ensures the query to generate the record list is sorted
by the Item model’s name field.

Chapter 9 ■ Django Model Forms and Class Views

430

Although the queryset option is helpful to delimit the size of the record list presented by a ListView
class-based view, sometimes it’s necessary to deal with a large record list and still be able to delimit the
amount of results displayed in a template. For such scenarios, you can use pagination to split out a large
record list over multiple pages.

Since pagination by definition depends on the use of multiple pages, it forces you to adjust not only a
ListView class-based view definition, but also the url structure and template used by the class-based view to
support multiple pages. Listing 9-18 illustrates a pagination example for a ListView class-based view, which
is based on the example from Listing 9-15.

Listing 9-18.  Django class-based view with ListView to read list of records with pagination

views.py
from django.views.generic.list import ListView
from .models import Item

class ItemList(ListView):
 model = Item
 paginate_by = 5

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

urlpatterns = [
 url(r'^$',items_views.ItemList.as_view(),name="index"),
 url(r'^page/(?P<page>\d+)/$',items_views.ItemList.as_view(),name="page"),
]

templates/items/item_list.html
 {% regroup object_list by menu as item_menu_list %}
{% for menu_section in item_menu_list %}
 {{ menu_section.grouper }}

 {% for item in menu_section.list %}
 {{item.name|title}}
 {% endfor %}

{% endfor %}

 {% if is_paginated %}
 {{page_obj}}
 {% endif %}

The relevant pagination logic in Listing 9-18 is in bold. First off, the paginate_by = 5 is added to
the class-based view definition, which tells Django to limit the record list to 5 records per page. Since the
ListView class-based view will require a page number to display records beyond the first 5 records of query
– since pages are limited to 5 – the natural place to obtain a page number is through a url (e.g., /page/1/ to
create a list with the first 5 records of a query, /page/2/ to create a list with the records 6 through 10, etc.).

Chapter 9 ■ Django Model Forms and Class Views

431

Next in Listing 9-18, you can see a new url definition with the (?P<page>\d+) parameter hooked up the
ListView class-based view. This url definition allows a request that matches the regular expression pattern
(e.g., /page/1/,/page/2/) to pass the url page parameter value to the class-based view. When a ListView
class-based view detects a url page parameter value with the presence of the paginate_by option, it adjusts
the query for the record list to return the appropriate set of records to a template based on the page (e.g., /
page/1/ generates a list of records from 1 to 5 of the overall query, /page/2/ generates a list of records from 6
to 10 of the overall query, etc.).

Finally, the last section in Listing 9-18 represents the backing template for a ListView class-based view
that uses pagination. The {% is_paginated %} tag and {{page_obj}} context reference are used to let users
know on which page of the overall record list they’re on.

■■ Tip  A ListView class-based view can also use the get() class-based view method to get full control over
the view workflow. See the previous section on the CreateView class-based view, which describes how to use
it and its implications.

DetailView Fields and Methods
Like other class-based views, a DetailView class-based view can also be created with custom fields and
methods to override their default behaviors.

As it turns out, the DetailView class inherits its behavior from many other Django class-based views,
which are described in the following list:

django.views.generic.detail.SingleObjectTemplateResponseMixin
django.views.generic.base.TemplateResponseMixin
django.views.generic.detail.BaseDetailView
django.views.generic.detail.SingleObjectMixin
django.views.generic.base.View

■■ Note A DetailView class-based view inherits many fields and methods from its parent classes. The
following options are the most common ones; for an exhaustive list consult each of the DetailView parent
classes.

Basic DetailView options: Model field and url with pk parameter
As you saw in Listing 9-16, the essential logic fulfilled by a DetailView class-based view is to get a model
record and display it in a template. Therefore the model field is one of the essential pieces to this type of
class-based view and must always be provided.

In order to get a specific model record, a DetailView class-based view must also define a url parameter
that helps it select a model record. By default, this url parameter must be named pk and its value is used to
perform a query on the model value using the pk field, which is generally equivalent to a model’s id field.

Chapter 9 ■ Django Model Forms and Class Views

432

■■ Tip  A DetailView class-based view also inherits its behavior from many of the class-based view classes
described earlier. Therefore, you can also use the template_name field to specify a custom template name; the
content_type field to specify a MIME type; the get_context_data() method to alter the context used by a
template; as well as the context_object_name field to declare a different context variable to access a record in
a template.

Customize url and query parameters: pk_url_kwarg, slug_field and
slug_url_kwarg
By default, a DetailView class-based view expects a url argument named pk to determine on which model
record to make a query by its primary key. However, if you already have a preexisting url or simply don’t like
this inexpressive url parameter name, you can assign a custom url parameter with the pk_url_kwarg field.

For example, setting pk_url_kwarg='item_id' on a DetailView class-based view, allows a url to
be defined as url(r'^(?P<item_id>\d+)/$',items_views.ItemDetail.as_view()) vs. the default
url(r'^(?P<pk>\d+)/$',items_views.ItemDetail.as_view()).

Even though performing the record query of a DetailView class-based view with the pk field is a common
practice – given the pk field is generally an integer field with a database index to increase lookup performance
– sometimes in can be necessary to perform the record query of a DetailView class-based with another model
field (e.g., to create more user/SEO-friendly urls like /item/capuccino/, instead of /item/1/).

Listing 9-19 illustrates a DetailView class-based view that uses the slug_field option to allow a model
record query to be made against a model field other than pk.

Listing 9-19.  Django class-based view with DetailView and slug_field option

views.py
views.py
from django.views.generic import DetailView
from .models import Item

class ItemDetail(DetailView):
 model = Item
 slug_field = 'name__iexact'

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

urlpatterns = [
 url(r'^(?P<slug>\w+)/$',items_views.ItemDetail.as_view(),name="detail"),
]

Template identical to listing to template in Listing 9-16

The first important aspect in Listing 9-19 is that the url definition has a url parameter named slug that
matches any word pattern due to the w+ regular expression. This means urls such as /items/espresso/
and /items/latte/ match this url, unlike the prior DetailView class-based url definition that uses the pk
parameter to match numeric values with d+ regular expression.

Chapter 9 ■ Django Model Forms and Class Views

433

When a DetailView class-based view receives a url parameter named slug, it signals the class-based
view that the model record query should done on a model field other than pk. Because this slug value can
be ambiguous (e.g., it can represent one of several model field values, such as name, cost, or description), it’s
necessary to qualify which model field the slug value represents, which is the purpose of slug_field field.

In the case of Listing 9-19, the slug_field field is set to name__iexact, which tells the DetailView
class-based view to perform a case-insensitive model query with the slug value on the Item model name
field. The case-insensitive query is provided by the __iexact lookup and is important in case the database
record values are mixed case (e.g., the url /items/capuccino/ would match an Item name record capuccino,
Capuccino,,or CAPUCCINO. Without case inventivenesses, the Item name record would need to be exactly
capuccino to match the url).

Although not presented in the sample in Listing 9-19, another option available for a DetailView class-
based view is the slug_url_kwarg option, which has a similar to the pk_url_kwarg option described earlier.

By default, a DetailView class-based view that uses a slug query (i.e., non pk query) expects a url
argument named slug to determine on which model field to make a query to obtain a record. However, if
you already have a preexisting url or simply don’t like this inexpressive url parameter name, you can assign a
custom url parameter with the slug_url_kwarg field.

For example, setting slug_url_kwarg='item_name' on a DetailView class-based view, allows a url
to be defined as url(r'^(?P<item_name>\w+)/$',items_views.ItemDetail.as_view()) vs. the default
url(r'^(?P<slug>\w+)/$',items_views.ItemDetail.as_view()).

■■ Tip  A DetailView class-based view can also use the get() class-based view method to get full control
over the view workflow. See the previous section on the CreateView class-based view that describes how to
use it and its implications.

Update Model Records with the Class-Based View UpateView
When you update a Django model record, the typical process involves fetching the model record you want to
update from a database, presenting the model data in a form so a user can make changes, and finally saving
the changes back to the database. The Django UpdateView class-based view is specifically designed to cut
down on the amount of boilerplate code needed to update a Django model record.

Due to its functionality, the UpdateView class-based view operates like a combination of the CreateView
– which creates a model record through a form – and the DetailView – which displays a model record.
Listing 9-20 illustrates an example of an UpdateView class-based view.

Listing 9-20.  Django class-based view with UpdateView to edit a record

views.py
from django.views.generic import UpdateView
from .models import Item

class ItemUpdate(UpdateView):
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

Chapter 9 ■ Django Model Forms and Class Views

434

urlpatterns = [
 url(r'^edit/(?P<pk>\d+)/$', items_views.ItemUpdate.as_view(), name='edit'),
]

templates/items/item_form.html
<form method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit" class="btn btn-primary">
 {% if object == None%}Create{% else %}Update{% endif %}
 </button>
</form>

The first definition in Listing 9-20 is the ItemUpdate class that inherits its behavior from the UpdateView
class-based view class. The model field in the ItemUpate class sets a value to Item, which tells Django to
update Item model records. In addition, because you’re dealing with an update operation, the Item model
record must be presented in a form – which is the purpose of the from_class option – as well as define a
success url to redirect a user if an update is successful, which is the purpose of the success_url option.

Next in Listing 9-20 is the url definition that hooks up the UpdateView class-based view class. Because
an UpdateView class-based view must present a specific model record to edit, it relies on a url parameter to
limit a query to a single record. In this case, notice the url contains the pk url parameter that gets passed to
the class-based view – just like it’s done with a DetailView class-based view.

For example, if a request is made for the url /items/edit/1/, 1 is passed as the pk argument to the
UpdateView class-based view, which in turn performs the query Item.objects.get(pk=1) to retrieve the
record and present it in a form for editing.

Finally, the last part in Listing 9-20 illustrates the template item_form.html that displays the record
inside a form to edit. One important aspect of the default UpdateView class-based view template is that it’s
the same default template used by a CreateView class-based view. This is because both class-based views
share the same parent class-based view class for this functionality, not to mention the purpose of the form
is the same (e.g., the form in a CreateView class-based view is sent empty for a user to fill in new record
data, where as the form in a UpdateView class-based view is sent pre-filled with a record to update the
record data).

For this reason, the template in Listing 9-20 is almost identical to the template in Listing 9-9 used in a
CreateView class-based view. The minor difference is that if the template detects the presence of the object
variable in its context, it means the UpdateView class-based view is passing a record for editing and the form
button is set to Update; otherwise, if no object variable is present, it means the CreateView class-based view
is calling the template and the form button is set to Create.

Recapping, the most important default behaviors of an UpdateView class-based view:
The model record to update is determined based on the model option and a url pk parameter that

delimits the query to a single record based on the model’s primary key.
The template to render a form to update a record uses the convention <app_name>/<model_name>_

form.html under the TEMPLATES directory path of a project, noting it’s the same default template used by
CreateView class-based views, for which you can rely on the presence of the object context variable to
determine if it’s the UpdateView calling the template.

The context variable passed to a template (i.e., the one containing the record) is named object, albeit
the form is automatically populated with this record value.

As you can see in this example, a class-based view that inherits its behavior from the UpdateView class,
cuts down the boilerplate code needed to edit a model record.

Chapter 9 ■ Django Model Forms and Class Views

435

UpdateView Fields and Methods
Like other class-based views, UpdateView class-based views can also be created with custom fields and
methods to override their default behaviors.

As it turns out, the UpdateView class inherits its behavior from many other Django class-based views,
presented in the following list:

django.views.generic.detail.SingleObjectTemplateResponseMixin
django.views.generic.base.TemplateResponseMixin
django.views.generic.edit.BaseUpdateView
django.views.generic.edit.ModelFormMixin
django.views.generic.edit.FormMixin
django.views.generic.detail.SingleObjectMixin
django.views.generic.edit.ProcessFormView
django.views.generic.base.View

■■ Note A n UpdateView class-based view inherits many fields and methods from its parent classes. The following
options are the most common ones; for an exhaustive list consult each of the UpdateView parent classes.

Basic UpdateView options: Model, form_class and success_url fields, and url
with pk parameter
As you saw in Listing 9-20, the essential logic fulfilled by an UpdateView class-based view is to get a model
record and display it in a form for editing. Therefore the model field is one of the essential pieces for this type
of class-based view and must always be provided. In addition, because a record is updated via form, it’s also
necessary to specify a form through the form_class option, as well as a success url through the success_url
option for when an update is successful.

In order to get a specific model record, an UpdateView class-based view must also define a url
parameter that helps it select a model record to edit. By default, this url parameter must be named pk and
its value is used to perform a query on the model value using the pk field, which is generally equivalent to a
model’s id field.

■■ Tip  An UpdateView class-based view also inherits its behavior from many of the class-based view classes
described earlier. Therefore, you can also use the template_name field to specify a custom template name; the
content_type field to specify a MIME type; the get_context_data() method to alter the context used by a
template; as well as the context_object_name field to declare a different context variable to access a record in
a template.

In addition, because an UpdateView class-based view requires obtaining a model record, it can also use the
pk_url_kwarg field to accept a different url parameter named differently than pk; the slug_field field to
specify an alternative record query field; and the slug_url_kwarg field to accept a different url parameter
named differently than slug.

Finally, an UpdateView class-based view can also use the get() and post() class-based view methods to get
full control over the view workflow. The previous class-based view sections describe how to use all these
class-based view fields and methods.

Chapter 9 ■ Django Model Forms and Class Views

436

Delete Records with the Class-Bases View DeleteView
When you delete a Django model record, besides executing the actual delete operation, it’s generally a good
practice to present a confirmation page to a user. The Django DeleteView class-based view is specifically
designed to cut down on the amount of boilerplate code needed to delete a model record, while presenting a
confirmation page. Listing 9-21 illustrates a DeleteView class-based view example.

Listing 9-21.  Django class-based view with DeleteView to delete record

views.py
from django.views.generic.edit import DeleteView
from .models import Item

class ItemDelete(UpdateView):
 model = Item
 success_url = reverse_lazy('items:index')

urls.py
from django.conf.urls import url
from coffeehouse.items import views as items_views

urlpatterns = [
 url(r'^delete/(?P<pk>\d+)/$', items_views.ItemDelete.as_view(), name='delete'),
]

templates/items/item_confirm_delete.html
 <form method="post">
 {% csrf_token %}
 Do you really want to delete "{{ object }}"?
 <button class="btn btn-primary" type="submit">Yes, remove it!</button>
 </form>

The first definition in Listing 9-21 is the ItemDelete class, which inherits its behavior from the
DeleteView class-based view class. The model field in the ItemDelete class sets a value to Item, which tells
Django to delete Item model records. In addition, because you’ll want users to confirm the delete operation,
the success_url option must also be declared to specify where to take users after the delete operation is
successful.

Next in Listing 9-21 is the url definition that hooks up the DeleteView class-based view class. Because
a DeleteView class-based view must be told which model record to delete, it relies on a url parameter to
provide this query delimiter. In this case, notice the url contains the pk url parameter that gets passed to the
class-based view – just like it’s done with a DetailView class-based view.

For example, if a request is made for the url /items/delete/1/, 1 is passed as the pk argument to the
DeleteView class-based view, which in turn performs the query Item.objects.get(pk=1) to prepare the
record for deletion.

Finally, the last part in Listing 9-21 illustrates the item_confirm_delete.html template that is used for
the user-facing deletion sequence. Notice this template contains a pseudo-form (i.e., no form fields) with a
question and submit button. The reason for this pseudo-form is the item_confirm_delete.html template
has a dual function.

Chapter 9 ■ Django Model Forms and Class Views

437

If an HTTP GET request is made on a DeleteView class-based view, a page with this pseudo-form is
returned to the user presenting him with the question Do you really want to delete "{{ object }}"?,
where object is the model record to be deleted. If the user clicks on this pseudo-form submit button, it
issues an HTTP POST request – notice the <form method="post"> tag – to the same DeleteView class-based
view, which invokes the actual delete procedure. In this manner, this template with a pseudo-form allows a
user to confirm if he really wants to delete the record after hitting a url delete link (e.g., /items/delete/1/),
instead of immediately deleting a record when hitting a url delete link.

Recapping, the most important default behaviors of a DeleteView class-based view are the following:
The model record to delete is determined based on the model option and a url pk parameter that

delimits the query to a single record based on the model’s primary key.
The template to render a form to update a record uses the convention <app_name>/<model_name>_

confirm_delete.html under the TEMPLATES directory path of a project.
The context variable passed to a template (i.e., the one containing the record to delete) is named

object.
An HTTP GET request on a DeleteView class-based view presents the confirmation page from the <app_

name>/<model_name>_confirm_delete.html template. An HTTP POST request on a DeleteView class-based
view performs the actual delete procedure.

As you can see in this example, a class-based view that inherits its behavior from the DeleteView class,
cuts down the boilerplate code needed to delete a model record.

DeleteView Fields and Methods
Like other class-based views, a DeleteView class-based view can also be created with custom fields and
methods to override their default behaviors.

As it turns out, the DeleteView class inherits its behavior from many other Django class-based views,
presented in the following list:

django.views.generic.detail.SingleObjectTemplateResponseMixin
django.views.generic.base.TemplateResponseMixin
django.views.generic.edit.BaseDeleteView
django.views.generic.edit.DeletionMixin
django.views.generic.detail.BaseDetailView
django.views.generic.detail.SingleObjectMixin
django.views.generic.base.View

■■ Note  A DeleteView class-based view inherits many fields and methods from its parent classes. The
following options are the most common ones; for an exhaustive list consult each of the DeleteView parent
classes.

Basic DeleteView options: Model and success_url fields and url with pk
parameter
As you saw in Listing 9-21, the essential logic fulfilled by a DeleteView class-based view is to get a model
record and delete it while presenting a confirmation page. Therefore the model field is one of the essential
pieces to this type of class-based view and must always be provided. In addition, because a record is set to be
deleted, it’s also necessary to specify a success url through the success_url option to redirect a user after the
record is deleted.

Chapter 9 ■ Django Model Forms and Class Views

438

In order to get a specific model record, a DeleteView class-based view must also define a url parameter that
helps it select a model record to delete. By default, this url parameter must be named pk and its value is used to
perform a query on the model value using the pk field, which is generally equivalent to a model’s id field.

■■ Tip  A DeleteView class-based view also inherits its behavior from many of the class-based view classes
described earlier. Therefore, you can also use the template_name field to specify a custom template name; the
content_type field to specify a MIME type; the get_context_data() method to alter the context used by a
template; as well as the context_object_name field to declare a different context variable to access a record in
a template.

In addition, because a DeleteView class-based view requires obtaining a model record, it can also use the
pk_url_kwarg field to accept a different url parameter named differently than pk; the slug_field field to
specify an alternative record query field; and the slug_url_kwarg field to accept a different url parameter
named differently than slug.

Finally, a DeleteView class-based view can also use the get() and post() class-based view methods to get
full control over the view workflow. The previous class-based view sections describe how to use all these
class-based view fields and methods.

Class-Based Views with Mixins
Although all class-based views that operate on models typically follow the same workflow to create, read,
update, and delete model records, it’s fair to say that after seeing the previous class-based view sections,
you’ll often find yourself adjusting the default behavior of class-based views.

While it can be perfectly reasonable to adjust the methods and fields of a class-based view a couple of
times, it can get tiresome if you need to do it over and over to obtain the same functionality across dozens or
hundreds of class-based views.

Nowhere is this more evident than when you’re forced to define a get() or post() method in a class-
based view, to include some functionality that’s not supported in a class-based view (e.g., CreateView,
ListView, DetailView, UpdateView, DeleteView), which requires typing in a long-winded workflow that can
turn out to be repetitive if done multiple times. To cut down on repetitive customizations in the context of
class-based views, you can use mixins.

For starters, you’ve already used mixins in the context of class-based views, even if you didn’t realize
it. If you looked closely at the class-based view classes that provide the behaviors to the model class-based
views described in previous sections, you may have noticed many include the term mixin in their name
(e.g., ModelFormMixin, FormMixin, SingleObjectMixin).

A software mixin is a construct that allows inheritance-like behavior between classes, noting the emphasis
on inheritance-like. When you use class inheritance, a parent-child class relationship is often described with
the ‘is a’ term (e.g., if a Drink class inherits its behavior from an Item class, a Drink is an Item). A mixin class, on
the other hand, allows a class to adopt the behaviors of a mixin class without the 'is a' behavior.

In other words, a mixin class is a way to add functionality to classes, with the mixin class serving
as a reusable component. For example, you can have a mixin Checkout class used by a Store class and
OnlineStore class, which allows the functionality of the mixin class to be reused in any other class. Notice
that for mixin classes, the inheritance ‘is a’ behavior doesn’t apply, you can’t say a Store is a Checkout or an
OnlineStore is a Checkout, it’s more of 'uses a' behavior. Therefore although mixin classes – semantically
speaking – are used to inherit behaviors, technically speaking they don’t use inheritance as it’s commonly
known in software engineering, hence the use of the term inheritance-like.

Chapter 9 ■ Django Model Forms and Class Views

439

So why are mixins important to class-based views? It turns out, all of the base class-based view classes
you learned about in the previous section are built on class-based views mixins. This not only means you
can mix and match mixins to create custom class-based views, but you can also create or reuse other mixins
to enhance the functionality of class-based views.

Earlier when you learned about the CreateView() class-based view, you may recall the examples in
Listing 9-13 and 9-14 added a Django framework success message to inform a user when a record was
created. In the case of Listing 9-13, this required tapping into the form_valid() class-based view method to
add this message, while in the case of Listing 9-14, this required tapping into the post() class-based view
method. Although both approaches are perfectly valid, declaring either of these methods in a class-based
view for the sole purpose of adding a Django framework success message is a lot of work.

By using a mixin on a class-based view, you can simplify the addition of Django framework success
messages in a class-based view to a single field, without the need to customize more elaborate methods and/
or add logic to a class-based view.

Listing 9-22 illustrates a CreateView class-based view that uses a mixin to support this functionality to
add a Django framework success message to a class-based view response.

Listing 9-22.  Django class-based view with CreateView and mixin class

views.py
from django.views.generic.edit import CreateView
from django.contrib.messages.views import SuccessMessageMixin
from .models import Item, ItemForm

class ItemCreation(SuccessMessageMixin,CreateView):
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 success_message = "Item %(name)s created successfully"

■■ Caution  Mixin classes should always be declared first to take precedence over coarser grained
class-based views classes in the context of multiple inheritance class-based views (e.g. class
ItemCreation(SuccessMessageMixin,CreateView)).

The first important aspect of Listing 9-22 is the import statement for the SuccessMessageMixin
mixin class, which is what gives any class-based view the ability to easily add success messages. Next, the
SuccessMessageMixin mixin class is added to the ItemCreation class, along with the CreateView
class-based view to give the class-based view its core functionality. Notice the mixin class is added to the
class-based view using standard Python inheritance syntax.

Once the ItemCreation class-based view gains access to the SuccessMessageMixin mixin class behavior,
all that’s needed to generate a success message is to define the actual message in the success_message field.
In this manner, when a success operation occurs in the context of the class-based view (e.g., the success_url
is triggered), the class-based view automatically adds the success_message value to the request to display to
an end user.

As you can see in Listing 9-22, the process to add a Django framework success message to a class-based
view is greatly simplified and made reusable by means of a mixin class. This is particularly true, when you
compare it to the approaches taken in Listings 9-13 and 9-14, consisting of overriding class-based view
methods that require a lot of typing – many repetitive – to fulfill a simple task.

441© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_10

CHAPTER 10

Django User Management

In this chapter you’ll learn about Django administers users, groups, and permissions. You’ll learn how to
conditionally display content depending on a user, how to restrict urls and class-based views, as well as
how to manage CRUD (Create-Read-Update-Delete) permissions for Django model records based on user
permissions.

In addition, you’ll also learn how to customize Django’s built-in user model to support additional data
fields, as well as how to automate user management tasks like signup, password reminders, and password
reset emails. Finally, you’ll learn how to create custom authentication back ends to validate user credentials
with different technologies, including allowing users to access a Django application with a Facebook,
Google, or Twitter account.

Introduction to the Django User System
The Django user system is based on the django.contrib.auth package built in to the Django framework.
In this section you’ll learn about the core concepts offered by this package, which is the default user system
used by a variety of Django apps including the Django admin.

User Types, Subtypes, Groups, and Permissions
There are two main types of Django user classes: User and AnonymousUser. If a user authenticates himself
(i.e., provides a valid username/password) Django recognizes him as a User. On the other hand, if a user just
surfs an application without any authentication, Django recognizes him as an AnonymousUser.

Any User can be further classified into one of various subtypes:

•	 superuser.- The most powerful user with permissions to create, read, update, and
delete data in the Django admin, which includes model records and other users.

•	 staff.- A user marked as staff can access the Django admin. But permissions to create,
read, update, and delete data in the Django admin must be given explicitly to a user.
By default, a superuser is marked as staff.

•	 active.- All users are marked as active if they’re in good standing. Users marked as
inactive aren’t able to authenticate themselves, a common state if there’s a pending
post-registration step (e.g., confirm email) or a user is banned and you don’t want to
delete his data.

https://doi.org/10.1007/978-1-4842-2787-9_10

Chapter 10 ■ Django User Management

442

Django also offers the concept of a Group class to grant a set of users the same set of permissions
without having to assign them individually. For example, you can grant permissions to a group and then
assign users to the group to make permission management easier. In this manner, you can revoke or add
permissions in a single step to a set of users, as well as quickly give new users the same permissions.

In addition, you can assign Django permissions granularly to a User or Group in order for them to do
CRUD (Create-Update-Delete) records on Django models, a process that is done through Permission model
records. Or you can also assign coarser-grained Django permissions on URL/view methods or template
content to grant access to a User, Group, or even Permission assignee.

Now that you know the basic concepts behind Django’s user system, let’s explore the more common
operations associated with Django users in greater detail.

Create Users
The first user you’ll want to create is a superuser. If you already set up the Django admin in Chapter 1,
then you’ll already have a project superuser. Either way, I’ll recap the process here since you can have any
number of superusers. Listing 10-1 illustrates the various ways in which you can create a superuser.

■■ Tip  Consult the book’s accompanying source code to run the exercises, in order to reduce typing and
automatically access test data.

Listing 10-1.  Create Django superuser

[user@coffeehouse ~]$ python manage.py createsuperuser
Username (leave blank to use 'admin'):
Email address: admin@coffeehouse.com
Password:
Password (again):
Superuser created successfully.

[user@coffeehouse ~]$ python manage.py createsuperuser --username=bigboss
 --email=bigboss@coffeehouse.com
Password:
Password (again):
Superuser created successfully.

[user@coffeehouse ~]$ python manage.py shell
Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from django.contrib.auth.models import User
>>> user = User.objects.create_superuser(username='angelinvestor',
 email='angelinvestor@coffeehouse.com',
 password='seedfunding')
>>>

■■ Note  A Django username must be unique; preexisting usernames are rejected.

http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 10 ■ Django User Management

443

As you can see in Listing 10-1, you can create a superuser with the createsuperuser command in
the manage.py utility, where you’re asked for a username, email. and password. And you can also create a
superuser with the same createsuperuser command using inline arguments --username and --email, in
which case you’re only prompted for a password.

In addition, it’s also possible to create a superuser through the Django shell using the User model class
with the create_superuser() method. Notice how the create_superuser() method requires the same
username, email, and password arguments.

When you create a superuser in any of these ways, the user is also automatically set as a staff member
and marked as a active, so you don’t need to take any additional steps to access the Django admin – which
requires staff member permissions – or proceed with authentication, which requires a user to be marked as
active.

Sometimes you just want to create a regular user, in which case you can use Django’s shell utility and
create a user directly through the User model. This process is illustrated in Listing 10-2.

Listing 10-2.  Create regular Django user through shell

[user@coffeehouse ~]$ python manage.py shell
Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user(username='downtownbarista',
 email='downtownbarista@coffeehouse.com',
 password='cappuccino')
>>> user.is_staff
False
>>> user.is_active
True
>>> user.is_superuser
False

As you can see in Listing 10-2, after you gain access to the Django shell you import the User model class
and invoke the create_user() method with the username, email, and password arguments. The result of
the create_user() method contains the newly created user.

To confirm the create_user() method generates a regular user, you can see in Listing 10-2 a call to the
various User model attributes, confirming the user is neither staff or superuser and is just marked as active.

Finally, it’s also possible to create users through the Django admin. To do this you’ll first need to make
sure you have superuser access to the Django admin. Once you access the Django admin, you’ll see a screen
like the one in Figure 10-1, click on the ‘Users’ link. The ‘Users’ link takes you to a screen like the one in
Figure 10-2, click on the button ‘Add User+’ in the top right. The ‘Add User+’ button takes you to a screen like
the one in Figure 10-3 where you can introduce the credentials for a new user.

Chapter 10 ■ Django User Management

444

Figure 10-1.  Django admin site home page

Figure 10-2.  Django admin Users list

Chapter 10 ■ Django User Management

445

If you wish to change the subtype (i.e. superuser, staff) of a user created in this manner, you can also do
it in the Django admin, a process that’s described in the next section.

Manage Users
Once a user is in a Django application, you’ll end up managing him. This management can be either
revoking his privileges, adding to his privileges, or even editing his profile information. You can manage
Django users in two ways, in the Django admin or by manipulating a User model in the Django shell or
directly in your application.

The easiest way to manage users is directly in the Django admin. Once you access the Django admin
you’ll see a screen like the one in Figure 10-1, if you click on the ‘Users’ link you’ll be taken to a screen like
the one in Figure 10-2 that contains a list of Django users. Each Django user presented in Figure 10-2 has
his username as a link, and if you click on this link you’ll be taken to the user’s page, which is illustrated in
Figures 10-4, 10-5, and 10-6 where you can edit a user’s profile.

Figure 10-3.  Django admin to create new user

Chapter 10 ■ Django User Management

446

Figure 10-5.  Django admin change user page - Part 2

Figure 10-4.  Django admin change user page - Part 1

Chapter 10 ■ Django User Management

447

The first part of a user’s profile that you can edit is illustrated in Figure 10-4. Here you can edit his
username, his password - by clicking on the ‘this form’ link at the end of the small text - his first name, his
last name, as well as his email. In addition, you can see there are three check boxes where it’s possible to
change a user’s active, staff, and superuser status.

If you scroll down, you’ll see the second part of a user’s profile that you can edit, which is illustrated
in Figure 10-5. Here you can assign a user to different groups, as well as assign a user individual CRUD
permissions over Django models. Here I would advise you to carefully evaluate the need to assign
individual CRUD permissions to a user; a more flexible approach is to create groups and assign them CRUD
permissions and then assign users to groups, this way the permissions become easier to track and reusable
for other users.

If you scroll further down to the end, you’ll see the third part of a user’s profile that you can edit, which
is illustrated in Figure 10-6. Here you can view and update a user’s last login, as well as the date a user was
created. At the bottom right of the page, you can see the various save buttons to store any changes made to
the page. And in addition, at the bottom left there’s a ‘Delete’ button to remove a user completely; however,
I would advise you to consider just unchecking a user’s active status to restrict access. This last step is
sufficient to block a user from accessing an application again and it keeps his other data untouched in case
you want to undo the action.

Another option to modify a user’s profile is to directly manipulate his User model record. As illustrated
in Listing 10-3, you first make a query for the desired user and then modify the model attributes or execute
one of the User model helper methods.

Listing 10-3.  Manage Django user through shell

[user@coffeehouse ~]$ python manage.py shell
Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)

Figure 10-6.  Django admin change user page - Part 3

Chapter 10 ■ Django User Management

448

>>> from django.contrib.auth.models import User
>>> user = User.objects.get(id=1)
>>> user.username = 'superadmin'
>>> user.save()
>>> userbig = User.objects.get(username='bigboss')
>>> userbig.is_superuser
True
>>> userbig.superuser = False
>>> userbig.first_name = 'Big'
>>> userbig.last_name = 'Boss'
>>> userbig.save()
>>> userbig.is_superuser
False
>>> userbig.get_full_name()
u'Big Boss'
>>> userbarista = User.objects.get(email='downtownbarista@coffeehouse.com')
>>> userbarista.email ='barista@coffeehouse.com'
>>> userbarista.save()
>>> userbarista.set_password('mynewpass')
>>> userbarista.check_password('oldpass')
False
>>> userbarista.check_password('mynewpass')
True

As you can see in Listing 10-3, you can modify the same User profile values as those presented in
the Django admin in Figures 10-4, 10-5, and 10-6. Just be aware that because you’re making a query, any
changes made to fields must be followed by a call to the save() method on the reference for fields to be
persisted. Tables 10-1 and Table 10-2 contain a full list of fields and methods available on the User model.

Table 10-1.  Django django.contrib.auth.models.User fields

Field Description

username (Required) 30 characters or fewer and can contain alphanumeric,
 _, @, +, . and - characters.

first_name (Optional) 30 characters or fewer.

last_name (Optional) 30 characters or fewer.

email (Optional) Email address.

password (Required) A hash of, and metadata about, the password. Note that Django
doesn't store the raw password.

groups A many to many relationship to django.contrib.auth.models.Group

user_permissions A many to many relationship to django.contrib.auth.Permission.

is_staff (Boolean) Designates whether a user can access the admin site.

is_active (Boolean) Designates whether a user is considered active.

is_superuser (Boolean) Designates whether a user has all permissions without explicitly
assigning them.

last_login A datetime of the user's last login, set to NULL if the user has never logged in.

date_joined A datetime designating when the account was created. Is set to the current
date/time by default when the account is created.

Chapter 10 ■ Django User Management

449

Table 10-2.  Django django.contrib.auth.models.User methods

Method Description

get_username() Returns the username for the user. Since the User model can be
changed for another, this method is the recommended approach
instead of referencing the username attribute directly.

is_anonymous() For a User this method always returns False; it's only used as a way to
differentiate between User and AnonymousUser.

is_authenticated() For a User this method always returns True, as it's only used to find
out whether the user has gone through the AuthenticationMiddleware
(representing the currently logged-in user).

get_full_name() Returns the first_name and the last_name fields, with a space in between.

get_short_name() Returns the first_name.

set_password
(raw_password)

Sets the user's password to the given raw string, taking care of the
password hashing. Note that when the raw_password is None, the
password is set to an unusable password, as if set_unusable_password()
were used.

check_password
(raw_password)

Returns True if the given raw string is the correct password for the user,
talking care of the password hashing for making the comparison.

set_unusable_password() Marks the user as having no password set. Note this isn't the same as
having a blank string for a password. check_password() for this user will
never return True. This is helpful if authentication takes place against an
existing external source (e.g., LDAP directory).

has_usable_password() Returns False if set_unusable_password() has been called for the user.

get_group_permissions
(obj=None)

Returns a set of group permission strings for the user. If the obj is
passed, only returns the group permissions for the specific object.

get_all_permissions
(obj=None)

Returns a set of group and user permission strings for the user. If the obj
is passed, only returns the group permissions for the specific object.

has_perm
(perm, obj=None)

Returns True if the user has the specified permission, where perm is
in the format <app label>.<permission codename>”. Note if the user is
inactive, this method always returns False. If the obj is passed, the check
occurs on the specific object and not on the model.

has_perms
(perm_list, obj=None)

Returns True if the user has each of the specified permissions, where
each perm is in the format <app label>.<permission codename>”. Note
if the user is inactive, this method always returns False. If the obj is
passed, the check occurs on the specific object and not on the model.

has_module_perms
(package_name)

Returns True if the user has permissions in the given package
(i.e., the Django app label). If the user is inactive, this method always
returns False.

email_user
(subject, message,
from_email=None, **kwargs)

Sends an email to the user. If from_email is None, Django uses the
DEFAULT_FROM_EMAIL in settings.py. Also note this method relies on
Django's send_mail() method to which it passes the **kwargs argument.
See the Django email shortcut methods for more details on the send_
mail() method and **kwargs values,

Chapter 10 ■ Django User Management

450

■■ Tip  User model data is stored in the database table auth_user.

PASSWORD STRENGTH OPTIONS

By default, Django enforces password follow certain rules, such as not being similar to a username,
containing a minimum amount of characters, avoiding common words, and forcing passwords to
consist of more than numbers. These password rules are defined in a project’s settings.py file in the
AUTH_PASSWORD_VALIDATORS variable, as follows:

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': �'django.contrib.auth.password_validation.UserAttributeSimilarity

Validator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
 },
]

This list of validators can be edited to suit the needs of a project, by either removing certain rules or
inclusively making them more strict with options.1

Create and Manage Groups
Django groups can be created in the Django admin. With a superuser account, access the Django admin
and you’ll see a screen like the one in Figure 10-1, and click on the ‘Groups’ link. The ‘Groups’ link takes
you to a screen like the one in Figure 10-7, and then click on the button ‘Add Group+’ in the top right. The
‘Add Group+’ button takes you to a screen like the one in Figure 10-8 where you can create a new group
introducing its name.

1https://docs.djangoproject.com/en/1.11/topics/auth/passwords/#included-validators

https://docs.djangoproject.com/en/1.11/topics/auth/passwords/#included-validators

Chapter 10 ■ Django User Management

451

Figure 10-7.  Django admin Groups list

Figure 10-8.  Django admin to create new group

Chapter 10 ■ Django User Management

452

Figure 10-9.  Django admin to delete group

As you can see in Figure 10-8, all that’s need to create a group is a name and you can optionally specify
permissions given to the group to do CRUD operations on Django models in the application.

The management of groups is simpler than users and can also be completely done from the Django
admin. What you’ll end up doing most of the time is assigning users to groups.

To assign a user to a group, when you’re editing a user you’ll see a selection grid for just this purpose,
which is illustrated in Figure 10-5. To edit a group’s properties - name and Create-Delete-Update Django
model permission - you can do so from the same page where you created it illustrated in Figure 10-8. To
delete a group from the Groups list illustrated in Figure 10-7, you select the group you wish to delete and
select the action from the drop-down list, as illustrated in Figure 10-9.

