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Exploring and Understanding Data
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 After collecting data and loading it into R's data structures, the next step in 
the machine learning process involves examining the data in detail. 

 It is during this step that you will begin to explore the data's features and 
examples, and realize the peculiarities that make your data unique. 

 The better you understand your data, the better you will be able to match a 
machine learning model to your learning problem.
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The  usedcars.csv Dataset
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 The best way to learn the process of data exploration is with an example. 

• We will explore the usedcars.csv dataset, which contains actual data about used cars recently advertised 
for sale on a popular U.S. website.

• Following along with the examples, we have to be sure that this file has been downloaded and saved 
to our R working directory.

• Since the dataset is stored in the CSV form, we can use the read.csv() function to load the data into an R 
data frame:

> usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)

 Given the usedcars data frame, we will now assume the role of a data scientist who has the 
task of understanding the used car data. 

• Although data exploration is a fluid process, the steps can be imagined as a sort of investigation in 
which questions about the data are answered. 

• The exact questions may vary across projects, but the types of questions are always similar.

Exploring the Structure of Data (1/2)
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 One of the first questions to ask in an investigation of a new dataset should be about how 
the dataset is organized. 
• If you are fortunate, your source will provide a data dictionary, which is a document that describes 

the dataset's features. Assuming that the used car data does not come with this documentation, 
we'll need to create one on our own.

• The str() function provides a method to display the construction of R data structures such as data 
frames, vectors, or lists. It can be used to create the basic outline for our data dictionary:

> str(usedcars)
'data.frame':   150 obs. of  6 variables:
$ year : int 2011 2011 2011 2011 2012 2010 2011 2010 2011 2010 ...
$ model       : chr "SEL" "SEL" "SEL" "SEL" ...
$ price : int 21992 20995 19995 17809 17500 17495 17000 16995 16995 16995 ...
$ mileage : int 7413 10926 7351 11613 8367 25125 27393 21026 32655 36116 ...
$ color : chr "Yellow" "Gray" "Silver" "Gray" ...
$ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...
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Exploring the Structure of Data (2/2)
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 Using such a simple command as str(usedcars), we learn a wealth of information about the 
dataset.
• The statement 150 obs. informs us that the data includes 150 observations, which is just another 

way of saying that the dataset contains 150 records or examples. 
• The 6 variables statement refers to the six features that were recorded in the data.

 Looking at the line for the feature called color, we can note some additional details:

$ color : chr "Yellow" "Gray" "Silver" "Gray" ...

• After the variable's name, the chr label tells us that the feature is character type. In this dataset, three 
of the variables are character while three are noted as int, which indicates integer type. 

• Although the usedcars dataset includes only character and integer variables, you are also likely to 
encounter num or numeric type while using noninteger data. Any factors would be listed as factor 
type. 

• Following each variable's type, R presents a sequence of the first few feature values.

Exploring Numeric Variables (1/2)
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 To investigate the numeric variables in the used car data, we will employ a common set 
of measurements to describe values known as summary statistics. 

 The summary() function displays several common summary statistics. Let's take a look at a 
single feature, year:

> summary(usedcars$year)
Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
2000    2008    2009    2009    2010    2012

• Even if you aren't already familiar with summary statistics, you may be able to guess some of 
them from the heading before the summary() output. 

• Ignoring the meaning of the values for now, the fact that we see numbers such as 2000, 2008, and 
2009 could lead us to believe that the year variable indicates the year of manufacture rather 
than the year the advertisement was posted, since we know the vehicles were recently listed 
for sale.
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Exploring Numeric Variables (2/2)
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We can also use the summary() function to obtain summary statistics for several
numeric variables at the same time:

> summary(usedcars[c("price", "mileage")])
price mileage

Min.   : 3800   Min.   :  4867  
1st Qu.:10995   1st Qu.: 27200  
Median :13592   Median : 36385  
Mean :12962   Mean : 44261  
3rd Qu.:14904   3rd Qu.: 55125  
Max.   :21992   Max.   :151479 

• The six summary statistics that the summary() function provides are simple, yet powerful tools 
to investigate data. They can be divided into two types: measures of center and measures of 
spread.

Measuring the Central Tendency – Mean (1/2)
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 You most likely are already familiar with one common measure of center: the average. 

• In common use, when something is deemed average, it falls somewhere between the extreme ends of the 
scale. 

