
4/5/2024

1

Chapter 3 – Agile Software Development

Lecture 1

1Chapter 3 Agile software development

Topics covered

 Agile methods

 Plan-driven and agile development

 Extreme programming

 Agile project management

 Scaling agile methods

2Chapter 3 Agile software development

4/5/2024

2

Rapid software development

 Rapid development and delivery is now often the most

important requirement for software systems

 Businesses operate in a fast –changing requirement and it is

practically impossible to produce a set of stable software

requirements

 Software has to evolve quickly to reflect changing business needs.

 Rapid software development

 Specification, design and implementation are inter-leaved

 System is developed as a series of versions with stakeholders

involved in version evaluation

 User interfaces are often developed using an IDE and graphical

toolset.

3Chapter 3 Agile software development

Agile methods

 Dissatisfaction with the overheads involved in software

design methods of the 1980s and 1990s led to the

creation of agile methods. These methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and to

be able to respond quickly to changing requirements

without excessive rework.

4Chapter 3 Agile software development

4/5/2024

3

Agile manifesto

 We are uncovering better ways of developing  software

by doing it and helping others do it.  Through this work
we have come to value:

 Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on  the right,
we value the items on the left more.

Chapter 3 Agile software development 5

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the
development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

6Chapter 3 Agile software development

4/5/2024

4

Agile method applicability

 Product development where a software company is

developing a small or medium-sized product for sale.

 Custom system development within an organization,

where there is a clear commitment from the customer to

become involved in the development process and where

there are not a lot of external rules and regulations that

affect the software.

 Because of their focus on small, tightly-integrated teams,

there are problems in scaling agile methods to large

systems.

Chapter 3 Agile software development 7

Problems with agile methods

 It can be difficult to keep the interest of customers who

are involved in the process.

 Team members may be unsuited to the intense

involvement that characterises agile methods.

 Prioritising changes can be difficult where there are

multiple stakeholders.

 Maintaining simplicity requires extra work.

 Contracts may be a problem as with other approaches to

iterative development.

8Chapter 3 Agile software development

4/5/2024

5

Agile methods and software maintenance

 Most organizations spend more on maintaining existing

software than they do on new software development. So,

if agile methods are to be successful, they have to

support maintenance as well as original development.

 Two key issues:

 Are systems that are developed using an agile approach

maintainable, given the emphasis in the development process of

minimizing formal documentation?

 Can agile methods be used effectively for evolving a system in

response to customer change requests?

 Problems may arise if original development team cannot

be maintained.

Chapter 3 Agile software development 9

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced at

each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Iteration occurs within activities.

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

10Chapter 3 Agile software development

4/5/2024

6

Plan-driven and agile specification

11Chapter 3 Agile software development

Technical, human, organizational issues

 Most projects include elements of plan-driven and agile

processes. Deciding on the balance depends on:

 Is it important to have a very detailed specification and design

before moving to implementation? If so, you probably need to use

a plan-driven approach.

 Is an incremental delivery strategy, where you deliver the software

to customers and get rapid feedback from them, realistic? If so,

consider using agile methods.

 How large is the system that is being developed? Agile methods

are most effective when the system can be developed with a small

co-located team who can communicate informally. This may not be

possible for large systems that require larger development teams

so a plan-driven approach may have to be used.

12Chapter 3 Agile software development

4/5/2024

7

Technical, human, organizational issues

 What type of system is being developed?

• Plan-driven approaches may be required for systems that require a lot

of analysis before implementation (e.g. real-time system with complex

timing requirements).

 What is the expected system lifetime?

• Long-lifetime systems may require more design documentation to

communicate the original intentions of the system developers to the

support team.

 What technologies are available to support system development?

• Agile methods rely on good tools to keep track of an evolving design

 How is the development team organized?

• If the development team is distributed or if part of the development is

being outsourced, then you may need to develop design documents to

communicate across the development teams.

13Chapter 3 Agile software development

Technical, human, organizational issues

 Are there cultural or organizational issues that may affect the

system development?

• Traditional engineering organizations have a culture of plan-based

development, as this is the norm in engineering.

 How good are the designers and programmers in the

development team?

• It is sometimes argued that agile methods require higher skill levels

than plan-based approaches in which programmers simply translate

a detailed design into code

 Is the system subject to external regulation?