■■ Tip  Group model data is stored in the database table auth_group. And User-Group relationships is stored
in the database table auth_user_groups.

Permission Types
By default, permissions in a Django project enforce certain actions. In the previous section, you learned how
users can be given the status of superuser, staff, and active, all of which are permissions designed to work
with the Django admin and the overall access workflow of a Django project. In addition, you also learned
how users or groups can be given the ability to create, delete, or update Django model records, all of which
are permissions assigned to individual Django models.

In this section, I’ll expand on the topic of permissions and describe the default behaviors of
permissions, as well as how to create your own permissions for other purposes.

Chapter 10 ■ Django User Management

453

User Permissions: Superuser, Staff, and Active
In the previous section, you learned how to assign Django users different subtypes: superuser, staff, and
active. The following is a list of permissions associated with each of these user subtypes:

•	 superuser.- Permission to create, read, update, and delete users in the Django
admin, as well as create, read, update, and delete all Django model records in a
project through the Django admin.

•	 staff.- Permission to access the Django admin. Even if a user is marked as a
superuser, a user must also be marked as staff to access the Django admin. Users
marked as staff must be given additional permissions on each Django model to
execute tasks.

•	 active.- Permission to log in into the application (Django admin or elsewhere). An
inactive user is effectively barred from using his credentials to authenticate into a
Django project. For example, in order to access the Django admin a user must be
marked as active – in addition to staff. Also, any section of a Django project (e.g., view
or template) can be marked to require active status, forcing users to log in.

All three user subtypes are stored in the database as part of the User model, subtypes that can be
confirmed by using the methods in Table 10-2 that belong to the User model. Although User permissions are
heavily used in the Django admin, this doesn’t mean they’re restricted to it. For example, it’s possible to rely
on a User permissions like superuser, staff, or active to allow or deny access to other parts of a Django project
(e.g., a link in a template, a url/view method, or others actions).

The next section on permission enforcement describes these processes in detail. Next, I’ll describe
another type of permissions that is associated with Django models.

Model Permissions: Add, Change, Delete, and Custom
Model permissions are linked to the ability to create, delete, or update Django model records. In the
first section of this chapter, you can see in Figure 10-5 a selection grid to assign add, change, and delete
permissions on individual models to each user in a Django project. And in Figure 10-8, you can see an
equivalent selection grid to assign these same type of add, change, and delete permissions on individual
models for each group in a Django project.

These add, change, and delete permissions are managed at the database level through permission
model records, records that are automatically created when you run a Django model’s first migration.
Managing these types of permissions once they’re created is very straightforward, as the assignment is made
directly on a user - illustrated in Figure 10-5 - or group illustrated in Figure 10-8.

■■ Tip  Model permission data is stored in the database table auth_permission, which also references the
django_content_type table that maintains a list of installed Django models. In addition, model permission-
user relationships are stored in the database table auth_user_user_permissions and model permission-group
relationships are stored in the database table auth_group_permissions.

Similar to the behavior of user permissions, model permissions aren’t necessarily restricted to model
operations. For example, it’s perfectly possible to allow or deny access to a view or a template section if a
user or group has a certain model permission (e.g., if a User has the ability to create a Store model or change
an Item model, and allow access to a page or link).

But again, the next section on permission enforcement describes these processes in detail. Next, I’ll
describe how to customize model permissions for Django models.

Chapter 10 ■ Django User Management

454

Model Meta permission options: default_permissions and permissions
Sometimes the need can arise to change the default permissions given to a model. By default, all Django
models are given the add, change, and delete permissions. Although it’s up to an administrator to grant
these permissions to users and groups, sometimes it can be necessary to eliminate some or all of these
permissions from a Django model (e.g., eliminate the presence of the change and delete permissions from a
data-sensitive model).

In addition, sometimes it can also be necessary to add custom permissions to a model that doesn’t fit
the default add, change, and delete permissions (e.g., permissions such as give_refund or can_hire, to
assign users/groups permissions to access certain parts of an application).

To alter the default permissions given to a model (i.e., add, change, and delete), you can use a
model’s meta class default_permissions field. In addition, you can add custom permissions to a model’s
permissions through a model’s meta class permissions field.

Listing 10-4 illustrates a model class that makes use of the model meta permissions and default_
permissions fields.

Listing 10-4.  Customize a Django model’s permissions with default_permissions and permissions

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 class Meta:
 default_permissions = ('add',)
 �permissions = (('give_refund','Can refund customers'),('can_hire',

'Can hire employees'))

Notice in Listing 10-4 the Store model’s default_permissions field is set to ('add',), which effectively
removes the change and delete permissions. If you add this model meta statement, you’ll notice the Store
model’s default permissions change, as illustrated in the UI Figure 10-10.

In addition, in Listing 10-4 notice the model meta permissions field sets two custom permissions:
give_refund and can_hire, where each custom permission is composed of a tuple with the first element
representing the code – used in the database – and the second element a friendly UI name. If you add this
model meta statement, you’ll notice the Store model adds these two custom permissions, as illustrated in
the UI Figure 10-10.

Chapter 10 ■ Django User Management

455

Permission Checks and Enforcement
Now that you know about the different types of Django permissions, we can explore how to leverage these
permissions outside out of their primary context (i.e., user permissions outside the Django admin and
model permissions outside of Django CRUD operations).

Up next, you’ll learn how to change and enforce Django permissions in views, urls, templates, models,
and class-based views.

View Method Permission Checks
Because view methods process incoming requests and dispatch responses to end users, they represent an
ideal location to enforce permission checks. For example, you can use a permission check on a view method
to return different content, depending if a user is logged in (i.e., is a User vs. an AnonymousUser) or is a
superuser, staff, or active subtype.

Listing 10-5 illustrates a permission check inside the logic of a view method to return different results
based on a user’s login status, as well as another variation that uses a decorator to restrict view method
access based on a user’s login status.

Listing 10-5.  Permission check in view methods with internal checks and @login_required

Internal check to see if user is anonymous or not
def homepage(request):
 if request.user.is_anonymous():
 # Logic for AnonymousUser
 else:
 # Logic for User

Figure 10-10.  Custom default model permissions and custom model permissions

Chapter 10 ■ Django User Management

456

Method check to see if user is logged in or not (i.e. a User)
from django.contrib.auth.decorators import login_required

@login_required
def profile(request):
 # Logic for profile

■■ Note  The User model is available on all view method requests (e.g., request.user), thanks to Django's
AuthenticationMiddleware that is enabled by default. See Chapter 2 for additional details on Django
middleware.

The first example in Listing 10-5 uses the is_anonymous() method available on all User models
– described in Table 10-2. If this last method determines the user making the request is anonymous –
meaning he hasn’t logged in – a certain course of action and response is taken. On the other hand, if the
is_anonymous() method determines the user making the request is logged in, another course of action and
response is taken.

■■ Tip  You can use any User model field or method - in Table 10-1 or Table 10-2 - besides the is_anonymous
method to perform a check (e.g., is_staff, is_superuser).

The second example in Listing 10-5 uses the @login_required() decorator to restrict the entire view
method to logged-in users (i.e., requests that have User and blocks requests with AnonymousUser). This last
technique is helpful when known beforehand the view method doesn’t require a conditional permission
workflow like the first example in Listing 10-5.

Permissions checks on view methods can also be performed to verify if a user complies with a certain
permission test. For example, a view method can be blocked to users that belong to a certain group or to
users that have certain model permissions. Listing 10-6 illustrates three additional view method permission
checks using the @user_passes_test and @permission_required decorators.

Listing 10-6.  Permission check in view methods with @user_passes_test and @permission_required

Method check to see if User belongs to group called 'Barista'
from django.contrib.auth.decorators import user_passes_test
from django.contrib.auth.models import Group

@user_passes_test(lambda u: Group.objects.get(name='Baristas') in u.groups.all())
def dashboard(request):
 # Logic for dashboard

Explicit method check, if User is authenticated and has permissions to change Store model

Explicit method with test
def user_of_stores(user):
 if user.is_authenticated() and user.has_perm("stores.change_store"):
 return True
 else:
 return False

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 10 ■ Django User Management

457

Method check using method
@user_passes_test(user_of_stores)
def store_manager(request):
 # Logic for store_manager

Method check to see if User has permissions to add Store model

from django.contrib.auth.decorators import permission_required

@permission_required('stores.add_store')
def store_creator(request):
 # Logic for store_creator

The first example in Listing 10-6 uses the @user_passes_test decorator and defines an inline test. The
snippet lambda u: Group.objects.get(name='Baristas') in u.groups.all() fetches the Group model
record with the name Baristas and checks if the requesting user belongs to this group. If the requesting user
does not belong to the Baristas group then the test fails and access is denied; otherwise the user is allowed
to run through the view method.

The second example also uses the @user_passes_test decorator, but instead of defining an inline test
it relies on the user_of_stores() method to perform the test logic. This is particularly helpful if the test is
complex, which can make it hard to follow inline logic, compared to having a regular method. As you can
also see in Listing 10-6, the user_of_stores() verifies if the user is authenticated and also if he has update
permissions on the Store model - note the string stores.change_store is the syntax used by Django's
Permission model records.

The last example in Listing 10-6 uses the @permission_required decorator that is designed to validate
if a user has a given Permission record. In this case, notice the decorator has the input string stores.add_
store that indicates that only users that have permission to add a Store model can run through the view
method.

WHAT HAPPENS WHEN A USER FAILS A PERMISSION CHECK?

For internal validation checks (e.g., those made in the body of a method, such as if request.user.
is_anonymous():) you have absolute control, so you can redirect a user to any page or add flash
messages to display on a template.

For the decorator validation checks @login_required, @user_passes_test, and @permission_
required the default failure behavior is to redirect a user to Django’s login page. Django’s default
login page URL is /account/login/, a value that can be overridden with the LOGIN_URL variable in
settings.py, details of which I’ll provide in an upcoming section.

For the @permission_required decorator, it’s also possible to redirect a failed test to Django’s
HTTP 403 (Forbidden) page by adding the raise_exception=True attribute (e.g., @permission_
required('stores.add_store',raise_exception=True)).

Chapter 10 ■ Django User Management

458

URL Permission Checks
In certain circumstances you can have a Django workflow that doesn't involve a view method and
simply sends control from a URL directly to a static template. In such cases, it's also possible to enforce
permission checks directly on URL definitions. Listing 10-7 illustrates similar validation checks like the
ones in Listings 10-5 and 10-6 applied to URL definitions in urls.py.

Listing 10-7.  Permission checks in urls.py for static templates

from django.conf.urls import include, url
from django.views.generic import TemplateView

from django.contrib.auth.decorators import login_required,permission_required,user_passes_
test
from django.contrib.auth.models import Group

urlpatterns = [
 url(r'^online/baristas/',
 user_passes_test(lambda u: Group.objects.get(name='Baristas') in u.groups.all())
 (TemplateView.as_view(template_name='online/baristas.html')),name="onlinebaristas"),
 url(r'^online/dashboard/',
 permission_required('stores.add_store')
 (TemplateView.as_view(template_name='online/dashboard.html')),name="onlinedashboard"),
 url(r'^online/',
 login_required(TemplateView.as_view(template_name='online/index.html')),name='online'),
]

As you can see in Listing 10-7, after you import the required decorators you just need to integrate the
validation tests in the URL definition. The @user_passes_test and @permission_required decorators are
declared as stand-alone methods followed by the URL definition (e.g., user_pass_test()(TemplateView.
as_view...)). The @login_required decorator though takes the TemplateView statement as its input. It
should be pointed out the behavior for failed tests in Listing 10-7 is the same as those in Listings 10-5
and 10-6, described in the sidebar “What Happens When a User Fails a Permission Check?'”

Another possibility that can arise for validation checks is to perform them on a group of view methods/
URLs, so that instead of adding a decorator to each individual view method - as illustrated in Listing 10-6--
you only do it once for a whole group. This view method/URL grouping process is particularly common
when defining URLs in urls.py through the include() method. Listing 10-8 illustrates how to enforce
validation checks on sets of urls that use the include() method.

Listing 10-8.  Permission checks in urls.py for include() definitions

from django.conf.urls import include, url
from django.core.urlresolvers import RegexURLResolver, RegexURLPattern

class DecoratedURLPattern(RegexURLPattern):
 def resolve(self, *args, **kwargs):
 result = super(DecoratedURLPattern, self).resolve(*args, **kwargs)
 if result:
 result.func = self._decorate_with(result.func)
 return result

Chapter 10 ■ Django User Management

459

class DecoratedRegexURLResolver(RegexURLResolver):
 def resolve(self, *args, **kwargs):
 result = super(DecoratedRegexURLResolver, self).resolve(*args, **kwargs)
 if result:
 result.func = self._decorate_with(result.func)
 return result

def decorated_includes(func, includes, *args, **kwargs):
 urlconf_module, app_name, namespace = includes
 patterns = getattr(urlconf_module, 'urlpatterns', urlconf_module)
 for item in patterns:
 if isinstance(item, RegexURLPattern):
 item.__class__ = DecoratedURLPattern
 item._decorate_with = func

 elif isinstance(item, RegexURLResolver):
 item.__class__ = DecoratedRegexURLResolver
 item._decorate_with = func

 return urlconf_module, app_name, namespace

from django.contrib.auth.decorators import login_required,permission_required,user_passes_test
from django.contrib.auth.models import Group

from coffeehouse.items.urls import urlpatterns as drinks_url_patterns

urlpatterns = [
 url(r'^items/',
 decorated_includes(login_required,include(items_url_patterns,namespace="items"))),
 url(r'^stores/',
 decorated_includes(permission_required('stores.add_store'),
 include('coffeehouse.stores.urls',namespace="stores"))),
 url(r'^social/',
 �decorated_includes(user_passes_test(lambda u: Group.objects.get(name='Baristas') in

u.groups.all()),
 include('coffeehouse.social.urls',namespace="social"))),
]

Because Django doesn't have built-in support for permissions checks in include() definitions, you can
see in Listing 10-8 we first define two custom classes followed by the custom method decorated_includes.
If you follow the sequence in Listing 10-8, you can see the decorated_includes() method accepts two input
arguments, first the permission test (e.g., login_required, permission_required) and then the standard
include() method with the URL definitions. It should also be pointed out the behavior for failed tests in
Listing 10-8 is the same as those in previous listings, described in the sidebar “What Happens When a User
Fails a Permission Check?”

Template Permission Checks
Another permission check available in Django projects is in templates, a process that's helpful if you want
to show/hide content (e.g., links) based on a user's permissions. Listing 10-9 illustrates a series of Django
template syntax examples.

Chapter 10 ■ Django User Management

460

Listing 10-9.  Permission checks in templates

{% if user.is_authenticated %}
 {# Content for authenticated users #}
{% endif %}

{% if perms.stores.add_store %}
 {# Content for users that can add stores #}
{% endif %}

{% for group in user.groups.all %}
 {% if group.name == 'Baristas' %}
 {# Content for users with 'Baristas' group #}
 {% endif %}
{% endfor %}

■■ Note T he user and perms variables used to perform permissions checks in templates are available thanks
to Django’s auth context processor, which is enabled by default - see Chapter 3 details on the use of Django
context processors.

You can see in Listing 10-9 all of the template syntax examples use the user and perms variables to
perform a conditional permission check. The first example checks to see if the user is authenticated through
is_authenticated. The second example verifies if perms - which holds a user's permissions - has access to
create Store model records, using Django's Permission syntax stores.add_store. And the third example in
Listing 10-9 loops over a user’s groups, to check if the user is in the Baristas group; if it's, it outputs content
for this type of user.

■■ Tip  Loops in Django templates to check a property are very inefficient. Although the last example in Listing 10-9
works, it’s a very inefficient mechanism. A better solution is to create a custom filter and perform a direct query in the
filter (e.g., {% if user|has_group:"Baristas" %}, with the has_group filter containing the bulk of the logic check).
In this case I opted for the syntax in Listing 10-9 to keep everything in one place, but be aware the more efficient
solution for this type of logic is to use a custom filter described in Chapter 3.

Class-Based View Permission Checks
As you learned toward the end of Chapter 2 and in Chapter 9, class-based views provide better reusability
and encapsulation for the logic contained in view methods. However, due to the way class-based views are
composed, they require a different approach to check permissions than regular view methods presented in
Listings 10-5 and 10-6.

Although you can technically check permissions in class-based views – just like it’s done in standard
view methods – by defining a class-based view’s get() and/or post() methods, this technique also forces
you to declare the bulk of a view’s logic, which is inefficient in a class-based view if all you’re trying to do is
incorporate permission checks.

Listing 10-10 illustrates a series of options to perform permission checks in class-based views.

http://dx.doi.org/10.1007/978-1-4842-2787-9_3
http://dx.doi.org/10.1007/978-1-4842-2787-9_3
http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_9

Chapter 10 ■ Django User Management

461

Listing 10-10.  Permission checks in class-based views

from django.views.generic import ListView
from django.views.generic.detail import DetailView
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from django.utils.decorators import method_decorator
from django.core.urlresolvers import reverse_lazy
from django.contrib.messages.views import SuccessMessageMixin

from django.contrib.auth.decorators import login_required,user_passes_test
from django.contrib.auth.models import Group

from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin,
PermissionRequiredMixin

class ItemList(LoginRequiredMixin,ListView):
 model = Item
 context_object_name = 'items'
 template_name = 'items/index.html'

class ItemDetail(UserPassesTestMixin,DetailView):
 model = Item
 pk_url_kwarg = 'item_id'
 template_name = 'items/detail.html'
 def test_func(self):
 return self.request.user.is_authenticated

class ItemCreation(PermissionRequiredMixin,SuccessMessageMixin,CreateView):
 model = Item
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 success_message = "Item %(name)s created successfully"
 permission_required = ('items.add_item',)

@method_decorator(login_required, name='dispatch')
class ItemUpdate(SuccessMessageMixin,UpdateView):
 model = Item
 pk_url_kwarg = 'item_id'
 form_class = ItemForm
 success_url = reverse_lazy('items:index')
 success_message = "Item %(name)s updated successfully"

@method_decorator(user_passes_test(lambda u: Group.objects.get(name='Baristas') in u.groups.
all()), name='dispatch')
class ItemDelete(DeleteView):
 model = Item
 pk_url_kwarg = 'item_id'
 success_url = reverse_lazy('items:index')

Chapter 10 ■ Django User Management

462

The first class-based view in Listing 10-10 ItemList uses the LoginRequiredMixin mixin to enforce
that only logged-in users are able to access the class-based view. The second class-based view ItemDetail
uses another mixin named UserPassesTestMixin to ensure that only users that pass a permission test
are allowed to access the class-based view. To define a permission test for a class-based view that uses
the UserPassesTestMixin mixin, notice the test_func() method is used. This last method gains access
to a user – via self.request – and returns a True or False value based on the test, which in Listing 10-10
consists of simply calling is_authenticated.

The third class-based view in Listing 10-10 ItemCreation uses the PermissionRequiredMixin mixin
to enforce only users that have certain model permissions are allowed access to the class-based view.
To declare model permissions on a class-based view that uses the PermissionRequiredMixin mixin, the
permission_required option is used with a tuple value of permissions. In the case of Listing 10-10, the
('items.add_item',) value follows the model permission syntax <app_name>.<app_permission>, ensuring
only users that have permission to add Item records to the items app are allowed access the class-based view.

The last two class-based views in Listing 10-10 ItemUpdate and ItemDelete make use of the @method_
decorator decorator to enforce class-based permissions. The @method_decorator decorator is specifically
designed to apply standard view method decorators – like the ones used in Listings 10-5 and 10-6 – to class-
based view methods, accepting two arguments: a decorator and the class-based view method on which to
apply the decorator. In the case of Listing 10-10, you can see the ItemUpdate class-based view applies the
login_required decorator to the dispatch() method to only allow logged-in users to access the class-based
view. And the ItemDelete class-based view applies the user_passes_test decorator to the dispatch()
method to only allow users that belong to the Baristas group access to the class-based view.

User Authentication and Auto-Management
In the first section of this chapter you learned how to create users. But recall that for this process to work, you
either had to use a Django command-line tool or the Django admin. These techniques, while valid, are not
intended and won't scale for end users that visit an application.

Similarly, up to this point in the chapter, the only location for users to log in and log out has been
through the Django admin authentication form. This last form is not an ideal location for end users either,
not only because it lacks a layout made for an application, but also because it’s not intended for users who
never plan to interact with a project’s database.

If you plan on end users authenticating themselves into an application, you need to provide a way for
users to sign up, a way for users to log in, and log out as well as a way for users to remember and change their
passwords. The same django.contrib.auth package that supports the User model also includes a series of
prebuilt constructs designed to create user authentication workflows.

The first prebuilt mechanism available to authenticate users is a set of urls that allow users to log in and
log out of an application, allow users to change their password, as well as allow users to reset their password
supported by an email notification.

Listing 10-11 illustrates how to add the full set of django.contrib.auth urls to the main urls.py
file – using an include statement – as well as the equivalent individual url statements in case you want to
selectively pick and choose which urls to use in a project.

Listing 10-11.  Configure urls from django.contrib.auth package

from django.conf.urls import url
from django.contrib.auth import views

Option 1 to include all urls (See option 2 for included urls)
urlpatterns = [
 url(r'^accounts/', include('django.contrib.auth.urls')),
]

Chapter 10 ■ Django User Management

463

Option 2) (Explicit urls, all included in django.contrib.auth)
urlpatterns = [
 url(r'^accounts/login/$', views.LoginView.as_view(), name='login'),
 url(r'^accounts/logout/$', views.LogoutView.as_view(), name='logout'),

 url(r'^accounts/password_change/$', views.PasswordChangeView.as_view(), name='password_change'),
 u�rl(r'^accounts/password_change/done/$', views.PasswordChangeDoneView.as_view(),

name='password_change_done'),

 url(r'^accounts/password_reset/$', views.PasswordResetView.as_view(), name='password_reset'),
 �url(r'^accounts/password_reset/done/$', views.PasswordResetDoneView.as_view(),

name='password_reset_done'),
 �url(r'^accounts/reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]

{1,13}-[0-9A-Za-z]{1,20})/$',
 views.PasswordResetConfirmView.as_view(), name='password_reset_confirm'),
 �url(r'^accounts/reset/done/$', views.PasswordResetCompleteView.as_view(),

name='password_reset_complete'),
]

The first option in Listing 10-11 configures all the django.contrib.auth urls on the accounts url. This
begets the question, why the accounts url? Because, by default all django.contrib.auth actions use this url
as their root (e.g., in previous sections, recall that attempting to access resources that require login performs
a redirect to /accounts/login). So by using this url include() statement with django.contrib.auth.urls,
all django.contrib.auth actions get a functioning url, which are also backed by the necessary view method
logic! But more on view method logic shortly.

Because the url include() statement has a 'use all urls or none' behavior, the second option in Listing 10-11
represents the use of granular url statements to configure the same django.contrib.auth urls. This last option
is helpful if you want to disable certain django.contrib.auth urls but still keep other django.contrib.auth urls
active (e.g., disable password changing urls, but keep login and logout urls).

As you can see, using either option in Listing 10-11 provides you with a quick solution to hook up
django.contrib.auth actions to urls, the latter of which are also hooked up to default class-based views that
are also part of the django.contrib.auth package.

Login and Logout Workflow
The entry points into the login and logout workflows – as you can see in Listing 10-11 – are the /accounts/
login/ and /accounts/logout/ urls, respectively. If a call is made on the /accounts/login/ url the django.
contrib.auth.views.LoginView class-based view is triggered, and if a call is made on the /accounts/
logout/ url the django.contrib.auth.views.LogoutView class-based view is triggered.

Like all Django built-in class-based views, both the LoginView and LogoutView class-based views
require little to nothing in terms of code and configuration. The only thing they both require is a template to
present a login form and a template with a logout success message, respectively.

The LoginView class-based view looks for the template registration/login.html under a directory
defined as part of the TEMPLATES/DIRS variable in settings.py. And the LogoutView class-based view looks
for the template registration/logout.html, also under a directory defined as part of the TEMPLATES/DIRS
variable in settings.py.

■■ Tip  See the book’s accompanying source code for the layout and fields required by the registration/
login.html and registration/logout.html templates.

Chapter 10 ■ Django User Management

464

The login workflow offers two configuration options in settings.py that allow you to modify its
behavior without the need to customize the LoginView class-based view. The LOGIN_URL variable defaults to
/accounts/login/ and is used as the url where users are redirected when they attempt to access resources
that require authentication and aren’t logged in. The LOGIC_REDIRECT variable defaults to /accounts/
profile/ and is the url where users are redirected to after a successful log in. The django.contrib.auth
package provides no entry point for the /accounts/profile/ url, so you must either configure this url or
simply change it to a different location (e.g., LOGIN_REDIRECT='/' to redirect users to the home page after a
successful login).

The logout workflow supports the LOGOUT_REDIRECT variable in settings.py to define where users are
taken when they log out. The LOGOUT_REDIRECT variable defaults to /accounts/logout/, but can be updated
to redirect users to a different location (e.g., LOGOUT_REDIRECT='/' to redirect users to the home page after
they log out).

Other than creating the templates, setting up the urls – described in Listing 10-11 – and optionally
changing the login url location and login/out redirect behaviors, there is nothing else you need to do to
enable the login and logout workflows provided by the django.contrib.auth package. If you want a user to
log in, simply point them to the /accounts/login/ url and if you want them to log out point them to the /
accounts/logout/ url. All the other workflow details (e.g., authentication, password verification, error form
handling, session expiration) are taken care of by the LoginView and LogoutView class-based views.

Password Change Workflow
The password change workflow requires two url entry points: the /accounts/password_change/ url that
triggers the PasswordChangeView class-based view and the /accounts/password_change/done/ url that
triggers the PasswordChangeDoneView class-based view.

The PasswordChangeView class-based view looks for a template containing a form to change passwords
in registration/password_change_form.html under a directory defined as part of the TEMPLATES/DIRS
variable in settings.py. And the PasswordChangeDoneView class-based view looks for a template containing
a success message in registration/password_change_done.html, also under a directory defined as part of
the TEMPLATES/DIRS variable in settings.py.

■■ Tip  See the book’s accompanying source code for the layout and fields required by the registration/
password_change_form.html and registration/password_change_done .html templates.

Other than creating the templates and setting up the urls – described in Listing 10-11 – there is nothing
else you need to do to enable the password change workflow provided by the django.contrib.auth
package. If you want a user to change his password, simply point them to the /accounts/password_change/
url. All the other workflow details (e.g., password verification, database update, form error handling) are
taken care of by the PasswordChangeView and PasswordChangeDoneView class-based views.

Password Reset Workflow
The password reset workflow consists of two sub-workflows. The first sub-workflow captures a user’s email
and sends him an email with a link to reset his password. The second sub-workflow processes the reset link
and validates a new password for the user.

The first sub-workflow uses the /accounts/password_reset/ url, which triggers the
PasswordResetView class-based view and the /accounts/password_reset/done/ url, which triggers the
PasswordResetDoneView class-based view. The second sub-workflow uses the /accounts/reset/ url, which
triggers the PasswordResetConfirmView class-based view and the /accounts/reset/done/ url, which
triggers the PasswordResetCompleteView class-based view.

Chapter 10 ■ Django User Management

465

The PasswordResetView class-based view looks for a template containing a form to reset a user’s
password in registration/password_reset_form.html and the PasswordResetDoneView class-based
view looks for a success message template in registration/password_reset_done.html, both under a
directory defined as part of the TEMPLATES/DIRS variable in settings.py. For the second sub-workflow,
the PasswordResetConfirmView class-based view looks for a template with a form to introduce a new user
password in registration/password_reset_confirm.html and the PasswordResetCompleteView class-
based view looks for a success message template in registration/password_reset_complete.html, both
under a directory defined as part of the TEMPLATES/DIRS variable in settings.py.

By default, the password reset workflow generates an email with instructions to take a user to the
second sub-workflow to reset his password. Also by default, the reset email contains a link to the domain
localhost:8000, which can be customized by installing the Django site django.contrib.sites app (e.g.,
add django.contrib.sites to INSTALLED_APPS and SITE_ID=1 in settings.py, and update the site with id
1 in the Django admin to reflect a new domain). Additionally, you can define a custom email layout in the
registration/password_reset_email.html template and place it under a directory defined as part of the
TEMPLATES variable in settings.py.

■■ Tip  See the book’s accompanying source code for the layout and fields required by the registration/
password_reset_form.html, registration/password_reset_done.html, registration/password_reset_
confirm.html, registration/password_reset_complete.html, and registration/password_reset_
email.html templates.

Other than creating the templates and setting up the urls – described in Listing 10-11 – and optionally
changing the default email layout, there is nothing else you need to do to enable or allow users to remember
their passwords using workflow provided by the django.contrib.auth package. If you want a user to
remember his password, simply point them to the /accounts/password_reset/ url. All the other workflow
details (e.g., email token validation, password verification, database update, form error handling) are
taken care of by the PasswordResetView, PasswordResetDoneView, PasswordResetConfirmView, and
PasswordResetCompleteView class-based views.

User Signup Workflow
Users can sign up automatically to a Django application with the help of a few constructs from the django.
contrib.auth package. Although the user signup workflow is not as baked in to the django.contrib.auth
package as the previous user-related workflows, it’s still easy to create.

The first step to create a user signup workflow is to configure a url entry point to allow users to create an
account, as illustrated in Listing 10-12.

Listing 10-12.  Configure url for user sing up workflow

urls.py main
from django.conf.urls import url
from django.contrib.auth import views

from coffeehouse.registration import views as registration_views

urlpatterns = [
 url(r'^accounts/', include('django.contrib.auth.urls')),
 url(r'^accounts/signup/$',registration_views.UserSignUp.as_view(),name="signup"),
]

Chapter 10 ■ Django User Management

466

Listing 10-12 illustrates a url accessible at /accounts/signup/, in addition to all the urls provided by
the django.contrib.auth package that include the previous user-related workflows. Notice the /accounts/
signup/ url is set to be processed by the UserSignUp class-based view from the coffeehouse.registration
app, which means it’s a class-based view you need to create for the project.

Listing 10-13 illustrates the UserSignUp class-based view tasked with the user signup workflow, which
automates the creation of User model records, which was previously done using the Django command-line
tool or the Django admin.

Listing 10-13.  Signup workflow fulfilled by custom CreateView class-based view

from django.core.urlresolvers import reverse_lazy
from django.http import HttpResponseRedirect
from django.contrib.messages.views import SuccessMessageMixin

from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth.models import User
from django.contrib.auth import authenticate, login

class UserSignupForm(UserCreationForm):
 email = forms.EmailField(required=True)
 class Meta:
 model = User
 fields = ("username", "email", "password1", "password2")

class UserSignUp(SuccessMessageMixin,CreateView):
 model = User
 form_class = UserSignupForm
 success_url = reverse_lazy('items:index')
 success_message = "User created successfully"
 template_name = "registration/signup.html"
 def form_valid(self, form):
 super(UserSignUp,self).form_valid(form)
 # The form is valid, automatically sign-in the user
 user = authenticate(self.request, username=form.cleaned_data['username'],
 password=form.cleaned_data['password1'])
 if user == None:
 # User not validated for some reason, return standard form_valid() response
 return self.render_to_response(self.get_context_data(form=form))
 else:
 # Log the user in
 login(self.request, user)
 # Redirect to success url
 return HttpResponseRedirect(self.get_success_url())

The UserSignUp class-based view in Listing 10-13 is a standard CreateView class-based view that uses
the mixin SuccessMessageMixin – if you’re unfamiliar with this type of class-based view to create model
records or the concept of mixins, see the previous chapter, which explains both these topics.

The UserSignUp class-based view sets the model option to User to tell Django to create django.
contrib.auth.models.User records. Next, the form_class option is set to UserSignupForm that is also
defined in Listing 10-13. Followed are the success_url and success_message options to indicate a url and
success message when a User record is created, as well as the template_name to specify a template with the
form presented to capture the User fields.

Chapter 10 ■ Django User Management

467

The custom UserSignupForm model form in Listing 10-13 is based on the UserCreationForm from
the django.contrib.auth package. From a practical standpoint, the UserSignUp class-based view could
have used UserCreationForm as its form_class, however, this last built-in form only contains username
and password fields. In this case, to solicit an email as part of the user signup process, the custom
UserSignupForm model form adds the email field to the base UserCreationForm form class. Note that
because the backing User model already includes an email field, no modification is required to the model.

In order to automatically sign in users once a User model record is created, the UserSignUp class-based
view includes custom logic in its form_valid() method. In the case of Listing 10-13, the authenticate
method from the django.contrib.auth package is invoked with the form values, verifying the credentials
are valid. If the credentials are valid – which given the workflow should be 100% of the time, unless an
unforeseen hacking event takes place – the authenticate method returns a User instance and immediately
executes the login method – also from the django.contrib.auth package – which creates a session (i.e.,
signs in) the user, after which control is redirected to the success page of the class-based view. In the
unforeseen event the authenticate method doesn’t return a User instance, the form_valid() method
returns its standard payload, which is the validated form.

As you can see from Listings 10-12 and 10-13, you can create a user signup workflow to let users create
their own accounts and lift the administrative burden of creating user accounts from the Django admin or
Django command-line tool.

■■ Tip  The signup workflow in Listing 10-13 is permissive in the sense it doesn’t verify emails and
automatically signs users in. This was done for simplicity and may work for most projects as is. But you can
add extra safeguards to the signup workflow (e.g., send a verification link, set users to inactive until verification
link is clicked) by adding this logic to the different class-based view methods, before or after the User record is
created.

■■ Tip 2  The Django allauth package, described later in this chapter, has built-in support for email
verification.

Custom User Model Fields
The default Django User model (i.e., django.contrib.auth.models.User class), uses a minimum set of data
fields, which include username, email, first_name, last_name, date_joined, and last_login; in addition to
the permission related fields password, is_superuser, is_staff, and is_active.

While these last fields are enough for Django’s built-in user functionality, they can fall short if you’re
expecting to store additional user data (e.g., age, telephone, address). There are two approaches to support
additional user data: create a separate model to store additional data and create a user relationship to it
(i.e., a User with a ForeignKey) or override the default django.contrib.auth.models.User class to create a
custom user class.

Listing 10-14 illustrates the first technique by creating an additional model to store extra user data and
creating a relationship to the django.contrib.auth.models.User class.

Listing 10-14.  Model with extra user fields related to default Django user model

from django.contrib.auth.models import User
from django.db import models

Chapter 10 ■ Django User Management

468

class UserExtra(models.Model):
 user = models.ForeignKey(User)
 age = models.IntegerField(blank=True,null=True)
 telephone = models.CharField(max_length=15,blank=True,null=True)

The UserExtra model in Listing 10-14 functions like any other model with a ForeignKey data type, and
as such, has some performance and maintenance implications when used in these circumstances. On the
negative side, the user data is distributed in two database tables. One table for User records and another for
UserExtra records, which inevitably requires two queries or a join query to obtain all data for a given user
– see Chapter 7 for queries across model relationships. On the positive side, this technique keeps a project’s
default Django User model class intact, requiring no additional configuration or development effort.

Next, let’s take a look at the second technique that consists of creating a custom user class, a process
that’s illustrated in Listing 10-15.

Listing 10-15.  Custom User model to override default Django User model

models.py (app registration)
from django.contrib.auth.models import AbstractUser
from django.db import models

class CoffeehouseUser(AbstractUser):
 age = models.IntegerField(blank=True,null=True)
 telephone = models.CharField(max_length=15,blank=True,null=True)

admin.py (app registration)
from django.contrib import admin
from .models import CoffeehouseUser

class CoffeehouseUserAdmin(admin.ModelAdmin):
 pass

admin.site.register(CoffeehouseUser, CoffeehouseUserAdmin)

settings.py
AUTH_USER_MODEL = 'registration.CoffeehouseUser'

The first section in Listing 10-15 shows the CoffeehouseUser class to be used as the custom user class.
Notice the class inherits its behavior from the AbstractUser class that gives it the same fields and behaviors
as the default User class (e.g., username, email, etc.). Next, the CoffeehouseUser class declares the age and
telephone fields using standard model fields, giving the custom user class two more fields than the default
User class.

Because the custom CoffeehouseUser class will override a project’s default User class, this means the
default django.contrib.auth.models.User class is no longer used. Therefore, you must configure Django
to use the custom CoffeehouseUser class anywhere user logic is required.

The second section in Listing 10-15 shows the Django admin configuration necessary to access the
new custom user class from the Django admin and be able to create, read, update, and delete users, just like
it’s done with the standard django.contrib.auth.models.User model class. Note the next chapter covers
Django admin configuration in greater detail.

Finally, the third section in Listing 10-15 shows the Django settings.py file with the AUTH_USER_MODEL
set to registration.CoffeehouseUser, where registration represents the app name and CoffeehouseUser
the custom user model. This last configuration ensures user logic made throughout a project is made on the
CoffeehouseUser model and not the default User model.

http://dx.doi.org/10.1007/978-1-4842-2787-9_7

Chapter 10 ■ Django User Management

469

Once you run the migration operation with this custom user model class and configurations from
Listing 10-15, you’ll see Django project users gain two additional fields.

■■ Caution  Custom user model implementations like the one in Listing 10-15 should only be done at the
outset of a project (i.e., one of the first project migrations).

Because a user model plays such a central role in managing access to a Django project, you should not
attempt to implement custom user models like the one in Listing 10-15 midway through a project. Doing
so runs the risk of breaking dependencies – foreign keys – used by other models to refer to default django.
contrib.auth.models.User model records; in addition, this also changes the underlying database table
where user data is stored. By implementing a custom user model at the outset of a project, you guarantee
any possible model dependencies made on a user are done against custom user records and user data is
stored in a single database table from the outset.