• An average student might have marks falling in the middle of his or her classmates; an average weight is 
neither unusually light nor heavy. An average item is typical and not too unlike the others in the group. You 
might think of it as an exemplar by which all the others are judged.

 In statistics, the average is also known as the mean, which is a measurement defined as the sum 
of all values divided by the number of values. 

• For example, to calculate the mean income in a group of three people with incomes of $36,000, 
$44,000, and $56,000, use the following command:

Measures of central tendency are a class of statistics used 
to identify a value that falls in the middle of a set of data. 

> (36000 + 44000 + 56000) / 3
[1] 45333.33
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Measuring the Central Tendency – Mean (2/2)
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 R also provides a mean() function, which calculates the mean for a vector of numbers:

• The mean income of this group of people is about $45,333. Conceptually, this can be imagined as 
the income each person would have, if the total amount of income were divided equally across 
every person.

 Recall that the preceding summary() output listed mean values for the price and mileage
variables. 
• The means suggest that the typical used car in this dataset was listed at a price of $12,962 and had 

an odometer reading of 44,261.
• What does this tell us about our data? 
Since the average price is relatively low, we might expect that the dataset contains economy class cars. Of 
course, the data can also include late-model luxury cars with high mileage, but the relatively low mean
mileage statistic doesn't provide evidence to support this hypothesis. On the other hand, it doesn't provide 
evidence to ignore the possibility either. We'll need to keep this in mind as we examine the data further.

> mean(c(36000, 44000, 56000))
[1] 45333.33

Measuring the Central Tendency – Median   (1/2)
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 Another commonly used measure of central tendency is the median, which is the value 
that occurs halfway through an ordered list of values. 

• As with the mean, R provides a median() function, which we can apply to our salary data, as shown 
in the following example:

• At the first glance, it seems like the median and mean are very similar measures. Certainly, the 
mean value of $45,333 and the median value of $44,000 are not very different. 

• Why have two measures of central tendency? 

The reason is due to the fact that the mean and median are affected differently by the values falling at 
the far ends of the range. In particular, the mean is highly sensitive to outliers, or values that are 
atypically high or low in relation to the majority of data. Because the mean is sensitive to outliers, it is 
more likely to be shifted higher or lower by a small number of extreme values.  

> median(c(36000, 44000, 56000))

[1] 44000

Because the middle value is 44000, the median income is $44,000.
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Measuring the Central Tendency – Median   (2/2)
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 Recall again the reported median values in the summary() output for the used car 
dataset. 

• Although the mean and median price are fairly similar (differing by approximately five 
percent), there is a much larger difference between the mean and median for mileage.

For mileage, the mean of 44,261 is approximately 20 percent more than the median of 
36,385. Since the mean is more sensitive to extreme values than the median, the fact that the 
mean is much higher than the median might lead us to suspect that there are some used cars 
in the dataset with extremely high mileage values. To investigate this further, we'll need to 
add additional summary statistics to our analysis. 

Measuring Spread
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Measuring the mean and median provides one way to quickly summarize the 
values, but these measures of center tell us little about whether or not there is 
diversity in the measurements. 

 To measure the diversity, we need to employ another type of summary statistics 
that is concerned with the spread of data, or how tightly or loosely the values are 
spaced. 

 Knowing about the spread provides a sense of the data's highs and lows and 
whether most values are like or unlike the mean and median.
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The Five-Number Summary
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 The five-number summary is a set of five statistics that roughly depict the spread of a 
feature's values. 

 All five of the statistics are included in the output of the summary() function. Written in order, 
they are:

1. Minimum (Min.)
2. First quartile, or Q1 (1st Qu.)
3. Median, or Q2 (Median)
4. Third quartile, or Q3 (3rd Qu.)
5. Maximum (Max.)

• As you would expect, minimum and maximum are the most extreme feature values, indicating the 
smallest and largest values, respectively. R provides the min() and max() functions to calculate these 
values on a vector of data.

• The span between the minimum and maximum value is known as the range. In R, the range() function 
returns both the minimum and maximum value.

Quartiles and Quantiles
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 The first and third quartiles—Q1 and Q3—refer to the value below or above which
one quarter of the values are found. 
• Along with the (Q2) median, the quartiles divide a dataset into four portions, each with 

the same number of values.

Quartiles are a special case of a type of statistics called quantiles, which are 
numbers that divide data into equally sized quantities. 
• In addition to quartiles, commonly used quantiles include tertiles (three parts), quintiles

(five parts), deciles (10 parts), and percentiles (100 parts).