• If a system has to be approved by an external regulator (e.g. the

FAA approve software that is critical to the operation of an aircraft)

then you will probably be required to produce detailed

documentation as part of the system safety case.

Chapter 3 Agile software development 14

4/5/2024

8

Extreme programming

 Perhaps the best-known and most widely used agile
method.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

15Chapter 3 Agile software development

XP and agile principles

 Incremental development is supported through small,

frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming, collective

ownership and a process that avoids long working hours.

 Change supported through regular system releases.

 Maintaining simplicity through constant refactoring of

code.

16Chapter 3 Agile software development

4/5/2024

9

The extreme programming release cycle

17Chapter 3 Agile software development

Extreme programming practices (a)

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be
included in a release are determined by the time available and
their relative priority. The developers break these stories into
development ‘Tasks’. See Figures 3.5 and 3.6.

Small releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent
and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements
and no more.

Test-first development An automated unit test framework is used to write tests for a
new piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

18Chapter 3 Agile software development

4/5/2024

10

Extreme programming practices (b)

Pair programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers take
responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into
the whole system. After any such integration, all the unit tests in
the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as
the net effect is often to reduce code quality and medium term
productivity

On-site customer A representative of the end-user of the system (the customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of
the development team and is responsible for bringing system
requirements to the team for implementation.

19Chapter 3 Agile software development

Requirements scenarios

 In XP, a customer or user is part of the XP team and is

responsible for making decisions on requirements.

 User requirements are expressed as scenarios or user

stories.

 These are written on cards and the development team

break them down into implementation tasks. These tasks

are the basis of schedule and cost estimates.

 The customer chooses the stories for inclusion in the

next release based on their priorities and the schedule

estimates.

20Chapter 3 Agile software development

4/5/2024

11

A ‘prescribing medication’ story

21Chapter 3 Agile software development

Examples of task cards for prescribing
medication

22Chapter 3 Agile software development

4/5/2024

12

XP and change

 Conventional wisdom in software engineering is to
design for change. It is worth spending time and effort
anticipating changes as this reduces costs later in the life
cycle.

 XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

 Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

23Chapter 3 Agile software development

Refactoring

 Programming team look for possible software

improvements and make these improvements even

where there is no immediate need for them.

 This improves the understandability of the software and

so reduces the need for documentation.

 Changes are easier to make because the code is well-

structured and clear.

 However, some changes requires architecture

refactoring and this is much more expensive.

Chapter 3 Agile software development 24

4/5/2024

13

Examples of refactoring

 Re-organization of a class hierarchy to remove duplicate

code.

 Tidying up and renaming attributes and methods to make

them easier to understand.

 The replacement of inline code with calls to methods that

have been included in a program library.

Chapter 3 Agile software development 25

Key points

 Agile methods are incremental development methods that focus on

rapid development, frequent releases of the software, reducing

process overheads and producing high-quality code. They involve

the customer directly in the development process.

 The decision on whether to use an agile or a plan-driven approach

to development should depend on the type of software being

developed, the capabilities of the development team and the culture

of the company developing the system.

 Extreme programming is a well-known agile method that integrates

a range of good programming practices such as frequent releases of

the software, continuous software improvement and customer

participation in the development team.

Chapter 3 Agile software development 26

4/5/2024

14

Chapter 3 – Agile Software Development

Lecture 2

27Chapter 3 Agile software development

Testing in XP

 Testing is central to XP and XP has developed an

approach where the program is tested after every

change has been made.

 XP testing features:

 Test-first development.

 Incremental test development from scenarios.

 User involvement in test development and validation.

 Automated test harnesses are used to run all component tests

each time that a new release is built.

28Chapter 3 Agile software development

4/5/2024

15

Test-first development

 Writing tests before code clarifies the requirements to be
implemented.

 Tests are written as programs rather than data so that
they can be executed automatically. The test includes a
check that it has executed correctly.

 Usually relies on a testing framework such as Junit.

 All previous and new tests are run automatically when
new functionality is added, thus checking that the new
functionality has not introduced errors.

29Chapter 3 Agile software development

Customer involvement

 The role of the customer in the testing process is to help

develop acceptance tests for the stories that are to be

implemented in the next release of the system.