In fact, if you plan to use a custom user model, but don’t know which new fields to add at the outset, you
can create a placeholder user model like the following:

class CoffeehouseUser(AbstractUser):
 pass

This snippet creates a model identical to the default django.contrib.auth.models.User class, but lays
the groundwork to create user dependencies on the custom model, while allowing the ability to add fields to
the custom model as they’re needed with standard migrations like any other model.

Finally, another factor to take into account when using a custom user model – which isn’t obvious
in Listing 10-15 – is how to reference a custom user model in other places of a project. When you use the
default User class, the statement from django.contrib.auth.models import User is commonplace
in models.py and views.py files to reference a user, but with a custom model this reference is no longer
applicable.

To support custom user models, Django offers the helper method get_user_model that returns a
reference to whatever user model is defined in the AUTH_USER_MODEL variable in settings.py. In this
manner, you can use the statement from django.contrib.auth import get_user_model to obtain a
reference to a project’s user model from anywhere in a project. The next section contains an example that
uses the get_user_model method.

Custom Authentication Back Ends
An authentication process is important because it determines which users are allowed access to an
application. The default authentication process used by Django consists of comparing a username and
password – provided on a web form – against User records in a database. If the username and password
match against a User record, the authentication process is deemed successful, but if the values don’t match,
then the authentication process is deemed a failure.

Django itself includes a series of built-in authentication back-end classes2 to support variations of
this authentication process. In addition, in the final section of this chapter I’ll introduce you to the allauth
Django package that supports a series’ authentication back ends (e.g., authentication against social media
accounts).

2https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#module-django.contrib.auth.backends

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#module-django.contrib.auth.backends

Chapter 10 ■ Django User Management

470

But to illustrate the concept of a custom authentication back end from the ground up, I’ll create a simple
authentication back end that relies on emails for authentication and can use any user type (i.e., custom user
models or the default User model).

By default, Django projects use the django.contrib.auth.backends.ModelBackend authentication
back-end class, designed to compare username and password sets – provided by an end user – against
a project’s users in a database. Now ask yourself, what do you think is easier to remember as a login
credential, a username or an email? If you’re like most people in this day in age, you’re more likely to have
answered email.

Listing 10-16 illustrates a custom authentication back end that is able to authenticate users by means of
an email credential and not the default username.

Listing 10-16.  Custom authentication back end to support authentication with email

models.py (registration app)
from django.contrib.auth import get_user_model

class EmailBackend(object):
 def authenticate(self, request, username=None, password=None, **kwargs):
 User = get_user_model()
 try:
 user = User.objects.get(email=username)
 except User.DoesNotExist:
 return None
 else:
 if getattr(user, 'is_active', False) and user.check_password(password):
 return user
 return None
 def get_user(self, user_id):
 User = get_user_model()
 try:
 return User.objects.get(pk=user_id)
 except User.DoesNotExist:
 return None

setting.py
AUTHENTICATION_BACKENDS = ['django.contrib.auth.backends.ModelBackend',
 'coffeehouse.registration.models.EmailBackend']

Listing 10-16 declares the EmailBackend class for the custom authentication back end. Like all custom
authentication back-end classes, you must declare at minimum the authenticate() and get_user()
methods, where the first method is used to define the authentication logic and the second to return the user
of the request.

The authenticate() method gains access to both the username and password fields provided by an
end user, as part of the base authentication workflow. Next, you can see the authenticate() method gains
access to a project’s user model relying on the get_user_model() method helper, which ensures that even
if a project uses a custom user model, the authentication workflow is done on the correct user class, as
described in the previous section.

Once a reference is obtained to a project’s user class, notice the authenticate() method performs a query
for a user on the email field with the provided username, which effectively allows the username value provided
by a user to be treated as an email field for authentication purposes. If a user matches the email provided as
the username value, then the try-except-else block in Listing 10-16 performs a call to check_password()

Chapter 10 ■ Django User Management

471

to validate the password against the matching user. If the password matches, authenticate() returns the
authenticated user, and if the password doesn’t match authenticate() returns None.

The final section in Listing 10-16 is the AUTHENTICATION_BACKENDS variable in settings.py, which is
assigned a list of authentication back-end classes. In this case, the default django.contrib.auth.backends.
ModelBackend class is kept to ensure the default authentication workflow of username/password is
attempted first. Next, the custom EmailBackend authentication back-end class from Listing 10-16 is added,
to ensure the authentication workflow is done treating the input data as an email/password set.

As you can see from this example in Listing 10-16, by adding this simple custom authentication back-
end class, you can allow users to introduce either their username or email to authenticate themselves in a
Django application.

■■ Tip  If you use the custom authentication back-end class in Listing 10-16, change the username label in
the login form to 'Username/Email' to notify users they can use both.

User Management with Django allauth
As you’ve see throughout this chapter, the django.contrib.auth package provides a great deal of
functionality to manage users and groups, permissions, as well as authentication workflows. But as you’ve
probably also realized, the django.contrib.auth package can also suffer from a lot of legacy behaviors that
don’t work well for web applications in today’s day and age. For example, django.contrib.auth doesn’t
support things like social authentication – which is almost a requirement in today’s Internet – in addition,
django.contrib.auth is also designed to work with usernames out of th -box – and not emails – which is
also a very outdated practice.

Still because the django.contrib.auth package is built into Django, there are often many Django
packages (e.g., the Django admin and other third-party packages) that assume a Django project uses the
django.contrib.auth package and its functionalities.

So on the one hand, it’s essential you keep using the django.contrib.auth package to maintain user
management compatibility across other Django packages that expect the presence of django.contrib.auth,
but on the other, you don’t want to be stuck with 2005 practices asking users to provide usernames and not
allowing them to authenticate with social media accounts.

Among the many third-party packages and potential solutions available to solve this Django user
management integration, the Django allauth package offers one of the best features set (e.g., social
authentication and email based users), as well as the best integration with the django.contrib.auth
package. So up next, I’ll describe the setup process for the Django allauth package.

Install and Set Up django-allauth
To install the Django allauth package, use the following pip statement:

pip install django-allauth

Once you make the installation, let’s create a base Django allauth configuration with the intent to fulfill
the following user management features:

•	 Use email as the primary user identifier, but maintain username credentials for
compatibility with other packages (e.g., Django admin).

•	 Require email verification to avoid junk users.

•	 Set the foundations to add Django social authentication (Facebook, Google, Twitter.)

Chapter 10 ■ Django User Management

472

Listing 10-17 illustrates the necessary additions to make to a project’s settings.py file, to enable a base
Django allauth configuration with these features.

Listing 10-17.  Base Django allauth settings.py configuration

Ensure the 'django.contrib.sites' is declared in INSTALLED_APPS
And also add the allauth, allauth.account and allauth.socialaccount to INSTALLED_APPS

INSTALLED_APPS = [
 # Django sites app required
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'allauth.socialaccount',
]

Ensure SITE_ID is set sites app
SITE_ID = 1

Add the 'allauth' backend to AUTHENTICATION_BACKEND and keep default ModelBackend
AUTHENTICATION_BACKENDS = ['django.contrib.auth.backends.ModelBackend',
 'allauth.account.auth_backends.AuthenticationBackend']

EMAIL_BACKEND so allauth can proceed to send confirmation emails
ONLY for development/testing use console
EMAIL_BACKEND='django.core.mail.backends.console.EmailBackend'

Custom allauth settings
Use email as the primary identifier
ACCOUNT_AUTHENTICATION_METHOD = 'email'
ACCOUNT_EMAIL_REQUIRED = True
Make email verification mandatory to avoid junk email accounts
ACCOUNT_EMAIL_VERIFICATION = 'mandatory'
Eliminate need to provide username, as it's a very old practice
ACCOUNT_USERNAME_REQUIRED = False

In addition to the changes in Listing 10-17 to the settings.py file, you'll also need to register the
Django allauth url entry points in the main urls.py file. Listing 10-18 illustrates the changes you need to
make to the main urls.py file.

Listing 10-18.  Django allauth url configuration urls.py

urlpatterns = [
 ...
 url(r'^accounts/', include('allauth.urls')),
 ...
]

As you can see in Listing 10-18, the url regular expression tells Django to mount the Django allauth
allauth.urls urls under the /accounts/ path, just like it’s done for the standard Django django.contrib.
auth package urls back in Listing 10-11.

Chapter 10 ■ Django User Management

473

Django allauth uses the same url patterns and behaviors almost exactly as the standard django.contrib.
auth package. This means Django allauth configures its login page at the /accounts/login/ url and the
logout page at the /accounts/logout/ url. Django allauth does include a series of new urls in its include()
statement from Listing 10-18 (e.g., email verification), but I’ll describe these new urls as we move forward.

Similarly, the same settings.py variables used for authentication purposes by the standard django.
contrib.auth package are also applicable to Django allauth. For example, you can set LOGIN_URL to override
the default /accounts/login/ url location and you can also set the LOGIN_REDIRECT_URL that defaults to the
/accounts/profile/ url. In fact, just like the django.contrib.auth package, Django allauth doesn’t include
the /accounts/profile/ url entry point, so you may as well override the LOGIN_REDIRECT_URL variable in
settings.py to point to another url (e.g., LOGIN_REDIRECT_URL='/' to redirect the user to the home page
after a successful login).

Finally, once you’ve followed these configuration steps, you need to do the following miscellaneous
steps to ensure Django allauth runs correctly:

•	 Run python manage.py migrate from the command line, to ensure all the database
tables required by Django allauth are created.

•	 Ensure the django.contrib.sites package reflects the application's domain. By
default, the django.contrib.sites defaults to the domain example.com, you can
change this value in the Django admin to ensure certain features (e.g., email) use the
correct application domain.

First Log In and Log Out with Superuser in Django allauth
First, create a Django superuser using any of the techniques outlined at the start of this chapter in Listing 10-1
and take note of the email. Next, go straight to the /accounts/login/ url and you'll see a page like the one
illustrated in Figure 10-11.

Figure 10-11.  Django allauth defult login screen

Chapter 10 ■ Django User Management

474

Now let’s pause for a second and contemplate what Django allauth just provided. Figure 10-11
illustrates a login page for which you didn’t even have to create its template – unlike the django.contrib.
auth log in workflow. In addition, notice the login form in Figure 10-11 asks for an email credential and you
didn’t even need to create a custom authentication back end to support this functionality either.

Next, introduce the superuser email/password into the sign-in form in Figure 10-11 and click on the
‘Sign in’ button, if the credentials are correct, you’ll be redirected to a ‘Verify your E-mail address’ page. This
is by design, remember in Listing 10-17 the base Django allauth configuration enforce email verification
(ACCOUNT_EMAIL_VERIFICATION = 'mandatory'); therefore until the user’s email address is verified, access
is denied.

If you’re using the same email settings described in Listing 10-17 – to send emails to the console – you
will see an email like the one in Listing 10-18 where you’re running the Django development server.

Listing 10-18.  Confirm email for new user in django-allauth

MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 7bit
Subject: [coffeehouse.com] Please Confirm Your E-mail Address
From: webmaster@localhost
To: cashier@coffeehouse.com
Date: Wed, 12 Aug 2018 00:57:50 -0000
Message-ID: <20180812005750.15177.32621@laptop>

Hello from coffeehouse.com!

You're receiving this e-mail because user daniel at example.com has given yours as an e-mail
address to connect their account.

To confirm this is correct, go to http://localhost:8000/accounts/confirm-email/1aflixsbb6sn1
4hptkntiyrgvk1r0pppqsurx6fxrs6wmlb96u8y3gotxzep0qie/

Thank you from coffeehouse.com!
coffeehouse.com

Copy and paste the verification link in the email to your browser. Once you click on the verification
link, you’ll be asked to confirm the user’s email. When you click on the ‘Confirm’ button to make the final
verification, you’ll be sent to the /accounts/login/ url once again showing a small flash message indicating
the account was confirmed.

Now reintroduce the superuser email/password into the sign-in form in Figure 10-11 once again and
click on the ‘Sign in’ button. This time you’ll be redirected to /accounts/profile/ url or the url defined in
the LOGIN_REDIRECT_URL variable in settings.py.

At this point, you’re logged into the application as a superuser using the login workflow form provided
by Django allauth. Next, go directly to the Django admin /admin/ url and you can confirm you’re able to
access it directly! In this case, there’s no need to reauthenticate yourself using the Django admin form,
because you already logged in using the Django allauth workflow.

Finally, in order to log out of the application you can visit the /accounts/logout/ url, where you’ll be
presented with a confirmation question asking if you’re sure you want to log out, and clicking on the ‘Sign
out’ button materializes the log out action.

As you can see from this exercise, Django allauth provides very tight integration with the standard login
workflow used by the Django admin and the django.contrib.auth package, on top of the features already
outlined: email verification, built-in templates, built-in authentication workflow with email, and backward
compatibility with usernames.

Chapter 10 ■ Django User Management

475

User Signup with Django allauth
If you review the /accounts/login/ url illustrated in Figure 10-11, you can see there’s a ‘Sign up’ link that
takes you to the URL /accounts/signup/. Click on this link, and you’ll be presented with a form that asks for
an email and a password to create a user account.

Once you fill out the form, click on the ‘Sign up’ button. If the submission is successful, you’ll be
redirected to the ‘Verify your E-mail address’ page. This is the same behavior described in the previous
section, due to Django allauth requiring email verification before allowing access to an application.

Similarly, proceed to inspect the email generated by Django allauth and copy-paste the verification
link to complete the user sign up process. Next, you can proceed to log in with this user’s credentials, which
default to a regular user.

An interesting point about this signup process that may not be obvious, is Django allauth creates a user
using only his email, which raises some questions: What happens if this user later becomes a superuser or
staff member to access the Django admin? Will the Django admin login form that relies on usernames not
work? Nothing of the sort; it will work as expected.

Behind the scenes, Django allauth creates a regular Django user and integrates it with Django allauth
features (e.g., email login, social authentication). This built-in integration is an excellent feature because you
get all the benefits of Django allauth, plus users get to keep Django’s default user management where the
same user can get Django admin access, superuser and staff permissions, ability to belong to groups, and
permission assignment.

The convention Django allauth uses to create usernames is to take an email’s local part (i.e., anything
before @) as the username handle. For cases where multiple emails with the same name create an account,
Django allauth assign a digit to the username (e.g.nancy@coffeehouse.com=nancy, nancy@hotmail.
com=nancy2, nancy@gmail.com=nancy3).

Password Reset and Change with Django allauth
One of the most common management tasks required by users is often related to passwords, whether it’s
resetting their password because they forgot it or changing it for security reasons. Django allauth provides
built-in support for both these password scenarios. If you go to the /accounts/password/reset/ url, you’ll
see a form where a user can introduce his email to reset his password.

Once you introduce an email on this last form, click on the ‘Reset My Password’ button and Django
allauth sends a confirmation email like the one in Listing 10-19 with a password reset link.

Listing 10-19.  Reset email for new password django-allauth

MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 7bit
Subject: [coffeehouse.com] Password Reset E-mail
From: webmaster@localhost
To: nancy@coffeehouse.com
Date: Wed, 19 Aug 2018 03:05:09 -0000
Message-ID: <20180819030509.15780.98825@laptop>

Hello from coffeehouse.com!

You're receiving this e-mail because you or someone else has requested a password for your
user account at coffeehouse.com.
It can be safely ignored if you did not request a password reset. Click the link below to
reset your password.

Chapter 10 ■ Django User Management

476

http://localhost:8000/accounts/password/reset/key/5-44f-0f6fbf1251fd33ee4b40/

Thank you for using coffeehouse.com!
coffeehouse.com

Next, if you click on the reset link in the email, you’ll be taken to another page where you can introduce
a new password. After you click on the ‘Change password’ button, and if the process is successful, you’ll see
a password confirmation flash message indicating the user password was updated.

The other option available in django-allauth related to passwords is to allow a user to change their
password while they’re logged in. If you go to the /accounts/password/change/ url, you’ll see a screen
with a form to introduce a new password. After you click on the ‘Change Password’ button, you’ll see a
confirmation message on the same screen indicating the user password was updated.

Add and Change User Email with Django allauth
To aid users in the possibility of changing their initial email signup address, Django allauth has a dedicated
page to manage email addresses. If you go to the /accounts/email/ url, you’ll see the page illustrated in
Figure 10-12.

Figure 10-12.  Django allauth email management

As you can see in Figure 10-12, in addition to the possibility of adding other emails to the account,
a user can also change his primary email, resend a verification for an email, or even remove an email
associated with an account.

Chapter 10 ■ Django User Management

477

Change Templates for Django allauth
The Django allauth built-in templates provide basic functionality as you’ve seen in the previous sections. All
the built-in templates inherit their behavior from a template named base.html and their content is enclosed
in {% block content %}{% block %}. This means you can create a template called base.html in your
Django project with all the elements you wish (e.g., custom colors, header menu) and declare the {% block
content %}{% block %} in it and the Django allauth built-in templates are rendered in this context.

If you want to fully customize the templates used by Django allauth (e.g., to include mobile-friendly
forms or some other deep change), you can provide overriding templates in your Django project.

Django allauth relies on over 15 HTML templates and 6 email templates; for this reason, it’s easier if
you copy the Django allauth default templates to your Django project and then modify them as needed.
You should ensure the Django allauth templates are copied with their original account subfolder that
should be accessible under a DIRS value of the TEMPLATES variable in settings.py. Depending on your
Python installation, the default Django allauth templates can be found on the path /lib/python3.5/site-
packages/allauth/templates/.

■■ Tip  See the book’s accompanying source code, which includes the layout of all Django allauth templates.

Models and Database Tables Behind Django allauth
Although Django allauth leverages Django’s default user model django.contrib.auth.models.User or a
custom user model if it’s provided as part of the AUTH_USER_MODEL configuration, Django allauth relies on a
series of new models to support its advanced user management features. Figure 10-13 illustrates the Django
admin showcasing the series of Django allauth models.

Figure 10-13.  Django admin with models for django-allauth

Chapter 10 ■ Django User Management

478

The first Django allauth inclusion illustrated in Figure 10-13 corresponds to the ‘Accounts’ app, which
includes the ‘Email addresses’ model. The ‘Email addresses’ model keeps track of emails, their association
to user model records (e.g., django.contrib.auth.models.User), the primary email status, as well as an
email’s verification status. It should be noted ‘Email addresses’ model records are stored in the account_
emailaddress database table.

It’s also worth mentioning that in Figure 10-13 you can see the standard ‘User’ and ‘Group’ models from
the django.contrib.auth.models.User package. Django allauth continues to make use of a project’s user
model to store core user data (e.g., passwords)

The second set of Django allauth models included in Figure 10-13 correspond to social accounts, which
are used to allow Django authentication on social media sites (e.g., Facebook, Google, Twitter), which is the
topic of the next and last section in this chapter.

Social Authentication with Django allauth
Social authentication involves creating workflows - also known as applications - on third-party sites (e.g.,
Facebook, Google, Twitter) to allow users of such sites the ability to reuse their identity to access external
resources - which in our case will be Django applications. This ability is a very valuable feature in Django
applications, because it allows users to register in a few clicks, instead of going through a more involved
registration process.

At the most basic level, social authentication processes involve tokens that are authorized by users,
which are then exchanged between third-party sites and the requesting party (i.e., your Django application)
to indicate a user’s consent. In addition, depending on the application and its configuration, the requesting
party (i.e., the Django application) can solicit basic user information (e.g., email), as well as more elaborate
information (e.g., a user’s friends in a Facebook application) from the third-party site.

■■ Note  The following sections assumes you’ve already set up a base Django allauth configuration, as
described in the previous section.

Set Up Django allauth for Different Social Providers
There are many social providers supported by Django allauth and each provider is supported through its own
package that needs to be added to the list of INSTALLED_APPS in settings.py as illustrated in Listing 10-20.

Listing 10-20.  Social provider app installation for Django allauth in settings.py

INSTALLED_APPS = [
 # Django sites framework is required
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'allauth.socialaccount',
 'allauth.socialaccount.providers.facebook',
 'allauth.socialaccount.providers.google',
 'allauth.socialaccount.providers.twitter',
]

SOCIALACCOUNT_PROVIDERS = {'facebook': {}, 'google':{}, 'twitter':{}}

Chapter 10 ■ Django User Management

479

As you can see in Listing 10-20, the last three apps in the INSTALLED_APPS list correspond to three social
providers: Facebook, Google, and Twitter. Adding these providers to INSTALLED_APPS is the first step to
enable them in social authentication with Django allauth.

In addition to the google, facebook, and twitter apps, Django allauth also supports over 50 other
social authentication workflows from various providers3 under the same allauth.socialaccount.
providers package.

In Listing 10-20 you can also see the SOCIALACCOUNT_PROVIDERS variable with a dictionary of keys that
correspond to each social provider. Each key has an empty dictionary value that will eventually contain
provider-specific configuration options. In the next sections, I’ll describe how to set up each social provider
and fill in these configuration values.

■■ Caution  Don’t add social provider configurations to settings.py until you have real connection
parameters to social providers. You’ll get errors due to the missing configuration in the login page and other
workflow authentication pages.

In addition to the configuration parameters in SOCIALACCOUNT_PROVIDERS, you’ll also need to add a
social provider’s application credentials as ‘Social applications’ model records through the Django admin.
Go to the Django admin and click on the ‘Social applications’ model – shown in Figure 10-13.

Next, you’ll be presented with a screen like the one in Figure 10-14 where you can edit and add social
applications, and click on the ‘Add social application’ button in the top right button. On this page, you’ll see
a screen like the one in Figure 10-15 where you can select a social provider and introduce various values
associated with a social application (e.g., name, client id, secret key). For the moment we don’t have any of
these values, but keep this Django admin page open, because next I’ll describe where to get the values for
each of the three social providers you added to the INSTALLED_APPS variable in Listing 10-20.

3http://django-allauth.readthedocs.io/en/latest/providers.html

Figure 10-14.  Django social application list page

http://django-allauth.readthedocs.io/en/latest/providers.html

Chapter 10 ■ Django User Management

480

Set Up Facebook with Django allauth
To set up Facebook social authentication in Django allauth you need a Facebook account to create an
application on their site. Head over to https://developers.facebook.com/apps. If you’ve previously
created a Facebook application you’ll see a screen like the one in Figure 10-16, but if you’ve never created an
application then you won’t see a list of applications, but you’ll still see the ‘Add a New App’ green button in
the top right corner like Figure 10-16.

Figure 10-15.  Django social application create/edit page

https://developers.facebook.com/apps

Chapter 10 ■ Django User Management

481

Figure 10-16.  Facebook application list page

Click on the ‘Add a New App’ button in the top right corner of Figure 10-16 and you’ll see a pop-up like
the one in Figure 10-17. Fill out the two options for the app name (e.g., Coffeehouse) and contact email and
click on the ‘Create App ID’ button.

Figure 10-17.  Facebook create application pop-up

When you click on the ‘Create App ID’ button, the app is created and you’re taken to the app’s main page.
Next, let’s go back to the page with the list of apps – illustrated in Figure 10-16 – by clicking on the ‘See all
apps’ button on the left-column drop-down or by just visiting the https://developers.facebook.com/apps
url again – you can come back later to app’s main page by clicking on the app on the page with the list of apps.

https://developers.facebook.com/apps

Chapter 10 ■ Django User Management

482

While on the Facebook app list page – Figure 10-16 – hover your mouse pointer over the top right corner
of the application you just created until an arrow appears, click on the arrow, and from the pop-up menu
click on the ‘Create Test App’ option as illustrated in Figure 10-18.

Figure 10-18.  Facebook created test application pop-up menu

Next, a pop-up appears where you can assign a name to the test app or leave the default name; choose
accordingly. Upon termination, you’ll see a screen like the one in Figure 10-19 with all the app configuration
parameters. If you don’t see Figure 10-19, go back to the Facebook app list page in Figure 10-16, hover over
the top right corner again, and select the test application from the pop-up menu.

Chapter 10 ■ Django User Management

483

In Figure 10-19, you can see there’s an ‘App ID’ value, as well as a hidden ‘App Secret’ value you can
see by clicking on the ‘Show’ button. In addition, on the left-hand side you can see a series of tabs to further
customize an application’s parameters. Click on the ‘Settings’/‘Basic’ menu in the left-hand column.

While on the ‘Settings’/‘Basic’ menu, in the center bottom of the page you’ll see a large button ’+ Add
platform’, as shown in Figure 10-20. Click on the ‘+ Add platform’ button and in the pop-up menu select the
‘Website’ option. This adds a ‘Website’ box above the ‘+ Add platform’ button, in this box’s input field add
the url of your Django application (e.g., http://localhost) to tell Facebook to accept login request from this
domain – as illustrated in Figure 10-20 – and in addition, on the ‘App Domains’ input field near the top of the
page also add the url of you Django application – as it’s also illustrated in Figure 10-20.

Figure 10-19.  Facebook test app main page

Chapter 10 ■ Django User Management

484

Next, go to the Django admin and in the ‘Social applications’ model create/edit page - illustrated in
Figure 10-15 - create a Facebook application by selecting ‘Facebook’ from the provider list, introduce a
friendly name in the ’Name’ box, introduce the Facebook ‘App ID’ value in the ‘Client Id’ box, and introduce
the Facebook ‘App Secret’ value in the ‘Secret key’ box.

Next, open your Django project’s settings.py file and update the SOCIALACCOUNT_PROVIDERS variable
with the Facebook configuration parameters illustrated in Listing 10-21.

Listing 10-21.  Facebook social provider configuration for Django allauth in settings.py

SOCIALACCOUNT_PROVIDERS = { 'facebook':
 {'METHOD': 'oauth2',
 'SCOPE': ['email'],
 'AUTH_PARAMS': {'auth_type': 'reauthenticate'},
 'LOCALE_FUNC': lambda request: 'en_US',
 'VERSION': 'v2.4'
 }
 }

The settings in Listing 10-21 are the most basic set of values to run Facebook authentication, but there
are many other options you can consult in the Django allauth documentation. Next, start your Django
application and visit the /accounts/login/ page to attempt to log in, you will see a page like the one
illustrated in Figure 10-21.

Figure 10-20.  Facebook test app configuration for authorized domain requests

Chapter 10 ■ Django User Management

485

As you can see in Figure 10-21, unlike the login page from the Django allauth-based configuration, there
are now options to sign up with Facebook, Google, and Twitter. Click on the Facebook link and you’ll be
redirected to a Facebook page to grant authorization, as illustrated in Figure 10-22.

Figure 10-21.  Django login with social authentication options

Figure 10-22.  Facebook social authorization pop-up

Chapter 10 ■ Django User Management

486

As you can see in Figure 10-22, a user is told the action will share his public profile and email upon
confirmation. If the user clicks ‘Continue as...’ Facebook contacts the Django application with a token and
the user’s information (i.e., public profile info and email). At this juncture, Django allauth creates a user and
puts him through the regular Django allauth user creation workflow.

Because of the previous base Django allauth configuration – on which this social configuration is based
– that enforced email verification, a user won’t be able to log in to application until he verifies his email
account via Django allauth, irrespective of the Facebook authentication workflow. Once a user confirms his
email through a verification link sent by Django allauth, a user is marked as verified and can proceed to log
in to the application – note this email verification process is not specific or required for social authentication
and you can disable it you want to allow automatic login immediately after Facebook returns a response.

With the Facebook authentication and email verification complete, a user can sign in to the Django
application by clicking on the ‘Facebook’ sign-in link at any time thereafter.

Under the hood, Django allauth keeps track of social authentication tokens and accounts in the ‘Social
application tokens’ and ‘Social accounts’ models, which are both accessible in the Django admin.

In addition, Django allauth also creates a regular Django user (e.g., the django.contrib.auth.models.
User kind) with the Facebook workflow, so the same user is capable of leveraging Django’s standard
authentication system (e.g., to become superuser or staff). Note however that this type of user relies on a
Facebook authorization token – and has no password – so authentication must always be done through the
social Facebook authentication link in /accounts/login/, with the Django admin not working for this type
of user because it requires a typed-in password.

Bear in mind that in addition to the multiple Facebook-specific configuration Django allauth options
that are beyond the scope of this discussion, there are other social authentication concepts (e.g., token
revocation, callback URLs) that you’ll need to explore and configure on your own – given they are not Django
specific – to offer a streamlined social authentication process to end users.

■■ Note  The previous procedure is done as a Facebook ‘Test application' – see Figure 10-18. For the live
version of a Django application, you must perform this identical procedure on the primary (i.e., non-test)
channel of the same Facebook application.

Set Up Google with Django allauth
To set up Google social authentication in Django allauth, you’ll need a Google account to create an
application on their site. Head over to https://console.developers.google.com/. If you’ve previously
created Google projects you’ll land on a default project. While you can create the social authentication
workflow on any Google project, I recommend you create a new project for this purpose.

On the top menu bar – to the right-hand side of the ‘Google APIs’ logo – there’s a menu with the default
project name: click on it, and a pop-up appears with a list of projects. Inside this last pop-up and besides
the search box is a ‘+’ (plus) button named ‘Create project’. Click on the ‘Create project’ button and you’ll be
taken to the page illustrated in Figure 10-23. Introduce a project name and click on the ‘Create’ button.

https://console.developers.google.com/

Chapter 10 ■ Django User Management

487

After you click on the ‘Create button’, you’ll be taken to the project’s home page shown in Figure 10-24.
Ensure you’re placed in the project you just created verifying the name of the selected project in top menu
bar – to the right-hand side of the ‘Google APIs’ logo. If it’s not the correct project, click on project and from
the pop-up select the appropriate project from the list of projects.

Figure 10-23.  Google create project page

Figure 10-24.  Google project main page

Chapter 10 ■ Django User Management

488

On the left-hand side menu of Figure 10-24, click on the ‘Credentials’ option. Next, on the center of the
page, click on the ‘Add credentials’ button and from the drop-down menu select the ‘OAuth client ID’ option
as illustrated in Figure 10-25.

Figure 10-25.  Google project Oauth client ID option

Once you click on the ’OAuth client ID’ option you’ll be taken to the ‘Create Client ID’ page illustrated
in Figure 10-26. You should select the ‘Web application’ option; however, notice the warning at the top of the
page indicating ‘To create an OAuth client ID, you must first set a product name on the consent screen’. So
let’s take care of this consent screen first, so click on the ‘Configure consent screen’ button from Figure 10-26
to take you to the page in Figure 10-27.

Chapter 10 ■ Django User Management

489

Figure 10-26.  Google project create client ID page

Figure 10-27.  Google project OAuth consent screen

Chapter 10 ■ Django User Management

490

The consent screen in Figure 10-27 is used to customize how an end user is greeted by Google when
seeking authorization from an app, in our case the Django application. Fill in the required ‘Product name
shown to users’ field and save the changes. Once the consent screen is saved, you’ll be taken back to the
screen in Figure 10-26 where you can select the ‘Web Application’ option.

In the ‘Web application’ page, the ‘Name’ field is given the default ‘Web client 1' value, which you can
adjust accordingly. Set the ‘Authorized JavaScript origins’ option to the Django application’s domain
(e.g., http://localhost) and also set the ‘Authorized redirect URIs’ option to the Django allauth url
/accounts/google/login/callback/, which is here that Google will contact the application after successful
authentication – note this last value must use a full-qualified domain (e.g., http://localhost/accounts/
google/login/callback/).

Once you input the necessary values in the ‘Web application’ page, click on the ‘Create’ button and
you’ll see a pop-up like the one in Figure 10-28 with the application Client ID and Client Secret - if you close
the pop-up you can later access the same values in the main ‘Credentials’ menu on the left-hand side.

Figure 10-28.  Google project Client ID and Client Secret

Next, go to the Django admin and in the ‘Social applications’ model create/edit page – illustrated in
Figure 10-15 – create a Google application by selecting ‘Google’ from the provider list, introduce a friendly
name in the ‘Name’ box, introduce the Google ‘Client ID’ value in the ‘Client Id’ box, and introduce the
Google ‘Client Secret’ value in the ‘Secret key’ box

Next, open your Django project's settings.py file and update the SOCIALACCOUNT_PROVIDERS variable
with the Google configuration parameters illustrated in Listing 10-22.

Listing 10-22.  Google social provider configuration for django-allauth in settings.py

SOCIALACCOUNT_PROVIDERS = { 'google':
 { 'SCOPE': ['email'],
 'AUTH_PARAMS': { 'access_type': 'online' }
 }
 }

Chapter 10 ■ Django User Management

491

The settings in Listing 10-22 are the most basic set of values to run Google authentication, but there are
many other options you can consult in the Django allauth documentation. Next, start the Django application
and visit the /accounts/login/ page – in Figure 10-21 – to attempt a Google login. Click on the ‘Google’
signup link and you'll be redirected to a Google grant authorization page, illustrated in Figure 10-29.

Figure 10-29.  Google social authorization page

As you can see in Figure 10-29, a user is informed he will share who he is and his email upon
confirmation. If the user clicks ‘Accept’, Google contacts the Django application with a token and the user’s
information (i.e., public profile info and email). At this juncture, Django allauth creates a user so he’s able to
sign into the Django application by simply clicking on the ‘Google’ sign-in link every time.

Because Google itself requires on valid emails to work, it’s implied a user authenticating via Google uses
an active and valid email, therefore Django allauth skips the email verification process and automatically
marks a user as verified - unlike Facebook authentication, where users can keep using Facebook with a stale
and potentially invalid email.

Under the hood, Django allauth keeps track of social authentication tokens and accounts in the ‘Social
application tokens’ and ‘Social accounts’ models, which are both accessible in the Django admin.

In addition, Django allauth also creates a regular Django user (e.g., the django.contrib.auth.
models.User kind) with the Google workflow, so the same user is capable of leveraging Django's standard
authentication system (e.g., to become superuser or staff). Note, however, this type of user relies on a Google
authorization token – and has no password – so authentication must always be done through the social
Google authentication link in /accounts/login/, with the Django admin not working for this type of user
because it requires a typed-in password.

Set Up Twitter with Django allauth
To set up Twitter social authentication in Django allauth you’ll need a Twitter account to create an
application on their site. Head over to https://apps.twitter.com/app/new and you’ll see a screen like the
one in Figure 10-30 to create a Twitter app.

https://apps.twitter.com/app/new

Chapter 10 ■ Django User Management

492

Fill out the required details for the new Twitter app, ensuring the ‘Callback URL’ field is set to
http://localhost:8000/accounts/twitter/login/callback/, which is where Twitter will contact the
Django application upon successful authentication. Create the application and you’ll be redirected to the
Twitter application’s main page. Next, click on the ‘Keys and Access Tokens’ tab, where you’ll see a screen
like the one in Figure 10-31.

Figure 10-30.  Twitter create app page

Figure 10-31.  Twitter app Key and Access Tokens page

Chapter 10 ■ Django User Management

493

As you can see in Figure 10-32, a user is told he will share tweets and other information upon
confirmation. If the user clicks ‘Authorize app’, Twitter contacts the Django application with a token and
the user’s information (i.e., public profile info). At this juncture, the user is redirected back to the site and
Django allauth asks a user for his email to finish the account creation process, as illustrated in Figure 10-33.

Next, go to the Django admin and in the ‘Social applications’ model create/edit page - illustrated in
Figure 10-15 - create a Twitter application by selecting ‘Twitter’ from the provider list, introduce a friendly
name in the ‘Name’ box, introduce the Twitter ‘Consumer Key (API Key)’ value in the ‘Client Id’ box, and
introduce the Twitter ‘Consumer Secret’ value in the ‘Secret key’ box.

Django allauth doesn’t support any Twitter configuration options as part of the SOCIALACCOUNT_
PROVIDERS variable in settings.py, so you can skip this configuration step.

Next, start your Django application and visit the /accounts/login/ page – in Figure 10-21 – to attempt
to Twitter login. Click on the ‘Twitter’ sign in link and you’ll be redirected to a Twitter grant authorization
page, illustrated in Figure 10-32.

Figure 10-32.  Twitter social authorization page

Chapter 10 ■ Django User Management

494

Note this last email request in Figure 10-33 is necessary because Twitter does not provide an email
with their social authentication – difficult as it may be to believe, it’s a known Twitter social authentication
limitation.

Because the base Django allauth configuration enforces email verification – to avoid garbage emails – a
user is sent a verification email in which he has to click on a link to finish activation.

Once a user confirms his email by clicking on the verification email link, he can sign in to the Django
application by clicking on the ‘Twitter’ sign-in link at any time. Under the hood, Django allauth keeps track
of social authentication tokens and accounts in the ‘Social application tokens’ and ‘Social accounts’ models,
which are both accessible in the Django admin.

In addition, Django allauth also creates a regular user (e.g., the django.contrib.auth.models.User
kind) with the Twitter workflow, so the same user is capable of leveraging Django’s standard authentication
system (e.g., to become superuser or staff). Note however that this type of user relies on a Twitter
authorization token – and has no password – so authentication must always be done through the social
Twitter authentication link in /accounts/login/, with the Django admin not working for this type of user
because it requires a typed-in password.

Figure 10-33.  Django allauth email request after Twitter social authorization

495© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_11

CHAPTER 11

Django admin Management

The Django admin is a user-friendly application to administer the contents of a relational database linked
to a Django project. Although the Django admin is almost effortless in terms of setting it up – as described
in Chapter 1 – there are multiple configuration options you’ll learn in this chapter to create more powerful
Django admin displays and functionalities.

In this chapter you’ll first learn how to register Django models in the Django admin. Next, you’ll learn
how to display records in the Django admin and use techniques like ordering, inline editing, pagination,
search and actions buttons, among other things. In addition, you’ll learn how to customize Django admin
forms and relationships to easily create, update, and delete model records with the Django admin.