 Percentiles are often used to describe the ranking of a value;
• for instance, a student whose test score was ranked at the 99th percentile performed 

better than, or equal to, 99 percent of the other test takers.
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Interquartile Range (IQR)
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 The middle 50 percent of data between the first and third quartiles is of particular
interest because it in itself is a simple measure of spread. 

• The difference between Q1 and Q3 is known as the Interquartile Range (IQR), and it can be 
calculated with the IQR() function:

> IQR(usedcars$price)
[1] 3909.5

• We could have also calculated this value by hand from the summary() output for the usedcars$price

variable by computing 14904 – 10995 = 3909. 

• The small difference between our calculation and the IQR() output is due to the fact that R 
automatically rounds the summary() output.

The quantile() Function
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 The quantile() function provides a robust tool to identify quantiles for a set of values.

• By default, the quantile() function returns the five-number summary. Applying the function to 
the used car data results in the same statistics as done earlier:
> quantile(usedcars$price)

0%     25%     50%     75%    100% 
3800.0 10995.0 13591.5 14904.5 21992.0 

• If we specify an additional probs parameter using a vector denoting cut points, we can obtain 
arbitrary quantiles, such as the 1st and 99th percentiles:
> quantile(usedcars$price, probs = c(0.01, 0.99))

1%      99% 
5428.69 20505.00 

• The seq() function is used to generate vectors of evenly-spaced values. This makes it easy to obtain 
other slices of data, such as the quintiles (five groups), as shown in the following command:
> quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))

0%     20%     40%     60%     80%    100% 
3800.0 10759.4 12993.8 13992.0 14999.0 21992.0 
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Discussing the summary() Output (1/2)
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 Equipped with an understanding of the five-number summary, we can re-examine
the used car summary() output. 

• On the price variable, the minimum was $3,800 and the maximum was $21,992. 

• Interestingly, the difference between the minimum and Q1 is about $7,000, as is the 
difference between Q3 and the maximum; yet, the difference from Q1 to the median to 
Q3 is roughly $2,000. 

• This suggests that the lower and upper 25 percent of values are more widely dispersed 
than the middle 50 percent of values, which seem to be more tightly grouped around the 
center. 

• We see a similar trend with the mileage variable, which is not unsurprising. 

• As you will learn later in this chapter, this pattern of spread is common enough that it has 
been called a "normal" distribution of data.

Discussing the summary() Output (2/2)
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 The spread of the mileage variable also exhibits another interesting property: 

• the difference between Q3 and the maximum value is far greater than that between the
minimum value and Q1. 

• In other words, the larger values are far more spread out than the smaller values. 

 This finding explains why the mean value is much greater than the median. 

• Because the mean is sensitive to extreme values, it is pulled higher, while the median 
stays relatively in the same place. 

• This is an important property, which becomes more apparent when the data is presented 
visually.
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Visualizing Numeric Values – Boxplots (1/3)
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 Visualizing numeric variables can be helpful in diagnosing data problems. 

• A common visualization of the five-number summary is boxplot, also known as a box-and-whiskers 
plot. 

• The boxplot displays the center and spread of a numeric variable in a format that allows you to 
quickly obtain a sense of the range and skew of a variable or compare it to other variables.

 Let's take a look at a boxplot for the used car price and mileage data. 

• To obtain a boxplot for a variable, we will use the boxplot() function. We will also specify a pair of 
extra parameters, main and ylab, to add a title to the figure and label the y axis (the vertical axis), 
respectively. 

• The commands to create the price and mileage boxplots are:

> boxplot(usedcars$price, main="Boxplot of Used Car Prices", ylab="Price ($)")

> boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage", ylab="Odometer (mi.)")

Visualizing Numeric Values – Boxplots (2/3)
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> boxplot(usedcars$price, main="Boxplot of Used Car Prices", ylab="Price ($)")

> boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage", ylab="Odometer (mi.)")