 The customer who is part of the team writes tests as

development proceeds. All new code is therefore

validated to ensure that it is what the customer needs.

 However, people adopting the customer role have limited

time available and so cannot work full-time with the

development team. They may feel that providing the

requirements was enough of a contribution and so may

be reluctant to get involved in the testing process.

Chapter 3 Agile software development 30

4/5/2024

16

Test case description for dose checking

31Chapter 3 Agile software development

Test automation

 Test automation means that tests are written as

executable components before the task is implemented

 These testing components should be stand-alone, should

simulate the submission of input to be tested and should check

that the result meets the output specification. An automated test

framework (e.g. Junit) is a system that makes it easy to write

executable tests and submit a set of tests for execution.

 As testing is automated, there is always a set of tests

that can be quickly and easily executed

 Whenever any functionality is added to the system, the tests can

be run and problems that the new code has introduced can be

caught immediately.

Chapter 3 Agile software development 32

4/5/2024

17

XP testing difficulties

 Programmers prefer programming to testing and

sometimes they take short cuts when writing tests. For

example, they may write incomplete tests that do not

check for all possible exceptions that may occur.

 Some tests can be very difficult to write incrementally.

For example, in a complex user interface, it is often

difficult to write unit tests for the code that implements

the ‘display logic’ and workflow between screens.

 It difficult to judge the completeness of a set of tests.

Although you may have a lot of system tests, your test

set may not provide complete coverage.

Chapter 3 Agile software development 33

Pair programming

 In XP, programmers work in pairs, sitting together to
develop code.

 This helps develop common ownership of code and
spreads knowledge across the team.

 It serves as an informal review process as each line of
code is looked at by more than 1 person.

 It encourages refactoring as the whole team can benefit
from this.

 Measurements suggest that development productivity
with pair programming is similar to that of two people
working independently.

34Chapter 3 Agile software development

4/5/2024

18

Pair programming

 In pair programming, programmers sit together at the

same workstation to develop the software.

 Pairs are created dynamically so that all team members

work with each other during the development process.

 The sharing of knowledge that happens during pair

programming is very important as it reduces the overall

risks to a project when team members leave.

 Pair programming is not necessarily inefficient and there

is evidence that a pair working together is more efficient

than 2 programmers working separately.

35Chapter 3 Agile software development

Advantages of pair programming

 It supports the idea of collective ownership and

responsibility for the system.

 Individuals are not held responsible for problems with the code.

Instead, the team has collective responsibility for resolving these

problems.

 It acts as an informal review process because each line

of code is looked at by at least two people.

 It helps support refactoring, which is a process of

software improvement.

 Where pair programming and collective ownership are used,

others benefit immediately from the refactoring so they are likely

to support the process.

Chapter 3 Agile software development 36

4/5/2024

19

Agile project management

 The principal responsibility of software project managers

is to manage the project so that the software is delivered

on time and within the planned budget for the project.

 The standard approach to project management is plan-

driven. Managers draw up a plan for the project showing

what should be delivered, when it should be delivered

and who will work on the development of the project

deliverables.

 Agile project management requires a different approach,

which is adapted to incremental development and the

particular strengths of agile methods.

37Chapter 3 Agile software development

Scrum

 The Scrum approach is a general agile method but its

focus is on managing iterative development rather than

specific agile practices.

 There are three phases in Scrum.

 The initial phase is an outline planning phase where you

establish the general objectives for the project and design the

software architecture.

 This is followed by a series of sprint cycles, where each cycle

develops an increment of the system.

 The project closure phase wraps up the project, completes

required documentation such as system help frames and user

manuals and assesses the lessons learned from the project.

Chapter 3 Agile software development 38

4/5/2024

20

The Scrum process

39Chapter 3 Agile software development

The Sprint cycle

 Sprints are fixed length, normally 2–4 weeks. They

correspond to the development of a release of the

system in XP.

 The starting point for planning is the product backlog,

which is the list of work to be done on the project.

 The selection phase involves all of the project team who

work with the customer to select the features and

functionality to be developed during the sprint.

40Chapter 3 Agile software development

4/5/2024

21

The Sprint cycle

 Once these are agreed, the team organize themselves to

develop the software. During this stage the team is

isolated from the customer and the organization, with all

communications channelled through the so-called

‘Scrum master’.

 The role of the Scrum master is to protect the

development team from external distractions.