Next, you’ll learn how to customize Django admin pages through configuration fields and custom
templates, as well as how to add custom data and override Django admin class methods and fields to create
the most flexible Django admin pages possible. Finally, you’ll learn how to configure and enforce Django
admin permissions, as well as how to create multiple Django admin site instances.

Set Up Django Models in the Django admin
Although the Django admin provides an excellent management tool for a Django project's database, simply
creating and installing Django models isn't enough to access their data in the Django admin.

In order to access Django model records in the Django admin you must register and configure Django
models in admin.py files. An admin.py file is automatically placed inside a Django app – alongside the
models.py and views.py files – when you create an app.

Although you can technically use a single admin.py to register and configure all Django models - just
like you can have a single models.py to define all Django models - it's a recommended practice that each
Django app uses its own admin.py file to manage its corresponding model defined in models.py.

There are three ways to register a Django model for the Django admin in admin.py files, all of which are
illustrated in Listing 11-1.

Listing 11-1.  Register Django models in admin.py file

from django.contrib import admin
from coffeehouse.stores.models import Store

Option 1 - Basic
admin.site.register(Store)

Option 2 - Allows customizing Django admin behavior
class StoreAdmin(admin.ModelAdmin):
 pass

https://doi.org/10.1007/978-1-4842-2787-9_11
http://dx.doi.org/10.1007/978-1-4842-2787-9_1

Chapter 11 ■ Django admin Management

496

admin.site.register(Store, StoreAdmin)

Option 3 – Decorator
@admin.register(Store)
class StoreAdmin(admin.ModelAdmin):
 pass

The first option in Listing 11-1 provides basic Django model registration and consists of declaring a
Django model class as the input of the admin.site.register method. If you don't require customizing the
default Django admin behavior for a model, this option is sufficient.

The second option in Listing 11-1 makes use of a Django admin class that inherits its behavior from
the admin.ModelAdmin class. In this case, you can see the class is empty, but it's possible to customize the
Django admin behavior, as I'll describe throughout this chapter. Once the Django admin class is declared,
it must be registered and associated with a Django model using the same admin.site.register method
in option one, where the first argument is the Django model and the second argument is the Django
admin class.

The third option in Listing 11-1 makes use of a Django admin @admin.register decorator. The
syntax difference between option three and option two is that the registration and association takes place
decorating the Django admin class with @admin.register where the decorator takes the Django model as its
argument.

It’s worth mentioning that although options two and three are functionally equal, using the @admin.
register decorator - option three - has the limitation that you can't reference the Django admin class in its
__init__() method (e.g., super(StoreAdmin, self).__init__(*args, **kwargs)), which is an issue in
Python 2 and for certain designs; if you're in this situation then you must use option two to register a model
with the admin.site.register method.

Now that you know how to register Django models in the Django admin, I'll describe the various
options available to customize the Django admin behavior through a Django admin class. To make it
easier to look for custom options, I'll classify the options into two main sections: 'Read record options' and
'Create,update,delete record options' to cover the entire scope of CRUD operation options available in the
Django admin, in addition to including subsections to group functionality under each main section.

Django admin Read Record Options
When you're on the main page of the Django admin and click on a Django model, you're taken to a page that
shows the record list of that specific model. Figures 11-1 and 11-2 illustrate this record list page for a Store
model.

Chapter 11 ■ Django admin Management

497

Figure 11-1.  Django admin record list page with no model __str__ definition

Figure 11-2.  Django admin record list page with model __str__ definition

As you can see in Figures 11-1 and 11-2, each Django model record is displayed with a string. By default,
this string is generated from the __str__() method definition of the Django model, as described in Chapter 7.
If the __str__ method is missing from a Django model, then the Django admin displays the records like
Figure 11-1 as 'Store object'; otherwise it returns the result generated by the __str__ method for each
record - which in this case of Figure 11-2 is the name, city, and state attributes of each Store record.

http://dx.doi.org/10.1007/978-1-4842-2787-9_7

Chapter 11 ■ Django admin Management

498

Record Display: list_display, format_html, empty_value_display
While the basic display behavior presented in Figures 11-1 and 11-2 is helpful, it can be very limited for
models with an inexpressive or complex __str__() method. A Django admin class can be configured with
the list_display option to split up the record list with a model's various fields, thereby making it easier to
view and sort records. Listing 11-2 illustrates a Django admin class with the list_display option.

Listing 11-2.  Django admin list_display option

from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','city','state']

admin.site.register(Store, StoreAdmin)

As you can see in Listing 11-2, the Django admin StoreAdmin class defines the list_display option
with a list of values. This list corresponds to Django model fields, which in this case are from the Store
model. Figures 11-3 and 11-4 illustrate the modified record list layout by adding the list_display option.

Figure 11-3.  Django admin record list page with list_display

Chapter 11 ■ Django admin Management

499

■■ Tip  If you want to keep displaying the value generated by a Django model through its __str__ method in
the Django admin, it’s valid to add it to the list_display option (e.g., list_display = ['name','__str__']).

In Figure 11-3 you can see a much cleaner record list layout where each of the fields declared in list_
display has its own column. In addition, if you click on any of the column headers - which represent model
fields - the records are automatically sorted by that attribute, a process that's illustrated in Figure 11-4 and
which greatly enhances the discoverability of records.

Besides supporting the inclusion of Django model fields, the list_display option also supports
other variations to generate more sophisticated list layouts. For example, if the database records are not
homogeneous (e.g., mixed upper and lowercase text) you can generate a callable method to manipulate
the records and display them in the Django admin in a uniform manner (e.g., all uppercase). Additionally,
you can also create a callable that generates a composite value from record fields that aren't explicitly in
the database (e.g., domain names belonging to email records) that makes the visualization of the record list
more powerful in the Django admin. Listing 11-3 illustrates several of these callable examples using several
method variations.

Listing 11-3.  Django admin list_display option with callables

from django.contrib import admin
from coffeehouse.stores.models import Store

Option 1
admin.py
def upper_case_city_state(obj):
 return ("%s %s" % (obj.city, obj.state)).upper()
upper_case_city_state.short_description = 'City/State'

Figure 11-4.  Django admin record list page with model list_display sorted

Chapter 11 ■ Django admin Management

500

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address',upper_case_city_state]

Option 2
admin.py
class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','upper_case_city_state']
 def upper_case_city_state(self, obj):
 return ("%s %s" % (obj.city, obj.state)).upper()
 upper_case_city_state.short_description = 'City/State'

Option 3
models.py
from django.db import models

class Store(models.Model):
 name = models.CharField(max_length=30)
 email = models.EmailField()
 def email_domain(self):
 return self.email.split("@")[-1]
 email_domain.short_description = 'Email domain'

admin.py
class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','email_domain']

In Listing 11-3 you can see three callable variations that are all acceptable as list_display options.
Option one in Listing 11-3 is a callable that's declared outside a class and is then used as part of the list_
display option. Option two declares the callable as part of the Django admin class and then uses it as part
of the list_display option. Finally, option three declares a callable as part of the Django model class that is
then used as part of the list_display option in the Django admin class. Neither approach in Listing 11-3 is
'better' or 'inferior' than the other; the options simply vary in the syntax and arguments used to achieve the
same result, you can use whatever approach you like.

On certain occasions you may want to render HTML as part of a record list in the Django admin (e.g.,
add bold tags or colored tags). To include HTML in these circumstances, you must use the
format_html method because the Django admin escapes all HTML output by default – since it works with
Django templates. Listing 11-4 illustrates the use of the format_html method.

Listing 11-4.  Django admin list_display option with callable and format_html

models.py
from django.db import models
from django.utils.html import format_html

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 def full_address(self):
 return format_html('%s - %s,%s' % (self.address,self.city,self.state))

Chapter 11 ■ Django admin Management

501

admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','full_address']

When a model field uses a BooleanField or NullBooleanField data type, the Django admin displays
an “on” or “off” icon instead of True or False values. In addition, when a value for a field in list_display
is None, an empty string, and for cases when a field in list_display is any empty iterable (e.g., list), Django
displays a dash -, as illustrated in Figure 11-5.

Figure 11-5.  Django admin default display for empty values

It's possible to override this last behavior with the empty_value_display option as illustrated in
Figure 11-6. You can configure the empty_value_display option to take effect on all Django admin models,
on a specific Django admin class, or individual Django admin fields as illustrated in Listing 11-5.

Chapter 11 ■ Django admin Management

502

Listing 11-5.  Django admin empty_value_display option global, class, or field-level configuration

Option 1 - Globally set empty values to ???
settings.py
from django.contrib import admin
admin.site.empty_value_display = '???'

Option 2 - Set all fields in a class to 'Unknown Item field'
admin.py to show "Unknown Item field" instead of '-' for NULL values in all Item fields
NOTE: Item model in items app

class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','price']
 empty_value_display = 'Unknown Item field'

admin.site.register(Item, ItemAdmin)

Option 3 - Set individual field in a class to 'No known price'
class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','price_view']
 def price_view(self, obj):
 return obj.price
 price_view.empty_value_display = 'No known price'

Record Order: admin_order_field and ordering
When you use custom fields in list_display (i.e., fields that aren't actually in the database, but are rather
composite or helper fields calculated in Django), such fields can't be used for sorting operations because
sorting takes places at the database level. However, if an element in list_display is associated with a

Figure 11-6.  Django admin override display for empty values with empty_value_display

Chapter 11 ■ Django admin Management

503

database field, it's possible to create an association for sorting purposes with the admin_order_field option.
This process is illustrated in Listing 11-6.

Listing 11-6.  Django admin with admin_order_field option

models.py
from django.db import models
from django.utils.html import format_html

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30,unique=True)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 def full_address(self):
 return format_html('%s - %s,%s' % (self.address,self.city,self.state))
 full_address.admin_order_field = 'city'

admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','full_address']

As you can see in Listing 11-6, the admin_order_field declaration tells Django to order the model
records by city when attempting to perform a sort operation in the Django admin through the composite
full_address field. Note that it's also possible to add a preceding - to the admin_order_field value to
specify descending order (e.g., full_address.admin_order_field = '-city'), just like it’s done in standard
model sort operations.

By default, record list values are sorted by their database pk (primary key) field – which is generally the
id field – as you can appreciate in Figure 11-3 (i.e., record pk 1 at the bottom and record pk 4 at the top).
And if you click on any of the header columns the sort order changes as you can see in Figure 11-4.

To set a default sorting behavior - without the need to click on the header column - you can use the
Django admin class ordering option or the Django model meta ordering option that you learned about
in Chapter 7. If no ordering option is specified in either class then pk ordering takes place. If the ordering
option is specified in the Django model meta option, this sorting behavior is used universally and if both a
Django model and Django admin class have ordering options, then the Django admin class definition takes
precedence.

The ordering option accepts a list of field values to specify the default ordering of a record list. By
default, the ordering behavior is ascending (e.g., Z values first@bottom, A values top@last), but it's possible
to alter this behavior to descending (e.g., A values first@bottom, Z values top@last) by prefixing a - (minus
sign) to the field value. For example, to produce a record list like the one if Figure 11-4 by default you would
use ordering = ['name'] and to produce an inverted record list of Figure 11-4 (i.e., Uptown at the top and
Corporate at the bottom) you would use ordering = ['-name'].

Record Links and Inline Edit: list_display_links and list_editable
If you look at some of the past figures you'll notice there's always a generated link for each item in the record
list. For example, in Figure 11-2 you can see each 'Store' record is a link that takes you to a page where you
can edit the 'Store' values, similarly in Figure 11-4 you can see the 'Store' name field is a link that takes you

http://dx.doi.org/10.1007/978-1-4842-2787-9_7

Chapter 11 ■ Django admin Management

504

to a page where you can edit the 'Store' values, and in Figure 11-6 you can see each 'Menu' name field is a
link that takes you to a page where you can edit the 'Menu' values.

This is a default behavior that lets you drill-down on each record, but you customize this behavior
through the list_display_links option to generate no links or inclusively more links. Listing 11-7
illustrates two variations of the list_display_links option and Figures 11-7 and 11-8 the respective
interfaces.

Listing 11-7.  Django admin with list_display_links option

Sample 1)
admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','city','state']
 list_display_links = None

admin.site.register(Store, StoreAdmin)

Sample 2)
admin.py
from django.contrib import admin
from coffeehouse.items.models import Item

class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','price_view']
 list_display_links = ['menu','name']

admin.site.register(Item, ItemAdmin)

Figure 11-7.  Django admin no links in records list due to list_display_links

Chapter 11 ■ Django admin Management

505

The first sample in Listing 11-7 illustrates how the StoreAdmin class is set with list_display_links
= None that results in the page presented in Figure 11-7 that lacks links. The second sample in Listing 11-7
shows the ItemAdmin class with the list_display_links = ['menu','name'] that tells Django to generate
links on both menu and name fields values and which results in the page presented in Figure 11-8 that
contains multiple links.

The need to click on individual links on a record list to edit records can become tiresome if you need to
edit multiple records. To simplify the editing of records, the list_editable option allows Django to generate
inline forms on each record value, effectively allowing the editing of records in bulk without the need to
leave the record list screen. Listing 11-8 illustrates the use of the list_editable option and Figure 11-9 the
respective interface.

■■ Note  Technically list_editable is a Django admin update option, but since the update is done inline and on
a page designed to read records, it’s included here.

Listing 11-8.  Django admin with list_editable option

admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','city','state']
 list_editable = ['address','city','state']

admin.site.register(Store, StoreAdmin)

Figure 11-8.  Django admin multiple links in records list due to list_display_links

Chapter 11 ■ Django admin Management

506

In Listing 11-8 you can see the list_editable = ['address','city','state'] option, which tells
the Django admin to allow the editing of address, city. and state values in the record list. In Figure 11-9
you can see how each of these field values in the record list is turned into an editable form and toward the
bottom of the page the Django admin generates a 'Save' button to save changes when an edit is made.

It's worth mentioning that any field value declared in the list_editable option must also be declared
as part of the list_display option, since it's not possible to edit fields that aren’t displayed. In addition, any
field values declared in the list_editable option must not be part of the list_display_option, since it’s
not possible for a field to be both a form and a link.

Record Pagination: list_per_page, list_max_show_all, paginator
When record lists grow too large in the Django admin, they are automatically split into different pages. By
default, the Django admin generates additional pages for every 100 records. You can control this setting with
the Django admin class list_per_page option. Listing 11-9 illustrates the use of the list_per_page option
and Figure 11-10 shows the corresponding record list generated by the configuration in Listing 11-9.

Listing 11-9.  Django admin with list_per_page option

admin.py
from django.contrib import admin
from coffeehouse.items.models import Item

class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','price']
 list_per_page = 5

admin.site.register(Item, ItemAdmin)

Figure 11-9.  Django admin editable fields due to list_editable

Chapter 11 ■ Django admin Management

507

As you can see in Figure 11-10, the display of nine records is split into two pages due to the list_per_
page = 5 option illustrated in Listing 11-9. In addition to the page icons at the bottom left of Figure 11-10,
notice the right-hand side of these icons is a ‘Show all’ link. The ‘Show all’ link is used to generate a record
list with all the records in a single page. But note that because this additional database operation can be
costly, by default, the ‘Show all’ link is only shown when a record list is 200 items or less.

You can control the display of the ‘Show all’ link with the list_max_show_all option. If the total record
list count is less than or equal the list_max_show_all value the ‘Show all’ link is displayed, if the total record
list count is above this number then no ‘Show all’ link is generated. For example, if you declare list_max_
show_all = 8 option to Listing 11-9 then no ‘Show all’ link would appear in Figure 11-10 because the total
record list count is 9.

The Django admin uses the django.core.paginator.Paginator class to generate the pagination
sequence, but it’s also possible to provide a custom paginator class through the paginator option. Note that if
the custom paginator class does not inherit its behavior from django.core.paginator.Paginator then you
must also provide an implementation for ModelAdmin.get_paginator() method.

Record Search: search_fields, list_filter, show_full_result_count,
preserve_filters
The Django admin also supports search functionality. The Django admin class search_fields option adds
search functionality for text model fields through a search box – see Table 7-1 for a list of Django model text
data types. Listing 11-10 illustrates a Django admin class with the search_fields option and Figure 11-11
illustrates how a search box is added to the top of the record list.

Figure 11-10.  Django admin list_per_page option limit to 5

http://dx.doi.org/10.1007/978-1-4842-2787-9_7#Tab1

Chapter 11 ■ Django admin Management

508

Listing 11-10.  Django admin search_fields option

from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 search_fields = ['city','state']

admin.site.register(Store, StoreAdmin)

Table 11-1.  Django search_fields options and generated SQL for search term

search_fields option Search term Generated SQL condition

search_fields = [‘city’,‘state’] San Diego WHERE (city ILIKE ‘%San%’ OR state ILIKE ‘%San%’)
AND (city ILIKE ‘%Diego%’ OR state ILIKE ‘%Diego%’)

search_fields = [‘^city’,‘^state’] San Diego WHERE (city ILIKE ‘San%’ OR state ILIKE ‘San%’) AND
(city ILIKE ‘Diego%’ OR state ILIKE ‘Diego%’)

search_fields = [‘=city’,‘=state’] San Diego WHERE (city ILIKE ‘San’ OR state ILIKE ‘San’) AND
(city ILIKE ‘Diego’ OR state ILIKE ‘Diego’)

*search_fields = [‘@city’,‘@state’] San Diego (Full-text search) WHERE (city ILIKE ‘%San%’ OR state
ILIKE ‘%San%’) AND (city ILIKE ‘%Diego%’ OR state
ILIKE ‘%Diego%’)

* Full-text search option only supported for MySQL database

Figure 11-11.  Django admin search box due to search_fields option

In Listing 11-10 the city and state fields are added to the search_fields option, which tell the Django
admin to perform searches across these two fields. Be aware that adding too many fields to the search_
fields option can result in slow search results, due to the way Django executes this type of search query.
Table 11-1 presents different search_fields options and the generated SQL for a given search term.

Chapter 11 ■ Django admin Management

509

As you can see in Table 11-1, the search_fields option constructs a query by splitting the provided
search string into words and performs a case insensitive search (i.e., SQL ILIKE) where each word must be in
at least one of the search_fields. In addition, notice in Table 11-1 it’s possible to declare the search_fields
values with different prefixes to alter the search query.

By default, if you just provide model field names to search_fields, Django generates a query with
SQL wildcards % at the start and end of each word, which can be a very costly operation, since it searches
across all text in a field record. If you prefix the search_field with a ^ - as illustrated in Table 11-1 - Django
generates a query with an SQL wildcard % at the end of each word, making the search operation more
efficient because it’s restricted to text that starts with the word patterns. If you prefix the search_field with a
= - as illustrated in Table 11-1 - Django generates a query for an exact match with no SQL wildcard %, making
the search operation the most efficient, because it’s restricted to exact matches of the word patterns. Finally,
if you’re using a MySQL database, it’s also possible to add the @ prefix to search_fields to enable full-text
search.

POWER SEARCHES, NON-TEXT SEARCHES, AND OTHER BACK ENDS
FOR DJANGO ADMIN SEARCHES

Search engines offer various kinds of power search syntax to customize search queries, but the Django
admin search_fields option doesn’t support this type of syntax. For example, in a search engine it’s
possible to quote the search term "San Diego" to make an exact search for both words, but if you
attempt this with the Django admin search, Django attempts to search for literal quotes: "San" and
"Diego" separately. To tweak the default search_fields behavior you must use the options presented in
Table 11-1 or ModelAdmin.get_search_results().

The default search behavior for a Django admin class can be customized to any requirements with the
ModelAdmin.get_search_results() method that accepts the request, a queryset that applies the
current filters, and the user-provided search term. In this manner, you can generate non-text searches
(e.g., on Integers) or rely on other third-party tools (e.g., Solr, Haystack) to generate search results.

The list_filter option offers quicker access to model field values and works like pre-built search
links. Unlike the search_fields option, the list_filter option is more flexible in terms of the data types it
can work with and accepts more than just text model fields (i.e., it also supports Boolean fields, date fields,
etc.). Listing 11-11 illustrates a Django admin class with the list_filter option and Figure 11-12 illustrates
the list of filters generated on the right-hand side of the record list.

Listing 11-11.  Django admin list_filter option

from django.contrib import admin
from coffeehouse.items.models import Item

class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','price']
 list_filter = ['menu','price']

admin.site.register(Item, ItemAdmin)

Chapter 11 ■ Django admin Management

510

In Listing 11-11 the list_filter option is declared with the menu and price fields, which tell Django to
create filters with these two fields. As you can appreciate in Figure 11-12, on the right-hand side of the record
list is a column with various filters that includes all the values for the menu and price field values. If you
click on any of the filter links, the Django admin displays the records that match the filter in the record list, a
process that’s illustrated in Figures 11-13, 11-14, and 11-15.

Figure 11-12.  Django admin list filters due to search_fields option

Figure 11-13.  Django admin list with single filter

Chapter 11 ■ Django admin Management

511

An interesting aspect of Django admin filters that can be seen in Figure 11-15 is that you can apply
multiple filters, making it easier to drill-down into records that match very specific criteria.

In addition, if you look at fFgures 11-13, 11-14, and 11-15 you can see how filters are reflected as
URL query strings. For example, in Figure 11-13 the ?menu__id__exact=2 string is appended to the URL,
which tells Django admin to display a list of records with a menu id of 2; in Figure 11-15 the ?menu__id__

Figure 11-14.  Django admin list with single filter

Figure 11-15.  Django admin list with dual filter

Chapter 11 ■ Django admin Management

512

exact=3&price=3.99 string tells Django admin to display a list of records with a menu id of 3 and a price
value of 3.99. This URL argument syntax is based on the same syntax used to make standard Django model
queries -- described in Chapter 8 - and which is helpful to generate more sophisticated filters ‘on the fly’
without the need to modify or add options to the underlying Django admin class.

When you apply a filter or filters to a record list and the filtered results are greater than 99 records,
Django limits the initial display to 99 records and also adds pagination, but in addition also displays the
full count of objects that match the filter(s) (e.g., 99 results (153 total)). This additional count requires an
additional query that can slow things down with a large number of records. To disable the generation of this
additional count applicable to filter use you can set the show_full_result_count option to False.

Another characteristic of applying a filter or filters is that when you create, edit, or delete a record and
finish the operation, Django takes you back to the filtered list. While this can be a desired behavior, it’s
possible to override this behavior through the preserve_filters option so the Django admin sends you
back to the original record list. If you set the preserve_filters = False option in a Django admin class
while on a filtered record list and create, edit, or delete a record, the Django admin takes you back to the
original record list with no filters.

Record Dates: date_hierarchy
Dates and times are displayed as you would expect in the Django admin UI, as string representations of the
underlying Python datetime value. But there’s a special option for DateField and DateTimeField model
data types that works like a specialized filter. If you use the date_hierarchy option on a Django admin
class and assign it a field that’s a DateField or DateTimeField (e.g., date_hierarchy = 'created', where
timestamp is the name of the field), Django generates an intelligent date filter at the top of the record list like
the one illustrated in Figures 11-16, 11-17, and 11-18.

Figure 11-16.  Django date filter by month with date_hierarchy

http://dx.doi.org/10.1007/978-1-4842-2787-9_8

Chapter 11 ■ Django admin Management

513

As you can see in Figures 11-16, 11-17, and 11-18, the intelligent behavior comes from the fact that upon
loading the record list, Django generates a unique list of the available months or days corresponding to the
values of the date_hierarchy field. If you click on any of the options of this filter list, Django then generates
a unique list of records that matches the values of the month or day in the filter list.

Figure 11-17.  Django date filter by day with date_hierarchy

Figure 11-18.  Django date filter single day with date_hierarchy

Chapter 11 ■ Django admin Management

514

Record Actions: actions_on_top, actions_on_bottom, actions
Besides the ability to click on an item in a Django admin record list to edit or delete it, at the top of the record
list there’s a drop-down menu preceded with the word ‘Action’, which you can see in many of the previous
figures. By default, the ‘Action’ drop-down menu provides the ‘Delete selected options’ item to delete
multiple records simultaneously by selecting the check box on the left-hand side of each record.

If you wish to remove the ‘Action’ menu from the top of the record list you can use the actions_on_top
options and set it to False. In addition, if you wish to add the ‘Action’ menu to the bottom of the record list
you can use the actions_on_bottom = True option that is illustrated in Figure 11-19 - note that it’s possible
to have an ‘Action’ menu on both the bottom and top of the record list page.

Figure 11-19.  Django admin list with Action menu on bottom due to actions_on_bottom

Another option related to the ‘Action’ menu is the actions_selection_counter that displays the
amount of selected records on the right-hand side of the ‘Action’ menu and which can also be seen in
Figure 11-19. If you set actions_selection_counter = False then the Django admin omits the amount of
selected records related to the ‘Action’ menu.

Although the ‘Action’ menu is limited to a single action - that of deleting records - it’s possible to define
a list of actions through the actions option in Django admin classes.1

Record Relationships
Django model relationships – one to one, one to many, and many to many – described in the previous model
chapters, have certain behaviors in the context of Django admin classes and the Django admin that are
worth describing separately in the following subsections.

1https://docs.djangoproject.com/en/1.11/ref/contrib/admin/actions/

https://docs.djangoproject.com/en/1.11/ref/contrib/admin/actions/

Chapter 11 ■ Django admin Management

515

Display: list_display (continued)
When you have a one to many relationship and declare the related ForeignKey field as part of the list_
display option, the Django admin uses the __str__ representation of the related model. This last behavior
is presented in Figure 11-5 with a list of Item records, where the Item model defines the menu field with
models.ForeignKey(Menu) and thus the output of the field is the Menu model __str__ method.

The list_display option can’t accept a ManyToManyField field directly because it would require
executing a separate SQL statement for each row in the table; nevertheless it’s possible to integrate a
ManyToManyField into list_display through a custom method in a Django admin class, a process that’s
illustrated in Listing 11-12 and Figure 11-20.

Listing 11-12.  Django admin list_display option with ManyToManyField field

models.py
from django.db import models

class Amenity(models.Model):
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)

class Store(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=30)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 email = models.EmailField()
 amenities = models.ManyToManyField(Amenity,blank=True)

admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','city','state','list_of_amenities']
 def list_of_amenities(self, obj):
 return ("%s" % ','.join([amenity.name for amenity in obj.amenities.all()]))
 list_of_amenities.short_description = 'Store amenities'

admin.site.register(Store, StoreAdmin)

Chapter 11 ■ Django admin Management

516

In Listing 11-12 you can see the Store model has a ManyToManyField field with the Amenity model. In
order to present the values of the ManyToManyField field in the Django admin through list_display you
can see it’s necessary to create a custom method that makes an additional query for these records.
Figure 11-20 presents the rendered Django admin record list for this ManyToManyField field. Be aware
this design can place a heavy burden on the database because it requires an additional query for each
individual record.

Order: admin_order_field (continued)
The admin_order_field option also supports sorting on fields that are part of related models. For example,
in Listing 11-13, you can see the admin_order_field option is applied to a field that’s part of the model with
a ForeignKey field relationship.

Listing 11-13.  Django admin admin_order_field option with ForeignKey field

models.py
class Menu(models.Model):
 name = models.CharField(max_length=30)
 creator = models.CharField(max_length=100,default='Coffeehouse Chef')
 def __str__(self):
 return u"%s" % (self.name)

class Item(models.Model):
 menu = models.ForeignKey(Menu)
 name = models.CharField(max_length=30)

admin.py
from django.contrib import admin
from coffeehouse.stores.models import Store

Figure 11-20.  Django admin list_display option with ManyToManyField field

Chapter 11 ■ Django admin Management

517

class ItemAdmin(admin.ModelAdmin):
 list_display = ['menu','name','menu_creator']
 def menu_creator(self, obj):
 return obj.menu.creator
 menu_creator.admin_order_field = 'menu__creator'

admin.site.register(Item, ItemAdmin)

The most important thing worth noting about Listing 11-13 is the double underscore to specify the
field menu__creator, which tells the Django admin to access a field in the related model – note this double
underscore is the same syntax used to perform queries in Django model relationships queries described in
Chapter 8.

Search: search_fields and list_filter (continued), admin.RelatedOnly
FieldListFilter, list_select_related
Two other Django admin class options that support the same double underscore syntax (a.k.a. "follow
notation") to work across relationships are search_fields and list_filter. This means you can enable
search and generate filters for related models (e.g., search_fields = ['menu__creator']).

A variation of the list_filter option that only applies to model relationships is admin.
RelatedOnlyFieldListFilter. When model records that belong to a relationship can span beyond a single
relationship, it can lead to the creation of unneeded filters.

For example, let’s take a relationship between Store and Amenity models; you can generate Django
admin filters for Amenity values on the Store record list, but if the Amenity model records are generic and
used beyond the Store model (e.g., Amenity values for Employees) you’ll see inapplicable filter values in
the Store record list. The use of the admin.RelatedOnlyFieldListFilter prevents this, a process that’s
illustrated in Listing 11-14 and Figures 11-21 and 11-22.

Listing 11-14.  Django admin list_filter option with admin.RelatedOnlyFieldListFilter

admin.py
class StoreAdmin(admin.ModelAdmin):
 list_display = ['name','address','city','state','list_of_amenities']
 list_filter = [['amenities',admin.RelatedOnlyFieldListFilter]]
 def list_of_amenities(self, obj):
 return ("%s" % ','.join([amenity.name for amenity in obj.amenities.all()]))
 list_of_amenities.short_description = 'Store amenities'

http://dx.doi.org/10.1007/978-1-4842-2787-9_8

Chapter 11 ■ Django admin Management

518

In Listing 11-14 notice how the field to generate filters on - in this case amenities - is wrapped in its
own list along with admin.RelatedOnlyFieldListFilter. To understand the difference between the use
and absence of admin.RelatedOnlyFieldListFilter look at Figures 11-21 and 11-22. In Figure 11-21
notice the last filter on the list is ‘Massage Chairs’ - an Amenity record - and yet no Store record on the main
list has this Amenity. To eliminate this inapplicable filter from the Store record list you can use admin.
RelatedOnlyFieldListFilter and get the results from Figure 11-22, which only show Amenity filters related
to Store records.

Figure 11-21.  Django admin list_filter option with no RelatedOnlyFieldListFilterDjango

Figure 11-22.  Django admin list_filter option with RelatedOnlyFieldListFilter

Chapter 11 ■ Django admin Management

519

Finally, another option that’s applicable to Django admin classes with model relationships is the
list_select_related. The list_select_related option functions just like the list_select_related
option used in queries involving relationships, to reduce the amount of database queries that involve
relationships (e.g., it creates a single complex query, instead of later needing to issue multiple queries for
each relationships).The list_select_related option can accept a Boolean or list value. By default, the
list_select_related option receives a False value (i.e., it’s not used). Under the hood, the list_select_
related option uses the same select_related() model method to retrieve related records, described in
Chapter 8.

If list_select_related = True then select_related() is always used. For finer-grained control of
list_select_related you can specify a list, noting that an empty list prevents Django from calling select_
related() at all and any other list values are passed directly to select_related() as parameters.

Django admin Create, Update, Delete Record Options
Besides Django admin read record options, primarily used to modify the main page of every model in the
Django admin (i.e., where the list of records for each model is presented), there are other Django admin
pages used to create, update and delete Django model records that also support a series of options.

When you click on the ‘Add <model name>’ button on the top right of every Django admin page that
presents model records, you’re taken to a form-like page where you can provide values for a new record –
illustrated in Figure 11-23 – and when you click on a record in a Django admin record list, you’re also taken
to a form-like page where you can edit or delete field values for the record – illustrated in Figure 11-24.

Figure 11-23.  Django admin page to create model record

http://dx.doi.org/10.1007/978-1-4842-2787-9_8

Chapter 11 ■ Django admin Management

520

■■ Tip  See the filter_horizontal and filter_vertical options in Figures 11-37 and 11-38 for friendlier
UIs for the amenities field shown in Figures 11-23 and 11-24.

In the next subsections I’ll describe the various options available in the Django admin to create, update,
and delete records, which is worth noting, is the same page for all three operations.

Record Forms: fields, readonly_fields, exclude, fieldsets,
formfield_overrides, form, prepopulated_fields
By default, the Django admin generates a form for all the fields in a Django model you’re working on. For
example, in Figures 11-23 and 11-24 you can see six fields in the Django admin form that correspond to six
field definitions for the Store Django model. Behind the scenes, since the Django admin uses forms filled
with model records, Django admin forms operate and have options that are almost identical to the model
forms described in Chapter 9.

The first option available to alter the amount of Django admin form fields vs. its backing model is the
fields option. The fields option lets you alter the order in which the form fields appear or create a form
with a subset of model fields. Listing 11-15 illustrates the use fields in a Django admin class and Figure 11-25
illustrates the UI generated by Listing 11-15.

Listing 11-15.  Django admin fields option for Django admin forms

class StoreAdmin(admin.ModelAdmin):
 fields = ['address','city','state','email']

admin.site.register(Store, StoreAdmin)

Figure 11-24.  Django admin page to edit or delete model record

http://dx.doi.org/10.1007/978-1-4842-2787-9_9

Chapter 11 ■ Django admin Management

521

In Listing 11-15 you can see the fields option contains four fields vs. six fields in the original backing
Store Django model; and in Figure 11-25 you can confirm that the Django admin form is generated with just
four fields.

Another variation of the same fields option for Django admin forms is combining multiple form fields
into the same UI line. This is easily achieved by nesting fields in their own tuple. For example, if you define
fields = ['address',('city','state'),'email'], the city and state forms fields are generated on the
same line in the form, as illustrated in Figure 11-26.

Figure 11-25.  Django admin fields option for Django admin forms

Figure 11-26.  Django admin fields option with wrapped fields for Django admin forms

Chapter 11 ■ Django admin Management

522

■■ Tip  The list_editable option creates an inline form to edit records without the need to enter a dedicated
form page like the one in Figures 11-25 and 11-26. See the previous section on ‘Record links and inline edit’.

As helpful as the fields options is, on other occasions it can be necessary to display a form field but not
allow it to be changed, because omitting a field altogether may lead to confusion. To disallow the editing of a
form field you can use the readonly_fields option. Listing 11-16 illustrates the use of the readonly_fields
option and Figure 11-27 its UI layout.

Listing 11-16.  Django admin readonly_fields option for Django admin forms

class StoreAdmin(admin.ModelAdmin):
 readonly_fields = ['name','amenities']

admin.site.register(Store, StoreAdmin)

Figure 11-27.  Django admin readonly_fields option for Django admin forms

In Listing 11-16 you can see the readonly_fields option make the name and amenities fields read only.
Because the fields option is not used, all the model fields are used to generate a form. In Figure 11-27 you
can see how the name and amenities fields are shown as text rather than input form fields, making them
uneditable.

A side effect of only using the readonly_fields option is that these field definitions are placed at
the bottom of the form, as seen in Figure 11-27. If you want to maintain the same form field order as the
original Django model, then you need to explicitly define the form fields using the fields option, in this way
the form field order follows the fields option and any field in readonly_field is displayed as read only,
respecting the field position set in the fields option.

Besides supporting model field names, the readonly_fields option also supports callable methods to
further add custom behavior. Listing 11-17 illustrates the use of the readonly_fields option with a callable
and Figure 11-28 the UI layout.

Chapter 11 ■ Django admin Management

523

Listing 11-17.  Django admin readonly_fields option with callable for Django admin forms

from django.utils.safestring import mark_safe

class StoreAdmin(admin.ModelAdmin):
 fields = ['name','address',('city','state'),'email','custom_amenities_display']
 readonly_fields = ['name','custom_amenities_display']
 def custom_amenities_display(self, obj):
 �return mark_safe("Amenities can only be modified by special request, please contact

the store manager at %s to create a request" % (obj.email,obj.email))
 custom_amenities_display.short_description = "Amenities"

admin.site.register(Store, StoreAdmin)

Figure 11-28.  Django admin readonly_fields option for Django admin forms

In Listing 11-17 you can see the readonly_fields option uses the custom_amenities_display callable
to create a custom field. In Figure 11-28 toward the bottom, you can see this new custom field - in place of
the original amenities field - which shows a friendlier message than Figure 11-27 and is also uneditable.

The exclude option for forms in Django admin classes is complementary to the fields option. Whereas
the fields option requires it to explicitly create of list of fields to include in a Django admin form, and the
exclude offers the inverse behavior, requiring it to explicitly list fields that shouldn't be part of a Django
admin form. For example, for a Django model with the fields a,b,c the Django admin class fields = (‘a’,‘b’)
option is equivalent to the exclude = (‘c’) option (i.e., both options generate the same Django admin form).

The fieldsets option for Django admin classes provides greater control over the layout of pages used
to create and edit records in the Django admin. Unlike the fields option that can alter the order of form
fields or even nest form fields on the same line - as illustrated in Figure 11-26 - the fieldsets option works
with the fields option to divide a page into sets. Listing 11-18 illustrates the use of the fieldsets option and
Figures 11-29 and 11-30 the corresponding layout.

Chapter 11 ■ Django admin Management

524

Listing 11-18.  Django admin fieldsets option for Django admin forms

from django.utils.safestring import mark_safe

class StoreAdmin(admin.ModelAdmin):
 fieldsets = [
 ['Store general information', {
 'fields': ['name', 'email']
 }],
 ['Store location options', {
 'classes': ['collapse'],
 'fields': ['address',('city', 'state')],
 }],
]

admin.site.register(Store, StoreAdmin)

Figure 11-29.  Django admin fieldsets option for Django admin forms

Chapter 11 ■ Django admin Management

525

In Listing 11-18 you can see the fieldsets options accepts a list value composed of two lists, where
each list represents a section of the Django admin page as illustrated in Figures 11-29 and 11-30. Each
of the internal lists is made up by a first argument that represents the title or header of the section and a
second argument that’s a dictionary. This last dictionary itself contains values assigned to a field’s key -
which functions just like the fields option described previously - and a classes key that gives the section
certain behaviors through CSS classes. In this case, you can see the second section in Listing 11-18 indicates
'classes': ['collapse'], which tells Django to make the section collapsible, in Figures 11-29 and 11-30
you can appreciate this collapsed and un-collapsed behavior.