19.03.2025

11

Visualizing Numeric Values – Boxplots (3/3)
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The plot depicts the five-number summary values using the horizontal lines and dots. 
• The horizontal lines forming the box in the middle of each figure represent Q1, Q2 (the median), and 

Q3 while reading the plot from the bottom to the top. 
• The median is denoted by the dark line, which lines up with $13,592 on the vertical axis for price and 

36,385 mi. on the vertical axis for mileage.
The minimum and maximum values can be illustrated using the whiskers that extend below 

and above the box; 
• however, a widely used convention only allows the whiskers to extend to a minimum or maximum of 

1.5 times the IQR below Q1 or above Q3. Any values that fall beyond this threshold are considered 
outliers and are denoted as circles or dots. 

• For example, recall that the IQR for the price variable was 3,909 with a Q1 of 10,995 and a Q3 of 
14,904. An outlier is therefore any value that is less than 10995 - 1.5 * 3909= 5131.5 or greater than 
14904 + 1.5 * 3909 = 20767.5. The plot shows two such outliers on both the high and low ends. 

• On the mileage boxplot, there are no outliers on the low end and thus, the bottom whisker extends to 
the minimum value, 4,867. On the high end, we see several outliers beyond the 100,000 mile mark. 
These outliers are responsible for our earlier finding, which noted that the mean value was much 
greater than the median.

Visualizing Numeric Values – Histograms (1/3)
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A histogram is another way to graphically depict the spread of a numeric 
variable.

• It is similar to a boxplot in a way that it divides the variable's values into a predefined
number of portions or bins that act as containers for values. 

Their similarities end there, however. 

• On one hand, a boxplot requires that each of the four portions of data must contain 
the same number of values, and widens or narrows the bins as needed.

• On the other hand, a histogram uses any number of bins of an identical width, but 
allows the bins to contain different number of values. 
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Visualizing Numeric Values – Histograms (2/3)
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We can create a histogram for the used car price and mileage data using the hist() function. 

• The commands to create the histograms and the resulting diagrams are:

> hist(usedcars$price, main = "Histogram of Used Car Prices",

+ xlab = "Price ($)")

> hist(usedcars$mileage, main = "Histogram of Used Car Mileage",
+ xlab = "Odometer (mi.)")

Visualizing Numeric Values – Histograms (3/3)
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The histogram is composed of a series of bars with heights indicating the count, or frequency of 
values falling within each of the equal width bins partitioning the values. 

The vertical lines that separate the bars, as labeled on the horizontal axis, indicate the start and 
end points of the range of values for the bin.

On the price histogram:
• Each of the 10 bars spans an interval of $2,000, 

beginning at $2,000 and ending at $22,000. 
• The tallest bar at the center of the figure covers the

$12,000 to $14,000 range and has a frequency of 50.
• Since we know that our data includes 150 cars, we 

know that one-third of all the cars are priced from 
$12,000 to $14,000. 

• Nearly 90 cars—more than half—are priced from 
$12,000 to $16,000.
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Uniform and Normal Distributions
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Histograms, boxplots, and statistics describing the center and spread provide ways to 
examine the distribution of a variable's values. 

A variable's distribution describes how likely a value is to fall within various ranges.

• A uniform distribution is easy to 
detect with a histogram, because the 
bars are approximately the same
height. 

Uniform Distribution
Normal Distribution

• Many real-world phenomena generate 
data that can be described by the normal 
(bell-shaped) distribution.

• Therefore, the normal distribution's 
properties have been studied in great detail.

Measuring Spread – Variance and Standard Deviation (1/2)
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Distributions allow us to characterize a large number of values using a smaller number of 
parameters. 

The normal distribution, which describes many types of real-world data, can be defined with 
just two: center and spread. 
• The center of normal distribution is defined by its mean value, which we have used earlier.

• The spread is measured by a statistic called the standard deviation.

 In order to calculate the standard deviation, we must first obtain the variance, which is 
defined as the average of the squared differences between each value and the mean value. 

• In mathematical notation, the variance 
of a set of n values of x is defined by 
the following formula:

• The Greek letter 𝜇 denotes the mean of the 
values, and the variance itself is denoted by 𝜎ଶ

(sigma squared).

Var X = 𝜎ଶ =  
ଵ


∑ 𝑥 − 𝜇 ଶ

ୀଵ  
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Measuring Spread – Variance and Standard Deviation (2/2)
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The standard deviation is the square 
root of the variance, and is denoted by 
sigma, as shown in the following 
formula: 

StdDev X = 𝜎 =
1

𝑛
 𝑥 − 𝜇 ଶ



ୀଵ

The var() and sd() functions can be used to obtain the variance and 
standard deviation in R. 