 At the end of the sprint, the work done is reviewed and

presented to stakeholders. The next sprint cycle then

begins.

41Chapter 3 Agile software development

Teamwork in Scrum

 The ‘Scrum master’ is a facilitator who arranges daily

meetings, tracks the backlog of work to be done, records

decisions, measures progress against the backlog and

communicates with customers and management outside

of the team.

 The whole team attends short daily meetings where all

team members share information, describe their

progress since the last meeting, problems that have

arisen and what is planned for the following day.

 This means that everyone on the team knows what is going on

and, if problems arise, can re-plan short-term work to cope with

them.

Chapter 3 Agile software development 42

4/5/2024

22

Scrum benefits

 The product is broken down into a set of manageable

and understandable chunks.

 Unstable requirements do not hold up progress.

 The whole team have visibility of everything and

consequently team communication is improved.

 Customers see on-time delivery of increments and gain

feedback on how the product works.

 Trust between customers and developers is established

and a positive culture is created in which everyone

expects the project to succeed.

Chapter 3 Agile software development 43

Scaling agile methods

 Agile methods have proved to be successful for small

and medium sized projects that can be developed by a

small co-located team.

 It is sometimes argued that the success of these

methods comes because of improved communications

which is possible when everyone is working together.

 Scaling up agile methods involves changing these to

cope with larger, longer projects where there are multiple

development teams, perhaps working in different

locations.

44Chapter 3 Agile software development

4/5/2024

23

Large systems development

 Large systems are usually collections of separate,
communicating systems, where separate teams develop each
system. Frequently, these teams are working in different
places, sometimes in different time zones.

 Large systems are ‘brownfield systems’, that is they include
and interact with a number of existing systems. Many of the
system requirements are concerned with this interaction and
so don’t really lend themselves to flexibility and incremental
development.

 Where several systems are integrated to create a system, a
significant fraction of the development is concerned with
system configuration rather than original code development.

45Chapter 3 Agile software development

Large system development

 Large systems and their development processes are

often constrained by external rules and regulations

limiting the way that they can be developed.

 Large systems have a long procurement and

development time. It is difficult to maintain coherent

teams who know about the system over that period as,

inevitably, people move on to other jobs and projects.

 Large systems usually have a diverse set of

stakeholders. It is practically impossible to involve all of

these different stakeholders in the development process.

46Chapter 3 Agile software development

4/5/2024

24

Scaling out and scaling up

 ‘Scaling up’ is concerned with using agile methods for

developing large software systems that cannot be

developed by a small team.

 ‘Scaling out’ is concerned with how agile methods can

be introduced across a large organization with many

years of software development experience.

 When scaling agile methods it is essential to maintain

agile fundamentals

 Flexible planning, frequent system releases, continuous

integration, test-driven development and good team

communications.

Chapter 3 Agile software development 47

Scaling up to large systems

 For large systems development, it is not possible to focus only
on the code of the system. You need to do more up-front
design and system documentation

 Cross-team communication mechanisms have to be designed
and used. This should involve regular phone and video
conferences between team members and frequent, short
electronic meetings where teams update each other on
progress.

 Continuous integration, where the whole system is built every
time any developer checks in a change, is practically
impossible. However, it is essential to maintain frequent
system builds and regular releases of the system.

48Chapter 3 Agile software development

4/5/2024

25

Scaling out to large companies

 Project managers who do not have experience of agile
methods may be reluctant to accept the risk of a new approach.

 Large organizations often have quality procedures and
standards that all projects are expected to follow and, because
of their bureaucratic nature, these are likely to be incompatible
with agile methods.

 Agile methods seem to work best when team members have a
relatively high skill level. However, within large organizations,
there are likely to be a wide range of skills and abilities.

 There may be cultural resistance to agile methods, especially in
those organizations that have a long history of using
conventional systems engineering processes.

49Chapter 3 Agile software development

Key points

 A particular strength of extreme programming is the

development of automated tests before a program

feature is created. All tests must successfully execute

when an increment is integrated into a system.

 The Scrum method is an agile method that provides a

project management framework. It is centred round a set

of sprints, which are fixed time periods when a system

increment is developed.

 Scaling agile methods for large systems is difficult. Large

systems need up-front design and some documentation.

50Chapter 3 Agile software development