In addition to the collapse option used in the classes key in fieldsets, another helpful CSS class
option is wide, which adds more horizontal space between fields. Note that it's valid to add any number of
CSS classes to the classes key, either CSS classes included with the Django admin (i.e., collapse and wide)
or even custom CSS classes.

The formfield_overrides option provides a way to override the default form widgets associated
with a Django model field in a Django admin form. By default, all Django model fields have a given widget
assigned to them for the purpose of generating a form – a topic discussed in Chapter 9, specifically Table 9-1.
However, if you feel the default widget for a given model field is inadequate for the Django admin, you can
use the formfield_overrides option as illustrated in Listing 11-19.

Listing 11-19.  Django admin formfield_overrides option for Django admin forms

from django.contrib import admin
from coffeehouse.items.models import Menu

class MenuAdmin(admin.ModelAdmin):
 formfield_overrides = {
 models.CharField: {'widget': forms.Textarea}
 }

admin.site.register(Menu, MenuAdmin)

Figure 11-30.  Django admin fieldsets option for Django admin forms (collapsed)

http://dx.doi.org/10.1007/978-1-4842-2787-9_9
http://dx.doi.org/10.1007/978-1-4842-2787-9_9#Tab1

Chapter 11 ■ Django admin Management

526

The formfield_overrides option in Listing 11-19 tells the Django admin to use the forms.Textarea
widget - which generates a standard HTML <textarea> tag - for all model fields that use the CharField. In
Figure 11-32 you can see the effects of applying the formfield_overrides option of Listing 11-19, whereas in
Figure 11-31 you can see the default widget used for CharField field, which is a standard HTML <input> tag.

Figure 11-31.  Django admin default CharField field display in Django admin form

Figure 11-32.  Django admin custom CharField field display in Django admin form using formfield_overrides

Chapter 11 ■ Django admin Management

527

While all the previous options allow you to tweak parts of a form used in the Django admin, sometimes
it’s necessary to create a form from scratch for the Django admin instead of tweaking the underlying form
generated by the Django model (e.g., if you require custom validation for the Django admin form). To specify
a custom form for a Django admin class you can use the form option.

Finally, one more option associated with Django admin forms that’s specific to models that require slug
field values is prepopulated_fields. If you’re unfamiliar with the term ‘slug’, in the simplest terms a slug
field value is a machine-friendly representation of a string, for example, uppercase letters are converted to
lowercase and special characters like spaces are converted to dashes. Through the prepopulated_fields
option, you can tell Django that while a user types in a value for a given field in a Django admin form, it
automatically fills another field in the form with the slug representation of the first.

For example, for the prepopulated_fields = {'address': ['city','state']} option, if a user types
in a value of San Diego into the city form field and CA in state, Django fills the address form field with the
value of san-diego-ca. It’s worth mentioning this functionality is achieved through JavaScript integrated
into the Django admin and also that the prepopulated_fields option doesn’t accept DateTimeField,
ForeignKey, or ManyToManyField fields as backing model data types.

Actions, Links, and Positions: save_on_top, save_as(Clone records),
save_as_continue and view_on_site
At the bottom of each form page to create, update, and delete Django model records are all the buttons to
perform actions on the page: ‘Delete’, ‘Save and add another’, ‘Save and continue editing’, and ‘Save’, all of
which are illustrated in Figure 11-33. If a form is too large it can be difficult to reach these action buttons
without scrolling down, so to solve this scenario Django admin classes support the save_on_top option,
which creates the same action buttons at the top of the page as illustrated in Figure 11-34. Note that to
generate the layout in Figure 11-34 you use save_on_top = True.

Figure 11-33.  Django admin standard action button on form page

Chapter 11 ■ Django admin Management

528

Sometimes the need can arise to generate an identical or almost identical record from a preexisting
record in the Django admin. Because copy-pasting values from one form to another in the Django admin
can be a time-consuming and error-prone process, Django admin classes also support the save_as option
to clone preexisting model records. If you set the save_as = True option on a Django admin class, Django
replaces the ‘Save and add another’ button with the ‘Save as new’ button, as illustrated in Figure 11-35.

Figure 11-34.  Django admin save_on_top option on form page

Figure 11-35.  Django admin save_as (Clone) option on form page

Chapter 11 ■ Django admin Management

529

If you click on the ‘Save as new’ button illustrated in Figure 11-35, Django saves an identical record -
effectively cloning the record you see on screen - using a different id value to differentiate between the two.
Note that if the underlying Django model prohibits this action (e.g., fields must be unique), the operation
does not take place and an error is thrown indicating the cause.

When you use the save_as = True option and perform the action of cloning a record (i.e., clicking on
the ‘Save as new’ button), the Django admin keeps you on the form of the newly cloned record in case you
want to change it further. You can use the save_as_continue = False option, to tell the Django admin to
redirect you to the main model list page after cloning a record.

Django model classes support an instance method called get_absolute_url() that makes it possible
to resolve the public URL of a record via a Django model’s fields (e.g., the URLs /store/1/, /store/2/, /
store/3/ fit a pattern, where each number represents a Store id value, in which case the get_absolute_
url() method for the Store model would return /store/<store_record_id>. In the Django admin, the get_
absolute_url() method is tied directly to a link that aids in viewing the record at its public URL destination,
and Figure 11-36 illustrates this link in the top right corner.

Figure 11-36.  Django admin 'View on site' button due to get_absolute_url() Django model method

In Figure 11-36, the ‘View on site’ button in the top right generates a link based on the Django model’s
get_absolute_url() method, as well as the current record’s value defined in this last method. In this
manner, in a single click you’re able to visualize the record you’re editing in the Django admin at its public
URL destination. If you wish to disable this button you can add the view_on_site = False option to the
Django admin class. Note that if the underlying Django model class does not define the get_absolute_
url() method, no button is displayed, irrespective of the view_on_site value.

Relationships: filter_horizontal, filter_vertical, radio_fields,
raw_id_fields, inlines
Django model relationships tasks related to create, update, and delete operations, also have certain
behaviors in the context of Django admin classes that are worth describing separately.

When you use a ManyToManyField field on a Django model and access it in the Django admin, Django
generates HTML <select>/<option> form tags to choose the values for the ManyToManyField field - as
illustrated at the bottom of Figures 11-23 and 11-24. However, because this type of selection method can be
cumbersome for large lists, the Django admin offers the filter_horizontal and filter_vertical options
to generate separate panels to make value selection easier. Figure 11-37 illustrates the layout of the
filter_horizontal option and Figure 11-38 illustrates the layout of filter_vertical option.

Chapter 11 ■ Django admin Management

530

In Figures 11-37 and 11-38 you can see there are two panels to select and unselect values for a given
ManyToManyField, with the only difference being filter_horizontal stacks the panels horizontally - in
Figure 11-37 - and filter_vertical stacks the panels vertically - in Figure 11-38.

Assuming the ManyToManyField field is named amenities, to achieve the layout in Figure 11-37 you
would declare filter_horizontal = ['amenities'] and to achieve the layout in Figure 11-38 you would
declare filter_vertical = ['amenities'].

Figure 11-38.  Django admin filter_vertical option for ManyToManyField

Figure 11-37.  Django admin filter_horizontal option for ManyToManyField

Chapter 11 ■ Django admin Management

531

When you use a ForeignKey model data type or the choices option in a Django model field and access
it in the Django admin, Django also generates HTML <select>/<option> form tags to choose the value for the
ForeignKey field - as illustrated at the top of Figure 11-39.

Figure 11-39.  Django admin default select list for ForeignKey or choices option

A Django admin class can change this default layout with the radio_fields option to generate a layout
with HTML radio buttons. Listing 11-20 illustrates the two alternatives for the radio_fields option in a
Django admin class and Figures 11-40 and 11-41 the UI layouts.

Listing 11-20.  Django admin radio_fields option for ForeignKey field

from django.contrib import admin
from coffeehouse.items.models import Item

Option 1 (Horizontal)

class ItemAdmin(admin.ModelAdmin):
 radio_fields = {"menu": admin.HORIZONTAL}

admin.site.register(Item, ItemAdmin)

Option 2 (Vertical)

class ItemAdmin(admin.ModelAdmin):
 radio_fields = {"menu": admin.VERTICAL}

admin.site.register(Item, ItemAdmin)

Chapter 11 ■ Django admin Management

532

In Listing 11-20 you can see option one defines the radio_fields value with the {"menu": admin.
HORIZONTAL} dictionary, where menu represents the ForeignKey field or a field with the choices option
and admin.HORIZONTAL is the orientation of the radio fields - this option generates a layout like the one in
Figure 11-40. Option two in Listing 11-20 defines the radio_fields in a similar way except it uses the admin.
VERTICAL value to tell the Django admin to generate a vertical layout for the radio fields as illustrated in
Figure 11-41.

Another Django admin alternative for ForeignKey or ManyToManyField fields is the raw_id_fields
option, which as its name implies relies on the raw id field value(s) to assign a ForeignKey value or
ManyToManyField values. Figure 11-42 illustrates how a raw_id_fields option looks like in the Django
admin.

Figure 11-40.  Django admin horizontal radio_fields option for ForeignKey or choices option

Figure 11-41.  Django admin vertical radio_fields option for ForeignKey or choices option

Chapter 11 ■ Django admin Management

533

As you can see in Figure 11-42, the Django admin generates a basic text box where you can assign
id values, aided by the adjacent magnifying glass button that allows you to search for and select values.
Assuming the ForeignKey or ManyToManyField field is named menu, to achieve the layout in Figure 11-42 you
would declare raw_id_fields = ["menu"]. Note that for a ForeignKey field the acceptable value is a single
id and for a ManyToManyField field you can also introduce a list of ids separated by commas (i.e., a CSV).

Finally, we come to the Django admin class inlines option, designed for reverse models relationships.
When you create or edit a model with a relationship in the Django admin, if this is done on the model with
the relationship field definition (i.e., ForeignKey or ManyToManyField), the Django admin displays the
related model values inline or adds a ‘+’ button to add new model values, as shown in Figure 11-37 – for
ForeignKey menu values – and Figure 11-39 – for ManyToMany amenities values. However, when you attempt
to edit or create values on the reverse model relationship (i.e., the model that doesn’t have the relationship
field) the Django admin only shows the model by itself as shown Figure 11-31. It’s possible to edit or create
related model values on a reverse model relationship with the inlines option.

The inlines option first requires you to create a Django admin TabularInline or StackedInline
class, both of which are subclasses of the InlineModelAdmin class, which is a more specialized version
of the standard admin.ModelAdmin class used to create standard Django admin classes. Once you have
TabularInline or StackedInline class, you can declare it as part as the value of the inlines option.

Listing 11-21 illustrates two Django admin examples that use a TabularInline and StackedInline class
on models that have a one to many and many to many relationship.

Listing 11-21.  Django admin inlines option for ForeignKey and ManyToManyField field

admin.py (ForeignKey)
from django.contrib import admin
from coffeehouse.items.models import Item, Menu

class ItemInline(admin.TabularInline):
 model = Item

class MenuAdmin(admin.ModelAdmin):
 list_display = ['name']
 inlines = [
 ItemInline,
]

Figure 11-42.  Django admin raw_id_fields option for ForeignKey or ManyToManyField option

Chapter 11 ■ Django admin Management

534

admin.site.register(Menu, MenuAdmin)

admin.py (ManyToManyField)
from django.contrib import admin
from coffeehouse.stores.models import Store, Amenity

class StoreInline(admin.StackedInline):
 model = Store.amenities.through

class AmenityAdmin(admin.ModelAdmin):
 inlines = [
 StoreInline,
]

admin.site.register(Amenity, AmenityAdmin)

The first example in Listing 11-21 illustrates the ItemInline class, which inherits its behavior from
built-in TabularInline class. Because this last class is designed to represent a model in the Django admin,
it also declares the model field with the Item model class. Next, the MenuAdmin class is a standard Django
admin class designed for the Menu model class, but notice it uses the inlines option with the ItemInline
class. Because of this last configuration, when you go to edit or create Menu model record in the Django
admin, all Item model records associated with a given Menu model record are displayed inline as illustrated
in Figure 11-43.

Figure 11-43.  Django admin inlines option with TabularInline for ForeignKey

Chapter 11 ■ Django admin Management

535

As you can see in Figure 11-43, in addition to the standard Django admin form to edit or create Menu
records, there’s also a formset displaying all Item model records for the given Menu record; in this case, the
formset contains Item records that belong to the Drinks Menu record. Also notice the form fields for each
form in the formset in Figure 11-43 are inlined as tabs, which is a behavior provided by the TabularInline
class.

The second part of Listing 11-21 illustrates the StoreInline class that inherits its behavior from built-in
StackedInline class. Because this last class is designed to represent a model in the Django admin, it also
declares the model field with the Store.amenities.through model class, this additional model syntax –
amenities.through – is necessary because the Store to Amenity model is a many to many relationship.
Note the through keyword is standard for many to many relationship queries and is described in the earlier
Django model chapters.

Next, the AmenityAdmin class is a standard Django admin class designed for the Item model class, but
notice it uses the inlines option with the StoreInline class. Because of this last configuration, when you
go to edit or create an Amenity model record in the Django admin, all Store model records associated with a
given Amenity model record are displayed inline as illustrated in Figure 11-44.

Figure 11-44.  Django admin inlines option with StackedInline for ManyToManyField

As you can see in Figure 11-44, in addition the standard Django admin form to edit or create Amenity
records, there’s also a formset displaying all Store model records for the given Amenity record; in this case,
the formset contains Store records that have the Amenity Laptop locks record. Also notice the form
fields for each form in the formset in Figure 11-43 are inline stacks, which is a behavior provided by the
StackedInline class.

Chapter 11 ■ Django admin Management

536

■■ Tip  InlineModelAdmin classes (i.e., TabularInline or StackedInline) in addition to the model option,
also support standard Django admin class – admin.ModelAdmin – options described earlier (e.g., form, fields,
exclude), as well as standard formset options described in Chapter 6 and model formset options described in
Chapter 9 (e.g., formset, extra, max_num, min_num).2

Django admin Custom Page Layout, Data, and Behaviors
In addition to the Django admin class options described in previous sections, there are multiple ways to
customize the layout, data, and behaviors of Django admin pages. You can customize certain global values
used across all Django admin pages without the need to modify any Django template. But in addition, it’s
also possible to customize any template used by a Django admin page – like the log in, log out, password
update, display record, and create/update/delete record page – to alter its layout (e.g., modify the default
blue CSS skin or component positions in the page).

Finally, it’s also possible to customize the data passed to Django admin pages, as well as modify the
default behavior run by Django admin pages (e.g., CRUD actions) by means of methods and fields declared
as part of a Django admin class.

Django admin Custom Global Values for Default Templates
By default, the Django admin is configured as part of a Django project’s urls.py file, as shown in the
following snippet:

from django.conf.urls import url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', admin.site.urls),
]

While admin.site.urls – from the django.contrib package – lets you set up the Django admin on the
/admin/ url, the same django.contrib.admin.site object also allows you to customize certain values used
by all Django admin pages.

Listing 11-22 illustrates how to customize several Django admin fields through the django.contrib.
admin.site object.

Listing 11-22.  Django admin django.contrib.admin.site object to customize fields

from django.conf.urls import url
from django.contrib import admin

admin.site.site_header = 'Coffeehouse admin'
admin.site.site_title = 'Coffeehouse admin'
admin.site.site_url = 'http://coffeehouse.com/'
admin.site.index_title = 'Coffeehouse administration'
admin.empty_value_display = '**Empty**'

2https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#inlinemodeladmin-options

http://dx.doi.org/10.1007/978-1-4842-2787-9_6
http://dx.doi.org/10.1007/978-1-4842-2787-9_9
https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#inlinemodeladmin-options

Chapter 11 ■ Django admin Management

537

urlpatterns = [
 url(r'^admin/', admin.site.urls),
]

■■ Tip  It’s also possible to define the custom admin field values in Listing 11-22 inside the settings.py
file. Simply import django.contrib.admin and declare the admin fields to centralize them with other custom
configurations in settings.py.

As you can see in Listing 11-22, before declaring admin.site.urls as a url statement, there are a series
of declarations on the admin.site object that are also part of the django.contrib package:

•	 admin.site.site_header.- Defines the title used across all Django admin pages
(e.g., in the navy blue header and login page). See Figures 11-45 and 11-46.

•	 admin.site.site_title.- Defines the title used across all Django admin pages, as
part of the HTML title. See Figures 11-45 and 11-46.

•	 admin.site.site_url.- Defines the domain (e.g., coffeehouse.com) to use as part
of the Django admin ‘View site’ link, to easily access the live site from the Django
admin. See Figure 11-45.

•	 admin.site.index_title.- Defines the title of the main Django admin page. See
Figure 11-45.

•	 admin.empty_value_display.- Defines the default value to display when a Django
admin model value is empty.

Figure 11-45.  Django admin main index with custom global values

Chapter 11 ■ Django admin Management

538

As you can see in Figures 11-45 and 11-46, with a few simple statements like the ones in Listing 11-22,
you can customize the Django admin template content, without the need to interact with templates or HTML.

It’s worth noting the admin.empty_value_display option described in Listing 11-22 is applied to
all Django admin models when a record field contains an empty value. Examples of the admin.empty_
value_display option were described earlier in this chapter in the ‘Record Display’ section, specifically in
Figures 11-5 and 11-6, as well as Listing 11-5.

Django admin Custom Page Layout with Custom Templates
Although the django.contrib.admin.site object options presented in Listing 11-22 offer a quick way to
customize Django admin pages, they can fall short in the face of more sophisticated requirements, in which
case you must rely on custom templates.

The default templates used by the Django admin are located under the /django/contrib/admin/
templates/ directory of your Django installation inside your operating system’s or virtual env Python
environment (e.g., <virtual_env_directory>/lib/python3.5/site-packages/django/contrib/admin/
templates/).

Similar to the Django template customization techniques described in previous chapters (e.g., Django
form widgets, Django allauth), you can create a copy of these default templates and place them inside your
project. In this manner, the templates inside a project take precedence over the default Django admin
templates, where you can customize the project templates to fit your needs.

The Django admin /django/contrib/admin/templates/ directory contains two template folders:
admin and registration. Copy them to a project directory that’s part of a DIRS folder of the TEMPLATES/DIRS
variable in settings.py.

Figure 11-46.  Django admin login page with custom global values

Chapter 11 ■ Django admin Management

539

■■ Tip  See the book’s accompanying source code that includes the layout of all Django admin templates.

All the Django admin templates inherit their behavior from the admin/base_site.html template,
which itself inherits its behavior from the admin/base.html template. If you’re unfamiliar with how Django
template inheritance works, look over Chapter 3, which describes this topic.

If you open the admin/base.html template, you can see the core structure behind every Django
admin page, such as the HTML <head> section (e.g., CSS files, meta tags), navigation header, and message
notification block, among other things. Therefore, you can modify the admin/base.html template to include
custom CSS or JavaScript files to alter the ‘look & feel’ of every Django admin page.

In addition to the admin/base.html template, there are many other templates inside the admin and
registration directories whose functions are described in the following list:

•	 admin/404.html and admin/500.html.- Defines the layout for Django admin not
found and error pages (i.e., HTTP 404 and HTTP 500), respectively.

•	 admin/index.html.- Defines the layout for Django admin index pages, on the main
page – shown in Figure 11-45 – as well as those for app indexes showing all models.

•	 admin/change_list.html.- Defines the layout for Django admin list pages, those
used to read records, shown from Figures 11-1 to 11-22.

•	 admin/change_form.html.- Defines the layout for Django admin form pages, those
used to create, update, and delete records, shown from Figures 11-23 to 11-44.

•	 admin/login.html.- Defines the Django admin login page, shown in Figure 11-46.

•	 registration folder.- Contains templates for the various Django admin page
password change actions, as well as the Django admin logout page layout.

■■ Note  Other pages in the admin folder not described in this list (e.g., filter.html, object_history.html)
are more granular templates – included as part of the larger templates in this list – which you can customize as
necessary.

As you can see, by creating a copy of the Django admin templates and placing them in your project,
you can fine-tune the layout of every Django admin page by modifying its backing template. An important
modular behavior worth mentioning about the Django admin index.html, change_list.html and change_
form.html templates, is how they can be applied to individual Django admin apps or models.

By default, if you provide a custom layout for the admin/index.html, admin/change_list.html or
admin/change_form.html templates, these templates are used for all apps and models in the Django admin
(i.e., globally). However, sometimes it can be necessary to customize Django admin index pages, list pages,
or form pages for only certain apps (e.g., stores app) or inclusively an individual model (e.g., Item model).

To define a custom Django admin template for all models in an app, you can create a Django admin
template and place it under the template path admin/<app_name>/ (e.g., admin/stores/change_list.html
to define a change_list.html template for all stores app models).

To define a custom Django admin template for a single model, you can create a Django admin template
and place it under the template path admin/<app_name>/<model>/ (e.g., admin/items/item/change_list.
html to define a change_list.html template to use on the Item model of the items app).

http://dx.doi.org/10.1007/978-1-4842-2787-9_3

Chapter 11 ■ Django admin Management

540

■■ Note  Only the templates admin/index.html-admin/app_index.html, change_form.html, change_list.
html, delete_confirmation.html, object_history.html, and popup_response.html can be customized on
a per app and per model basis.

Django admin Custom Static Resources
If you customize the Django admin admin/base.html template in your project with custom CSS or JavaScript
files, these static resources take effect on every Django admin page. While this can be a desired effect in
certain circumstances, in other cases, it can be necessary to only apply custom static resources to certain
Django admin pages.

Django admin classes support the Media class to define both CSS and JavaScript files and include
them on all pages associated with a given Django admin class. The advantage of using the Media class on a
Django admin class is that you don’t need to deal with templates or HTML markup, with the Django admin
automatically loading the static resources as part of every admin page linked to an admin class. Listing 11-23
illustrates a Django admin class that makes use of the Media class.

Listing 11-23.  Django admin class with Media class to define custom static resources

from django.contrib import admin
from coffeehouse.items.models Item

class ItemAdmin(admin.ModelAdmin):
 list_per_page = 5
 class Media:
 css = {
 "screen": ("css/items/items.css",)
 }
 js = ("js/items/items.js",)

admin.site.register(Item, ItemAdmin)

As you can see in Listing 11-23, the Media class supports the css and js fields to declare both CSS and
JavaScript static files, respectively. In the case of css, Listing 11-23 declares a dictionary, where the key
corresponds to the CSS media type and the value is a tuple with a CSS file. For the case of js, Listing 11-23
declares a tuple pointing to a JavaScript file. All files declared as part of a Media class are automatically
searched for in Django’s static file directory paths – as described in Chapter 5.

The final outcome of Listing 11-23 is that all Django admin pages associated with the ItemAdmin
admin class (e.g., index.html, change_list.html, change_form.html) will include an additional CSS
import statement (e.g., <link href="/static/css/items/items.css" type="text/css" media="screen"
rel="stylesheet" />), as well as an additional JavaScript import statement (e.g., <script type="text/
javascript" src="/static/js/items/items.js"></script>).

It’s worth pointing out that while you can include any third-party CSS or JavaScript library in a Django
admin page (e.g., Bootstrap, D3), Django admin pages already include the popular jQuery 2.2 library under
the django.jQuery namespace to fulfill certain functionalities. The Django admin uses a jQuery namespace,
to let you import any other jQuery library version in Django admin pages without fear of conflict. If you want
to leverage the included Django admin jQuery library for your own custom JavaScript, you must wrap your
JavaScript logic in this namespace, as illustrated in the following snippet:

http://dx.doi.org/10.1007/978-1-4842-2787-9_5

Chapter 11 ■ Django admin Management

541

(function($) {
 // Custom JavaScript logic leveraging the Django admin built-in jQuery libray
 $(document).ready(function() {
 $('.deletelink').on('click',function() {
 if(!confirm('Are you sure you want to delete this record ?')) {
 return false;
 }
 });
 });
})(django.jQuery); // <-- Note wrapping namespace

As you can see in this last snippet, by wrapping your custom JavaScript logic in the django.jQuery
namespace, it gains access to the Django admin built-in jQuery library (i.e., the custom JavaScript logic gains
access to the jQuery $ scope).

GRAPPELLI PROJECT – AN OUT-OF-BOX DJANGO ADMIN
SUPPLEMENT

If you want try a different ‘look & feel’ for the Django admin, without having to write custom templates
or supporting CSS & JavaScript files, there are various Django apps designed for this purpose.

One of the most popular apps is the ‘Grappelli Project’.3 Grappelli uses the ‘Compass’ CSS authoring
Framework to include additional Django admin features like: auto-complete, inline sortable ‘drag & drop’
and support for jQuery plug-ins, among other things.

Django admin Custom Data and Behaviors with admin Class Fields
and Methods
Although the modification of Django admin templates allows you to generate any type of Django admin
page layout, it can still fall short for cases where you need to include custom data in Django admin pages
(e.g., add data from another model for reference) or override the default CRUD behaviors of Django admin
pages (e.g., perform a custom audit trail for delete actions).

Django admin classes like the ones you’ve written in this chapter since Listing 11-1, rely on over two
dozen fields – all of which you explored in the previous sections in this chapter as Django admin read
options and create/update/delete options – and over three dozen methods4 to define a Django admin page’s
default data and behaviors.

In a very similar way to how you can customize the default behaviors and data used by Django class-
based views – described in Chapter 9 – Django admin classes can also define their own custom fields and
methods to override their default data and behaviors.

The bulk of this chapter already covered all the Django admin class fields to customize Django admin
page behaviors, so I won’t readdress them once again. However, I will provide examples of the most
common Django admin class methods to illustrate how to add custom data and override other default
behaviors in Django admin pages.

3http://grappelliproject.com/
4https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#adminsite-methods

http://dx.doi.org/10.1007/978-1-4842-2787-9_9
http://grappelliproject.com/
https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#adminsite-methods

Chapter 11 ■ Django admin Management

542

Listing 11-24 illustrates a Django admin class that uses a custom implementation of the changelist_
view() method – which adds custom data to access in the underlying Django admin change_list.html
template – as well as a custom implementation of the delete_view() method – to execute custom logic
when a delete action is taken on a Django admin class.

Listing 11-24.  Django admin class with custom changelist_view() and delete_view() methods

from coffeehouse.stores.models import Store

class StoreAdmin(admin.ModelAdmin):
 search_fields = ['city','state']
 def changelist_view(self, request, extra_context=None):
 # Add extra context data to pass to change list template
 extra_context = extra_context or {}
 extra_context['my_store_data'] = {'onsale':['Item 1','Item 2']}
 # Execute default logic from parent class changelist_view()
 return super(StoreAdmin, self).changelist_view(
 request, extra_context=extra_context
)
 def delete_view(self, request, object_id, extra_context=None):
 # Add custom audit logic here
 #
 # Execute default logic from parent class delete_view()
 return super(StoreAdmin, self).delete_view(
 request, object_id, extra_context=extra_context
)

admin.site.register(Store, StoreAdmin)

As you can in Listing 11-24, both the changelist_view() and delete_view() methods are declared
inline with the Django admin search_fields option you learned earlier. In this case, the changelist_
view() method in Listing 11-24 is triggered whenever you visit the list view page of the Store model in the
Django admin (e.g., illustrated in Figure 11-10). Notice the changelist_view() method adds a custom value
to the extra_context variable, which is then returned as part of the response, in this case it’s a hard-coded
value, but you can equally add any type of data like a model query or third-party API call to pass to the
Django admin page. Because of this last workflow, the list view page of the Store model (i.e., the change_
list.html template) can gain access to custom data to display as part page.

The delete_view() method in Listing 11-24 is triggered whenever you delete a Store model in the
Django admin. In this case, the delete_view() method in Listing 11-24 simply triggers the default action of
deleting a record by calling the parent class’s delete_view() method, but you can see how it’s possible to
execute custom logic (e.g., create an audit trail) whenever a delete action is performed on a Store model in
the Django admin.

As I’ve already mentioned, Django admin classes rely on over three dozen methods to implement
their default behavior, all of which you can customize to suit your requirements. Given the amount of
custom variations that this amount of methods can generate, you can use the example in Listing 11-24
as a guide and consult the footnote in the previous page for other methods you can customize in Django
admin classes.

Chapter 11 ■ Django admin Management

543

Django admin CRUD Permissions
By default, the Django admin allows access to users with superuser and staff permissions – in case you’ve
never heard of the terms Django superuser, Django staff, or Django permissions, see the previous chapter
that describes Django user management.

A Django superuser, as its name implies, means it’s a user with ‘super’ permissions. By extension, this
means a superuser has access to any page in the Django admin, as well as permissions to Create, Read, Update,
and Delete any type of model record available in the Django admin. Because Django superusers represent an
‘all or nothing’ proposition, the Django admin is also designed to allow access to Django staff users.

Any Django user marked as staff is given access to the Django admin, but nothing else, unless explicitly
given permissions, as illustrated in Figure 11-47.

Figure 11-47.  Django admin main page for staff user with no permissions

As you can see in Figure 11-47, the main Django admin page is empty. Although this scenario of an
empty Django admin main page can also present itself when you have no registered models in a project’s
admin.py files, this case represents a scenario for a staff user with no explicit model permissions.

In order for staff users to gain access to Django admin pages, they must be given explicit permissions by
means of model permissions, given Django admin pages operate on the basis of CRUD model actions (e.g., a
Django admin page to create model records, a Django admin page to delete model records).

By default, all Django models are given add, change, and delete permissions, which you can assign to
staff users. As a consequence, each of these model permissions represents an access permission for a Django
admin page.

For example, if a staff user is given the delete permission on a model, it means he’s also given access
to delete records of said model in the Django admin. Similarly, if a staff user is given the add permission on
a model, it means he’s given access to the create record page of said model in the Django admin. Finally, if
a staff user is given the change permission on a model, it means he’s given access to the edit record page of
said model in the Django admin.

Chapter 11 ■ Django admin Management

544

■■ Note  Granting a delete permission to a user on a given model also requires granting the change
permission to fulfill the delete action in the Django admin. This is because the Django admin delete action is
available on the Django admin record change page.

As you can deduce from this behavior, by using staff users and model permissions, you can allow very
fine-grained access to different sections of the Django admin, instead of the ‘all or nothing’ Django admin
superuser behavior.

Still, Django admin staff users have one important missing behavior: the ability to allow read only
access for model records in the Django admin. Because Django models default to having add, change and
delete permissions (i.e. CUD [Create, Update, Delete] behaviors), a read permission is deemed implicit
with the presence of change (i.e. if you’re able to change a record, then you’re able to read it). Therefore,
to achieve a standalone read-only permission in the Django admin, you must add a custom model read
permission (i.e. the missing R in CRUD).

The previous chapter describes custom model permissions in greater detail, but I’ll describe this
process in Listing 11-25 for the context of the Django admin by adding a read only permission.

Listing 11-25.  Django model with custom read permission and Django admin class enforcing read
permission

models.py
from django.db import models

class Menu(models.Model):
 name = models.CharField(max_length=30)
 creator = models.CharField(max_length=100,default='Coffeehouse Chef')

class Item(models.Model):
 menu = models.ForeignKey(Menu, on_delete=models.CASCADE)
 name = models.CharField(max_length=30)
 description = models.CharField(max_length=100)
 class Meta:
 permissions = (
 ('read_item','Can read item'),
)

admin.py
from django.contrib import admin

from coffeehouse.items.models import Item

class ItemAdmin(admin.ModelAdmin):
 list_per_page = 5
 list_display = ['menu','name','menu_creator']
 def get_readonly_fields(self, request, obj=None):
 if not request.user.is_superuser and request.user.has_perm('items.read_item'):
 return [f.name for f in self.model._meta.fields]

Chapter 11 ■ Django admin Management

545

 return super(ItemAdmin, self).get_readonly_fields(
 request, obj=obj
)

admin.site.register(Item, ItemAdmin)

The first step highlighted in Listing 11-25 is the Item model with a custom permission named read_
item with the friendly name 'Can read item'. After you run the Item model in Listing 11-25 through its
corresponding migration, the Item model will get a custom read_item permission. Next, create a staff user
and assign it both the read_item and built-in change permission of Item model. Once a staff user is given
these permissions, you must enforce the Django admin class for the Item model only allow read access to
users with these permissions.

When a user is given the change permission on a model, the Django admin grants a user access to the
Django admin form page, which is used to update records of a given model and is shown from Figures 11-23
to 11-44. But since you want to restrict the update functionality to read only, you must set this page’s form
fields to read only, which is the purpose of the get_readonly_fields() method in the second part of the
Listing 11-25.

By defining an admin class with a custom get_readonly_fields() method, you can tell the Django
admin under which circumstances you want to set a Django admin page’s form fields to read only. In this
case, you can see the logic of the get_readonly_fields() method in Listing 11-25 uses the is_superuser()
and has_perm() methods the determine if the calling party is not a superuser (i.e. staff) and if the user has
the read_item permission on the Item model. If this last rule is true, then the get_readonly_fields()
method sets all the model form fields to read-only, which is the whole purpose the get_readonly_fields()
method. If this last rule is false, then the get_readonly_fields() method returns its default behavior calling
the parent class’s default get_readonly_fields() method.

As you can see with this brief exercise, by using custom Django admin class methods in conjunction
with standard and custom Django model permissions, there are no limitations to restricting or allowing
CRUD operations in the Django admin.

Multiple Django admin Sites
Throughout this chapter, you’ve learned the Django admin site is activated under the /admin/ url using
django.contrib.admin.site.urls. In addition, the Django admin site also requires the definition of Django
admin classes to be placed inside a Django project’s app admin.py files and registered using one of the
techniques described in Listing 11-1 (e.g. django.contrib.admin.site.register(Store,StoreAdmin))

While this is the standard practice for almost all Django admin site installations, this process can differ
for cases when you want or need to set up multiple Django admin sites. This of course begets the question
'Why would you want or need multiple Django admin sites ?'

Mulitple Django admin sites are helpful because they let you separate the access locations for different
types of users or groups. For example, you can have a Django admin site designed to let employees perform
CRUD operations across different models, while having a completely different Django admin site designed
to let providers perform more limited CRUD operations across another set of models.

If you maintain a single Django admin site, creating a solution for multiple types of users and models
can be very difficult as you only have user permissions to enforce CRUD operation access, as described in
the previous section. With multiple Django admin sites, you can register models in one or both admin sites
depending on your requirements.

The first step to create multiple Django admin sites is to create multiple instances of the django.
contrib.admin.AdminSite class, as illustrated in Listing 11-26

Chapter 11 ■ Django admin Management

546

Listing 11-26.  Django admin multiple sites accessible on different urls

urls.py (Main directory)
from django.conf.urls import include, url
from django.views.generic import TemplateView

from django.contrib import admin
admin.site.site_header = 'Coffeehouse general admin'

from coffeehouse.admin import employeeadmin, provideradmin

urlpatterns = [
url(r'^$',TemplateView.as_view(template_name='homepage.html'),name="homepage"),
url(r'^admin/', admin.site.urls),
url(r'^employeeadmin/', employeeadmin.urls),
url(r'^provideradmin/', provideradmin.urls),
]

admin.py (Main directory)
from django.contrib.admin import AdminSite

class EmployeeAdminSite(AdminSite):
 site_header = 'Coffeehouse Employee admin'
employeeadmin = EmployeeAdminSite(name='employeeadmin')

class ProviderAdminSite(AdminSite):
 site_header = 'Coffeehouse Provider admin'
provideradmin = ProviderAdminSite(name='provideradmin')

First, notice Listing 11-26 declares the standard Django admin with the django.contrib.admin class
in urls.py, including a custom site_header value to mount the Django admin on the standard /admin/
url. Next, two custom Django admin instances are configured on their own urls – /employeeadmin/ and /
provideradmin/ – using a urls reference that corresponds to a custom django.contrib.admin.AdminSite
class.

Both the EmployeeAdminSite and ProviderAdminSite custom Django admin site classes are defined in
their own admin.py file in the top level directory of the project (i.e. alongside the main urls.py file). Notice
how each of the custom Django admin site classes inherits its behavior from the django.contrib.admin.
AdminSite class. Next, observe how each instance of the AdminSite classes in Listing 11-26, also defines the
site_header field to define a custom header for each Django admin site instance, just like it’s done with the
standard Django admin site.

At this juncture, if you visit either the /employeeadmin/ and /provideradmin/ urls for the custom
Django admins, you’ll access a main Django admin page like the one in Figure 11-47. The reason you’ll see
an empty Django admin page in both cases, is because each custom Django admin site still doesn’t have any
models registered to it.

To register Django admin classes with a custom Django admin site, you can use any of the techniques
already described in Listing 11-1. The difference though is you must register a Django admin class with an
instance of a specific Django admin site (e.g. employeeadmin, provideradmin) instead of the default django.
contrib.admin class, as illustrated in Listing 11-27.

Chapter 11 ■ Django admin Management

547

Listing 11-27.  Django admin class registration on multiple Django admin sites

admin.py (stores app)
from django.contrib import admin
from coffeehouse.stores.models import Store,Amenity

class StoreAdmin(admin.ModelAdmin):
 search_fields = ['city','state']

Default model registration on main Django admin
admin.site.register(Store, StoreAdmin)

Model registration on custom Django admin named provideradmin
from coffeehouse.admin import provideradmin
provideradmin.register(Store, StoreAdmin)

admin.py (items app)
from django.contrib import admin
from coffeehouse.items.models import Menu

class MenuAdmin(admin.ModelAdmin):
 list_display = ['name','creator']

Default model registration on main Django admin
admin.site.register(Menu, MenuAdmin)

Model registration on custom Django admin named provideradmin
from coffeehouse.admin import employeeadmin
employeeadmin.register(Menu, MenuAdmin)

Notice in Listing 11-27, that in addition to the default Django admin class registration done through
admin.site.register, the Store class is registered with the custom provideradmin Django admin class
and the Menu class is registered with the custom employeeeadmin Django admin class, both of which are the
custom Django admin classes declared in Listing 11-26.