• For example, computing 
the variance and 
standard deviation on
our price and mileage
variables, we find:

> var(usedcars$price)

[1] 9749892

> sd(usedcars$price)

[1] 3122.482

> var(usedcars$mileage)

[1] 728033954

> sd(usedcars$mileage)

[1] 26982.1

The 68-95-99.7 Rule
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The standard deviation can be used to quickly estimate how extreme a given value is 
under the assumption that it came from a normal distribution. 

• The 68-95-99.7 rule states that 68 percent of 
the values in a normal distribution fall within 
one standard deviation of the mean, while 
95 percent and 99.7 percent of the values fall 
within two and three standard deviations, 
respectively. 

• This is illustrated in the explanatory diagram.
Normal Distribution

34.1% 34.1%

13,6% 13,6%

2,1% 2,1%
0,1% 0,1%

𝜇 1𝜎−1𝜎 2𝜎−2𝜎 3𝜎−3𝜎

• Applying this information to the used car data, we know that since the mean and standard 
deviation of price were $12,962 and $3,122, respectively, assuming that the prices are normally 
distributed, approximately 68 percent of cars in our data were advertised at prices between 
$12,962 - $3,122 = $9,840 and $12,962 + $3,122 = $16,804.
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Exploring Categorical Variables (1/3)
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 If you recall, the used car dataset had three categorical variables: model, color, and
transmission. 

• Because we used the stringsAsFactors = FALSE parameter while loading the data, R has left them as the 
character (chr) type vectors rather than automatically converting them into factor type. 

 Additionally, we might consider treating the year variable as categorical; 

• Although it has been loaded as a numeric (int) type vector, each year is a category that could apply to 
multiple cars.

 In contrast to numeric data, categorical data is typically examined using tables rather
than summary statistics. 

 A table that presents a single categorical variable is known as a one-way table. 

• The R table() function can be used to generate one-way tables for our used car data.

Exploring Categorical Variables (2/3)
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> table(usedcars$year)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

3    1    1    1    3    2    6   11   14   42   49   16    1 

 The table() output lists the categories of the nominal variable and a count of the number 
of values falling into this category. 
• Since we know that there are 150 used cars in the dataset, we can determine that roughly one-

third of all the cars were manufactured in the year 2010, given that 49/150 = 0.327.

> table(usedcars$model)
SE SEL SES 
78  23  49 

> table(usedcars$color)
Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 

35     17      1     16      5     25     32     16      3 
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Exploring Categorical Variables (3/3)
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 R can also perform the calculation of table proportions directly, by using the prop.table() 

command on a table produced by the table() function:

 The results of prop.table() can be combined with other R functions to transform the output. 

• Suppose that we would like to display the results in percentages with a single decimal place. We 
can do this by multiplying the proportions by 100, then using the round() function while specifying 
digits = 1, as shown in the following example:

> model_table <- table(usedcars$model)
> prop.table(model_table)

SE       SEL       SES 
0.5200000 0.1533333 0.3266667 

> color_table <- table(usedcars$color)
> color_pct <- prop.table(color_table) * 100
> round(color_pct, digits = 1)
Black   Blue   Gold   Gray  Green    Red Silver  White Yellow 
23.3   11.3    0.7   10.7    3.3   16.7   21.3   10.7    2.0 

Measuring the Central Tendency – The Mode
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 In statistics terms, the mode of a feature is the value occurring most often. 

• Like the mean and median, the mode is another measure of central tendency. 

 It is often used for categorical data, since the mean and median are not defined for 
nominal variables. 

• For example, in the used car data, the mode of the year variable is 2010, while the modes for the model
and color variables are SE and Black, respectively. 

• A variable may have more than one mode; a variable with a single mode is unimodal, while a 
variable with two modes is bimodal. Data having multiple modes is more generally called 
multimodal.

 Although you might suspect that you could use the mode() function, R uses this to obtain the 
type of variable (as in numeric, list, and so on) rather than the statistical mode. 

• Instead, to find the statistical mode, simply look at the table output of the category with the greatest
number of values.
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The Mode for Numeric Data
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 Thinking about modes as common values allows us to apply the concept of statistical
mode to the numeric data. 

• Strictly speaking, it would be unlikely to have a mode for a continuous variable, since no two values 
are likely to repeat. Yet, if we think about modes as the highest bars on a histogram, we can discuss 
the modes of variables such as price and mileage. 

• It can be helpful to consider mode while exploring the numeric data, particularly to examine 
whether or not the data is multimodal.

Bimodal DistributionUnimodal Distribution

Exploring Relationships Between Variables
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 So far, we have examined variables one at a time, calculating only univariate
statistics. During our investigation, we raised questions that we were unable to 
answer at that time:

• Does the price data imply that we are examining only economy-class cars or are there 
also luxury cars with high mileage?

• Do relationships between the model and color data provide insight into the types of cars 
we are examining?

 These type of questions can be addressed by looking at bivariate relationships, 
which consider the relationship between two variables. 

 Relationships of more than two variables are called multivariate relationships. 

 Let's begin with the bivariate case.
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Visualizing Relationships - Scatterplots
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 A scatterplot is a diagram that visualizes a bivariate relationship. 

• It is a two-dimensional figure in which dots are drawn on a coordinate plane using the 
values of one feature to provide the horizontal x coordinates and the values of another 
feature to provide the vertical y coordinates. 

• Patterns in the placement of dots reveal the underlying associations between the two 
features.

 To answer our question about the relationship between price and mileage, we will
examine a scatterplot. 

• We'll use the plot() function along with the main, xlab and ylab parameters used previously to 
label the diagram.

Scatterplot of  price vs.  mileage (1/2)
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 To use plot(), we need to specify x and y vectors containing the values used to position 
the dots on the figure. 
• The y variable is the one that is presumed to depend on the other (and is therefore known as the 

dependent variable). 
• Our hypothesis is that the price depends on the odometer mileage. Therefore, we will use price as the 

y, or dependent, variable.

 The full command to create our scatterplot is:

> plot(x = usedcars$mileage, y = usedcars$price,
+ main = "Scatterplot of Price vs. Mileage",
+ xlab = "Used Car Odometer (mi.)",
+ ylab = "Used Car Price ($)")

• Using the scatterplot, we notice a clear relationship 
between the price of a used car and the odometer 
reading.
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Scatterplot of  price vs.  mileage (2/2)
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 Perhaps a more interesting finding is the fact that there are 
very few cars that have both high price and high mileage, 
aside from a lone outlier at about 125,000 miles and 
$14,000. 
• The absence of more points like this provides evidence to 

support a conclusion that our data is unlikely to include any 
high mileage luxury cars. 

• All of the most expensive cars in the data, particularly those 
above $17,500, seem to have extraordinarily low mileage, 
implying that we could be looking at a brand new type of car 
retailing for about $20,000.

 The relationship we've found between car prices and mileage is known as a negative association, 
because it forms a pattern of dots in a line sloping downward.
• A positive association would appear to form a line sloping upward. 
• A flat line, or a seemingly random scattering of dots, is evidence that the two variables are not associated at 

all. The strength of a linear association between two variables is measured by a statistic known as correlation.

Correlation Coefficient - Definition

19.03.2025 Eksploracja danych

 For pairs of variables measured on an interval or ratio scale, a correlation coefficient r
can be calculated as follows:

𝑥 and 𝑦 - variables, 
𝑥 - individual values of 𝑥,
𝑦 - individual values of 𝑦,
�̅� - the mean of the 𝑥 variable,
𝑦ത - the mean of the 𝑦 variable,
𝜎௫ and 𝜎௬ - the standard deviations of the 

variables 𝑥 and 𝑦, respectively,
𝑛 - the number of observations.

𝑟 =  
∑ 𝑥 − �̅� 𝑦 − 𝑦ത

ୀଵ

𝑛𝜎௫𝜎௬ • The values of r are within a range of
− 1.0 ÷  1.0 and quantify the linear 
relationship between the variables.

• Positive numbers for r indicate a positive 
correlation between the pair of variables, 
and negative numbers indicate a negative 
correlation.

• A value of r close to 0 indicates little or no
relationship between the variables.
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Correlation Coefficient – An Example
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 Keep in mind that not all associations form 
straight lines. 

• Sometimes the dots form a U shape, or a V shape; 
sometimes the pattern seems to be weaker or 
stronger for increasing values of the x or y
variable.

• Such patterns imply that the relationship 
between the two variables is not linear.

 Now we are ready to calculate the correlation between car prices and mileage.

• This could be accomplished by the R function cor() as follows: 

> cor(usedcars$mileage, usedcars$price)
[1] -0.8061494

• The computed correlation value fully confirms
what  we’ve already seen in the scatterplot.