As you can see in Listing 11-27, it’s perfectly valid to register the same Django admin class on multiple
Django admin sites, a process that allows you to selectively access certain models under different Django
admin sites.

■■ Caution  Multiple Django admin sites don’t preclude user permissions, authentication or url visibility. By
default, all Django users can use the same credentials and are assigned the same permissions across multiple
Django admin sites. This means it’s up to you to enforce effective model permissions across all Django admin
sites, limit model registration for each Django admin site, as well as avoid easy to guess Django admin urls to
avoid unintended access.

549© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9_12

CHAPTER 12

REST Services with Django

Representational state transfer (REST) services or simply RESTful services have become one of the most
popular techniques in web development since they first appeared in the year 2000. While there's a long
background story on REST services,1 which I won't get into here, the appeal and explosive growth of REST
services in web development is simply due to how they solve a common problem in an easy and reusable
manner.

In this chapter, you’ll learn about the options available to create REST services with Django, including
plain Python/Django REST services and framework specific REST services. In addition, you’ll learn how
to create REST services with plain Python/Django packages and when they’re preferable over using
framework specific REST services packages. In addition, you’ll also learn how to create and use some of the
most important features of REST services created with the Django REST framework, as well as incorporate
essential security into Django REST framework services.

REST Services in Django
A REST service provides access to data through an end point or Internet URL making no assumption about
who uses it (e.g., an IoT device, a mobile phone or, a desktop browser); this means there's no device or
environment requirements to access REST services – all you need is Internet access.

On top of this, because REST services operate on Internet URLs, they provide a very intuitive access
scheme. For example, the REST service URL /products/ can mean 'get all product data', while the URL
/products/10/20/ can mean get all data for products with a price between 10 and 20 and the URL
/products/drinks/ get all product data in the drinks category.

The power of this last approach is there's no steep learning curve (e.g., language syntax, complex
business logic) to access REST service variations that solve elaborate data queries. Because of these
features and versatility, REST services work as a reusable data backbone across a wide array of areas and
applications. For example, practically the entire web API (Application Programming Interface) world
operates around REST web services, because by definition an API must provide a device/environment
neutral way for customers to access their functionality. In fact, there's a high chance most web sites you visit
make use of REST services in one way or another, a practice that allows web site operators to reuse the same
data and then format it for users on desktop browsers, IoT devices, mobile applications, RSS feeds, or any
other target like Accelerated Mobile Pages(AMP).2

With this brief overview of REST services, let's start with the simplest option available to create REST
services in Django.

1https://en.wikipedia.org/wiki/Representational_state_transfer
2https://www.ampproject.org/

https://doi.org/10.1007/978-1-4842-2787-9_12
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.ampproject.org/

Chapter 12 ■ REST Services with Django

550

Standard View Method Designed as REST Service
You can actually create a REST service in Django with just the Django package and Python's core packages,
with no need to install any third-party package. Listing 12-1 illustrates a standard Django url and view
method designed to function as a REST service.

Listing 12-1.  Standard view method designed as REST service

urls.py (In stores app)
from coffeehouse.stores import views as stores_views

urlpatterns = [
 url(r'^rest/$',stores_views.rest_store,name="rest_index"),
]

views.py (In stores app)
from django.http import HttpResponse
from coffeehouse.stores.models import Store
import json

def rest_store(request):
 store_list = Store.objects.all()
 store_names = [{"name":store.name} for store in store_list]
 return HttpResponse(json.dumps(store_names), content_type='application/json')

Sample output
[{"name": "Corporate"}, {"name": "Downtown"}, {"name": "Uptown"}, {"name": "Midtown"}]

The url statement in Listing 12-1 defines an access pattern on the stores app under the rest directory
(i.e., final url /stores/rest/). This last url statement is hooked up to the rest_store view method –
also in Listing 12-1 – which makes a query to get all Store records from the database, then creates a
list comprehension to generate a list of store names from the resulting query and finally uses Django's
HttpResponse to return a JSON response with the store names using Python's json package. The design in
Listing 12-1 is one of the simplest REST services you can create in Django and has some important points:

•	 Serialization.- Notice the Store query is not used directly in the response, but
rather a list comprehension is created first. This is done to serialize the data into
an appropriate format. Due to the way Django queries are built, results may not be
naturally serializable, so a list comprehension is used to ensure the data is a standard
Python dictionary that can be converted to JSON with the json package. I’ll provide
more details on why serialization is an important piece of working with REST
services in the following sidebar.

•	 Response handling.- Notice the use of Django's low-level HttpResponse method vs.
Django’s more common render() method to generate a response. While it’s possible
to use Django’s render() method and further pass the data to a template to format
the response, for most REST services this is unnecessary as responses tend to be
raw data (e.g., JSON, XML) and can be generated without a backing template. In
addition, notice in Listing 12-1 the HttpResponse uses the content_type argument
that adds the HTTP Content-Type application/json header telling the requesting
party the response is JSON. The HTTP Content-Type response value is important
because it avoids consumers having to guess how to process a REST service response

Chapter 12 ■ REST Services with Django

551

(e.g., another Content-Type option can be application/xml for REST services with
XML responses). HTTP response handling for Django view methods is discussed in
greater detail in Chapter 2.

•	 (No) Query parameters.- For simplicity, the view method in Listing 12-1 has no
parameters, so it provides a very rigid output (i.e., all stores in a JSON format).

ERROR: IS NOT JSON/XML SERIALIZABLE

One of the most common errors you’re likely to encounter when you create REST services in Django
is the ‘Is not JSON/XML serializable’ error. This means Django isn’t capable of serializing (i.e.,
representing/converting) the source data into the selected format – JSON or XML. This error happens
when the source data is made up of objects or data types that can produce undetermined or ambiguous
serializing results.

For example, if you have a Store model class with relationships, how should Django serialize these
relationships? Similarly, if you have a Python datetime instance how should Django serialize the value,
as DD/MM/YYYY, DD-MM-YYYY, or something else? In every case, Django never attempts to guess the
serialization representation, so unless the source data is naturally serializable – as in Listing 12-1 - you
must explicitly specify a serialization scheme – as I’ll explain next – or you’ll get the ‘Is not JSON/XML
serializable’ error.

Now that you have a brief understanding of a simple REST service in Django, let’s rework the REST
service in Listing 12-1 to make use of parameters so it can return different data results and data formats.

Listing 12-2.  Standard view method as REST service with parameters and different output formats

urls.py (In stores app)
from coffeehouse.stores import views as stores_views

urlpatterns = [
 url(r'^rest/$',stores_views.rest_store,name="rest_index"),
 url(r'^(?P<store_id>\d+)/rest/$',stores_views.rest_store,name="rest_detail"),
]

views.py (In stores app)
from django.http import HttpResponse
from coffeehouse.stores.models import Store
from django.core import serializers

def rest_store(request,store_id=None):
 store_list = Store.objects.all()
 if store_id:
 store_list = store_list.filter(id=store_id)
 if 'type' in request.GET and request.GET['type'] == 'xml':
 serialized_stores = serializers.serialize('xml',store_list)
 return HttpResponse(serialized_stores, content_type='application/xml')
 else:
 serialized_stores = serializers.serialize('json',store_list)
 return HttpResponse(serialized_stores, content_type='application/json')

http://dx.doi.org/10.1007/978-1-4842-2787-9_2

Chapter 12 ■ REST Services with Django

552

The first thing that’s different in Listing 12-2 is an additional url statement that accepts requests with a
store_id parameter (e.g., /stores/1/rest/, /stores/2/rest/). In this case, the new url is processed by the
same rest_store() view method to process the stores index from Listing 12-1 (i.e., /stores/rest/)

Next, the view method in Listing 12-2 is a modified version of the view method in Listing 12-1 that
accepts a store_id parameter. This modification allows the REST service to process a url request for all
stores (e.g., /stores/rest/) or individual stores (e.g., /stores/1/rest/ for store number 1). If you’re
unfamiliar on how to set up Django urls with parameters, see Chapter 2, which describes url parameters.

Once inside the view method, a query is made to get all Store records from a database. In case the
method receives a store_id value, an additional filter is applied on the query to limit the results to the given
store_id. This last query logic is perfectly efficient due to the way Django queries work – if you’re unfamiliar
with the behavior in Django queries, see Chapter 8 “Understanding a QuerySet” section.

Next, an inspection is made on the request to see if it has the type parameter with an xml value. If a
request matches this last rule (e.g., /stores/rest/?type=xml), then an XML response is generated for the
REST service; if it doesn’t match this last rule, then a JSON response – the default – is generated for the REST
service.

While the example in Listing 12-2 also uses HttpResponse and the content_type argument just like
Listing 12-1, notice the data is prepared with Django’s django.core.serializers package that is designed
to make data serialization easier - unlike the REST service in Listing 12-1 that required pre-processing the
query data with a listing comprehension and then using Python’s json package to complete the process.

The use of django.core.serializers is very simple in Listing 12-2. The serialize() method is used,
which expects the serialization type as its first argument (e.g., 'xml' or 'json') and the data to serialize
as the second argument (e.g., the store_list reference that represents the query). There’s much more
functionality behind the django.core.serializers package (e.g., filters) that I won’t explore here to keep
things simple, but Figures 12-1 and 12-2 show two sample results from the REST service in Listing 12-2.

Figure 12-1.  JSON output from Django REST serviceXML output from Django REST service

http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_8

Chapter 12 ■ REST Services with Django

553

As you can see in Figures 12-1 and 12-2, Django is capable of serializing a query and outputting its result
as a REST service response in either JSON or XML, with just the few lines in Listing 12-2. It’s likely these few
lines from Listing 12-2 can take you a long way toward building your own REST services in Django, but if
you’ve never done REST services or plan to use REST services as the centerpiece of an application or web
site, you should pause to analyze your requirements.

Because REST services solve a common problem in an easy and reusable manner, they tend to suffer
from scope creep, a characteristic where changes appear to be never ending and functionality is always ‘not
quite finished’. After seeing this initial Django REST service example, ask yourself the following questions:

•	 Do you need to support REST services for more than a couple of Django model
types? (e.g., Store,Drink,Employee).

•	 Do you need to customize the JSON/XML response to something that doesn’t
map directly to Django model records? (e.g., use a custom schema, filter certain
attributes).

•	 Do you need to provide a friendly interface for users, describing what a REST service
does and what parameters it accepts?

•	 Do you need to support some kind of authentication mechanism so the REST service
isn’t publicly available?

•	 Do you need REST services to support more than just displaying data or read
operations? (e.g., update and delete operations)?

If you said yes to most of the previous questions, then your REST services undertaking is beyond basic.
While you could continue building on the example in Listing 12-2 – using a standard Django view method
and additional Python packages – to support all of the previous scenarios, supporting these more elaborate
REST services features in Django is a path many have gone down before, to the point there are dedicated
frameworks for just this purpose.

Figure 12-2.  XML output from Django REST service

Chapter 12 ■ REST Services with Django

554

Django REST Framework3

The Django REST framework is now in its third version. Compared to writing your own REST services
from plain Python/Django packages as I just described, the Django REST framework offers the following
advantages:

•	 A web browsable interface.- Provides a user-friendly descriptive page for all REST
services (e.g., input parameters, options). Similar to how the Django admin provides
a near effortless interface to view a Django project’s database, the Django REST
framework offers a near effortless interface for end users to discover a Django
project’s REST services.

•	 Integrated authentication mechanisms.- To restrict access to REST services and save
you time integrating authentication logic, the Django REST framework is tightly
integrated with authentication mechanisms like OAuth2, HTTP Signature, HTTP
digest authentication, JSON Web Token Authentication, and HAWK (HTTP Holder-
Of-Key Authentication Scheme), among others.

•	 More flexible and sophisticated serializers.- To avoid having to reinvent the wheel
and constantly deal with ‘Is not serializable’ errors, the Django REST framework has
its own serializers designed to work with complex data relationships.

These are just some of the core benefits of using the Django REST framework. As you can realize, if you
plan to create more than a couple of REST services, investing the time to learn the Django REST framework
is well worth the time vs. dealing with the scaffolding code necessary to deploy REST services using plain
Python/Django packages.

Django Tastypie Framework4

The Django Tastypie framework emerged as an alternative to the Django REST framework. Although the
Django Tastypie framework is in its 0.14 version, don’t let the pre-1.0 release number fool you: the Django
Tastypie framework has been in development since 2010. Although both the Django Tastypie framework and
Django REST framework can potentially produce the same results, the Django Tastypie framework has these
differences:

Tastypie provides more default behaviors, making it simpler to configure and set up REST services than
with the Django REST framework.

Tastypie is still the second most used Django REST package5 - albeit it gets half the downloads of the
Django REST framework - so it’s still an attractive option for many Django projects.

Tastypie was originally developed by the same creators of Django haystack, which is still the most
popular Django search package6 - so Tastypie operates on some very solid Python/Django fundamentals.

Even though the Django Tastypie framework is not as mainstream as the Django REST framework, if
you feel overwhelmed creating REST services with the latter, you can always try out the former to arrive
at a faster REST solution rather than building your REST services from scratch with plain Python/Django
packages.

3http://www.django-rest-framework.org/
4http://tastypieapi.org/
5https://djangopackages.org/grids/g/rest/
6https://djangopackages.org/grids/g/search/

http://www.django-rest-framework.org/
http://tastypieapi.org/
https://djangopackages.org/grids/g/rest/
https://djangopackages.org/grids/g/search/

Chapter 12 ■ REST Services with Django

555

Django REST Framework Concepts and Introduction
The Django REST framework is distributed as a standard Python package. So to get started, you need to
install the Django REST framework with the command: pip install djangorestframework.

Once you install the Django REST framework package, add it to the INSTALLED_APPS list variable in your
Django project’s settings.py file with the name rest_framework. Once this is done, you can start working
with the Django REST framework. Next, let’s walk through the core concepts and creation process of a REST
service using the Django REST framework.

Serializers and Views
Serializers are one of the main building blocks of the Django REST framework used to define the
representation of data records, which are generally based on Django models. As described in the previous
section on Introduction to REST services options for Django, Python records can have ambiguous data
representations (e.g., a record with a datetime value can be represented as DD/MM/YYYY, DD-MM-YYYY,
or MM-YYYY) and a serializer removes any uncertainty about how to represent a record. Listing 12-3
illustrates a Django REST framework serializer using one of its serializers package.

Listing 12-3.  Serializer class based on Django REST framework

coffeehouse.stores.serializers.py file
from rest_framework import serializers

class StoreSerializer(serializers.Serializer):
 name = serializers.CharField(max_length=200)
 email = serializers.EmailField()

As you can see in Listing 12-3, a Django REST framework serializer is a standard Python class, which
in this case, inherits its behavior from the Django REST framework’s serializers.Serializer class. Next,
inside the serializer class are a set of fields that use the data types from the serializers package of the same
Django REST framework. Notice the similar structure between this Django REST framework serializer class
and Django model classes or Django form classes (i.e., they inherit their behavior from a parent class and
use different fields to represent different data types like character and email fields).

The example in Listing 12-3 is one of the simplest Django REST framework serializer classes possible,
because it only has two fields and inherits its behavior from the very basic serializers.Serializer class.
But just as with Django models and forms, as you progress with the Django REST framework, you’ll find
yourself using more advanced data types, as well as creating serializers with more sophisticated base classes
than serializers.Serializer. I’ll describe a more advanced serializer shortly. Next let’s explore a view in
the context of the Django REST framework.

Serializer classes by themselves do nothing and must be integrated with views that do the bulk of the
REST service logic (i.e., handle incoming requests, query a database for data), which then use serializers to
transform data. In the first section in this chapter, you learned how a regular Django view method can be
turned into REST services. While it’s perfectly possible to use a Django REST framework serializer class - like
the one in Listing 12-3 - in a regular Django view method, the Django REST framework also provides an
additional view syntax - illustrated in Listing 12-4 - to make it easier to build REST services.

Chapter 12 ■ REST Services with Django

556

Listing 12-4.  Django view method decorated with Django REST framework

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer

from rest_framework.decorators import api_view
from rest_framework.response import Response

@api_view(['GET','POST','DELETE'])
def rest_store(request):
 if request.method == 'GET':
 stores = Store.objects.all()
 serializer = StoreSerializer(stores, many=True)
 return Response(serializer.data)
 elif request.method == 'POST':
 ... #logic for HTTP POST operation
 elif request.method == 'DELETE':
 ... #logic for HTTP DELETE operation

First notice the method in Listing 12-4 is a regular Django view method, but it uses the @api_view
decorator from the Django REST framework. The arguments to @api_view indicate which HTTP REST
methods to support - see Chapter 2 or Chapter 6 for details on the topic of HTTP methods in Django or
wikipedia’s REST entry,7 as HTTP methods is a generic REST concept rather than a Django/REST topic. Next,
inside the view method, a series of conditions are executed to process the different HTTP request methods
that form the REST service.

If a GET request is made on the view method, a query is made to get all Store model records. However,
notice in this case of Listing 12-4, it uses the StoreSerializer from Listing 12-3 to transform the Django
queryset. In addition, the return statement uses the Django REST framework Response method instead of
Django’s standard HttpResponse or render methods.

More importantly, notice both the request and response logic in Listing 12-4 lacks any kind of REST
output format (e.g., JSON, XML). By leveraging the Django REST framework, you no longer need to deal
with the low-level details of detecting or handling output formats-- this is taken care of directly by the REST
framework and based on how you make requests to the REST service, which I’ll describe shortly.

Next, the rest_store() view method in Listing 12-4 must be configured to become accessible at a url.
A line like url(r'^rest/$',stores_views.rest_store,name="rest_index") added to the app’s urls.py
file solves this issue. Once you do this, if you access the URL you’ll see a result like the one in Figure 12-3.

7https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_6
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Chapter 12 ■ REST Services with Django

557

■■ Caution  If you get the error 'TemplateDoesNotExist at /stores/rest/ rest_framework/api.
html' instead of the page in Figure 12-3, it means you haven’t added the REST framework to your project’s
INSTALLED_APPS as described at the start of this section (e.g., INSTALLED_APPS = ['rest_framework']).

As you can see in Figure 12-3, the REST framework service response is very informative and pretty
compared to Django’s basic HttpResponse response generated by the Django REST service created in the
initial section of this chapter.

For example, you can see the different options offered by the REST service and invoke its various
operations in a few clicks. Also notice the output from the REST service only has Store objects with two
fields due to the StoreSerializer definition in Listing 12-3. Next, let’s modify the serializer class to output
complete Store records. Listing 12-5 shows an updated serializer class based on Listing 12-3.

Listing 12-5.  Serializer class using Django model based on Django REST framework

from rest_framework import serializers

from coffeehouse.stores.models import Store

class StoreSerializer(serializers.ModelSerializer):
 class Meta:
 model = Store
 fields = '__all__'

Figure 12-3.  Django REST framework main service response

Chapter 12 ■ REST Services with Django

558

In order to serialize full Store records based on a Django Store model, Listing 12-5 makes use of the
Django REST framework ModelSerializer class to simplify the serializer syntax. More importantly, notice
how the REST framework StoreSerializer class in Listing 12-5 uses syntax that’s identical to Django model
forms that are also based on Django models.

In this case, the StoreSerializer class uses a Meta class with the model option set to Store to specify
the Django model to serialize and the fields option set to __all__ to indicate all model fields should be
serialized – note the fields option can equally declare a limited list of model field names, just like it’s done
in model forms.

With this more specialized parent serializer ModelSerializer class in Listing 12-5 – vs. the generic
Serializer class in Listing 12-3 – it’s this simple to serialize Django model classes for REST services using
the Django REST framework.

But as powerful as these Django REST framework serialization features are and as helpful as the Django
REST framework view syntax used in Listing 12-4 is - cutting down on low-level logic and presenting a
user-friendly interface - there’s still a lot of scaffolding code in the view method that can be further trimmed
down.

To further simplify the construction of REST services, the Django REST framework can make use of
class-based views.

Class-Based Views
Chapter 2 introduced the concept of Django class-based views and Chapter 8 expanded on the topic with
class-based views that use Django models to perform CRUD operations. Since the principles of class-based
views in Django have already been covered, l’ll assume you have a minimum level of familiarity with the
topic; if not, then go back to these other chapters to learn the basics.

Listing 12-6 illustrates a class-based view based on a REST framework class, which simplifies the earlier
standard view method – in Listing 12-4 – decorated with @api_view from the REST framework.

Listing 12-6.  Django REST framework class-based views

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer

from rest_framework.views import APIView
from rest_framework.response import Response

class StoreList(APIView):

 def get(self, request, format=None):
 stores = Store.objects.all()
 serializer = StoreSerializer(stores, many=True)
 return Response(serializer.data)

 def post(self, request, format=None):
 ...
 #logic for HTTP POST operation

 def delete(self, request, format=None):
 ...
 #logic for HTTP DELETE operation

http://dx.doi.org/10.1007/978-1-4842-2787-9_2
http://dx.doi.org/10.1007/978-1-4842-2787-9_8

Chapter 12 ■ REST Services with Django

559

Notice in Listing 12-6 how the class inherits its behavior from the Django REST framework APIView
class. This allows the class to contain various methods representing each of the REST service’s HTTP
methods (i.e., GET,POST, DELETE), – similar to how it’s done with standard Django class-based views that
handle multiple HTTP methods (e.g., form processing).

As you can see, Listing 12-6 produces much more readable REST services logic, compared to the
regular Django view method in Listing 12-4, which requires you to manually inspect a request and perform
conditional statements. The logic inside the get method in Listing 12-6 uses the same Django REST
framework syntax used in Listing 12-4, so there’s nothing new.

In the same way you must hook up a regular Django view method to a url, you must also associate a
Django REST framework class-based view to make it accessible on a certain url. Listing 12-7 illustrates a
urls.py file with the syntax to access the REST service class-based view from Listing 12-6.

Listing 12-7.  Django URL definition linked to Django REST framework class-based views

from django.conf.urls import url
from coffeehouse.store import stores_views

urlpatterns = [
 url(r'^$',stores_views.index,name="index"),
 url(r'^rest/$',stores_views.StoreList.as_view(),name="rest_index"),]

In Listing 12-7 you can see the urls.py file declares the r'^rest/$' url pattern is mapped to the Django
REST framework StoreList class using the as_view() method, which is a staple of all Django class-based
views to link them to a url. In this manner, if an HTTP GET request is made on the /stores/rest/ url, it’s
handled by the get() method of the class-based view and if an HTTP POST request is made on the same /
stores/rest/, it’s handled by the post() method of the class-based view.

It’s worth mentioning that hitting a url backed by a REST framework class-based view like the one in
Listing 12-6 also produces the same interface shown in Figure 12-3, which is produced by the standard view
method from Listing 12-4.

Now, as helpful as REST framework class-based views are to simplify REST service logic, class-
based views still require you to write all of the logic behind each method. For example, in the get()
method in Listing 12-6 a query is made to get all Store records, then serialize the data, and finally
return a response. For the post() method in Listing 12-6, you would similarly need to insert/update a
Store record with the provided data and with the delete() method you would need to delete a Store
record with the provided data.

Once you write a couple of class-based views with the Django REST framework, you’ll realize there’s a
constant pattern behind each type of view method (e.g., read a record, serialize it, and return a response).
On top of this, you’ll also come to realize what a close relationship there is between REST methods (e.g.,
GET,POST and DELETE) and the operations they execute on Django models (i.e., Create-Read-Update-
Delete (CRUD) operations).

To avoid having to constantly write the same CRUD operations and boilerplate logic for different Django
objects associated with REST services, the Django REST framework following Django’s DRY (Don’t Repeat
Yourself) principle and Django’s class-based model view principle offers another construct: mixins.

Mixins and Generic Class-Based Views
A mixin is used to encapsulate and reuse the same logic and be able to use it in a class-based view. For
example, instead of writing the same logic from Listing 12-6 - get all records, serialize them, and generate a
response - over and over for different REST services (e.g., Item, Drink, or Store services); you can use the
mixins.ListModelMixin class and quickly achieve the same result.

Chapter 12 ■ REST Services with Django

560

I won’t go into greater detail about mixin classes here, mainly because mixin classes are not as widely
used as other Django REST framework options, not to mention Django mixins were already described in
Chapter 9 in the context of class-based views that use models.

For most Django framework REST services, you’ll either end up using class-based views - to get full control
over the logic - or a more succinct approach based on mixins called ‘mixed-in generic class views’. Listing 12-8
illustrates an equivalent mixed-in generic class view based on the class-based view from Listing 12-6.

Listing 12-8.  Django mixed-in generic class views in Django REST framework

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer

from rest_framework import generics

class StoreList(generics.ListCreateAPIView):
 queryset = Store.objects.all()
 serializer_class = StoreSerializer

Notice Listing 12-8 is even more succinct than prior iterations of the same REST service. In this case, the
generic class name ListCreateAPIView is indicative of what the class produces - A REST view to generate
a list - based on the queryset option that specifies to get all Store records and the serializer option that
points to the StoreSerializer class in Listing 12-5.

Just as before and even though you now have a REST service composed of a couple of lines, the Django
REST framework can further extend Django’s DRY principle with the use view sets and routers.

View Sets and Routers
The generic class view in Listing 12-8 is pretty powerful for just three lines, but it’s just one class to display a
list of Store records. Let’s assume you now need to create a REST service to a display a specific Store record,
another REST service to update a Store record, and yet another REST service to delete Store records. In this
scenario, you would need to create three more generic class views and three more URL mappings to roll out
this basic CRUD functionality. But instead of creating separate view classes for each case, you can instead
rely on a Django REST framework view set.

A Django REST framework view set, as its name implies, is a group of views. To create a Django REST
framework view set all you need to do is create a class that inherits its behavior from one of the Django
REST framework’s classes intended for this purpose. Listing 12-9 illustrates a view set created with the
ModelViewSet class.

Listing 12-9.  Django viewset class in Django REST framework

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer

from rest_framework import viewsets

class StoreViewSet(viewsets.ModelViewSet):
 queryset = Store.objects.all()
 serializer_class = StoreSerializer

http://dx.doi.org/10.1007/978-1-4842-2787-9_9

Chapter 12 ■ REST Services with Django

561

Listing 12-9 is as short as the REST service class in Listing 12-8, but besides the class name change, it’s
the parent ModelViewSet inherited class that gives this REST service a whole new dimension. Using this class
alone, a REST service is automatically hooked up to display a Store record list, as well as to create, read,
update, or delete individual Store records.

Because a view set generates multiple views, you’re still left with the issue of configuring each view to a
url, in which case the easiest path is to use a Django REST framework router. A router is to a view set what a
url statement is to class-based view: a way to hook up an end point. Listing 12-10 illustrates the urls.py file
set up with a Django REST framework router.

Listing 12-10.  Django URL definition with Django REST framework router for view set

from django.conf.urls import include, url
from coffeehouse.stores import views as stores_views

from rest_framework import routers

router = routers.DefaultRouter()
router.register(r'stores', stores_views.StoreViewSet)

urlpatterns = [
 url(r'^rest/', include(router.urls,namespace="rest")),
]

■■ Caution  View set and router combinations automatically create sensitive REST end points (e.g., delete and
update), which by default are accessible to anyone. See the next section on REST framework security to restrict
these service end points.

The first step in Listing 12-10 is to initiate a router with routers.DefaultRouter() and then register the
different view sets with it. As you can see in Listing 12-10, the router registration process uses the router.
register method that accepts two arguments: the first argument indicates the REST url prefix - in this case
stores - and a second argument to specify the view set - in this case the StoreViewSet class from Listing 12-9.

Next, you can see the router is assigned using Django’s standard url and include methods. In this
case, the router instance is assigned under the r'^rest/' url, which means the final root url of the Store
view set becomes /rest/stores/ as shown in Figure 12-4.

Chapter 12 ■ REST Services with Django

562

As you can see in Figure 12-4, the REST framework presents a default Api Root page. You can further
navigate to other urls under the Api Root page (i.e., /stores/rest/) to perform other CRUD actions
associated with the view set (e.g., an HTTP GET request on /stores/rest/stores/ to get a list of all Store
records, an HTTP GET request on /stores/rest/stores/1/ to get the Store record with id=1, or an HTTP
DELETE request on /stores/rest/stores/2/ to delete the Store record with id=3).

And with this description of view sets and routers, we conclude the coverage of basic concepts needed
to set up REST services with the Django REST framework. Now that you’re familiar with the basics, in the
next section you’ll learn how to secure REST services built with the Django REST framework.

Django REST Framework Security
Although the Django REST framework represents a great time saver to create REST services that allow access
to an application’s data, you need to be careful you don’t inadvertently allow access to data or functionalities
you didn’t mean to. Using the wrong class or configuration parameter with the Django REST framework can
leave your application open to a security risk, even though the Django REST framework is fundamentally
secure.

Set Up REST Framework Services Permissions
By default, all REST framework services are open to anyone, so long as they know or discover a REST service
end point (i.e., the url). While this default behavior is convenient, it can also represent a grave security
threat, particularly if you create REST framework services with sensitive operations (e.g., Update or Delete
actions) or view sets – such as the one in Listing 12-9 – which automatically create end points that support
sensitive operations.

Figure 12-4.  Django REST framework view set main page

Chapter 12 ■ REST Services with Django

563

The default REST framework permission can be configured through the REST_FRAMEWORK variable in
setting.py file, via the DEFAULT_PERMISSION_CLASSES option. Out of the box, the REST framework sets this
option to use the rest_framework.permissions.AllowAny class, as illustrated in the following snippet:

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.AllowAny',
)
}

This means that unless you define a DEFAULT_PERMISSION_CLASSES option in your Django project’s
settings.py file, all REST framework services are open to the public. To lock down access to REST services
to the public, you can change the REST framework’s default permission strategy.

Listing 12-11 illustrates the DEFAULT_PERMISSION_CLASSES option set to the rest_framework.
permissions.IsAuthenticated class, which enforces that only users logged in via Django’s built-in user
system – described in Chapter 10 – be allowed access to REST framework services.

Listing 12-11.  Django REST framework set to restrict all services to authenticated users

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.IsAuthenticated',
)
}

In addition to the rest_framework.permissions.IsAuthenticated class, the REST framework also
supports the classes in Table 12-1 to be part of the DEFAULT_PERMISSION_CLASSES option.

Table 12-1.  Django REST framework permission classes

REST framework permission class Description

rest_framework.permissions.AllowAny (Default) Allows access to anyone.

rest_framework.permissions.IsAuthenticated Allows access to logged-in users via Django’s built-in
user system.

rest_framework.permissions.IsAdminUser Allows access to Django admin users, based on Django’s
built-in user system.

rest_framework.permissions.
IsAuthenticatedOrReadOnly

Allows read access to anyone (logged in or not), but
requires logging in to perform non-read operations.

rest_framework.permissions.
DjangoModelPermissions

Allows access to logged-in users, but also requires that
said users have the necessary add/change/delete model
permissions on which the REST service operates with.

rest_framework.permissions.
DjangoModelPermissionsOrAnonReadOnly

Just like the DjangoModelPermissions class, but allows
read access to anyone (logged in or not).

rest_framework.permissions.
DjangoObjectPermissions

Similar to the DjangoModelPermissions class, except it
works per-object permissions on models on which the
REST service operates with.

http://dx.doi.org/10.1007/978-1-4842-2787-9_10

Chapter 12 ■ REST Services with Django

564

As you can see in Table 12-1, the REST framework provides various classes to set the default
access permission for all REST services in a project. For example, if you’re fine allowing public read
access to a project’s REST services but want to restrict more sensitive REST services operations, the
IsAuthenticatedOrReadOnly and DjangoModelPermissionsOrAnonReadOnly classes from Table 12-1 are
good alternatives for the DEFAULT_PERMISSION_CLASSES option.

Still, by relying on the DEFAULT_PERMISSION_CLASSES option you give every REST service in a project the
same access permission. What if you want to provide a more flexible or strict permission strategy for one or
two services? The REST framework also supports specifying more granular permissions on individual REST
services, using the same classes in Table 12-1.

Listing 12-12 illustrates a modified version of the REST service from Listing 12-4 that uses @permission_
classes decorator to specify a different permission strategy than the global DEFAULT_PERMISSION_CLASSES
option.

Listing 12-12.  Django view method decorated with Django REST framework and @permission_classes
decorator

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer

from rest_framework.decorators import api_view, permission_classes
from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response

@api_view(['GET','POST','DELETE'])
@permission_classes((IsAuthenticated,))
def rest_store(request):
 if request.method == 'GET':
 stores = Store.objects.all()
 serializer = StoreSerializer(stores, many=True)
 return Response(serializer.data)

As you can see in Listing 12-12, the standard view method in addition to being decorated with
@api_view is also decorated with @permission_classes. In this case, the @permission_classes decorator is
set with the IsAuthenticated class values, ensuring this REST service permission strategy take precedence
on the service over the default service permission in DEFAULT_PERMISSION_CLASSES option.

Listing 12-13 illustrates a modified version of the REST service from Listing 12-9 that uses permission_
classes field to specify a different permission strategy than the global DEFAULT_PERMISSION_CLASSES option.

Listing 12-13.  Django viewset class in Django REST framework and permission_classes field

from coffeehouse.stores.models import Store
from coffeehouse.stores.serializers import StoreSerializer
from rest_framework.permissions import IsAuthenticated

from rest_framework import viewsets

class StoreViewSet(viewsets.ModelViewSet):
 permission_classes = (IsAuthenticated,)
 queryset = Store.objects.all()
 serializer_class = StoreSerializer

Chapter 12 ■ REST Services with Django

565

As you can see in Listing 12-13, the REST framework view set method makes use of the permission_
classes field. In this case, the permission_classes field is set with the IsAuthenticated class values,
ensuring this REST service permission strategy takes precedence on the service over the default service
permission in DEFAULT_PERMISSION_CLASSES option.

Set Up REST Framework Login Page
By default, if a user attempts to access a REST framework via a browser and doesn’t have the necessary
permissions, a user is presented with a warning page like the one in Figure 12-5.

Figure 12-5.  Django REST framework access denied page

Although Figure 12-5 represents a standard access denied page, it has one glaring omission: it’s a dead
end with no link to let users log in. If a user reaches the page in Figure 12-5, he needs to manually go to a
Django login page in either the application or the Django admin, to provide his credentials and then go back
to the REST service to access it.

This last workflow creates an unnecessary burden on users, which is why the REST framework provides
an easy way to integrate a login page – including a login/logout link on all its pages – that’s tied directly to the
same authentication back end of the Django admin.

Listing 12-14 illustrates a Django project’s main urls.py that declares the REST framework’s urls to
automatically activate its built-in login page and links.

Listing 12-14.  Django REST framework url declaration to enable log in

from django.conf.urls import include, url
urlpatterns = [
 url(r'^rest-auth/', include('rest_framework.urls',namespace='rest_framework')),
]

Chapter 12 ■ REST Services with Django

566

In Listing 12-14 you can see rest_framework.urls is configured with Django’s standard include()
statement and namespace argument, in addition to being configured on the rest-auth/ url, the last of which
you can change to any url pattern of your choosing.

With this addition to a Django project’s main urls.py file, all REST framework pages are generated with
a login link in the top right corner, which takes users to a login page accessibly under the login path of the url
configuration (e.g., if url(r'^rest-auth/'), the login page is available at /rest-auth/login/).

ENHANCED REST FRAMEWORK USER INTERFACE OPTIONS

Although the built-in user interface (UI) provided by the REST framework – presented in Figures 12-3
through 12-5 – offers a better alternative than presenting raw data REST services output – like
Figures 12-1 and 12-2 – the REST framework UI is still rather rudimentary when you compare it to
more modern UI web layouts.

There are various alternatives to the REST framework UI, which are specifically designed to work with
the REST framework. Some of the more mature projects include Django REST Swagger8 and DRF Docs.9

8http://marcgibbons.github.io/django-rest-swagger/
9http://drfdocs.com/

http://marcgibbons.github.io/django-rest-swagger/
http://drfdocs.com/

567© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9

APPENDIX A

Python Basics

Python, like most programming languages, has certain behaviors that can confuse anyone who is new to the
language. This appendix contains an overview of the Python features that are most important to understand
for anyone who wants to create Django applications and who is already familiar with another programming
language (e.g., Ruby, PHP).

In this appendix you’ll learn about Python strings, Unicode, and other annoying text behaviors; Python
methods and how to use them with default, optional, *args, and **kwargs arguments; Python classes and
subclasses; Python loops, iterators, and generators; Python list comprehensions, generator expressions,
maps, and filters; as well as how to use the Python lambda keyword for anonymous methods.

Strings, Unicode, and Other Annoying Text Behaviors
Working with text is so common in web applications that you’ll eventually be caught by some of the
not-so-straightforward ways Python interprets it. First off, beware there are considerable differences in how
Python 3 and Python 2 work with strings.

Python 3 provides an improvement over Python 2, in the sense there are just two instead of three ways
to interpret strings. But still, it’s important to know what’s going on behind the scenes in both versions so you
don’t get caught off-guard working with text. Listing A-1 illustrates a series of string statements run in Python
2 to showcase this Python version’s text behavior.

Listing A-1.  Python 2 literal unicode and strings

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.getdefaultencoding()
'ascii'
>>> 'café & pâtisserie'
'caf\xc3\xa9 & p\xc3\xa2tisserie'
>>> print('\xc3\xa9')
é
>>> print('\xc3\xa2')
â

https://doi.org/10.1007/978-1-4842-2787-9

APPENDIX A ■ Python Basics

568

The first action in Listing A-1 shows the default Python encoding that corresponds to ASCII and
which is the default for all Python 2.x versions. In theory, this means Python is limited to representing 128
characters, which are the basic letters and characters used by all computers – see any ASCII table for details.1
This is just in theory though, because you won’t get an error when attempting to input a non-ASCII character
in Python.

If you create a string statement with non-ASCII characters like 'café & pâtisserie', you can see in
Listing A-1 the é character is output to \xc3\xa9 and the â character is output to \xc3\xa2. These outputs,
which appear to be gibberish, are actually literal Unicode or UTF-8 representations of the é and â characters,
respectively. So take note that even though the default Python 2 encoding is ASCII, non-ASCII characters are
converted to literal Unicode or UTF-8 representations.

Next in Listing A-1 you can see that using the print() statement on either of these character sequences
outputs the expected é or â characters. Behind the scenes, Python 2 offers the convenience of inputting non-
ASCII characters in an ASCII encoding environment, by automatically encoding strings into literal Unicode
or UTF-8 representations. To confirm this behavior, you can use the decode() method, as illustrated in
Listing A-2.

Listing A-2.  Python 2 decode unicode and u” prefixed strings

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 'café & pâtisserie'.decode('utf-8')
Outputs: u'caf\xe9 & p\xe2tisserie'
>>> print(u'\xe9')
Outputs: é
>>> print(u'\xe2')
Outputs: â

In Listing A-2 you can see the statement 'café & pâtisserie'.decode('utf-8') outputs u'caf\xe9
& p\xe2tisserie'. So now the same string decoded from Unicode or UTF-8 converts the é character or \
xc3\xa9 sequence to \xe9 and the â character or \xc3\xa2 sequence to \xe2. More importantly, notice the
output string in Listing A-2 is now preceded by a u to indicate a Unicode or UTF-8 string.

Therefore the é character can really be represented by both \xc3\xa9 and \xe9, it's just that \xc3\xa9
is the literal Unicode or UTF-8 representation and \xe9 is a Unicode or UTF-8 character, representation.
The same case applies for the â character or any other non-ASCII character. The way Python 2 distinguishes
between the two representations is by appending a u to the string. In Listing A-2 you can see calling
print(u'\xe9') - note the preceding u - outputs the expected é and calling print(u'\xe2') outputs the
expected â.

This Python 2 convenience of allowing non-ASCII characters in an ASCII encoding environments works
so long as you don’t try to forcibly convert a non-ASCII string that’s already loaded into Python into ASCII, a
scenario that’s presented in Listing A-3.

Listing A-3.  Python 2 UnicodeEncodeError: ‘ascii’ codec can’t encode character

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 'café & pâtisserie'.decode('utf-8').encode('ascii')

1https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html

https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html

APPENDIX A ■ Python Basics

569

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 3: ordinal not
in range(128)

In Listing A-3 you can see the call 'café & pâtisserie'.decode('utf-8').encode('ascii') throws
the UnicodeEncodeError error. Here you’re not getting any convenience behavior – like when you input
non-ASCII characters – because you’re trying to process an already Unicode or UTF-8 character (i.e., \xe9
or \xe2) into ASCII, so Python rightfully tells you it doesn’t know how to treat characters that are outside of
ASCII’s 128-character range.

You can, of course, force ASCII output on non-ASCII characters, but you’ll need to pass an additional
argument to the encode() method as illustrated in Listing A-4.

Listing A-4.  Python 2 encode arguments to process Unicode to ASCII

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 'café & pâtisserie'.decode('utf-8').encode('ascii','replace')
Outputs: 'caf? & p?tisserie'
>>> 'café & pâtisserie'.decode('utf-8').encode('ascii','ignore')
Outputs: 'caf & ptisserie'
>>> 'café & pâtisserie'.decode('utf-8').encode('ascii','xmlcharrefreplace')
Outputs: 'café & pâtisserie'
>>> 'café & pâtisserie'.decode('utf-8').encode('ascii','backslashreplace')
Outputs: 'caf\\xe9 & p\\xe2tisserie'

As you can see in Listing A-4, you can pass a second argument to the encode() method to handle non-
ASCII characters: the replace argument so the output uses ? for non-ASCII characters; the ignore argument
to simply bypass any non-ASCII positions; the xmlcharrefreplace to output the XML entity representation
of the non-ASCII characters; or the backslashreplace to add a backlash allowing the output of an escaped
non-ASCII reference.

Finally, Listing A-5 illustrates how you can create Unicode strings in Python 2 by prefixing them with the
letter u.

Listing A-5.  Python 2 Unicode strings prefixed with u''

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> u'café & pâtisserie'
u'caf\xe9 & p\xe2tisserie'
>>> print(u'caf\xe9 & p\xe2tisserie')
café & pâtisserie

In Listing A-5 you can see the u'café & pâtisserie' statement. By appending the u to the string
you’re telling Python it’s a Unicode or UTF-8 string, so the output for the characters é and â are \xe9 and \
xe2, respectively. And by calling the print statement on the output for this type of string preceded by u, the
output contains the expected é and â letters.

Now let’s explore how Python 3 works with unicode and strings in Listing A-6.

APPENDIX A ■ Python Basics

570

Listing A-6.  Python 3 unicode and string

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.getdefaultencoding()
'utf-8'
>>> 'café & pâtisserie'
'café & pâtisserie'

As you can see in Listing A-6, the encoding is UTF-8 or Unicode, which is the default for all Python 3.x
versions. By using UTF-8 or Unicode as the default, it makes working with text much simpler. There’s no
need to worry or deal with how special characters are handled; everything is handled as UTF-8 or Unicode.
In addition, because the default is Unicode or UTF-8, the leading u on strings is irrelevant and not supported
in Python 3.

Next, let’s move on to explore the use of Python’s escape character and strings. In Python, the backslash
\ character is Python’s escape character and is used to escape the special meaning of a character and declare
it as a literal value.

For example, to use an apostrophe quote in a string delimited by quotes, you would need to escape the
apostrophe quote so Python doesn’t confuse where the string ends (e.g., 'This is Python\'s "syntax"').
A more particular case of using Python’s backslash is on those special characters that use a backslash
themselves. Listing A-7 illustrates various strings that use characters composed of a backslash so you can see
this behavior.

Listing A-7.  Python backslash escape character and raw strings

>>> print("In Python this is a tab \t and a line feed is \n")
In Python this is a tab and a line feed is

>>> print("In Python this is a tab \\t and a line feed is \\n")
In Python this is a tab \t and a line feed is \n
>>> print(r"In Python this is a tab \t and a line feed is \n")
In Python this is a tab \t and a line feed is \n

In the first example in Listing A-7 you can see the \t character is converted to a tab space and the \n
character to a line feed (i.e., newline). This is the actual character composition of a tab - as a backslash
followed by the letter t - and a line feed -- as a backslash followed by the n. As you can see in the second
example in Listing A-7, in order for Python to output the literal value \t or \n you need to add another
backslash - which is after all Python’s escape character.

The third example in Listing A-7 is the same string as the previous ones, but it’s preceded by r to make it
a Python raw string. Notice that even though the special characters \t and \n are not escaped, the output is
like the second example with escaped characters.

This is what’s special about Python raw strings. By preceding a string with r, you tell Python to interpret
backslashes literally, so there’s no need to add another backslash like the second example in Listing A-7.

Python raw strings can be particularly helpful when manipulating strings with a lot of backslashes. And
one particular case of strings that rely a lot on backslashes is regular expressions. Regular expressions are
a facility in almost all programming languages to find, match, or compare strings to patterns, which makes
them useful in a wide array of situations.

APPENDIX A ■ Python Basics

571

The crux of using Python and regular expression together is they both give special meaning to
backslashes, a problem that even the Python documentation calls The Backslash Plague.2 Listing A-8
illustrates this concept of the backslash plague and raw strings in the context of Python regular expressions.

Listing A-8.  Python backslash plague and raw strings with regular expressions

>>> import re
Attempt to match liternal '\n', (equal statement: re.match("\\n","\\n"))
>>> re.match("\\n",r"\n")
Attempt to match liternal '\n', (equal statement: re.match("\\\\n","\\n"))
>>> re.match("\\\\n",r"\n")
<_sre.SRE_Match object at 0x7fedfb2c7988>
Attempt to match liternal '\n', (equal statement: re.match(r"\\n","\\n"))
>>> re.match(r"\\n",r"\n")
<_sre.SRE_Match object at 0x7fedfb27c238>

In Listing A-8, we’re trying to find a regular expression to match a literal \n - in Python syntax this would
be r"\n" or "\\n". Since regular expressions also use \ as their escape character, the first logical attempt at a
matching regular expression is "\\n", but notice this first attempt in Listing A-8 fails.

Because we’re attempting to define a regular expression in Python, you’ll need to add an additional
backslash for Python and yet another one to escape the regular expression, bringing the total to four
backslashes! As you can see in Listing A-8, the regular expression that matches a literal \n is the second
attempt "\\\\n".

As you can see in this example, dealing with backslashes in Python and in the context of regular
expression can lead to very confusing syntax. To simplify this, the recommended approach to define regular
expressions in Python is to use raw strings so backslashes are interpreted literally. In the last example in
Listing A-8, you can see the regular expression r"\\n" matches a literal \n and is equivalent to the more
confusing regular expression "\\\\n".

■■ Note  Python’s escape character and raw string behavior is the same in both Python 2 and Python 3.

Methods Arguments: Default, optional, *args, and **kwargs
Methods are one of the most common things you’ll create in Python. Declared with the syntax def <method_
name>(arguments) and called with the syntax result = <method_name>(input), what can be tricky to
understand about Python methods is their argument/input syntax.

The obvious way you define and call methods is to have the same number of arguments on both sides,
but this is far from most real-world cases where data can be missing or the number of arguments can change
based on the circumstances. Listing A-9 illustrates a basic method definition with multiple calls using
different syntax.

2https://docs.python.org/3/howto/regex.html#the-backslash-plague

https://docs.python.org/3/howto/regex.html#the-backslash-plague

APPENDIX A ■ Python Basics

572

Listing A-9.  Python method definition and call syntax with * and **

def address(city,state,country):
 print(city)
 print(state)
 print(country)

address('San Diego','CA','US')
address('Vancouver','BC','CA')

us_address = ('San Diego','CA','US')
address(*us_address)

canada_address = {'country':'US','city':'San Diego','state':'CA'}
address(**canada_address)

The address method in Listing A-9 represents the most obvious syntax with three input parameters.
Next, you can see two calls are made to the method also with the also obvious syntax: address('San
Diego','CA','US') and address('Vancouver','BC','CA'). Following these calls are another two calls
made with the not-so-obvious syntax address(*us_address) and address(**canada_address).

A variable preceded with * is called a positional argument and tells Python to unpack the tuple assigned
to it, which in turn passes each value as an individual argument. A variable preceded with ** is called a
keyword argument and tells Python to unpack the dictionary assigned to it, which in turn passes each value
as an individual argument.

As you can confirm in Listing A-9, the us_address variable is in fact a three-item tuple that is then used
as the input argument in address(*us_address). And the canada_address variable is in fact a three-item
dictionary that is then used as the input argument in address(**canada_address).

An interesting behavior of the values in ** is they don’t have to follow a strict order (i.e., as expected by
the method). Because these values are classified by keyword in a dictionary, Python can map each keyword
according to the expected method argument order. This is unlike the values in * that need to be in the same
order expected by a method, which is why they’re called positional arguments because position matters.

Another important Python method syntax is making an argument optional. In Listing A-10 the address_
with_default method uses a default argument value for country, which in turn makes it optional.

Listing A-10.  Python method optional arguments

def address_with_default(city,state,country='US'):
 print(city)
 print(state)
 print(country)

address_with_default('San Diego','CA')
address_with_default('Vancouver','BC','CA')
address_with_default(**{'state':'CA','city':'San Diego'})

The first call in Listing A-10 address_with_default('San Diego','CA') only provides two input
arguments and the call still works, even though the address_with_default method definition declares three
input arguments. This is because the missing country argument takes the default method value US.

The second call in Listing A-10 address_with_default('Vancouver','BC','CA') provides all three
input arguments with the third value effectively overriding the default method value US for CA. Finally, the
third call in Listing A-10 address_with_default(**{'state':'CA','city':'San Diego'}) uses the **
syntax to unpack an inline dictionary with two values, and the missing argument country takes the default
method value US.

APPENDIX A ■ Python Basics

573

In addition to using the positional * syntax for calling methods, it’s also possible to use this same syntax
to define method arguments, as illustrated in Listing A-11.

Listing A-11.  Python method positional argument

def vowels(*args):
 print("*args is %s" % type(args))
 print("Arguments %s " % ', '.join(args))

vowels('a')
vowels('a','e')
vowels('a','e','i')
vowels('a','e','i','o')
vowels('a','e','i','o','u')

Notice the method in Listing A-11 def vowels(*args) uses the * syntax to define the method
argument. The * character has the same meaning described earlier, which is to unpack the values in a tuple.
In this case, by using it in a method argument, it gives the method the flexibility to accept any number of
arguments. You can confirm this flexibility by seeing the various calls to the vowels() method in Listing A-11,
which take from one to five arguments.

Because you can’t directly reference input arguments with a positional argument - unless you manually
split them - Listing A-12 shows another method that first defines a standard input variable and then declares
a positional argument.

Listing A-12.  Python method with standard and positional argument

def address_with_zipcode(zipcode,*args):
 print(zipcode)
 print("*args is %s" % type(args))
 print("Arguments %s " % ', '.join(args))

address_with_zipcode(92101,'100 Park Boulevard','San Diego','CA','US')
address_with_zipcode('V6B 4Y8','777 Pacific Boulevard','Vancouver','BC','CA')

As you can confirm with the various calls made to address_with_zipcode() in Listing A-12, the first
value is assigned to the first input variable and the rest of the values are assigned to the positional argument.
Listing A-13 illustrates yet another method syntax that uses a keyword argument in the method definition.

Listing A-13.  Python method with keyword argument

def address_catcher(**kwargs):
 print("**kwargs is %s" % type(kwargs))
 print("Keyword arguments %s " % ', '.join(['%s = %s' % (k,v) for k,v in kwargs.items()]))

address_catcher(zipcode=92101,street='100 Park Boulevard',city='San Diego',state='CA',
country='US')
address_catcher(postalcode='V6B 4Y8',street='777 Pacific Boulevard',city='Vancouver',
province='BC',country='CA')

Notice the method in Listing A-13 uses the ** syntax to define the method argument. The ** character
has the same meaning described earlier, which is to unpack the values in a dictionary. In this case, by using
it in a method argument, it gives the method the flexibility to accept any number of keyword arguments.
You can confirm this flexibility by seeing the various calls to address_catcher() in Listing A-13, which use
different keys; one call uses zipcode and state, while the other uses postalcode and province.

APPENDIX A ■ Python Basics

574

Finally, Listing A-14 illustrates a method that uses a standard input variable, a positional argument, and
a keyword argument.

Listing A-14.  Python method with standard, positional and keyword argument

def address_full(country,*args,**kwargs):
 print(country)
 print("*args is %s" % type(args))
 print("Arguments %s " % ', '.join(args))
 print("**kwargs is %s" % type(kwargs))
 �print("Keyword arguments %s " % ', '.join(['%s = %s' % (k,v) for k,v in kwargs.items()]))

address_full('US','100 Park Boulevard','San Diego',state='CA',zipcode=92101)
address_full('CA','777 Pacific Boulevard','Vancouver',province='BC',postalcode='V6B 4Y8')

If you look over the sample calls to address_full() method in Listing A-14, you’ll see this process
works by assigning input values as the method slots requires. The first input value is always assigned to
the standard input variable country, the next input values up to the first keyword=value are assigned to
the positional argument *args, and all the input values with a keyword=value syntax are assigned to the
keyword argument **kwargs. Be aware the input sequence when you use all three types of input types must
always follow this order to avoid ambiguity.

■■ Note  The * and ** characters are what really matter in Python methods. Syntax wise you’re more likely to
encounter the references *args and **kwargs, but what really matters are the * and ** characters. To Python,
you can equally declare *foo and **bar; however, the names *args and **kwargs are so prevalent you’re more
likely to encounter these than custom names.

Classes and Subclasses
Python classes are used to give greater structure and object-orientated facilities to many projects, so it’s
important to have a firm grasp on class behaviors and syntax. Even if you’ve used object-orientated design
in other language like Java or PHP, Python has some particularities that you need to understand. Listing A-15
shows a simple Python class.

Listing A-15.  Python class syntax and behavior

class Drink():
 """ Drink class """
 def __init__(self,size):
 self.size = size
 # Used to display object instance
 def __str__(self):
 return 'Drink: size %s' % (self.size)
 # Helper method for size in ounces
 def sizeinoz(self):
 if self.size == "small":
 return "8 oz"

APPENDIX A ■ Python Basics

575

 elif self.size == "medium":
 return "12 oz"
 elif self.size == "large":
 return "24 oz"
 else:
 return "Unknown"

thedrink = Drink("small")
print(thedrink)
print("thedrink is %s " % thedrink.sizeinoz())

The first thing to notice about Listing A-15 is it uses the Python class keyword to declare the start of
a Python class. Next, you can see various class methods that are declared with the same def keyword as
standard Python methods. Notice all the class methods use the self-argument to gain access to the class/
object instance, a construct that’s prevalent in almost all Python classes, since Python doesn’t grant access
to the instance transparently in class methods like other object-oriented languages (e.g., in Java you can just
reference this inside a method without it being a method argument).

Now let’s move on the some calls made on the Drink class in Listing A-15. The first call in Listing A-15
Drink("small") creates an instance of the Drink class. When this call is invoked, Python first triggers the
__init__ method of the class to initialize the instance. Notice the two arguments __init__(self,size). The
self variable represents the instance of the object itself, while the size variable represents an input variable
provided by the instance creator, which in this case is assigned the small value. Inside the __init__ method,
the self.size instance variable is created and assigned the size variable value.

The second call in Listing A-15 print(thedrink) outputs the thedrink class instance that prints Drink:
size small. What’s interesting about the output is that it’s generated by the class method __str__, which
as you can see in Listing A-15 returns a string with the value of the size instance variable. If the class didn’t
have a __str__ method definition, the call to print(thedrink) would output something like <__main__.
Drink object at 0xcfb410>, which is the rather worthless/unfriendly in-memory representation of the
instance. This is the purpose of the __str__ method in classes, to output a friendly instance value.

The third call in Listing A-15 print("thedrink is %s " % thedrink.sizeinoz()) invokes the
sizeinoz() class method on the instance and outputs a string based on the size instance variable created
by __init__. Notice the sizeinoz(self) method declares self - just like __init__ and __str__ - to be able
to access the instance value and perform its logic.

Now that you have a basic understanding of Python classes, let’s explore Python subclasses. Listing A-16
illustrates a subclass created from the Drink class in Listing A-15.

Listing A-16.  Python subclass syntax and behavior

class Coffee(Drink):
 """ Coffee class """
 beans = "arabica"
 def __init__(self,*args,**kwargs):
 Drink.__init__(self,*args)
 self.temperature = kwargs['temperature']
 # Used to display object instance
 def __str__(self):
 �return 'Coffee: beans %s, size %s, temperature %s' % (self.beans,self.size,self.

temperature)

thecoffee = Coffee("large",temperature="cold")
print(thecoffee)
print("thecoffee is %s " % thecoffee.sizeinoz())

APPENDIX A ■ Python Basics

576

Notice the class Coffee(Drink) syntax in Listing A-16, which is Python’s inheritance syntax (i.e., Coffee
is a subclass or inherits its behavior from Drink). In addition, notice that besides the subclass having its own
__init__ and methods, it also has the beans class field.

Now let’s create some calls on the Coffee subclass in Listing A-16. The first call in Listing A-16 Coffee(
"large",temperature="cold") creates a Coffee instance that is a subclass of the Drink instance. Notice the
Coffee instance uses the arguments "large",temperature="cold" and in accordance with this pattern, the
__init__ method definition is def __init__(self,*args,**kwargs).

Next is the initialization of the parent class with Drink.__init__(self,*args); the *args value in this
case is large and matches the __init__ method of the parent Drink class. Followed is the creation of the
self.temperature instance variable, which is assigned the value from kwargs['temperature'] (e.g., the
value that corresponds to the key temperature).

The second call in Listing A-16 print(thecoffee) outputs the thecoffee class instance which prints
Coffee: beans arabica, size large, temperature cold. Because the Coffee class has its own __str__
method, it’s used to output the object instance - overriding the same method from the parent class - if
there were no such method definition, then Python would look for a __str__ method in the parent class
(i.e., Drink) and use that, and if no __str__ method were found, then Python would output the in-memory
representation of the instance.

The third and final call in Listing A-16 print("thecoffee is %s " % thecoffee.sizeinoz()) invokes
the sizeinoz() class method on the instance and outputs a string based on the size instance variable. The
interesting bit about this call is it demonstrates object-orientated polymorphism, and the Coffee instance
calls a method in the parent Drink class and works just like if it were a Drink instance.

Loops, Iterators, and Generators
Loops are one of the most common programming constructs. In Python, though, there are a series of subtle
loop behaviors that are essential to grasp in order to understand some of Python’s more advanced features.
First let’s start by exploring the typical for loop syntax applied to a Python string, list, and dictionary, which is
illustrated in Listing A-17.

Listing A-17.  Python implicit iterator behavior

astring = 'coffee'
coffee_types = ['Cappuccino','Latte','Macchiato']
address = {'city':'San Diego','state':'CA','country':'US'}

Standard for loop, with implicit iterator
for letter in astring:
 print(letter)

Loop with enumerator (counter)
for counter,letter in enumerate(astring):
 print(counter,letter)

Standard for loop, with implicit iterator
for coffee in coffee_types:
 print(coffee)

Loop with enumerator (counter), starting at 1
for counter,coffee in enumerate(coffee_types,start=1):
 print(counter,coffee)

APPENDIX A ■ Python Basics

577

Standard for loop, with implicit iterator
for key,value in address.items():
 print(key,value)

Standard for loop, with implicit iterator
for address_key in address.keys():
 print(address_key)

Standard for loop, with implicit iterator
for address_value in address.values():
 print(address_value)

As you can see in Listing A-17, the standard for loop syntax in Python is for <item> in <container>.
In each case, the for loop steps through uninterrupted through every <item> in the <container>, where the
<item> varies depending on the <container> (e.g., for a string <container> the <items> are letters, for a list
<container> the <items> are list elements).

In addition to the standard for syntax, Listing A-17 also make use of three special methods. The first
one is the built-in Python function enumerate(), which functions as a counter. In the second and fourth
examples you can see the <container> is wrapped in the enumerate() method, which gives the loop access
access to a counter variable that’s declared alongside the <item> variable. By default, the enumerate()
counter starts at 0 but can be set to start at any number by using the start argument. In addition, Listing A-17
also makes use of the dictionary keys() and items() methods, which extract a list of dictionary keys and
values, respectively.

Although the examples in Listing A-17 are straightforward, there is more going on behind the scenes.
When you create for loops like the ones in Listing A-17 the <container> on which you’re creating, the loop
actually uses a construct called an iterator. To advance through the <container>, Python uses the iterator’s
__next__ method to walk through each of the items in the <container>. Because there’s no syntax related to
the iterator or __next__ method, these for loops are said to use implicit iterators.

Iterators are such an important concept in Python, they’re first-class citizens with built-in support in the
language, just like strings, integers, lists, and dictionaries. In addition, to support iterators, other data types
must implement what’s called the iterator protocol, which is why you can automatically invoke a for loop on
strings, lists, dictionaries, and other data structures without actually seeing an iterator or __next__ method.

To further illustrate the concept of iterators, let’s explore a set of similar examples to the ones in
Listing A-18 but this time with explicit iterators.

Listing A-18.  Python explicit iterator behavior

astring = 'coffee'
coffee_types = ['Cappuccino','Latte','Macchiato']

Create explicit iterators
astring_iter = iter(astring)
coffee_types_iter = iter(coffee_types)

Print iterator types
print(type(astring_iter))
print(type(coffee_types_iter))

Call next() to advance over the iterator
In Python 2 next() works the same (e.g. astring_iter.next())
In Python 3 __next__() works the same (e.g. astring_iter.__next__())

APPENDIX A ■ Python Basics

578

>>> next(astring_iter)
'c'
>>> next(astring_iter)
'o'
>>> next(astring_iter)
'f'
>>> next(astring_iter)
'f'
>>> next(astring_iter)
'e'
>>> next(astring_iter)
'e'
>>> next(astring_iter)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

Call next() to advance over the iterator
In Python 2 next() works the same (e.g. coffee_types.next())
In Python 3 __next__() works the same (e.g. coffee_types.__next__())
>>> next(coffee_types_iter)
'Cappuccino'
>>> next(coffee_types_iter)
'Latte'
>>> next(coffee_types_iter)
'Macchiato'
>>> next(coffee_types_iter)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

order_numbers = iter([1,2,3,4,5,6,7,8,9,10])
Get order number
next(order_numbers)
Do other stuff
next(order_numbers)
Do other stuff
next(order_numbers)

The first two lines in Listing A-18 declare a string and list. Next, you can see both values are wrapped
with the built-in Python function iter() that’s used to create an explicit iterator. To advance or walk through
an iterator, you use the Python built-in function next() on the iterator reference - or you can also use the
iterator’s next() method in Python 2 or the iterator’s __next__() method in Python 3. As you can see in
Listing A-18, each time next() is called on the iterator reference, it advances to the next item just like a for
loop, until it reaches the end and throws StopIteration when no more items are present.

Now that you’ve seen both implicit and explicit iterators, you might be left wondering what’s the point
of explicit iterators and calling next() to advance each time? The point is that explicit iterators give you the
opportunity to pause and get the next element whenever you want, whereas for loops with implicit iterators
just run through the elements uninterrupted.

APPENDIX A ■ Python Basics

579

This opportunity to pause and get the next element when you need a powerful feature is best illustrated
with the last example in Listing A-18. You can see at the end of Listing A-18 the order_numbers iterator is a
list of numbers. Next, a call is made to the next() method on the order_numbers iterator to fetch the next
item only when its needed, giving us the ability to continue doing other work in between fetching items.

As powerful a concept as pausing an iteration is, the last iterator example in Listing A-18 has some
flaws. First, it’s a long list of values that won’t scale for hundreds or thousands of items, which is problematic
both in terms of hard-coding the values, as well as keeping them in memory. In addition, using the iter()
method and declaring everything as a global iterator variable can lead to debugging and scoping issues. A
cleaner and more efficient solution to achieve the same result is to use a generator.

A generator is an iterator embodied as a function. In a standard function - like those described in the
past section - you call the function and it runs uninterrupted until it finds return or reaches the end and
returns None by default. In a generator function - which is simply called generators - you can integrate pauses
into a function so that each time it’s called, it’s a continuation of the previous call. In addition, generators
have the ability to generate values on-demand - which is how they get their name - so they’re much more
efficient when it comes to handling large data ranges.

Listing A-19 illustrates a series of generators and their critical piece, which is Python’s yield keyword.

Listing A-19.  Python generator behavior

def funky_order_numbers():
 yield 100
 yield 350
 yield 575
 yield 700
 yield 950

order_numbers = funky_order_numbers()
print(type(order_numbers))
Call next() to advance over the generator
In Python 2 next() works the same (e.g. order_numbers.next())
In Python 3 __next__() works the same (e.g. order_numbers.__next__())
>>> next(order_numbers)
100
...
...
>>> next(order_numbers)
950
>>> next(order_numbers)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

def generate_order_numbers(n):
 for i in range(1,n):
 yield i

regular_order_numbers = generate_order_numbers(100)
Call next() to advance over the generator
In Python 2 next() works the same (e.g. regular_order_numbers.next())
In Python 3 __next__() works the same (e.g. regular_order_numbers.__next__())

APPENDIX A ■ Python Basics

580

>>> next(regular_order_numbers)
1
...
...
>>> next(regular_order_numbers)
99
>>> next(regular_order_numbers)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

def generate_infinite_order_numbers(n):
 while True:
 n += 1
 yield n

infinite_order_numbers = generate_infinite_order_numbers(1000)

Call next() to advance over the generator
In Python 2 next() works the same (e.g. infinite_order_numbers.next())
In Python 3 __next__() works the same (e.g. infinite_order_numbers.__next__())
>>> next(infinite_order_numbers)
1001
...
...
next() never reaches end due to infinite 'while True:' statement

The first generator in Listing A-19 funky_order_numbers() is unconventional in trying to illustrate the
use of yield, which is a combination of return and stop behavior. Once you assign a generator to a reference,
you can start stepping through the generator with Python’s built-in function next() - or you can also use the
generator’s next() method in Python 2 or the generator’s __next__() method in Python 3.

The first time a next() call is made, the generator gets to yield 100, where it returns 100 and stops until
next() is called again. On the second next() call the generator gets to yield 350, it returns 350, and stops
until next() is called again. This process goes on until the last yield statement is reached and Python return
StopIteration - just like it does with iterators.

Using multiple yield statements and hard-coding values in a generator is rarely done, so the second
generator in Listing A-19 gives more justice to the name generator. The generator generate_order_
numbers(n) accepts an input number and then creates a loop from 1 to n, where each iteration returns yield
i, where i is the iteration number.

As you can see in Listing A-19, the first step is to assign the generator to a reference by initializing it with
a number. Once the assignment is made, you walk through the generator calling the next() method and
each time it returns the current counter until you reach the initialization number. An interesting behavior of
generators is they generate their return values on-demand, so in this case even if you initialize the generator
with a large number, say 10000000, the generator doesn’t create a 10000000 element list that takes up
memory, it generates and returns values as they’re needed.

The third generator in Listing A-19 generate_infinite_order_numbers() is designed to never end.
The generator generate_infinite_order_numbers(n) accepts an input number and then creates an infinite
loop to return yield n+i on each iteration. In the same way as the other generators, you call the next()
method on the reference and each time it returns a subsequent value. Because of the while True: statement
that represents an infinite loop, this generator never ends and thus never returns StopIteration.

APPENDIX A ■ Python Basics

581

List Comprehensions, Generator Expressions, Maps, and
Filters
List comprehensions offer a concise way to express Python operations that involve lists. Although you can
express the same logic using standard for loops and if/else conditionals, there’s a high probability you’ll
eventually encounter or use a list comprehension because of its compact nature. Listing A-20 illustrates a
series of list comprehensions, as well as their equivalent standard syntax representation.

Listing A-20.  Python list comprehensions

country_codes = ['us','ca','mx','fr','ru']
zipcodes = {90003:'Los Angeles',90802:'Long Beach',91501:'Burbank',92101:'San
Diego',92139:'San Diego',90071:'Los Angeles'}

Regular syntax
country_codes_upper_std = []
for country_code in country_codes:
 country_codes_upper_std.append(country_code.upper())

Equivalent ist comprehension
country_codes_upper_comp = [cc.upper() for cc in country_codes]

Regular syntax
zip_codes = []
for zipcode in zipcodes.keys():
 zip_codes.append(zipcode)

Equivalent ist comprehension
zip_codes_comp = [zc for zc in zipcodes.keys()]

Regular syntax
zip_codes_la = []
for zipcode,city in zipcodes.items():
 if city == "Los Angeles":
 zip_codes_la.append(zipcode)

Equivalent list comprehension
zip_codes_la_comp = [zc for zc,city in zipcodes.items() if city == "Los Angeles"]

Regular syntax
one_to_onehundred = []
for i in range(1,101):
 one_to_onehundred.append(i)

Equivalent list comprehension
one_to_onehundred_comp = [i for i in range(1,101)]

As you can see in Listing A-20, the syntax for list comprehensions is [<item_result> for item in
container <optional conditional>]. At first you’ll need some time to get accustomed to the syntax, but
eventually you’ll find yourself using it regularly because it takes less time to write than equivalent regular
code blocks.

APPENDIX A ■ Python Basics

582

The last example in Listing A-20 produces a list with the numbers 1 to 100, and it’s an interesting
example because it’s an inefficient approach for most cases that require a number series. In the past section,
you learned how generators can create on-demand sequences requiring little memory vs. ordinary lists that
require more memory to store data. While you could use the generator syntax from the previous section,
Python also has a shorthanded notation for generators named generator expressions, which is illustrated in
Listing A-21.

Listing A-21.  Python generator expressions

one_to_onehundred_genexpression = (i for i in range(1,101))
print(type(one_to_onehundred_genexpression))
one_to_onehundred_genexpression.next()
one_to_onehundred_genexpression.next()

first_fifty_even_numbers = (i for i in range(2, 101, 2))
first_fifty_even_numbers.next()
first_fifty_even_numbers.next()

first_fifty_odd_numbers = (i for i in range(1, 101, 2))
first_fifty_odd_numbers.next()
first_fifty_odd_numbers.next()

As you can see in Listing A-21, the syntax is almost identical to list comprehensions; the only difference
is generator expressions use parentheses () as delimiters, instead of brackets []. Once you create a
generator expression, you simply call the next() method on its reference to get the next element in the
generator.

As helpful as list comprehensions are at reducing the amount of written code, there are two other
Python constructs that operate like list comprehensions and are helpful for cutting down even more code or
for cases where the logic for list comprehensions is too complex to make them understandable.

The map() function can apply a function to all the elements of a container and the filter() function
produces a new container with elements that fit certain criteria. Listing A-22 presents some of the list
comprehension from Listing A-20 with the map() and filter() functions.

Listing A-22.  Python map() and filter() examples

country_codes = ['us','ca','mx','fr','ru']
zipcodes = {90003:'Los Angeles',90802:'Long Beach',91501:'Burbank',92101:'San
Diego',92139:'San Diego',90071:'Los Angeles'}

List comprehension
country_codes_upper_comp = [cc.upper() for cc in country_codes]

Helper function
def country_to_upper(name):
 return name.upper()

Map function
country_codes_upper_map = map(country_to_upper,country_codes)

List comprehension
zip_codes_la_comp = [zc for zc,city in zipcodes.items() if city == "Los Angeles"]

APPENDIX A ■ Python Basics

583

Helper function
def only_la(dict_item):
 if dict_item[1] == "Los Angeles":
 return True

Filter function
zip_codes_la_filter_dict_items = filter(only_la,zipcodes.items())
print(zip_codes_la_filter_dict_items)
zip_codes_la_filter = [tup[0] for tup in zip_codes_la_filter_dict_items]

As you can see in Listing A-22, the syntax for the map() function is map(<method_for_each_element>,
<container>). This technique helps keep a cleaner design, maintaining the logic in a separate method
and the invocation of said method on every element contained in the map() method itself. The map()
function produces the same type of input container, but with each of its elements altered by its first
argument or logic method.

The syntax for filter() is filter(<method_to_evaluate_each_element>,<container>). In Listing A-22
you can see the container is a dictionary and the only_la() helper function is used to evaluate each container
element and return True if the second tuple value (i.e., the dictionary value) is "Los Angeles."

Unlike the map() function that uses the results of its logic method, the filter() function only checks
for True or False values. If the logic method on a container element evaluates to True, the element becomes
part of the new container as is (i.e., in this case the dictionary item), if the logic method on a container
element evaluates to False then the element is discarded. Finally, in Listing A-22 you can see that because
the filter() function returns dictionary items, an additional list comprehension is made to get the desired
key values (i.e., zip codes) as a list.

Lambda Keyword for Anonymous Methods
Python uses the lambda keyword to define inline or anonymous methods. It's mostly used when you want
method behavior (e.g., input variables and scope protection) but want to avoid declaring a full-fledged
method with def because the logic is too simple; want to minimize written code; or want to keep the logic in
a single location.

Similar to list comprehensions that are not essential but are widely used to simplify iteration logic, the
lambda keyword is also not essential but is widely used to incorporate method-like behavior with a simpler
syntax. To get accustomed to the lambda keyword, when you see a statement like lambda x: <logic_on_x>
just make the mental transformation to def anon_method(x): <logic_on_x>.

Listing A-23 illustrates various lambda examples based on past examples.