Two-Way Cross-Tabulations (1/4)
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To examine a relationship between two nominal variables, a two-way cross-
tabulation is used (also known as a crosstab or contingency table). 

• A cross-tabulation is similar to a scatterplot in that it allows you to examine how the 
values of one variable vary by the values of another. 

• The format is a table in which the rows are the levels of one variable, while the columns 
are the levels of another. 

• Counts in each of the table's cells indicate the number of values falling into the particular 
row and column combination.
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Two-Way Cross-Tabulations (2/4)

19.03.2025 Eksploracja danych

 To answer our earlier question about whether there is a relationship between car
model and color, we will examine a crosstab. 
• There are several functions to produce two-way tables in R, including table(), which we used for 

one-way tables. 

• The CrossTable() option in the gmodels package is perhaps the most user-friendly function, as it 
presents the row, column, and margin percentages in a single table, saving us the trouble of 
combining this data ourselves. 

• To install the gmodels package, type:

> install.packages("gmodels")

• After the package installs, type: library(gmodels) to load the package. You will need to do this 
during each R session in which you plan on using the CrossTable() function.

Two-Way Cross-Tabulations (3/4)
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 Before proceeding with our analysis, let's simplify our project by reducing the number of 
levels in the color variable. 

• This variable has nine levels, but we don't really need this much detail. What we are really interested 
in is whether or not the car's color is conservative. 

• Toward this end, we'll divide the nine colors into two groups: the first group will include the 
conservative colors Black, Gray, Silver, and White; and the second group will include Blue, Gold, Green, Red, 
and Yellow. 

• We will create a binary indicator variable (often called a dummy variable), indicating whether or not 
the car's color is conservative by our definition. Its value will be 1 if true, 0 otherwise:

> usedcars$conservative <-
+ usedcars$color %in% c("Black", "Gray", "Silver", "White")

• The %in% operator returns TRUE or FALSE for each value in the vector on the left-hand side of the 
operator depending on whether the value is found in the vector on the right-hand side.
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Two-Way Cross-Tabulations (4/4)
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 Examining the table() output for our newly created variable, we see that about two-thirds of 
the cars have conservative colors, while one-third do not have conservative colors:

> table(usedcars$conservative)
FALSE  TRUE 

51    99 

 Now, let's look at a cross-tabulation to see how the proportion of conservatively colored 
cars varies by the model. 

• Since we're assuming that the model of the car dictates the choice of color, we'll treat the 
conservative color indicator as the dependent (y) variable. 

• The CrossTable() command is therefore:

> CrossTable(x = usedcars$model, y = usedcars$conservative)

The  CrossTable() Output
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 The preceding command results in the following table: Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

Total Observations in Table:  150 

| usedcars$conservative
usedcars$model |     FALSE |      TRUE | Row Total | 
---------------|-----------|-----------|-----------|

SE |        27 |        51 |        78 | 
|     0.009 |     0.004 |           | 
|     0.346 |     0.654 |     0.520 | 
|     0.529 |     0.515 |           | 
|     0.180 |     0.340 |           | 

---------------|-----------|-----------|-----------|
SEL |         7 |        16 |        23 | 

|     0.086 |     0.044 |           | 
|     0.304 |     0.696 |     0.153 | 
|     0.137 |     0.162 |           | 
|     0.047 |     0.107 |           | 

---------------|-----------|-----------|-----------|
SES |        17 |        32 |        49 | 

|     0.007 |     0.004 |           | 
|     0.347 |     0.653 |     0.327 | 
|     0.333 |     0.323 |           | 
|     0.113 |     0.213 |           | 

---------------|-----------|-----------|-----------|
Column Total |        51 |        99 |       150 | 

|     0.340 |     0.660 |           | 
---------------|-----------|-----------|-----------|

What we are most interested in is the row
proportion for conservative cars for each model. 

• The row proportions tell us that 0.654 (65 percent) of SE

cars are colored conservatively in comparison to 0.696 (70

percent) of SEL cars and 0.653 (65 percent) of SES. 

• These differences are relatively small, suggesting that 
there are no substantial differences in the types of colors 
chosen by the model of the car.

• The rows in the table indicate the three models of used 
cars: SE, SEL, and SES (plus an additional row for the 
total across all models). 

• The columns indicate whether or not the car's color is
conservative (plus a column totaling across both types 
of color).