Listing A-23.  Python lambda examples

country_codes = ['us','ca','mx','fr','ru']
zipcodes = {90003:'Los Angeles',90802:'Long Beach',91501:'Burbank',92101:'San
Diego',92139:'San Diego',90071:'Los Angeles'}

Map function with lambda
country_codes_upper_map = map(lambda x: x.upper(),country_codes)

Filter function with lambda
zip_codes_la_filter_lambda_dict_items = filter(lambda (zipcode,city): city == "Los
Angeles",zipcodes.items())
print(zip_codes_la_filter_lambda_dict_items)
zip_codes_la_filter = [tup[0] for tup in zip_codes_la_filter_lambda_dict_items]

585© Daniel Rubio 2017
D. Rubio, Beginning Django, https://doi.org/10.1007/978-1-4842-2787-9

�       � A, B
A/B testing techniques, 33
Accelerated Mobile Pages (AMP), 549
admin management

actions, links and positions, 527
get_absolute_url() method, 529
save_as (Clone) option, 528
save_on_top option, 528

admin.py file, 495
changelist_view() method, 542
CRUD permissions, 543
delete_view() method, 542
forms, 520

CharField field display, 526
fieldsets option, 524
fields option, 520
formfield_overrides option, 525
readonly_fields option, 522–523
wrapped fields, 521

global values, 536
models, 495
page layout, 538
read record options, 496

action menu, 514
admin_order_field and ordering, 502
date_hierarchy, 512
dual filter, 511
empty_value_display option, 501
format_html method, 500
inline edit and links, 503
list_display_links option, 504
list_display option, 498
list_editable option, 505
list page, 497
list_per_page option, 506
model __str__ definition, 497
pagination, 506
search option, 507

relationships, 529
admin_order_field option, 516
admin.RelatedOnlyFieldListFilter, 517

edit/delete model record, 520
filter_horizontal option, 530
filter_vertical option, 530
ForeignKey field, 516
horizontal radio_fields option, 532
inlines option, 533–535
list_display option, 515
ManyToManyField field, 516
model record creation, 519
radio_fields option, 531
raw_id_fields option, 533
RelatedOnlyFieldListFilter, 518
RelatedOnlyFieldListFilterDjango, 518
search_fields and list_filter, 517
select list, 531
StackedInline class, 535
TabularInline class, 534
vertical radio_fields option, 532

sites, 545
configuration and installation, 25
database CRUD, 25
doc home page, 28
home page, 27
interface, 26
login page, 26

static resources, 540
Application management

application
debugsqlshell, 206
manage.py shell, 204
pdb, 206
toolbar, 204

email (see Email service)
extensions

interactive console, 209
runserver_plus and runprofileserver, 208–209
SnakeViz cProfile image, 210

logging (see Logging option)
management commands

add_arguments() method, 213
automation, 215

Index

https://doi.org/10.1007/978-1-4842-2787-9

■ INDEX

586

call_command() method, 215
handle method, 212
installation, 214
manage.py, 211
parser.add_argument() method, 213
structure, 212

settings.py file, 163
ADMINS and MANAGERS, 165
ALLOWED_HOSTS definition, 164
configparser file, 170
control variable, 168
dynamic absolute paths, 166
DEBUG variable, 163
manage.py file, 172
SECRET_KEY value, 165
testing.py file, 172

static resources
development environment

(DEBUG=False), 173
Jinja templates, 178
production environment

(DEBUG=True), 178
STATICFILES_DIR definition, 174
{% static %} tag, 176

�       � C
Class-based views, 417

built-in classes, 69
CreateView class, 68, 418
DeleteView, 436
DetailView, 426, 431
fields and methods, 420

classes, 420
form_valid() and form_invalid(), 423
get() and post() methods, 424
get_context_data() method, 421
get_form() method, 422
initial and get_initial(), 422
model and form_class, 420
success_url fields, 420
template_name and content_type, 421

get and post method, 71
ListView (see ListView method)
mixins, 438
RedirectView class, 72
reverse_lazy method, 419
reverse() method, 419
structure and execution, 69
TemplateView class, 69
UpateView, 433

Context processors, 87
context processors method, 90
django.contrib.auth.context_processors.auth, 88

django.contrib.messages.context_processors.
messages, 89

django.template.context_processors.csrf, 90
django.template.context_processors.debug, 88
django.template.context_processors.i18n, 89
django.template.context_processors.media, 89
django.template.context_processors.request, 88
django.template.context_processors.static, 89
django.template.context_processors.tz, 90

Create-Read-Update-Delete (CRUD)
create() function, 341
delete() method, 347–348
get() method, 343, 345
get_or_create() method, 344
multiple records

all(), filter(), exclude()/in_bulk()
method, 351

bulk_create() method, 349
caching behavior, 355
defer() and only() methods, 356–357
delete() method, 361
in_bulk() method, 352
iterator(), exists() and none() method, 358
lazy evaluation, 353
QuerySet, 353
save() method, 350
select_for_update() method, 360
update() method, 359
values() and values_list() methods, 357
values_list() methods, 358

operations, 25
refresh_from_db() method, 347
relationship records, 361

many to many operations, 365
one to many operations, 361
OneToOneField query, 367
one to one operations, 367
prefetch_related() method, 369
selected_related() method, 368
select_related() method, 369

save() method, 341, 345
single records, 341
update() method, 346
update_or_create() method, 346

Cross Site Request Forgeries (CSRF)
context processor, 90
cyber-criminals, 222

cycler() function, 121

�       � D
Database Definition Language (DDL), 294
DeleteView class

delete record, 436
fields and methods, 437

Application management (cont.)

■ INDEX

587

pk parameter, 437
success_url option, 437

DetailView class, 431
pk parameter, 431
pk_url_kwarg field, 432
slug_field option, 432
slug_url_kwarg option, 433

Django project
address and port, 15
connection and build base tables, 18
database

connection parameters, 17
development libraries, 18
dictionary, 16
ENGINE value, 16
settting.py file, 15

development web server, 14
django-admin/django-admin.py script, 13
home page, 15
manage.py file, 13–14
Python database packages, 18
startproject subcommand, 13
structure, 13

Django Software Foundation (DSF), 1
Don’t Repeat Yourself (DRY), 2

�       � E
Email service

connections, 193
EmailMessage class

CC and BCC option, 200
EmailMultiAlternatives class, 201
HTML emails, 202
open() method, 201
parameters and methods, 199
PDF attachment, 203
send() method, 200

server configurations, 193
third-party email providers, 194

Amazon SES, 196
Exim, Postfix/Sendmail, 195
Google Gmail/Google apps, 195
helpers, 197
shortcut methods, 197
SparkPost, 196

�       � F, G
Forms

class and model form, 404
class-based views (see Class-based views)
ContactForm class, 404
fields and widgets

configuration options, 260
custom form widgets, 258

customization, 255
FORM_RENDERER values, 260
forms.ChoiceField, 256
widgets, 257

field types
built-in form fields, 245
CharField() method, 246
choices attribute, 246
error_messages, 247
help_text, 248
initial argument, 246
layout values, 248
max_length and min_length, 246
number values, 247
relationship (widgets and fields), 245
required argument, 246
strip, and validators, 246
widget and validation, 235

formsets
DrinkFormSet() method, 269
formset_factory() method, 270
initization, 268
management and processing form, 270
template layout, 268
tools package, 274
validation and errors, 272

layouts
class definition, 248
error_css_class and required_css_class, 253
field attributes, 250
field_order and order_fields, 252
{% for %} loop, 251
form.as_p, 249
form.as_table, 249
form.as_ul, 249
form.errors and form.non_field_errors, 255
form.<field_name>.errors, 254

ModelChoiceField option, 410
ModelMultipleChoiceField option, 410
modelformset_factory() method, 416
options and field mapping, 405

data type mapping, 407
fields/exclude, 405
new and custom fields, 408

processing, 405
add_error(), 233
AJAX form submission, 263
automatic ids, 228
clean_<field>() methods, 232
clean() method, 232
ContactForm() method, 225
errors, 234
field_order, 229
files, 265
__init__ method, 227
initial argument, 225

■ INDEX

588

__init__ method, 226
is_valid() method, 230
partial forms, 261
request.POST and cleaned_data, 229
super() method, 227
ValidationError, 235
validators option, 231
view method, 224

processing model forms
initialization, 413
is_valid() method, 416
validation, 414

relationships, 410
save() method, 405
structure and workflow, 403

class definition, 217
ContactForm form class, 218
CSRF, 222
forms workflow, 219
functional syntax, 219
HTML, 218
process form (POST handling), 220
view method, 218

Framework core, 1
design principles, 2
Django project (see Django project)
Don’t Repeat Yourself (DRY), 2
explicit better than implicit, 4
installation options

Django, 11
Git, 11
interactive session, 7
pip package manager, 7
pros and cons, 6
Python (prerequisite), 6
virtualenv, 8

loosely coupled architecture, 5
urls, templates and apps, 19

apps creation and configuration, 22
definition, 19
templates creation and configuration, 21
urls creation and configuration, 20
workflow, 20

�       � H, I
Handler view method, 23

�       � J, K
JavaScript Object Notation (JSON), 51
Jinja templates

advantages, 117
comments, 119

comparison
{% comment %} tag, 120
context processors, 120
csrf_input/csrf_token variables, 120
{% cycle %} tag, 121
{% else %} tag, 121
filters, 119
{% for %} loops, 121
{% for %} loop variables, 120
groupby filter, 121
lipsum function, 121
{% load %} tag, 120
{% lorem %} tag, 121
miscellaneous tags, 121
{{super()}} instead of {{block.super}}, 120
time and timesince, 120

concepts and features
built-in filters and tests, 121
conditionals and references, 122
global functions, 122
line statements, 122
macros, 122
nesting tags, 122
variable assignment, 122

conditionals and loops, 119
configuration

auto-escaping behavior, 125
auto-reload template, 126
byte-code caching, 126
invalid variables, 127
loaders, 128
search paths, 123
settings.py file, 123

context processors, 134
disadvantages, 118
extensions

configuration, 159
creation, 159
description and technical

name, 158
filters and tests, 146

backing method, 155
development and testing, 155
dictionaries and objects, 146, 149
format/transform values, 146
installation and access, 156
numbers, 151
spacing and special characters, 152
strings, 151
strings and lists, 147
strings, lists, numbers and objects, 146
structure, 155
Urls, 155

globals, 134
policies, 161

Forms (cont.)

■ INDEX

589

reusable templates
{% block %} tags, 129
{% block title %} tag, 129
{% call %} and {% macro %} tag, 131
caller() method, 132
{% extends %} tag, 129
footer.html template, 130
{% import %}, 130
{% macro %} tag, 130
recursive calls, 132
{% set %} statement, 134
super() method, 130

spacing and special characters, 119
statements/tags and functions, 135

comparison operations, 136
joiner function, 140
loops, 137
Python and filter operations, 141
spacing and special characters, 142
template structures, 145
trim_blocks and lstrip_blocks set, 144

variables and blocks, 119

�       � L
lipsum function, 145
ListView method

context_object_name, 429
fields and methods, 428
model field, 429
pagination, 430
queryset and ordering fields, 429

Logging option
cofiguation option

disable_existing_loggers, 186
email_ADMINS, 189
formatter fields, 187
handlers, 188
loggers, 189
sentry, 190

configuration, 180, 185
core concepts, 180
getLogger method, 183
log messages creation, 183

Long-term release (LTS), 6
loop.cycle function, 121

�       � M
modelormset_factory() method, 416
Model queries and managers, 341

aggregation function
count() method, 384
database functions, 389
expression and function, 387

F() expression, 388
Func() expressions, 389
Max(), Min(), Sum() and Avg() classes, 386
select_related() method, 392
subqueries, 390
Variance() and StdDev() classes, 386

CRUD (see Create-Read-Update-Delete (CRUD))
managers

get_queryset() method, 399
multiple models, 397
QuerySet classes, 398
reverse model managers, 401

merge queries
difference() method, 383–384
intersection() method, 383
itertools.chain, 382
queryset data structures, 381
union() method, 382

raw (open-ended), 392
fetchall() method, 396
Python’s DB API, 395
raw() method, 393

WHERE queries, 370
AND queries, 372
date and time, 375
dates() and datetimes() methods, 378
DISTINCT keyword, 377
=/EQUAL and !=/NOT EQUAL queries, 371
exclude() method, 372
extra() method, 377
first() and last() methods, 381
IN statement, 373
IS and IS NOT statements, 373
latest() and earliest() methods, 381
LIKE and ILIKE, 374
LIMIT and OFFSET statement, 380
order_by() method, 379
OR (Q() objects), 372
reverse() method, 380

Models
clean_fields() method, 300
clean() method, 301
clean_unique() method, 301–302
custom methods, 304
database tasks

backup data, 324
dbshell, 325
delete data, 324
dumpdata and loaddata commands, 324

data loading methods, 303
data types

auto_now and auto_now_add options, 290
blank and null field options, 289
choices option, 292
database, 281

■ INDEX

590

DDL values, 294
default option, 290
form Values, 293
help_text option, 293
Oracle database, 287
unique values, 293
validators, 295
values, 287

delete() method, 299
DRY principle, 275
from_db() method, 303
get_deferred_fields() method, 303
initial data set-up

data loading process, 325
fixture file, 328
hard-code predefined records, 325
SQL script and statements, 326

meta class and options
abstract option, 308
db_tablespace option, 306
default_permissions, 310
index options, 306
inheritance Meta options, 308
latest() and earliest() methods, 309
naming convention options, 307
ordering option, 309
ordering option, 305
permissions, 310
query options, 309
table options, 305
unique_together option, 306

migration files
creation, 319
makemigrations command, 279–280
manage.py command, 319
meaning, 275
migrate command, 280
models.py files, 276
rename, 320
rollback, 323
sqlmigrate command, 279
squash, 321
structure, 322
workflow, 275, 277

models.py files
assignment, 336
custom folders, 335
folder, 334

object field, 304
refresh_from_db() method, 303
relationships

database options, 316
data integrity options, 313
limit_choices_to, 316

many to many, 311
on_delete option, 313
one to many, 311
one to one, 312
reference options, 314
reverse option, 314
self-referencing model, 314
swappable option, 316

save() method, 296
settings.py

--database, 337
DATABASE_ROUTERS methods, 337–340
databases definitions, 336
keyword, 337

signals, 329
built-in function, 330
configuration options, 332
emit custom signals, 333
ready() method, 332
straightforward syntax, 330

transactions, 317
atomic() and on_commit(), 318
ATOMIC_REQUESTS option, 317
AUTOCOMMIT option, 317
decorators, 317

validation methods, 299
Model-View-Controller (MVC), 1

�       � N, O
Non-relational databases (NoSQL), 1

�       � P, Q
Public Broadcasting System (PBS), 1
Python, 567

backslash escape character, 570
classes and subclasses, 574
decode() method, 568
encode() method, 569
enumerate() method, 577
explicit iterators, 577
generator, 579
generator expressions, 582
implicit iterator behavior, 576
implicit iterators, 577
iterator, 577
lambda keyword, 583
list comprehensions, 581
literal unicode and strings, 567
loops, 576
map() and filter() functions, 582
methods arguments, 571

address_full() method, 574
address_with_default method, 572

Models (cont.)

■ INDEX

591

keyword argument, 573
method definition and call syntax, 572
positional argument, 573
positional arguments, 572
standard and positional argument, 573

next() method, 579–580
raw strings, 570
regular expressions, 571
unicode and string, 570
UnicodeEncodeError error, 568

Python Debugger (pdb), 206
Python Enhancement Proposals (PEP), 4

�       � R
Representational state transfer (REST), 549

class-based views, 558
framework, 554
main service response, 557
mixins and generic class-based views, 559
post() method, 559
security, 562

access denied page, 565
login page, 565
@permission_classes decorator, 564
services permissions, 562
settings.py file, 563
url declaration, 565

serialization and views, 555
sets and routers, 560
standard view method designed

parameters and output formats, 551
query parameters, 551
render() method, 550
response handling, 550
serialization, 550
serviceXML output, 552
url and view method, 550
XML output, 553

tastypie framework, 554

�       � S
Search Engine Optimization (SEO), 33
Sentry

application, 192
configuration to communicate, 192
logging handler, 192
SaaS project dashboard, 191
software-as-service, 190
steps, 190

Simple Email Service (SES), 196
Social authentication, 478

create/edit page, 480
Facebook

domain requests, 484
list page, 480–481
login page, 485
main page, 483
pop-up, 481, 485
settings.py file, 484
test application, 482

Google, 486
Client ID and Client Secret, 490
client ID page creation, 489
main page, 487
Oauth client ID option, 488
OAuth consent screen, 489
project page, 487
settings.py, 490
social authorization page, 491

list page, 479
set up, 478
Twitter, 491

app key and access tokens page, 492
app page creation, 492
email request, 494
page creation, 493

SparkPost, 196

�       � T
Templates

auto-escapes, 74
configuration

auto-escapes, 81
debug Output, 80
DIRS definition, 77
error generation, 79
error page, 80
file charset, 82
InvalidTemplateVariable class, 79
loaders, 84
output warning message, 78
search paths, 76
settings.py, 75
tag/filter modules, 83

context processors (see Context processors)
filters, 91, 110

dates, 91
development and testing, 100
installation and access, 114
lists and dictionaries, 98
naming and HTML option, 112
numbers, 95
spacing and special characters, 99
strings, 96
strings, lists and numbers, 94
structure, 110
urls, 101

■ INDEX

592

reusable creation, 85
syntax elements, 73
tags

comparison operations, 102
comparison operators, 104
dates, 102
development and testing, 110
forms, 102
loops, 104
python and filter operations, 107
spacing and special characters, 108
template structures, 109
urls, 110

�       � U
Uniform resource locators (Urls)

consolidation, 38
exact patterns, 32
extra options, 36
filters, 101

urlencode filter, 155
urlize filter, 155

modularization, 40
naming and namespaces

app_name attribute, 44–46
definitions, 42
multiple instances, 44
name attribute, 40
namespace attribute, 42
namespace attribute, 43
reverse method, 45
substitution process, 41
template link, 46
urls.py, 42

parameters, 35–37
precedence rule, 31
query string, 38
regular expressions, 31
regular expression syntax, 33
request.GET, 38
urls.py file, 36
view method, 36–37

UpateView class, 433
fields and methods, 435
form_class option, 435
pk parameter, 435
success_url option, 434

User management
admin site home page, 444
allauth, 471

email management, 476
installation, 471
models and database tables, 477

reset and change email, 475
settings.py configuration, 472
superuser, 473
templates, 477
urls.py configuration, 472
user signup, 475

authentication and auto-management, 462
back ends, 469
django.contrib.auth urls, 462
login and logout workflow, 463
password change workflow, 464
password reset workflow, 464
user model fields, 467
user signup workflow, 465

creation, 442
delete group, 452
groups links, 450
manage users, 445
password, 450
permission checks and enforcement

add, change, delete and custom, 453
class-based view, 460
default_permissions and

permissions, 454
include() method, 458
@permission_required, 456
superuser, staff and active, 453
templates, 459
URL, 458
@user_passes_test, 456
view method, 455

social authentication (see Social authentication)
subtypes, 441
superuser, 442
user, group and permission, 442
users list, 444

�       � V
View method

class-based views (see Class-based views)
dictionary values, 48
flash messages

access, 67
Boilerplate code, 67
built-in message levels, 64
get_messages() method, 68
settings.py, 65
storage.base.Message structure, 67
techniques, 65
web page, 64

middleware, 57
classes and functionalities, 58
class structure, 60
execution process, 63

Templates (cont.)

■ INDEX

593

requests, 47
responses

Context() class, 50
HttpResponse method, 56
HTTP status and content-type headers, 50–52
inline and streaming content, 55
render() method, 49–50
shortcuts, 55
shortcuts and templates, 51
TemplateResponse() class, 50

virtualenv
activate and deactivate option, 10
directory structure, 9
pip installation, 8

share directory, 10
virtual Python environment, 9

�       � W
wordwrap filter, 153

�       � X, Y
xmlattr filter, 154

�       � Z
Zen of Python, 4

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to the Django Framework
	Django Framework Design Principles
	Don’t Repeat Yourself (DRY) Principle
	Explicit Is Better Than Implicit
	Loosely Coupled Architecture

	Install Django
	Install Python (Prerequisite)
	Update or Install pip Package Manager (Prerequisite)
	Install virtualenv (Optional Prerequisite)
	Install Django
	Install Django from Git

	Start a Django Project
	Set Up a Database for a Django Project
	Install Python Database Packages
	Test Django Database Connection and Build Django Base Tables

	Set Up Content: Understand Urls, Templates, and Apps
	Create and Configure Django Urls
	Create and Configure Django Templates
	Create and Configure Django Apps

	Set Up the Django admin Site
	Configure and Install the Django admin site App
	Configure and Install the Django admin site docs App

	Chapter 2: Django Urls and Views
	Url Regular Expressions
	Precedence Rule: Granular Urls First, Broad Urls Last
	Exact Url Patterns: Forgoing Broad Matching
	Common Url Patterns

	Url Parameters, Extra Options, and Query Strings
	Url Consolidation and Modularization
	Url Naming and Namespaces
	View Method Requests
	View Method Responses
	Response Options for HTTP Status and Content-Type Headers
	Built-In Response Shortcuts and Templates for Common HTTP Status: 404 (Not Found), 500 (Internal Server Error), 400 (Bad Request), and 403 (Forbidden)
	Built-In Response Shortcuts for Inline and Streamed Content

	View Method Middleware
	Built-In Middleware Classes
	Middleware Structure and Execution Process

	Middleware Flash Messages in View Methods
	Add Flash Messages
	Access Flash Messages

	Class-Based Views
	Built-In Class-Based Views
	Class-Based View Structure and Execution

	Chapter 3: Django Templates
	Django Template Syntax
	Auto-Escaping: HTML and Erring on the Safe Side

	Django Template Configuration
	Template Search Paths
	Invalid Template Variables
	Debug Output
	Auto-Escape
	File charset
	Automatic Access to Custom Template tag/filter Modules
	Template Loaders

	Create Reusable Templates
	Built-In Context Processors
	Django debug context processor (django.template.context_processors.debug)
	Django request context processor (django.template.context_processors.request)
	Django auth context processor (django.contrib.auth.context_processors.auth)
	Django messages context processor (django.contrib.messages.context_processors.messages)
	Other Built-In Django Context Processors: i18n, media, static, tz, and CSRF context Processors
	Django i18n context processor (django.template.context_processors.i18n)
	Django media context processor (django.template.context_processors.media)
	Django static context processor (django.template.context_processors.static)
	Django tz context processor (django.template.context_processors.tz)
	Django CSRF context Processor (django.template.context_processors.csrf)

	Custom Context Processors
	Built-In Django Filters
	Dates
	Strings, Lists, and Numbers
	Numbers
	Strings
	Lists and Dictionaries
	Spacing and Special Characters
	Development and Testing
	Urls

	Built-In Django Tags
	Dates
	Forms
	Comparison Operations
	Loops
	Python and Filter Operations
	Spacing and Special Characters
	Template Structures
	Development and Testing
	Urls

	Custom Filters
	Structure
	Options: Naming, HTML, and What Comes In and Out
	Installation and Access

	Chapter 4: Jinja Templates in Django
	Jinja Advantages and Disadvantages
	Transition to Jinja Templates from Django Templates
	What Works the Same Way in Jinja and Django Templates
	Variables and blocks
	Conditionals and loops
	Comments
	Spacing and special characters

	What Works Differently in Jinja Templates Compared to Django Templates
	Filters
	Context processors
	No date elements like the {% now %} tag and filters like time and timesince
	{% comment %} tag not supported
	{% load %} tag not supported
	Use {{super()}} instead of {{block.super}}
	{% csrf_token %} tag not supported, instead use csrf_input or csrf_token variables
	{% for %} loop variables
	{% empty %} tag not supported in loops, use the {% else %} tag
	{% groupby %} tag not supported, use the groupby filter
	{% cycle %} tag not supported, use the cycler function or the loop.cycle variable in {% for %} loops
	{% lorem %} tag not supported, use the lipsum Function
	Other miscellaneous tags like {% static %}, {% trans %}, {% blocktrans %}, and {% url %} not supported

	New Concepts and Features in Jinja Templates vs. Django Templates
	More useful built-in filters, tests, and more resemblance to a Python environment
	Global functions
	Flexible tag nesting, conditionals, and references
	Macros
	Flexible variable assignment in templates with less restrictive scope
	Line statements

	Jinja Template Configuration in Django
	Template Search Paths
	Auto-Escaping Behavior
	Auto-Reload Template Behavior and Caching
	Invalid Template Variables
	Template Loaders

	Create Reusable Jinja Templates
	Jinja Globals: Access Data on All Jinja Templates, Like Django Context Processors
	Jinja Built-In Statements/Tags and Functions (Like Django Template Tags)
	Comparison Operations
	Loops
	Python and Filter Operations
	Spacing and Special Characters
	Template Structures

	Jinja Built-In Filters and Tests (Like Django Filters)
	Strings, Lists, Dictionaries, Numbers, and Objects
	Strings and Lists
	Dictionaries and Objects
	Strings
	Numbers
	Spacing and Special Characters
	Development and Testing
	Urls

	Custom Filters and Tests in Jinja
	Structure
	Installation and Access

	Jinja Extensions
	Enable Jinja Extensions
	Create Jinja Extensions

	Jinja Policies

	Chapter 5: Django Application Management
	Django settings.py for the Real World
	Switch DEBUG to False
	Define ALLOWED_HOSTS
	Be Careful with the SECRET_KEY Value
	Define Administrators for ADMINS and MANAGERS
	Use Dynamic Absolute Paths
	Use Multiple Environments or Configuration Files for Django
	Option 1) Multiple environments in the same settings.py file with a control variable
	Option 2) Multiple environment files using configparser
	Option 3) Multiple settings.py files with different names for each environment

	Set Up Static Web Page Resources - Images, CSS, JavaScript
	Set Up Static Resources in a Development Environment (DEBUG=False)
	Access Static Resources in Django Templates
	Access Static Resources in Jinja Templates
	Set Up Static Resources in a Production Environment (DEBUG=True)

	Django Logging
	Python Core Logging Concepts
	Django Default Logging
	Create Log Messages
	Custom Logging
	Disable default Django logging configuration
	Logging formatters: Message output
	Logging handlers: Locations, classes, filters, and logging thresholds
	Logging loggers: Python packages to use logging
	Disable email to ADMINS on errors

	Logging with Sentry
	Set up Sentry the application
	Set up a Django application to use Sentry

	Django Email Service
	Set Up a Default Connection to an Email Server
	Set Up a Default Connection to Third-Party Email Providers
	Email with Google Gmail/Google Apps
	Email with Amazon Simple Email Service (SES)
	Email with SparkPost

	Built-In Helpers to Send Email
	Custom Email: Attachments, Headers, CC, BCC, and More with EmailMessage

	Debug Django Applications
	Django Shell: Python manage.py Shell
	Django Debug Toolbar
	Django pdb
	Django Extensions

	Django Management Commands
	Custom Management Command Structure
	Custom Management Command Installation
	Management Command Automation

	Chapter 6: Django Forms
	Django Form Structure and Workflow
	Functional Web Form Syntax for Django Forms
	Django View Method to Process Form (POST Handling)
	CSRF: What Is It and How Does It Work with Django?

	Django Form Processing: Initialization, Field Access, Validation, and Error Handling
	Initialize Forms: Initial for Fields and Forms, __init__ method, label_suffix, auto_id, field_order, and use_required_attribute
	Accessing Form Values: request.POST and cleaned_data
	Validating Form Values: is_valid(), validators, clean_<field>(), and clean()
	Error Form Values: Errors

	Django Form Field Types: Widgets, Options, and Validations
	The Relationship between Widgets and Form Fields
	Empty, Default, and Predetermined Values: Required, Initial, and Choices
	Limiting Text Values: max_length, min_length, strip, and Validators
	Limiting Number Values: max_value, min_value, max_digits, decimal_places, and Validators
	Error Messages: error_messages
	Field Layout Values: label, label_suffix, help_text

	Set Up the Layout for Django Forms in Templates
	Output Form Fields: form.as_table, form.as_p, form.as_ul, and Granularly by Field
	Output Field Order: field_order and order_fields
	Output CSS Classes, Styles, and Field Attributes: error_css_class, required_css_class, Widget, Customization, and Various Form Field Options
	Output Form Field Errors: form.<field_name>.errors, form.errors, form.non_field_errors

	Django Custom Form Fields and Widgets
	Create Custom Form Fields
	Customize Built-In Widgets
	Create Custom Form Widgets
	Custom Form Widget Configuration Options

	Django Advanced Form Processing: Partial Forms, AJAX, and Files
	Partial Forms
	AJAX Form Submission
	Files in Forms

	Django Formsets
	Formset Factory
	Formset Management Form and Formset Processing
	Formset Custom Validation and Formset Errors

	Chapter 7: Django Models
	Django Models and the Migrations Workflow
	Create Django Models
	Migrations and the Django Model Workflow

	Django Model Data Types
	Limiting Values: max_length, min_value, max_value, max_digits, and decimal_places
	Empty, Null and Not Null Values: Blank and Null
	Predetermined Values: default, auto_now, auto_now_add, and choices
	Unique values: unique, unique_for_date, unique_for_month and unique_for_year
	Form Values: Editable, help_text, verbose_name, and error_messages
	Database Definition Language (DDL) Values: db_column, db_index, db_tablespace, primary_key
	Built-In and Custom Validators: Validators

	Django Model Default and Custom Behaviors
	Model Methods
	save() method
	delete() method
	Validation methods: clean_fields(), clean(), validate_unique() and full_clean()
	Data loading methods: Refresh_from_db(), from_db(), and get_deferred_fields() methods
	Custom methods

	Model Manager Field: Objects
	Model Meta Class and Options
	Database Definition Language (DDL) table options: db_table, db_tablespace, managed, required_db_vendor, required_db_features and unique_together
	Database Definition Language (DDL) index options: Indexes and index_together
	Naming convention options: verbose_name, verbose_name_plural, label, label_lower, and app_label
	Inheritance Meta options: Abstract and proxy
	Query Meta options: Ordering, order_with_respect_to, get_latest_by, default_manager_name, base_manager_name, default_related_name, and select_on_save
	Permission Meta options: default_permissions and permissions

	Relationships in Django Models
	One to Many Relationships in Django Models
	Many to Many Relationships in Django Models
	One to One Relationships in Django Models
	Options for Relationship Model Data Types
	Data integrity options: on_delete
	Reference options: Self, literal strings, and parent_link
	Reverse relationships: related_name, related_query_name, and symmetrical
	Database options: to_field, db_constraint, swappable, through, through_fields, and db_table
	Form values: limit_choices_to

	Django Model Transactions
	Transaction per Request: ATOMIC_REQUESTS and Decorators
	Context Manager and Callbacks: atomic() and on_commit()

	Django Model Migrations
	Migration File Creation
	Migration File Renaming
	Migration File Squashing
	Migration File Structure
	Migration File Rollback

	Django Model Database Tasks
	Backup Data: Fixtures, dumpdata, loaddata, and inspectdb
	Delete Data: Flush, sqlflush, and sqlsequencereset
	Interact with Data: dbshell

	Django Model Initial Data Setup
	Hard-code predefined records in Python migration file
	SQL script with SQL statements
	Django fixture file

	Django Model Signals
	Built-In Django Model Signals
	Listen for Django Model Signals
	Emit Custom Signals in Django Model Signals

	Django Models Outside of models.py
	Django Models Inside Apps in the Models Folder
	Django Models Inside Apps in Custom Folders
	Django Models Outside Apps and Model Assignment to Other Apps

	Django Models and Multiple Databases
	Multiple Databases for Django Models: using
	Multiple Databases for Django Tools: --database
	Multiple Database Routers: DATABASE_ROUTERS setting

	Chapter 8: Django Model Queries and Managers
	CRUD Single Records in Django Models
	Create a Single Record with save() or create()
	Read a Single Record with get() or get_or_create()
	Update a Single Record with save(), update(), update_or_create(), or refresh_from_db()
	Delete a Single Record with delete()

	CRUD Multiple Records in Django Models
	Create Multiple Records with bulk_create()
	Read Multiple Records with all(), filter(), exclude(), or in_bulk()
	Understanding a QuerySet: Lazy Evaluation and Caching
	Read Performance Methods: defer(), only(), values(), values_list(), iterator(), exists(), and none()
	Update Multiple Records with update() or select_for_update()
	Delete Multiple Records with delete()

	CRUD Relationship Records Across Django Models
	One to Many CRUD Operations
	Many to Many CRUD Operations
	One to One CRUD Operations
	Read Performance Relationship Methods: select_related() and prefetch_related()

	Model Queries by SQL Keyword
	WHERE Queries: Django Field Lookups
	=/EQUAL and !=/NOT EQUAL queries: exact, iexact
	AND queries
	OR queries: Q() objects
	IS and IS NOT queries: isnull
	IN queries: in
	LIKE and ILIKE queries: contains, icontains, startswith, istartswith, endswith, iendswith
	REGEXP queries: regex, iregex
	>/GREATER THAN and </LESS THAN queries: gt, gte, lt, lte
	Date and time queries: Range, date, year, month, day, week, week_day, time, hour, minute, second

	DISTINCT Queries
	Dates and times queries: dates() and datetimes()

	ORDER Queries: order_by() and reverse()
	LIMIT Queries
	LIMIT and OFFSET queries: Python slice syntax
	Pseudo LIMIT 1 order queries: first() and last()
	Pseudo LIMIT 1 date and time queries: latest() and earliest()

	Merge Queries
	QuerySet merger: Pipe and itertools.chain
	UNION queries: union()
	INTERSECT queries: intersection()
	EXCEPT queries: difference()

	Aggregation Queries
	COUNT queries: count() method and Count() class
	MAX, MIN, SUM, AVG, VARIANCE and STDDEV queries: Max(), Min(), Sum(), Avg(), Variance(), and StdDev() classes

	Expression and Function Queries
	SQL expression queries: F expressions
	SQL function queries: Func expressions and Django database functions
	SQL subqueries: Subquery expressions

	Model Queries with Raw (Open-Ended) SQL
	SQL Queries with a Model Manager’s raw() Method
	SQL Queries with Python’s DB API

	Model Managers
	Custom and Multiple Model Managers
	Custom Model Managers and QuerySet Classes with Methods
	Custom Reverse Model Managers for Related Models

	Chapter 9: Django Model Forms and Class Views
	Django Model Form Structure and Workflow
	Create Django Model Forms
	Django Model Form Options and Field Mapping
	Model Form Required Options: Model and Fields or Exclude
	Model Form Default Field Mapping
	Model Form New and Custom Fields: Widgets, Labels, help_texts, error_messages, field_classes, and localize_fields

	Django Model Forms with Relationships
	ModelChoiceField and ModelMultipleChoiceField Form Field Options: queryset, empty_label, to_field_name, and label_from_instance

	Django Model Form Processing
	Model Form Initialization: Initial and Instance
	Model Form Validation

	Django Model Formsets
	Model Formset Factory

	Class-Based Views with Models
	Create Model Records with the Class-Based View CreateView
	CreateView Fields and Methods
	Basic CreateView options: Model, form_class, and success_url fields
	Customize template name, MIME type and context: template_name and content_type fields and get_context_data() method
	Customize form initialization and validation: Initial field, get_initial(), get_form(), form_valid(), and form_invalid() methods
	Customize view method workflow: get() and post() methods

	Read Model Records with the Class-Based Views ListView and DetailView
	ListView Fields and Methods
	Basic ListView option: Model field
	Customize template context reference name: context_object_name
	Customize record list: Queryset and ordering fields and pagination behavior

	DetailView Fields and Methods
	Basic DetailView options: Model field and url with pk parameter
	Customize url and query parameters: pk_url_kwarg, slug_field and slug_url_kwarg

	Update Model Records with the Class-Based View UpateView
	UpdateView Fields and Methods
	Basic UpdateView options: Model, form_class and success_url fields, and url with pk parameter

	Delete Records with the Class-Bases View DeleteView
	DeleteView Fields and Methods
	Basic DeleteView options: Model and success_url fields and url with pk parameter

	Class-Based Views with Mixins

	Chapter 10: Django User Management
	Introduction to the Django User System
	User Types, Subtypes, Groups, and Permissions
	Create Users
	Manage Users
	Create and Manage Groups

	Permission Types
	User Permissions: Superuser, Staff, and Active
	Model Permissions: Add, Change, Delete, and Custom
	Model Meta permission options: default_permissions and permissions

	Permission Checks and Enforcement
	View Method Permission Checks
	URL Permission Checks
	Template Permission Checks
	Class-Based View Permission Checks

	User Authentication and Auto-Management
	Login and Logout Workflow
	Password Change Workflow
	Password Reset Workflow
	User Signup Workflow

	Custom User Model Fields
	Custom Authentication Back Ends
	User Management with Django allauth
	Install and Set Up django-allauth
	First Log In and Log Out with Superuser in Django allauth
	User Signup with Django allauth
	Password Reset and Change with Django allauth
	Add and Change User Email with Django allauth
	Change Templates for Django allauth
	Models and Database Tables Behind Django allauth

	Social Authentication with Django allauth
	Set Up Django allauth for Different Social Providers
	Set Up Facebook with Django allauth
	Set Up Google with Django allauth
	Set Up Twitter with Django allauth

	Chapter 11: Django admin Management
	Set Up Django Models in the Django admin
	Django admin Read Record Options
	Record Display: list_display, format_html, empty_value_display
	Record Order: admin_order_field and ordering
	Record Links and Inline Edit: list_display_links and list_editable
	Record Pagination: list_per_page, list_max_show_all, paginator
	Record Search: search_fields, list_filter, show_full_result_count, preserve_filters
	Record Dates: date_hierarchy
	Record Actions: actions_on_top, actions_on_bottom, actions
	Record Relationships
	Display: list_display (continued)
	Order: admin_order_field (continued)
	Search: search_fields and list_filter (continued), admin.RelatedOnly FieldListFilter, list_select_related

	Django admin Create, Update, Delete Record Options
	Record Forms: fields, readonly_fields, exclude, fieldsets, formfield_overrides, form, prepopulated_fields
	Actions, Links, and Positions: save_on_top, save_as(Clone records), save_as_continue and view_on_site
	Relationships: filter_horizontal, filter_vertical, radio_fields, raw_id_fields, inlines

	Django admin Custom Page Layout, Data, and Behaviors
	Django admin Custom Global Values for Default Templates
	Django admin Custom Page Layout with Custom Templates
	Django admin Custom Static Resources
	Django admin Custom Data and Behaviors with admin Class Fields and Methods

	Django admin CRUD Permissions
	Multiple Django admin Sites

	Chapter 12: REST Services with Django
	REST Services in Django
	Standard View Method Designed as REST Service
	Django REST Framework3
	Django Tastypie Framework4

	Django REST Framework Concepts and Introduction
	Serializers and Views
	Class-Based Views
	Mixins and Generic Class-Based Views
	View Sets and Routers

	Django REST Framework Security
	Set Up REST Framework Services Permissions
	Set Up REST Framework Login Page

	Appendix A: Python Basics
	Strings, Unicode, and Other Annoying Text Behaviors
	Methods Arguments: Default, optional, *args, and **kwargs
	Classes and Subclasses
	Loops, Iterators, and Generators
	List Comprehensions, Generator Expressions, Maps, and Filters
	Lambda Keyword for Anonymous Methods

	Index

